Science.gov

Sample records for acid oxidation capacity

  1. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  2. Structure and oxidation capacity of amino acid chloramine derivatives and their effects on platelet aggregation.

    PubMed

    Murina, M A; Chudina, N A; Roshchupkin, D I; Belakina, N S; Sergienko, V I

    2004-12-01

    Comparison of antiaggregation capacity of N-chloramine acids with different position of the chloramine group in the molecule showed that in the most efficient compounds the distance between the chloramine and carboxyl groups was 3-5 carbon atoms. This feature of antiaggregation activity was not related to the difference in oxidation capacity of N-chloramine acids. It was hypothesized that the revealed structural dependence of antiaggregation activity of N-chloramine acids is determined by the structure of platelet membrane, in particular, the presence of a negatively charged group near the site of interaction between N-chloramine acids and platelet membrane.

  3. Effect of Plasma Uric Acid on Antioxidant Capacity, Oxidative Stress, and Insulin Sensitivity in Obese Subjects

    PubMed Central

    Fabbrini, Elisa; Serafini, Mauro; Colic Baric, Irena; Hazen, Stanley L.; Klein, Samuel

    2014-01-01

    Oxidative stress is purported to be involved in the pathogenesis of obesity-associated insulin resistance. We evaluated whether alterations in levels of circulating uric acid (UA), a systemic antioxidant, affects the following: 1) systemic (plasma and saliva) nonenzymatic antioxidant capacity (NEAC); 2) markers of systemic (urinary 8-iso-prostaglandin-F2α) and muscle (carbonylated protein content) oxidative stress; and 3) whole-body insulin sensitivity (percentage increase in glucose uptake during a hyperinsulinemic-euglycemic clamp procedure). Thirty-one obese subjects (BMI 37.1 ± 0.7 kg/m2) with either high serum UA (HUA; 7.1 ± 0.4 mg/dL; n = 15) or normal serum UA (NUA; 4.5 ± 0.2 mg/dL; n = 16) levels were studied; 13 subjects with HUA levels were studied again after reduction of serum UA levels to 0 by infusing a recombinant urate oxidase. HUA subjects had 20–90% greater NEAC, but lower insulin sensitivity (40%) and levels of markers of oxidative stress (30%) than subjects in the NUA group (all P < 0.05). Acute UA reduction caused a 45–95% decrease in NEAC and a 25–40% increase in levels of systemic and muscle markers of oxidative stress (all P < 0.05), but did not affect insulin sensitivity (from 168 ± 25% to 156 ± 17%, P = NS). These results demonstrate that circulating UA is a major antioxidant and might help protect against free-radical oxidative damage. However, oxidative stress is not a major determinant of insulin action in vivo. PMID:24353177

  4. Chronic intake of proanthocyanidins and docosahexaenoic acid improves skeletal muscle oxidative capacity in diet-obese rats.

    PubMed

    Casanova, Ester; Baselga-Escudero, Laura; Ribas-Latre, Aleix; Cedó, Lídia; Arola-Arnal, Anna; Pinent, Montserrat; Bladé, Cinta; Arola, Lluís; Salvadó, M Josepa

    2014-10-01

    Obesity has become a worldwide epidemic. The cafeteria diet (CD) induces obesity and oxidative-stress-associated insulin resistance. Polyunsaturated fatty acids and polyphenols are dietary compounds that are intensively studied as products that can reduce the health complications related to obesity. We evaluate the effects of 21 days of supplementation with grape seed proanthocyanidins extract (GSPE), docosahexaenoic-rich oil (DHA-OR) or both compounds (GSPE+DHA-OR) on skeletal muscle metabolism in diet-obese rats. The supplementation with different treatments did not reduce body weight, although all groups used more fat as fuel, particularly when both products were coadministered; muscle β-oxidation was activated, the mitochondrial functionality and oxidative capacity were higher, and fatty acid uptake gene expressions were up-regulated. In addition to these outcomes shared by all treatments, GSPE reduced insulin resistance and improved muscle status. Both treatments increased 5'-AMP-activated protein kinase (AMPK) phosphorylation, which was consistent with higher plasma adiponectin levels. Moreover, AMPK activation by DHA-OR was also correlated with an up-regulation of peroxisome proliferator-activated receptor alpha (Pparα). GSPE+DHA-OR, in addition to activating AMPK and enhancing fatty acid oxidation, increased the muscle gene expression of uncoupling protein 2 (Ucp2). In conclusion, GSPE+DHA-OR induced modifications that improved muscle status and could counterbalance the deleterious effects of obesity, and such modifications are mediated, at least in part, through the AMPK signaling pathway.

  5. High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria.

    PubMed

    Chicco, Adam J; Le, Catherine H; Schlater, Amber; Nguyen, Alex; Kaye, Spencer; Beals, Joseph W; Scalzo, Rebecca L; Bell, Christopher; Gnaiger, Erich; Costa, Daniel P; Crocker, Daniel E; Kanatous, Shane B

    2014-08-15

    Northern elephant seals (Mirounga angustirostris) are extreme, hypoxia-adapted endotherms that rely largely on aerobic metabolism during extended breath-hold dives in near-freezing water temperatures. While many aspects of their physiology have been characterized to account for these remarkable feats, the contribution of adaptations in the aerobic powerhouses of muscle cells, the mitochondria, are unknown. In the present study, the ontogeny and comparative physiology of elephant seal muscle mitochondrial respiratory function was investigated under a variety of substrate conditions and respiratory states. Intact mitochondrial networks were studied by high-resolution respirometry in saponin-permeabilized fiber bundles obtained from primary swimming muscles of pup, juvenile and adult seals, and compared with fibers from adult human vastus lateralis. Results indicate that seal muscle maintains a high capacity for fatty acid oxidation despite a progressive decrease in total respiratory capacity as animals mature from pups to adults. This is explained by a progressive increase in phosphorylation control and fatty acid utilization over pyruvate in adult seals compared with humans and seal pups. Interestingly, despite higher indices of oxidative phosphorylation efficiency, juvenile and adult seals also exhibit a ~50% greater capacity for respiratory 'leak' compared with humans and seal pups. The ontogeny of this phenotype suggests it is an adaptation of muscle to the prolonged breath-hold exercise and highly variable ambient temperatures experienced by mature elephant seals. These studies highlight the remarkable plasticity of mammalian mitochondria to meet the demands for both efficient ATP production and endothermy in a cold, oxygen-limited environment.

  6. Improving the characterization of dissolved organic carbon in cloud water: Amino acids and their impact on the oxidant capacity

    NASA Astrophysics Data System (ADS)

    Bianco, Angelica; Voyard, Guillaume; Deguillaume, Laurent; Mailhot, Gilles; Brigante, Marcello

    2016-11-01

    Improving our understanding of cloud chemistry depends on achieving better chemical characterization (90% of the organic carbon [OC] fraction remains uncharacterized) and, consequently, assessing the reactivity of this complex system. In this manuscript, we report for the first time the concentrations of 16 amino acids (AAs) in 25 cloud water samples. The concentrations of individual AAs ranged from a few nM up to ~2.0 μM, and the average contribution of AAs corresponded to 9.1% (4.4 to 21.6%) of the dissolved OC (DOC) concentration. Considering their occurrence and concentrations, AAs were expected to represent an important hydroxyl radical (HO•) sink in aqueous cloud samples. In this work, we estimated that approximately 17% (from 7 to 36%) of the hydroxyl radical-scavenging ability of the DOC could be attributed to the presence of AAs, whereas comparing the AAs suggested that an average of 51% (from 22 to 80%) of their reactivity with HO• could account for the presence of tryptophan. These results clearly demonstrate that the occurrence and reactivity of AAs must be considered to better estimate the chemical composition and oxidant capacity of the cloud aqueous phase.

  7. Improving the characterization of dissolved organic carbon in cloud water: Amino acids and their impact on the oxidant capacity

    PubMed Central

    Bianco, Angelica; Voyard, Guillaume; Deguillaume, Laurent; Mailhot, Gilles; Brigante, Marcello

    2016-01-01

    Improving our understanding of cloud chemistry depends on achieving better chemical characterization (90% of the organic carbon [OC] fraction remains uncharacterized) and, consequently, assessing the reactivity of this complex system. In this manuscript, we report for the first time the concentrations of 16 amino acids (AAs) in 25 cloud water samples. The concentrations of individual AAs ranged from a few nM up to ~2.0 μM, and the average contribution of AAs corresponded to 9.1% (4.4 to 21.6%) of the dissolved OC (DOC) concentration. Considering their occurrence and concentrations, AAs were expected to represent an important hydroxyl radical (HO•) sink in aqueous cloud samples. In this work, we estimated that approximately 17% (from 7 to 36%) of the hydroxyl radical-scavenging ability of the DOC could be attributed to the presence of AAs, whereas comparing the AAs suggested that an average of 51% (from 22 to 80%) of their reactivity with HO• could account for the presence of tryptophan. These results clearly demonstrate that the occurrence and reactivity of AAs must be considered to better estimate the chemical composition and oxidant capacity of the cloud aqueous phase. PMID:27876758

  8. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  9. Effect of mixed flavonoids, n-3 fatty acids, and vitamin C on oxidative stress and antioxidant capacity before and after intense cycling.

    PubMed

    McAnulty, Steven R; Nieman, David C; McAnulty, Lisa S; Lynch, Worley S; Jin, Fuxia; Henson, Dru A

    2011-08-01

    Consumption of plant flavonoids, antioxidants, and n-3 fatty acids is proposed to have many potential health benefits derived primarily through antioxidant and anti-inflammatory activities. This study examined the effects of 1,000 mg quercetin + 1,000 mg vitamin C (QC); 1,000 mg quercetin, 1,000 mg vitamin C, 400 mg isoquercetin, 30 mg epigallocatechin gallate, and 400 mg n-3 fatty acids (QFO); or placebo (P), taken each day for 2 wk before and during 3 d of cycling at 57% W(max) for 3 hr, on plasma antioxidant capacity (ferricreducing ability of plasma [FRAP], oxygen-radical absorbance capacity [ORAC]), plasma oxidative stress (F(2)-isoprostanes), and plasma quercetin and vitamin C levels. Thirty-nine athletes were recruited and randomized to QC, QFO, or P. Blood was collected at baseline, after 2 wk supplementation, immediately postexercise, and 14 hr postexercise. Statistical design used a 3 (groups) × 4 (times) repeated-measures ANOVA with post hoc analyses. Plasma quercetin was significantly elevated in QC and QFO compared with P. Plasma F(2)-isoprostanes, FRAP, and vitamin C were significantly elevated and ORAC significantly decreased immediately postexercise, but no difference was noted in the overall pattern of change. Post hoc analyses revealed that the QC and QFO groups did not exhibit a significant increase in F(2)-isoprostanes from baseline to immediately postexercise compared with P. This study indicates that combining flavonoids and antioxidants with n-3 fatty acids is effective in reducing the immediate postexercise increase in F(2)-isoprostanes. Moreover, this effect occurs independently of changes in plasma antioxidant capacity.

  10. An electrochemical sensor for gallic acid based on Fe₂O₃/electro-reduced graphene oxide composite: Estimation for the antioxidant capacity index of wines.

    PubMed

    Gao, Feng; Zheng, Delun; Tanaka, Hidekazu; Zhan, Fengping; Yuan, Xiaoning; Gao, Fei; Wang, Qingxiang

    2015-12-01

    A highly sensitive electrochemical sensor for gallic acid (GA), an important polyphenolic compound, was fabricated using the hybrid material of chitosan (CS), fishbone-shaped Fe2O3 (fFe2O3), and electrochemically reduced graphene oxide (ERGO) as the sensing matrix. The electrochemical characterization experiments showed that the CS-fFe2O3-ERGO modified glassy carbon electrode (CS-fFe2O3-ERGO/GCE) had large surface area, excellent electronic conductivity and high stability. The GA presented a superior electrochemical response on CS-fFe2O3-ERGO/GCE in comparison with the single-component modified electrode. The electrochemical mechanism and optimal test conditions of GA on the electrode surface were carefully investigated. Under the optimal conditions, the oxidation peak currents in differential pulse voltammetry (DPV) experiments exhibited a good linear relationship with the logarithmic values of GA concentration over the range from 1.0×10(-6)M to 1.0×10(-4)M. Based on signal-to-noise (S/N) characteristic of 3, the detection limit was estimated to be 1.5×10(-7)M. The proposed sensor has also been applied for estimating the antioxidant capacity index of real samples of red and white wines.

  11. Adaptability of the oxidative capacity of motoneurons

    NASA Technical Reports Server (NTRS)

    Chalmers, G. R.; Roy, R. R.; Edgerton, V. R.

    1992-01-01

    Previous studies have demonstrated that a chronic change in neuronal activation can produce a change in soma oxidative capacity, suggesting that: (i) these 2 variables are directly related in neurons and (ii) ion pumping is an important energy requiring activity of a neuron. Most of these studies, however, have focused on reduced activation levels of sensory systems. In the present study the effect of a chronic increase or decrease in motoneuronal activity on motoneuron oxidative capacity and soma size was studied. In addition, the effect of chronic axotomy was studied as an indicator of whether cytoplasmic volume may also be related to the oxidative capacity of motoneurons. A quantitative histochemical assay for succinate dehydrogenase activity was used as a measure of motoneuron oxidative capacity in experimental models in which chronic electromyography has been used to verify neuronal activity levels. Spinal transection reduced, and spinal isolation virtually eliminated lumbar motoneuron electrical activity. Functional overload of the plantaris by removal of its major synergists was used to chronically increase neural activity of the plantaris motor pool. No change in oxidative capacity or soma size resulted from either a chronic increase or decrease in neuronal activity level. These data indicate that the chronic modulation of ionic transport and neurotransmitter turnover associated with action potentials do not induce compensatory metabolic responses in the metabolic capacity of the soma of lumbar motoneurons. Soma oxidative capacity was reduced in the axotomized motoneurons, suggesting that a combination of axoplasmic transport, intracellular biosynthesis and perhaps neurotransmitter turnover represent the major energy demands on a motoneuron. While soma oxidative capacity may be closely related to neural activity in some neural systems, e.g. visual and auditory, lumbar motoneurons appear to be much less sensitive to modulations in chronic activity levels.

  12. Electrochemical behavior of chlorogenic acid at a boron-doped diamond electrode and estimation of the antioxidant capacity in the coffee samples based on its oxidation peak.

    PubMed

    Yardım, Yavuz

    2012-04-01

    In this study, an electroanalytical methodology for the determination of chlorogenic acid (CGA) was achieved at a boron-doped diamond electrode under adsorptive transfer stripping voltammetric conditions. The values obtained for CGA were used to estimate the antioxidant properties of the coffee sample based on CGA oxidation. By using square-wave stripping mode, the compound yielded a well-defined voltammetric response at +0.49 V with respect to Ag/AgCl in Britton-Robinson buffer at pH 3.0 (after 120 s accumulations at a fixed potential of 0.40 V). At the optimum experimental conditions, linear calibration curve is obtained within the concentration range of 0.25 to 4.0 μg mL⁻¹ with the limit of detection 0.049 μg mL⁻¹ . The developed protocol was successfully applied for the analysis of antioxidant capacity in the coffee products such as Turkish coffee and instant coffee.

  13. Buffering Mechanism of the Atmospheric Oxidation Capacity

    NASA Astrophysics Data System (ADS)

    Lelieveld, J.; Gromov, S.; Pozzer, A.; Taraborrelli, D.

    2015-12-01

    Millions of tons pollutant and greenhouse gases per year are emitted and subsequently removed from the atmosphere through oxidation reactions. The oxidation products are typically more soluble or have a low vapor pressure so that they become subject to deposition processes. The atmospheric oxidation capacity is primarily maintained by hydroxyl (OH) radicals, which initiate reaction chains that can recycle or destroy OH. Key questions are if the oxidation capacity is affected by growing pollution emissions, to what extent it is buffered by OH recycling, and how regions with specific photochemical and pollution characteristics act together through atmospheric transport at a global scale. While previous generations atmospheric chemistry-transport models have discounted OH recycling with schemes that lumped or truncated reaction sequences, we present an approach that does justice to the intricate interactions between reactive carbon, nitrogen and oxygen species. This gives rise to a global buffering mechanism of the oxidation capacity that explains the observed small variability of methane and other gases that are removed by reaction with OH.

  14. OXIDATION-REDUCTION CAPACITIES OF AQUIFER SOLIDS

    EPA Science Inventory

    Measurements of the oxidation (i.e., of aqueous Cr2+) and reduction (i.e., of aqueous Cr2O72- and H202) capacities of aquifer solids and groundwater have been made on samples from a sand-and-gravel aquifer. The gro...

  15. Long-chain acyl-CoA synthetase 2 knockdown leads to decreased fatty acid oxidation in fat body and reduced reproductive capacity in the insect Rhodnius prolixus.

    PubMed

    Alves-Bezerra, Michele; Klett, Eric L; De Paula, Iron F; Ramos, Isabela B; Coleman, Rosalind A; Gondim, Katia C

    2016-07-01

    Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 μM), but different Km for arachidonic acid (0.5 and 6 μM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid β-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for β-oxidation in the fat body, and is also required for normal reproduction.

  16. Fatty acid oxidation and ketogenesis during development.

    PubMed

    Girard, J; Duée, P H; Ferré, P; Pégorier, J P; Escriva, F; Decaux, J F

    1985-01-01

    Fatty acids are the preferred oxidative substrates of the heart, skeletal muscles, kidney cortex and liver in adult mammals. They are supplied to these tissues either as nonesterified fatty acids (NEFA), or as triglycerides after hydrolysis by lipoprotein lipase. During fetal life, tissue capacity to oxidize NEFA is very low, even in species in which the placental transfer of NEFA and carnitine is high. At birth, the ability to oxidize NEFA from endogenous sources or from milk (a high-fat diet) develops rapidly in various tissues and remains very high throughout the suckling period. Ketogenesis appears in the liver by 6 to 12 hrs after birth, and the ketone bodies are used as oxidative fuels by various tissues during the suckling period. At the time of weaning, the transition from a high-fat to a high-carbohydrate diet is attended by a progressive decrease in the ketogenic capacity of the liver, whereas other tissues (skeletal muscle, heart, kidney) maintain a high capacity for NEFA oxidation. The nutritional and hormonal factors involved in changes in fatty acid oxidation during development are discussed.

  17. Two d-2-Hydroxy-acid Dehydrogenases in Arabidopsis thaliana with Catalytic Capacities to Participate in the Last Reactions of the Methylglyoxal and β-Oxidation Pathways*

    PubMed Central

    Engqvist, Martin; Drincovich, María F.; Flügge, Ulf-Ingo; Maurino, Verónica G.

    2009-01-01

    The Arabidopsis thaliana locus At5g06580 encodes an ortholog to Saccharomyces cerevisiae d-lactate dehydrogenase (AtD-LDH). The recombinant protein is a homodimer of 59-kDa subunits with one FAD per monomer. A substrate screen indicated that AtD-LDH catalyzes the oxidation of d- and l-lactate, d-2-hydroxybutyrate, glycerate, and glycolate using cytochrome c as an electron acceptor. AtD-LDH shows a clear preference for d-lactate, with a catalytic efficiency 200- and 2000-fold higher than that for l-lactate and glycolate, respectively, and a Km value for d-lactate of ∼160 μm. Knock-out mutants showed impaired growth in the presence of d-lactate or methylglyoxal. Collectively, the data indicated that the protein is a d-LDH that participates in planta in the methylglyoxal pathway. Web-based bioinformatic tools revealed the existence of a paralogous protein encoded by locus At4g36400. The recombinant protein is a homodimer of 61-kDa subunits with one FAD per monomer. A substrate screening revealed highly specific d-2-hydroxyglutarate (d-2HG) conversion in the presence of an organic cofactor with a Km value of ∼580 μm. Thus, the enzyme was characterized as a d-2HG dehydrogenase (AtD-2HGDH). Analysis of knock-out mutants demonstrated that AtD-2HGDH is responsible for the total d-2HGDH activity present in A. thaliana. Gene coexpression analysis indicated that AtD-2HGDH is in the same network as several genes involved in β-oxidation and degradation of branched-chain amino acids and chlorophyll. It is proposed that AtD-2HGDH participates in the catabolism of d-2HG most probably during the mobilization of alternative substrates from proteolysis and/or lipid degradation. PMID:19586914

  18. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  19. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  20. TEMPO-oxidized cellulose hydrogel as a high-capacity and reusable heavy metal ion adsorbent.

    PubMed

    Isobe, Noriyuki; Chen, Xiaoxia; Kim, Ung-Jin; Kimura, Satoshi; Wada, Masahisa; Saito, Tsuguyuki; Isogai, Akira

    2013-09-15

    Nitroxy radical catalyzed oxidation with hypochlorite/bromide (TEMPO-mediated oxidation) was performed on a cellulose hydrogel prepared using LiOH/urea solvent. TEMPO oxidation successfully introduced carboxyl groups onto the surface of the cellulose hydrogel with retention of the gel structure and its nanoporous property. The equilibrium measurement of Cu(2+) adsorption showed favorable interaction with Cu(2+) and high maximum adsorption capacity. In addition, over 98% of the adsorbed Cu(2+) was recovered using acid treatment, and the subsequent washing allowed the TEMPO-oxidized gels to be used repeatedly. Furthermore, the TEMPO-oxidized cellulose hydrogel showed high adsorption capacity for other toxic metal ions such as Zn(2+), Fe(3+), Cd(2+), and Cs(+).

  1. Substrate oxidation capacity in rodent skeletal muscle: effects of exposure to zero gravity

    NASA Technical Reports Server (NTRS)

    Baldwin, K. M.; Herrick, R. E.; McCue, S. A.

    1993-01-01

    A study was conducted, as part of the integrated National Aeronautics and Space Administration Space Life Sciences 1 mission flown in June of 1991, to ascertain the effects of 9 days of exposure to zero gravity on the capacity of rodent skeletal muscle fiber types to oxidize either [14C]pyruvate or [14C]palmitate under state 3 metabolic conditions, i.e., nonlimiting amounts of substrate and cofactors. In addition, activity levels of marker enzymes of the tricarboxylic acid cycle, malate shuttle, and beta-oxidation were measured. Results showed that significant differences in muscle weight occurred in both the predominantly slow vastus intermedius and predominantly fast vastus lateralis of flight vs. control groups (P < 0.05). Total protein content of the muscle samples was similar between groups. Both pyruvate oxidation capacity and the marker oxidative enzymes were not altered in the flight relative to control animals. However, the capacity to oxidize long-chain fatty acids was significantly reduced by 37% in both the high- and low-oxidative regions of the vastus muscle (P < 0.05). Although these findings of a selective reduction in fatty acid oxidation capacity in response to spaceflight are surprising, they are consistent with previous findings showing 1) an increased capacity to take up glucose and upregulate glucose transporter proteins and 2) a marked accumulation of triglycerides in the skeletal muscles of rats subjected to states of unloading. Thus, skeletal muscle of animals exposed to non-weight-bearing environments undergo subcellular transformations that may preferentially bias energy utilization to carbohydrates.

  2. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.).

    PubMed

    Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis

    2014-06-04

    The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present.

  3. Oxidation-resistant acidic resins prepared by partial carbonization as cocatalysts in synthesis of adipic acid.

    PubMed

    Wei, Huijuan; Li, Hongbian; Liu, Yangqing; Jin, Peng; Wang, Xiangyu; Li, Baojun

    2012-08-01

    The oxidation-resistant acidic resins are of great importance for the catalytic oxidation systems. In this paper, the oxidatively stable acidic resins are obtained from the cation ion exchange resins (CIERs) through the thermal treatment in N(2) atmosphere. The structure and properties of the thermally treated CIERs were characterized by chemical analysis, Fourier transform infrared (FT-IR) spectra, acid capacity measurement and scanning electron microscope (SEM). The thermally treated CIERs possess high acid capacity up to 4.09 mmol g(-1). A partial carbonization is observed in the thermal treatment process of CIERs, but the morphology of resin spheres maintains well. The as-prepared CIERs are used as solid acids to assist the hydrogen peroxide oxidation of cyclohexene to adipic acid (ADA) with tungstic acid as the catalyst precursor. The improved yields of ADA in the recycling reaction are obtained in the presence of acidic CIERs. Meanwhile, the unproductive decomposition of H(2)O(2) is effectively suppressed. The high yields of ADA (about 81%) are kept by the thermally treated CIERs even after the fifth cycle. The thermally treated CIERs exhibit excellent acid-catalytic performance and possess remarkable oxidation-resistant capability.

  4. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  5. Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation

    PubMed Central

    Overmyer, Katherine A.; Evans, Charles R.; Qi, Nathan R.; Minogue, Catherine E.; Carson, Joshua J.; Chermside-Scabbo, Christopher J.; Koch, Lauren G.; Britton, Steven L.; Pagliarini, David J.; Coon, Joshua J.; Burant, Charles F.

    2015-01-01

    Summary Maximal exercise-associated oxidative capacity is strongly correlated with health and longevity in humans. Rats selectively bred for high running capacity (HCR) have improved metabolic health and are longer-lived than their low capacity counterparts (LCR). Using metabolomic and proteomic profiling, we show that HCR efficiently oxidize fatty acids (FA) and branched-chain amino acid (BCAA), sparing glycogen and reducing accumulation of short- and medium-chain acylcarnitines. HCR mitochondria have reduced acetylation of mitochondrial proteins within oxidative pathways at rest, and there is rapid protein deacetylation with exercise, which is greater in HCR than LCR. Fluxomic analysis of valine degradation with exercise demonstrates a functional role of differential protein acetylation in HCR and LCR. Our data suggest efficient FA and BCAA utilization contribute to high intrinsic exercise capacity and the health and longevity benefits associated with enhanced fitness. PMID:25738461

  6. Organic acids as indicators of VOC oxidation: Measurements of formic acid and other gas-phase acids during SOAS

    NASA Astrophysics Data System (ADS)

    Farmer, D.; Brophy, P.; Murschell, T.

    2013-12-01

    Oxidation of volatile organic compounds (VOCs) in the atmosphere affects not only the oxidative capacity of the atmosphere, but also the formation of secondary organic aerosol. Organic acids are produced during VOC oxidation, although additional sources include biomass burning and primary emissions. While some organic acids are semi-volatile and dominantly present in the aerosol phase, formic acid and other small organic acids are dominantly present in the gas phase. The concentrations of these gas-phase organic acids can provide insight into oxidation chemistry. Here, we present measurements made during the Southern Oxidant and Aerosol Study (SOAS) in Centerville, Alabama during the summer of 2013 by a high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) operated in a novel switching reagent ion mode to measure gas phase organic acids with both acetate (CH3COO-) and iodide (I-) reagent ions. Formic acid was quantified using for both ionization schemes using multiple calibration techniques. In this study, we will focus on the impact of anthropogenic pollutants, including nitrogen and sulfur oxides, on oxidation chemistry, and discuss the potential use of organic acids as tracers for atmospheric oxidation chemistry.

  7. Dynamic Buffer Capacity in Acid-Base Systems.

    PubMed

    Michałowska-Kaczmarczyk, Anna M; Michałowski, Tadeusz

    The generalized concept of 'dynamic' buffer capacity βV is related to electrolytic systems of different complexity where acid-base equilibria are involved. The resulting formulas are presented in a uniform and consistent form. The detailed calculations are related to two Britton-Robinson buffers, taken as examples.

  8. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    DOEpatents

    Manthiram, Arumugam; Wu, Yan

    2010-03-16

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  9. Surface and bulk modified high capacity layered oxide cathodes with low irreversible capacity loss

    NASA Technical Reports Server (NTRS)

    Manthiram, Arumugam (Inventor); Wu, Yan (Inventor)

    2010-01-01

    The present invention includes compositions, surface and bulk modifications, and methods of making of (1-x)Li[Li.sub.1/3Mn.sub.2/3]O.sub.2.xLi[Mn.sub.0.5-yNi.sub.0.5-yCo.sub.2- y]O.sub.2 cathode materials having an O3 crystal structure with a x value between 0 and 1 and y value between 0 and 0.5, reducing the irreversible capacity loss in the first cycle by surface modification with oxides and bulk modification with cationic and anionic substitutions, and increasing the reversible capacity to close to the theoretical value of insertion/extraction of one lithium per transition metal ion (250-300 mAh/g).

  10. Control of bovine hepatic fatty acid oxidation

    SciTech Connect

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-(/sup 14/C)palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C)acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO/sup 2/ and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 ..mu..M). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 ..mu..M and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine.

  11. [Acidity and acid buffering capacity of aerosols during sand-dust storm weather in Beijing].

    PubMed

    Wang, W; Wang, Y; Su, H; Pan, Z; Yue, X; Liu, H; Tang, D

    2001-09-01

    In the spring of 2000, there were 12 sand-dust storms in Beijing. 2 sand-dust storms were experienced in time and mass concentrations, elementary concentrations acidity and acidic buffering capacity of TSP(Total Suspended Particulate, < 100 microns) and PM10(Inhalable particulate, < 10 microns) were sampled and analyzed. Results showed that pollution level of aerosols was extremely high. However, the acidity of aerosols was relatively low and the aerosols had very strong acid buffering capacity for acidification. Therefore, the aerosols brought about by the sand-dust storms could avoid the occurrence of acidic precipitation to some extent.

  12. Decreased plasma arachidonic acid binding capacity in neonates.

    PubMed

    Sadowitz, P D; Walenga, R W; Clark, D; Stuart, M J

    1987-01-01

    Arachidonic acid (AA) metabolites have been implicated in neonatal pathologic states such as respiratory distress syndrome (RDS). Since free (nonprotein bound) AA is the substrate for synthesis of these compounds, a decreased capacity to bind AA in neonatal plasma could contribute to these disorders. AA binding was assayed by equilibrium dialysis in plasma samples from healthy adults and various infant groups. Plasma from these infant groups bound significantly less AA than adult plasma. Premature infants with RDS and premature infants receiving intralipid had the lowest capacity to bind AA. The increased availability of free AA may be important in neonatal pathophysiologic states involving arachidonate metabolites.

  13. Effect Of Oxidation On Chromium Leaching And Redox Capacity Of Slag-Containing Waste Forms

    SciTech Connect

    Almond, P. M.; Stefanko, D. B.; Langton, C. A.

    2013-03-01

    (III) in solution) performed on depth discrete samples could not be correlated with the amount of chromium leached from the depth discrete subsamples or with the oxidation front inferred from soluble chromium (i.e., effective Cr oxidation front). Exposure to oxygen (air or oxygen dissolved in water) results in the release of chromium through oxidation of Cr(III) to highly soluble chromate, Cr(VI). Residual reduction capacity in the oxidized region of the test samples indicates that the remaining reduction capacity is not effective in re-reducing Cr(VI) in the presence of oxygen. Consequently, this method for determining reduction capacity may not be a good indicator of the effective contaminant oxidation rate in a relatively porous solid (40 to 60 volume percent porosity). The chromium extracted in depth discrete samples ranged from a maximum of about 5.8 % at about 5 mm (118 day exposure) to about 4 % at about 10 mm (302 day exposure). The use of reduction capacity as an indicator of long-term performance requires further investigation. The carbonation front was also estimated to have advanced to at least 28 mm in 302 days based on visual observation of gas evolution during acid addition during the reduction capacity measurements. Depth discrete sampling of materials exposed to realistic conditions in combination with short term leaching of crushed samples has potential for advancing the understanding of factors influencing performance and will support conceptual model development.

  14. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  15. An Acidity Scale for Binary Oxides.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1987-01-01

    Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)

  16. Changes in oxidative stability, antioxidant capacity and phytochemical composition of Pistacia terebinthus oil with roasting.

    PubMed

    Durmaz, Gökhan; Gökmen, Vural

    2011-09-15

    The effect of roasting on oxidative stability, antioxidant capacity and the content of antioxidant phytochemicals in Pistacia terebinthus oil was investigated. Oils were extracted from P. terebinthus fruits roasted at 180°C for 0-40min. Roasting was found to cause an increase in the passage of phenolic compounds to the oil whereas the level of tocopherols, lutein and β-carotene was decreased. Antioxidant capacity and oxidative stability of P. terebinthus oil increased with roasting. As an indicator of the presence of Maillard reaction products in oil, hydroxymethylfurfural (HMF) level and colour intensity was measured and found to increase with increasing roasting time. Fatty acid composition was not affected significantly by roasting.

  17. Heat capacity, enthalpy and entropy of ternary bismuth tantalum oxides

    NASA Astrophysics Data System (ADS)

    Leitner, J.; Jakeš, V.; Sofer, Z.; Sedmidubský, D.; Růžička, K.; Svoboda, P.

    2011-02-01

    Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi 4Ta 2O 11, Bi 7Ta 3O 18 and Bi 3TaO 7 were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form Cpm =445.8+0.005451 T-7.489×10 6/ T2 J K -1 mol -1, Cpm =699.0+0.05276 T-9.956×10 6/ T2 J K -1 mol -1 and Cpm =251.6+0.06705 T-3.237×10 6/ T2 J K -1 mol -1 for Bi 3TaO 7, Bi 4Ta 2O 11 and for Bi 7Ta 3O 18, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S° m(298.15 K)=449.6±2.3 J K -1 mol -1 for Bi 4Ta 2O 11, S° m(298.15 K)=743.0±3.8 J K -1 mol -1 for Bi 7Ta 3O 18 and S° m(298.15 K)=304.3±1.6 J K -1 mol -1 for Bi 3TaO 7, were evaluated from the low-temperature heat capacity measurements.

  18. Mitochondrial and peroxisomal beta-oxidation capacities of organs from a non-oilseed plant.

    PubMed

    Masterson, C; Wood, C

    2001-09-22

    Until recently, beta-oxidation was believed to be exclusively located in the peroxisomes of all higher plants. Whilst this is true for germinating oilseeds undergoing gluconeogenesis, evidence demonstrating mitochondrial beta-oxidation in other plant systems has refuted this central dogma of plant lipid metabolism. This report describes a comparative study of the dual mitochondrial and peroxisomal beta-oxidation capacities of plant organs. Oxidation of [1-(14)C] palmitate was measured in the cotyledons, plumules and radicles of Pisum sativum L., which is a starchy seed, over a 14 day period from the commencement of imbibition. Respiratory chain inhibitors were used for differentiating between mitochondrial and peroxisomal beta-oxidation. Peroxisomal beta-oxidation gave a steady, baseline rate and, in the early stages of seedling development, accounted for 70-100% of the beta-oxidation observed. Mitochondrial beta-oxidation gave peaks of activity at days 7 and 10-11, accounting for up to 82% of the total beta-oxidation activity at these times. These peaks coincide with key stages of seedling development and were not observed when normal development was disrupted by growth in the dark. Peroxisomal beta-oxidation was unaffected by etiolation. Since mitochondrial beta-oxidation was overt only during times of intense biosynthetic activity it might be switched on or off during seedling development. In contrast, peroxisomes maintained a continuous, low beta-oxidation activity that could be essential in removing harmful free fatty acids, e.g. those produced by protein and lipid turnover.

  19. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  20. Maternal obesity reduces oxidative capacity in fetal skeletal muscle of Japanese macaques

    PubMed Central

    McCurdy, Carrie E.; Hetrick, Byron; Houck, Julie; Drew, Brian G.; Kaye, Spencer; Lashbrook, Melanie; Bergman, Bryan C.; Takahashi, Diana L.; Dean, Tyler A.; Gertsman, Ilya; Hansen, Kirk C.; Philp, Andrew; Hevener, Andrea L.; Chicco, Adam J.; Aagaard, Kjersti M.; Grove, Kevin L.; Friedman, Jacob E.

    2016-01-01

    Maternal obesity is proposed to alter the programming of metabolic systems in the offspring, increasing the risk for developing metabolic diseases; however, the cellular mechanisms remain poorly understood. Here, we used a nonhuman primate model to examine the impact of a maternal Western-style diet (WSD) alone, or in combination with obesity (Ob/WSD), on fetal skeletal muscle metabolism studied in the early third trimester. We find that fetal muscle responds to Ob/WSD by upregulating fatty acid metabolism, mitochondrial complex activity, and metabolic switches (CPT-1, PDK4) that promote lipid utilization over glucose oxidation. Ob/WSD fetuses also had reduced mitochondrial content, diminished oxidative capacity, and lower mitochondrial efficiency in muscle. The decrease in oxidative capacity and glucose metabolism was persistent in primary myotubes from Ob/WSD fetuses despite no additional lipid-induced stress. Switching obese mothers to a healthy diet prior to pregnancy did not improve fetal muscle mitochondrial function. Lastly, while maternal WSD alone led only to intermediary changes in fetal muscle metabolism, it was sufficient to increase oxidative damage and cellular stress. Our findings suggest that maternal obesity or WSD, alone or in combination, leads to programmed decreases in oxidative metabolism in offspring muscle. These alterations may have important implications for future health. PMID:27734025

  1. Antioxidant capacity and phenolic acids of virgin coconut oil.

    PubMed

    Marina, A M; Man, Y B Che; Nazimah, S A H; Amin, I

    2009-01-01

    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.

  2. Premature capacity-loss mechanisms in lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Hollenkamp, A. F.; Constanti, K. K.; Huey, A. M.; Koop, M. J.; Aputeanu, L.

    The phenomenon known as 'premature capacity loss' (PCL) causes the early demise of lead/acid batteries based on a variety of grid alloys. It is also known to be a problem specific to the positive plate and is usually invoked by duties that involve repetitive deep-discharge cycling. In order to determine the cause(s) of the problem, an extensive study of the behaviour of cells based on a range of positive grid alloys is being conducted. Examples of PCL have been generated by subjecting three-plate cells to 100% depth-of-discharge, at I = C8/8, with 110% overcharge. Cells based on antimony-free grids exhibit capacity loss at a rate of up to 5% of the initial capacity per cycle, with both constant-current and constant-voltage charging. With the latter charging method, most of the cells also develop extremely poor charge acceptance within 10 to 15 cycles. The performance of cells with high-antimony positive grids is significantly better, although substantial capacity loss is still observed. The latter cannot be explained by any of the classic failure modes for lead/acid batteries. Poor charge acceptance is not displayed by these cells. Plates show signs of physical degradation, but these represent a minor contribution to capacity loss. Phase composition of positive material does not vary with grid alloy and is typical of healthy plates. Investigations of corrosion-layer morphology have shown that Pb-Ca grids give rise to weak corrosion products that are prone to fracture and separation, while the corrosion layers on Pb-Sb plates are apparently more coherent and more strongly bonded to the underlying grid.

  3. Heat Capacity of Poly(L-lactic acid)

    NASA Astrophysics Data System (ADS)

    Pyda, Marek; Bopp, C. Bopp Richard C.; Richard, C.; Wunderlich, Bernhard

    2002-03-01

    The heat capacity of poly(L-lactic acid) (PLA) is reported from 5-520 K from standard differential scanning calorimetry (DSC), temperature modulated DSC (TMDSC), and adiabatic calorimetry. The semicrystalline PLA has a melting endotherm between 418 and 432 K, with variable heats of fusion, depending on thermal history. The thermodynamic heat of fusion is 6.15 kJ/mol. The heat capacity is linked to its group vibrational spectrum and the skeletal vibrations described by the Tarasov equation (theta parameters 574 and 52 K, N = 9). Calculated and experimental heat capacities agree to ±3compares within ±0.5contributions of other polymers with the same constituent groups. The glass transition temperature of liquid PLA is at 333 K with a change in heat capacity of about 41 J/(K mol). With these results, the enthalpy, entropy, and Gibbs function were obtained. For semicrystalline samples one can then discuss the crystallinity changes with temperature, the question of a rigid-amorphous fraction, and the reversible melting. --- Supported by NSF, Polymers Program, DMR-9703692, and the Div. of Mat. Sci., BES, DOE at ORNL, managed by UT-Batelle, LLC, for the U.S. Department of Energy, under contract number DOE-AC05-00OR22725.

  4. Insulin affects sperm capacity in pig through nitric oxide.

    PubMed

    Aquila, Saveria; Giordano, Francesca; Guido, Carmela; Rago, Vittoria; Carpino, Amalia

    2013-11-01

    Insulin (Ins) has recently been demonstrated to have the ability to induce the capacitation process in pig spermatozoa. In various mammalian species, capacitation has been linked to the nitric oxide (NO) signalling; therefore, this study investigated NO production in Ins-treated pig spermatozoa by fluorescence-activated cell sorting. For the same samples, sperm capacitation was evaluated by chlortetracycline staining, protein tyrosine phosphorylation pattern and acrosomal status. A significant increase of the intrasperm NO level and the activation of three capacitation indices were detected in response to Ins treatment. Conversely, sperm preincubation with an NO synthase inhibitor (N-nitro-L-arginine methyl ester) or with the anti-Ins receptor β (IRβ) antibody reversed all of the Ins-related effects. These results suggest that Ins has the capacity to enhance intracellular NO concentrations in pig spermatozoa and indicate a possible NO implication upon Ins promotion of capacitation.

  5. The Mechanism of High Pressure Oxidations of Aliphatic Acids.

    DTIC Science & Technology

    ACETIC ACID , *OXIDATION), (*CARBOXYLIC ACIDS, OXIDATION), CHROMIUM ALLOYS, REACTION KINETICS, COPPER ALLOYS, NICKEL ALLOYS, TEMPERATURE, HIGH PRESSURE, CATALYSTS, GAS CHROMATOGRAPHY, VOLUMETRIC ANALYSIS, THESES

  6. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds

    NASA Astrophysics Data System (ADS)

    Vaïtilingom, Mickael; Deguillaume, Laurent; Vinatier, Virginie; Sancelme, Martine; Amato, Pierre; Chaumerliac, Nadine; Delort, Anne-Marie

    2013-01-01

    Within cloud water, microorganisms are metabolically active and, thus, are expected to contribute to the atmospheric chemistry. This article investigates the interactions between microorganisms and the reactive oxygenated species that are present in cloud water because these chemical compounds drive the oxidant capacity of the cloud system. Real cloud water samples with contrasting features (marine, continental, and urban) were taken from the puy de Dôme mountain (France). The samples exhibited a high microbial biodiversity and complex chemical composition. The media were incubated in the dark and subjected to UV radiation in specifically designed photo-bioreactors. The concentrations of H2O2, organic compounds, and the ATP/ADP ratio were monitored during the incubation period. The microorganisms remained metabolically active in the presence of ●OH radicals that were photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry; first, they could directly metabolize organic carbon species, and second, they could reduce the available source of radicals through their oxidative metabolism. Consequently, molecules such as H2O2 would no longer be available for photochemical or other chemical reactions, which would decrease the cloud oxidant capacity.

  7. Wet oxidation of salicylic acid solutions.

    PubMed

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  8. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  9. Evaluation of buffering capacity and acid neutralizing-pH time profile of antacids.

    PubMed

    Lin, M S; Sun, P; Yu, H Y

    1998-10-01

    The antacid properties of seven antacids listed in the hospital formulary of a medical center were evaluated with in vitro tests. These included not only the preliminary antacid test and acid-neutralizing capacity test as described in the United States Pharmacopeia (USP XXIII), but also a buffering pH profile test. The preliminary antacid test measured the final pH of a 10-mL solution of 0.5 N HCl 10 minutes after addition of the minimum recommended dose of an antacid, while the neutralizing capacity test measured the amount (mEq) of HCl neutralized by the minimum recommended dose in 15 minutes. The buffering pH profile recorded the pH time course of dynamic simulated gastric fluid neutralization by a dose of an antacid. In the preliminary antacid test, magnesium oxide showed the highest pH (9.52 +/- 0.14, mean +/- standard deviation, n = 3); aluminum phosphate gel yielded a final pH of 2.51 +/- 0.01, thus failing to meet the criteria of an antacid (pH > 3.5). In the acid-neutralizing capacity test, hydrotalcite had the highest neutralizing capacity (28.26 +/- 0.3 mEq), while sodium bicarbonate had the lowest (7.40 +/- 0.12 mEq). In the buffering pH profile test, aluminum-magnesium hydroxide suspensions and hydrotalcite tablets maintained a steady optimum pH (3-5) for around 1.5 hours. One tablet of calcium carbonate, sodium bicarbonate or magnesium oxide could not raise the gastric pH to above 3, but two tablets increased the pH excessively (5.3 to 8.6). The higher dose (two tablets) of aluminum hydroxide hexitol complex could not raise the pH to the optimal level. These findings demonstrate that there is disparity in the antacid effectiveness estimated by the neutralizing capacity test and the buffering pH profile test and suggest that the efficacy of an antacid cannot be accurately predicted from its acid-neutralizing capacity. The dose of antacids greatly influences the neutralizing pH profiles. Aluminum-magnesium compounds appear to provide steadier buffering

  10. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  11. Synthesis and Evaluation of the Anti-Oxidant Capacity of Curcumin Glucuronides, the Major Curcumin Metabolites

    PubMed Central

    Choudhury, Ambar K.; Raja, Suganya; Mahapatra, Sanjata; Nagabhushanam, Kalyanam; Majeed, Muhammed

    2015-01-01

    Curcumin metabolites namely curcumin monoglucuronide and curcumin diglucuronide were synthesized using an alternative synthetic approach. The anti-oxidant potential of these curcumin glucuronides was compared with that of curcumin using DPPH scavenging method and Oxygen Radical Absorbance Capacity (ORAC) assay. The results show that curcumin monoglucuronide exhibits 10 fold less anti-oxidant activity (DPPH method) and the anti-oxidant capacity of curcumin diglucuronide is highly attenuated compared to the anti-oxidant activity of curcumin. PMID:26783957

  12. Comparison and trend study on acidity and acidic buffering capacity of particulate matter in China

    NASA Astrophysics Data System (ADS)

    Ren, Lihong; Wang, Wei; Wang, Qingyue; Yang, XiaoYang; Tang, Dagang

    2011-12-01

    The acidity of about 2000 particulate matter samples from aircraft and ground-based monitoring is analyzed by the method similar to soil acidity determination. The ground-based samples were collected at about 50 urban or background sites in northern and southern China. Moreover, the acidic buffering capacity of those samples is also analyzed by the method of micro acid-base titration. Results indicate that the acidity level is lower in most northern areas than those in the south, and the acidic buffering capacity showed inverse tendency, correspondingly. This is the most important reason why the pollution of acidic-precipitation is much more serious in Southern China than that in Northern China. The acidity increases and the acidic buffering capacity drops with the decreasing of the particle sizes, indicating that fine particle is the main influencing factor of the acidification. The ionic results show that Ca salt is the main alkaline substance in particulate matter, whereas the acidification of particulate matter is due to the SO 2 and NO x emitted from the fossil fuel burning. And among of them, coal burning is the main contributor of SO 2, however the contribution of NO x that emitted from fuel burning of motor vehicles has increased in recent years. By comparison of the experimental results during the past 20 years, it can be concluded that the acid precipitation of particulate matter has not been well controlled, and it even shows an increasing tendency in China lately. The acid precipitation of particulate matter has begun to frequently attack in part of the northern areas. Multiple regression analysis indicates that coefficient value of the ions is the lowest at the urban sites and the highest at the regional sites, whereas the aircraft measurement results are intermediate between those two kinds of sites.

  13. Methane Sensitivity to Perturbations in Tropospheric Oxidizing Capacity

    NASA Technical Reports Server (NTRS)

    Yegorova, Elena; Duncan, Bryan

    2011-01-01

    Methane is an important greenhouse gas and has a 25 times greater global warming potential than CO2 on a century timescale. Yet there are considerable uncertainties in the magnitude and variability of its sources and sinks. The response of the coupled non-linear methane-carbon monoxide-hydroxyl radical (OH) system is important in determining the tropospheric oxidizing capacity. Using the NASA Goddard Earth Observing System, Version 5 (GEOS-5) chemistry climate model, we study the response of methane to perturbations of OH and wetland emissions. We use a computationally-efficient option of the GEOS-5 CCM that includes an OH parameterization that accurately represents OH predicted by a full chemical mechanism. The OH parameterization allows for studying non-linear CH4-CO-OH feedbacks in computationally fast sensitivity experiments. We compare our results with surface observations (GMD) and discuss the range of uncertainty in OH and wetland emissions required to bring modeling results in better agreement with surface observations. Our results can be used to improve projections of methane emissions and methane growth.

  14. Combined atmospheric oxidant capacity and increased levels of exhaled nitric oxide

    NASA Astrophysics Data System (ADS)

    Yang, Changyuan; Li, Huichu; Chen, Renjie; Xu, Wenxi; Wang, Cuicui; Tse, Lap Ah; Zhao, Zhuohui; Kan, Haidong

    2016-07-01

    Nitrogen dioxide and ozone are two interrelated oxidative pollutants in the atmosphere. Few studies have evaluated the health effects of combined oxidant capacity (O x ). We investigated the short-term effects of O x on fractional exhaled nitric oxide (FeNO), a well-established biomarker for airway inflammation, in a group of chronic obstructive pulmonary disease patients. Real-time concentrations of O x were obtained by calculating directly the sum of nitrogen dioxide and ozone. Linear mixed-effect models were applied to explore the acute effects of O x on FeNO levels. Short-term exposure to Ox was significantly associated with elevated FeNO. This effect was strongest in the first 24 h after exposure, and was robust to the adjustment of PM2.5. A 10 μg m-3 increase in 24 h average concentrations of O x was associated with 4.28% (95% confidence interval: 1.19%, 7.37%) increase in FeNO. The effect estimates were statistically significant only among males, elders, and those with body mass index ≥24 kg m-2, a comorbidity, higher educational attainment, or moderate airflow limitation. This analysis demonstrated an independent effect of O x on respiratory inflammation, and suggested that a single metric O x might serve as a preferable indicator of atmospheric oxidative capacity in further air pollution epidemiological studies.

  15. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO[sub 2], highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO[sub 4]/2.5M H[sub 3]PO[sub 4] solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO[sub 2] (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  16. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO{sub 2}, highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO{sub 4}/2.5M H{sub 3}PO{sub 4} solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO{sub 2} (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  17. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  18. Brain energy metabolism spurns fatty acids as fuel due to their inherent mitotoxicity and potential capacity to unleash neurodegeneration.

    PubMed

    Schönfeld, Peter; Reiser, Georg

    2017-03-30

    The brain uses long-chain fatty acids (LCFAs) to a negligible extent as fuel for the mitochondrial energy generation, in contrast to other tissues that also demand high energy. Besides this generally accepted view, some studies using cultured neural cells or whole brain indicate a moderately active mitochondrial β-oxidation. Here, we corroborate the conclusion that brain mitochondria are unable to oxidize fatty acids. In contrast, the combustion of liver-derived ketone bodies by neural cells is long-known. Furthermore, new insights indicate the use of odd-numbered medium-chain fatty acids as valuable source for maintaining the level of intermediates of the citric acid cycle in brain mitochondria. Non-esterified LCFAs or their activated forms exert a large variety of harmful side-effects on mitochondria, such as enhancing the mitochondrial ROS generation in distinct steps of the β-oxidation and therefore potentially increasing oxidative stress. Hence, the question arises: Why do in brain energy metabolism mitochondria selectively spurn LCFAs as energy source? The most likely answer are the relatively higher content of peroxidation-sensitive polyunsaturated fatty acids and, the low antioxidative defense in brain tissue. There are two remarkable peroxisomal defects, one relating to α-oxidation of phytanic acid and the other to uptake of very long-chain fatty acids (VLCFAs) which lead to pathologically high tissue levels of such fatty acids. Both, the accumulation of phytanic acid and that of VLCFAs give an enlightening insight into harmful activities of fatty acids on neural cells, which possibly explain why evolution has prevented brain mitochondria from the equipment of with significant β-oxidation enzymatic capacity.

  19. Antioxidant capacity and stability of liposomes containing a triglyceride derivative of lipoic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The multi-functional nutritional agent lipoic acid offers numerous beneficial effects to oxidatively stressed tissues. Lipoic acid was enzymatically incorporated into a triglyceride in conjunction with oleic acid, creating lipoyl dioleoylglycerol, and then chemically reduced to form dihydrolipoyl d...

  20. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  1. Effect of oxidation level on the inclusion capacity and solution stability of oxidized amylose in aqueous solution.

    PubMed

    Zhou, Ying; Li, Xinying; Lv, Yongbo; Shi, Yifeng; Zeng, Yu; Li, Defu; Mu, Changdao

    2016-03-15

    The oxidized amyloses with high oxidation level and carboxyl content were successfully prepared through a two-step oxidation method using hydrogen peroxide as the oxidant and copper sulfate as the catalyst. The results showed that oxidation would prevent the oxidized product to crystallize and induce depolymerization of amylose molecules. Accordingly, the helices and inclusion capacity of oxidized amylose molecules were reduced. However, the solubility of oxidized amyloses in water was highly improved due to the introduced carboxyl groups. The solution stability of oxidized amylose-guest inclusion complexes in aqueous solution was efficiently improved to a large extent. The result suggested that the two-step oxidation method was an efficient way to highly broaden the applications of amylose-guest inclusion complexes in water environment.

  2. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.

    PubMed

    Hénique, Carole; Mansouri, Abdelhak; Vavrova, Eliska; Lenoir, Véronique; Ferry, Arnaud; Esnous, Catherine; Ramond, Elodie; Girard, Jean; Bouillaud, Frédéric; Prip-Buus, Carina; Cohen, Isabelle

    2015-06-01

    Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.

  3. Observations on the methane oxidation capacity of landfill soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field data and two independent models indicate that landfill cover methane (CH4) oxidation should not be considered as a constant 10% or any other single value. Percent oxidation is a decreasing exponential function of the total methane flux rate into the cover and is also dependent on climate and c...

  4. Enhancement of Muscle Mitochondrial Oxidative Capacity and Alterations in Insulin Action Are Lipid Species Dependent

    PubMed Central

    Turner, Nigel; Hariharan, Krit; TidAng, Jennifer; Frangioudakis, Georgia; Beale, Susan M.; Wright, Lauren E.; Zeng, Xiao Yi; Leslie, Simon J.; Li, Jing-Ya; Kraegen, Edward W.; Cooney, Gregory J.; Ye, Ji-Ming

    2009-01-01

    OBJECTIVE Medium-chain fatty acids (MCFAs) have been reported to be less obesogenic than long-chain fatty acids (LCFAs); however, relatively little is known regarding their effect on insulin action. Here, we examined the tissue-specific effects of MCFAs on lipid metabolism and insulin action. RESEARCH DESIGN AND METHODS C57BL6/J mice and Wistar rats were fed either a low-fat control diet or high-fat diets rich in MCFAs or LCFAs for 4–5 weeks, and markers of mitochondrial oxidative capacity, lipid levels, and insulin action were measured. RESULTS Mice fed the MCFA diet displayed reduced adiposity and better glucose tolerance than LCFA-fed animals. In skeletal muscle, triglyceride levels were increased by the LCFA diet (77%, P < 0.01) but remained at low-fat diet control levels in the MCFA-fed animals. The LCFA diet increased (20–50%, P < 0.05) markers of mitochondrial metabolism in muscle compared with low-fat diet–fed controls; however; the increase in oxidative capacity was substantially greater in MCFA-fed animals (50–140% versus low-fat–fed controls, P < 0.01). The MCFA diet induced a greater accumulation of liver triglycerides than the LCFA diet, likely due to an upregulation of several lipogenic enzymes. In rats, isocaloric feeding of MCFA or LCFA high-fat diets induced hepatic insulin resistance to a similar degree; however, insulin action was preserved at the level of low-fat diet–fed controls in muscle and adipose from MCFA-fed animals. CONCLUSIONS MCFAs reduce adiposity and preserve insulin action in muscle and adipose, despite inducing steatosis and insulin resistance in the liver. Dietary supplementation with MCFAs may therefore be beneficial for preventing obesity and peripheral insulin resistance. PMID:19720794

  5. Preparation of surface modified zinc oxide nanoparticle with high capacity dye removal ability

    SciTech Connect

    Mahmoodi, Niyaz Mohammad; Najafi, Farhood

    2012-07-15

    Highlights: ► Amine-functionalized zinc oxide nanoparticle (AFZON) was synthesized. ► Isotherm and kinetics data followed Langmuir isotherm and pseudo-second order kinetic model, respectively. ► Q{sub 0} of ZON for AB25, DR23 and DR31 was 20, 12 and 15 mg/g, respectively. ► Q{sub 0} of AFZON for AB25, DR23 and DR31 was 1250, 1000 and 1429 mg/g, respectively. ► AFZON was regenerated at pH 12. -- Abstract: In this paper, the surface modification of zinc oxide nanoparticle (ZON) by amine functionalization was studied to prepare high capacity adsorbent. Dye removal ability of amine-functionalized zinc oxide nanoparticle (AFZON) and zinc oxide nanoparticle (ZON) was also investigated. The physical characteristics of AFZON were studied using Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Acid Blue 25 (AB25), Direct Red 23 (DR23) and Direct Red 31 (DR31) were used as model compounds. The effect of operational parameters such as dye concentration, adsorbent dosage, pH and salt on dye removal was evaluated. The isotherm and kinetic of dye adsorption were studied. The maximum dye adsorption capacity (Q{sub 0}) was 20 mg/g AB25, 12 mg/g DR23 and 15 mg/g DR31 for ZON and 1250 mg/g AB25, 1000 mg/g DR23 and 1429 mg/g DR31 for AFZON. It was found that dye adsorption followed Langmuir isotherm. Adsorption kinetic of dyes was found to conform to pseudo-second order kinetics. Dye desorption tests (adsorbent regeneration) showed that the maximum dye release of 90% AB25, 86% for DR23 and 90% for DR31 were achieved in aqueous solution at pH 12. Based on the data of the present investigation, it can be concluded that the AFZON being an adsorbent with high dye adsorption capacity might be a suitable alternative to remove dyes from colored aqueous solutions.

  6. Methane activation and oxidation in sulfuric acid.

    PubMed

    Goeppert, Alain; Dinér, Peter; Ahlberg, Per; Sommer, Jean

    2002-07-15

    The H/D exchange observed when methane is contacted with D(2)SO(4) at 270-330 degrees C shows that the alkane behaves as a sigma base and undergoes rapid and reversible protonation at this temperature. DFT studies of the hydrogen exchange between a monomer and a dimer of sulfuric acid and methane show that the transition states involved in the exchange are bifunctional, that is one hydrogen atom is transferred from a hydroxy group in sulfuric acid to methane, while one hydrogen atom is abstracted from methane by a non-hydroxy oxygen atom in sulfuric acid. All the transition states include a CH(5) moiety, which shows similarities to the methanium ion CH(5) (+). The calculated potential activation energy of the hydrogen exchange for the monomer is 174 kJ mol(-1), which is close to the experimental value (176 kJ mol(-1)). Solvation of the monomer and the transition state of the monomer with an extra sulfuric acid molecule, decrease the potential activation energy by 6 kJ mol(-1). The acid-base process is in competition, however, with an oxidative process involving methane and sulfuric acid which leads to CO(2), SO(2), and water, and thus to a decrease of acidity and loss of reactivity of the medium.

  7. Silicon oxide based high capacity anode materials for lithium ion batteries

    DOEpatents

    Deng, Haixia; Han, Yongbong; Masarapu, Charan; Anguchamy, Yogesh Kumar; Lopez, Herman A.; Kumar, Sujeet

    2017-03-21

    Silicon oxide based materials, including composites with various electrical conductive compositions, are formulated into desirable anodes. The anodes can be effectively combined into lithium ion batteries with high capacity cathode materials. In some formulations, supplemental lithium can be used to stabilize cycling as well as to reduce effects of first cycle irreversible capacity loss. Batteries are described with surprisingly good cycling properties with good specific capacities with respect to both cathode active weights and anode active weights.

  8. Oxalic acid mineralization by electrochemical oxidation processes.

    PubMed

    Huang, Yao-Hui; Shih, Yu-Jen; Liu, Cheng-Hong

    2011-04-15

    In this study, two electrochemical oxidation processes were utilized to mineralize oxalic acid which was a major intermediate compound in the oxidation of phenols and other aromatic compounds. The anode rod and cathode net were made of a titanium coated with RuO(2)/IrO(2) (Ti-DSA) and stainless steel (S.S. net, SUS304), respectively. First, the Fered-Fenton process, which used H(2)O(2) and Fe(2+) as additive reagents, achieved 85% of TOC removal. It proceeded with ligand-to-metal charge-transfer (LMCT), which was evidenced by the accumulation of metallic foil on the selected cathode. However, in the absence of H(2)O(2)/Fe(2+), it showed a higher TOC removal efficiency while using Cl(-) only as an additive reagent due to the formation of hypochlorite on the anode. It was also found that the mineralization of oxalic acid by electrolysis generated hypochlorite better than the dosage of commercial hypochlorite without electricity. Also, pH value was a major factor that affected the mineralization efficiency of the oxalic acid due to the chlorine chemistry. 99% TOC removal could be obtained by Cl(-) electrolysis in an acidic environment.

  9. Proteomic analysis reveals perturbed energy metabolism and elevated oxidative stress in hearts of rats with inborn low aerobic capacity

    PubMed Central

    Burniston, Jatin G.; Kenyani, Jenna; Wastling, Jonathan M.; Burant, Charles F.; Qi, Nathan R.; Koch, Lauren G.; Britton, Steven L.

    2012-01-01

    Selection on running capacity has created rat phenotypes of high capacity runners (HCR) that have enhanced cardiac function and low capacity runners (LCR) that exhibit risk factors of metabolic syndrome. We analysed hearts of HCR and LCR from generation 22 of selection using DIGE and identified proteins from MS database searches. The running capacity of HCR was 6-fold greater than LCR. DIGE resolved 957 spots and proteins were unambiguously identified in 369 spots. Protein expression profiling detected 67 statistically significant (P<0.05; false discovery rate <10 %, calculated using q-values) differences between HCR and LCR. Hearts of HCR rats exhibited robust increases in the abundance of each enzyme of the beta-oxidation pathway. In contrast, LCR hearts were characterised by the modulation of enzymes associated with ketone body or amino acid metabolism. LCR also exhibited enhanced expression of antioxidant enzymes such as catalase and greater phosphorylation of alpha B-crystallin at serine 59, which is a common point of convergence in cardiac stress signalling. Thus proteomic analysis revealed selection on low running capacity is associated with perturbations in cardiac energy metabolism and provided the first evidence that the LCR cardiac proteome is exposed to greater oxidative stress. PMID:21751351

  10. Unexpected increase in the oxidation capacity of the urban atmosphere of Madrid, Spain

    PubMed Central

    Saiz-Lopez, A.; Borge, R.; Notario, A.; Adame, J. A.; Paz, D. de la; Querol, X.; Artíñano, B.; Gómez-Moreno, F. J.; Cuevas, C. A.

    2017-01-01

    Atmospheric oxidants such as ozone (O3), hydroxyl and nitrate radicals (OH and NO3) determine the ability of the urban atmosphere to process organic and inorganic pollutants, which have an impact on air quality, environmental health and climate. Madrid city has experienced an increase of 30–40% in ambient air O3 levels, along with a decrease of 20–40% in NO2, from 2007 to 2014. Using air pollution observations and a high-resolution air quality model, we find a large concentration increase of up to 70% and 90% in OH and NO3, respectively, in downtown Madrid (domain-wide average increase of 10% and 32% for OH and NO3, respectively). The results also show an 11% reduction in the nitric acid concentrations, leading to a remarkable denoxification of this urban atmosphere with implications for lower PM2.5 levels and nitrogen input into ecosystems. This study suggests that projected worldwide NOx emission reductions, following air quality standards, will lead to important changes in the oxidizing capacity of the atmosphere in and around large cities.

  11. Quantitative analysis of the binding strength and adsorption capacity of zinc oxide nanoparticles onto unmodified and modified cotton fiber

    NASA Astrophysics Data System (ADS)

    Printz, Stephen Robert

    Risk of bacterial infection is always a concern in hospitals, so it is important to find ways to minimize this risk. One method for reducing the risk of infection is by using textiles with antimicrobial properties. Zinc oxide nanoparticles have antimicrobial properties, and can be adsorbed onto cotton fibers to pass these properties to the cloth. However, the binding of the zinc oxide nanoparticles to cotton is weak, so the particles desorb from the cloth after repeated washings. The goal of this project was to quantify the binding strength of zinc oxide nanoparticles onto different types of cotton fiber. The cotton was modified by grafting cyclodextrin onto it with citric acid as a crosslinking agent. Adsorption was tested with desized, unbleached cotton print cloth; desized, bleached cotton print cloth; and desized, bleached, mercerized cotton print cloth. As expected, adsorption to unmodified cloth was poor. Unbleached cloth had the highest adsorption capacity (Q 0 = 22 +/- 4 mg ZnO/g cloth), and bleached cloth had the lowest adsorption capacity (Q0 = 17 +/- 4 mg ZnO=g cloth). Mercerized cloth had the lowest strength (b = 0.010 +/- 0.003 ppm-1), and bleached cloth had the highest binding strength (b = 0.04 +/- 0.01 ppm-1). Modification with alpha-cyclodextrin increased adsorption capacity over unmodified cloth by 61, 80, and 70% for mercerized/bleached cloth, bleached cloth, and unbleached cloth, respectively, and increased b by 1601, 126, and 90% respectively. Modification with beta-cyclodextrin increased adsorption capacities by 80, 94, and 112%, respectively, and increased b by 2027, 427, and 46%. As a result, beta-CD modified unbleached cloth had the highest adsorption capacity and one of the lowest binding strengths. However, beta-cyclodextrin modified mercerized cloth has both a high adsorption capacity and a high binding strength, and would likely be the best candidate for use in antimicrobial textiles.

  12. Effect of sinter fracture and ohmic resistance on capacity retention in the nickel oxide electrode

    NASA Technical Reports Server (NTRS)

    Lanzi, Oscar; Landau, Uziel

    1991-01-01

    The lifetime of batteries which utilize the nickel oxide electrode is often limited because this electrode loses a significant portion of its capacity as it is cycled. It is asserted that this capacity loss may often be attributed to cracking or separation of the conductive nickel sinter in the electrode, which forces electronic current to pass through the poorly conducting hydrated oxide and thus imposes a significant ohmic resistance. The model indicates that the oxide develops a nearly insulating layer which prevents complete discharge in the cycled electrode at usable rates. The capacity retention can be improved by reducing the cyclic stresses or strengthening the current collecting structure, redistributing it to provide a shorter current path through the solid phase, or by increasing the conductivity of the oxide to delay the formation of an insulating layer.

  13. Impact of Fluorescent Lighting on Oxidation of Model Wine Solutions Containing Organic Acids and Iron.

    PubMed

    Grant-Preece, Paris; Barril, Celia; Schmidtke, Leigh M; Clark, Andrew C

    2017-03-22

    Previous studies have provided evidence that light exposure can increase oxygen consumption in wine and that the photodegradation of iron(III) tartrate could contribute to this process. In the present study, model wine solutions containing iron(III) and various organic acids, either alone or combined, were stored in sealed clear glass wine bottles and exposed to light from fluorescent lamps. Dissolved oxygen was monitored, and afterward the organic acid degradation products were determined and the capacity of the solutions to bind sulfur dioxide, the main wine preservative, was assessed. In the dark controls, little or no dissolved oxygen was consumed and the organic acids were stable. In the irradiated solutions, dissolved oxygen was consumed at a rate that was dependent on the specific organic acid present, and the latter were oxidized to various carbonyl compounds. For the solutions containing tartaric acid, malic acid, and/or citric acid, irradiation increased their sulfur dioxide-binding capacity.

  14. Determination of the oxidizing capacity of manganese ores.

    PubMed

    Prasad, R

    1974-09-01

    An accurate method is described for determining the amount of active oxygen in manganese ores, based on the oxidation-reduction reaction between the ore and arsenic(III) in presence of ammonium molybdate, followed by the back-titration of excess of arsenic(III) with cerium(IV), using osmium tetroxide as catalyst and Disulphine Blue V as indicator. A survey has been made of the applicability of this method to various pyrolusite ores containing less than 0.2% phosphorus. Aluminium(III), copper(II), iron(III), manganese(II), and molybdenum(VI) do not interfere. Up to 30% phosphorus(V) causes no interference.

  15. High-Capacity, High-Voltage Composite Oxide Cathode Materials

    NASA Technical Reports Server (NTRS)

    Hagh, Nader M.

    2015-01-01

    This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.

  16. Enhanced oxidative capacity of ground squirrel brain mitochondria during hibernation.

    PubMed

    Ballinger, Mallory A; Schwartz, Christine; Andrews, Matthew T

    2017-03-01

    During hibernation, thirteen-lined ground squirrels (Ictidomys tridecemlineatus) regularly cycle between bouts of torpor and interbout arousal (IBA). Most of the brain is electrically quiescent during torpor but regains activity quickly upon arousal to IBA, resulting in extreme oscillations in energy demand during hibernation. We predicted increased functional capacity of brain mitochondria during hibernation compared with spring to accommodate the variable energy demands of hibernation. To address this hypothesis, we examined mitochondrial bioenergetics in the ground squirrel brain across three time points: spring (SP), torpor (TOR), and IBA. Respiration rates of isolated brain mitochondria through complex I of the electron transport chain were more than twofold higher in TOR and IBA than in SP (P < 0.05). We also found a 10% increase in membrane potential between hibernation and spring (P < 0.05), and that proton leak was lower in TOR and IBA than in SP. Finally, there was a 30% increase in calcium loading in SP brain mitochondria compared with TOR and IBA (P < 0.01). To analyze brain mitochondrial abundance between spring and hibernation, we measured the ratio of copy number in a mitochondrial gene (ND1) vs. a nuclear gene (B2M) in frozen cerebral cortex samples. No significant differences were observed in DNA copies between SP and IBA. These data show that brain mitochondrial bioenergetics are not static across the year and suggest that brain mitochondria function more effectively during the hibernation season, allowing for rapid production of energy to meet demand when extreme physiological changes are occurring.

  17. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor.

    PubMed

    Schopfer, Francisco J; Baker, Paul R S; Giles, Gregory; Chumley, Phil; Batthyany, Carlos; Crawford, Jack; Patel, Rakesh P; Hogg, Neil; Branchaud, Bruce P; Lancaster, Jack R; Freeman, Bruce A

    2005-05-13

    The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.

  18. Potential Impact of Microbial Activity on the Oxidant Capacity and the Organic Carbon Budget in Clouds (Invited)

    NASA Astrophysics Data System (ADS)

    Delort, A.

    2013-12-01

    Within cloud water, microorganisms are metabolically active; so they are suspected to contribute to atmospheric chemistry. This paper is focused on the interactions between microorganisms and Reactive Oxygenated Species present in cloud water since these chemical compounds are driving the oxidant capacity of the cloud system. For this, real cloud waters with contrasting features (marine, continental, urban) were sampled at the puy de Dôme mountain (France). They exhibit high microbial biodiversity and complex chemical composition. These media were incubated in the dark and subjected to UV-light radiation in specifically designed photo-bio-reactors. The concentrations of hydrogen peroxide (H2O2), organic compounds and the ATP/ADP ratio were monitored during the incubation period. Microorganisms remained metabolically active in the presence of hydroxyl radicals photo-produced from H2O2. This oxidant and major carbon compounds (formaldehyde and carboxylic acids) were biodegraded by the endogenous microflora. This work suggests that microorganisms could play a double role in atmospheric chemistry: first, they could directly metabolize organic carbon species; second they could reduce the available source of radicals due to their oxidative metabolism. Consequently, molecules such as H2O2 would be no longer available for photochemical or other chemical reactions, decreasing the cloud oxidant capacity.

  19. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  20. Effects of local curcumin on oxidative stress and total antioxidant capacity in vivo study.

    PubMed

    Al-Rubaei, Z M Malik; Mohammad, Taghreed U; Ali, Layla Karim

    2014-12-01

    Plants have been one of the important sources of medicine even since the-dawn of human civilization. Curcumin has been found to possess tremendous therapeutic potency as antiinflammatory, antioxidant and antimicrobial agent. The present study was designed to examine possible potential therapeutic and protective effect of curcumin from oxidative stress and on total antioxidant capacity in liver damage. The study was conducted using H2O2 as inducing agent of oxidative stress in vivo. Rats were randomly divided into five groups, where n = 20 for each group. Group 1 (G1) rats served as control group. Group 2 (G2) rats subjected to experimentally induced oxidative stress by the ad libitum supply of drinking water containing 0.5% H2O2(v/v) was prepared daily over entire 60 days. Group 3 (G3) rats received H2O2 for sixty days followed by giving 200 mg kg(-1) of curcumin for 30 days. Group 4 (G4) was simultaneously given curcumin (200 mg kg(-1)) for 15 days then followed by receiving H2O2 with curcumin for sixty days. Group 5 (G5) rats was received H2O2 for sixty days followed by giving 200 mg kg(-1) of N-acetyl 1-cystine as standard drug for 30 days. Levels of marker enzymes (ALT, AST and ALP), uric acid, Total Protein (TP) and tumor necrosis factor (α-TNF) were assessed in serum for all studied groups. Malondialdehyde (MDA), 8-hydroxy-2-deoxyguinosine, Total Antioxidant Capacity (TAC), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT) were assayed in liver homogenates for all studied groups. The results revealed significant increase (p < 0.05) in levels of ALT, AST, ALP, uric acid and α-TNF while there are significant decrease (p < 0.05) in levels of TP in G2 comparing to G1. Also there are significant differences (p < 0.05) between G3 and G4 comparing to G2 and between G3, G4 and G5 which curcumin elicited a significant hepatoprotective activity by lowering the levels of serum marker enzymes and lipid peroxidation. The results also revealed a

  1. High-capacity composite adsorbents for nucleic acids.

    PubMed

    Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof

    2011-08-05

    Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well.

  2. Salivary and Urinary Total Antioxidant Capacity as Biomarkers of Oxidative Stress in Humans

    PubMed Central

    Peluso, Ilaria; Raguzzini, Anna

    2016-01-01

    Total Antioxidant Capacity (TAC) is a biomarker often used in order to investigate oxidative stress in many pathological conditions. Saliva and urine can be collected noninvasively and represent attractive diagnostic fluids for detecting biomarkers of various pathological conditions. The reviewed case-control and intervention studies that measured salivary or urinary TAC revealed that diseases, antioxidant foods, or supplements and age, gender, and lifestyle factors influenced salivary or urinary TAC. Salivary and urinary TAC were particularly affected by oral or renal status, respectively, as well as by infection; therefore these factors must be taken into account in both case-control and intervention studies. Furthermore, some considerations on sample collection and normalization strategies could be made. In particular, unstimulated saliva could be the better approach to measure salivary TAC, whereas 24 h or spontaneous urine collection should be chosen on the basis of the study outcome and of the creatinine clearance. Finally, the uric acid-independent TAC could be the better approach to evaluate red-ox status of body, in particular after nutritional interventions and in diseases associated with hyperuricaemia. PMID:26966611

  3. Spatial variability of soil gas concentration and methane oxidation capacity in landfill covers.

    PubMed

    Röwer, Inga Ute; Geck, Christoph; Gebert, Julia; Pfeiffer, Eva-Maria

    2011-05-01

    In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH(4)m(-2)h(-1)(.) Considering the current gas production rate of 0.03 g CH(4)m(-2)h(-1), the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.

  4. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    SciTech Connect

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Liu, Aiping; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2013-08-09

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.

  5. Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice.

    PubMed

    Erol, Erdal; Kumar, Leena S; Cline, Gary W; Shulman, Gerald I; Kelly, Daniel P; Binas, Bert

    2004-02-01

    Liver fatty acid binding protein (L-FABP) has been proposed to limit the availability of long-chain fatty acids (LCFA) for oxidation and for peroxisome proliferator-activated receptor alpha (PPAR-alpha), a fatty acid binding transcription factor that determines the capacity of hepatic fatty acid oxidation. Here, we used L-FABP null mice to test this hypothesis. Under fasting conditions, this mutation reduced beta-hydroxybutyrate (BHB) plasma levels as well as BHB release and palmitic acid oxidation by isolated hepatocytes. However, the capacity for ketogenesis was not reduced: BHB plasma levels were restored by octanoate injection; BHB production and palmitic acid oxidation were normal in liver homogenates; and hepatic expression of key PPAR-alpha target (MCAD, mitochondrial HMG CoA synthase, ACO, CYP4A3) and other (CPT1, LCAD) genes of mitochondrial and extramitochondrial LCFA oxidation and ketogenesis remained at wild-type levels. During standard diet, mitochondrial HMG CoA synthase mRNA was selectively reduced in L-FABP null liver. These results suggest that under fasting conditions, hepatic L-FABP contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional mechanism, whereas L-FABP can activate ketogenic gene expression in fed mice. Thus, the mechanisms whereby L-FABP affects fatty acid oxidation may vary with physiological condition.

  6. Assessment of the methane oxidation capacity of compacted soils intended for use as landfill cover materials

    SciTech Connect

    Rachor, Ingke; Gebert, Julia; Groengroeft, Alexander; Pfeiffer, Eva-Maria

    2011-05-15

    The microbial oxidation of methane in engineered cover soils is considered a potent option for the mitigation of emissions from old landfills or sites containing wastes of low methane generation rates. A laboratory column study was conducted in order to derive design criteria that enable construction of an effective methane oxidising cover from the range of soils that are available to the landfill operator. Therefore, the methane oxidation capacity of different soils was assessed under simulated landfill conditions. Five sandy potential landfill top cover materials with varying contents of silt and clay were investigated with respect to methane oxidation and corresponding soil gas composition over a period of four months. The soils were compacted to 95% of their specific proctor density, resulting in bulk densities of 1.4-1.7 g cm{sup -3}, reflecting considerably unfavourable conditions for methane oxidation due to reduced air-filled porosity. The soil water content was adjusted to field capacity, resulting in water contents ranging from 16.2 to 48.5 vol.%. The investigated inlet fluxes ranged from 25 to about 100 g CH{sub 4} m{sup -2} d{sup -1}, covering the methane load proposed to allow for complete oxidation in landfill covers under Western European climate conditions and hence being suggested as a criterion for release from aftercare. The vertical distribution of gas concentrations, methane flux balances as well as stable carbon isotope studies allowed for clear process identifications. Higher inlet fluxes led to a reduction of the aerated zone, an increase in the absolute methane oxidation rate and a decline of the relative proportion of oxidized methane. For each material, a specific maximum oxidation rate was determined, which varied between 20 and 95 g CH{sub 4} m{sup -2} d{sup -1} and which was positively correlated to the air-filled porosity of the soil. Methane oxidation efficiencies and gas profile data imply a strong link between oxidation capacity

  7. Tested Demonstrations: Buffer Capacity of Various Acetic Acid-Sodium Acetate Systems: A Lecture Experiment.

    ERIC Educational Resources Information Center

    Donahue, Craig J.; Panek, Mary G.

    1985-01-01

    Background information and procedures are provided for a lecture experiment which uses indicators to illustrate the concept of differing buffer capacities by titrating acetic acid/sodium acetate buffers with 1.0 molar hydrochloric acid and 1.0 molar sodium hydroxide. A table with data used to plot the titration curve is included. (JN)

  8. Capacity for Methane Oxidation in Landfill Cover Soils Measured in Laboratory-Scale Soil Microcosms

    PubMed Central

    Kightley, D.; Nedwell, D. B.; Cooper, M.

    1995-01-01

    Laboratory-scale soil microcosms containing different soils were permeated with CH(inf4) for up to 6 months to investigate their capacity to develop a methanotrophic community. Methane emissions were monitored continuously until steady states were established. The porous, coarse sand soil developed the greatest methanotrophic capacity (10.4 mol of CH(inf4) (middot) m(sup-2) (middot) day(sup-1)), the greatest yet reported in the literature. Vertical profiles of O(inf2), CH(inf4), and methanotrophic potential in the soils were determined at steady state. Methane oxidation potentials were greatest where the vertical profiles of O(inf2) and CH(inf4) overlapped. A significant increase in the organic matter content of the soil, presumably derived from methanotroph biomass, occurred where CH(inf4) oxidation was greatest. Methane oxidation kinetics showed that a soil community with a low methanotrophic capacity (V(infmax) of 258 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) but relatively high affinity (k(infapp) of 1.6 (mu)M) remained in N(inf2)-purged control microcosms, even after 6 months without CH(inf4). We attribute this to a facultative, possibly mixotrophic, methanotrophic microbial community. When purged with CH(inf4), a different methanotrophic community developed which had a lower affinity (k(infapp) of 31.7 (mu)M) for CH(inf4) but a greater capacity (V(infmax) of 998 nmol (middot) g of soil(sup-1) (middot) h(sup-1)) for CH(inf4) oxidation, reflecting the enrichment of an active high-capacity methanotrophic community. Compared with the unamended control soil, amendment of the coarse sand with sewage sludge enhanced CH(inf4) oxidation capacity by 26%; K(inf2)HPO(inf4) amendment had no significant effect, while amendment with NH(inf4)NO(inf3) reduced the CH(inf4) oxidation capacity by 64%. In vitro experiments suggested that NH(inf4)NO(inf3) additions (10 and 71 (mu)mol (middot) g of soil(sup-1)) inhibited CH(inf4) oxidation by a nonspecific ionic effect

  9. Can the measurement of pulmonary diffusing capacity for nitric oxide replace the measurement of pulmonary diffusing capacity for carbon monoxide?

    PubMed

    Zavorsky, Gerald S; van der Lee, Ivo

    2016-11-21

    Pulmonary diffusing capacity for carbon monoxide (DLCO) has been an important pulmonary function test used since the 1950's. It measures the uptake of CO from the alveolar space into pulmonary capillary blood, following the same path as oxygen. It's used to evaluate/follow the progress of various lung diseases. In the eighties, a new test was developed similar to the DLCO test: pulmonary diffusing capacity for nitric oxide (DLNO). About 81-90% of the variance in DLNO is shared by DLCO in patients with cardiopulmonary disease and in healthy subjects. When DLNO is abnormally low, so is DLCO, and when DLNO is normal, so is DLCO (Kappa Statistic=0.69, n=251). The probability that DLNO and DLCO will be abnormally low when a cardiopulmonary disease is present (sensitivity) is 79% and 68%, respectively. The DLNO test avoids many technical issues associated with the measurement of DLCO: (1) DLNO is relatively unaffected by inspired oxygen concentration or ambient pressure, (2) DLNO is unaffected by carboxyhemoglobin, (3) DLNO is minimally affected by hemoglobin (Hb) concentration, thus correcting for Hb is not needed. (4) DLNO is more affected by lung volume compared to DLCO, thus DLNO divided by alveolar volume (KNO) is a better measure than KCO in those with restrictive lung disease, and (5) DLNO is a more stable measure over time compared to DLCO. Therefore, DLNO has several advantages over DLCO in the management of patients and could replace the DLCO test in most cases moving forward.

  10. Induction of oxidative DNA damage by flavonoids of propolis: its mechanism and implication about antioxidant capacity.

    PubMed

    Tsai, Yi-Chih; Wang, Yi-Hsiang; Liou, Chih-Chiang; Lin, Yu-Cun; Huang, Haimei; Liu, Yin-Chang

    2012-01-13

    Propolis from beehives is commonly used as a home remedy for various purposes including as a topical antiseptic. Despite its antioxidant capacity, propolis induces oxidative DNA damage. In exploring the underlying mechanism, we found that the induction of oxidative DNA damage is attributed to the hydrogen peroxide (H(2)O(2)) produced by propolis. The formation of H(2)O(2) can take place without the participation of cells but requires the presence of transition metal ions such as iron. Flavonoids such as galangin, chrysin, and pinocembrin that are commonly detected in propolis have the capacity to induce oxidative DNA damage, and that capacity correlates with the production of H(2)O(2), suggesting the involvement of flavonoids in propolis in this process. On the basis of these results, we propose that the flavonoids of propolis serve as temporary carriers of electrons received from transition metal ions that are relayed to oxygen molecules to subsequently generate superoxide and H(2)O(2). In addition, propolis induces oxidative DNA damage that is subject to repair, and propolis-treated cells show a lower level of DNA damage level when challenged with another oxidative agent such as amoxicillin. This is reminiscent of an adaptive response that might contribute to the beneficial effects of propolis.

  11. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle.

    PubMed

    Cho, Yoshitake; Hazen, Bethany C; Gandra, Paulo G; Ward, Samuel R; Schenk, Simon; Russell, Aaron P; Kralli, Anastasia

    2016-02-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40-80%). Moreover, AAV1-Perm1-transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.

  12. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  13. Phenolic acid induced growth of gold nanoshells precursor composites and their application in antioxidant capacity assay.

    PubMed

    Ma, Xiaoyuan; Qian, Weiping

    2010-11-15

    In the present work, the gold nanoshells (GNSs) precursor composites were preadsorbed onto the surface of ITO substrates. With the treatment of modified electrodes immersed in the gold nanoparticles (GNPs) growth solution containing different phenolic acids, the GNSs precursor composites were enlarged to varying degrees. Phenolic acids with one or more phenolic hydroxyl groups served as reductants for the growth of GNPs. The enlargement conditions varied with the different reducing capacity of phenolic acids, exhibiting specific morphologies differ from the complete GNSs. Consequently, the UV-vis-NIR spectra and cyclic voltammetry curves for the phenolic acid-treated ITO electrode were gradually changed. Results showed that the higher reducing capacity for phenolic acid to reduce AuCl(4)(-) to Au(0) resulted in the intensified localized surface plasmon resonance features and reduced cathodic currents. The spectral wavelength peaks red shifted hundreds of nanometers across the visible region. Moreover, the antioxidant capacity of phenolic acids correlates well with their reducing activity, both of which reflect their tendency to donate electrons. Thus, the optical and electrochemical results could be used to evaluate the antioxidant capacity of phenolic acids by utilizing GNSs precursor composites as nanoprobes. The method is simple, rapid and could be used in visual analysis to a certain extent.

  14. Total oxidant scavenging capacities of common European fruit and vegetable juices.

    PubMed

    Lichtenthäler, Ramona; Marx, Friedhelm

    2005-01-12

    The total oxidant scavenging capacity (TOSC) assay in a modified and automated version was applied for a comparative and detailed survey of the antioxidant capacities of 14 common European fruit and vegetable juices (ACE, apple, beetroot, blueberry, carrot, elderberry, lemon, lingonberry, multivitamin, orange, pink grapefruit, sauerkraut, and tomato juices as well as sour cherry nectar). The juices were ranked according to their scavenging capacity against the three reactive oxygen species (ROS) peroxyl and hydroxyl radicals and peroxynitrite. These ROS are of physiological and technological relevance and cover a broad range of reactivity. Nonlinear correlations between concentrations of all studied samples and antioxidant capacity were taken into account for the assessment of the results. Due to the more complex assay design, results are only partially in accordance with those of the literature. Because of its outstanding TOSC values against two of the three ROS, lingonberry juice deserves special attention.

  15. Mild Hyperbaric Oxygen Improves Decreased Oxidative Capacity of Spinal Motoneurons Innervating the Soleus Muscle of Rats with Type 2 Diabetes.

    PubMed

    Takemura, Ai; Ishihara, Akihiko

    2016-09-01

    Rats with type 2 diabetes exhibit decreased oxidative capacity, such as reduced oxidative enzyme activity, low-intensity staining for oxidative enzymes in fibers, and no high-oxidative type IIA fibers, in the skeletal muscle, especially in the soleus muscle. In contrast, there are no data available concerning the oxidative capacity of spinal motoneurons innervating skeletal muscle of rats with type 2 diabetes. This study examined the oxidative capacity of motoneurons innervating the soleus muscle of non-obese rats with type 2 diabetes. In addition, this study examined the effects of mild hyperbaric oxygen at 1.25 atmospheres absolute with 36 % oxygen for 10 weeks on the oxidative capacity of motoneurons innervating the soleus muscle because mild hyperbaric oxygen improves the decreased oxidative capacity of the soleus muscle in non-obese rats with type 2 diabetes. Spinal motoneurons innervating the soleus muscle were identified using nuclear yellow, a retrograde fluorescent neuronal tracer. Thereafter, the cell body sizes and succinate dehydrogenase activity of identified motoneurons were analyzed. Decreased succinate dehydrogenase activity of small-sized alpha motoneurons innervating the soleus muscle was observed in rats with type 2 diabetes. The decreased succinate dehydrogenase activity of these motoneurons was improved by mild hyperbaric oxygen. Therefore, we concluded that rats with type 2 diabetes have decreased oxidative capacity in motoneurons innervating the soleus muscle and this decreased oxidative capacity is improved by mild hyperbaric oxygen.

  16. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes

    NASA Astrophysics Data System (ADS)

    Sathiya, M.; Rousse, G.; Ramesha, K.; Laisa, C. P.; Vezin, H.; Sougrati, M. T.; Doublet, M.-L.; Foix, D.; Gonbeau, D.; Walker, W.; Prakash, A. S.; Ben Hassine, M.; Dupont, L.; Tarascon, J.-M.

    2013-09-01

    Li-ion batteries have contributed to the commercial success of portable electronics and may soon dominate the electric transportation market provided that major scientific advances including new materials and concepts are developed. Classical positive electrodes for Li-ion technology operate mainly through an insertion-deinsertion redox process involving cationic species. However, this mechanism is insufficient to account for the high capacities exhibited by the new generation of Li-rich (Li1+xNiyCozMn(1-x-y-z)O2) layered oxides that present unusual Li reactivity. In an attempt to overcome both the inherent composition and the structural complexity of this class of oxides, we have designed structurally related Li2Ru1-ySnyO3 materials that have a single redox cation and exhibit sustainable reversible capacities as high as 230 mA h g-1. Moreover, they present good cycling behaviour with no signs of voltage decay and a small irreversible capacity. We also unambiguously show, on the basis of an arsenal of characterization techniques, that the reactivity of these high-capacity materials towards Li entails cumulative cationic (Mn+→M(n+1)+) and anionic (O2-→O22-) reversible redox processes, owing to the d-sp hybridization associated with a reductive coupling mechanism. Because Li2MO3 is a large family of compounds, this study opens the door to the exploration of a vast number of high-capacity materials.

  17. Ascorbic acid oxidation of thiol groups from dithiotreitol is mediated by its conversion to dehydroascorbic acid

    PubMed Central

    Barbosa, Nilda B.V.; Lissner, Leandro A.; Klimaczewski, Cláudia V.; Colpo, Elisangela; Rocha, Joao B.T.

    2012-01-01

    The aim of the present study was to investigate whether the in vitro pro-oxidant effect of ascorbic acid towards thiol groups could be mediated by free radicals formed during its auto-oxidation and/or by a direct oxidation of -SH groups by its oxidized form (dehydroascorbic acid). This hypothesis was examined by measuring the rate of AA (ascorbic acid) oxidation in MOPS (3-morpholinepropanesulfonic acid buffer) and phosphate buffer (PB). Here we have used dithiothreitol (DTT) as model of vicinal thiol-containing enzymes, namely δ-aminolevulinate dehydratase. The rate of AA and DTT oxidation was more pronounced in the presence of PB than in the MOPS. AA oxidation induced by iron/EDTA complex was significantly reduced by addition of superoxide dismutase, catalase and DTT to the reaction medium. H2O2 alone did not stimulate the oxidation of AA; however, AA oxidation was enhanced significantly with the addition of crescent concentrations of iron. Conversely, in DTT oxidation assay (without AA) the addition of iron, EDTA and H2O2, did not promote the oxidation of -SH groups. Our findings suggest that in the presence of physiological concentrations of AA and thiols, the oxidation of -SH groups is mediated by AA conversion to dehydroascorbic acid with the participation of iron. Furthermore, free radical species formed during the auto-oxidation of AA apparently did not oxidize thiol groups to a significant extent. PMID:27847448

  18. Storage capacity and oxygen mobility in mixed oxides from transition metals promoted by cerium

    NASA Astrophysics Data System (ADS)

    Perdomo, Camilo; Pérez, Alejandro; Molina, Rafael; Moreno, Sonia

    2016-10-01

    The oxygen mobility and storage capacity of Ce-Co/Cu-MgAl or Ce-MgAl mixed oxides, obtained by hydrotalcite precursors, were evaluated using Toluene-temperature-programmed-reaction, 18O2 isotopic exchange and O2-H2 titration. The presence of oxygen vacancies-related species was evaluated by means of Electron Paramagnetic Resonance. A correlation was found between the studied properties and the catalytic activity of the oxides in total oxidation processes. It was evidenced that catalytic activity depends on two related processes: the facility with which the solid can be reduced and its ability to regenerate itself in the presence of molecular oxygen in the gas phase. These processes are enhanced by Cu-Co cooperative effect in the mixed oxides. Additionally, the incorporation of Ce in the Co-Cu catalysts improved their oxygen transport properties.

  19. Rapid Detection of Neutrophil Oxidative Burst Capacity is Predictive of Whole Blood Cytokine Responses

    PubMed Central

    Vernon, Philip J.; Schaub, Leasha J.; Dallelucca, Jurandir J.; Pusateri, Anthony E.; Sheppard, Forest R.

    2015-01-01

    Background Maladaptive immune responses, particularly cytokine and chemokine-driven, are a significant contributor to the deleterious inflammation present in many types of injury and infection. Widely available applications to rapidly assess individual inflammatory capacity could permit identification of patients at risk for exacerbated immune responses and guide therapy. Here we evaluate neutrophil oxidative burst (NOX) capacity measured by plate reader to immuno-type Rhesus Macaques as an acute strategy to rapidly detect inflammatory capacity and predict maladaptive immune responses as assayed by cytokine array. Methods Whole blood was collected from anesthetized Rhesus Macaques (n = 25) and analyzed for plasma cytokine secretion (23-plex Luminex assay) and NOX capacity. For cytokine secretion, paired samples were either unstimulated or ex-vivo lipopolysaccharide (LPS)-stimulated (100μg/mL/24h). NOX capacity was measured in dihydrorhodamine-123 loaded samples following phorbol 12-myristate 13-acetate (PMA)/ionomycin treatment. Pearson’s test was utilized to correlate NOX capacity with cytokine secretion, p<0.05 considered significant. Results LPS stimulation induced secretion of the inflammatory molecules G-CSF, IL-1β, IL-1RA, IL-6, IL-10, IL-12/23(p40), IL-18, MIP-1α, MIP-1β, and TNFα. Although values were variable, several cytokines correlated with NOX capacity, p-values≤0.0001. Specifically, IL-1β (r = 0.66), IL-6 (r = 0.74), the Th1-polarizing cytokine IL-12/23(p40) (r = 0.78), and TNFα (r = 0.76) were strongly associated with NOX. Conclusion NOX capacity correlated with Th1-polarizing cytokine secretion, indicating its ability to rapidly predict inflammatory responses. These data suggest that NOX capacity may quickly identify patients at risk for maladaptive immune responses and who may benefit from immuno-modulatory therapies. Future studies will assess the in-vivo predictive value of NOX in animal models of immune-mediated pathologies. PMID

  20. Analysis of peroxytrifluoroacetic acid oxidation products from Victorian brown coal

    SciTech Connect

    Verheyen, T.V.; Johns, R.B.

    1983-08-01

    A method is described for the detailed quantitative structural identification of the components present in the oxidation product mixtures of a highly aliphatic brown coal. The results showed them to be predominantly long chain diols, hydroxy acids, dicarboxylic acids and short chain polycarboxylic acids.

  1. Peculiar surface-interface properties of nanocrystalline ceria-cobalt oxides with enhanced oxygen storage capacity.

    PubMed

    Qiu, Nan; Zhang, Jing; Wu, Ziyu

    2014-11-07

    Peculiar surface-interface properties of nanocrystalline ceria-cobalt oxides were evidenced by X-ray diffraction, transmission electron microscopy and X-ray absorption spectroscopy. It was found that cobalt foreign cations modify the surface oxygen vacancies of ceria at the atomic level, inducing the exposure of well-defined reactive faces between the ceria-host and the cobalt oxide interface. These modifications of the surface-interface structure promoted a remarkable increase in the oxygen storage capacity of ceria nanocrystals.

  2. Influence of phosphate ions on buffer capacity of soil humic acids

    NASA Astrophysics Data System (ADS)

    Boguta, P.; Sokołowska, Z.

    2012-02-01

    The object of this study was to determine change of natural buffer capacity of humic acids by strong buffering agents, which were phosphate ions. Studies were carried out on the humic acids extracted from peat soils. Additional information was obtained by determination of water holding capacity, density, ash and pH for peats and optical parameter Q4/6 for humic acids. Humic acid suspensions exhibited the highest buffer properties at low pH and reached maximum at pH ~ 4. Phosphates possessed buffer properties in the pH range from 4.5 to 8.0. The maximum of buffering was at pH~6.8 and increased proportionally with an increase in the concentration of phosphate ions. The study indicated that the presence of phosphate ions may strongly change natural buffer capacity of humic acids by shifting buffering maximum toward higher pH values. Significant correlations were found for the degree of the secondary transformation with both the buffer capacity and the titrant volume used during titration.

  3. Defective (U-14 C) palmitic acid oxidation in Duchenne muscular dystrophy

    SciTech Connect

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased (U-14 C) palmitic acid oxidation. (1-14 C) palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation.

  4. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle.

    PubMed

    Lawler, John M; Song, Wook; Demaree, Scott R

    2003-07-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  5. Hindlimb unloading increases oxidative stress and disrupts antioxidant capacity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Lawler, John M.; Song, Wook; Demaree, Scott R.; Bloomfield, S. A. (Principal Investigator)

    2003-01-01

    Skeletal muscle disuse with space-flight and ground-based models (e.g., hindlimb unloading) results in dramatic skeletal muscle atrophy and weakness. Pathological conditions that cause muscle wasting (i.e., heart failure, muscular dystrophy, sepsis, COPD, cancer) are characterized by elevated "oxidative stress," where antioxidant defenses are overwhelmed by oxidant production. However, the existence, cellular mechanisms, and ramifications of oxidative stress in skeletal muscle subjected to hindlimb unloading are poorly understood. Thus we examined the effects of hindlimb unloading on hindlimb muscle antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione peroxidase), nonenzymatic antioxidant scavenging capacity (ASC), total hydroperoxides, and dichlorohydrofluorescein diacetate (DCFH-DA) oxidation, a direct indicator of oxidative stress. Twelve 6 month old Sprague Dawley rats were divided into two groups: 28 d of hindlimb unloading (n = 6) and controls (n = 6). Hindlimb unloading resulted in a small decrease in Mn-superoxide dismutase activity (10.1%) in the soleus muscle, while Cu,Zn-superoxide dismutase increased 71.2%. In contrast, catalase and glutathione peroxidase, antioxidant enzymes that remove hydroperoxides, were significantly reduced in the soleus with hindlimb unloading by 54.5 and 16.1%, respectively. Hindlimb unloading also significantly reduced ASC. Hindlimb unloading increased soleus lipid hydroperoxide levels by 21.6% and hindlimb muscle DCFH-DA oxidation by 162.1%. These results indicate that hindlimb unloading results in a disruption of antioxidant status, elevation of hydroperoxides, and an increase in oxidative stress.

  6. Evidence of Preserved Oxidative Capacity and Oxygen Delivery in the Plantar Flexor Muscles With Age.

    PubMed

    Hart, Corey R; Layec, Gwenael; Trinity, Joel D; Liu, Xin; Kim, Seong-Eun; Groot, H Jonathan; Le Fur, Yann; Sorensen, Jacob R; Jeong, Eun-Kee; Richardson, Russell S

    2015-09-01

    Studies examining the effect of aging on skeletal muscle oxidative capacity have yielded equivocal results; however, these investigations may have been confounded by differences in oxygen (O(2)) delivery, physical activity, and small numbers of participants. Therefore, we evaluated skeletal muscle oxidative capacity and O(2) delivery in a relatively large group (N = 40) of young (22 ± 2 years) and old (73 ± 7 years) participants matched for physical activity. After submaximal dynamic plantar flexion exercise, phosphocreatine (PCr) resynthesis ((31)P magnetic resonance spectroscopy), muscle reoxygenation (near-infrared spectroscopy), and popliteal artery blood flow (Doppler ultrasound) were measured. The phosphocreatine recovery time constant (Tau) (young: 33 ± 16; old: 30 ± 11 seconds), maximal rate of adenosine triphosphate (ATP) synthesis (young: 25 ± 9; old: 27 ± 8 mM/min), and muscle reoxygenation rates determined by the deoxyhemoglobin/myoglobin recovery Tau (young: 48 ± 5; old: 47 ± 9 seconds) were similar between groups. Similarly, although tending to be higher in the old, there were no significant age-related differences in postexercise popliteal blood flow (area under the curve: young: 1,665 ± 227 vs old: 2,404 ± 357 mL, p = .06) and convective O(2) delivery (young: 293 ± 146 vs old: 404 ± 191 mL, p = .07). In conclusion, when physical activity and O(2) delivery are similar, oxidative capacity in the plantar flexors is not affected by aging. These findings reveal that diminished skeletal muscle oxidative capacity is not an obligatory accompaniment to the aging process.

  7. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    NASA Astrophysics Data System (ADS)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  8. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  9. The effects of ketogenic diet on oxidative stress and antioxidative capacity markers of Taekwondo athletes.

    PubMed

    Rhyu, Hyun-Seung; Cho, Su-Youn; Roh, Hee-Tae

    2014-12-01

    The purpose of this study was to investigate the effects of the ketogenic diet through 3 weeks on oxidative stress and antioxidative capacity markers in Taekwondo athletes. The participants selected for this research were 18 high school taekwondo contestants aged 15-18 who had at least 5 yr of career as contestant. The subjects were randomly assigned to the ketogenic diet (KD) group and the Non ketogenic diet (NDK) group. Body composition and oxidative stress and antioxidative capacity markers (LDH, MDA, ROS, HDL, and SOD) were analysed before and after 3 weeks of ketogenic diet. No significant difference was found between the groups in body composition, ROS and SOD level. The KD group showed an elevated HDL level and NKD group showed an elevated LDH and MDA level after ketogenic diet by 3 weeks. This result suggests that weight loss by 3 weeks of calorie restriction and exercise can cause oxidative stress, and that ketogenic diet can be effective for preventing it. It could also be inferred that ketogenic diet can be effective for increasing blood antioxidative capacity.

  10. Blue CrO5 assay: a novel spectrophotometric method for the evaluation of the antioxidant and oxidant capacity of various biological substances.

    PubMed

    Charalampidis, Pavlos S; Veltsistas, Panos; Karkabounas, Spyros; Evangelou, Angelos

    2009-10-01

    Oxidative stress plays a pivotal role in the ageing process and in the pathogenesis of numerable diseases. The quantification of the phenomenon is of paramount importance. In the present study, we introduce a novel and simple assay, the Blue CrO(5) assay, for the evaluation of the oxidant and antioxidant capacity of various biological samples and known antioxidants. Chromium peroxide (CrO(5)) is produced by ammonium dichromate in an acidic environment in the presence of H(2)O(2). It is a deep blue potent oxidant compound, miscible and relatively stable in polar organic solvents, that can be easily measured by spectrophotometry. Its reduction by known antioxidants, both water- and lipid-soluble (ascorbate and alpha-tocopherol, respectively, in this study), detected spectrophotometrically as a decrease in the absorption and depicted in EPR spectra, can act as a measure of the antioxidant capacity of a certain compound. The assay displays significant sensitivity, stability, linearity, specificity and repeatability.

  11. Graphene oxide wrapped croconic acid disodium salt for sodium ion battery electrodes

    NASA Astrophysics Data System (ADS)

    Luo, Chao; Zhu, Yujie; Xu, Yunhua; Liu, Yihang; Gao, Tao; Wang, Jing; Wang, Chunsheng

    2014-03-01

    Croconic acid disodium salt (CADS), a renewable or recyclable organic compound, is investigated as an anode material in sodium ion battery for the first time. The pristine micro-sized CADS delivers a high capacity of 246.7 mAh g-1, but it suffers from fast capacity decay during charge/discharge cycles. The detailed investigation reveals that the severe capacity loss is mainly attributed to the pulverization of CADS particles induced by the large volume change during sodiation/desodiation rather than the generally believed dissolution of CADS in the organic electrolyte. Minimizing the particle size can effectively suppress the pulverization, thus improving the cycling stability. Wrapping CADS with graphene oxide by ultrasonic spray pyrolysis can enhance the integration and conductivity of CADS electrodes, thus providing a high capacity of 293 mAh g-1.

  12. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats

    PubMed Central

    Acevedo, Luz M.; Raya, Ana I.; Martínez-Moreno, Julio M.

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats. PMID:28253314

  13. Phenolic acids and antioxidant capacity of distillers dried grains with solubles (DDGS) as compared with corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Three sets of ground corn and the corresponding distillers dried grains with solubles (DDGS) were collected from three commercial plants and analyzed for individual phenolic acids by high performance liquid chromatography coupled with diode array and/or mass spectrometry and for antioxidant capacity...

  14. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing-capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E.

    1991-01-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  15. Stream chemistry in the eastern United States, 2, Current sources of acidity in acidic and low acid-neutralizing capacity streams

    NASA Astrophysics Data System (ADS)

    Herlihy, Alan T.; Kaufmann, Philip R.; Mitch, Mark E.

    1991-04-01

    We examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probable sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern United States. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km2) forested watersheds in the Mid-Atlantic Highlands (an estimated 1950 km of stream length) and in the Mid-Atlantic Coastal Plain (1250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1180 km of acidic stream length and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  16. An online monitor of the oxidative capacity of aerosols (o-MOCA)

    NASA Astrophysics Data System (ADS)

    Eiguren-Fernandez, Arantzazu; Kreisberg, Nathan; Hering, Susanne

    2017-02-01

    The capacity of airborne particulate matter to generate reactive oxygen species (ROS) has been correlated with the generation of oxidative stress both in vitro and in vivo. The cellular damage from oxidative stress, and by implication with ROS, is associated with several common diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and some neurological diseases. Yet currently available chemical and in vitro assays to determine the oxidative capacity of ambient particles require large samples, analyses are typically done offline, and the results are not immediate.Here we report the development of an online monitor of the oxidative capacity of aerosols (o-MOCA) to provide online, time-resolved assessment of the capacity of airborne particles to generate ROS. Our approach combines the Liquid Spot Sampler (LSS), which collects particles directly into small volumes of liquid, and a chemical module optimized for online measurement of the oxidative capacity of aerosol using the dithiothreitol (DTT) assay. The LSS uses a three-stage, laminar-flow water condensation approach to enable the collection of particles as small as 5 nm into liquid. The DTT assay has been improved to allow the online, time-resolved analysis of samples collected with the LSS but could be adapted to other collection methods or offline analysis of liquid extracts.The o-MOCA was optimized and its performance evaluated using the 9,10-phenanthraquinone (PQ) as a standard redox-active compound. Laboratory testing shows minimum interferences or carryover between consecutive samples, low blanks, and a reproducible, linear response between the DTT consumption rate (nmol min-1) and PQ concentration (µM). The calculated limit of detection for o-MOCA was 0.15 nmol min-1. The system was validated with a diesel exhaust particle (DEP) extract, previously characterized and used for the development, improvement, and validation of the standard DTT analysis. The DTT consumption rates (nmol min-1

  17. The superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet

    NASA Astrophysics Data System (ADS)

    Li, Yawei; Sun, Qiang

    2014-02-01

    Two-dimensional organometallic sheets containing regularly and separately distributed transition atoms (TMs) have received tremendous attentions due to their flexibility in synthesis, well-defined geometry and the promising applications in hydrogen storage, electronic circuits, quantum Hall effect, and spintronics. Here for the first time we present a study on the superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet proceeding first via Langmuir-Hinshelwood (LH) mechanism and then via Eley-Rideal (ER) mechanism. Compared to the noble metal based catalysts or graphene supported catalysts, our studied system has following unique features: without poisoning effect and clustering problem, having comparable reaction energy barrier for low-temperature oxidation, and low cost for large-scale catalytic CO oxidation in industry.

  18. The superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet

    PubMed Central

    Li, Yawei; Sun, Qiang

    2014-01-01

    Two-dimensional organometallic sheets containing regularly and separately distributed transition atoms (TMs) have received tremendous attentions due to their flexibility in synthesis, well-defined geometry and the promising applications in hydrogen storage, electronic circuits, quantum Hall effect, and spintronics. Here for the first time we present a study on the superior catalytic CO oxidation capacity of a Cr-phthalocyanine porous sheet proceeding first via Langmuir-Hinshelwood (LH) mechanism and then via Eley-Rideal (ER) mechanism. Compared to the noble metal based catalysts or graphene supported catalysts, our studied system has following unique features: without poisoning effect and clustering problem, having comparable reaction energy barrier for low-temperature oxidation, and low cost for large-scale catalytic CO oxidation in industry. PMID:24526163

  19. Antioxidant capacity of betacyanins as radical scavengers for peroxyl radical and nitric oxide.

    PubMed

    Taira, Junsei; Tsuchida, Eito; Katoh, Megumi C; Uehara, Masatsugu; Ogi, Takayuki

    2015-01-01

    This study was designed to assess the antioxidant capacity of betacyanins as indole derived plant pigments, such as betanin, phyllocactin and betanidin. The antioxidant capacity of the betacyanins was evaluated as an index of radical scavenging ability using the peroxyl radical generating system in the presence of AAPH and NO generating system using NOR3 as an NO donor. The peroxyl radical scavenging capacity was dose-dependent in the low concentration range (25-100 nM). The mol-Trolox equivalent activity/mol compound (mol-TEA/mol-compound) as an index of the antioxidant capacity indicated the following order at 10.70 ± 0.01, 3.31 ± 0.14 and 2.83 ± 0.01 mol-TEA/mol-compound for betanidin, betanin and phyllocactin, respectively. In addition, betacyanins reduced the nitrite-level in the low concentration range of 2.5-20 μM. The IC₅₀ values (μM) of nitrogen radical scavenging activity were 24.48, 17.51 and 6.81 for betanin, phyllocactin and betanidin. ESR studies provided evidence that the compounds directly scavenged NO. These results indicated that betacyanins have a strong antioxidant capacity, particularly betanidin with a catechol group had higher activity than those of the glycoside of betacyanins. This study demonstrated that the betacyanins will be useful as natural pigments to provide defence against oxidative stress.

  20. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  1. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    SciTech Connect

    Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Portman, Michael A.

    2013-09-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), longchain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart.

  2. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo

    PubMed Central

    Kajimoto, Masaki; O’Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.; Portman, Michael A.

    2013-01-01

    Extracorporeal membrane oxygenation (ECMO) supports infants and children with severe cardiopulmonary compromise. Nutritional support for these children includes provision of medium- and long-chain fatty acids (FAs). However, ECMO induces a stress response, which could limit the capacity for FA oxidation. Metabolic impairment could induce new or exacerbate existing myocardial dysfunction. Using a clinically relevant piglet model, we tested the hypothesis that ECMO maintains the myocardial capacity for FA oxidation and preserves myocardial energy state. Provision of 13-Carbon labeled medium-chain FA (octanoate), long-chain free FAs (LCFAs), and lactate into systemic circulation showed that ECMO promoted relative increases in myocardial LCFA oxidation while inhibiting lactate oxidation. Loading of these labeled substrates at high dose into the left coronary artery demonstrated metabolic flexibility as the heart preferentially oxidized octanoate. ECMO preserved this octanoate metabolic response, but also promoted LCFA oxidation and inhibited lactate utilization. Rapid upregulation of pyruvate dehydrogenase kinase-4 (PDK4) protein appeared to participate in this metabolic shift during ECMO. ECMO also increased relative flux from lactate to alanine further supporting the role for pyruvate dehydrogenase inhibition by PDK4. High dose substrate loading during ECMO also elevated the myocardial energy state indexed by phosphocreatine to ATP ratio. ECMO promotes LCFA oxidation in immature hearts, while maintaining myocardial energy state. These data support the appropriateness of FA provision during ECMO support for the immature heart. PMID:23727393

  3. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  4. Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance.

    PubMed

    Henstridge, Darren C; Bruce, Clinton R; Drew, Brian G; Tory, Kálmán; Kolonics, Attila; Estevez, Emma; Chung, Jason; Watson, Nadine; Gardner, Timothy; Lee-Young, Robert S; Connor, Timothy; Watt, Matthew J; Carpenter, Kevin; Hargreaves, Mark; McGee, Sean L; Hevener, Andrea L; Febbraio, Mark A

    2014-06-01

    Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised.

  5. Activating HSP72 in Rodent Skeletal Muscle Increases Mitochondrial Number and Oxidative Capacity and Decreases Insulin Resistance

    PubMed Central

    Henstridge, Darren C.; Bruce, Clinton R.; Drew, Brian G.; Tory, Kálmán; Kolonics, Attila; Estevez, Emma; Chung, Jason; Watson, Nadine; Gardner, Timothy; Lee-Young, Robert S.; Connor, Timothy; Watt, Matthew J.; Carpenter, Kevin; Hargreaves, Mark; McGee, Sean L.; Hevener, Andrea L.; Febbraio, Mark A.

    2014-01-01

    Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised. PMID:24430435

  6. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans.

    PubMed

    Burgomaster, Kirsten A; Hughes, Scott C; Heigenhauser, George J F; Bradwell, Suzanne N; Gibala, Martin J

    2005-06-01

    Parra et al. (Acta Physiol. Scand 169: 157-165, 2000) showed that 2 wk of daily sprint interval training (SIT) increased citrate synthase (CS) maximal activity but did not change "anaerobic" work capacity, possibly because of chronic fatigue induced by daily training. The effect of fewer SIT sessions on muscle oxidative potential is unknown, and aside from changes in peak oxygen uptake (Vo(2 peak)), no study has examined the effect of SIT on "aerobic" exercise capacity. We tested the hypothesis that six sessions of SIT, performed over 2 wk with 1-2 days rest between sessions to promote recovery, would increase CS maximal activity and endurance capacity during cycling at approximately 80% Vo(2 peak). Eight recreationally active subjects [age = 22 +/- 1 yr; Vo(2 peak) = 45 +/- 3 ml.kg(-1).min(-1) (mean +/- SE)] were studied before and 3 days after SIT. Each training session consisted of four to seven "all-out" 30-s Wingate tests with 4 min of recovery. After SIT, CS maximal activity increased by 38% (5.5 +/- 1.0 vs. 4.0 +/- 0.7 mmol.kg protein(-1).h(-1)) and resting muscle glycogen content increased by 26% (614 +/- 39 vs. 489 +/- 57 mmol/kg dry wt) (both P < 0.05). Most strikingly, cycle endurance capacity increased by 100% after SIT (51 +/- 11 vs. 26 +/- 5 min; P < 0.05), despite no change in Vo(2 peak). The coefficient of variation for the cycle test was 12.0%, and a control group (n = 8) showed no change in performance when tested approximately 2 wk apart without SIT. We conclude that short sprint interval training (approximately 15 min of intense exercise over 2 wk) increased muscle oxidative potential and doubled endurance capacity during intense aerobic cycling in recreationally active individuals.

  7. Phase Diagram and Heat Capacities of the Malonic Acid/Water System

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Beyer, K. D.

    2003-12-01

    Malonic acid is one of the more ubiquitous dicarboxylic acids found in the atmosphere and is quite soluble in water. Therefore, its impact on particle/cloud droplet formation needs to be better understood through the study of the thermodynamics of its aqueous solutions. The liquid/solid phase diagram and solution heat capacities of the malonic acid/water binary system have been investigated using differential scanning calorimetry and infrared spectroscopy of thin films. We report here the first measurement of the ice melting envelope as well as the ice/malonic acid eutectic temperature and composition in this binary system. Evidence from both thermal analysis and infrared spectroscopy is shown for a malonic acid hydrate, possibly C3H4O4ṡ6H2O. We have observed the formation of this hydrate over a large range of concentrations, and have found it is a major fraction of samples within that region. We have also determined the enthalpy of fusion of malonic acid as well as the constant pressure heat capacities of solutions in the concentration range 5 - 55 wt% malonic acid from 323 K to the freezing point of each solution.

  8. Oxidation of Indole-3-Acetic Acid-Amino Acid Conjugates by Horseradish Peroxidase

    PubMed Central

    Park, Ro Dong; Park, Chang Kyu

    1987-01-01

    The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation. PMID:16665529

  9. A microcalorimetry study on the oxidation of linoleic acid and the control of rancidity.

    PubMed

    Haman, Nabil; Romano, Andrea; Asaduzzaman, Mohammad; Ferrentino, Giovanna; Biasioli, Franco; Scampicchio, Matteo

    2017-03-01

    The oxidative deterioration of unsaturated lipids fatty acids is a great concern for the food industry as it is associated with the development of rancid off-odors and the reduction of food quality. This work describes the potential use of isothermal microcalorimetry to monitor the oxidation of linoleic acid, an important conjugated fatty acid responsible for the development of rancidity. The heat flow signal developed during the oxidation process reflects a multistep mechanism typical of radical chain reactions. From the analysis of the thermograms, it is possible to identify a period of the reaction that occurs with an order equal to 0.5. This period is correlated with the propagation period of the radical chain reaction. In addition, it allows detecting the early appearance of rancidity notes, as confirmed with the analysis of the samples headspace by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS). The proposed approach was finally applied to compare the capacity of natural and synthetic antioxidants to inhibit the oxidation process of linoleic acid and the occurrence of rancidity. The results presented here show the advantages of microcalorimetry to study oxidation reactions and their control.

  10. Origin of additional capacities in metal oxide lithium-ion battery electrodes.

    PubMed

    Hu, Yan-Yan; Liu, Zigeng; Nam, Kyung-Wan; Borkiewicz, Olaf J; Cheng, Jun; Hua, Xiao; Dunstan, Matthew T; Yu, Xiqian; Wiaderek, Kamila M; Du, Lin-Shu; Chapman, Karena W; Chupas, Peter J; Yang, Xiao-Qing; Grey, Clare P

    2013-12-01

    Metal fluorides/oxides (MF(x)/M(x)O(y)) are promising electrodes for lithium-ion batteries that operate through conversion reactions. These reactions are associated with much higher energy densities than intercalation reactions. The fluorides/oxides also exhibit additional reversible capacity beyond their theoretical capacity through mechanisms that are still poorly understood, in part owing to the difficulty in characterizing structure at the nanoscale, particularly at buried interfaces. This study employs high-resolution multinuclear/multidimensional solid-state NMR techniques, with in situ synchrotron-based techniques, to study the prototype conversion material RuO2. The experiments, together with theoretical calculations, show that a major contribution to the extra capacity in this system is due to the generation of LiOH and its subsequent reversible reaction with Li to form Li2O and LiH. The research demonstrates a protocol for studying the structure and spatial proximities of nanostructures formed in this system, including the amorphous solid electrolyte interphase that grows on battery electrodes.

  11. Evaluation of free radical scavenging and anti-oxidative capacity of polydatin-nanostructured lipid carriers

    NASA Astrophysics Data System (ADS)

    Meng, Xiang-Ping; Shi, Fan; Li, Hai-Jie; Yin, Li-De; Wang, Yi-Fei; Wang, Zhi-ping; Chen, Tong-sheng

    2016-10-01

    Cellular damage induced by free-radicals like reactive oxygen species has been implicated in several diseases. 2, 2-azobis(2-amidino-propane) dihydrochloride(AAPH) generates two potent ROS capable of inducing lipid peroxidation: alkoxy radical(RO-) and peroxy radical (ROO-). These radicals are similar to those that are physiologically active and thus might initiate a cascade of intracellular toxic events leading to oxidation, lipid peroxidation, DNA damage and subsequent cell death. Hence naturally anti-oxidant play a vital role in combating these conditions. In this study, polydatin loaded nanostructured lipid carriers (Pol-NLC) was prepared by hot melting and then high pressure homogenization technique. The effects of Pol-NLC on free radical scavenging and anti-oxidative capacity is investigated. The particle size and zeta potential of Pol-NLC were 113.9 +/- 1.1 nm and -16.3 1 +/- 0.27 mV, respectively. By free radical scavenging assays, the IC50 value of Pol-NLC were 28.71, 9.83 μg/mL with DPPH, ABTS assay respectively, and 0.143 mg ferrous sulfate/1 mg Pol-NLC with FRAP assay. These results indicated that the antioxidant properties of Pol-NLC hold great potential used as an alternative to more toxic synthetic anti-oxidants as an additive in food, cosmetic and pharmaceutical preparations for the oxidative diseases treatment.

  12. The Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  13. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  14. Oxidative phosphorylation accompanying oxidation of short-chain fatty acids by rat-liver mitochondria

    PubMed Central

    Hird, F. J. R.; Weidemann, M. J.

    1966-01-01

    1. The factors concerned in the estimation of P/O ratios when fatty acids are oxidized by rat-liver mitochondria have been assessed. 2. The oxidation of butyrate, hexanoate and octanoate is accompanied by ATP synthesis. At low concentrations of the fatty acids, P/O ratios approximately 2·5 are obtained. 3. Oxidative phosphorylation is uncoupled, respiratory control ratios are lowered and respiration is inhibited when the concentration of the fatty acid in the incubating medium is raised (to 5–10mm); octanoate is a more potent uncoupler than either hexanoate or butyrate. 4. Serum albumin and carnitine, either singly or in combination, protect the mitochondria from the effect exerted by the fatty acids. 5. The rate of oxidation of short-chain fatty acids in the presence of ADP is increased in the presence of carnitine. PMID:4223170

  15. The oxidation of linoleic acid in the Udenfriend's system.

    PubMed

    Wakizaka, A; Imai, Y

    1974-11-01

    The autocatalytic oxidation of linoleate was observed in the incubation mixture containing ferrous ion and ascorbic acid as the catalysts (Undenfriend's system). The rate of oxidation of linoleate was estimated wither by the TBA method, iodometry or by the measurement of the absorbance at 235 nm. Reaction products were analyzed by TLC, GLC and UV-, IR-, NMR- and mass spectrometries. The main oxidized products were assumed to have one oxygen atom at the position of carbon 9 or 13 of linoleate or two oxygen atoms at the both positions of the original acid. The conjugated double bond was formed at carbon 10 and 12 of the carbon chain of linoleate.

  16. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  17. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    PubMed Central

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-01-01

    Secondary metabolites synthesized by nonribosomal peptide synthetases (NRPSs) display diverse and complex topologies and possess an impressive range of biological activities1,2 Much of this diversity derives from a synthetic strategy that entails the oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds pre-3 and post-assembly2. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis.4 However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized outside of nature.5 In this manuscript, we report that two small-molecule iron catalysts are capable of facilitating the targeted C—H oxidative modification of amino acids and peptides with preservation of α-center chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins, and amines in both monomer and peptide settings. The value of this C—H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids (UAAs) representing seven distinct functional group arrays; late-stage C—H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different UAAs. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C—H oxidation to one containing a linear UAA. PMID:27479323

  18. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness.

  19. Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood.

    PubMed

    Poletta, Gisela L; Simoniello, María Fernanda; Mudry, Marta D

    2016-01-01

    Several xenobiotics, and among them pesticides, can produce oxidative stress, providing a mechanistic basis for their observed toxicity. Chronic oxidative stress induces deleterious modifications to DNA, lipids and proteins that are used as effective biomarkers to study pollutant-mediated oxidative stress. No previous report existed on the application of oxidative damage and antioxidant defense biomarkers in Caiman latirostris blood, while few studies reported in other crocodilians were done in organs or muscles of dead animals. The aim of this study was to characterize a new set of oxidative stress biomarkers in C. latirostris blood, through the modification of conventional techniques: 1) damage to lipids by thiobarbituric acid reactive substances (TBARS), 2) damage to DNA by comet assay modified with the enzymes FPG and Endo III, and 3) antioxidant defenses: catalase, superoxide dismutase and glutathione; in order to apply them in future biomonitoring studies. We successfully adapted standard procedures for CAT, SOD, GSH and TBARS determination in C. latirostris blood. Calibration curves for FPG and Endo III showed that the three dilutions tested were appropriate to conduct the modified comet assay for the detection of oxidized bases in C. latirostris erythrocytes. One hour of incubation allowed a complete repair of the damage generated. The incorporation of these biomarkers in biomonitoring studies of caiman populations exposed to xenobiotics is highly important considering that this species has recovered from a serious endangered state through the implementation of sustainable use programs in Argentina, and represents nowadays a relevant economic resource for many human communities.

  20. The Oxidation of Cysteine, Cysteinesulfinic Acid and Cysteic Acid on a Polycrystalline Gold Electrode

    DTIC Science & Technology

    1993-04-15

    The mechanism of cysteine, cysteinesulfinic acid and cysteic acid electrooxidation in perchloric acid solutions has been studied using cyclic ... voltammetry . All compounds investigated have been found to be chemisorbed on a polycrystalline gold electrode and oxidized with four, two or one electron

  1. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.

    PubMed

    Lantier, Louise; Fentz, Joachim; Mounier, Rémi; Leclerc, Jocelyne; Treebak, Jonas T; Pehmøller, Christian; Sanz, Nieves; Sakakibara, Iori; Saint-Amand, Emmanuelle; Rimbaud, Stéphanie; Maire, Pascal; Marette, André; Ventura-Clapier, Renée; Ferry, Arnaud; Wojtaszewski, Jørgen F P; Foretz, Marc; Viollet, Benoit

    2014-07-01

    AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that plays a central role in skeletal muscle metabolism. We used skeletal muscle-specific AMPKα1α2 double-knockout (mdKO) mice to provide direct genetic evidence of the physiological importance of AMPK in regulating muscle exercise capacity, mitochondrial function, and contraction-stimulated glucose uptake. Exercise performance was significantly reduced in the mdKO mice, with a reduction in maximal force production and fatigue resistance. An increase in the proportion of myofibers with centralized nuclei was noted, as well as an elevated expression of interleukin 6 (IL-6) mRNA, possibly consistent with mild skeletal muscle injury. Notably, we found that AMPKα1 and AMPKα2 isoforms are dispensable for contraction-induced skeletal muscle glucose transport, except for male soleus muscle. However, the lack of skeletal muscle AMPK diminished maximal ADP-stimulated mitochondrial respiration, showing an impairment at complex I. This effect was not accompanied by changes in mitochondrial number, indicating that AMPK regulates muscle metabolic adaptation through the regulation of muscle mitochondrial oxidative capacity and mitochondrial substrate utilization but not baseline mitochondrial muscle content. Together, these results demonstrate that skeletal muscle AMPK has an unexpected role in the regulation of mitochondrial oxidative phosphorylation that contributes to the energy demands of the exercising muscle.-Lantier, L., Fentz, J., Mounier, R., Leclerc, J., Treebak, J. T., Pehmøller, C., Sanz, N., Sakakibara, I., Saint-Amand, E., Rimbaud, S., Maire, P., Marette, A., Ventura-Clapier, R., Ferry, A., Wojtaszewski, J. F. P., Foretz, M., Viollet, B. AMPK controls exercise endurance, mitochondrial oxidative capacity, and skeletal muscle integrity.

  2. Actovegin, a non-prohibited drug increases oxidative capacity in human skeletal muscle.

    PubMed

    Søndergård, Stine D; Dela, Flemming; Helge, Jørn W; Larsen, Steen

    2016-10-01

    Actovegin, a deproteinized haemodialysate of calf blood, is suggested to have ergogenic properties, but this potential effect has never been investigated in human skeletal muscle. To investigate this purported ergogenic effect, we measured the mitochondrial respiratory capacity in permeabilized human skeletal muscle fibres acutely exposed to Actovegin in a low and in a high dose. We found that Actovegin, in the presence of complex I-linked substrates increased the oxidative phosphorylation (OXPHOS) capacity significantly in a concentration-dependent manner (19 ± 3, 31 ± 4 and 45 ± 4 pmol/mg/s). Maximal OXPHOS capacity with complex I and II-linked substrate was increased when the fibres were exposed to the high dose of Actovegin (62 ± 6 and 77 ± 6 pmol/mg/s) (p < .05). The respiratory capacity of the electron transfer system as well as Vmax and Km were also increased in a concentration-dependent manner after Actovegin exposure (70 ± 6, 79 ± 6 and 88 ± 7 pmol/mg/s; 13 ± 2, 25 ± 3 and 37 ± 4 pmol/mg/s; 0.08 ± 0.02, 0.21 ± 0.03 and 0.36 ± 0.03 mM, respectively) (p < .05). In summary, we report for the first time that Actovegin has a marked effect on mitochondrial oxidative function in human skeletal muscle. Mitochondrial adaptations like this are also seen after a training program in human subjects. Whether this improvement translates into an ergogenic effect in athletes and thus reiterates the need to include Actovegin on the World Anti-Doping Agency's active list remains to be investigated.

  3. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists.

    PubMed

    van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J

    2016-09-01

    V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria.

  4. Origin of the low temperature excess heat capacity of isotopically substituted acetylsalicylic acid

    NASA Astrophysics Data System (ADS)

    Schröder, F.; Winkler, B.; Bauer, J. D.; Haussühl, E.; Rivera Escoto, B.; Tristan López, F.; Avalos Borja, M.; Richter, C.; Ferner, J.

    2011-09-01

    The low temperature heat capacities of single crystals of fully protonated acetylsalicylic acid, measured between 2 K < T < 80 K, have been compared to samples in which the methyl-group was replaced by CD3, CH2D and 13CH3. For the partially methyl-deuterated crystal (CH2D) a significant excess heat capacity was found below T < 40 K with a broad maximum around T ≈ 14 K. The thermodynamic data are explained on the basis of a Schottky model using results obtained in earlier NMR and neutron spectroscopic experiments. In contrast, the excess heat capacity of the fully deuterated compound can be explained by a change of the phonon density of states.

  5. Wound repair and anti-oxidative capacity is regulated by ITGB4 in airway epithelial cells.

    PubMed

    Liu, Chi; Liu, Hui-jun; Xiang, Yang; Tan, Yu-rong; Zhu, Xiao-lin; Qin, Xiao-qun

    2010-08-01

    Integrin beta 4 (ITGB4) is a structural adhesion molecule which engages in maintaining the integrity of airway epithelial cells. Its specific cytomembrane structural feature strongly indicates that ITGB4 may engage in many signaling pathways and physiologic processes. However, in addition to adhesion, the specific biologic significance of ITGB4 in airway epithelial cells is almost unknown. In this article, we investigated the expression and functional properties of ITGB4 in airway epithelial cells in vivo and in vitro. Human bronchial epithelial cell line (16HBE14O-cells) and primary rat tracheal epithelial cells (RTE cells) were used to determine ITGB4 expression under ozone tress or mechanical damage, respectively. An ovalbumin (OVA)-challenged asthma model was used to investigate ITGB4 expression after antigen exposure in vivo. In addition, an ITGB4 overexpression vector and ITGB4 silence virus vector were constructed and transfected into RTE cells. Then, wound repair ability and anti-oxidation capacity was evaluated. Our results demonstrated that, on the edge of mechanically wounded cell areas, ITGB4 expression was increased after mechanical injury. After ozone stress, upregulation expression of ITGB4 was also detected. In the OVA-challenged asthma model, ITGB4 expression was decreased on airway epithelial cells accompanying with structural disruption and damage of anti-oxidation capacity. Besides, our study revealed that upregulation of ITGB4 promotes wound repair ability and anti-oxidative ability, while such abilities were blocked when ITGB4 was silenced. Taken together, these results showed that ITGB4 was a new interesting molecule involved in the regulation of wound repair and anti-oxidation processes for airway epithelial cells.

  6. Biomarkers of oxidative stress and its association with the urinary reducing capacity in bus maintenance workers

    PubMed Central

    2011-01-01

    Background Exposure to particles (PM) induces adverse health effects (cancer, cardiovascular and pulmonary diseases). A key-role in these adverse effects seems to be played by oxidative stress, which is an excess of reactive oxygen species relative to the amount of reducing species (including antioxidants), the first line of defense against reactive oxygen species. The aim of this study was to document the oxidative stress caused by exposure to respirable particles in vivo, and to test whether exposed workers presented changes in their urinary levels for reducing species. Methods Bus depot workers (n = 32) exposed to particles and pollutants (respirable PM4, organic and elemental carbon, particulate metal content, polycyclic aromatic hydrocarbons, NOx, O3) were surveyed over two consecutive days. We collected urine samples before and after each shift, and quantified an oxidative stress biomarker (8-hydroxy-2'-deoxyguanosine), the reducing capacity and a biomarker of PAH exposure (1-hydroxypyrene). We used a linear mixed model to test for associations between the oxidative stress status of the workers and their particle exposure as well as with their urinary level of reducing species. Results Workers were exposed to low levels of respirable PM4 (range 25-71 μg/m3). However, urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly within each shift and between both days for non-smokers. The between-day increase was significantly correlated (p < 0.001) with the concentrations of organic carbon, NOx, and the particulate copper content. The within-shift increase in 8OHdG was highly correlated to an increase of the urinary reducing capacity (Spearman ρ = 0.59, p < 0.0001). Conclusions These findings confirm that exposure to components associated to respirable particulate matter causes a systemic oxidative stress, as measured with the urinary 8OHdG. The strong association observed between urinary 8OHdG with the reducing capacity is suggestive of protective

  7. Chemical treatment of olive pomace: effect on acid-basic properties and metal biosorption capacity.

    PubMed

    Martín-Lara, M A; Pagnanelli, F; Mainelli, S; Calero, M; Toro, L

    2008-08-15

    In this study, olive pomace, an agricultural waste that is very abundant in Mediterranean area, was modified by two chemical treatments in order to improve its biosorption capacity. Potentiometric titrations and IR analyses were used to characterise untreated olive pomace (OP), olive pomace treated by phosphoric acid (PAOP) and treated by hydrogen peroxide (HPOP). Acid-base properties of all investigated biosorbents were characterised by two main kinds of active sites, whose nature and concentration were determined by a mechanistic model assuming continuous distribution for the proton affinity constants. Titration modelling denoted that all investigated biosorbents (OP, PAOP and HPOP) were characterised by the same kinds of active sites (carboxylic and phenolic), but with different total concentrations with PAOP richer than OP and HPOP. Single metal equilibrium studies in batch reactors were carried out to determine the capacity of these sorbents for copper and cadmium ions at constant pH. Experimental data were analysed and compared using the Langmuir isotherm. The order of maximum uptake capacity of copper and cadmium ions on different biosorbents was PAOP>HPOP>OP. The maximum adsorption capacity of copper and cadmium, was obtained as 0.48 and 0.10 mmol/g, respectively, for PAOP. Metal biosorption tests in presence of Na(+) in solution were also carried out in order to evaluate the effect of chemical treatment on biomass selectivity. These data showed that PAOP is more selective for cadmium than the other sorbents, while similar selectivity was observed for copper.

  8. [Effect of L-arginine and the nitric oxide synthase blocker L-NNA on calcium capacity in rat liver mitochondria with differing resistance to hypoxia].

    PubMed

    Kurhaliuk, N M; Ikkert, O V; Vovkanych, L S; Horyn', O V; Hal'kiv, M O; Hordiĭ, S K

    2001-01-01

    The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.

  9. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna.

  10. Free fatty acids enhance the oxidative damage induced by ethanol metabolism in an in vitro model.

    PubMed

    Hernández, Ileana; Domínguez-Pérez, Mayra; Bucio, Leticia; Souza, Verónica; Miranda, Roxana U; Clemens, Dahn L; Gomez-Quiroz, Luis Enrique; Gutiérrez-Ruiz, María Concepción

    2015-02-01

    In recent years, there has been a growing interest to explore the responsiveness to injury in steatotic hepatocyte. VL-17A cells, which express ADH and Cyp2E1 overloaded with free fatty acids (1 mM of oleic and palmitic acid 2:1) showed an increased oxidative damaged after 24 h free fatty acids treatment when exposed to ethanol (100 mM) for 48 h as a second injury. An increment in reactive oxygen species, determined by DCFH-DA, protein oxidation, and apoptosis were observed although an increase in main antioxidant proteins such as superoxide dismutase 1 and glutathione peroxidase were observed, but failed in gamma-glutamylcysteine synthetase, suggesting a decreased capacity of synthesis of glutathione compared with cells treated only with free fatty acids or ethanol. The increased oxidative stress and toxicity in lipid overloaded VL-17A cells subjected to ethanol exposure were accompanied by increases in Cyp2E1 protein expression. Our data show that lipid loaded in an in vitro model, VL-17A cells, is more susceptible to cell damage and oxidative stress when treated with ethanol.

  11. Heterogeneous effects of old age on human muscle oxidative capacity in vivo: a systematic review and meta-analysis.

    PubMed

    Fitzgerald, Liam F; Christie, Anita D; Kent, Jane A

    2016-11-01

    Despite intensive efforts to understand the extent to which skeletal muscle mitochondrial capacity changes in older humans, the answer to this important question remains unclear. To determine what the preponderance of evidence from in vivo studies suggests, we conducted a systematic review and meta-analysis of the effects of age on muscle oxidative capacity as measured noninvasively by magnetic resonance spectroscopy. A secondary aim was to examine potential moderators contributing to differences in results across studies, including muscle group, physical activity status, and sex. Candidate papers were identified from PubMed searches (n = 3561 papers) and the reference lists of relevant papers. Standardized effects (Hedges' g) were calculated for age and each moderator using data from the 22 studies that met the inclusion criteria (n = 28 effects). Effects were coded as positive when older (age, ≥55 years) adults had higher muscle oxidative capacity than younger (age, 20-45 years) adults. The overall effect of age on oxidative capacity was positive (g = 0.171, p < 0.001), indicating modestly greater oxidative capacity in old. Notably, there was significant heterogeneity in this result (Q = 245.8, p < 0.001; I(2) = ∼70%-90%). Muscle group, physical activity, and sex were all significant moderators of oxidative capacity (p ≤ 0.029). This analysis indicates that the current body of literature does not support a de facto decrease of in vivo muscle oxidative capacity in old age. The heterogeneity of study results and identification of significant moderators provide clarity regarding apparent discrepancies in the literature, and indicate the importance of accounting for these variables when examining purported age-related differences in muscle oxidative capacity.

  12. Bile acid binding capacity of fish protein hydrolysates from discard species of the West Mediterranean Sea.

    PubMed

    Pérez-Gálvez, Raúl; García-Moreno, Pedro J; Morales-Medina, Rocío; Guadix, Antonio; Guadix, Emilia M

    2015-04-01

    Fish protein hydrolysates (FPH), produced from the six main discard species from the West Mediterranean Sea (sardine, horse mackerel, axillary seabream, bogue, small-spotted catshark and blue whiting) were tested for their bile acid binding capacity. This capacity is directly linked to the ability to inhibit bile reabsorption in the ileum and therefore to lower cholesterol levels in the bloodstream. From each species, FPH were obtained by three different enzymatic treatments employing two serine endoproteases (subtilisin and trypsin) sequentially or in combination. The results show statistically significant differences among the fish species, attaining interesting average values of bile acid binding capacity for blue whiting (27.32% relative to cholestyramine on an equal protein basis) and horse mackerel (27.42% relative to cholestyramine on an equal protein basis). The enzymatic treatments did not significantly affect the ability of a given species to bind bile acids. These results are similar to other protein sources, such as soy protein or casein, of proven hypocholesterolemic effect. It can be concluded that fish protein hydrolysates from these discard species are suitable as ingredients in the formulation of cholesterol-lowering supplements.

  13. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  14. Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI)

    PubMed Central

    2013-01-01

    Background Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. Results Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10-6 M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. Conclusions Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples. PMID:23363052

  15. Stream chemistry in the eastern United States. 2. Current sources of acidity in acidic and low acid-neutralizing capacity streams

    SciTech Connect

    Herlihy, A.T.; Kaufmann, P.R.; Mitch, M.E. )

    1991-04-01

    The authors examined anion composition in National Stream Survey (NSS) data in order to evaluate the most probably sources of current acidity in acidic and low acid-neutralizing capacity (ANC) streams in the eastern US. Acidic streams that had almost no organic influence (less than 10% of total anions) and sulfate and nitrate concentrations indicative of evaporative concentration of atmospheric deposition were classified as acidic due to acidic deposition. These acidic streams were located in small (<30 km{sup 2}) forested watersheds in the Mid-Atlantic Highlands (an estimated 1,950 km of stream length) and in the Mid-Atlantic Coastal Plain (1,250 km). Acidic streams affected primarily by acidic deposition but also influenced by naturally occurring organic anions accounted for another 1,180 km of acidic stream length, and were located in the New Jersey Pine Barrens, plateau tops in the Mid-Atlantic and Southeast Highlands, and the Florida Panhandle. The total length of streams acidic due to acid mine drainage in the NSS (4,590 km) was about the same as the total length of acidic streams likely affected by acidic deposition (4,380 km). Acidic streams whose acid anion composition was dominated by organics were located in Florida and the Mid-Atlantic Coastal Plain. In Florida, most of the acidic streams were organic dominated, whereas about half of the streams in the Mid-Atlantic Coastal Plain were organic dominated. Organic-dominated acidic streams were not observed in the Mid-Atlantic and Southeast Highlands.

  16. Total oxidant-scavenging capacities of plasma from glycogen storage disease type Ia patients as measured by cyclic voltammetry, FRAP and luminescence techniques.

    PubMed

    Koren, E; Lipkin, J; Klar, A; Hershkovitz, E; Ginsburg, I; Kohen, R

    2009-10-01

    It has been suggested that the very low incidence of atherosclerosis in glycogen storage disease type Ia (GSD Ia) subjects might be attributed to elevated levels of uric acid, one of the potent low molecular- weight antioxidants found in plasma. The present communication describes a use of two analytical methods-cyclic voltammetry and ferric reducing ability of plasma-and also two chemiluminescence methods to evaluate the total oxidant-scavenging capacities (TOSC) of plasma from GSD Ia patients. Our results verified the elevation of TOSC in GSD Ia patients and we propose the inclusion of luminescence and cyclic voltammetry assays as reliable methods for estimating TOSC in a variety of clinical disorders. Our findings with the cyclic voltammetry method add support to the assumption that the elevated uric acid levels might be the main contributor to plasma antioxidant capacity and possible protection against atherosclerosis.

  17. Ethylene oxide does not extinguish the osteoinductive capacity of demineralized bone. A reappraisal in rats.

    PubMed

    Zhang, Q; Cornu, O; Delloye, C

    1997-04-01

    We examined the influence of ethylene oxide (EO) and gamma irradiation on the osteoinductive capacity of demineralized bone. Demineralized bone powder prepared from Wistar rats was exposed to EO (55 degrees C or 40 degrees C) or gamma irradiation (25 KGy) or was preserved in ethanol. Sterilely-prepared bones served as controls. The powder was packed in a gelatin capsule and implanted for 6 weeks in muscles of 6-week-old female rats. Exposure of demineralized bone particles to EO 55 degrees C resulted in an almost complete loss of osteoinductivity. Irradiated bones lost about 40% of their osteoinductive capacity, while sterilization with EO at 40 degrees C resulted in only a slight alteration of the osteoinductivity, as assessed by the recovered weight ratio, calcium content, alkaline phosphatase activity measurements and histomorphometry. Ethanol treatment had no influence on the new bone yield when compared to controls. As EO exposure at 40 degrees C is a true sterilization procedure, it can be recommended in a clinical setting for its small effect on osteoinductive capacity as assessed experimentally in rats.

  18. How Is the Oxidative Capacity of the Cloud Aqueous Phase Modified By Bacteria?

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Mouchel-Vallon, C.; Passananti, M.; Wirgot, N.; Joly, M.; Sancelme, M.; Bianco, A.; Cartier, N.; Brigante, M.; Mailhot, G.; Delort, A. M.; Chaumerliac, N. M.

    2014-12-01

    The aqueous phase photochemical reactions of constituents present in atmospheric water like H2O2, NO3-, NO2- and Fe(III) aqua-complexes or organic complexes can form radicals such as the hydroxyl radical HO within the water drop. However, the literature lacks of data precising the rate of HO formation and the relative contribution of the photochemical sources of HO. The production of radicals in cloud aqueous phase drives the oxidative capacity of the cloud medium and the efficiency of organic matter oxidation. The oxidation of organic compounds is suspected to lead to oxygenated species that could contribute to secondary organic aerosol (SOA) mass (Ervens et al., 2011). In current cloud chemistry models, HO concentrations strongly depend on the organic and iron amount. For high concentrations of organic compounds, this radical is efficiently consumed during the day due to the oxidation process. When iron concentrations are typical from continental cloud, the photolysis of Fe(III) complexes and the Fenton reaction drive the HO concentrations in the cloud models. The concept of biocatalysed reactions contributing to atmospheric chemistry as an alternative route to photochemistry is quite new (Vaïtilingom et al., 2013); it emerged from the recent discovery of metabolically active microorganisms in clouds. Microorganisms are well-known to degrade organic matter but they could also interact with oxidant species such as H2O2 (or their precursors) thanks to their oxidative and nitrosative stress metabolism that will act directly on these species and on their interactions with iron (metalloproteins and siderophores). For the moment, biological impact on radical chemistry within cloud has not been yet considered in cloud chemistry models. Bacterial activity will be introduced as catalysts in a multiphase cloud chemistry model using degradation rates measured in the laboratory. For example, biodegradation rates of the oxidants H2O2 by model bacteria will be tested in the

  19. Corn starch granules with enhanced load-carrying capacity via citric acid treatment.

    PubMed

    Kim, Jong-Yea; Huber, Kerry C

    2013-01-02

    This research investigated conditions by which maize starch granule porosity and load-carrying capacity (LCC) might be enhanced via treatment with varying citric acid concentrations (0.5-1.5 M), temperatures (40-60 °C), and lengths of treatment (1-8 h). At the lowest temperatures (40 and 50 °C), citric acid treatment induced minimal physicochemical changes to granules. In contrast, both aqueous and oil LCCs of starches treated at 60 °C (0.5 M citric acid, 2 h) were almost doubled (15.69 and 14.48 mL/10 g starch, respectively), recovering 92% of the granular starch after treatment. Such treatment increased starch hydration capacity (0.97-1.91) and reduced gelatinization enthalpy (10.6-7.4 J/g). More severe treatment conditions adversely impacted aqueous LCC (due to excessive granule swelling), but improved oil absorption. The basis for LCC enhancement by citric acid treatment was ascribed to leaching of starch material from granules and partial disruption of the granule crystalline structure, as opposed to starch hydrolysis or chemical substitution.

  20. Endothelial cytoprotection from oxidized LDL by some crude Melanesian plant extracts is not related to their antioxidant capacity.

    PubMed

    Owen, Patrick L; Matainaho, Teatulohi; Sirois, Martin; Johns, Timothy

    2007-01-01

    Habitual consumption of some Melanesian medicinal and food plants may influence atherosclerosis development via their antioxidant capacity at the endothelial level. Areca nut (AN; Areca catechu), piper inflorescence (PBI; Piper betle), betel quid (BQ), guava buds (GB; Psidium guajava), the leaves (NL), juice (NJ), fruit (NF), and root (NR) of noni (Morinda citrifolia), the propagules of raw (MBR), and cooked (MBC) mangrove (Bruguiera gymnorrhiza) were evaluated for their ability to scavenge the 1,1-diphenyl-2-picryl-hydrazyle (DPPH) radical, to protect human low-density lipoprotein (LDL) from Cu2+-catalyzed oxidation and to protect cultured bovine aortal endothelial cells (BAEC) from oxidized LDL (oxLDL)-induced cytotoxicity. Polyphenol-rich extracts AN, PBI, and BQ were potent DPPH scavengers, having similar activity to quercetin and able to protect LDL from oxidation in a dose-dependent manner at concentrations higher than 10 microg/mL, but were pro-oxidants at lower concentrations. These extracts were cytotoxic to BAEC at concentrations above 10 microg/mL and were unable to prevent oxLDL endotheliopathy. GB and NR at 10 mug/mL displayed both the ability to delay LDL oxidation and prevent oxLDL cytotoxicity, although the latter lacked the ability to scavenge the DPPH radical. At higher concentrations, however, both were cytotoxic in themselves. The remaining noni extracts NF, NJ, NL, and both mangrove extracts MBC and MBR were unable to protect LDL from oxidation at all tested concentrations, but were effective cytoprotective agents at 50 microg/mL. All extracts were able to prevent an oxLDL-mediated increase in intracellular aldehyde generation but had little effect on extracellular peroxidation as measured by thiobarbituric acid reactive substances (TBARS). On the basis of this model system, we conclude that the antioxidant benefits of AN, PBI, and BQ may be offset by their enhancement of their cytotoxic effects of oxLDL toward BAEC, whereas GB and low

  1. [Investigation on mechanism of pyrite oxidation in acidic solutions].

    PubMed

    Wang, Nan; Yi, Xiao-Yun; Dang, Zhi; Liu, Yun

    2012-11-01

    The mechanism of pyrite oxidation in acidic solutions was investigated by electrochemical analysis methods, such as open-circuit potential, cyclic voltammetry, Tafel polarization curve and anodic polarization curve, using a pyrite-carbon paste electrode as working electrode. The results showed that the oxidation process of pyrite in acidic solutions was via a two-step reaction: the first step was the dissolution of iron moiety and formation of a passivation film composed of elemental sulphur, metal-deficient sulfide and polysulfide; the second step was the further oxidation of these intermediate products to SO4(2-). The final reaction products of pyrite oxidation were Fe3+ and SO4(2-) in acidic solutions. In addition, the open-circuit potential and corrosion potential were positively shifted, the peak current and the corrosion current were increased with the increase in concentration of H2SO4 solutions. This indicated that increased acidity of the system was advantageous to the oxidation of pyrite.

  2. Role of tartaric and malic acids in wine oxidation.

    PubMed

    Danilewicz, John C

    2014-06-04

    Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.

  3. Genomic analysis reveals versatile heterotrophic capacity of a potentially symbiotic sulfur-oxidizing bacterium in sponge.

    PubMed

    Tian, Ren-Mao; Wang, Yong; Bougouffa, Salim; Gao, Zhao-Ming; Cai, Lin; Bajic, Vladimir; Qian, Pei-Yuan

    2014-11-01

    Sulfur-reducing bacteria (SRB) and sulfur-oxidizing bacteria (SOB) play essential roles in marine sponges. However, the detailed characteristics and physiology of the bacteria are largely unknown. Here, we present and analyse the first genome of sponge-associated SOB using a recently developed metagenomic binning strategy. The loss of transposase and virulence-associated genes and the maintenance of the ancient polyphosphate glucokinase gene suggested a stabilized SOB genome that might have coevolved with the ancient host during establishment of their association. Exclusive distribution in sponge, bacterial detoxification for the host (sulfide oxidation) and the enrichment for symbiotic characteristics (genes-encoding ankyrin) in the SOB genome supported the bacterial role as an intercellular symbiont. Despite possessing complete autotrophic sulfur oxidation pathways, the bacterium developed a much more versatile capacity for carbohydrate uptake and metabolism, in comparison with its closest relatives (Thioalkalivibrio) and to other representative autotrophs from the same order (Chromatiales). The ability to perform both autotrophic and heterotrophic metabolism likely results from the unstable supply of reduced sulfur in the sponge and is considered critical for the sponge-SOB consortium. Our study provides insights into SOB of sponge-specific clade with thioautotrophic and versatile heterotrophic metabolism relevant to its roles in the micro-environment of the sponge body.

  4. Fatty Acid Beta-Oxidation Disorders: A Brief Review

    PubMed Central

    Vishwanath, Vijay A.

    2016-01-01

    Background Mitochondrial fatty acid β-oxidation disorders (FAODs) are a heterogeneous group of defects in fatty acid transport and mitochondrial β-oxidation. They are inherited as autosomal recessive disorders and have a wide range of clinical presentations. Summary The background information and case report provide important insight into mitochondrial FAODs. The article provides a wealth of information describing the scope of these disorders. Key Messages This article presents a typical case of medium chain acyl-CoA dehydrogenase deficiency and summarizes the pathophysiology, clinical presentation, diagnosis and treatment of mitochondrial FAODs. PMID:27536022

  5. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  6. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  7. Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation.

    PubMed

    Nassar, Nashaat N; Hassan, Azfar; Pereira-Almao, Pedro

    2011-08-01

    This study investigates the effect of surface acidity and basicity of aluminas on asphaltene adsorption followed by air oxidation. Equilibrium batch adsorption experiments were conducted at 25°C with solutions of asphaltenes in toluene at concentrations ranging from 100 to 3000 g/L using three conventional alumina adsorbents with different surface acidity. Data were found to better fit to the Freundlich isotherm model showing a multilayer adsorption. Results showed that asphaltene adsorption is strongly affected by the surface acidity, and the adsorption capacities of asphaltenes onto the three aluminas followed the order acidic>basic and neutral. Asphaltenes adsorbed over aluminas were subjected to oxidation in air up to 600°C in a thermogravimetric analyzer to study the catalytic effect of aluminas with different surface acidity. A correlation was found between Freundlich affinity constant (1/n) and the catalytic activity. Basic alumina that has the lowest 1/n value, depicting strongest interactions, has the highest catalytic activity, followed by neutral and acidic aluminas, respectively.

  8. Stimulation of fatty acid oxidation by a 3-thia fatty acid reduces triacylglycerol secretion in cultured rat hepatocytes.

    PubMed

    Skrede, S; Bremer, J; Berge, R K; Rustan, A C

    1994-08-01

    The present work shows that when mitochondrial beta-oxidation is stimulated by the hypolipemic, non-beta-oxidizable fatty acid analogue tetradecylthioacetic acid, there is a decrease in the secretion of triacylglycerol in cultured rat hepatocytes. In order to study the effects of tetradecylthioacetic acid in cells with different fatty acid oxidation rates, cells were grown without or with L-carnitine supplement or with addition of the beta-oxidation inhibitor L-aminocarnitine. In cells grown without and with L-carnitine in the medium, the oxidation of [1-14C]oleic acid was stimulated by tetradecylthioacetic acid, whereas it was not significantly changed by palmitic acid. In cells grown with L-aminocarnitine, oxidation of [1-14C]oleic acid was almost abolished both in the absence and in presence of tetradecylthioacetic acid. The effect of tetradecylthioacetic acid and palmitic acid on incorporation of [1-14C]oleic acid into triacylglycerol was similar under all conditions. In the presence of L-carnitine, secretion of oleic acid-labeled triacylglycerol was reduced significantly more by tetradecylthioacetic acid than by palmitic acid. The effects of tetradecylthioacetic acid and palmitic acid on secretion of oleic acid-labeled triacylglycerol were reversed in cells grown with L-aminocarnitine, where palmitic acid was the stronger inhibitor. These results were substantiated by determination of mass of triacylglycerol secreted. It is concluded that tetradecylthioacetic acid reduces secretion of triacylglycerol from rat hepatocytes mainly by acutely stimulating fatty acid oxidation.

  9. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin

    NASA Astrophysics Data System (ADS)

    Geyer, Andreas; Alicke, BjöRn; Konrad, Stephan; Schmitz, Thomas; Stutz, Jochen; Platt, Ulrich

    2001-04-01

    The nitrate radical is in many situations the most important nighttime oxidizing species, removing, for example, hydrocarbons, which would otherwise be available to daytime ozone formation. In spite of its importance in the night and probably also under certain conditions during the day, our understanding of the NO3 chemistry and its impact on the oxidation capacity of the atmosphere is still incomplete. Here we present measurements of NO3 by differential optical absorption spectroscopy (DOAS) and a number of other atmospheric trace gases performed during the Berliner Ozonexperiment (BERLIOZ) campaign at Pabstthum near Berlin, Germany, to quantify the contribution of NO3 to the atmospheric oxidation rate of volatile organic compounds (VOCs) and NOx removal. The measurements show that only two NO3 sinks were of importance: (1) About 50-30% (depending on the distance (0.1-3 km) to a near forest) of the NO3 was lost due to reaction with biogenic hydrocarbons. (2) The major part of the remaining loss probably can be attributed to the indirect loss via the reaction of N2O5 on aerosol surfaces. Assuming that heterogeneous hydrolysis of N2O5 is occurring, the nonphotolytical conversion of NOx to HNO3 via N2O5 was found to be comparable with daytime conversion by the reaction of OH with NO2. In combination with measurements of the OH concentration, it was possible for the first time to derive a relative contribution of 28% (24-hour average) for the NO3-initiated oxidation to the total VOC degradation.

  10. Enhanced exercise and regenerative capacity in a mouse model that violates size constraints of oxidative muscle fibres

    PubMed Central

    Omairi, Saleh; Matsakas, Antonios; Degens, Hans; Kretz, Oliver; Hansson, Kenth-Arne; Solbrå, Andreas Våvang; Bruusgaard, Jo C; Joch, Barbara; Sartori, Roberta; Giallourou, Natasa; Mitchell, Robert; Collins-Hooper, Henry; Foster, Keith; Pasternack, Arja; Ritvos, Olli; Sandri, Marco; Narkar, Vihang; Swann, Jonathan R; Huber, Tobias B; Patel, Ketan

    2016-01-01

    A central tenet of skeletal muscle biology is the existence of an inverse relationship between the oxidative fibre capacity and its size. However, robustness of this relationship is unknown. We show that superimposition of Estrogen-related receptor gamma (Errγ) on the myostatin (Mtn) mouse null background (Mtn-/-/ErrγTg/+) results in hypertrophic muscle with a high oxidative capacity thus violating the inverse relationship between fibre size and oxidative capacity. We also examined the canonical view that oxidative muscle phenotype positively correlate with Satellite cell number, the resident stem cells of skeletal muscle. Surprisingly, hypertrophic fibres from Mtn-/-/ErrγTg/+ mouse showed satellite cell deficit which unexpectedly did not affect muscle regeneration. These observations 1) challenge the concept of a constraint between fibre size and oxidative capacity and 2) indicate the important role of the microcirculation in the regenerative capacity of a muscle even when satellite cell numbers are reduced. DOI: http://dx.doi.org/10.7554/eLife.16940.001 PMID:27494364

  11. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    SciTech Connect

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  12. 180 Ah kg-1 specific capacity positive tubular electrodes for lead acid batteries

    NASA Astrophysics Data System (ADS)

    de Andrade, J.; Impinnisi, P. R.; do Vale, D. L.

    2011-05-01

    Two disadvantages of lead acid batteries are poor power and energy densities and the necessity of relatively long recharging times. In this paper it is presented the results of ongoing work aimed at increasing both the positive active material (PAM) specific capacity and the positive plate charge acceptability. The experimental results show that adequate curing processes can be used to develop an interconnected structure among nanometric PbO2 particles to produce tubular electrodes with specific capacity higher than 180 Ah kg-1 and maintain this value for 130 cycles with deep discharges. These PbO2 positive plates are expected to exhibit higher charge acceptability due to their larger PAM surface area as compared to conventional ones, but the results indicate that the high internal ohmic resistance of the grid/PAM zone limits the fast charge efficiency.

  13. Vitamins, fatty acids, and antioxidant capacity stability during storage of freeze-dried human milk.

    PubMed

    Lozano, Blanca; Castellote, Ana Isabel; Montes, Rosa; López-Sabater, M Carmen

    2014-09-01

    Although freezing is the most common method used to preserve human milk, nutritional and immunological components may be lost during storage. Freeze-drying could increase the shelf life of human milk, while preserving its original characteristics. Seventy-two samples of freeze-dried human milk were stored for different periods of time, up to a maximum of 3 months, at 4 °C or 40 °C. Vitamin C, tocopherols, antioxidant capacity, and fatty acids composition were analyzed. A new HILIC-UHPLC method improving vitamin C determination was also validated. Ascorbic acid and total vitamin C concentrations significantly decreased at both temperatures, while antioxidant capacity only decreased at 40 °C. Fatty acids composition and both γ-tocopherol and δ-tocopherol contents remained unaltered. The stability after storage of freeze-dried milk was higher than that reported for frozen or fresh milk indicating that freeze-drying is a promising option to improve the preservation of human milk in banks.

  14. A novel ultrafine leady oxide prepared from spent lead pastes for application as cathode of lead acid battery

    NASA Astrophysics Data System (ADS)

    Yang, Danni; Liu, Jianwen; Wang, Qin; Yuan, Xiqing; Zhu, Xinfeng; Li, Lei; Zhang, Wei; Hu, Yuchen; Sun, Xiaojuan; Kumar, R. Vasant; Yang, Jiakuan

    2014-07-01

    A novel ultrafine leady oxide has been prepared from a combustion-calcination process of lead citrate precursor (Pb3(C6H5O7)2·3H2O), by hydrometallurgical leaching of spent lead pastes firstly. The leady oxides are used to assemble lead acid battery which are subjected to cyclic voltammetry (CV) and battery testing. Various key properties of the new oxides, such as morphology, crystalline phases, degree of oxidation, apparent density and water and acid absorption value have been characterized by chemical analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that leady oxides synthesized at different calcination temperatures mainly comprise β-PbO, α-PbO and Pb. Unlike traditional leady oxide, the new oxide product prepared at 375 °C has a rod-like morphology with greater porous structure, and appears smaller density, lower value of acid absorption and larger propensity for water absorption. In battery testing, the 20 h rate and 1C rate discharge time have exceeded 26 h and 40 min, respectively. Results reveal that the leady oxide prepared at 375 °C exhibits excellent electrochemical performance and initial capacity as positive active material. While leady oxide obtained at 450 °C presents a relatively improved cycle life. Further work is to optimize the battery manufacturing process for better cycle performance.

  15. Effect of Dietary n − 3 Polyunsaturated Fatty Acids on Oxidant/Antioxidant Status in Macrosomic Offspring of Diabetic Rats

    PubMed Central

    Guermouche, B.; Soulimane-Mokhtari, N. A.; Bouanane, S.; Merzouk, H.; Merzouk, S.; Narce, M.

    2014-01-01

    The aim of this work was to determine the effect of dietary n − 3 PUFA on oxidant/antioxidant status, in vitro very low and low density lipoprotein (VLDL-LDL), and VLDL-LDL-fatty acid composition in macrosomic pups of diabetic mothers. We hypothesized that n − 3 PUFA would improve oxidative stress in macrosomia. Diabetes was induced in female Wistar rats fed with the ISIO diet (control) or with the EPAX diet (enriched in n − 3 PUFAs), by streptozotocin. The macrosomic pups were killed at birth (day 0) and at adulthood (day 90). Lipid parameters and VLDL-LDL-fatty acid composition were investigated. The oxidant/antioxidant status was determined by measuring plasma oxygen radical absorbance capacity (ORAC), hydroperoxides, carbonyl proteins, and VLDL-LDL oxidation. Macrosomic rats of ISIO fed diabetic mothers showed an increase in plasma and VLDL-LDL-triglycerides and VLDL-LDL-cholesterol levels and altered VLDL-LDL-fatty acid composition. Plasma ORAC was low with high hydroperoxide and carbonyl protein levels. The in vitro oxidizability of VLDL-LDL was enhanced in these macrosomic rats. The EPAX diet corrected lipid parameters and improved oxidant/antioxidant status but increased VLDL-LDL susceptibility to oxidation. Macrosomia is associated with lipid abnormalities and oxidative stress. n − 3 PUFA exerts favorable effects on lipid metabolism and on the oxidant/antioxidant status of macrosomic rats. However, there are no evident effects on VLDL-LDL oxidation. PMID:24987679

  16. Influence of transition metal electronegativity on the oxygen storage capacity of perovskite oxides.

    PubMed

    Liu, Lu; Taylor, Daniel D; Rodriguez, Efrain E; Zachariah, Michael R

    2016-08-16

    The selection of highly efficient oxygen carriers (OCs) is a key step necessary for the practical development of chemical looping combustion (CLC). In this study, a series of ABO3 perovskites, where A = La, Ba, Sr, Ca and B = Cr, Mn, Fe, Co, Ni, Cu, are synthesized and tested in a fixed bed reactor for reactivity and stability as OCs with CH4 as the fuel. We find that the electronegativity of the transition metal on the B-site (λB), is a convenient descriptor for oxygen storage capacity (OSC) of our perovskite samples. By plotting OSC for total methane oxidation against λB, we observe an inverted volcano plot relationship. These results could provide useful guidelines for perovskite OC design and their other energy related applications.

  17. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases.

    PubMed

    Catarino, Marcelo D; Alves-Silva, Jorge M; Pereira, Olivia R; Cardoso, Susana M

    2015-01-01

    Flavonoids, a group of secondary metabolites widely distributed in the plant kingdom, have been acknowledged for their interesting medicinal properties. Among them, natural flavones, as well as some of their synthetic derivatives, have been shown to exhibit several biological activities, including antioxidant, anti-inflammatory, antitumor, anti-allergic, neuroprotective, cardioprotective and antimicrobial. The antioxidant properties of flavones allow them to demonstrate potential application as preventive and attenuating agents in oxidative stress, i.e., a biological condition that is closely associated to aging process and several diseases. Some flavones interfere in distinct oxidative-stress related events by directly reducing the levels of intracellular free radicals (hydroxyl, superoxide and nitric oxide) and/or of reactive species (e.g. hydrogen peroxide, peroxynitrite and hypochlorous acid) thus preventing their amplification and the consequent damage of other biomolecules such as lipids, proteins and DNA. Flavones can also hinder the activity of central free radical-producing enzymes, such as xanthine oxidase and nicotinamide adenine dinucleotide phosphate oxidase (NADPH-oxidase) or inducible nitric oxide synthase (iNOS) and can even modulate the intracellular levels of pro-oxidant and/or antioxidant enzymes. The evaluation of flavones antioxidant ability has been extensively determined in chemical or biological in vitro models, but in vivo therapy with individual flavones or with flavones-enriched extracts has also been reported. The present manuscript revises relevant studies focusing the preventive effects of flavones on stress-related diseases, namely the neurological and cardiovascular diseases, and diabetes and its associated complications.

  18. Influence of exercise training on the oxidative capacity of rat abdominal muscles

    NASA Technical Reports Server (NTRS)

    Uribe, J. M.; Stump, C. S.; Tipton, C. M.; Fregosi, R. F.

    1992-01-01

    Our purpose was to determine if endurance exercise training would increase the oxidative capacity of the abdominal expiratory muscles of the rat. Accordingly, 9 male rats were subjected to an endurance training protocol (1 h/day, 6 days/week, 9 weeks) and 9 litter-mates served as controls. Citrate synthase (CS) activity was used as an index of oxidative capacity, and was determined in the following muscles: soleus, plantaris, costal diaphragm, crural diaphragm, and in all four abdominal muscles: rectus abdominis, transversus abdominis, external oblique, and internal oblique. Compared to their non-trained litter-mates, the trained rats had higher peak whole body oxygen consumption rates (+ 16%) and CS activities in plantaris (+34%) and soleus (+36%) muscles. Thus, the training program caused substantial systemic and locomotor muscle adaptations. The CS activity of costal diaphragm was 20% greater in the trained animals, but no difference was observed in crural diaphragm. The CS activity in the abdominal muscles was less than one-half of that in locomotor and diaphragm muscles, and there were no significant changes with training except in the rectus abdominis where a 26% increase was observed. The increase in rectus abdominis CS activity may reflect its role in postural support and/or locomotion, as none of the primary expiratory pumping muscles adapted to the training protocol. The relatively low levels of CS activity in the abdominal muscles suggests that they are not recruited frequently at rest, and the lack of an increase with training indicates that these muscles do not contribute significantly to the increased ventilatory activity accompanying exercise in the rat.

  19. Killer smog of London, 50 years on: particle properties and oxidative capacity.

    PubMed

    Whittaker, Andy; BéruBé, Kelly; Jones, Tim; Maynard, Robert; Richards, Roy

    2004-12-01

    Total suspended particulate (TSP) samples collected on glass fibre filters in London before (1955) and after (1958-1974) the Clean Air Act was examined for physicochemical characteristics and oxidative capacity. High-resolution microscopy identified most of the material as soot with smelter spheres, fly ash (FA), sodium chloride and calcium sulphate particles. Image analysis (IA) was used to show that most of the soot aggregates were less than 1 microm in size and contained chains of individual particles of 10-50 nm. Speed mapping of large agglomerates of the historic particles confirmed that the samples were enriched with soot probably derived from a sulphur-rich coal called nutty slack which was used extensively at this time. Inductively coupled plasma-mass spectrometry (ICP-MS) was used to examine elemental composition. Meaningful quantitation of certain elements (Mg, Al and Zn) proved impossible because they were in high quantities in the glass fibre filters. However, high quantities of Fe>Pb>Cu>Mn>V>As were detected which may explain in part the bioreactivity of the samples. Using a simple in vitro test of oxidative capacity (plasmid assay), one historic particulate sample (1958) showed three times the activity of a modern-day diesel exhaust particle (DEP) sample but ten times less activity than a modern-day urban ambient particle collection. Such studies are continuing to link particle physicochemical properties and bioreactivity with a wider range of the samples collected between 1955 and 74 and how such historic samples compare with present-day London ambient particles.

  20. Holocene Concentrations of Methane in the Atmosphere are in Part Proportional to Concentrations of Sulfur Dioxide and Inversely Proportional to the Oxidizing Capacity of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2008-12-01

    The atmosphere cleans itself by oxidizing pollutants. The primary oxidant is the hydroxyl radical (OH) formed by photodissociation of ozone in the near ultra-violet. Ozone and OH are in limited supply. Sulfur dioxide (SO2) absorbs near ultraviolet light limiting production of OH and reacts immediately with any available OH, forming sulfuric acid. Methane reacts more slowly with OH and will typically not be oxidized until there is little SO2. Thus a high concentration of methane indicates low oxidizing capacity. The rate at which SO2 is injected into the atmosphere controls oxidizing capacity and climate change in four ways: 1. Moderate rate: Large volcanic eruptions (VEI >=6) lower global temperatures for a few years when they are separated by years to decades so the oxidizing capacity of the atmosphere can fully recover. In 1991, Pinatubo volcano in the Philippines erupted 20 Mt SO2 and 491 Mt H2O, the largest volcanic eruption since 1912. The SO2 was oxidized primarily by OH to form a 99% pure aerosol of sulfuric acid and water at an elevation of 20-23 km. This aerosol reflected sunlight, lowering the world's temperature on average 0.4°C for three years. Ozone levels were reduced by 10%. Methane increased by 15 ppb for a year. The e-folding time for SO2 was 35 days. 2. High rate: When large eruptions occur once to several times per year, there is insufficient oxidizing capacity leading to increases in methane and other greenhouse gases and global warming. There were 15 times in the Holocene when large volcanoes erupted on average at least every year for 7 to 21 years. Man is now putting as much SO2 from burning fossil fuels into the atmosphere every year as one large volcano, causing current global warming. The two previous times were from 818-838 AD, the onset of the Medieval Warming Period, and from 180-143 BC, the onset of the Roman Warm Period. 3. Low rate: When there are no large eruptions for decades, the oxidizing capacity can catch up, cleaning the

  1. Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2.

    PubMed

    Stacey, Melissa M; Peskin, Alexander V; Vissers, Margreet C; Winterbourn, Christine C

    2009-11-15

    Peroxiredoxin 2 (Prx2) is an abundant thiol protein that is readily oxidized in erythrocytes exposed to hydrogen peroxide. We investigated its reactivity in human erythrocytes with hypochlorous acid (HOCl) and chloramines, relevant oxidants in inflammation. Prx2 was oxidized to a disulfide-linked dimer by HOCl, glycine chloramine (GlyCl), and monochloramine (NH(2)Cl) in a dose-dependent manner. In the absence of added glucose, Prx2 and GSH showed similar sensitivities. Second-order rate constants for the reactions of Prx2 with NH(2)Cl and GlyCl were 1.5 x 10(4) and 8 M(-1) s(-1), respectively. The NH(2)Cl value is approximately 10 times higher than that for GSH, whereas Prx2 is approximately 30 times less sensitive than GSH to GlyCl. Thus, the relative sensitivity of Prx2 to GlyCl is greater in the erythrocyte. Oxidation of erythrocyte Prx2 and GSH was less in the presence of glucose, probably because of recycling. High doses of NH(2)Cl resulted in incomplete regeneration of reduced Prx2, suggesting impairment of the recycling mechanism. Our results show that, although HOCl and chloramines are less selective than H(2)O(2), they nevertheless oxidize Prx2. Exposure to these inflammatory oxidants will result in Prx2 oxidation and could compromise the erythrocyte's ability to resist damaging oxidative insult.

  2. Origin of voltage decay in high-capacity layered oxide electrodes.

    PubMed

    Sathiya, M; Abakumov, A M; Foix, D; Rousse, G; Ramesha, K; Saubanère, M; Doublet, M L; Vezin, H; Laisa, C P; Prakash, A S; Gonbeau, D; VanTendeloo, G; Tarascon, J-M

    2015-02-01

    Although Li-rich layered oxides (Li1+xNiyCozMn1-x-y-zO2 > 250 mAh g(-1)) are attractive electrode materials providing energy densities more than 15% higher than today's commercial Li-ion cells, they suffer from voltage decay on cycling. To elucidate the origin of this phenomenon, we employ chemical substitution in structurally related Li2RuO3 compounds. Li-rich layered Li2Ru1-yTiyO3 phases with capacities of ~240 mAh g(-1) exhibit the characteristic voltage decay on cycling. A combination of transmission electron microscopy and X-ray photoelectron spectroscopy studies reveals that the migration of cations between metal layers and Li layers is an intrinsic feature of the charge-discharge process that increases the trapping of metal ions in interstitial tetrahedral sites. A correlation between these trapped ions and the voltage decay is established by expanding the study to both Li2Ru1-ySnyO3 and Li2RuO3; the slowest decay occurs for the cations with the largest ionic radii. This effect is robust, and the finding provides insights into new chemistry to be explored for developing high-capacity layered electrodes that evade voltage decay.

  3. Magnetic properties, acid neutralization capacity, and net acid production of rocks in the Animas River Watershed Silverton, Colorado

    USGS Publications Warehouse

    McCafferty, Anne E.; Yager, Douglas B.; Horton, Radley M.; Diehl, Sharon F.

    2006-01-01

    Federal land managers along with local stakeholders in the Upper Animas River watershed near Silverton, Colorado are actively designing and implementing mine waste remediation projects to mitigate the effects of acid mine drainage from several abandoned hard rock metal mines and mills. Local source rocks with high acid neutralization capacity (ANC) within the watershed are of interest to land managers for use in these remediation projects. A suite of representative samples was collected from propylitic to weakly sericitic-altered volcanic and plutonic rocks exposed in outcrops throughout the watershed. Acid-base accounting laboratory methods coupled with mineralogic and geochemical characterization provide insight into lithologies that have a range of ANC and net acid production (NAP). Petrophysical lab determinations of magnetic susceptibility converted to estimates for percent magnetite show correlation with the environmental properties of ANC and NAP for many of the lithologies. A goal of our study is to interpret watershed-scale airborne magnetic data for regional mapping of rocks that have varying degrees of ANC and NAP. Results of our preliminary work are presented here.

  4. Sensitive and reliable ascorbic acid sensing by lanthanum oxide/reduced graphene oxide nanocomposite.

    PubMed

    Mogha, Navin Kumar; Sahu, Vikrant; Sharma, Meenakshi; Sharma, Raj Kishore; Masram, Dhanraj T

    2014-10-01

    A simple strategy for the detection and estimation of ascorbic acid (AA), using lanthanum oxide-reduced graphene oxide nanocomposite (LO/RGO) on indium tin oxide (ITO) substrate, is reported. LO/RGO displays high catalytic activity toward the oxidation of AA, and the synergism between lanthanum oxide and reduced graphene oxide was attributed to the successful and efficient detection. Detection mechanism and sensing efficacy of LO/RGO nanocomposite are investigated by electrochemical techniques. Chronoamperometric results under optimal conditions show a linear response range from 14 to 100 μM for AA detection. Commercially available vitamin C tablets were also analyzed using the proposed LO/RGO sensor, and the remarkable recovery percentage (97.64-99.7) shows the potential application in AA detection.

  5. Azo dye Acid Red 27 decomposition kinetics during ozone oxidation and adsorption processes.

    PubMed

    Beak, Mi H; Ijagbemi, Christianah O; Kim, Dong S

    2009-05-01

    To elucidate the effects of ozone dosage, catalysts, and temperature on azo dye decomposition rate in treatment processes, the decomposition kinetics of Acid Red 27 by ozone was investigated. Acid Red 27 decomposition rate followed the first-order reaction with complete dye discoloration in 20 min of ozone reaction. The dye decay rate increases as ozone dosage increases. Using Mn, Zn and Ni as transition metal catalysts during the ozone oxidation process, Mn displayed the greatest catalytic effect with significant increase in the rate of decomposition. The rate of decomposition decreases with increase in temperature and beyond 40 degrees C, increase in decomposition rate was followed by a corresponding increase in temperature. The FT-IR spectra in the range of 1,000-1,800 cm(-1) revealed specific band variations after the ozone oxidation process, portraying structural changes traceable to cleavage of bonds in the benzene ring, the sulphite salt group, and the C-N located beside the -N = N- bond. From the (1)H-NMR spectra, the breaking down of the benzene ring showed the disappearance of the 10 H peaks at 7-8 ppm, which later emerged with a new peak at 6.16 ppm. In a parallel batch test of azo dye Acid Red 27 adsorption onto activated carbon, a low adsorption capacity was observed in the adsorption test carried out after three minutes of ozone injection while the adsorption process without ozone injection yielded a high adsorption capacity.

  6. Incomplete oxidation of ethylenediaminetetraacetic acid in chemical oxygen demand analysis.

    PubMed

    Anderson, James E; Mueller, Sherry A; Kim, Byung R

    2007-09-01

    Ethylenediaminetetraacetic acid (EDTA) was found to incompletely oxidize in chemical oxygen demand (COD) analysis, leading to incorrect COD values for water samples containing relatively large amounts of EDTA. The degree of oxidation depended on the oxidant used, its concentration, and the length of digestion. The COD concentrations measured using COD vials with a potassium dichromate concentration of 0.10 N (after dilution by sample and sulfuric acid) were near theoretical oxygen demand values. However, COD measured with dichromate concentrations of 0.010 N and 0.0022 N were 30 to 40% lower than theoretical oxygen demand values. Similarly, lower COD values were observed with manganic sulfate as oxidant at 0.011 N. Extended digestion yielded somewhat higher COD values, suggesting incomplete and slower oxidation of EDTA, as a result of lower oxidant concentrations. For wastewater in which EDTA is a large fraction of COD, accurate COD measurement may not be achieved with methods using dichromate concentrations less than 0.1 N.

  7. Nucleic acid oxidation: an early feature of Alzheimer's disease.

    PubMed

    Bradley-Whitman, Melissa A; Timmons, Michael D; Beckett, Tina L; Murphy, Michael P; Lynn, Bert C; Lovell, Mark A

    2014-01-01

    Studies of oxidative damage during the progression of Alzheimer's disease (AD) suggest its central role in disease pathogenesis. To investigate levels of nucleic acid oxidation in both early and late stages of AD, levels of multiple base adducts were quantified in nuclear and mitochondrial DNA from the superior and middle temporal gyri (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of age-matched normal control subjects, subjects with mild cognitive impairment, preclinical AD, late-stage AD, and non-AD neurological disorders (diseased control; DC) using gas chromatography/mass spectrometry. Median levels of multiple DNA adducts in nuclear and mitochondrial DNA were significantly (p ≤ 0.05) elevated in the SMTG, IPL, and CER in multiple stages of AD and in DC subjects. Elevated levels of fapyguanine and fapyadenine in mitochondrial DNA suggest a hypoxic environment early in the progression of AD and in DC subjects. Overall, these data suggest that oxidative damage is an early event not only in the pathogenesis of AD but is also present in neurodegenerative diseases in general. Levels of oxidized nucleic acids in nDNA and mtDNA were found to be significantly elevated in mild cognitive impairment (MCI), preclinical Alzheimer's disease (PCAD), late-stage AD (LAD), and a pooled diseased control group (DC) of frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) subjects compared to normal control (NC) subjects. Nucleic acid oxidation peaked early in disease progression and remained elevated. The study suggests nucleic acid oxidation is a general event in neurodegeneration.

  8. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  9. Zirconium oxide aerogel for effective enrichment of phosphopeptides with high binding capacity.

    PubMed

    Zhang, Liyuan; Xu, Jin; Sun, Liangliang; Ma, Junfeng; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2011-04-01

    In this study, zirconium oxide (ZrO(2)) aerogel was synthesized via a green sol-gel approach, with zirconium oxychloride, instead of the commonly used alkoxide with high toxicity, as the precursor. With such material, phosphopeptides from the digests of 4 pmol of β-casein with the coexistence of 100 times (mol ratio) BSA could be selectively captured, and identified by MALDI-TOF MS. Due to the large surface area (416.0 m(2) g(-1)) and the mesoporous structure (the average pore size of 10.2 nm) of ZrO(2) aerogel, a 20-fold higher loading capacity for phosphopeptide, YKVPQLEIVPN[pS]AEER (MW 1952.12), was obtained compared to that of commercial ZrO(2) microspheres (341.5 vs. 17.87 mg g(-1)). The metal oxide aerogel was further applied in the enrichment of phosphopeptides from 100 ng nonfat milk, and 17 phosphopeptides were positively identified, with a 1.5-fold improvement in phosphopeptide detection compared with previously reported results. These results demonstrate that ZrO(2) aerogel can be a powerful enrichment material for phosphoproteome study.

  10. Chapter A6. Section 6.6. Alkalinity and Acid Neutralizing Capacity

    USGS Publications Warehouse

    Rounds, Stewart A.; Wilde, Franceska D.

    2002-01-01

    Alkalinity (determined on a filtered sample) and Acid Neutralizing Capacity (ANC) (determined on a whole-water sample) are measures of the ability of a water sample to neutralize strong acid. Alkalinity and ANC provide information on the suitability of water for uses such as irrigation, determining the efficiency of wastewater processes, determining the presence of contamination by anthropogenic wastes, and maintaining ecosystem health. In addition, alkalinity is used to gain insights on the chemical evolution of an aqueous system. This section of the National Field Manual (NFM) describes the USGS field protocols for alkalinity/ANC determination using either the inflection-point or Gran function plot methods, including calculation of carbonate species, and provides guidance on equipment selection.

  11. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid.

    PubMed

    Wang, Lingling; Han, Changseok; Nadagouda, Mallikarjuna N; Dionysiou, Dionysios D

    2016-08-05

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2·6H2O functionalization of zeolite 4A. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The synthesized materials were characterized by porosimetry analysis, scanning electron microscopy, X-Ray diffraction analysis, and high resolution transmission electron microscopy. The maximum adsorption capacity of the adsorbents at 21±1°C was about 60mgCg(-1). The results showed that the positive charge density of ZnO-coated zeolite adsorbents was proportional to the amount of ZnO coated on zeolite and thus, ZnO-coated zeolite adsorbents exhibited a greater affinity for negatively charged ions. Furthermore, the adsorption capacity of ZnO-coated zeolite adsorbents increased markedly after acid modification. Adsorption experiments demonstrated ZnO-coated zeolite adsorbents possessed high adsorption capacity to remove HA from aqueous solutions mainly due to strong electrostatic interactions between negative functional groups of HA and the positive charges of ZnO-coated zeolite adsorbents.

  12. Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest.

    PubMed

    Bosutti, Alessandra; Salanova, Michele; Blottner, Dieter; Buehlmeier, Judith; Mulder, Edwin; Rittweger, Jörn; Yap, Moi Hoon; Ganse, Bergita; Degens, Hans

    2016-10-01

    The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO3) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o2 max), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles (P < 0.05), and the fiber oxidative capacity (P < 0.001) and V̇o2 max (P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL (P < 0.001). WP+KHCO3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles (P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO3 appears to attenuate disuse-induced reductions in fiber oxidative capacity.

  13. Evaluation of total oxidative status and total antioxidant capacity in patients with endemic fluorosis.

    PubMed

    Varol, Ercan; Icli, Atilla; Aksoy, Fatih; Bas, Hasan Aydin; Sutcu, Recep; Ersoy, Ismail Hakki; Varol, Simge; Ozaydin, Mehmet

    2013-03-01

    The objective of the present study was to determine the plasma total oxidative status (TOS) and total antioxidant capacity (TAC) in patients with endemic fluorosis. A total of 79 (35 males and 44 females; mean age 44.0 ± 11.9 years) patients with endemic fluorosis and 55 (23 males and 32 females; mean age 48.3 ± 8.5 years) age-, sex- and body mass index-matched healthy controls were included in this study. The urine fluoride levels and plasma TOS and TAC levels were measured. The urine fluoride levels of fluorosis patients were significantly higher than control subjects as expected (1.91 ± 0.15 vs. 0.49 ± 0.13 mg/L, respectively; p < 0.001). TOS was significantly higher in fluorosis group than in control group (17.55 ± 3.82 vs. 15.06 ± 4.31 μmol H(2)O(2) Eq/L, respectively; p = 0.001). TAC was significantly lower in fluorosis group than in control group (1.60 ± 0.36 vs. 1.82 ± 0.51 mmol Trolox Eq/L, respectively; p = 0.004). Oxidative stress index (OSI) was significantly higher in fluorosis group than in control group (11.5 ± 3.8 vs. 8.8 ± 3.7, respectively; p < 0.001). Correlation analysis in all the groups indicated that TAC was negatively correlated with urine fluoride (r = -0.25, p = 0.003), TOS was positively correlated with urine fluoride (r = 0.34, p < 0.001) and OSI was positively correlated with urine fluoride (r = 0.36, p < 0.001). The results of our study demonstrate that oxidative stress plays an important role in the pathogenesis of the endemic fluorosis.

  14. Atmospheric Hydroperoxides in West Antarctica: Links to Stratospheric Ozone and Atmospheric Oxidation Capacity

    NASA Technical Reports Server (NTRS)

    Frey, Markus M.; Stewart, Richard W.; McConnell, Joseph R.; Bales, Roger C.

    2005-01-01

    The troposphere above the West Antarctic Ice Sheet (WAIS) was sampled for hydroperoxides at 21 locations during 2-month-long summer traverses from 2000 to 2002, as part of US ITASE (International Transantarctic Scientific Expedition). First time quantitative measurements using an HPLC method showed that methylhydroperoxide (MHP) is the only important organic hydroperoxide occurring in the Antarctic troposphere, and that it is found at levels ten times those previously predicted by photochemical models. During three field seasons, means and standard deviations for hydrogen peroxide (H2O2) were 321+/-158 pptv, 650+/-176 pptv and 330+/-147 pptv. While MHP was detected, but not quantified in December 2000, levels in summer 2001 and 2002 were 317+128 pptv and 304+/-172.2 pptv. Results from firn air experiments and diurnal variability of the two species showed that atmospheric H2O2 is significantly impacted by a physical snow pack source between 76 and 90degS, whereas MHP is not. We show strong evidence of a positive feedback between stratospheric ozone and H2O2 at the surface. Between November-27 and December-12 in 2001, when ozone column densities dropped below 220 DU (means in 2000 and 2001 were 318 DU and 334 DU, respectively), H2O2 was 1.7 times that observed in the same period in 2000 and 2002, while MHP was only 80% of the levels encountered in 2002. Photochemical box model runs suggest that NO and OH levels on WAIS are closer to coastal values, while Antarctic Plateau levels are higher, confirming that region to be a highly oxidizing environment. The modeled sensitivity of H2O2 and particularly MHP to NO offers the potential to use atmospheric hydroperoxides to constrain the NO background and thus estimate the past oxidation capacity of the remote atmosphere. Index Terms: 0365 Atmospheric Composition and Structure: Troposphere: composition and chemistry; 0322 Atmospheric Composition and Structure: Constituent sources and sinks; 1610 Global Change: Atmosphere (03

  15. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Hooper, A.B.

    1992-07-01

    Suspensions of Nitrosomonas europaea catalyzed the oxidation of the commercial nitrification inhibitor nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine). Rapid oxidation of nitrapyrin (at a concentration of 10 microM) required the concomitant oxidation of ammonia, hydroxylamine, or hydrazine. The turnover rate was highest in the presence of 10 mM ammonia (0.8 nmol of nitrapyrin per min/mg of protein). The product of the reaction was 6-chloropicolinic acid. By the use of (18)O2, it was shown that one of the oxygens in 6-chloropicolinic acid came from diatomic oxygen and that the other came from water. Approximately 13% of the radioactivity of (2,6-(14)C) nitrapyrin was shown to bind to cells. Most (94%) of the latter was bound indiscriminately to membrane proteins. The nitrapyrin bound to membrane proteins may account for the observed inactivation of ammonia oxidation. (Copyright (c) 1992, American Society for Microbiology.)

  16. Pd oxides/hydrous oxides as highly efficient catalyst for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Yao, Shikui; Chang, Jinfa; Liu, Changpeng; Xing, Wei

    2014-03-01

    A novel Pd-based catalyst for formic acid electrooxidation (FAEO) was prepared by annealing commercial Pd/C catalyst under the O2 atmosphere at 100 °C, which exhibits excellent catalytic activity and stability for FAEO due to introduction of Pd oxides/hydrous oxides (POHOs). The catalytic activity of the as-prepared catalyst towards FAEO is 1.86 times of the commercial Pd/C catalyst in 0.5 M H2SO4 + 0.5 M HCOOH solution. Chronoamperometric curves show obvious improvement of the as-prepared catalyst electrocatalytic stability for FAEO. It is confirmed that POHOs can provide the required oxygen species for intermediate CO oxidation during the oxidation process of formic acid.

  17. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  18. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  19. Effect of sulfonylureas on hepatic fatty acid oxidation

    SciTech Connect

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into livers perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.

  20. Effects of exogenous abscisic acid on yield, antioxidant capacities, and phytochemical contents of greenhouse grown lettuces.

    PubMed

    Li, Zheng; Zhao, Xin; Sandhu, Amandeep K; Gu, Liwei

    2010-05-26

    Antioxidants and phytochemicals in vegetables are known to provide health benefits. Strategies that enhance these properties are expected to increase the nutritional values of vegetables. The objective of this research is to assess the effects of exogenous abscisic acid (ABA) on yield, antioxidant capacities, and phytochemical content of lettuces grown in a greenhouse. Red loose leaf lettuce (cv. Galactic) and green loose leaf lettuce (cv. Simpson Elite) were cultivated using a randomized complete block design. Three concentrations of ABA in water [0 (control), 150, 300 ppm] were sprayed on the 30th and 39th days after sowing, and lettuces were harvested on the 46th day. Exogenous ABA significantly decreased yield of green and red lettuces. Total phenolic and total anthocyanin contents in red lettuce treated with ABA were significantly higher than in controls, whereas no significant differences were observed in green lettuce. ABA significantly induced the accumulation of chlorophyll b and total carotenoids in lettuces. The phenolic compounds identified and quantified in red and green lettuces included caffeoyltartaric acid, 5-O-caffeoylquinic acid, dicaffeoyltartaric acid, 3,5-dicaffeoylquinic acid, and quercetin 3-(6''-malonyl)-glucoside. Additionally, cyanidin 3-glucoside, cyanidin 3-(3''-malonoyl)-glucoside, and cyanidin 3-(6''-malonoyl)-glucoside in red lettuces were quantified. No significant effects of ABA on these individual phytochemicals were observed in green lettuces, whereas ABA significantly elevated the content of individual phytochemicals in red lettuces except for 5-O-caffeoylquinic acid. Differences among red lettuces with or without exogenous ABA were visualized on the score plots of principal component analyses. Loading plot indicated that multiple phenolic compounds contributed to the observed differences in red lettuces.

  1. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant.

    PubMed

    Doria, Enrico; Galleschi, Luciano; Calucci, Lucia; Pinzino, Calogero; Pilu, Roberto; Cassani, Elena; Nielsen, Erik

    2009-01-01

    A maize mutant defective in the synthesis of phytic acid during seed maturation was used as a tool to study the consequences of the lack of this important reserve substance on seed survival. Data on germinability, free iron level, free radical relative abundance, protein carbonylation level, damage to DNA, degree of lipid peroxidation, alpha- and gamma-tocopherol amount and antioxidant capacity were recorded on seeds of maize B73 and of an isogenic low phytic acid mutant (lpa1-241), either unaged or incubated for 7 d in accelerated ageing conditions (46 degrees C and 100% relative humidity). The lpa1-241 mutant, compared to wild type (wt), showed a lower germination capacity, which decreased further after accelerated ageing. Whole lpa1-241 mutant kernels contained about 50% more free or weakly bound iron than wt ones and showed a higher content of free radicals, mainly concentrated in embryos; in addition, upon accelerated ageing, lpa1-241 seed proteins were more carbonylated and DNA was more damaged, whereas lipids did not appear to be more peroxidated, but the gamma-tocopherol content was decreased by about 50%. These findings can be interpreted in terms of previously reported but never proven antioxidant activity of phytic acid through iron complexation. Therefore, a novel role in plant seed physiology can be assigned to phytic acid, that is, protection against oxidative stress during the seed's life span. As in maize kernels the greater part of phytic acid (and thus of metal ions) is concentrated in the embryo, its antioxidant action may be of particular relevance in this crop.

  2. Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage.

    PubMed

    Takeuchi, Michiki; Kishino, Shigenobu; Park, Si-Bum; Kitamura, Nahoko; Watanabe, Hiroko; Saika, Azusa; Hibi, Makoto; Yokozeki, Kenzo; Ogawa, Jun

    2016-06-27

    The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

  3. Uric acid protects membranes and linolenic acid from ozone-induced oxidation.

    PubMed

    Meadows, J; Smith, R C; Reeves, J

    1986-05-29

    Aqueous preparations of linolenic acid, bovine serum albumin, and bovine erythrocyte membrane fragments were bubbled with ozone in the presence or absence of uric acid. Ozonation of the membrane fragments or the bovine serum albumin did not result in protein degradation. After 15 min of ozonation, the absorbance of the thiobarbituric acid-reactive material increased by 0.34 in the linolenic acid preparation and by 0.08 in the suspension of membrane fragments. In the presence of uric acid, these changes in absorbance were reduced to 0.14 for the fatty acid and to 0.01 for the membrane fragments. This result indicates that uric acid protects lipids from ozone-induced oxidation.

  4. Oxidation of hypotaurine and cysteine sulphinic acid by peroxynitrite

    PubMed Central

    2005-01-01

    Peroxynitrite mediates the oxidation of the sulphinic group of both HTAU (hypotaurine) and CSA (cysteine sulphinic acid), producing the respective sulphonates, TAU (taurine) and CA (cysteic acid). The reaction is associated with extensive oxygen uptake, suggesting that HTAU and CSA are oxidized by the one-electron transfer mechanism to sulphonyl radicals, which may initiate an oxygen-dependent radical chain reaction with the sulphonates as final products. Besides the one-electron mechanism, HTAU and CSA can be oxidized by the two-electron pathway, leading directly to sulphonate formation without oxygen consumption. The apparent second-order rate constants for the direct reaction of peroxynitrite with HTAU and CSA at pH 7.4 and 25 °C are 77.4±5 and 76.4±9 M−1·s−1 respectively. For both sulphinates, the apparent second-order rate constants increase sharply with decrease in pH, and the sigmoidal curves obtained are consistent with peroxynitrous acid as the species responsible for sulphinate oxidation. The kinetic data, together with changes in oxygen uptake, sulphinate depletion, sulphonate production, and product distribution of nitrite and nitrate, suggest that oxidation of sulphinates by peroxynitrite may take place by the two reaction pathways whose relative importance depends on reagent concentrations and pH value. In the presence of bicarbonate, the direct reaction of sulphinates with peroxynitrite is inhibited and the oxidative reaction probably involves only the radicals •NO2 and CO3•−, generated by decomposition of the peroxynitrite-CO2 adduct. PMID:15740460

  5. The inborn errors of mitochondrial fatty acid oxidation.

    PubMed

    Vianey-Liaud, C; Divry, P; Gregersen, N; Mathieu, M

    1987-01-01

    To date, seven inborn errors of mitochondrial fatty acid oxidation have been identified. A total of about 100 patients in the world have been reported. Clinically the beta-oxidation defects are more often characterized by episodic hypoglycaemia leading to a coma mimicking Reye's syndrome. The hypoglycaemia is non-ketotic since the synthesis of ketone bodies is deficient. Periods of decompensation occur when carbohydrate supply is poor, e.g. prolonged fasting, vomiting, or increased caloric requirements, as and when lipid stores are used. Defects in beta-oxidation have also been reported to be one cause of sudden infant death syndrome. The diagnosis of these inborn errors is by biochemical investigation since where symptoms suggest such a defect, the precise aetiology cannot be assessed. The biochemical diagnosis is based firstly on identification of abnormal plasma and of urinary metabolites during acute attacks. Derivatives of the omega-oxidation and omega-1-oxidation of medium chain fatty acids have been identified, as well as acylglycine and acylcarnitine conjugates. These metabolites are nearly always absent when patients are in good clinical condition. Secondly, the diagnosis must be based on the identification of the enzymatic defects: this involves global assays which allow a localization of the 'level' of the defect (i.e. the oxidation of long, medium or short chain fatty acids) and specific measurement of enzyme activities (acyl-CoA dehydrogenases and electron carriers: ETF and ETF-DH). The diagnosis of these disorders is of prime importance because of the severity of the clinical symptoms. These can be prevented, in some cases, by an appropriate diet (a high carbohydrate, low fat diet, sometimes supplemented with L-carnitine). In other cases, genetic counselling can be offered.

  6. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  7. Alpha-lipoic acid and alpha-lipoamide prevent oxidant-induced lysosomal rupture and apoptosis.

    PubMed

    Persson, H L; Svensson, A I; Brunk, U T

    2001-01-01

    Alpha-lipoic acid (LA) and its corresponding derivative, alpha-lipoamide (LM), have been described as antioxidants, but the mechanisms of their putative antioxidant effects remain largely uncharacterised. The vicinal thiols present in the reduced forms of these compounds suggest that they might possess metal chelating properties. We have shown previously that cell death caused by oxidants may be initiated by lysosomal rupture and that this latter event may involve intralysosomal iron which catalyzes Fenton-type chemistry and resultant peroxidative damage to lysosomal membranes. Here, using cultured J774 cells as a model, we show that both LA and LM stabilize lysosomes against oxidative stress, probably by chelating intralysosomal iron and, consequently, preventing intralysosomal Fenton reactions. In preventing oxidant-mediated apoptosis, LM is significantly more effective than LA, as would be expected from their differing capacities to enter cells and concentrate within the acidic lysosomal compartment. As previously reported, the powerful iron-chelator, desferrioxamine (Des) (which also locates within the lysosomal compartment), also provides protection against oxidant-mediated cell death. Interestingly, although Des enhances the partial protection afforded by LA, it confers no additional protection when added with LM. Therefore, the antioxidant actions of LA and LM may arise from intralysosomal iron chelation, with LM being more effective in this regard.

  8. Losartan reduces oxidative damage to renal DNA and conserves plasma antioxidant capacity in diabetic rats.

    PubMed

    Lodovici, Maura; Bigagli, Elisabetta; Tarantini, Francesca; Di Serio, Claudia; Raimondi, Laura

    2015-11-01

    Increased reactive oxygen species (ROS) levels produced by hyperglycemia and angiotensin-II (AT-II) are considered among the pathogenic factors in the malignant transformation of diabetic renal cells. We aimed to investigate the potential role of AT-II in the increased cancer risk seen in diabetes; measuring oxidative damage to renal DNA and protective antioxidant defenses, including adiponectin (Adp) and plasma antioxidant capacity by the Ferric Reducing Ability of Plasma (FRAP) method. In the kidney of streptozotocin (STZ)-induced (55 mg/kg) diabetic rats either treated or not treated for 3 weeks with losartan, an AT-II type 1 receptor antagonist (20 mg/kg/day); we measured 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) levels, as an index of oxidative DNA damage, circulating Adp and FRAP. Diabetic rats showed significantly higher 8-oxodGuo levels in renal DNA (8.48 ± 0.98 × 10(-6) dG, mean ± SEM n = 11) than normoglycemic ones (1.18 ± 0.04 × 10(-6) dG, mean ± SEM, n=7) and lower plasma Adp and FRAP levels in comparison to normoglycemics. The treatment of diabetic rats with losartan significantly (P < 0.01) reduced 8-oxodGuo levels (5.4 ± 0.58 × 10(-6) dG, mean ± SEM n=9) in renal DNA and conserved FRAP values. Moreover, an inverse correlation was found between 8-oxodGuo in kidney DNA and circulating Adp levels in normoglycemic and diabetic rats. Losartan treatment preserves FRAP levels, reduces DNA oxidative injury and thus the carcinogenesis risk. Furthermore, our results indicate that Adp plasma levels are a further marker of oxidative injury to the kidney and confirm that it is an important part of the plasma antioxidant defense.

  9. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C2–C4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au2C=C=O, along the way to their full oxidation to form CO2. Infrared measurements of Au2C=C=O formation asmore » a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  10. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    NASA Astrophysics Data System (ADS)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  11. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques.

  12. Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Cheng, C. T.; Wilson, K. R.

    2014-12-01

    Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation. We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through

  13. Serum total anti-oxidant capacity of some Nigerian cigarette smokers.

    PubMed

    Onyesom, I; Ighodayenowho, O K; Nwoke, E

    2011-09-01

    Cigarette smoke has been reported to contain free radicals. The interaction of these free radicals with the body defense system and associated health risk among Nigerian smokers have remained scarcely investigated despite the high numbers of smokers in our society. This study thus, investigates the serum total antioxidant capacity of some Nigerian cigarette smokers in apparent good health and who have been smoking between 1.4 sticks of cigarette/day for about 1-3 years. Twenty(20) consenting smokers between 19 and 45 years consisting of fifteen (15) males and 5 females were recruited after examination to certify their apparent good health. Twenty (20) non-smokers, who were matched in age and sex were included as control subjects. Serum total antioxidant capacity (TAC) was observed to be higher in male non-smokers (1.92 +/- 0.2 2mM) when compared with their female counterparts (1.88 +/- 0.16 mM). Among smokers, the males subjects showed a decreased TAC (Male: 1.45 +/- 0.23 mM and female; 1.65 +/- 0.16 mM) with a strong statistical difference between the TAC of smokers and non-smokers (t = 2.095, n = 20 and P < 0.05). Data suggest lower oxidant defense and hence, increased susceptibility to free radical associated diseases especially among the male smokers. Conserted efforts need to be made by governmental agents to enforce legislation that could reduce the rate of smoking. Campaigns should also be initiated to educate the lay public on the dangers of cigarette smoking.

  14. Oxidative capacity of the Mexico City atmosphere - Part 2: A ROx radical cycling perspective

    NASA Astrophysics Data System (ADS)

    Sheehy, P. M.; Volkamer, R.; Molina, L. T.; Molina, M. J.

    2010-07-01

    A box model using measurements from the Mexico City Metropolitan Area study in the spring of 2003 (MCMA-2003) is presented to study oxidative capacity (our ability to predict OH radicals) and ROx (ROx=OH+HO2+RO2+RO) radical cycling in a polluted (i.e., very high NOx=NO+NO2) atmosphere. Model simulations were performed using the Master Chemical Mechanism (MCMv3.1) constrained with 10 min averaged measurements of major radical sources (i.e., HCHO, HONO, O3, CHOCHO, etc.), radical sink precursors (i.e., NO, NO2, SO2, CO, and 102 volatile organic compounds (VOC)), meteorological parameters (temperature, pressure, water vapor concentration, dilution), and photolysis frequencies. Modeled HOx (=OH+HO2) concentrations compare favorably with measured concentrations for most of the day; however, the model under-predicts the concentrations of radicals in the early morning. This "missing reactivity" is highest during peak photochemical activity, and is least visible in a direct comparison of HOx radical concentrations. We conclude that the most likely scenario to reconcile model predictions with observations is the existence of a currently unidentified additional source for RO2 radicals, in combination with an additional sink for HO2 radicals that does not form OH. The true uncertainty due to "missing reactivity" is apparent in parameters like chain length. We present a first attempt to calculate chain length rigorously i.e., we define two parameters that account for atmospheric complexity, and are based on (1) radical initiation, n(OH), and (2) radical termination, ω. We find very high values of n(OH) in the early morning are incompatible with our current understanding of ROx termination routes. We also observe missing reactivity in the rate of ozone production (P(O3)). For example, the integral amount of ozone produced could be under-predicted by a factor of two. We argue that this uncertainty is partly accounted for in lumped chemical codes that are optimized to predict

  15. Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).

    PubMed

    Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm

    2014-12-02

    Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.

  16. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.

  17. Downscaled anodic oxidation process for aluminium in oxalic acid

    NASA Astrophysics Data System (ADS)

    Sieber, M.; Morgenstern, R.; Kuhn, D.; Hackert-Oschätzchen, M.; Schubert, A.; Lampke, T.

    2017-03-01

    The increasing multi-functionality of parts and assemblies in several fields of engineering demands, amongst others, highly functionalised surfaces. For the different applications, on the one hand, there is a need to scale up surface modification processes originating in the nano- and micro-scale. On the other hand, conventional macro-scale surface refinement methods offer a huge potential for application in the said nano- and micro-scale. The anodic oxidation process, which is established especially for aluminium and its alloys, allows the formation of oxide ceramic layers on the surface. The build-up of an oxide ceramic coating comes along with altered chemical, tribological and electrical surface properties. As a basis for further investigations regarding the use of the anodic oxidation process for micro-scale-manufacturing, the scale effects of oxalic acid anodising on commercially pure aluminium as well as on the AlZn5.5MgCu alloy are addressed in the present work. The focus is on the amount of oxide formed during a potentiostatic process in relation to the exchanged amount of charge. Further, the hardness of the coating as an integral measure to assess the porous oxide structure is approached by nano-indentation technique.

  18. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  19. Oxidized fatty acids as inter-kingdom signaling molecules.

    PubMed

    Pohl, Carolina H; Kock, Johan L F

    2014-01-20

    Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to "listen" and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; between animals and fungi; between animals and bacteria and between plants and fungi. This will aid in understanding these interactions, which often have implications in ecology, agriculture as well as human and animal health.

  20. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    PubMed Central

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-01-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry. PMID:26286479

  1. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water

    NASA Astrophysics Data System (ADS)

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P.; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-01

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  2. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water.

    PubMed

    Li, Yu Hang; Liu, Peng Fei; Pan, Lin Feng; Wang, Hai Feng; Yang, Zhen Zhong; Zheng, Li Rong; Hu, P; Zhao, Hui Jun; Gu, Lin; Yang, Hua Gui

    2015-08-19

    Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.

  3. Pecans acutely increase plasma postprandial antioxidant capacity and catechins and decrease LDL oxidation in humans.

    PubMed

    Hudthagosol, Chatrapa; Haddad, Ella Hasso; McCarthy, Katie; Wang, Piwen; Oda, Keiji; Sabaté, Joan

    2011-01-01

    Bioactive constituents of pecan nuts such as γ-tocopherol and flavan-3-ol monomers show antioxidant properties in vitro, but bioavailability in humans is not known. We examined postprandial changes in plasma oxygen radical absorbance capacity (ORAC) and in concentrations of tocopherols, catechins, oxidized LDL, and malondialdehyde (MDA) in response to pecan test meals. Sixteen healthy men and women (23-44 y, BMI 22.7 ± 3.4) were randomly assigned to 3 sequences of test meals composed of whole pecans, blended pecans, or an isocaloric meal of equivalent macronutrient composition but formulated of refined ingredients in a crossover design with a 1-wk washout period between treatments. Blood was sampled at baseline and at intervals up to 24 h postingestion. Following the whole and blended pecan test meals, plasma concentrations of γ-tocopherols doubled at 8 h (P < 0.001) and hydrophilic- and lipophilic-ORAC increased 12 and 10% at 2 h, respectively. Post whole pecan consumption, oxidized LDL decreased 30, 33, and 26% at 2, 3, and 8 h, respectively (P < 0.05), and epigallocatechin-3-gallate concentrations at 1 h (mean ± SEM; 95.1 ± 30.6 nmol/L) and 2 h (116.3 ± 80.5 nmol/L) were higher than at baseline (0 h) and after the control test meal at 1 h (P < 0.05). The postprandial molar ratio of MDA:triglycerides decreased by 37, 36, and 40% at 3, 5, and 8 h, respectively (P < 0.05), only when whole and blended pecan data were pooled. These results show that bioactive constituent of pecans are absorbable and contribute to postprandial antioxidant defenses.

  4. Stemflow Acid Neutralization Capacity in a Broadleaved Deciduous Forest: The Role of Edge Effects

    NASA Astrophysics Data System (ADS)

    Levia, D. F., Jr.; Shiklomanov, A.

    2014-12-01

    The fragmentation of forests is occurring at an accelerated rate in parts of the United States. Forest fragmentation creates edge habitat that affects the biogeochemistry of forests. Atmospheric deposition is known to increase at the forest edge in comparison to the forest interior. Past research has demonstrated the critical role of edge effects on throughfall chemistry but no known work has examined the relationship between stemflow chemistry and edge effects. To fill this data gap, we quantified the stemflow acid neutralization capacity (ANC) of nineteen Liriodendron tulipifera L. (yellow poplar) trees between forest edge and interior locations in the Piedmont of the mid-Atlantic USA. ANC was measured directly by potentiometric titration. Both stemflow pH and ANC were higher for L. tulipifera trees on the forest edge as opposed to those in interior locations (p < 0.01), although marked variability was observed among individual trees. It is critical to note that the ANC of stemflow of edge trees is almost certainly contextual, depending on geographic locality. This is to say that stemflow from edge trees may neutralize acid inputs in some locations (as in our case) but lead to enhanced acidification of aqueous inputs to forest soils in other locales where the dry deposition of acid anions is high. The experimental results have ramifications for forest management schema seeking to increase or decrease the extent of edge habitat in forest fragments.

  5. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes[S

    PubMed Central

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M. Luisa; Ribot, Joan; Landrier, Jean-François

    2015-01-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells. PMID:25914170

  6. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes.

    PubMed

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M Luisa; Ribot, Joan; Landrier, Jean-François

    2015-06-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.

  7. Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite.

    PubMed

    Kyzas, George Z; Bikiaris, Dimitrios N; Seredych, Mykola; Bandosz, Teresa J; Deliyanni, Eleni A

    2014-01-01

    A novel graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite (GO/CSA) was prepared and used as biosorbent for the removal of pharmaceutical compound (dorzolamide) from biomedical synthetic wastewaters. The performance was evaluated taking into account pH, kinetics and thermodynamics of adsorption. GO/CSA presented higher adsorption capacity in comparison with the parent materials (graphite oxide and poly(acrylic acid) grafted chitosan). All adsorbents prepared were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and potentiometric titration. The surface features were also evaluated after the dorzolamide adsorption in order to derive the adsorption mechanism. It was suggested that the reactive groups of GO and CSA can interact with the amino groups of dorzolamide and mainly the abundance of carboxyl groups of GO/CSA composite was the main reason for its enhanced adsorption capacity.

  8. Research on the fiber reflecting sensor for detecting the residual capacity of the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Zhao, Mingfu; Zhong, Nianbing; Chen, Yan; Luo, Yuwei

    2006-11-01

    According to the Lambert-Bee law, we can see that the photic absorption coefficient is related to the matter's concentration, the distance of the light through the absorption medium and the transmitted light intensity. The paper just according to the physical phenomena and the theory make the reflex energy relate to the concentration testing of the electrolyte, at the same time the electrolyte's concentration is related to the capacity of lead-acid battery on a corresponding function relation, so we can know the capacity state of the lead-acid battery according to the measurement on the electrolyte's concentration. According to the experiment and research the author deeply discussed how the temperature change affects the capacity of lead-acid battery and the concentration's changing relation, according to the analyses of the thermo-optic effect, we made a new reflecting fiber sensor based on the comparative temperature testing theory and absorption which can eliminate the temperature effect on the tested signal namely the output signal just related to the concentration, so really reflects the change of the capacity of the lead-acid battery when it is in the charge and discharge process. The results of the experiment and theory analyses show that this method is easy to realize the online testing of the capacity of lead-acid battery. This sensor has many merits such as precise measurement, sensitive reaction, long-life use etc. It can be widely used in the electric capacity testing of the automobile lead-acid battery, the electric capacity testing of the industry lead-acid battery, liquor's concentration testing and salinity testing of the sea and have a bright future.

  9. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  10. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  11. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  12. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  13. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  14. Determination of the degree of oxidation in highly-oxidised lipids using profile changes of fatty acids.

    PubMed

    Kim, Tae Soo; Yeo, JuDong; Kim, Ji Young; Kim, Mi-Ja; Lee, JaeHwan

    2013-06-01

    The degree of highly oxidised lipids was determined by a modified method using profile changes of fatty acids in lard and soybean oil heated at 180°C. The usefulness of the modified method was compared through conjugated dienoic acid (CDA) and/or p-anisidine value (p-AV) methods. Absolute values, which were expressed as equivalent to an internal standard (C11:0), of both unsaturated fatty acids (UFAs) and saturated fatty acids (SFAs) decreased significantly during thermal oxidation (p<0.05) while relative percentage of SFA increased and those of UFA decreased significantly (p<0.05). The content of caprylic acid (C8:0) increased significantly (p<0.05) as thermal oxidation time increased. The ratio of total saturated over total unsaturated fatty acids (SFAs/UFAs) or caprylic acid (C8:0) over UFAs could be useful markers to determine the degree of oxidation. Antioxidant capacity of sesamol, a free radical scavenger, was determined using the ratio of fatty acids. The modified method can be applied to determine the quality control of fried foods containing highly oxidised and abused oils, which may not be measured correctly using CDA and p-AV.

  15. Effect of sulfite treatment on total antioxidant capacity, total oxidant status, lipid hydroperoxide, and total free sulfydryl groups contents in normal and sulfite oxidase-deficient rat plasma.

    PubMed

    Herken, Emine Nur; Kocamaz, Erdogan; Erel, Ozcan; Celik, Hakim; Kucukatay, Vural

    2009-08-01

    Sulfites, which are commonly used as preservatives, are continuously formed in the body during the metabolism of sulfur-containing amino acids. Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfite to sulfate protecting cells from sulfite toxicity. This article investigated the effect of sulfite on total antioxidant capacity (TAC), total oxidant status, lipid hydroperoxide (LOOH), and total free sulfydryl groups (-SH) levels in normal and SOX-deficient male albino rat plasma. For this purpose, rats were divided into four groups: control, sulfite-treated, SOX-deficient, and sulfite-treated SOX-deficient groups. SOX deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten. Sulfite (70 mg/kg) was administered to the animals via their drinking water. SOX deficiency together with sulfite treatment caused a significant increase in the plasma LOOH and total oxidant status levels. -SH content of rat plasma significantly decreased by both sulfite treatment and SOX deficiency compared to the control. There was also a significant decrease in plasma TAC level by sulfite treatment. In conclusion, sulfite treatment affects the antioxidant/oxidant balance of the plasma cells of the rats toward oxidants in SOX-deficient groups.

  16. Expression of the human isoform of glutamate dehydrogenase, hGDH2, augments TCA cycle capacity and oxidative metabolism of glutamate during glucose deprivation in astrocytes.

    PubMed

    Nissen, Jakob D; Lykke, Kasper; Bryk, Jaroslaw; Stridh, Malin H; Zaganas, Ioannis; Skytt, Dorte M; Schousboe, Arne; Bak, Lasse K; Enard, Wolfgang; Pääbo, Svante; Waagepetersen, Helle S

    2017-03-01

    A key enzyme in brain glutamate homeostasis is glutamate dehydrogenase (GDH) which links carbohydrate and amino acid metabolism mediating glutamate degradation to CO2 and expanding tricarboxylic acid (TCA) cycle capacity with intermediates, i.e. anaplerosis. Humans express two GDH isoforms, GDH1 and 2, whereas most other mammals express only GDH1. hGDH1 is widely expressed in human brain while hGDH2 is confined to astrocytes. The two isoforms display different enzymatic properties and the nature of these supports that hGDH2 expression in astrocytes potentially increases glutamate oxidation and supports the TCA cycle during energy-demanding processes such as high intensity glutamatergic signaling. However, little is known about how expression of hGDH2 affects the handling of glutamate and TCA cycle metabolism in astrocytes. Therefore, we cultured astrocytes from cerebral cortical tissue of hGDH2-expressing transgenic mice. We measured glutamate uptake and metabolism using [(3) H]glutamate, while the effect on metabolic pathways of glutamate and glucose was evaluated by use of (13) C and (14) C substrates and analysis by mass spectrometry and determination of radioactively labeled metabolites including CO2 , respectively. We conclude that hGDH2 expression increases capacity for uptake and oxidative metabolism of glutamate, particularly during increased workload and aglycemia. Additionally, hGDH2 expression increased utilization of branched-chain amino acids (BCAA) during aglycemia and caused a general decrease in oxidative glucose metabolism. We speculate, that expression of hGDH2 allows astrocytes to spare glucose and utilize BCAAs during substrate shortages. These findings support the proposed role of hGDH2 in astrocytes as an important fail-safe during situations of intense glutamatergic activity. GLIA 2017;65:474-488.

  17. Sulfuric acid intercalated graphite oxide for graphene preparation.

    PubMed

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-06

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  18. Ceramides and mitochondrial fatty acid oxidation in obesity.

    PubMed

    Fucho, Raquel; Casals, Núria; Serra, Dolors; Herrero, Laura

    2017-04-01

    Obesity is an epidemic, complex disease that is characterized by increased glucose, lipids, and low-grade inflammation in the circulation, among other factors. It creates the perfect scenario for the production of ceramide, the building block of the sphingolipid family of lipids, which is involved in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, obesity causes a decrease in fatty acid oxidation (FAO), which contributes to lipid accumulation within the cells, conferring more susceptibility to cell dysfunction. C16:0 ceramide, a specific ceramide species, has been identified recently as the principal mediator of obesity-derived insulin resistance, impaired fatty acid oxidation, and hepatic steatosis. In this review, we have sought to cover the importance of the ceramide species and their metabolism, the main ceramide signaling pathways in obesity, and the link between C16:0 ceramide, FAO, and obesity.-Fucho, R., Casals, N., Serra, D., Herrero, L. Ceramides and mitochondrial fatty acid oxidation in obesity.

  19. Ruthenium oxide modified nickel electrode for ascorbic acid detection.

    PubMed

    Lee, Yuan-Gee; Liao, Bo-Xuan; Weng, Yu-Ching

    2017-04-01

    Electrodes of ruthenium oxide modified nickel were prepared by a thermal decomposition method. The stoichiometry of the modifier, RuOx, was quantitatively determined to be a meta-stable phase, RuO5. The electrodes were employed to sense ascorbic acid in alkaline solution with a high sensitivity, 296 μAcm(-2) mM(-1), and good selectivity for eight kinds of disturbing reagents. We found that the ascorbic acid was oxidized irreversibly in solution. To match with the variation of the morphology, the sensitivity reached a maximum when the RuOx segregated with a nano-crystalline feature. We find that the substrate oxidized as the deposited RuOx grew thicker. The feature of the deposited RuOx changed from nano-particles to small islands resulting from the wetting effect of the substrate oxide, NiO; meanwhile the sensitivity decreased dramatically. The endurance of the RuOx/Ni electrode also showed a good performance after 38 days of successive test.

  20. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.

    PubMed

    Pérez-Torrado, Roberto; Gómez-Pastor, Rocío; Larsson, Christer; Matallana, Emilia

    2009-01-01

    Induction of the oxidative stress response has been described under many physiological conditions in Saccharomyces cerevisiae, including industrial fermentation for wine yeast biomass production where cells are grown through several batch and fed-batch cultures on molasses. Here, we investigate the influence of aeration on the expression changes of different gene markers for oxidative stress and compare the induction profiles to the accumulation of several intracellular metabolites in order to correlate the molecular response to physiological and metabolic changes. We also demonstrate that this specific oxidative response is relevant for wine yeast performance by construction of a genetically engineered wine yeast strain overexpressing the TRX2 gene that codifies a thioredoxin, one of the most important cellular defenses against oxidative damage. This modified strain displays an improved fermentative capacity and lower levels of oxidative cellular damages than its parental strain after dry biomass production.

  1. Effects of soybean isoflavone on intestinal antioxidant capacity and cytokines in young piglets fed oxidized fish oil*

    PubMed Central

    Huang, Lin; Ma, Xian-yong; Jiang, Zong-yong; Hu, You-jun; Zheng, Chun-tian; Yang, Xue-fen; Wang, Li; Gao, Kai-guo

    2016-01-01

    To investigate the effect of glycitein, a synthetic soybean isoflavone (ISF), on the intestinal antioxidant capacity, morphology, and cytokine content in young piglets fed oxidized fish oil, 72 4-d-old male piglets were assigned to three treatments. The control group was fed a basal diet containing fresh fish oil, and the other two groups received the same diet except for the substitution with the same dosage of oxidized fish oil alone or with ISF (oxidized fish oil plus ISF). After 21 d of feeding, supplementation of oxidized fish oil increased the levels of malondialdehyde (MDA), oxidized glutathione (GSSG), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), nuclear factor κ B (NF-κB), inducible nitric oxide synthase (iNOS), NO, and Caspase-3 in jejunal mucosa, and decreased the villous height in duodenum and the levels of secretory immunoglobulin A (sIgA) and IL-4 in the jejunal mucosa compared with supplementation with fresh oil. The addition of oxidized fish oil plus ISF partially alleviated this negative effect. The addition of oxidized fish oil plus ISF increased the villous height and levels of sIgA and IL-4 in jejunal mucosa, but decreased the levels of IL-1β and IL-2 in jejunal mucosa (P<0.05) compared with oxidized fish oil. Collectively, these results show that dietary supplementation of ISF could partly alleviate the negative effect of oxidized fish oil by improving the intestinal morphology as well as the antioxidant capacity and immune function in young piglets. PMID:27921401

  2. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment

    PubMed Central

    Elkashef, Sara M.; Allison, Simon J.; Sadiq, Maria; Basheer, Haneen A.; Ribeiro Morais, Goreti; Loadman, Paul M.; Pors, Klaus; Falconer, Robert A.

    2016-01-01

    Polysialic acid (polySia) is a unique carbohydrate polymer expressed on the surface of NCAM (neuronal cell adhesion molecule) in a number of cancers where it modulates cell-cell and cell-matrix adhesion, migration, invasion and metastasis and is strongly associated with poor clinical prognosis. We have carried out the first investigation into the effect of polySia expression on the behaviour of cancer cells in hypoxia, a key source of chemoresistance in tumours. The role of polysialylation and associated tumour cell migration and cell adhesion were studied in hypoxia, along with effects on cell survival and the potential role of HIF-1. Our findings provide the first evidence that polySia expression sustains migratory capacity and is associated with tumour cell survival in hypoxia. Initial mechanistic studies indicate a potential role for HIF-1 in sustaining polySia-mediated migratory capacity, but not cell survival. These data add to the growing body of evidence pointing to a crucial role for the polysialyltransferases (polySTs) in neuroendocrine tumour progression and provide the first evidence to suggest that polySia is associated with an aggressive phenotype in tumour hypoxia. These results have significant potential implications for polyST inhibition as an anti-metastatic therapeutic strategy and for targeting hypoxic cancer cells. PMID:27611649

  3. Isolation and characterization of lactic acid bacteria strains with ornithine producing capacity from natural sea salt.

    PubMed

    Yu, Jin-Ju; Oh, Suk-Heung

    2010-08-01

    Two lactic acid bacteria (LAB) having ornithine-producing capacity were isolated from Korean natural sea salt. They were Gram-positive, short rod-type bacteria, and able to grow anaerobically with CO(2) production. The isolates grew well on MRS broth at 30-37 degrees C and a pH of 6.5-8.0. The optimum temperature and pH for growth are 37 degrees C and pH 7.0. The isolates fermented D-ribose, D-galactose, D-lactose, D-maltose, Dcellobiose, D-tagatose, D-trehalose, sucrose, D-melezitose, gentiobiose, D-glucose but not D-melibiose, inositol, and L-sorbose. The 16S rDNA sequences of the two isolates showed 99.5% and 99.6% homology with the Weissella koreensis S5623 16S rDNA (Access no. AY035891). They were accordingly identified and named as Weissella koreensis MS1-3 and Weissella koreensis MS1-14, and produced intracellular ornithine at levels of 72 mg/100 g cell F.W. and 105 mg/100 g cell F.W. and extracellular ornithine at levels of 4.5 mg/100 ml and 4.6 mg/100 ml medium, respectively, by culturing in MRS broth supplemented with 1% arginine. High cell growth was maintained in MRS broth with a NaCl concentration of 0-6%. These results show for the first time that Korean natural sea salts contain lactic acid bacteria Weissella koreensis strains having ornithine producing capacity.

  4. Modulation of antioxidant and detoxifying capacity in fish Cyprinus carpio (Cyprinidae) after treatment with nanocapsules containing lipoic acid.

    PubMed

    Longaray-Garcia, Márcia; Flores, Juliana Artigas; Külkamp-Guerreiro, Irene Clemes; Guterres, Sílvia Stanisçuaski; Pereira, Talita Carneiro Brandão; Bogo, Maurício Reis; Monserrat, José Maria

    2013-08-01

    Lipoic acid (LA) is a water- and lipid-soluble molecule with capacity to pass through cell membranes and with several antioxidant properties. Previous studies have shown that polymeric nanocapsules with LA favor the protection of this antioxidant, increasing their physical and chemical stability compared to formulations containing free LA. The aim of this study was to evaluate and compare the effect of free LA and LA-nanocapsules on antioxidant enzymes, the concentration of reduced glutathione (GSH) and a by-product of lipid peroxidation (malondialdehyde), as well as the expression of gene coding for different forms of glutathione-S-transferase (GST) in model fish. For this, carp Cyprinus carpio (Cyprinidae) were exposed (i.p.) to different forms of LA (free and in nanocapsules) for different times (48h, 96h and 1week) and the brain, liver and muscle were analyzed. Results indicated that the organs respond differently depending on the time and form in which LA was delivered. After 96h and 1week, a better antioxidant response was found generally in the formulation with nanocapsules. The nanocapsule composition showed to be a factor to be considered in future studies, because in some organs and exposure times empty nanocapsules promoted an antioxidant effect and in others a pro-oxidant effect.

  5. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    PubMed

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins.

  6. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  7. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  8. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  9. Ferrate(VI) oxidation of weak-acid dissociable cyanides

    SciTech Connect

    Ria A. Yngard; Virender K. Sharma; Jan Filip; Radek Zboril

    2008-04-15

    Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate, were studied as a function of pH (9.1-10.5) and temperature (15-45{sup o}C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, and the rate-laws for the oxidation may be -d(Fe(VI))/dt = k (Fe(VI))(M(CN){sub 4}{sup 2-}){sup n} where n = 0.5 and 1 for Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO{sub 4}{sup -}. The stoichiometries with Fe(VI) were determined to be: 4HFeO{sub 4}{sup -} + M(CN){sub 4}{sup 2-} + 6H{sub 2}O {yields} 4Fe(OH){sub 3} + M{sup 2+} + 4NCO{sup -} + O{sub 2} + 4OH{sup -}. Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. 27 refs., 3 figs., 2 tabs.

  10. Dietary Probiotic Bacillus subtilis Strain fmbj Increases Antioxidant Capacity and Oxidative Stability of Chicken Breast Meat during Storage

    PubMed Central

    Bai, Wen Kai; Zhang, Fei Jing; He, Tian Jin; Su, Peng Wei; Ying, Xiong Zhi; Zhang, Li Li; Wang, Tian

    2016-01-01

    This study was aimed to measure the dietary effects of probiotic Bacillus subtilis strain fmbj (BS fmbj) on antioxidant capacity and oxidative stability of chicken breast meat during storage. Treatment groups were fed the basal diet with BS fmbj at 0 g/kg (CON), 0.2 g/kg (BS-1), 0.3 g/kg (BS-2), or 0.4 g/kg (BS-3) doses without antibiotics. During 8 days of storage at 4°C, BS-2 group showed a significant improvement (P < 0.05) on meat quality (pH, Drip loss, Cooking loss, Shear force, color L*, a*, b*), free radical scavenging activity (DPPH, ABTS+, H2O2), tissues antioxidant enzyme capacity (SOD, CAT, GSH-Px, GSH, T-SH), mitochondria antioxidant enzyme capacity (MnSOD, GPx, GSH), mRNA expression of antioxidant genes (Nrf2, HO-1, SOD, CAT, GSH-Px) and mitochondrial function genes (avUCP, NRF1, NRF2, TFAM, PGC-1α), oxidative damage index (MDA, ROS, PC, 8-OHdG), and MMP level in chicken breast meat as compared to the CON group. These results indicate that dietary BS fmbj in broiler diets can protect breast meat against the storage-induced oxidative stress by improving their free radical scavenging capacity and antioxidant activity during 8 days of storage at 4°C. PMID:27907152

  11. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  12. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production.

  13. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  14. Lower oxidative DNA damage despite greater ROS production in muscles from rats selectively bred for high running capacity.

    PubMed

    Tweedie, Constance; Romestaing, Caroline; Burelle, Yan; Safdar, Adeel; Tarnopolsky, Mark A; Seadon, Scott; Britton, Steven L; Koch, Lauren G; Hepple, Russell T

    2011-03-01

    Artificial selection in rat has yielded high-capacity runners (HCR) and low-capacity runners (LCR) that differ in intrinsic (untrained) aerobic exercise ability and metabolic disease risk. To gain insight into how oxygen metabolism may have been affected by selection, we compared mitochondrial function, oxidative DNA damage (8-dihydroxy-guanosine; 8dOHG), and antioxidant enzyme activities in soleus muscle (Sol) and gastrocnemius muscle (Gas) of adult and aged LCR vs. HCR rats. In Sol of adult HCR rats, maximal ADP-stimulated respiration was 37% greater, whereas in Gas of adult HCR rats, there was a 23% greater complex IV-driven respiratory capacity and 54% greater leak as a fraction of electron transport capacity (suggesting looser mitochondrial coupling) vs. LCR rats. H(2)O(2) emission per gram of muscle was 24-26% greater for both muscles in adult HCR rats vs. LCR, although H(2)O(2) emission in Gas was 17% lower in HCR, after normalizing for citrate synthase activity (marker of mitochondrial content). Despite greater H(2)O(2) emission, 8dOHG levels were 62-78% lower in HCR rats due to 62-96% higher superoxide dismutase activity in both muscles and 47% higher catalase activity in Sol muscle in adult HCR rats, with no evidence for higher 8 oxoguanine glycosylase (OGG1; DNA repair enzyme) protein expression. We conclude that genetic segregation for high running capacity has generated a molecular network of cellular adaptations, facilitating a superior response to oxidative stress.

  15. Kinematic variables and blood Acid-base status in the analysis of collegiate swimmers' anaerobic capacity.

    PubMed

    Bielec, G; Makar, P; Laskowski, R; Olek, R A

    2013-09-01

    Short duration repeated maximal efforts are often used in swimming training to improve lactate tolerance, which gives swimmers the ability to maintain a high work rate for a longer period of time. The aim of the study was to examine the kinematics of swimming and its relation to the changes in blood acid-base status and potassium level. Seven collegiate swimmers, with at least 6 years of training experience, volunteered to participate in the study. The test consisted of 8 x 25 m front crawl performed with maximum effort. The rest period between repetitions was set to five seconds. Blood samples were taken from the fingertip at rest, after warm-up and in the 3rd minute after completion of the test. The swimming was recorded with a video recorder, for later analysis of time, velocity and technique (stroke index). Based on the swimming velocity results, the obtained curve can be divided into rapid decrease of velocity and relatively stable velocities. The breaking point of repetition in swimming velocity was assumed as the swimming velocity threshold and it was highly correlated with the decrease of the blood acid-base status (pH r=0.82, BE r=0.87, HCO3 (-) r=0.76; p<0.05 in all cases). There was no correlation between stroke index or fatigue index and blood acid-base status. Analysis of the swimming speed in the 8 x 25 m test seems to be helpful in evaluation of lactate tolerance (anaerobic capacity) in collegiate swimmers.

  16. Kolaviron and L-Ascorbic Acid Attenuate Chlorambucil-Induced Testicular Oxidative Stress in Rats

    PubMed Central

    2014-01-01

    Chlorambucil (4-[4-[bis(2-chloroethyl)amino]phenyl]butanoic acid) is an alkylating agent, indicated in chronic lymphocytic leukaemia. Kolaviron (KV), a biflavonoid complex from Garcinia kola, and L-ascorbic acid (AA) are known to protect against oxidative damage in vivo. This study evaluates the protective capacity of KV and AA on chlorambucil-induced oxidative stress in the testes of rat. Twenty male Wistar rats (180–200 g) were randomized into four groups: I: control, II: chlorambucil (0.2 mg/kg b.w.), III: 0.2 mg/kg chlorambucil and 100 mg/kg KV, and IV: 0.2 mg/kg chlorambucil and 100 mg/kg AA. After 14 days of treatments, results indicated that chlorambucil caused significant reduction (P < 0.05) in testicular vitamin C and glutathione by 32% and 39%, respectively, relative to control. Similarly, activities of testicular GST, SOD, and CAT reduced significantly by 48%, 47%, and 49%, respectively, in chlorambucil-treated rats relative to control. Testicular MDA and activities of ALP, LDH, and ACP were increased significantly by 53%, 51%, 64%, and 70%, respectively, in the chlorambucil-treated rat. However, cotreatment with KV and AA offered protection and restored the levels of vitamin C, GSH, and MDA as well as SOD, CAT, GST, ACP, ALP, and LDH activities. Overall, kolaviron and L-ascorbic acid protected against chlorambucil-induced damage in the testes of the rat. PMID:25309592

  17. Fluorine-Doped Tin Oxide Nanocrystal/Reduced Graphene Oxide Composites as Lithium Ion Battery Anode Material with High Capacity and Cycling Stability.

    PubMed

    Xu, Haiping; Shi, Liyi; Wang, Zhuyi; Liu, Jia; Zhu, Jiefang; Zhao, Yin; Zhang, Meihong; Yuan, Shuai

    2015-12-16

    Tin oxide (SnO2) is a kind of anode material with high theoretical capacity. However, the volume expansion and fast capability fading during cycling have prevented its practical application in lithium ion batteries. Herein, we report that the nanocomposite of fluorine-doped tin oxide (FTO) and reduced graphene oxide (RGO) is an ideal anode material with high capacity, high rate capability, and high stability. The FTO conductive nanocrystals were successfully anchored on RGO nanosheets from an FTO nanocrystals colloid and RGO suspension by hydrothermal treatment. As the anode material, the FTO/RGO composite showed high structural stability during the lithiation and delithiation processes. The conductive FTO nanocrystals favor the formation of stable and thin solid electrolyte interface films. Significantly, the FTO/RGO composite retains a discharge capacity as high as 1439 mAhg(-1) after 200 cycles at a current density of 100 mAg(-1). Moreover, its rate capacity displays 1148 mAhg(-1) at a current density of 1000 mAg(-1).

  18. Nrf2-Mediated HO-1 Induction Coupled with the ERK Signaling Pathway Contributes to Indirect Antioxidant Capacity of Caffeic Acid Phenethyl Ester in HepG2 Cells

    PubMed Central

    Kim, Jin-Kyoung; Jang, Hae-Dong

    2014-01-01

    The objective of this study is to investigate the contributing effect of the nuclear transcription factor-erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway on the indirect antioxidant capacity of caffeic acid phenethyl ester (CAPE) against oxidative stress in HepG2 cells. The result of an antioxidant response element (ARE)-luciferase assay showed that CAPE stimulated ARE promoter activity resulting in increased transcriptional and translational activities of heme oxygenase-1 (HO-1). In addition, CAPE treatment enhanced Nrf2 accumulation in the nucleus and the post-translational phosphorylation level of extracellular signal-regulated kinase (ERK) among several protein kinases tested. Treatment with ERK inhibitor U126 completely suppressed CAPE-induced ERK phosphorylation and HO-1 expression, but it only partly inhibited CAPE-induced Nrf2 accumulation and ARE promoter. Using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) method, the cellular antioxidant capacity of CAPE against 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH)- or H2O2-induced oxidative stress also was shown to be partially suppressed by the ERK inhibitor. From the overall results it is proposed that the indirect antioxidant activity of CAPE against oxidative stress in HepG2 cells is partially attributed to induction of HO-1, which is regulated by Kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-independent Nrf2 activation relying on post-translational phosphorylation of ERK. PMID:25007817

  19. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    PubMed

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.

  20. Stable Strontium Isotopic Fractionation During Sorption onto Magnetic Nano-Humid Acid Coated Iron Oxide Particles

    NASA Astrophysics Data System (ADS)

    Liu, H.-C.; You, C.-F.; Tu, Y.-J.

    2012-04-01

    The mobility of strontium (Sr) through hydrological systems is critically governed by sorption reactions of solid phases such as iron oxides and clay minerals. Inorganic precipitated and bacteriogenic iron oxides are widespread in marine and fresh systems fed by iron-rich supplies, which may impact the global Sr cycle. A series of laboratory batch experiments of Sr sorption onto humid acid coated magnetic nano iron oxides using high purity in-house standard were performed in this study and aimed for gaining a better understanding of mechanisms controlling Sr mobility. The results indicate that Sr sorption is a function of pH, 100 % Sr remains unbounded at pH <4 and more than 85 % absorbed at pH >8. Temperature controlled experiments in the range of 5 - 35 degrees C indicate a positive relationship between sorption capacity and temperature. Measurements of stable Sr isotopes (δ88Sr and δ87Sr) in batch experiments show that lighter isotopes reacted preferentially with iron oxides, and a negligible pH effect on isotopic fractionation. To calculate the degree of the kinetic isotope effect, Rayleigh fractionation model is applied to evaluate the isotope fractionation factor, α is 0.99985 at pH 8.17 (equals to Δ88Sr ~ 0.15 ‰). Temperature exerts only minor isotopic fractionation effect and reveals more importance at lower temperatures. This new finding provides crucial information for a detail evaluation of sorption processes in natural environments.

  1. Oxidatively Modified Nucleic Acids in Preclinical Alzheimer’s Disease (PCAD) Brain

    PubMed Central

    Lovell, Mark A.; Soman, Sony; Bradley, Melissa A.

    2011-01-01

    Previous studies show increased oxidative DNA and RNA damage and diminished 8-oxoguanine glycosylase (OGG1) mediated base excision repair in vulnerable brain regions of mild cognitive impairment and late-stage Alzheimer’s disease (LAD) subjects compared to normal control (NC) subjects. Recently, a preclinical stage of AD (PCAD) has been described in which subjects show no overt clinical manifestations of AD but demonstrate significant AD pathology at autopsy. To determine if DNA or RNA oxidation are significantly elevated in PCAD brain we quantified 8-OHG in sections of hippocampus/parahippocamapal gyri in PCAD and NC subjects using immunohistochemistry and confocal microscopy and in superior and middle temporal gyri (SMTG) using gas chromatography/mass spectrometry. To determine if increased DNA oxidation is associated with altered repair capacity, levels of OGG1 protein in HPG were measured by immunohistochemistry and levels of OGG1 mRNA were measured in SMTG using quantitative PCR. Results show significantly increased (p < 0.05) 8-OHG immunostaining in DNA and RNA of PCAD HPG and significantly increased 8-OHG in PCAD SMTG. Quantification of OGG1 showed significantly elevated mRNA in PCAD SMTG and a trend toward elevated immunostaining in PCAD HPG. Overall, the data suggest oxidative damage to nucleic acids and a compensatory increase in OGG1 expression occur early in the pathogenesis of AD. PMID:21878349

  2. Neural Stem Cells in the Adult Subventricular Zone Oxidize Fatty Acids to Produce Energy and Support Neurogenic Activity.

    PubMed

    Stoll, Elizabeth A; Makin, Rebecca; Sweet, Ian R; Trevelyan, Andrew J; Miwa, Satomi; Horner, Philip J; Turnbull, Douglass M

    2015-07-01

    Neural activity is tightly coupled to energy consumption, particularly sugars such as glucose. However, we find that, unlike mature neurons and astrocytes, neural stem/progenitor cells (NSPCs) do not require glucose to sustain aerobic respiration. NSPCs within the adult subventricular zone (SVZ) express enzymes required for fatty acid oxidation and show sustained increases in oxygen consumption upon treatment with a polyunsaturated fatty acid. NSPCs also demonstrate sustained decreases in oxygen consumption upon treatment with etomoxir, an inhibitor of fatty acid oxidation. In addition, etomoxir decreases the proliferation of SVZ NSPCs without affecting cellular survival. Finally, higher levels of neurogenesis can be achieved in aged mice by ectopically expressing proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), a factor that increases cellular aerobic capacity by promoting mitochondrial biogenesis and metabolic gene transcription. Regulation of metabolic fuel availability could prove a powerful tool in promoting or limiting cellular proliferation in the central nervous system. Stem Cells 2015;33:2306-2319.

  3. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  4. Short-duration intermittent hypoxia enhances endurance capacity by improving muscle fatty acid metabolism in mice.

    PubMed

    Suzuki, Junichi

    2016-04-01

    This study was designed to (1) investigate the effects of acute short-duration intermittent hypoxia on musclemRNAand microRNAexpression levels; and (2) clarify the mechanisms by which short-duration intermittent hypoxia improves endurance capacity. Experiment-1: Male mice were subjected to either acute 1-h hypoxia (12% O2), acute short-duration intermittent hypoxia (12% O2for 15 min, room air for 10 min, 4 times, Int-Hypo), or acute endurance exercise (Ex). The expression of vascular endothelial growth factor-AmRNAwas significantly greater than the control at 0 h post Ex and 6 h post Int-Hypo in the deep red region of the gastrocnemius muscle. miR-16 expression levels were significantly lower at 6 and 10 h post Int-Hypo. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)mRNAlevels were significantly greater than the control at 3 h post Ex and 6 h post Int-Hypo. miR-23a expression levels were lower than the control at 6-24 h post Int-Hypo. Experiment-2: Mice were subjected to normoxic exercise training with or without intermittent hypoxia for 3 weeks. Increases in maximal exercise capacity were significantly greater by training with short-duration intermittent hypoxia (IntTr) than without hypoxia. Both 3-Hydroxyacyl-CoA-dehydrogenase and total carnitine palmitoyl transferase activities were significantly enhanced in IntTr. Peroxisome proliferator-activated receptor delta andPGC-1α mRNAlevels were both significantly greater in IntTr than in the sedentary controls. These results suggest that exercise training under normoxic conditions with exposure to short-duration intermittent hypoxia represents a beneficial strategy for increasing endurance performance by enhancing fatty acid metabolism in skeletal muscle.

  5. The relationship of nitric oxide synthesis capacity, oxidative stress, and albumin-to-creatinine ratio in black and white men: the SABPA study.

    PubMed

    Mels, Catharina M C; Huisman, Hugo W; Smith, Wayne; Schutte, Rudolph; Schwedhelm, Edzard; Atzler, Dorothee; Böger, Rainer H; Ware, Lisa J; Schutte, Aletta E

    2016-02-01

    Inadequate substrate availability and increased nitric oxide synthase inhibitor levels attenuate nitric oxide (NO) synthesis, whereas increased vascular oxidative stress may lead to inactivation of NO. We compared markers of NO synthesis capacity and oxidative stress in a bi-ethnic male population. Inter-relationships of ambulatory blood pressure and urinary albumin-to-creatinine ratio with NO synthesis capacity and oxidative stress markers were investigated. NO synthesis capacity markers (L-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA)) and oxidative stress markers (serum peroxides, total glutathione, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), and catalase) were measured. Black men displayed higher blood pressure and albumin-to-creatinine ratio (all p < 0.001), while NO synthesis capacity was more favorable (higher L-arginine and lower ADMA (p ≤ 0.003)). Antioxidant enzyme activities were similar except for the redox status markers (GR activity and GR/GPx ratio), which were upregulated in black men (p < 0.001). In black men, ADMA was inversely related to GPx activity (R (2) = 0.15; β = -0.20; p = 0.050) and GPx/SOD ratio (R (2) = 0.24; β = -0.37; p < 0.001), but none of these markers related to blood pressure or albumin-to-creatinine ratio. In white men, albumin-to-creatinine ratio was positively associated with ADMA (R (2) = 0.18; β = 0.39; p < 0.001) while ADMA was inversely related to GR activity (R (2) = 0.26; β = -0.29; p = 0.002) and GR/GPx ratio (R (2) = 0.25; β = -0.28; p = 0.003). Black men with elevated blood pressure and albumin-to-creatinine ratio displayed a favorable NO synthesis capacity. This may be counteracted by increased inactivation of NO, although it was not linked to vascular or renal phenotypes. In white men, reduced NO synthesis capacity may lower NO bio-availability, thereby influencing the albumin

  6. Oxidation of cumene in an aprotic medium in the presence of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Smirnova, O. V.; Efimova, I. V.; Opeida, I. A.

    2015-06-01

    The process of the initiated oxidation of cumene (IPB) with oxygen under homophase conditions in the presence of ascorbic acid (AA) used over a wide range of concentrations is studied. It is shown that in this system, ascorbic acid is consumed in two ways: the auto-oxidation and the inhibition of the oxidation of cumene. The amount of ascorbic acid that participates in inhibiting the oxidation of cumene falls from 28.5 to 16.6% with a rise in the concentration of ascorbic acid in the range of 0.003-0.3 mol/L. The contribution from the rate of the oxidation of ascorbic acid to the total rate of the oxidation of the IPB-AA-DMSO-AIBN system grows from 67.2 to 92.5% with a rise in the concentration of ascorbic acid in the range of 0.01-0.3 mol/L. It is established that the most effective inhibition of the oxidation of cumene with ascorbic acid in aprotic media occurs at concentrations of ascorbic acid of up to 0.01 mol/L. A scheme for the initiated radical-chain oxidation of cumene with ascorbic acid in the aprotic medium that considers the inhibition of the oxidation of cumene with ascorbic acid and the auto-oxidation of ascorbic acid is proposed.

  7. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease

    PubMed Central

    Nsiah-Sefaa, Abena; McKenzie, Matthew

    2016-01-01

    Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis. PMID:26839416

  8. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  9. Influence of Amino Acid Compositions and Peptide Profiles on Antioxidant Capacities of Two Protein Hydrolysates from Skipjack Tuna (Katsuwonus pelamis) Dark Muscle

    PubMed Central

    Chi, Chang-Feng; Hu, Fa-Yuan; Wang, Bin; Li, Zhong-Rui; Luo, Hong-Yu

    2015-01-01

    Influence of amino acid compositions and peptide profiles on antioxidant capacities of two protein hydrolysates from skipjack tuna (Katsuwonus pelamis) dark muscle was investigated. Dark muscles from skipjack tuna were hydrolyzed using five separate proteases, including pepsin, trypsin, Neutrase, papain and Alcalase. Two hydrolysates, ATH and NTH, prepared using Alcalase and Neutrase, respectively, showed the strongest antioxidant capacities and were further fractionated using ultrafiltration and gel filtration chromatography. Two fractions, Fr.A3 and Fr.B2, isolated from ATH and NTH, respectively, showed strong radical scavenging activities toward 2,2-diphenyl-1-picrylhydrazyl radicals (EC50 1.08% ± 0.08% and 0.98% ± 0.07%), hydroxyl radicals (EC50 0.22% ± 0.03% and 0.48% ± 0.05%), and superoxide anion radicals (EC50 1.31% ± 0.11% and 1.56% ± 1.03%) and effectively inhibited lipid peroxidation. Eighteen peptides from Fr.A3 and 13 peptides from Fr.B2 were isolated by reversed-phase high performance liquid chromatography, and their amino acid sequences were determined. The elevated antioxidant activity of Fr.A3 might be due to its high content of hydrophobic and aromatic amino acid residues (181.1 and 469.9 residues/1000 residues, respectively), small molecular sizes (3–6 peptides), low molecular weights (524.78 kDa), and amino acid sequences (antioxidant score 6.11). This study confirmed that a smaller molecular size, the presence of hydrophobic and aromatic amino acid residues, and the amino acid sequences were the key factors that determined the antioxidant activities of the proteins, hydrolysates and peptides. The results also demonstrated that the derived hydrolysates and fractions from skipjack tuna (K. pelamis) dark muscles could prevent oxidative reactions and might be useful for food preservation and medicinal purposes. PMID:25923316

  10. Tracking the oxidative kinetics of carbohydrates, amino acids and fatty acids in the house sparrow using exhaled 13CO2.

    PubMed

    McCue, M D; Sivan, O; McWilliams, S R; Pinshow, B

    2010-03-01

    Clinicians commonly measure the (13)CO(2) in exhaled breath samples following administration of a metabolic tracer (breath testing) to diagnose certain infections and metabolic disorders. We believe that breath testing can become a powerful tool to investigate novel questions about the influence of ecological and physiological factors on the oxidative fates of exogenous nutrients. Here we examined several predictions regarding the oxidative kinetics of specific carbohydrates, amino acids and fatty acids in a dietary generalist, the house sparrow (Passer domesticus). After administering postprandial birds with 20 mg of one of seven (13)C-labeled tracers, we measured rates of (13)CO(2) production every 15 min over 2 h. We found that sparrows oxidized exogenous amino acids far more rapidly than carbohydrates or fatty acids, and that different tracers belonging to the same class of physiological fuels had unique oxidative kinetics. Glycine had a mean maximum rate of oxidation (2021 nmol min(-1)) that was significantly higher than that of leucine (351 nmol min(-1)), supporting our prediction that nonessential amino acids are oxidized more rapidly than essential amino acids. Exogenous glucose and fructose were oxidized to a similar extent (5.9% of dose), but the time required to reach maximum rates of oxidation was longer for fructose. The maximum rates of oxidation were significantly higher when exogenous glucose was administered as an aqueous solution (122 nmol min(-1)), rather than as an oil suspension (93 nmol min(-1)), supporting our prediction that exogenous lipids negatively influence rates of exogenous glucose oxidation. Dietary fatty acids had the lowest maximum rates of oxidation (2-6 nmol min(-1)), and differed significantly in the extent to which each was oxidized, with 0.73%, 0.63% and 0.21% of palmitic, oleic and stearic acid tracers oxidized, respectively.

  11. Evaluation of oxidant-antioxidant balance and total antioxidant capacity of serum in children with urinary tract infection

    PubMed Central

    Soleimani, Gholamreza; Sadeghi-Bojd, Simin; Teimouri, Alireza; Nakhaee, Alireza; Sheikhhosseini, Alireza

    2016-01-01

    Background: Urinary tract infection (UTI) is the most common bacterial infections in children. This studyaimed to investigate the oxidative and antioxidate status of plasma in patients with UTI and to compare them with those of the controls. Methods: This case–control study of 50–75 children in the given order was performed in 2013 at the Pediatric Clinic of infections in Zahedan Hospital of Ali Ibn Abi Talib. The antioxidative status of plasma were evaluated by measuring the total antioxidant capacity (TAC) The oxidative status of samples was assessed by measuring the total peroxide and the oxidative stress index (OSI) levels. The means of the parameters were compared and the relationship among them was determined. Data were analyzed using SPSS 20 (IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 20.0. Armonk, NY: IBM Corp). Student's t-test and Mann–Whitney U-test were applied in various situations of our questions; 95% confidence interval was considered for the level of significance. Results: The results showed that total oxidant serum status in UTI patients was higher compared to controls when total antioxidant serum was lower. The balance of oxidant-antioxidant serum was in favor of oxidant serum and this term was confirmed by OSI. Conclusion: Our results showed that the plasma levels of TAC in patients with UTI were decreased compared to controls, and oxidant-antioxidant balance and OSI caused increased OS in patients. PMID:27226686

  12. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  13. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  14. Investigation of Metal Oxide/Carbon Nano Material as Anode for High Capacity Lithium-ion Cells

    NASA Technical Reports Server (NTRS)

    Wu, James Jianjun; Hong, Haiping

    2014-01-01

    NASA is developing high specific energy and high specific capacity lithium-ion battery (LIB) technology for future NASA missions. Current state-of-art LIBs have issues in terms of safety and thermal stability, and are reaching limits in specific energy capability based on the electrochemical materials selected. For example, the graphite anode has a limited capability to store Li since the theoretical capacity of graphite is 372 mAh/g. To achieve higher specific capacity and energy density, and to improve safety for current LIBs, alternative advanced anode, cathode, and electrolyte materials are pursued under the NASA Advanced Space Power System Project. In this study, the nanostructed metal oxide, such as Fe2O3 on carbon nanotubes (CNT) composite as an LIB anode has been investigated.

  15. An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity.

    PubMed

    He, Yongqiang; Liu, Yue; Wu, Tao; Ma, Junkui; Wang, Xingrui; Gong, Qiaojuan; Kong, Weina; Xing, Fubao; Liu, Yu; Gao, Jianping

    2013-09-15

    Three kinds of graphene oxide (GO) foams were fabricated using different freezing methods (unidirectional freezing drying (UDF), non-directional freezing drying, and air freezing drying), and the corresponding reduced graphene oxide (RGO) foams were prepared by their thermal reduction of those GO foams. These RGO foams were characterized by Fourier transform infrared spectroscopy, thermal gravimetric analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The absorption process and the factors that influence the absorption capacity were investigated. The RGO foams are hydrophobic and showed extremely high absorbing abilities for organic liquids. The absorption capacity of the RGO foams made by UDF was higher than 100 g g(-1) for all the oils tested (gasoline, diesel oil, pump oil, lubricating oil and olive oil) and had the highest value of about 122 g g(-1) for olive oil. The oil absorption capacity of the GO foams was lower than that of the RGO foams, but for olive oil, the absorption capacity was still high than 70 g g(-1), which is higher than that of most oil absorbents.

  16. Dietary Zinc Oxide Modulates Antioxidant Capacity, Small Intestine Development, and Jejunal Gene Expression in Weaned Piglets.

    PubMed

    Zhu, Cui; Lv, Hang; Chen, Zhuang; Wang, Li; Wu, Xiuju; Chen, Zhongjian; Zhang, Weina; Liang, Rui; Jiang, Zongyong

    2017-02-01

    The current study was conducted to investigate the effects of dietary zinc oxide (ZnO) on the antioxidant capacity, small intestine development, and jejunal gene expression in weaned piglets. Ninety-six 21-day-old piglets were randomly assigned to three dietary treatments. Each treatment had eight replicates with four piglets per replicate. The piglets were fed either control diet (control) or control diet supplemented with in-feed antibiotics (300 mg/kg chlortetracycline and 60 mg/kg colistin sulfate) or pharmacological doses of ZnO (3000 mg/kg). The experiment lasted 4 weeks. Blood samples were collected at days 14 and 28, while intestinal samples were harvested at day 28 of the experiment. Dietary high doses of ZnO supplementation significantly increased the body weight (BW) at day 14 and average daily gain (ADG) of days 1 to 14 in weaned piglets, when compared to control group (P < 0.05). The incidence of diarrhea of piglets fed ZnO-supplemented diets, at either days 1 to 14, days 14 to 28, or the overall experimental period, was significantly decreased in comparison with those in other groups (P < 0.05). Supplementation with ZnO increased the villus height of the duodenum and ileum in weaned piglets and decreased the crypt depth of the duodenum, when compared to the other groups (P < 0.05). Dietary ZnO supplementation decreased the malondialdehyde (MDA) concentration at either day 14 or day 28, but increased total superoxide dismutase (T-SOD) at day 14, when compared to that in the control (P < 0.05). ZnO supplementation upregulated the messenger RNA (mRNA) expression of zonula occludens-1 (ZO-1) and occludin in the jejunum mucosa of weaned piglets, compared to those in the control (P < 0.05). The pro-inflammatory cytokine interleukin-lβ (IL-1β) mRNA expression in the jejunum mucosa was downregulated in the ZnO-supplemented group, compared with the control (P < 0.05). Both in-feed antibiotics and ZnO supplementation decreased the m

  17. Effects of oleic acid-induced lung injury on oxygen transport and aerobic capacity.

    PubMed

    Crocker, George H; Jones, James H

    2014-06-01

    We tested the hypothesis that oleic-acid (OA) infusion impairs gas exchange, decreases total cardiopulmonary O2 delivery and lowers maximal aerobic capacity ( [Formula: see text] ). We infused 0.05ml OAkg(-1) (∼3ml) and ∼563ml saline into the right atria of four goats [59.1±14.0 (SD) kg] prior to running them on a treadmill at [Formula: see text] 2-h and 1-d following OA-induced acute lung injury, and with no lung injury. Acute lung injury decreased [Formula: see text] , O2 delivery, arterial O2 concentration and arterial O2 partial pressure compared to no lung injury. The [Formula: see text] positively correlated with O2 delivery and inversely correlated with alveolar-arterial O2 partial pressure difference, suggesting that impaired pulmonary gas exchange decreased O2 delivery and uptake. Results indicate OA infusion may be a useful model for acutely impairing pulmonary gas exchange for exercise studies. Seven OA infusions induced smaller chronic gas exchange and arterial O2 partial pressure changes than acute infusion.

  18. Techno-functional properties and in vitro bile acid-binding capacities of tamarillo (Solanum betaceum Cav.) hydrocolloids.

    PubMed

    Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah

    2016-04-01

    Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders.

  19. Omega-3 fatty acids control productions of superoxide and nitrogen oxide and insulin content in INS-1E cells.

    PubMed

    Graciano, M F; Leonelli, M; Curi, R; R Carpinelli, A

    2016-12-01

    Omega-3 fatty acids have multiple effects in peripheral tissues and pancreatic beta cell function. Dietary depletion of omega-3 fatty acids is associated with pancreatic islet dysfunction and insulin resistance in rats. Herein, the effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on pancreatic beta cell redox state and function were investigated. INS-1E insulin-secreting cells were incubated with EPA and DHA in combination with palmitic acid, and productions of reactive oxygen species (ROS), nitric oxide (NO) and insulin were measured. The involvement of the NADPH oxidase complex in ROS production and expression of the antioxidant enzymes was also investigated. After incubation for 1 or 48 h, productions of superoxide (by hydroethidine method), nitric oxide (by 4,5-diaminofluorescein diacetate-DAF-2DA assay), insulin (by radioimmunoassay), and expressions (by western blot analysis) of glutathione peroxidase (GPx-1) and gp91(PHOX) were measured. EPA and DHA reduced superoxide production after 1-h incubation. After 48 h, palmitic acid reduced superoxide production that was normalized by EPA treatment. Palmitic acid increased NO production that was reverted by EPA and DHA. Palmitic acid increased insulin secretion after 48 h, whereas both omega-3 fatty acids increased intracellular insulin content. EPA and DHA enhanced GPx-1 expression as well as gp91(PHOX) glycosylated form. In conclusion, EPA and DHA increased intracellular insulin content and antioxidant enzymatic defense capacity and decreased pro-oxidant generating activities that are associated with maintenance of pancreatic beta cell redox state in response to palmitic acid.

  20. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  1. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage

    PubMed Central

    Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka

    2016-01-01

    Summary Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types. PMID:27904388

  2. Content of Total Phenolics, Flavan-3-Ols and Proanthocyanidins, Oxidative Stability and Antioxidant Capacity of Chocolate During Storage.

    PubMed

    Laličić-Petronijević, Jovanka; Komes, Draženka; Gorjanović, Stanislava; Belščak-Cvitanović, Ana; Pezo, Lato; Pastor, Ferenc; Ostojić, Sanja; Popov-Raljić, Jovanka; Sužnjević, Desanka

    2016-03-01

    Antioxidant (AO) capacity of chocolates with 27, 44 and 75% cocoa was assessed after production and during twelve months of storage by direct current (DC) polarographic assay, based on the decrease of anodic current caused by the formation of hydroxo-perhydroxyl mercury(II) complex (HPMC) in alkaline solutions of hydrogen peroxide at potentials of mercury oxidation, and two spectrophotometric assays. Relative antioxidant capacity index (RACI) was calculated by taking the average value of the AO assay (the sample mass in all assays was identical). Oxidative stability of chocolate fat was determined by differential scanning calorimetry. Measured parameters and RACI were correlated mutually and with the content of total phenols (Folin-Ciocalteu assay), flavan-3-ols (vanillin and p-dimethylaminocinnamaldehyde assay) and proanthocyanidins (modified Bate-Smith assay). During storage, the studied functional and health-related characteristics remained unchanged. Amongst applied AO assays, the DC polarographic one, whose validity was confirmed by two-way ANOVA and F-test, correlated most significantly with oxidative stability (oxidation onset temperature and induction time). In addition, principal component analysis was applied to characterise chocolate types.

  3. Macrophages from chickens selected for high antibody response produced more nitric oxide and have greater phagocytic capacity.

    PubMed

    Guimarães, Marco Cesar Cunegundes; Guillermo, Landi Veivi Costilla; Matta, Marcos Fernando de Rezende; Soares, Sandro Gomes; DaMatta, Renato Augusto

    2011-04-15

    Macrophages are fundamental cells of the innate immune system, which, through phagocytosis and nitric oxide production, eliminate pathogens. The aim of the present study was to determine if macrophages from chicken families divergently selected to high and low antibodies response differ in nitric oxide production and phagocytic capacity. Blood monocytes derived macrophages were activated with lipopolysaccharide and supernatant from chicken spleen lymphocytes cultured with Concanavalin A (containing chicken interferon). Nitric oxide production was evaluated in culture supernatants. Phagocytic capacity of activated and non-activated macrophages was assayed using yeasts and IgY opsonized sheep red blood cells. Activated and non-activated macrophages from the high antibodies response family produced higher nitric oxide levels, internalized more yeast and significantly more opsonized sheep red blood cells than macrophages from the low antibodies response family. Moreover, activated macrophages became more elongated and widely spread. These findings indicate that macrophages from the high antibodies response family were more active suggesting that the differences in antibody response also depend on macrophage function.

  4. Alkylation by propylene oxide of deoxyribonucleic acid, adenine, guanosine and deoxyguanylic acid

    PubMed Central

    Lawley, P. D.; Jarman, M.

    1972-01-01

    1. Propylene oxide reacts with DNA in aqueous buffer solution at about neutral pH to yield two principal products, identified as 7-(2-hydroxypropyl)guanine and 3-(2-hydroxypropyl)adenine, which hydrolyse out of the alkylated DNA at neutral pH values at 37°C. 2. These products were obtained in quantity by reactions between propylene oxide and guanosine or adenine respectively. 3. The reactions between propylene oxide and adenine in acetic acid were parallel to those between dimethyl sulphate and adenine in neutral aqueous solution; the alkylated positions in adenine in order of decreasing reactivity were N-3, N-1 and N-9. A method for separating these alkyladenines is described. 4. Deoxyguanylic acid sodium salt was alkylated at N-7 by propylene oxide in neutral aqueous solution. 5. The nature of the side chain in the principal alkylation products was established by mass spectrometry, and the nature of the products is consistent with their formation by the bimolecular reaction mechanism. PMID:5073240

  5. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  6. Rat liver microsomal lipid peroxidation produced during the oxidative metabolism of ethacrynic acid.

    PubMed

    Yamamoto, K; Masubuchi, Y; Narimatsu, S; Kobayashi, S; Horie, T

    2001-04-01

    Thiobarbituric acid reactive substances (TBARS) were produced in rat liver microsomal suspension incubated with ethacrynic acid (loop diuretic drug) and NADPH. Two oxidative metabolites of ethacrynic acid with dicarboxylic acid and hydroxylated ethyl group, respectively, were formed in the reaction mixture. The oxidative metabolism of ethacrynic acid was inhibited by cytochrome P450 inhibitors. The formation of TBARS was remarkably depressed by inhibitors like diethyldithiocarbamate and disulfiram. These results indicate that lipid peroxidation occurred in rat liver microsomes through the oxidative metabolism of ethacrynic acid.

  7. The Loss Of Macrophage Fatty Acid Oxidation Does Not Potentiate Systemic Metabolic Dysfunction.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Collins, Samuel L; Horton, Maureen R; Wolfgang, Michael J

    2017-02-21

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase 2 (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation deficient CPT2 Mϕ-KO bone marrow derived macrophages (BMDM) displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although alternatively activated macrophages up-regulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative rather than causative role in systemic metabolic dysfunction.

  8. Genetic Variation of Fatty Acid Oxidation and Obesity, A Literature Review

    PubMed Central

    Freitag Luglio, Harry

    2016-01-01

    Modulation of fat metabolism is an important component of the etiology of obesity as well as individual response to weight loss program. The influence of lipolysis process had receives many attentions in recent decades. Compared to that, fatty acid oxidation which occurred after lipolysis seems to be less exposed. There are limited publications on how fatty acid oxidation influences predisposition to obesity, especially the importance of genetic variations of fatty acid oxidation proteins on development of obesity. The aim of this review is to provide recent knowledge on how polymorphism of genes related fatty acid oxidation is obtained. Studies in human as well as animal model showed that disturbance of genes related fatty acid oxidation process gave impact on body weight and risks to obesity. Several polymorphisms on CD36, CPT, ACS and FABP had been shown to be related to obesity either by regulating enzymatic activity or directly influence fatty acid oxidation process. PMID:27127449

  9. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  10. Comparative Oxidative Stability of Fatty Acid Alkyl Esters by Accelerated Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several fatty acid alkyl esters were subjected to accelerated methods of oxidation, including EN 14112 (Rancimat method) and pressurized differential scanning calorimetry (PDSC). Structural trends elucidated from both methods that improved oxidative stability included decreasing the number of doubl...

  11. Inertisation of galvanic sludge with calcium oxide, activated carbon, and phosphoric acid.

    PubMed

    Oreščanin, Višnja; Lovrenčić Mikelić, Ivanka; Kollar, Robert; Mikulić, Nenad; Medunić, Gordana

    2012-09-01

    In this study we compared three methods for the treatment of electroplating sludge highly loaded with zinc and iron: (1) calcium oxide-based solidification/stabilisation; (2) conversion into inert material by adsorption of organic and inorganic pollutants onto activated carbon; and (3) conversion of mobile waste components into insoluble phosphates. All three methods proved highly efficient in the conversion of hazardous waste into inert material. Under optimum treatment conditions zinc concentration in the leachate of solidified waste was reduced by 99.7 % compared to untreated sludge. Zinc retention efficiency in the waste treated with activated carbon and phosphoric acid was 99.9 % and 98.7 %, respectively. The advantages of electroplating sludge treatment with activated carbon over the other two methods are high sorption capacity, insignificant pH and volume changes of the sludge, and simple use.

  12. Inhibition of melanogenesis and oxidation by protocatechuic acid from Origanum vulgare (oregano).

    PubMed

    Chou, Tzung-Han; Ding, Hsiou-Yu; Lin, Rong-Jyh; Liang, Jing-Yao; Liang, Chia-Hua

    2010-11-29

    Antioxidant and antimelanogenesis activities of protocatechuic acid (1) from Origanum vulgare (oregano) were investigated. The antioxidative capacity of 1 was confirmed from its free-radical-scavenging activities, inhibition of lipid peroxidation, and suppression of reactive oxygen species in H(2)O(2)-induced BNLCL2 cells. The inhibition by 1 of tyrosinase and DOPA oxidase activity and melanin production was possibly related to the down-regulation of melanocortin-1 receptor, microphthalmia-associated transcription factor, tyrosinase, tyrosinase-related proteins-2, and tyrosinase-related proteins-1 expression in α-melanocyte-stimulating hormone-induced B16 cells. After a gel containing 1 was applied to mice, the values of L* slightly increased, and a* and erythema-melanin levels of skin were reduced by comparing the values of untreated control groups, indicating 1 can reduce melanin production. These results suggest that 1 may act as an effective quencher of oxidative attackers with antimelanogenesis properties.

  13. A novel method for the determination of ascorbic acid and antioxidant capacity in Opuntia ficus indica using in vivo microdialysis.

    PubMed

    Pretti, L; Bazzu, G; Serra, P A; Nieddu, G

    2014-03-15

    A simple and rapid method was developed for in vivo simultaneous determination of ascorbic-acid and antioxidant capacity in microdialysates from cladodes of Opuntia ficus-indica (L.) Miller. The method is verified in water-stressed plants, as compared with a well-watered test controls. The microdialysis probe construction and insertion procedure was specifically developed to minimise the tissue trauma of the plant and to obtain optimal dialysis performance. Microdialysis was performed using a flow rate of 3 μL/min and the samples were analysed by HPLC coupled to electrochemical detection of ascorbic-acid and DPPH-determined antioxidant capacity. Our data indicate exponential decay of the concentrations of the analysed compounds as a function of microdialysis sampling time. Water-stressed Opuntia show decreased ascorbic acid levels and increased the others antioxidants.

  14. Dietary intake, neutrophil fatty acid profile, serum antioxidant vitamins and oxygen radical absorbance capacity in patients with ulcerative colitis.

    PubMed

    Kawakami, Yuko; Okada, Hiroyuki; Murakami, Yasuko; Kawakami, Takayo; Ueda, Yukiko; Kunii, Daisuke; Sakamoto, Yachiyo; Shiratori, Yasushi; Okita, Misako

    2007-04-01

    Nutrition may play an important role in the pathogenesis and treatment of ulcerative colitis. Several studies suggest an association between dietary factors and the onset of ulcerative colitis; however, only few studies have examined the relationship between dietary intake and relapse of ulcerative colitis. The aim of this study was to assess the dietary intake and antioxidative capacity of ulcerative colitis patients and to elucidate the efficacy of dietary therapy for ulcerative colitis. Dietary intake, fatty acid composition of phospholipids in plasma and neutrophils, serum fat-soluble vitamin levels, and oxygen radical absorbance capacity were analyzed in 29 ulcerative colitis patients (7 males and 22 females), who were treated at the Department of Gastroenterology, Okayama University Hospital. Total fat intake, fat energy ratio and linoleic acid intake were significantly lower, while protein and carbohydrate intakes were significantly higher, in the patients than age- and sex-matched controls. In the neutrophil phospholipids of ulcerative colitis patients, significantly higher levels of linoleic aicd and arachidonic acid and a lower level of eicosapentaenoic acid were observed. The concentrations of serum retinol and beta-carotene but not alpha-tocopherol were significantly lower and serum oxygen radical absorbance capacity was also lower than in the controls. Significant correlations between serum oxygen radical absorbance capacity and retinol (r = 0.567, p = 0.0031), alpha-tocopherol (r = 0.560, p = 0.0036) and beta-carotene (r = 0.440, p = 0.0279) concentrations were observed in the ulcerative colitis patients. A diet restricting the intake of linoleic acid and supplemented with eicosapentaenoic acid and antioxidative vitamins may be recommendable for the nutritional management of ulcerative colitis patients.

  15. Comparison of the Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on the Eradication of Helicobacter pylori Infection, Serum Inflammatory Factors and Total Antioxidant Capacity.

    PubMed

    Khandouzi, Nafiseh; Shidfar, Farzad; Agah, Shahram; Hosseini, Agha Fatemeh; Dehnad, Afsaneh

    2015-01-01

    Helicobacter pylori infection, the most common chronic bacterial infection in the world, and an important cause of gastrointestinal disorders, may be involved in the pathogenesis of some extra-gastrointestinal disturbances, as well as an increase in blood levels of certain inflammatory markers. Anti-bacterial activity against Helicobacter pylori and anti-inflammatory properties of omega-3 fatty acids have been studied in several research studies. The purpose of the present study was the comparison of the effects of Eicosapentaenoic Acid and Docosahexaenoic Acid supplementation on Helicobacter pylori eradication, serum levels of some inflammatory markers and total antioxidant capacity. In a randomized, double-blind, placebo-controlled clinical trial, 97 Helicobacter pylori positive patients (64 patients in the two intervention groups and 33 in the control group), received 2 grams daily of Eicosapentaenoic Acid, Docosahexaenoic Acid or Medium Chain Triglyceride oil as placebo, along with conventional tetra-drug Helicobacter pylori eradication regimen, for 12 weeks. Helicobacter pylori eradication test and measurement of concentration of interleukine-6, interleukine-8, high-sensitivity C-reactive protein and total antioxidant capacity were performed after the intervention. There was no significant difference in eradication rate of the infection, levels of interleukine-6 and total antioxidant capacity among the three groups, while the levels of interleukine-8 and high-sensitivity C-reactive protein were statistically different. Eicosapentaenoic Acid or Docosahexaenoic Acid supplementation had no significant differential impact on the eradication of Helicobacter pylori infection, and serum levels of interleukine-6 and total antioxidant capacity. However, it had a desirable effect on the levels of interleukine-8 and high-sensitivity C-reactive protein in Helicobacter pylori positive patients.

  16. Comparison of the Effects of Eicosapentaenoic Acid and Docosahexaenoic Acid on the Eradication of Helicobacter pylori Infection, Serum Inflammatory Factors and Total Antioxidant Capacity

    PubMed Central

    Khandouzi, Nafiseh; Shidfar, Farzad; Agah, Shahram; Hosseini, Agha Fatemeh; Dehnad, Afsaneh

    2015-01-01

    Helicobacter pylori infection, the most common chronic bacterial infection in the world, and an important cause of gastrointestinal disorders, may be involved in the pathogenesis of some extra-gastrointestinal disturbances, as well as an increase in blood levels of certain inflammatory markers. Anti-bacterial activity against Helicobacter pylori and anti-inflammatory properties of omega-3 fatty acids have been studied in several research studies. The purpose of the present study was the comparison of the effects of Eicosapentaenoic Acid and Docosahexaenoic Acid supplementation on Helicobacter pylori eradication, serum levels of some inflammatory markers and total antioxidant capacity. In a randomized, double-blind, placebo-controlled clinical trial, 97 Helicobacter pylori positive patients (64 patients in the two intervention groups and 33 in the control group), received 2 grams daily of Eicosapentaenoic Acid, Docosahexaenoic Acid or Medium Chain Triglyceride oil as placebo, along with conventional tetra-drug Helicobacter pylori eradication regimen, for 12 weeks. Helicobacter pylori eradication test and measurement of concentration of interleukine-6, interleukine-8, high-sensitivity C-reactive protein and total antioxidant capacity were performed after the intervention. There was no significant difference in eradication rate of the infection, levels of interleukine-6 and total antioxidant capacity among the three groups, while the levels of interleukine-8 and high-sensitivity C-reactive protein were statistically different. Eicosapentaenoic Acid or Docosahexaenoic Acid supplementation had no significant differential impact on the eradication of Helicobacter pylori infection, and serum levels of interleukine-6 and total antioxidant capacity. However, it had a desirable effect on the levels of interleukine-8 and high-sensitivity C-reactive protein in Helicobacter pylori positive patients. PMID:25561921

  17. Comparison of Total Antioxidant Capacity Oxidative Stress and Blood Lipoprotein Parameters in Volleyball Players and Sedentary

    ERIC Educational Resources Information Center

    Gokhan, Ismail

    2013-01-01

    This study aims to measure, then compare sedentary blood lipoproteins, oxidant- antioxidant state and oxidative stress index in volleyball players. The experimental group of the research consists of regularly practising 20 boys between the ages of 12 and 17, and the control group comprises 32 children practising no particular sports branch, 12 of…

  18. A practical synthesis of betulonic acid using selective oxidation of betulin on aluminium solid support.

    PubMed

    Melnikova, Nina; Burlova, Irina; Kiseleva, Tatiana; Klabukova, Irina; Gulenova, Marina; Kislitsin, Capital A Cyrillicleksey; Vasin, Viktor; Tanaseichuk, Boris

    2012-10-09

    The room temperature oxidation of betulin by Cr(VI) compounds in aqueous acetone on solid supports such as alumina, zeolites and silica gel has been studied. The oxidation on alumina support leaded to a single product--betulonic acid--in quantitative yield. One hundred percent selective oxidation during 30 min of betulin up to betulonic aldehyde was determined when silica gel support was used. The oxidation of betulin using zeolites as a support gives a mixture of betulonic acid and aldehyde in a 2:1 ratio. It is proposed the selective oxidation up to betulonic acid is due to the influence of Al³⁺-ions.

  19. Relation between change in exercise capacity and change in blood amino acids in patients with chronic heart failure

    PubMed Central

    Morotomi, Nobuo; Saitoh, Masakazu; Ishii, Noriko; Ohno, Kayoko; Nagayama, Masatoshi; Kawate, Nobuyuki; Mizuma, Masazumi

    2017-01-01

    [Purpose] Although cardiac rehabilitation (CR) is recommended for patients with chronic heart failure (CHF), adequate exercise effect cannot be obtained in elderly patients. Administration of amino acids (AA) to CHF patients has been reported to improve exercise capacity, but the changes in AA composition in plasma before and after CR had not been reported. This study aimed to measure plasma levels of AA in CHF patients and compare with values of normal range. In addition the relationship between the change of exercise capacity and AA were examined. [Subjects and Methods] Twelve CHF patients (60% males, aged 68 ± 12 years) were studied. The correction between the rates of changes in exercise capacity parameters and in plasma AA levels was investigated. [Results] Anaerobic threshold (AT) and peak oxygen uptake (VO2) improved significantly after CR. The AA profile showed no specific pattern, and citrulline (Cit) was the amino acid showing a significant positive correlation with exercise capacity (∆Cit vs. ∆AT: r=0.602, ∆Cit vs. ∆AT-work rate (WR): r=0.681, ∆Cit vs. ∆VO2/WR: r=0.635). A tendency of positive correlation was observed between ∆Cit and ∆peak VO2 (r=0.456). [Conclusion] The AA profile showed no specific pattern, but a relationship between change in exercise capacity and Cit were found. PMID:28356624

  20. Relation between change in exercise capacity and change in blood amino acids in patients with chronic heart failure.

    PubMed

    Morotomi, Nobuo; Saitoh, Masakazu; Ishii, Noriko; Ohno, Kayoko; Nagayama, Masatoshi; Kawate, Nobuyuki; Mizuma, Masazumi

    2017-03-01

    [Purpose] Although cardiac rehabilitation (CR) is recommended for patients with chronic heart failure (CHF), adequate exercise effect cannot be obtained in elderly patients. Administration of amino acids (AA) to CHF patients has been reported to improve exercise capacity, but the changes in AA composition in plasma before and after CR had not been reported. This study aimed to measure plasma levels of AA in CHF patients and compare with values of normal range. In addition the relationship between the change of exercise capacity and AA were examined. [Subjects and Methods] Twelve CHF patients (60% males, aged 68 ± 12 years) were studied. The correction between the rates of changes in exercise capacity parameters and in plasma AA levels was investigated. [Results] Anaerobic threshold (AT) and peak oxygen uptake (VO2) improved significantly after CR. The AA profile showed no specific pattern, and citrulline (Cit) was the amino acid showing a significant positive correlation with exercise capacity (∆Cit vs. ∆AT: r=0.602, ∆Cit vs. ∆AT-work rate (WR): r=0.681, ∆Cit vs. ∆VO2/WR: r=0.635). A tendency of positive correlation was observed between ∆Cit and ∆peak VO2 (r=0.456). [Conclusion] The AA profile showed no specific pattern, but a relationship between change in exercise capacity and Cit were found.

  1. LDL oxidation, antioxidant capacity and growth of cultured grey mullet ( Mugil cephalus ) fed dietary sorghum distillery residue pretreated with polyethylene glycol.

    PubMed

    Lee, Shin Mei; Cheng, Hui Ling; Pan, Bonnie Sun

    2009-09-09

    Dietary sorghum distillery residue (SDR) showed antioxidant and blood thinning effects on grey mullet during winter, but inhibited their growth. The objective of this study was to establish a preliminary treatment of the dietary SDR with polyethylene glycol (PEG), a tannin-binding agent, to enhance growth and blood antioxidant capacity of grey mullet ( Mugil cephalus ) feed. The feeding trial was carried out from June to November. The water temperature was between 25 and 30 degrees C; the specific growth rate of mullet was reduced significantly by feeding diet containing 20% SDR in comparison to fish fed the control diet or diet containing 20% SDR and PEG. In the period of October-November, the water temperature decreased to 19-25 degrees C; the specific growth rates of the 20% SDR-PEG group and the 20% SDR group were 0.13 and 0.19% day(-1), respectively, significantly higher than those fed the control diet (0.07% day(-1)). Feeding with 20% SDR or 20% SDR-PEG diets resulted in prolonged lag phase of low-density lipoprotein (LDL) oxidation compared to fish fed the control diet. The total antioxidant capacity of the plasma of the grey mullet fed 20% SDR-PEG was 1.24 mmol/L, significantly higher than those in the fish fed 20% SDR diet (0.84 mmol/L) or the control (0.72 mmol/L). In vivo observations found that preliminary treatment of SDR with PEG eliminated the endogenous undesirable growth inhibitory factors but maintained its protective effects against LDL oxidation in blood and improved the total antioxidant capacity and cold adaptation of grey mullet. The ethanol extract of SDR contained 31.9 +/- 7.8 mg/g gallic acids equivalent. The concentration needed to scavenge 50% of the DPPH radicals (IC(50)) was 0.86 mg/mL. Increased gallic acid equivalent and decreased IC(50) of DPPH scavenging activity of SDR fed to fish increased the total antioxidant capacity in blood plasma of grey mullet significantly.

  2. Impaired oxidant/antioxidant status and LDL-fatty acid composition are associated with increased susceptibility to peroxidation of LDL in diabetic patients.

    PubMed

    Merzouk, S; Hichami, A; Sari, A; Madani, S; Merzouk, H; Yahia Berrouiguet, A; Lenoir-Rousseaux, J J; Chabane-Sari, N; Khan, N A

    2004-12-01

    This study was carried out to determine the relationships between oxidant/antioxidant status, in vitro LDL oxidizability and LDL-fatty acid composition in diabetes mellitus. Plasma total antioxidant capacity (oxygen radical absorbance capacity, ORAC) and LDL-cholesteryl ester fatty acids were investigated in type 1 and type 2 diabetic subjects with and without complications. The degree of LDL oxidation was determined by the measurement of hydroperoxide levels before and after in vitro peroxidative stress with CuSO4. ORAC values were decreased in diabetic subjects who showed high basal hydroperoxide levels. Oxidizability of LDL in these subjects was higher than in control subjects and it was unrelated to LDL-fatty acid composition. However, in type 2 diabetic subjects with complications, alterations in LDL-fatty acid composition were associated with their enhanced oxidative susceptibility. LDL-fatty acid alterations might be an additional factor that influences LDL oxidizability especially in type 2 diabetes. In conclusion, diabetes mellitus is associated with enhanced oxidative stress and defective antioxidant/oxidant balance regardless the type of diabetes and presence of complications.

  3. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity.

    PubMed

    Kasuya, Noriaki; Ohta, Shoichiro; Takanami, Yoshikazu; Kawai, Yukari; Inoue, Yutaka; Murata, Isamu; Kanamoto, Ikuo

    2015-04-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to rice and exercise following rice (MIX). The blood glucose level, oxidative stress and antioxidant capacity were then measured. At 60 min after the meal, the blood glucose level was observed to be increased in the MIX group compared with that in the LGI group. Furthermore, at 180 min, the antioxidant capacity was found to be reduced in the MIX group compared with those of the LGI and EX groups. These findings suggest that low GI food combined with postprandial exercise does not improve postprandial hyperglycemia. It may be necessary to establish optimal timing and intensity when combining low GI food with postprandial exercise to improve postprandial hyperglycemia.

  4. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g‑1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g‑1 is obtained at a high current density of 600 mA g‑1, and the electrode recovers a capacity of 230 mAh g‑1 when the current density is reset to 15 mA g‑1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications.

  5. Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries

    PubMed Central

    Ali, Ghulam; Mehmood, Asad; Ha, Heung Yong; Kim, Jaehoon; Chung, Kyung Yoon

    2017-01-01

    We report the feasibility of using reduced graphene oxide (RGO) as a cost-effective and high performance cathode material for sodium-ion batteries (SIBs). Graphene oxide is synthesized by a modified Hummers’ method and reduced using a solid-state microwave irradiation method. The RGO electrode delivers an exceptionally stable discharge capacity of 240 mAh g−1 with a stable long cycling up to 1000 cycles. A discharge capacity of 134 mAh g−1 is obtained at a high current density of 600 mA g−1, and the electrode recovers a capacity of 230 mAh g−1 when the current density is reset to 15 mA g−1 after deep cycling, thus demonstrating the excellent stability of the electrode with sodium de/intercalation. The successful use of the RGO electrode demonstrated in this study is expected to facilitate the emergence of low-cost and sustainable carbon-based materials for SIB cathode applications. PMID:28098231

  6. Effect of low glycemic index food and postprandial exercise on blood glucose level, oxidative stress and antioxidant capacity

    PubMed Central

    KASUYA, NORIAKI; OHTA, SHOICHIRO; TAKANAMI, YOSHIKAZU; KAWAI, YUKARI; INOUE, YUTAKA; MURATA, ISAMU; KANAMOTO, IKUO

    2015-01-01

    Low glycemic index (GI) food and postprandial exercise are non-drug therapies for improving postprandial hyperglycemia. The present randomized, crossover study investigated the effect of low GI food combined with postprandial exercise on postprandial blood glucose level, oxidative stress and antioxidant capacity. A total of 13 healthy subjects were each used in four experiments: i) rice only (control), ii) salad prior to rice (LGI), iii) exercise following rice (EX) and iv) salad prior to rice and exercise following rice (MIX). The blood glucose level, oxidative stress and antioxidant capacity were then measured. At 60 min after the meal, the blood glucose level was observed to be increased in the MIX group compared with that in the LGI group. Furthermore, at 180 min, the antioxidant capacity was found to be reduced in the MIX group compared with those of the LGI and EX groups. These findings suggest that low GI food combined with postprandial exercise does not improve postprandial hyperglycemia. It may be necessary to establish optimal timing and intensity when combining low GI food with postprandial exercise to improve postprandial hyperglycemia. PMID:25780409

  7. The effects of calcium benzoate in diets with or without organic acids on dietary buffering capacity, apparent digestibility, retention of nutrients, and manure characteristics in swine.

    PubMed

    Mroz, Z; Jongbloed, A W; Partanen, K H; Vreman, K; Kemme, P A; Kogut, J

    2000-10-01

    Eight barrows (Yorkshire x [Finnish Landrace x Dutch Landrace]), initially 30 kg BW, were fitted with ileal cannulas to evaluate the effects of supplementing Ca benzoate (2.4%) and organic acids (OA) in the amount of 300 mEq acid/kg feed on dietary buffering capacity (BC), apparent digestibility and retention of nutrients, and manure characteristics. Swine were allotted in a 2 x 4 factorial arrangement of treatments according to a cyclic (8 x 5) changeover design. Two tapioca-corn-soybean meal-based diets were formulated without and with acidogenic Ca benzoate. Each diet was fed in combination with OA (none, formic, fumaric, or n-butyric acid). Daily rations were equal to 2.8 x maintenance requirement (418 kJ ME/BW(.75)) and were given in two portions. Chromic oxide (.25 g/kg) was used as a marker. On average, Ca benzoate lowered BC by 54 mEq/kg feed. This salt enhanced (P < .05) the ileal digestibility (ID) of DM, OM, arginine, isoleucine, leucine, phenylalanine, alanine, aspartic acid, and tyrosine (by up to 2.4 percentage units). Also, the total tract digestibility (TD) of DM, ash, Ca and GE, and Ca retention (percentage of intake) was greater (P < .05) in swine fed Ca benzoate, whereas N retention remained unaffected. Addition of all OA (formic and n-butyric acid, in particular) exerted a positive effect (P < .05) on the ID of amino acids (except for arginine, methionine, and cysteine). A similar effect (P < .05) was found for the TD of DM, OM, CP, Ca and total P and for the retention of N and Ca. In swine fed Ca benzoate, urinary pH decreased by 1.6 units (P < .001). In conclusion, dietary OA have a beneficial effect on the apparent ileal/total tract nutrient digestibilities, and Ca benzoate increased urine acidity, which could be effective against a rapid ammonia emission from manure of swine.

  8. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    SciTech Connect

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  9. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes.

    PubMed

    Seley, David; Ayers, Katherine; Parkinson, B A

    2013-02-11

    A library of electrocatalysts for water electrolysis under acidic conditions was created by ink jet printing metal oxide precursors followed by pyrolysis in air to produce mixed metal oxides. The compositions were then screened in acidic electrolytes using a pH sensitive fluorescence indicator that became fluorescent due to the pH change at the electrode surface because of the release of protons from water oxidation. The most promising materials were further characterized by measuring polarization curves and Tafel slopes as anodes for water oxidation. Mixed metal oxides that perform better than the iridium oxide standard were identified.

  10. Sacha inchi (Plukenetia volubilis): a seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity.

    PubMed

    Chirinos, Rosana; Zuloeta, Gledy; Pedreschi, Romina; Mignolet, Eric; Larondelle, Yvan; Campos, David

    2013-12-01

    Fatty acids (FA), phytosterols, tocopherols, phenolic compounds, total carotenoids and hydrophilic and lipophilic ORAC antioxidant capacities were evaluated in 16 cultivars of Sacha inchi (SI) seeds with the aim to valorise them and offer more information on the functional properties of SI seeds. A high α linolenic (α-Ln) fatty acid content was found in all cultivars (ω3, 12.8-16.0 g/100 g seed), followed by linoleic (L) fatty acid (ω6, 12.4-14.1g/100g seed). The ratio ω6/ω3 was within the 0.83-1.09 range. γ- and δ-tocopherols were the most important tocopherols, whereas the most representative phytosterols were β-sitosterol and stigmasterol. Contents of total phenolics, total carotenoids and hydrophilic and lipophilic antioxidant capacities ranged from 64.6 to 80 mg of gallic acid equivalent/100g seed; from 0.07 to 0.09 mg of β-carotene equivalent/100g of seed; from 4.3 to 7.3 and, from 1.0 to 2.8 μmol of Trolox equivalent/g of seed, respectively, among the evaluated SI cultivars. Results showed significant differences (p<0.05) among the evaluated SI cultivars in the contents of ω3, ω6, antioxidant capacities and other evaluated phytochemicals. SI seeds should be considered as an important dietary source of health promoting phytochemicals.

  11. Soil Oxidation-Reduction Potential and Plant Photosynthetic Capacity in the Northern Pantanal of Mato Grosso, Brazil

    NASA Astrophysics Data System (ADS)

    Lathuilliere, M. J.; Johnson, M. S.; Dalmagro, H. J.; Pinto Junior, O. B.; Couto, E. G.

    2013-12-01

    Plant communities of the Pantanal wetland are able to survive long periods of climatic and physiological stress in the dry and wet seasons. During inundation, soil oxygen demand increases dramatically as reducing soil conditions create stress in the root system with possible impacts on photosynthetic capacity of plants. We look at inundation cycles of a tree island (locally known as a cordilheira) in the Northern Pantanal near Poconé, Mato Grosso, and relate soil oxidation-reduction potential and soil oxygen depletion to the photosynthetic capacity of two plant communities of flooded scrub forest (Vochysia divergens and Curatela americana). Results show a drop in soil oxidation-reduction potential of over 400 mV, to levels below the absolute value of -200 mV, following inundation around the tree island. Both plant species showed increased carbon assimilation at highest soil oxygen demand despite a change in stomatal conductance, suggesting adaptation to the inundated environment. Absolute values of soil oxidation-reduction potential also allow for the determination of specific soil chemical reactions characteristic of the tree island environment, namely the reduction of iron(III), or carbon dioxide which in turn produces methane. Our combined analysis of soil chemistry with plant ecophysiology allows for a better understanding of soil-plant interactions in the Pantanal, specifically the drivers of biogeochemical processes between inundation periods.

  12. Dissolution of plutonium oxide in nitric acid at high hydrofluoric acid concentrations

    SciTech Connect

    Kazanjian, A.R.; Stevens, J.R.

    1984-06-15

    The dissolution of plutonium dioxide in nitirc acid (HNO/sub 3/) at high hydrofluoric acid (HF) concentrations has been investigated. Dissolution rate curves were obtained using 12M HNO/sub 3/ and HF at concentrations varying from 0.05 to 1.0 molar. The dissolution rate increased with HF concentration up to 0.2M and then decreased at higher concentrations. There was very little plutonium dissolved at 0.7 and 1.0M HF because of the formation of insoluble PuF/sub 4/. Various oxidizing agents were added to 12M HNO/sub 3/-1M HF dissolvent to oxidize Pu(IV) to Pu(VI) and prevent the formation of PuF/sub 4/. Ceric (Ce(IV)) and silver (Ag(II)) ions were the most effective in dissolving PuO/sub 2/. Although these two oxidants greatly increased the dissolution rate, the rates were not as rapid as those obtained with 12M HNO/sub 3/-0.2M HF.

  13. Fatty Acids Profile, Phenolic Compounds and Antioxidant Capacity in Elicited Callus of Thevetia peruviana (Pers.) K. Schum.

    PubMed

    Rincón-Pérez, Jack; Rodríguez-Hernández, Ludwi; Ruíz-Valdiviezo, Víctor Manuel; Abud-Archila, Miguel; Luján-Hidalgo, María Celina; Ruiz-Lau, Nancy; González-Mendoza, Daniel; Gutiérrez-Miceli, Federico Antonio

    2016-01-01

    The aim of this study was analyze the effect of jasmonic acid (JA) and abscisic acid (ABA) as elicitors on fatty acids profile (FAP), phenolic compounds (PC) and antioxidant capacity (AC) in callus of Thevetia peruviana. Schenk & Hildebrandt (SH) medium, supplemented with 2 mg/L 2, 4-dichlorophenoxyacetic (2, 4-D) and 0.5 mg/L kinetin (KIN) was used for callus induction. The effect of JA (50, 75 and 100 μM) and ABA (10, 55 and 100 μM) on FAP, PC and AC were analyzed using a response surface design. A maximum of 2.8 mg/g of TPC was obtained with 100 plus 10 µM JA and ABA, respectively, whereas AC maximum (2.17 μg/mL) was obtained with 75 plus 100 µM JA and ABA, respectively. The FAP was affected for JA but not for ABA. JA increased cis-9, cis-12-octadecadienoic acid and decreased dodecanoic acid. Eight fatty acids were identified by GC-MS analysis and cis-9-octadecenoic acid (18:1) was the principal fatty acid reaching 76 % in treatment with 50 μM JA plus 55 μM ABA. In conclusion, JA may be used in T. peruviana callus culture for obtain oil with different fatty acids profile.

  14. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy.

    PubMed

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J

    2016-12-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  15. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  16. Linking photochemical transformation of an Antarctica Fulvic Acid to diminished bioavailability and oxidation of organic electron shuttles

    NASA Astrophysics Data System (ADS)

    Fimmen, R. L.; Guerard, J. J.; Miller, P. L.; Cory, R. M.; Chin, Y.; Foreman, C. M.; McKnight, D. M.

    2007-12-01

    - shuttling) components of the fulvic acid. These molecular-scale changes in photo-chemically altered fulvic acid illustrate a general trend towards broad-scale oxidation of chromophores, fluorophores, and reduced organic N/S functionalities. The loss of electron-donating capacity was correlated to decreases in relative concentrations of redox-active moieties in microbially-derived fulvic acid and suggests that photolysis attacks the electron shuttling properties of the fulvic acid. Photochemical oxidation of electron-rich functional groups and chemical degradation of organic electron shuttles may be related to the decreased bioavailability of photolyzed fulvic acid.

  17. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.

    PubMed

    Su, Wen-Yu; Chen, Yu-Chun; Lin, Feng-Huei

    2010-08-01

    Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration.

  18. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute.

  19. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid.

    PubMed

    Zhang, C; Patel, R; Eiserich, J P; Zhou, F; Kelpke, S; Ma, W; Parks, D A; Darley-Usmar, V; White, C R

    2001-10-01

    The myeloperoxidase (MPO)-derived oxidant hypochlorous acid (HOCl) plays a role in tissue injury under inflammatory conditions. The present study tests the hypothesis that HOCl decreases nitric oxide (NO) bioavailability in the vasculature of Sprague-Dawley rats. Aortic ring segments were pretreated with HOCl (1-50 microM) followed by extensive washing. Endothelium-dependent relaxation was then assessed by cumulative addition of acetylcholine (ACh) or the calcium ionophore A23187. HOCl treatment significantly impaired both ACh- and A23187-mediated relaxation. In contrast, endothelium-independent relaxation induced by sodium nitroprusside was unaffected. The inhibitory effect of HOCl on ACh-induced relaxation was reversed by exposure of ring segments to L-arginine but not D-arginine. In cellular studies, HOCl did not alter endothelial NO synthase (NOS III) protein or activity, but inhibited formation of the NO metabolites nitrate (NO3(-) and nitrite (NO2(-). The reduction in total NO metabolite production in bovine aortic endothelial cells was also reversed by addition of L-arginine. These data suggest that HOCl induces endothelial dysfunction via modification of L-arginine.

  20. The mechanisms governing low denitrification capacity and high nitrogen oxide gas emissions in subtropical forest soils in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jinbo; Yu, Yongjie; Zhu, Tongbin; Cai, Zucong

    2014-08-01

    Previous studies have demonstrated that denitrification rates are low in subtropical forest soils. However, the mechanisms governing this process are not well known. This study seeks to identify the mechanisms responsible for the low denitrification capacity and high nitrogen oxide gas ratio in subtropical forest soils in China. The denitrification capacity and nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2) emission rates were measured using the acetylene inhibition method under conditions of added nitrate and anoxia. The abundance of nitrate reductase (narG), nitrite reductase (nirK), nitric oxide reductase (cnorB), and nitrous oxide reductase (nosZ) was measured using real-time, quantitative polymerase chain reaction, and sequencing of the nirK and norB products was performed to analyze the population structure of denitrifying bacteria. These results showed that the denitrification capacity in subtropical forest soils was lower than in temperate forest soils (p < 0.05). Multiple regression analysis showed that redox potential at the start of incubation (Ehi), rather than soil pH or soil organic C, was the key soil variable influencing denitrification, and Ehi alone could explain 68% of the variations in denitrification capacity. The high Ehi in subtropical soils led to a low abundance of nirK and significant differences in the population structure of denitrifying bacteria between subtropical and temperate soils. Therefore, Ehi was responsible for the low denitrification capacity in subtropical forest soils. The ratio of NO to total denitrification gas products (p < 0.01) and the ratio of NO and N2O to total denitrification gas products (p < 0.05) were significantly higher in subtropical forest soils than in temperate forest soils, while the reverse trend was observed for the ratio of N2 to total denitrification gas products (p < 0.05). A high Ehi reduced the specific reduction activity of each nosZ copy and, in turn, resulted in a large ratio of NO

  1. Supercritical water oxidation of acrylic acid production wastewater.

    PubMed

    Gong, Y M; Wang, S Z; Tang, X Y; Xu, D H; Ma, H H

    2014-01-01

    Supercritical water oxidation (SCWO) of wastewater from an acrylic acid manufacturing plant has been studied on a continuous flow experimental system, whose reactor was made of Hastelloy C-276. Experimental conditions included a reaction temperature (T) ranging from 673 to 773K, a residence time (t) ranging from 72.7 to 339s, a constant pressure (P) of 25 MPa and a fixed oxidation coefficient (alpha) of 2.0. Experimental results indicated that reaction temperature and residence time had significant influences on the oxidation reaction, and increasing the two operation parameters could improve both degradation of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The COD removal efficiency could reach up to 98.73% at 25 MPa, 773 K and 180.1 s, whereas the destruction efficiency of NH3-N was only 43.71%. We further carried out a kinetic analysis considering the induction period through free radical chain mechanism. It confirms that the power-law rate equation for COD removal was 345 exp(-52200/RT)[COD]1.98[O2]0.17 and for NH3-N removal was 500 exp(-64492.19/RT)[NH3-N]1.87 [O2]0.03. Moreover, the induction time formulations for COD and NH3-N were suspected to be exp(38250/RT)/173 and exp(55690/RT)/15231, respectively. Correspondingly, induction time changed from 2.22 to 5.38 s for COD and 0.38 to 1.38 s for NH3-N. Owing to the catalysis of reactor inner wall surface, more than 97% COD removal was achieved in all samples.

  2. Peroxiredoxin I deficiency attenuates phagocytic capacity of macrophage in clearance of the red blood cells damaged by oxidative stress.

    PubMed

    Han, Ying-Hao; Kwon, Taeho; Kim, Sun-Uk; Ha, Hye-Lin; Lee, Tae-Hoon; Kim, Jin-Man; Jo, Eun-Kyeong; Kim, Bo Yeon; Yoon, Do Young; Yu, Dae-Yeul

    2012-10-01

    The role of peroxiredoxin (Prx) I as an erythrocyte antioxidant defense in red blood cells (RBCs) is controversial. Here we investigated the function of Prx I by using Prx I(-/-) and Prx I/II(-/-) mice. Prx I(-/-) mice exhibited a normal blood profile. However, Prx I/II(-/-) mice showed more significantly increased Heinz body formation as compared with Prx II(-/-) mice. The clearance rate of Heinz body-containing RBCs in Prx I(-/-) mice decreased significantly through the treatment of aniline hydrochloride (AH) compared with wild-type mice. Prx I deficiency decreased the phagocytic capacity of macrophage in clearing Heinz body-containing RBCs. Our data demonstrate that Prx I deficiency did not cause hemolytic anemia, but showed that further increased hemolytic anemia symptoms in Prx II(-/-) mice by attenuating phagocytic capacity of macrophage in oxidative stress damaged RBCs, suggesting a novel role of Prx I in phagocytosis of macrophage.

  3. Association of serum total antioxidant capacity and total oxidant status with pain perception in patients with myofacial pain dysfunction.

    PubMed

    Etoz, Osman A; Ataoglu, Hanife; Erel, Ozcan; Celik, Hakim; Herken, Emine Nur; Bayazit, Yildirim Ahmet

    2009-01-01

    We aimed to find out the association of total antioxidant capacity (TAC) and total oxidant status (TOS) with generalized pressure pain thresholds (PPT) of patients with myofacial pain dysfunction (MPD). PPT scores of patients with MPD (n = 37) and healthy individuals (n = 43) were measured on the hypothenar region of the hand using a mechanical algometer. Serum samples were collected and TAC and TOS were measured by novel methods. The TAC of patients was significantly lower than that of the control subjects. The difference between the TOS measurements of patients and control subjects was not significant. The PPT scores of the patients were significantly lower than that of control subjects. There may be an association between serum antioxidant capacity and MPD. Low serum TAC might also be related with pain perception.

  4. Potent protection of gallic acid against DNA oxidation: results of human and animal experiments.

    PubMed

    Ferk, Franziska; Chakraborty, Asima; Jäger, Walter; Kundi, Michael; Bichler, Julia; Mišík, Miroslav; Wagner, Karl-Heinz; Grasl-Kraupp, Bettina; Sagmeister, Sandra; Haidinger, Gerald; Hoelzl, Christine; Nersesyan, Armen; Dušinská, Maria; Simić, Tatjana; Knasmüller, Siegfried

    2011-10-01

    Gallic acid (3,4,5-trihydroxybenzoic acid, GA) is a constituent of plant derived foods, beverages and herbal remedies. We investigated its DNA protective properties in a placebo controlled human intervention trial in single cell gel electrophoresis experiments. Supplementation of drinking water with GA (12.8 mg/person/d) for three days led to a significant reduction of DNA migration attributable to oxidised pyrimidines (endonuclease III sensitive sites) and oxidised purines (formamidopyrimidine glycosylase sensitive sites) in lymphocytes of healthy individuals by 75% and 64% respectively. Also DNA damage caused by treatment of the cells with reactive oxygen species (ROS) was reduced after GA consumption (by 41%). These effects were paralleled by an increase of the activities of antioxidant enzymes (superoxide dismutase, glutathione peroxidase and glutathion-S-transferase-π) and a decrease of intracellular ROS concentrations in lymphocytes, while no alterations of the total antioxidant capacity (TAC), of malondialdehyde levels in serum and of the urinary excretion of isoprostanes were found. Experiments with rats showed that GA reduces oxidatively damaged DNA in lymphocytes, liver, colon and lungs and protects these organs against γ-irradiation-induced strand breaks and formation of oxidatively damaged DNA-bases. Furthermore, the number of radiation-induced preneoplastic hepatic foci was decreased by 43% after oral administration of the phenolic. Since we did not find alterations of the TAC in plasma and lipid peroxidation of cell membranes but intracellular effects it is likely that the antioxidant properties of GA seen in vivo are not due to direct scavenging of radicals but rather to indirect mechanisms (e.g. protection against ROS via activation of transcription factors). As the amount of GA used in the intervention trial is similar to the daily intake in Middle Europe (18 mg/person/day), our findings indicate that it may contribute to prevention of formation

  5. Yeast NDI1 Improve Oxidative Phosphorylation Capacity and Increases Protection Against Oxidative Stress and Cell Death in Cells Carrying a Leber’s Hereditary Optic Neuropathy Mutation

    PubMed Central

    Park, Jeong Soon; Li, You-fen; Bai, Yidong

    2007-01-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber’s hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH -quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast ND11 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death. PMID:17320357

  6. Yeast NDI1 improves oxidative phosphorylation capacity and increases protection against oxidative stress and cell death in cells carrying a Leber's hereditary optic neuropathy mutation.

    PubMed

    Park, Jeong Soon; Li, You-Fen; Bai, Yidong

    2007-05-01

    G11778A in the subunit ND4 gene of NADH dehydrogenase complex is the most common primary mutation found in Leber's hereditary optic neuropathy (LHON) patients. The NDI1 gene, which encodes the internal NADH-quinone oxidoreductase in Saccharomyces cerevisiae, was introduced into the nuclear genome of a mitochondrial defective human cell line, Le1.3.1, carrying the G11778A mutation. In transformant cell lines, LeNDI1-1 and -2, total and complex I-dependent respiration were fully restored and largely resistant to complex I inhibitor, rotenone, indicating a dominant role of NDI1 in the transfer of electrons in the host cells. Whereas the original mutant Le1.3.1 cell grows poorly in medium containing galactose, the transformants have a fully restored growth capacity in galactose medium, although the ATP production was not totally recovered. Furthermore, the increased oxidative stress in the cells carrying the G11778A mutation was alleviated in transformants, demonstrated by a decreased reactive oxygen species (ROS) level. Finally, transformants were also shown to be desensitized to induction to apoptosis and also exhibit greater resistance to paraquat-induced cell death. It is concluded that the yeast NDI1 enzyme can improve the oxidative phosphorylation capacity in cells carrying the G11778A mutation and protect the cells from oxidative stress and cell death.

  7. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    PubMed

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  8. Antioxidant and pro-oxidant capacity of catecholamines and related compounds. Effects of hydrogen peroxide on glutathione and sphingomyelinase activity in pheochromocytoma PC12 cells: potential relevance to age-related diseases.

    PubMed

    Sofic, E; Denisova, N; Youdim, K; Vatrenjak-Velagic, V; De Filippo, C; Mehmedagic, A; Causevic, A; Cao, G; Joseph, J A; Prior, R L

    2001-01-01

    The antioxidant and pro-oxidant capacity of catecholamines (CA) and related compounds were analyzed using the oxygen radical absorbance capacity (ORAC) assay. In the assay 2,2'-azobis (2-amidino-propane) dihydrochloride (AAPH), a peroxyl radical generator, ROO*; H2O2-Cu2+, mainly a hydroxyl radical generator, *OH; and Cu2+ a transition metal were used. The antioxidant effect of CA and its related compounds were in the order: neurotransmitters: dopamine (DA), norepinephrine (NE) > metabolites > amino acid precursors as measured by using AAPH. The antioxidant effect of CA and related compounds as measured by using AAPH were linearly correlated with concentration, while the antioxidant effect of CA in scavenging *OH produced by H2O2-Cu2+ increased proportionally to concentration at low concentration, but after reaching a maximum declined with increasing concentration. In the presence of Cu2+, CA acted as pro-oxidant. Glutathione (GSH) acted as a pro-oxidant when H2O2-Cu2+ or when Cu2+ alone was used as an oxidant and showed much higher pro-oxidant effect than DA, which could have relevance in the vulnerability of dopaminergic neurons to oxidative stress in the aging and aging related diseases. The antioxidant capacity of CA and many related compounds seems to be correlated with the numbers of hydroxyl groups and their position on the benzoic ring. The O-methylation and sulfate conjugation of the hydroxyl substitution inactivates both the antioxidant and pro-oxidant activities of CA. Our results show that oxidative stress induced by low (5 microM) or high (300 microM) doses H2O2 in pheochromocytoma PC12 cells significantly up-regulate the activity of Mg-dependent neutral sphingomyelinase (Sase), and significantly decreased GSH.

  9. High-capacity hydrogen and nitric oxide adsorption and storage in a metal-organic framework.

    PubMed

    Xiao, Bo; Wheatley, Paul S; Zhao, Xuebo; Fletcher, Ashleigh J; Fox, Sarah; Rossi, Adriano G; Megson, Ian L; Bordiga, S; Regli, L; Thomas, K Mark; Morris, Russell E

    2007-02-07

    Gas adsorption experiments have been carried out on a copper benzene tricarboxylate metal-organic framework material, HKUST-1. Hydrogen adsorption at 1 and 10 bar (both 77 K) gives an adsorption capacity of 11.16 mmol H2 per g of HKUST-1 (22.7 mg g(-)1, 2.27 wt %) at 1 bar and 18 mmol per g (36.28 mg g(-)1, 3.6 wt %) at 10 bar. Adsorption of D2 at 1 bar (77 K) is between 1.09 (at 1 bar) and 1.20(at <100 mbar) times the H2 values depending on the pressure, agreeing with the theoretical expectations. Gravimetric adsorption measurements of NO on HKUST-1 at 196 K (1 bar) gives a large adsorption capacity of approximately 9 mmol g(-1), which is significantly greater than any other adsorption capacity reported on a porous solid. At 298 K the adsorption capacity at 1 bar is just over 3 mmol g(-1). Infra red experiments show that the NO binds to the empty copper metal sites in HKUST-1. Chemiluminescence and platelet aggregometry experiments indicate that the amount of NO recovered on exposure of the resulting complex to water is enough to be biologically active, completely inhibiting platelet aggregation in platelet rich plasma.

  10. Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective

    NASA Astrophysics Data System (ADS)

    Volkamer, R.; Sheehy, P.; Molina, L. T.; Molina, M. J.

    2010-07-01

    A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* + water makes - if any - a very small contribution (~2%). The peak radical production of ~7.5 107 molec cm-3 s-1 is found already at 10:00 a.m., i.e., more than 2.5 h before solar noon. O3/alkene reactions are indirectly responsible for ~33% of these radicals. Our measurements and analysis comprise a database that enables testing of the representation of

  11. Myrrh attenuates oxidative and inflammatory processes in acetic acid-induced ulcerative colitis

    PubMed Central

    Fatani, Amal Jamil; Alrojayee, Fatima Salih; Parmar, Mihir Yogeshkumar; Abuohashish, Hatem Mustafa; Ahmed, Mohammed Mahboobuddin; Al-Rejaie, Salim Salih

    2016-01-01

    The pathogenesis of ulcerative colitis (UC) has been associated with a weakened antioxidant capacity and increased inflammatory processes. Myrrh is traditionally used for the treatment of inflammatory diseases due to its antioxidant and anti-inflammatory properties. The present study aimed to evaluate the effects of myrrh on an experimental rat model of UC. UC was induced in rats using acetic acid (AA) after pre-treatment with myrrh (125, 250 or 500 mg/kg/day) or mesalazine (MES; 300 mg/kg/day) for 7 days. The levels of various inflammatory cytokines, prostaglandin E2 (PGE2) and nitric oxide (NO) in the rat colon tissues were assessed. In addition, the colonic levels of thiobarbituric acid reactive substances (TBARS) and non-protein sulfhydryl groups (NP-SH), as well as the activities of superoxide dismutase (SOD) and catalase (CAT), were estimated. Furthermore, total protein (TP) contents and the levels of DNA and RNA were measured, and histopathological changes in colonic tissues were analyzed. The results indicated that the levels of pro-inflammatory cytokines, PGE2, NO and TBARS were markedly increased. By contrast, the levels of interleukin-10, NP-SH, TP and nucleic acids, and the enzymatic activities of SOD and CAT were significantly decreased in the AA model group. In addition, pretreatment with myrrh and MES was able to attenuate the impaired oxidative stress response and upregulation of inflammatory biomarkers. Furthermore, the enzymatic activities of SOD and CAT were near to normal in the myrrh and MES pretreated groups. The ability of myrrh to protect against UC was further confirmed by histopathological analysis, and the high dose of myrrh exerted an effect comparable to MES. In conclusion, the results of the present study suggested that myrrh has potent therapeutic value in the amelioration of experimental colitis in laboratory animals by downregulating the expression of proinflammatory mediators and improving endogenous antioxidative activities. PMID

  12. Premature capacity loss in lead/acid batteries: a discussion of the antimony-free effect and related phenomena

    NASA Astrophysics Data System (ADS)

    Hollenkamp, A. F.

    Instances of severe capacity loss in apparently healthy lead/acid batteries have been reported over a period of many years, and are still common today. In most cases, these phenomena are linked to the use of antimony-free positive grids and are invoked by repetitive deep-discharge duties. This situation represents probably the greatest barrier to the expansion of markets for lead/acid batteries. To date, research has focused on several possible explanations for capacity loss; notably, degradation of the positive active mass (e.g., relaxable insufficient mass utilization) and the development of electrical barriers around the grid. Although much of the evidence gathered is circumstantial, it does point to the key issues that must be addressed in future work.

  13. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries.

    PubMed

    McCalla, Eric; Abakumov, Artem M; Saubanère, Matthieu; Foix, Dominique; Berg, Erik J; Rousse, Gwenaelle; Doublet, Marie-Liesse; Gonbeau, Danielle; Novák, Petr; Van Tendeloo, Gustaaf; Dominko, Robert; Tarascon, Jean-Marie

    2015-12-18

    Lithium-ion (Li-ion) batteries that rely on cationic redox reactions are the primary energy source for portable electronics. One pathway toward greater energy density is through the use of Li-rich layered oxides. The capacity of this class of materials (>270 milliampere hours per gram) has been shown to be nested in anionic redox reactions, which are thought to form peroxo-like species. However, the oxygen-oxygen (O-O) bonding pattern has not been observed in previous studies, nor has there been a satisfactory explanation for the irreversible changes that occur during first delithiation. By using Li2IrO3 as a model compound, we visualize the O-O dimers via transmission electron microscopy and neutron diffraction. Our findings establish the fundamental relation between the anionic redox process and the evolution of the O-O bonding in layered oxides.

  14. Oxidative cleavage with hydrogen peroxide: preparation of polycarboxylic acids from cyclic olefins.

    PubMed

    Fujitani, Kango; Mizutani, Toshihiro; Oida, Tatsuo; Kawase, Tokuzo

    2009-01-01

    Oxidative cleavage of carbon-carbon double bonds of cyclic olefins with hydrogen peroxide in the presence of heteropolyacids has been investigated as a clean and environmentally friendly preparation of polycarboxylic acids. In the presence of 12-tungstophospholic acid (H(3)PW(12)O(40)), adipic acid was obtained in 95% yield from cyclohexene in lipophilic phase and hydrogen peroxide in aqueous phase. In addition, 1,2,3,4-butanetetracarboxylic acid was also obtained in 87% yield from 1,2,3,6-tetrahydrophtharic acid anhydride, while endic acid anhydride did not afford corresponding 2,3,6-cyclopentanetetracarboxylic acid but only lactone compound was obtained. In this oxidation process, oxidative cleavage of carbon-carbon double bonds would proceed as the sequential reactions in which the rate determining step is oxidative cleavage of vicinal-diol compounds.

  15. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  16. Radical-derived oxidation products of 5-aminosalicylic acid and N-acetyl-5-aminosalicylic acid.

    PubMed

    Fischer, C; Klotz, U

    1994-11-04

    5-Aminosalicylic acid is an agent effective in the treatment of chronic inflammatory bowel diseases. Its ability to scavenge radicals is considered to be a major factor responsible for its therapeutic efficacy. In this study oxidation products of aminosalicylates with hydroxyl radicals were produced. The compounds that could be discovered by gas chromatographic-mass spectrometric analysis originate from a 1,4-benzoquinone monoimine intermediate which subsequently undergoes multiple reactions such as hydrolysis, reductive 1,4-Michael addition, reoxidation and decarboxylation. Some of these products could represent metabolites formed under in vivo conditions and thus provide a tool for screening biological material from subjects under different clinical conditions.

  17. Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid.

    PubMed

    Clemente, Zaira; Castro, Vera Lúcia S S; Franqui, Lidiane S; Silva, Cristiane A; Martinez, Diego Stéfani T

    2017-03-28

    This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials' bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology.

  18. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    SciTech Connect

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  19. Activation of Nrf2-mediated oxidative stress response in macrophages by hypochlorous acid

    SciTech Connect

    Pi Jingbo Zhang Qiang; Woods, Courtney G.; Wong, Victoria; Collins, Sheila; Andersen, Melvin E.

    2008-02-01

    Hypochlorous acid (HOCl), a potent oxidant generated when chlorine gas reacts with water, is important in the pathogenesis of many disorders. Transcription factor Nrf2-mediated antioxidant response represents a critical cellular defense mechanism that serves to maintain intracellular redox homeostasis and limit oxidative damage. In the present study, the effect of HOCl on Nrf2 activation was investigated in macrophages, one of the target cells of chlorine gas exposure. Exposure of RAW 264.7 macrophages to HOCl resulted in increased protein levels of Nrf2 in nuclear extractions, as well as a time- and dose-dependent increase in the expression of Nrf2 target genes, including heme oxygenase-1, NAD(P)H:quinone oxidoreductase 1 (NQO-1), glutamate cysteine ligase catalytic subunit (GCLC), and glutathione synthetase (GS). Additionally, intracellular glutathione (GSH), which is the prime scavenger for HOCl in cells, decreased within the first hour of HOCl exposure. The decline was followed by a GSH rebound that surpassed the initial basal levels by up to 4-fold. This reversal in GSH levels closely correlated with the gene expression profile of GCLC and GS. To study the mechanisms of Nrf2 activation in response to HOCl exposure, we examined the effects of several antioxidants on Nrf2-mediated response. Pretreatment with cell-permeable catalase, N-acetyl-L-cysteine or GSH-monoethyl ester markedly reduced expression of NQO-1 and GCLC under HOCl challenge conditions, suggesting intracellular ROS-scavenging capacity affects HOCl-induced Nrf2 activation. Importantly, pre-activation of Nrf2 with low concentrations of pro-oxidants protected the cells against HOCl-induced cell damage. Taken together, we provide direct evidence that HOCl activates Nrf2-mediated antioxidant response, which protects cells from oxidative damage.

  20. Effects of feeding omega-3-fatty acids on fatty acid composition and quality of bovine sperm and on antioxidative capacity of bovine seminal plasma.

    PubMed

    Gürler, Hakan; Calisici, Oguz; Calisici, Duygu; Bollwein, Heinrich

    2015-09-01

    The aim of the present study was to examine the effects of feeding alpha-linolenic (ALA) acid on fatty acid composition and quality of bovine sperm and on antioxidative capacity of seminal plasma. Nine bulls (ALA bulls) were fed with 800 g rumen-resistant linseed oil with a content of 50% linolenic acid and eight bulls with 400 g palmitic acid (PA bulls). Sperm quality was evaluated for plasma membrane and acrosome intact sperm (PMAI), the amount of membrane lipid peroxidation (LPO), and the percentage of sperm with a high DNA fragmentation index (DFI). Fatty acid content of sperm was determined using gas chromatography. Total antioxidant capacity, glutathione peroxidase, and superoxide dismutase activity were determined in seminal plasma. Feeding ALA increased (P < 0.05) the docosahexaenoic acid (DHA) content in bulls whereas in PA bulls did not change. PMAI increased after cryopreservation in ALA bulls as well as in PA bulls during the experiment period (P < 0.005). LPO of sperm directly after thawing did not change during the study period in ALA group, but decreased in PA group (P < 0.006). After 3h of incubation LPO increased in the ALA group (P < 0.02), while LPO did not differ between phases within groups. In conclusion, feeding of neither saturated nor polyunsaturated fatty acids affect the antioxidant levels in seminal plasma. Both saturated as well as polyunsaturated fatty acids had positive effects on quality of cryopreserved bovine sperm, although the content of docosahexaenoic acid in sperm membranes increased only in ALA bulls.

  1. AAV-mediated Sirt1 overexpression in skeletal muscle activates oxidative capacity but does not prevent insulin resistance

    PubMed Central

    Vilà, Laia; Roca, Carles; Elias, Ivet; Casellas, Alba; Lage, Ricardo; Franckhauser, Sylvie; Bosch, Fatima

    2016-01-01

    Type 2 diabetes is characterized by triglyceride accumulation and reduced lipid oxidation capacity in skeletal muscle. SIRT1 is a key protein in the regulation of lipid oxidation and its expression is reduced in the skeletal muscle of insulin resistant mice. In this tissue, Sirt1 up-regulates the expression of genes involved in oxidative metabolism and improves mitochondrial function mainly through PPARGC1 deacetylation. Here we examined whether Sirt1 overexpression mediated by adeno-associated viral vectors of serotype 1 (AAV1) specifically in skeletal muscle can counteract the development of insulin resistance induced by a high fat diet in mice. AAV1-Sirt1-treated mice showed up-regulated expression of key genes related to β-oxidation together with increased levels of phosphorylated AMP protein kinase. Moreover, SIRT1 overexpression in skeletal muscle also increased basal phosphorylated levels of AKT. However, AAV1-Sirt1 treatment was not enough to prevent high fat diet-induced obesity and insulin resistance. Although Sirt1 gene transfer to skeletal muscle induced changes at the muscular level related with lipid and glucose homeostasis, our data indicate that overexpression of SIRT1 in skeletal muscle is not enough to improve whole-body insulin resistance and that suggests that SIRT1 has to be increased in other metabolic tissues to prevent insulin resistance. PMID:27909699

  2. Effect of iron doped lead oxide on the performance of lead acid batteries

    NASA Astrophysics Data System (ADS)

    Liu, Jianwen; Yang, Danni; Gao, Linxia; Zhu, Xinfeng; Li, Lei; Yang, Jiakuan

    2011-10-01

    In order to investigate effect of iron on the performance of lead acid batteries, we systematically study the chemical characteristics, electrochemical characteristics, battery capacity and cycle life using iron-doped lead oxide in this article. Cyclic voltammetry results show that positive discharge current decreases sharply with the increasing content of Fe2O3 from 0.05 wt.% to 2 wt.%. The release of H2 and O2 are promoted accompanying the increase of Fe2O3 contents. The chemical analysis confirms that the strength of Fe3+, Fe2+ concentration is simultaneously increased with the increase of iron contents after 50 voltammetry cycles. X-ray diffraction phase analysis shows that the amount of PbSO4 increases with the increasing iron content in the positive plates after 50 discharge cycles. Morphologies of positive plates show that many agglomerates from PbSO4 crystals appear. The SEM observations illustrate that there is a lower porosity and specific surface area in the positive active material with iron after 50 discharge cycles. The mechanism of iron decreasing capacity, cycle-life and promoting the release of H2 and O2 has been elucidated in details. We support it is the "redox-diffusion" process of multiple-valence iron and formation of PbSO4 on electrodes that result in above performances.

  3. The effect of the thermal reduction temperature on the structure and sorption capacity of reduced graphene oxide materials

    NASA Astrophysics Data System (ADS)

    Dolbin, Alexandr V.; Khlistyuck, Maria V.; Esel'son, Valentin B.; Gavrilko, Viktor G.; Vinnikov, Nikolay A.; Basnukaeva, Razet M.; Maluenda, Irene; Maser, Wolfgang K.; Benito, Ana M.

    2016-01-01

    The influence of reduction temperatures on the structure and the sorption capacity of thermally reduced graphene (TRGO) has been investigated systematically. A set of TRGO materials were prepared by thermal treatment of parent graphene oxide (GO) at five temperatures (T = 200, 300, 500, 700, and 900 °C). Investigations of these materials by X-ray diffraction, Raman spectroscopy and X-ray photoemission spectroscopy methods have shown that both the structure and the residual oxygen functional groups on the TRGO surface can be controlled by varying the temperature of the thermal treatment. The data on the sorption and desorption of 4He, H2, N2, Ne and Kr gases in the temperature interval T = 2-290 K clearly demonstrate that the sorption capacity of TRGO is closely related to the structural changes induced by the treatment temperatures. It is important that the sorption capacities of TRGOs treated at 300 °C and at 900 °C significantly increase for all the gases used. The prominent increase in the sorption capacity at 300 °C is attributed to the structural disorder and liberation of the pores caused by the removal of intercalated water and labile oxygen functional groups (oFGs) favored at this temperature. At 900 °C the sorption capacity increases due to the generation of new defects on the TRGO surface, which provide additional access to the internal space between the folds and sheets of the TRGO structure. By tailoring the structural properties we emphasize the potential of TRGO as a highly efficient sorbent.

  4. Modulation of mitochondrial capacity and angiogenesis by red wine polyphenols via estrogen receptor, NADPH oxidase and nitric oxide synthase pathways.

    PubMed

    Duluc, Lucie; Jacques, Caroline; Soleti, Raffaella; Iacobazzi, Francesco; Simard, Gilles; Andriantsitohaina, Ramaroson

    2013-04-01

    Red wine polyphenolic compounds (RWPC) are reported to exert vasculoprotective properties on endothelial cells, involving nitric oxide (NO) release via a redox-sensitive pathway. This NO release involves the activation of the estrogen receptor-alpha (ERα). Paradoxical effects of a RWPC treatment occur in a rat model of post-ischemic neovascularization, where a low-dose is pro-angiogenic while a higher dose is anti-angiogenic. NO and ERα are key regulators of mitochondrial capacity, and angiogenesis is a highly energetic process associated with mitochondrial biogenesis. However, whether RWPC induces changes in mitochondrial capacity has never been addressed. We investigated the effects of RWPC at low (10(-4)g/l, LCP) and high concentration (10(-2)g/l, HCP) in human endothelial cells. Mitochondrial respiration, expression of mitochondrial biogenesis factors and mitochondrial DNA content were assessed using oxygraphy and quantitative PCR respectively. In vitro capillary formation using ECM gel(®) was also performed. Treatment with LCP increased mitochondrial respiration, with a maximal effect achieved at 48h. LCP also increased expression of several mitochondrial biogenesis factors and mitochondrial DNA content. In contrast, HCP did not affect these parameters. Furthermore, LCP modulated both mitochondrial capacity and angiogenesis through mechanisms sensitive to ER, NADPH oxidase and NO-synthase inhibitors. Finally, the inhibition of mitochondrial protein synthesis abolished the pro-angiogenic capacity of LCP. These results suggest a possible association between the modulation of mitochondrial capacity by LCP and its pro-angiogenic activity. These data provide evidence for a role of mitochondria in the regulation of angiogenesis by RWPC.

  5. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    ERIC Educational Resources Information Center

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  6. The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Clemons, Anthony E.

    2008-01-01

    A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…

  7. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors.

    PubMed

    Yang, Lei; Cheng, Shuang; Ding, Yong; Zhu, Xingbao; Wang, Zhong Lin; Liu, Meilin

    2012-01-11

    We present a high-capacity pseudocapacitor based on a hierarchical network architecture consisting of Co(3)O(4) nanowire network (nanonet) coated on a carbon fiber paper. With this tailored architecture, the electrode shows ideal capacitive behavior (rectangular shape of cyclic voltammograms) and large specific capacitance (1124 F/g) at high charge/discharge rate (25.34 A/g), still retaining ~94% of the capacitance at a much lower rate of 0.25 A/g. The much-improved capacity, rate capability, and cycling stability may be attributed to the unique hierarchical network structures, which improves electron/ion transport, enhances the kinetics of redox reactions, and facilitates facile stress relaxation during cycling.

  8. Reducing capacity, chlorogenic acid content and biological activity in a collection of scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) eggplants.

    PubMed

    Plazas, Mariola; Prohens, Jaime; Cuñat, Amparo Noelia; Vilanova, Santiago; Gramazio, Pietro; Herraiz, Francisco Javier; Andújar, Isabel

    2014-09-26

    Scarlet (Solanum aethiopicum) and gboma (S. macrocarpon) eggplants are important vegetables in Sub-Saharan Africa. Few studies have been made on these crops regarding the diversity of phenolic content and their biological activity. We have studied the reducing activity, the chlorogenic acid and other phenolic acid contents in a collection of 56 accessions of scarlet eggplant, including the four cultivated groups (Aculeatum, Gilo, Kumba, Shum) and the weedy intermediate S. aethiopicum-S. anguivi types, as well as in eight accessions of gboma eggplant, including the cultivated S. macrocarpon and its wild ancestor, S. dasyphyllum. A sample of the accessions evaluated in this collection has been tested for inhibition of nitric oxide (NO) using macrophage cell cultures. The results show that there is a great diversity in both crops for reducing activity, chlorogenic acid content and chlorogenic acid peak area (% of total phenolic acids). Heritability (H2) for these traits was intermediate to high in both crops. In all samples, chlorogenic acid was the major phenolic acid and accounted for more than 50% of the chromatogram peak area. Considerable differences were found among and within groups for these traits, but the greatest values for total phenolics and chlorogenic acid content were found in S. dasyphyllum. In most groups, reducing activity was positively correlated (with values of up to 0.904 in the Aculeatum group) with chlorogenic acid content. Inhibition of NO was greatest in samples having a high chlorogenic acid content. The results show that both crops are a relevant source of chlorogenic acid and other phenolic acids. The high diversity found also indicates that there are good prospects for breeding new scarlet and gboma eggplant cultivars with improved content in phenolics and bioactive properties.

  9. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue-gas desulfurization. Final report, June 1984-June 1986

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1988-02-01

    This report gives results of a study of organic acid-degradation conjugated with sulfite oxidation under flue-gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic-acid degradation rate and sulfite oxidation-rate times the ratio of the concentrations of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of Mn or Fe. However, k12 is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free-radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide (the major product), smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons.

  10. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  11. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria.

    PubMed

    Makrecka-Kuka, Marina; Volska, Kristine; Antone, Unigunde; Vilskersts, Reinis; Grinberga, Solveiga; Bandere, Dace; Liepinsh, Edgars; Dambrova, Maija

    2017-02-05

    Increased plasma concentration of trimethylamine N-oxide (TMAO), a proatherogenic metabolite, has been linked to adverse cardiovascular outcomes; however, it remains unclear whether TMAO is a biomarker or whether it induces direct detrimental cardiovascular effects. Because altered cardiac energy metabolism and mitochondrial dysfunction play crucial roles in the development of cardiovascular diseases, we hypothesized that increased TMAO concentration may alter mitochondrial energy metabolism. The aim of the present study was to determine the effects of TMAO on cardiac mitochondrial energy metabolism. Acute exposure of cardiac fibers to TMAO decreased LEAK (substrate-dependent) and OXPHOS (oxidative phosphorylation-dependent) mitochondrial respiration with pyruvate and impaired substrate flux via pyruvate dehydrogenase. The administration of TMAO at a dose of 120mg/kg for 8 weeks increased TMAO concentration in plasma and cardiac tissues 22-23 times to about 15μM and 11nmol/g, respectively. Long-term TMAO administration decreased mitochondrial LEAK state respiration with pyruvate by 30% without affecting OXPHOS state respiration. However, no significant changes in mitochondrial reactive oxygen species production were observed after acute exposure of cardiac fibers to TMAO under physiological conditions. In addition, both long-term TMAO administration and acute exposure to TMAO decreased respiration with palmitoyl-CoA indicating impaired β-oxidation. Taken together, our results demonstrate that increased TMAO concentration impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Thus, the accumulation of TMAO in cardiac tissues leads to disturbances in energy metabolism that can increase the severity of cardiovascular events.

  12. Regulation of Skeletal Muscle Oxidative Capacity and Muscle Mass by SIRT3

    PubMed Central

    Khalek, Waed Abdel; Ward, Jack Lee; Yang, Henry; Chabi, Béatrice; Wrutniak-Cabello, Chantal; Tong, Qiang

    2014-01-01

    We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the establishment of a transgenic mouse model with muscle-specific expression of the murine SIRT3 short isoform (SIRT3M3). Calorimetry study revealed that the transgenic mice had increased energy expenditure and lower respiratory exchange rate (RER), indicating a shift towards lipid oxidation for fuel usage, compared to control mice. The transgenic mice exhibited better exercise performance on treadmills, running 45% further than control animals. Moreover, the transgenic mice displayed higher proportion of slow oxidative muscle fibers, with increased muscle AMPK activation and PPARδ expression, both of which are known regulators promoting type I muscle fiber specification. Surprisingly, transgenic expression of SIRT3M3 reduced muscle mass up to 30%, likely through an up-regulation of FOXO1 transcription factor and its downstream atrophy gene MuRF-1. In summary, these results suggest that SIRT3 regulates the formation of oxidative muscle fiber, improves muscle metabolic function, and reduces muscle mass, changes that mimic the effects of caloric restriction. PMID:24454908

  13. Regulation of skeletal muscle oxidative capacity and muscle mass by SIRT3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously reported that the expression of mitochondrial deacetylase SIRT3 is high in the slow oxidative muscle and that the expression of muscle SIRT3 level is increased by dietary restriction or exercise training. To explore the function of SIRT3 in skeletal muscle, we report here the esta...

  14. Evaluating and predicting the oxidative stability of vegetable oils with different fatty acid compositions.

    PubMed

    Li, Hongyan; Fan, Ya-wei; Li, Jing; Tang, Liang; Hu, Jiang-ning; Deng, Ze-yuan

    2013-04-01

    The aim of this research was to evaluate the oxidative stabilities and qualities of different vegetable oils (almond, blend 1-8, camellia, corn, palm, peanut, rapeseed, sesame, soybean, sunflower, and zanthoxylum oil) based on peroxide value (PV), vitamin E content, free fatty acid, and fatty acid composition. The vegetable oils with different initial fatty acid compositions were studied under accelerated oxidation condition. It showed that PV and n-3 polyunsaturated fatty acid (PUFA) changed significantly during 21 d accelerated oxidation storage. Based on the changes of PV and fatty acid composition during the oxidation process, mathematical models were hypothesized and the models were simulated by Matlab to generate the proposed equations. These equations were established on the basis of the different PUFA contents as 10% to 28%, 28% to 46%, and 46% to 64%, respectively. The simulated models were proven to be validated and valuable for assessing the degree of oxidation and predicting the shelf life of vegetable oils.

  15. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  16. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone

    SciTech Connect

    Glasius, M.; Lahaniati, M.; Calogirou, A.; Di Bella, D.; Jensen, N.R.; Hjorth, J.; Kotzias, D.; Larsen, B.R.

    2000-03-15

    A series of smog chamber experiments have been conducted in which five cyclic monoterpenes were oxidized by ozone. The evolved secondary aerosol was analyzed by GC-MS and HPLC-MS for nonvolatile polar oxidation products with emphasis on the identification of carboxylic acids. Three classes of compounds were determined at concentration levels corresponding to low percentage molar yields: i.e., dicarboxylic acids, oxocarboxylic acids, and hydroxyketocarboxylic acids. Carboxylic acids are highly polar and have lower vapor pressures than their corresponding aldehydes and may thus play an important role in secondary organic aerosol formation processes. The most abundant carboxylic acids were the following: cis-pinic acid AB1(cis-3-carboxy-2,2-dimethylcyclobutylethanoic acid) from {alpha} and {beta}-pinene; cis-pinonic acid A3 (cis-3-acetyl-2,2-dimethylcyclobutylethanoic acid) and cis-10-hydroxypinonic acid Ab6 (cis-2,2-dimethyl-3-hydroxyacetylcyclobutyl-ethanoic acid) from {alpha}-pinene and {beta}-pinene; cis-3-caric acid C1 (cis-2,2-dimethyl-1,3-cyclopropyldiethanoic acid), cis-3-caronic acid C3 (2,2-dimethyl-3-(2-oxopropyl)cyclopropanylethanoic acid), and cis-10-hydroxy-3-caronic acid C6 (cis-2,2-dimethyl-3(hydroxy-2-oxopropyl)cyclopropanylethanoic acid) from 3-carene; cis-sabinic acid S1 (cis-2-carboxy-1-isopropylcyclopropylethanoic acid) from sabinene; limonic acid L1 (3-isopropenylhexanedioic acid), limononic acid L3 (3-isopropenyl-6-oxo-heptanoic acid), 7-hydroxy-limononic acid L6 (3-isopropenyl-7-hydroxy-6-oxoheptanoic acid), and 7-hydroxylimononic acid Lg{prime} (7-hydroxy-3-isopropenyl-6-oxoheptanoic acid) from limonene.

  17. Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress.

    PubMed

    Arellano-Plaza, Melchor; Gschaedler-Mathis, Anne; Noriega-Cisneros, Ruth; Clemente-Guerrero, Mónica; Manzo-Ávalos, Salvador; González-Hernández, Juan Carlos; Saavedra-Molina, Alfredo

    2013-07-01

    During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth. In this article, we describe the behavior of Kluyveromyces marxianus isolated from spontaneous mezcal fermentation during oxidative stress, and compared it with that of Saccharomyces cerevisiae strains that were also obtained from mezcal, using the W303-1A strain as a reference. S. cerevisiae strains showed greater viability after oxidative stress compared with K. marxianus strains. However, when the yeast strains were grown in the presence of oxidants in the media, K. marxianus exhibited a greater ability to grow in menadione than it did in H2O2. Moreover, when K. marxianus SLP1 was grown in a minibioreactor, its behavior when exposed to menadione was different from its behavior with H2O2. The yeast maintained the ability to consume dissolved oxygen during the 4 h subsequent to the addition of menadione, and then stopped respiration. When exposed to H2O2, the yeast stopped consuming oxygen for the following 8 h, but began to consume oxygen when stressors were no longer applied. In conclusion, yeast isolated from spontaneous mezcal fermentation was able to resist oxidative stress for a long period of time.

  18. Arsenate immobilization associated with microbial oxidation of ferrous ion in complex acid sulfate water.

    PubMed

    Ma, Yingqun; Lin, Chuxia

    2012-05-30

    Chemical, XRD, SEM, RS, FTIR and XPS techniques were used to investigate arsenate immobilization associated with microbial Fe(2+) oxidation in a complex acid sulfate water system consisting of a modified 9 K solution (pH 2.0) plus As, Cu, Cd, Pb, Zn and Mn. At a 1:12.5:70 molar ratio of As:Fe:S, schweretmannite formation was impeded. This was in contrast with the predominant presence of schwertmannite when the heavy metals were absent, suggesting that a schwertmannite binding model is not valid for explaining arsenate immobilization in the complex system. In this study, arsenate was initially immobilized through co-precipitation with non-Fe metals and phosphate. Subsequently when sufficient Fe(3+) was produced from Fe(2+) oxidation, formation of a mixed iron, arsenate and phosphate phase predominated. The last stage involved surface complexation of arsenate species. Pb appeared to play an insignificant role in arsenate immobilization due to its strong affinity for sulfate to form anglesite. Phosphate strongly competed with arsenate for the available binding sites. However, As exhibited an increased capacity to compete with P and S for available binding sites from the co-precipitation to surface complexation stage. Adsorbed As tended to be in HAsO(4)(2-) form. The scavenged arsenate species was relatively stable after 2464-h aging.

  19. Unlocked Nucleic Acids for miRNA detection using two dimensional nano-graphene oxide.

    PubMed

    Robertson, Neil M; Toscano, Amy E; LaMantia, Vincent E; Hizir, Mustafa Salih; Rana, Muhit; Balcioglu, Mustafa; Sheng, Jia; Yigit, Mehmet V

    2017-03-15

    In this study we have used Unlocked Nucleic Acids (UNAs) to discriminate a breast cancer oncomiR from two other miRNAs in the same RNA family using two-dimensional graphene oxide nanoassemblies. Fluorescently labeled single stranded probe strands and graphene oxide nanoassemblies have been used to detect miR-10b and discriminate it from miR-10a, which differs by only a single nucleotide (12th base from the 5' end), and miR-10c, which differs by only two nucleotides (12th and 16th bases from the 5' end). We have determined the discrimination efficacy and detection capacity of a DNA probe with two inserted UNA monomers (UNA2), and compared it to the DNA probe with two purposefully inserted mutations (DNAM2) and full complementary sequence (DNAfull). We have observed that UNA2 is 50 times more powerful than DNAfull in discriminating miR-10b from miR-10c while generating an equally high fluorescence signal. This fluorescence signal was then further enhanced with the use of the highly specific endonuclease dsDNase for an enzymatic amplification step. The results demonstrate that the underutilized UNAs have enormous potential for miRNA detection and offer remarkable discrimination efficacy over single and double mismatches.

  20. Mitochondrial coupling and capacity of oxidative phosphorylation in skeletal muscle of Inuit and Caucasians in the arctic winter.

    PubMed

    Gnaiger, E; Boushel, R; Søndergaard, H; Munch-Andersen, T; Damsgaard, R; Hagen, C; Díez-Sánchez, C; Ara, I; Wright-Paradis, C; Schrauwen, P; Hesselink, M; Calbet, J A L; Christiansen, M; Helge, J W; Saltin, B

    2015-12-01

    During evolution, mitochondrial DNA haplogroups of arctic populations may have been selected for lower coupling of mitochondrial respiration to ATP production in favor of higher heat production. We show that mitochondrial coupling in skeletal muscle of traditional and westernized Inuit habituating northern Greenland is identical to Danes of western Europe haplogroups. Biochemical coupling efficiency was preserved across variations in diet, muscle fiber type, and uncoupling protein-3 content. Mitochondrial phenotype displayed plasticity in relation to lifestyle and environment. Untrained Inuit and Danes had identical capacities to oxidize fat substrate in arm muscle, which increased in Danes during the 42 days of acclimation to exercise, approaching the higher level of the Inuit hunters. A common pattern emerges of mitochondrial acclimatization and evolutionary adaptation in humans at high latitude and high altitude where economy of locomotion may be optimized by preservation of biochemical coupling efficiency at modest mitochondrial density, when submaximum performance is uncoupled from VO2max and maximum capacities of oxidative phosphorylation.

  1. Total Antioxidant Capacity and Total Oxidant Status in Saliva of Periodontitis Patients in Relation to Bacterial Load

    PubMed Central

    Zhang, Taowen; Andrukhov, Oleh; Haririan, Hady; Müller-Kern, Michael; Liu, Shutai; Liu, Zhonghao; Rausch-Fan, Xiaohui

    2016-01-01

    The detection of salivary biomarkers has a potential application in early diagnosis and monitoring of periodontal inflammation. However, searching sensitive salivary biomarkers for periodontitis is still ongoing. Oxidative stress is supposed to play an important role in periodontitis progression and tissue destruction. In this cross-sectional study, we investigated total antioxidant capacity (TAC) and total oxidant status (TOS) in saliva of periodontitis patients compared to healthy controls and their relationship with periodontopathic bacteria and periodontal disease severity. Unstimulated saliva was collected from 45 patients with generalized severe periodontitis and 37 healthy individuals and the TAC/TOS were measured. In addition, salivary levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Fusobacterium nucleatum in saliva were measured. Salivary TAC was lower in periodontitis patients compared to healthy controls. Moreover, a significant negative correlation of salivary TAC with clinical attachment loss was observed in periodontitis patients. No significant difference in the salivary TOS was observed between periodontitis patients and healthy controls. Bacterial load was enhanced in periodontitis patients and exhibited correlation with periodontal disease severity but not with salivary TAC/TOS. Our data suggest that changes in antioxidant capacity in periodontitis patients are not associated with increased bacterial load and are probably due to a dysregulated immune response. PMID:26779448

  2. Trace gas measurements during the Oxidizing Capacity of the Tropospheric Atmosphere campaign 1993 at Izaña

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Nikitas, C.; Parchatka, U.; Zenker, T.; Harris, G. W.; Matuska, P.; Schmitt, R.; Mihelcic, D.; Muesgen, P.; Paetz, H.-W.; Schultz, M.; Volz-Thomas, A.

    1998-06-01

    As part of the Oxidizing Capacity of the Tropospheric Atmosphere (OCTA) project, an intensive measurement campaign was conducted in July/August 1993 at the high-altitude observatory Izaña, Tenerife. Measurements of NO, NO2, NOy, PAN, JNO2, CO, VOC, HCHO, H2O2, O3, and ROx were made to study the photochemical processes which control the oxidizing capacity of the remote troposphere. Special attention was paid to the processes controlling the budget of ozone. Diurnal changes in the concentration of the species resulted primarily from the transition between downslope flow (usually free tropospheric air) and upslope flow (a mixture of marine boundary layer air and free tropospheric air modified by island emissions). Median concentrations for downslope and upslope conditions were NOx (47/76 parts per trillion by volume (pptv)), NOy (392/519 pptv), peroxyacetylnitrate (PAN) (10/23 pptv), CO (89/92 parts per billion by volume (ppbv), ethane (499/486 pptv), propane (35/40 pptv), ethene (25/31 pptv), isoprene (0/60 pptv), HCHO (1.1/1.4 ppbv), H2O2 (2.4/2.1 ppbv), and O3 (40/38 ppbv). Maximum amounts of ROx were measured around noon and reached values up to 70 pptv with no observable signal in the night during downslope conditions.

  3. Total Antioxidant Capacity and Total Oxidant Status in Saliva of Periodontitis Patients in Relation to Bacterial Load.

    PubMed

    Zhang, Taowen; Andrukhov, Oleh; Haririan, Hady; Müller-Kern, Michael; Liu, Shutai; Liu, Zhonghao; Rausch-Fan, Xiaohui

    2015-01-01

    The detection of salivary biomarkers has a potential application in early diagnosis and monitoring of periodontal inflammation. However, searching sensitive salivary biomarkers for periodontitis is still ongoing. Oxidative stress is supposed to play an important role in periodontitis progression and tissue destruction. In this cross-sectional study, we investigated total antioxidant capacity (TAC) and total oxidant status (TOS) in saliva of periodontitis patients compared to healthy controls and their relationship with periodontopathic bacteria and periodontal disease severity. Unstimulated saliva was collected from 45 patients with generalized severe periodontitis and 37 healthy individuals and the TAC/TOS were measured. In addition, salivary levels of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, and Fusobacterium nucleatum in saliva were measured. Salivary TAC was lower in periodontitis patients compared to healthy controls. Moreover, a significant negative correlation of salivary TAC with clinical attachment loss was observed in periodontitis patients. No significant difference in the salivary TOS was observed between periodontitis patients and healthy controls. Bacterial load was enhanced in periodontitis patients and exhibited correlation with periodontal disease severity but not with salivary TAC/TOS. Our data suggest that changes in antioxidant capacity in periodontitis patients are not associated with increased bacterial load and are probably due to a dysregulated immune response.

  4. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  5. Manoyl oxide alpha-arabinopyranoside and grindelic acid diterpenoids from Grindelia integrifolia.

    PubMed

    Ahmed, A A; Mahmoud, A A; Ahmed, U M; El-Bassuony, A A; Abd El-Razk, M H; Pare, P W; Karchesy, J

    2001-10-01

    Two new manoyl oxide-alpha-arabinopyranoside diterpenoids, 15-hydroxy-13-epi-manoyl oxide-14-O-alpha-L-arabinopyranoside (tarapacol-14-O-alpha-L-arabinopyranoside) (1) and 15-acetoxy-13-epi-manoyl oxide-14-O-alpha-L-arabinopyranoside (tarapacol-15-acetate-14-O-alpha-L-arabinopyranoside) (2), as well as a new grindelic acid derivative, 19-hydroxygrindelic acid (3), together with five known diterpenoids (tarapacol, tarapacanol A, grindelic acid, methyl grindeloate, 3beta-hydroxygrindelic acid, 4) were isolated from the aerial parts of Grindelia integrifolia. The structures of 1-3 were elucidated by spectral data analysis.

  6. Use of Sodium Butyrate as an Alternative to Dietary Fiber: Effects on the Embryonic Development and Anti-Oxidative Capacity of Rats

    PubMed Central

    Lin, Yan; Fang, Zheng-feng; Che, Lian-qiang; Xu, Sheng-yu; Wu, De; Wu, Cai-mei; Wu, Xiu-qun

    2014-01-01

    In this study, we evaluated the effect of replacing dietary fiber with sodium butyrate on reproductive performance and antioxidant defense in a high fat diet during pregnancy by using a rat model. Eighty virgin female Sprague Dawley rats were fed one of four diets—(1) control diet (C group), (2) high fat + high fiber diet (HF group), (3) high-fat +5% sodium butyrate diet (SB group), and (4) HF diet + α-cyano-4-hydroxy cinnamic acid (CHC group)—intraperitoneally on days 8, 10, 12, 14, and 16 of gestation. SB and dietary fiber had similar effects on improving fetal number and reducing the abortion rate; however, the anti-oxidant capacity of maternal serum, placenta, and fetus was superior in the HF group than in the SB group. In comparison, CHC injection decreased reproductive performance and antioxidant defense. Both dietary fiber (DF) and SB supplementation had a major but different effect on the expression of anti-oxidant related genes and nutrient transporters genes. In summary, our data indicate that SB and DF showed similar effect on reproductive performance, but SB cannot completely replace the DF towards with respect to redox regulation in high-fat diet; and SB might influence offspring metabolism and health differently to DF. PMID:24852604

  7. The indicator amino acid oxidation method identified limiting amino acids in two parenteral nutrition solutions in neonatal piglets.

    PubMed

    Brunton, Janet A; Shoveller, Anna K; Pencharz, Paul B; Ball, Ronald O

    2007-05-01

    Recent studies using the indicator amino acid oxidation (IAAO) technique in TPN-fed piglets and infants have been instrumental in defining parenteral amino acid requirements. None of the commercial products in use are ideal when assessed against these new data. Our objectives were to determine whether the oxidation of an indicator amino acid would decline with the addition of amino acids that were limiting in the diets of TPN-fed piglets, and to use this technique to identify limiting amino acids in a new amino acid profile. Piglets (n = 26) were randomized to receive TPN with amino acids provided by Vaminolact (VM) or by a new profile (NP). After 5 d of TPN administration, lysine oxidation was measured using a constant infusion of L- [1-(14)C]-lysine. Immediately following the first IAAO study, the piglets were further randomized within diet group to receive either 1) supplemental aromatic amino acids (AAA), 2) sulfur amino acids (SAA) or 3) both (AAA+SAA) (n = 4-5 per treatment group). A second IAAO study was carried out 18 h later. In the first IAAO study, lysine oxidation was high for both groups (18 vs. 21% for VM and NP, respectively, P = 0.055). The addition of AAA to VM induced a 30% decline in lysine oxidation compared with baseline (P < 0.01). Similarly, SAA added to NP lowered lysine oxidation by approximately 30% (P < 0.01). The application of the IAAO technique facilitates rapid evaluation of the amino acids that are limiting to protein synthesis in parenteral solutions.

  8. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle.

    PubMed

    Hoshino, Daisuke; Yoshida, Yuko; Kitaoka, Yu; Hatta, Hideo; Bonen, Arend

    2013-03-01

    High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30-55 m·min(-1)), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and β-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.

  9. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  10. Influence of fatty acid on lipase-catalyzed synthesis of ascorbyl esters and their free radical scavenging capacity.

    PubMed

    Stojanović, Marija; Carević, Milica; Mihailović, Mladen; Veličković, Dušan; Dimitrijević, Aleksandra; Milosavić, Nenad; Bezbradica, Dejan

    2015-01-01

    Fatty acid (FA) ascorbyl esters are recently emerging food, cosmetic, and pharmaceutical additives, which can be prepared in an eco-friendly way by using lipases as catalysts. Because they are amphiphilic molecules, which possess high free radical scavenging capacity, they can be applied as liposoluble antioxidants as well as emulsifiers and biosurfactants. In this study, the influence of a wide range of acyl donors on ester yield in lipase-catalyzed synthesis and ester antioxidant activity was examined. Among saturated acyl donors, higher yields and antioxidant activities of esters were achieved when short-chain FAs were used. Oleic acid gave the highest yield overall and its ester exhibited a high antioxidant activity. Optimization of experimental factors showed that the highest conversion (60.5%) in acetone was achieved with 5 g L(-1) of lipase, 50 mM of vitamin C, 10-fold molar excess of oleic acid, and 0.7 mL L(-1) of initial water. Obtained results showed that even short- and medium-chain ascorbyl esters could be synthesized with high yields and retained (or even exceeded) free radical scavenging capacity of l-ascorbic acid, indicating prospects of broadening their application in emulsions and liposomes.

  11. High oxidative capacity and type IIx fibre content in springbok and fallow deer skeletal muscle suggest fast sprinters with a resistance to fatigue.

    PubMed

    Curry, Jennifer Wendy; Hohl, Rodrigo; Noakes, Timothy David; Kohn, Tertius Abraham

    2012-11-15

    Some wild antelopes are fast sprinters and more resistant to fatigue than others. This study therefore investigated two wild antelope species to better understand their reported performance capability. Muscle samples collected post mortem from the vastus lateralis and longissimus lumborum of fallow deer (Dama dama) and springbok (Antidorcas marsupialis) were analysed for myosin heavy chain isoform content, citrate synthase, 3-hydroxyacyl CoA dehydrogenase, phosphofructokinase, lactate dehydrogenase and creatine kinase activities. Cross-sectional areas, fibre type and oxidative capacities of each fibre type were determined in the vastus lateralis only. The predominant fibre type in both muscle groups and species were type IIX (>50%), with springbok having more type IIX fibres than fallow deer (P<0.05). Overall cross-sectional area was not different between the two species. The metabolic pathway analyses showed high glycolytic and oxidative capacities for both species, but springbok had significantly higher CS activities than fallow deer. Large variation and overlap in oxidative capacities existed within and between the fibre types. Some type IIX fibres presented with oxidative capacities similar to those from type I and IIA fibres. The data suggest that springbok and fallow deer are able sprint at >90 and 46 km h(-1), respectively, partly from having large type IIX fibre contents and high glycolytic capacities. The high oxidative capacities also suggest that these animals may be able to withstand fatigue for long periods of time.

  12. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals — A review

    PubMed Central

    Lee, M. T.; Lin, W. C.; Yu, B.; Lee, T. T.

    2017-01-01

    Oxidative stress suppresses animal health, performance, and production, subsequently impacting economic feasibility; hence, maintaining and improving oxidative status especially through natural nutrition strategy are essential for normal physiological process in animals. Phytochemicals are naturally occurring antioxidants that could be considered as one of the most promising materials used in animal diets in various forms. In this review, their antioxidant effects on animals are discussed as reflected by improved apparent performance, productivity, and the internal physiological changes. Moreover, the antioxidant actions toward animals further describe a molecular basis to elucidate their underlying mechanisms targeting signal transduction pathways, especially through the antioxidant response element/nuclear factor (erythroid-derived 2)-like 2 transcription system. PMID:27660026

  13. Study on the reversible capacity loss of layered oxide cathode during low-temperature operation

    NASA Astrophysics Data System (ADS)

    Li, Yiyang; Qian, Kun; He, Yan-Bing; Kaneti, Yusuf Valentino; Liu, Dongqing; Luo, Dan; Li, Hai; Li, Baohua; Kang, Feiyu

    2017-02-01

    In this study, commercial Li(Ni1/3Co1/3Mn1/3)O2/graphite (NCM/C) lithium-ion batteries were cycled at -10 °C under different current rates ranging from 0.2 C to 1C. Electrochemical measurements and post-mortem analysis were performed to identify the root causes of the degradation in the electrochemical performance of the cells. The results reveal that apart from the increase of lithium plating on the anode, there is a considerable and abnormal capacity loss on the NCM cathode with the increase in current rate. The different degradation mechanisms including the loss of lithium inventory (LLI) and the specific capacity loss of NCM material (LAM) during cycling at -10 °C were analyzed quantitatively. It is shown that the evolution trend of LLI with the increase in current rate (8.6%, 35.0%, 55.8% for 0.2 C, 0.5 C and 1 C respectively) corresponds closely to that of the capacity loss of the full-cells (8.6%, 45.5%, 63.6% for 0.2 C, 0.5 C and 1 C, respectively), which is different to the trend of LAM (7.2%, 8.8%, 22.3% for 0.2 C, 0.5 C and 1 C, respectively). Further analysis by XRD and HR-TEM clearly indicates that the crystallinity of the hexagonal layered structure of NCM was greatly impaired after low-temperature cycling at -10 °C, and spinel phase can be observed among the layered structure.

  14. Impact of iron and folic acid supplementation on oxidative stress during pregnancy.

    PubMed

    Lymperaki, E; Tsikopoulos, A; Makedou, K; Paliogianni, E; Kiriazi, L; Charisi, C; Vagdatli, E

    2015-01-01

    The aim of the study was to assess serum total antioxidant capacity (TAC) and the impact of supplements on oxidative stress (OS) during pregnancy. Fifty volunteer pregnant women (21-40 years old), in the 12 ± 2 weeks' and 38 ± 2 weeks' gestation of pregnancy (study group), and 25 non-pregnant healthy women (control group) were enrolled. All pregnant women were divided into two age groups (A1: < 35 years and A2: ≥ 35 years) and four groups according to supplementation (B1: iron, B2: folic acid, B3: both and B4: none). Antioxidant activity was assayed using the TAC kit (Cayman Chemical Co.). Level of statistical significance was p < 0.05. Serum TAC values in all pregnant women in the first trimester were significantly lower, as compared with those of the control group. Levels of TAC increased significantly in the third trimester of pregnancy, especially with folic acid or no supplementation. In conclusion, pregnancy is associated with OS, which is promoted by the administration of iron supplementation.

  15. Black Conductive Titanium Oxide High-Capacity Materials for Battery Electrodes

    SciTech Connect

    Han, W.

    2011-05-18

    Stoichiometric titanium dioxide (TiO{sub 2}) is one of the most widely studied transitionmetal oxides because of its many potential applications in photoelectrochemical systems, such as dye-sensitized TiO{sub 2} electrodes for photovoltaic solar cells, and water-splitting catalysts for hydrogen generation, and in environmental purification for creating or degrading specific compounds. However, TiO{sub 2} has a wide bandgap and high electrical resistivity, which limits its use as an electrode. A set of non-stoichiometric titanium oxides called the Magneli phases, having a general formula of Ti{sub n}O{sub 2n-1} with n between 4 and 10, exhibits lower bandgaps and resistivities, with the highest electrical conductivities reported for Ti{sub 4}O{sub 7}. These phases have been formulated under different conditions, but in all reported cases the resulting oxides have minimum grain sizes on the order of micrometers, regardless of the size of the starting titanium compounds. In this method, nanoparticles of TiO{sub 2} or hydrogen titanates are first coated with carbon using either wet or dry chemistry methods. During this process the size and shape of the nanoparticles are 'locked in.' Subsequently the carbon-coated nanoparticles are heated. This results in the transformation of the original TiO{sub 2} or hydrogen titanates to Magneli phases without coarsening, so that the original size and shape of the nanoparticles are maintained to a precise degree. People who work on batteries, fuel cells, ultracapacitors, electrosynthesis cells, electro-chemical devices, and soil remediation have applications that could benefit from using nanoscale Magneli phases of titanium oxide. Application of these electrode materials may not be limited to substitution for TiO{sub 2} electrodes. Combining the robustness and photosensitivity of TiO{sub 2} with higher electrical conductivity may result in a general electrode material.

  16. Thermodynamic Modeling of Sulfide Capacity of Na2O-Containing Oxide Melts

    NASA Astrophysics Data System (ADS)

    Moosavi-Khoonsari, Elmira; Jung, In-Ho

    2016-10-01

    Thermodynamic modeling of the sulfide dissolution in the Na2O-FetO-CaO-MgO-MnO-Al2O3-SiO2 multicomponent slags was performed to investigate the desulfurization of hot metal using Na2O-containing fluxes. The dissolution behavior of sulfur in the melts was modeled using the modified quasi-chemical model in the quadruplet approximation. This model can take into account the short-range ordering and the reciprocal exchange reaction of cations and anions in oxy-sulfide slags. Experimental sulfide capacity data were well predicted from the model with only three model parameters.

  17. Low-energy cranberry juice decreases lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.

    PubMed

    Basu, Arpita; Betts, Nancy M; Ortiz, Jennifer; Simmons, Brandi; Wu, Mingyuan; Lyons, Timothy J

    2011-03-01

    Cranberries, high in polyphenols, have been associated with several cardiovascular health benefits, although limited clinical trials have been reported to validate these findings. We tested the hypothesis that commercially available low-energy cranberry juice (Ocean Spray Cranberries, Inc, Lakeville-Middleboro, Mass) will decrease surrogate risk factors of cardiovascular disease, such as lipid oxidation, inflammation, and dyslipidemia, in subjects with metabolic syndrome. In a randomized, double-blind, placebo-controlled trial, participants identified with metabolic syndrome (n = 15-16/group) were assigned to 1 of 2 groups: cranberry juice (480 mL/day) or placebo (480 mL/day) for 8 weeks. Anthropometrics, blood pressure measurements, dietary analyses, and fasting blood draws were conducted at screen and 8 weeks of the study. Cranberry juice significantly increased plasma antioxidant capacity (1.5 ± 0.6 to 2.2 ± 0.4 μmol/L [means ± SD], P < .05) and decreased oxidized low-density lipoprotein and malondialdehyde (120.4 ± 31.0 to 80.4 ± 34.6 U/L and 3.4 ± 1.1 to 1.7 ± 0.7 μmol/L, respectively [means ± SD], P < .05) at 8 weeks vs placebo. However, cranberry juice consumption caused no significant improvements in blood pressure, glucose and lipid profiles, C-reactive protein, and interleukin-6. No changes in these parameters were noted in the placebo group. In conclusion, low-energy cranberry juice (2 cups/day) significantly reduces lipid oxidation and increases plasma antioxidant capacity in women with metabolic syndrome.

  18. Biomass Burning and Natural Emissions in the Amazon Rainforest: Impact on the Oxidative Capacity of the Atmosphere

    NASA Astrophysics Data System (ADS)

    dos Santos, F. C.; Guenther, A. B.; Longo, K.; Freitas, S. R.; Moreira, D. S.; Flávio, L.; Braz, R.; Brito, J.; Oram, D.; Forster, G.; Lee, J. D.; Bauguitte, S.

    2015-12-01

    Terrestrial vegetation, especially tropical forests, releases large amounts of biogenic volatile organic compounds (BVOC) into the atmosphere. The global emissions of BVOC (~1000 Tg C/year) are dominant in relation to anthropogenic volatile organic compounds (~100 Tg C/year), with biomass burning contributing close to 10 - 50 Tg C/year. Tropical trees cover about 18% of the global land surface but are estimated to be responsible for approximately 80% of terpenoid and 50% of other BVOCs emissions. Considering the importance of these emissions, the SAMBBA (South American Biomass Burning Analysis) experiment, which occurred during the dry season (September 2012) in the Amazon Rainforest, provided information about the chemical composition of the atmosphere through measurements on the aircraft FAAM BAE-146. Although primarily focused on biomass burning flights, the SAMBBA project carried out other flights providing indirect oxidative capacity data in different environments: natural emission dominated flights and biomass burning flights with fresh plumes (< 2 hours) and aged plumes (> 2 hours). Calculation of the [MVK+MACR]/[Isoprene] ratio enabled investigation of the impact of biomass burning on surface oxidation in comparison to the natural emission flights. During the morning (altitude < 500m), the [MVK+MACR]/[Isoprene] values for natural emission flights (1.0±0.4), fresh plume (1.9±0.6) and aged plume (1.4±0.6) suggest that biomass burning enhances BVOC oxidation in relation to the lifetime of the air mass. This study aims to improve the knowledge about the oxidative capacity of the atmosphere, which depends not only on chemical composition, but also other factors like the history of the air mass trajectories influencing the availability of these compounds, the NOx dependence of isoprene oxidation and whether the chemistry is dominated by OH or O3. A synergistic approach integrating observation and modeling, using 3D numerical model of chemical transport (CCATT

  19. Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering.

    PubMed

    Shao, Yafang; Xu, Feifei; Sun, Xiao; Bao, Jinsong; Beta, Trust

    2014-01-15

    This study investigated differences in total phenolic content (TPC), antioxidant capacity, and phenolic acids in free, conjugated and bound fractions of white (unpolished), red and black rice at 1-, 2-, and 3-weeks of grain development after flowering and at maturity. Unlike the TPC (mg/100g) of white rice (14.6-33.4) and red rice (66.8-422.2) which was significantly higher at 1-week than at later stages, the TPC of black rice (56.5-82.0) was highest at maturity. The antioxidant capacity measured by DPPH radical scavenging and ORAC methods generally followed a similar trend as TPC. Only black rice had detectable anthocyanins (26.5-174.7mg/100g). Cyanidin-3-glucoside (C3G) and peonidin-3-glucoside (P3G) were the main anthocyanins in black rice showing significantly higher levels at 2- and 3-weeks than at 1-week development and at maturity. At all stages, the phenolic acids existed mainly in the bound form as detected by HPLC and confirmed by LC-MS/MS. Black rice (20.1-31.7mg/100g) had higher total bound phenolic acids than white rice and red rice (7.0-11.8mg/100g). Protocatechuic acid was detected in red rice and black rice with relatively high levels at 1-week development (1.41mg/100g) and at maturity (4.48mg/100g), respectively. Vanillic acid (2.4-5.4mg/100g) was detected only in black rice where it peaked at maturity. p-Coumaric acid (<3.5mg/100g) did not differ significantly at most stages with somewhat high levels at 1-week for red and black rice. Ferulic acid (4.0-17.9mg/100g), the most abundant bound phenolic acid, had an inconsistent trend with higher levels being observed in black rice where it peaked at maturity. Isoferulic acid levels (0.8-1.6mg/100g) were generally low with slightly elevated values being observed at maturity. Overall black rice had higher total bound phenolic acids than white and red rice while white rice at all stages of development after flowering.

  20. NOVEL POLY-GLUTAMIC ACID FUNCTIONALIZED MICROFILTRATION MEMBRANES FOR SORPTION OF HEAVY METALS AT HIGH CAPACITY

    EPA Science Inventory

    Various sorbent/ion exchange materials have been reported in the literature for metal ion entrapment. We have developed a highly innovative and new approach to obtain high metal pick-up utilizing poly-amino acids (poly-L-glutamic acid, 14,000 MW) covalently attached to membrane p...

  1. Oxalic acid capped iron oxide nanorods as a sensing platform.

    PubMed

    Sharma, Anshu; Baral, Dinesh; Bohidar, H B; Solanki, Pratima R

    2015-08-05

    A label free impedimetric immunosensor has been fabricated using protein bovine serum albumin (BSA) and monoclonal antibodies against Vibrio cholerae (Ab) functionalized oxalic acid (OA) capped iron oxide (Fe3O4) nanorods for V. cholerae detection. The structural and morphological studies of Fe3O4 and OA-Fe3O4, were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, OA-Fe3O4 nanorods were obtained as about 29±1 and 39±1nm, respectively. The hydrodynamic radius of nanorods is found as 116nm (OA-Fe3O4) and 77nm (Fe3O4) by DLS measurement. Cytotoxicity of Fe3O4 and OA-Fe3O4 nanorods has been investigated in the presence of human epithelial kidney (HEK) cell line 293 using MTT assay. The cell viability and proliferation studies reveal that the OA-Fe3O4 nanorods facilitate cell growth. The results of electrochemical response studies of the fabricated BSA/Ab/OA-Fe2O3/ITO immunosensor exhibits good linearity in the range of 12.5-500ng mL(-1) with low detection limit of 0.5ng mL(-1), sensitivity 0.1Ωng(-1)ml(-1)cm(-2) and reproducibility more than 11 times.

  2. Stannous sulfate as an electrolyte additive for lead acid battery made from a novel ultrafine leady oxide

    NASA Astrophysics Data System (ADS)

    Wang, Qin; Liu, Jianwen; Yang, Danni; Yuan, Xiqing; Li, Lei; Zhu, Xinfeng; Zhang, Wei; Hu, Yucheng; Sun, Xiaojuan; Liang, Sha; Hu, Jingping; Kumar, R. Vasant; Yang, Jiakuan

    2015-07-01

    The effects of SnSO4 as an electrolyte additive on the microstructure of positive plate and electrochemical performance of lead acid battery made from a novel leady oxide are investigated. The novel leady oxide is synthesized through leaching of spent lead paste in citric acid solution. The novel leady oxides are used to prepare working electrode (WE) subjected to electrochemical cyclic voltammetry (CV) tests. Moreover, the novel leady oxides are used as active materials of positive plate assembled as a testing battery of 1.85 A h capacity. In CV tests, SEM/EDX results show that the major crystalline phase of the paste in WE after CV cycles is PbSO4. The larger column-shaped PbSO4 crystals easily generate in the paste of WE without an electrolyte additive of SnSO4. However, PbSO4 crystals significantly become smaller with the addition of SnSO4 in the electrolyte. In batteries testing, SEM results show that an electrolyte additive of SnSO4 could effectively decrease PbO2 particle size in the positive active materials of the teardown battery at the end of charging procedure. It is indicated that an electrolyte additive of SnSO4 could have a positive influence on restraining larger particles of irreversible sulfation in charge/discharge cycles of battery testing.

  3. Trace H2 O2 -Assisted High-Capacity Tungsten Oxide Electrochromic Batteries with Ultrafast Charging in Seconds.

    PubMed

    Zhao, Jinxiong; Tian, Yuyu; Wang, Zhen; Cong, Shan; Zhou, Di; Zhang, Qingzhu; Yang, Mei; Zhang, Weikun; Geng, Fengxia; Zhao, Zhigang

    2016-06-13

    A recent technological trend in the field of electrochemical energy storage is to integrate energy storage and electrochromism functions in one smart device, which can establish efficient user-device interactions based on a friendly human-readable output. This type of newly born energy storage technology has drawn tremendous attention. However, there is still plenty of room for technological and material innovation, which would allow advancement of the research field. A prototype Al-tungsten oxide electrochromic battery with interactive color-changing behavior is reported. With the assistance of trace amount of H2 O2 , the battery exhibits a specific capacity almost seven times that for the reported electrochromic batteries, up to 429 mAh g(-1) . Fast decoloration of the reduced tungsten oxide affords a very quick charging time of only eight seconds, which possibly comes from an intricate combination of structure and valence state changes of tungsten oxide. This unique combination of features may further advance the development of smart energy storage devices with suitability for user-device interactions.

  4. Simultaneous determination of cation exchange capacity and surface area of acid activated bentonite powders by methylene blue sorption

    NASA Astrophysics Data System (ADS)

    Yener, Nilgün; Biçer, Cengiz; Önal, Müşerref; Sarıkaya, Yüksel

    2012-01-01

    To distinguish the ion exchanged and physically adsorbed methylene blue cations (MB+) on ionic surfaces, acid activated bentonite samples were used as porous adsorbents. A natural calcium bentonite (CaB) sample from Enez/Edirne, Turkey, was acid activated at 90 °C for 16 h with various HCl/CaB ratios. The irreversible exchange and physical adsorption of MB+ cations on the ionic solids have simultaneously occurred. The ion exchanged (mex) and physically adsorbed (mad) MB+ contents were obtained as the values of sorption capacity at c = 0 and the increase to a plateaus of adsorption isotherms, respectively. The mad value was taken to be monolayer adsorption capacity. Cation exchange capacity (CEC) and specific surface area (SMB) for each sample were calculated from the mex and mad values, respectively. Also, the BET specific surface areas (SBET) and pore size distribution were determined from low temperature nitrogen adsorption/desorption data. A linear correlation between the SMB and SBET values was found.

  5. Effects of polymannuronate on performance, antioxidant capacity, immune status, cecal microflora, and volatile fatty acids in broiler chickens.

    PubMed

    Zhu, Wenhui; Li, Defa; Wang, Jianhong; Wu, Hui; Xia, Xuan; Bi, Wanghua; Guan, Huashi; Zhang, Liying

    2015-03-01

    The aim of this study was to assess the effects of purified polymannuronate (PM) obtained from marine brown algae on the performance, antioxidant capacity, immune status, and cecal fermentation profile of broiler chickens. In a 42 d experiment, 540 (average BW 43.77±1.29 g) 1-d-old Arbor Acres male broilers were randomly divided into 5 treatments with 6 replicates of 18 chicks and fed a corn and soybean meal (SBM)-based diet supplemented with 0, 1, 2, 3, or 4 g/kg polymannuronate. Adding polymannuronate to the broiler chickens' diets resulted in a significantly increased ADG and improved feed conversion compared with the control treatment. From d 1 to 42, the ADG of broilers fed 1, 2, 3, or 4 g/kg of polymannuronate was increased by 2.58, 4.33, 4.20, and 3.47%, respectively. Furthermore, parameters related to immune status, antioxidant capacity, and composition of the cecal microflora in broiler chickens fed the polymannuronate-containing diets were altered compared with broiler chickens fed a diet without polymannuronate. Supplementation with polymannuronate significantly increased the concentrations of lactic acid and acetic acid in the cecum compared with the control group. The results indicate that polymannuronate has the potential to improve broiler chicken immune status, antioxidant capacity, and performance.

  6. Bio-inspired amino acid oxidation by a non-heme iron catalyst.

    PubMed

    Góger, Szabina; Bogáth, Dóra; Baráth, Gábor; Simaan, A Jalila; Speier, Gábor; Kaizer, József

    2013-06-01

    This study reports the kinetics and mechanism of Fe(III)-catalyzed oxidative decarboxylation and deamination of a series of acyclic (α-aminoisobutyric acid, α-(methylamino)isobutyric acid, alanine, norvaline, and 2-aminobutyric acid) and cyclic (1-aminocyclopropane-1-carboxylic acid, 1-amino-1-cyclobutanecarboxylic acid, 1-aminocyclopentanecarboxylic acid, and 1-aminocyclohexanecarboxylicacid) amino acids using hydrogen peroxide, t-butyl hydroperoxide, iodosylbenzene, m-chloroperbenzoic acid, and peroxomonosulphate as oxidant in 75% DMF-25% water solvent mixture. Model complex [Fe(IV)O(SALEN)](•+) (SALENH2: N,N'-bis(salicylidene)ethylenediamine) was generated by the reaction of Fe(III)(SALEN)Cl and H2O2 in CH3CN at 278 K as reported earlier. This method provided us high-valent oxoiron species, stable enough to ensure the direct observation of the reaction with amino acids.

  7. Conjugated linoleic acid (CLA) promotes endurance capacity via peroxisome proliferator-activated receptor δ-mediated mechanism in mice.

    PubMed

    Kim, Yoo; Kim, Daeyoung; Park, Yeonhwa

    2016-12-01

    Previously, it was reported that conjugated linoleic acid (CLA) with exercise training potentially improved endurance capacity via the peroxisome proliferator-activated receptor δ (PPARδ)-mediated mechanism in mice. This study determined the role of exercise and/or CLA in endurance capacity and PPARδ-associated regulators. Male 129Sv/J mice were fed either control (soybean oil) or CLA (0.5%) containing diets for 4 weeks and were further divided into sedentary or training regimes. CLA supplementation significantly reduced body weight and fat mass independent of exercise during the experimental period. Endurance capacity was significantly improved by CLA supplementation, while no effect of exercise was observed. Similarly, CLA treatment significantly increased expressions of sirtuin 1 and PPARγ coactivator-1α, up-stream regulators of PPARδ, in both sedentary and trained animals. With respect to downstream markers of PPARδ, CLA up-regulated the key biomarker needed to stimulate mitochondrial biogenesis, nuclear respiratory factor 1. Moreover, CLA supplementation significantly induced overall genes associated with muscle fibers, such as type I (slow-twitch) and type II (fast twitch). Taken together, it suggests that CLA improves endurance capacity independent of mild-intensity exercise via PPARδ-mediated mechanism.

  8. Pioglitazone restores phagocyte mitochondrial oxidants and bactericidal capacity in Chronic Granulomatous Disease

    PubMed Central

    Fernandez-Boyanapalli, Ruby F.; Frasch, S. Courtney; Thomas, Stacey M.; Malcolm, Kenneth C.; Nicks, Michael; Harbeck, Ronald J.; Jakubzick, Claudia V.; Nemenoff, Raphael; Henson, Peter M.; Holland, Steven M.; Bratton, Donna L.

    2015-01-01

    Background Deficient production of reactive oxygen species (ROS) by the phagocyte NADPH oxidase in Chronic Granulomatous Disease (CGD) results in susceptibility to certain pathogens secondary to impaired oxidative killing and mobilization of other phagocyte defenses. PPARγ agonists including pioglitazone (Pio), approved for Type 2 diabetes therapy, alter cellular metabolism and can heighten ROS production. It was hypothesized that Pio treatment of gp91phox−/− mice, a murine model of human CGD, would enhance phagocyte oxidant production and killing of S. aureus, a significant pathogen in this disorder. Objectives We sought to determine if Pio treatment of gp91phox−/− mice enhanced phagocyte oxidant production and host defense. Methods Wild type (WT) and gp91phox−/− mice were treated with the PPARγ agonist Pio, and phagocyte ROS and killing of S. aureus investigated. Results As demonstrated by three different ROS sensing probes, short-term treatment of gp91phox−/− mice with Pio enhanced stimulated ROS production in neutrophils and monocytes from blood and neutrophils and inflammatory macrophages recruited to tissues. Mitochondria were identified as the source of ROS (mtROS). Findings were replicated in human CGD monocytes following ex vivo Pio treatment. Importantly, while mtROS were deficient in gp91phox−/− phagocytes, their restoration with treatment significantly enabled killing of S. aureus both ex vivo and in vivo. Conclusions Together, the data support the hypothesis that signaling from the NADPH oxidase under normal circumstances governs phagocyte mtROS production, and that such signaling is lacking in the absence of a functioning phagocyte oxidase. PPARγ agonism appears to bypass the need for the NADPH oxidase for enhanced mtROS production and partially restores host defense in CGD. PMID:25498313

  9. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Pandey, Chandra Mouli; Sharma, Aditya; Sumana, Gajjala; Tiwari, Ida; Malhotra, Bansi Dhar

    2013-04-01

    Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (ks) of 61.73 s-1. Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10-14 M and is found to retain about 81% of the initial activity after 9 cycles of use.Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the

  10. Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching.

    PubMed

    Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-08-15

    A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved.

  11. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  12. Oxidative degradation of bis (2,4,4-trimethylpentyl) dithiophosphinic acid in nitric acid studied by electrospray ionization mass spectrometry

    SciTech Connect

    G. S. Groenewold; D. R. Peterman

    2012-10-01

    Samples of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301) were analyzed using direct infusion electrospray ionization mass spectrometry. Positive ion spectra of standard and stereo-pure acids displayed ions typical of the unmodified compound, cationized monomeric and dimeric cluster ion species. In addition, a significant ions 2 u less than the dimeric clusters were seen, that correspond to an oxidatively coupled species designated Cyx2 that is observed as H- or Na-cationized species in the electrospray analyses. Based on uncorrected ion intensities, Cyx2 is estimated to account for about 20% of the total in the standard materials. When samples that were contacted with 3 M HNO3 were analyzed, the positive ion spectrum consisted nearly entirely of ions derived from the oxidatively coupled product, indicating that the acid promotes coupling. The negative ion spectra of the standard acids consisted nearly entirely of the conjugate base that is formed by deprotonation of the acids, and cluster ions containing multiple acid molecules. The negative spectra of the HNO3-contacted samples also contained the conjugate base of the unmodified acid, but also two other species that correspond to the dioxo- and perthio- derivatives. It is concluded that HNO3 contact causes significant oxidation, forming at least three major products, Cyx2, the perthio-acid, and the dioxo-acid.

  13. Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide.

    PubMed

    Jankovsky, Ondrej; Novacek, Michal; Luxa, Jan; Sedmidubsky, David; Bohacova, Marie; Pumera, Martin; Sofer, Zdenek

    2017-02-28

    Graphite oxide is the most widely used precursor for the synthesis of graphene by top-down methods. We demonstrate a significant influence of nitric acid concentration on the structure and composition of the graphite oxide prepared by graphite oxidation. In general, two main chlorate based oxidation methods are currently used for graphite oxide synthesis, Staudenmaier method dealing with 98 wt.% nitric acid and Hofmann method dealing with 68 wt.% nitric acid. However a gradual change of nitric acid concentration allowed for the continuous change of the graphite oxide composition. The prepared samples were thoroughly characterized by microscopic techniques as well as various spectroscopic and analytical methods. Lowering of nitric acid concentration led to an increase of oxidation degree and in particular to a concentration of epoxy and hydroxyl groups. This knowledge is not only useful for the large scale synthesis of graphite oxide with tunable size and chemical composition, but the use of nitric acid in lower concentration can also significantly reduce the overall cost of the synthesis.

  14. The Use of Ascorbate as an Oxidation Inhibitor in Prebiotic Amino Acid Synthesis: A Cautionary Note

    NASA Astrophysics Data System (ADS)

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.

  15. The use of ascorbate as an oxidation inhibitor in prebiotic amino acid synthesis: a cautionary note.

    PubMed

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO(2)-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO(2) was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO(2)-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO(2)-rich atmosphere under the conditions studied.

  16. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  17. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films.

  18. Relationship between antioxidant capacity, oxidative stress, and feed efficiency in beef steers.

    PubMed

    Russell, J R; Sexten, W J; Kerley, M S; Hansen, S L

    2016-07-01

    Feed efficiency (FE) can vary between individuals but sources of variation are not well characterized. Oxidative stress is among the biological mechanisms believed to contribute to variation. The objective of this study was to evaluate the relationship between FE, antioxidant activity, and oxidative stress in feedlot steers representing phenotypic extremes for FE. Crossbred beef steers ( = 181) fed 70-d growing phase (GP) whole-shell corn-based (G-Corn) or rye baleage and soybean hull-based (G-Rough) diets in GrowSafe bunks at the University of Missouri were shipped to Iowa State University where the 12 most feed efficient (HFE) and 12 least feed efficient (LFE) steers from each diet (n = 48; 467 kg [SD 51]) were selected for evaluation. Steers received diets similar to GP diets, and 3 d after arrival, blood was sampled to evaluate antioxidant activity and oxidative stress markers for the GP following transit. Steers were transitioned to finishing phase (FP) cracked corn-based (F-Corn) or dried distillers' grains and soybean hull-based (F-Byp) diets, and on FP d 97, blood samples for the FP were collected. Data for the GP were analyzed as a 2 × 2 factorial, and data for the FP were analyzed as a 2 × 2 × 2 factorial using PROC MIXED of SAS. No GP diet × FP diet, FP diet × FE group, or 3-way interactions were noted ( ≥ 0.11) for FP measures. Steers fed the G-Rough diet had greater ( = 0.04) GP plasma protein carbonyl concentrations. During the GP, HFE steers had greater ( ≤ 0.04) protein carbonyl and ratio of oxidized:reduced blood lysate glutathione concentrations than LFE steers. There were GP diet × FE group interactions ( ≤ 0.03) during the GP and FP. During the GP, total blood lysate superoxide dismutase (SOD) activity was greater ( ≤ 0.03) in G-Rough/LFE steers than in G-Rough/HFE and G-Corn/LFE steers; G-Corn/HFE steers were intermediate. The G-Rough/LFE steers had greater ( < 0.04) glutathione peroxidase (GPX) activity than other groups and

  19. Investigations of the oxidation capacities of polar atmospheres with multiple oxygen isotopes

    NASA Astrophysics Data System (ADS)

    McCabe, Justin R.

    This study provides new perspectives on the atmospheric chemistry in Polar Regions using multiple oxygen isotopes of nitrate and sulfate. Despite their remote locations, these unique environments play an important role in the present state of global climate and contain invaluable clues to observing past relationships between earth's atmosphere and surface temperature. With current temperatures and greenhouse gas concentrations rising rapidly as a result of human activities, continued investigation of the effects on polar environments will elucidate their relationship to the global climate system. Three studies are presented here to constrain the oxidation pathways of nitrogen and sulfur compounds in polar atmospheres. These findings provide a new means to observe current and past oxidation conditions of tropospheric and stratospheric polar atmospheres. Currently, two uncertain aspects of climate are the projected changes in tropospheric and stratospheric oxidation chemistry and the role of aerosols in cloud formation and the global radiation budget. Because the levels of oxidants in the atmosphere directly influence greenhouse gas concentrations and aerosol distribution, the following work presents results implicit to improving knowledge of the climate system. The results presented in this dissertation include measurements of oxygen isotopes (delta17O, delta18O, and Delta 17O) in nitrate and sulfate from South Pole, Antarctica and Alert, Canada, respectively. In addition, a photochemistry experiment was conducted to measure the effects of ultraviolet (UV) irradiation on oxygen isotopes of nitrate in water and ice. Chapter 2 compares oxygen isotopes in sulfate aerosol collected at Alert, Canada over the course of one year (July 1999--June 2000) to a chemical transport model describing sulfate formation. Chapter 3 presents the results from the nitrate photochemistry experiments conducted at California Institute of Technology in Pasadena, California. Chapter 4

  20. Preharvest treatments with malic, oxalic, and acetylsalicylic acids affect the phenolic composition and antioxidant capacity of coriander, dill and parsley.

    PubMed

    El-Zaeddi, Hussein; Calín-Sánchez, Ángel; Nowicka, Paulina; Martínez-Tomé, Juan; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2017-07-01

    The effects of a preharvest treatment with malic (MA), oxalic (OA), or acetylsalicylic (ASA) acid at three concentrations (1, 2 and 3mM) on the bioactivity and antioxidant capacity of coriander, dill, and parsley were investigated. The antioxidant capacity of the herbs extracts was assayed by spectrophotometric methods by using three different analytical methods: ORAC, FRAP, and ABTS; the effects of treatments were very positive in coriander, produced intermediate results in dill, and no effects were found in parsley plants. Polyphenol compounds were identified by LC-MS-QTof and quantified by UPLC-PDA-FL. Thirty phenolic compounds were identified in these three herbs. The major compounds were (i) coriander: dimethoxycinnamoyl hexoside and quercetin-3-O-rutinoside, (ii) dill: neochlorogenic acid and quercetin glucuronide, and (iii) parsley: apigenin-7-apiosylglucoside (apiin) and isorhamnetin-3-O-hexoside. The application of these three organic acids favored the accumulation of phenolic compounds in coriander plants, but had no significant positive effects on dill and parsley. The treatments leading to the best results in all three plants were the application of MA or OA at 1mM.

  1. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  2. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    SciTech Connect

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; Martí-Arbona, Ricardo

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket that would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.

  3. Caffeic acid phenethyl ester as a protective agent against nephrotoxicity and/or oxidative kidney damage: a detailed systematic review.

    PubMed

    Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Hasgul, Rukiye; Cakmak, Ozlem; Akyol, Omer

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R). In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility.

  4. Caffeic Acid Phenethyl Ester as a Protective Agent against Nephrotoxicity and/or Oxidative Kidney Damage: A Detailed Systematic Review

    PubMed Central

    Akyol, Sumeyya; Ugurcu, Veli; Altuntas, Aynur; Hasgul, Rukiye; Cakmak, Ozlem

    2014-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of propolis, has been attracting the attention of different medical and pharmaceutical disciplines in recent years because of its antioxidant, anti-inflammatory, antiproliferative, cytotoxic, antiviral, antifungal, and antineoplastic properties. One of the most studied organs for the effects of CAPE is the kidney, particularly in the capacity of this ester to decrease the nephrotoxicity induced by several drugs and the oxidative injury after ischemia/reperfusion (I/R). In this review, we summarized and critically evaluated the current knowledge regarding the protective effect of CAPE in nephrotoxicity induced by several special medicines such as cisplatin, doxorubicin, cyclosporine, gentamycin, methotrexate, and other causes leading to oxidative renal injury, namely, I/R models and senility. PMID:25003138

  5. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    PubMed

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  6. Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles.

    PubMed

    Heli, H; Hajjizadeh, M; Jabbari, A; Moosavi-Movahedi, A A

    2009-05-01

    The electrocatalytic oxidation of five amino acids-glycine, aspartic acid, cysteine, glutamic acid, and tyrosine-on two copper-based electrodes comprising copper microparticle-modified carbon paste electrode (m-CPE) and copper nanoparticle-modified CPE (n-CPE) was investigated. In the voltammograms recorded using m-CPE, a single anodic peak related to the oxidation of amino acids appeared and was related to the electrocatalytic oxidation of the amino acids via the electrogenerated Cu(III) species. Using n-CPE, however, two overlapped anodic peaks in the voltammograms appeared and were related to two fine tunable steps of the oxidation process. The currents of the two peaks were controlled by diffusion and were confirmed by chronoamperometric measurements. The amino acids were oxidized on n-CPE at higher rates and at lower potentials compared with m-CPE. This was attributed to the nanosize of copper nanoparticles. Some primary linear-chain amines and primary branched-chain amines were oxidized on the copper-based electrodes as markers. The catalytic rate constants, the transfer coefficients, and the diffusion coefficients for the amino acids are reported. Simple, sensitive, and time-saving sensing procedures in both batch and flow systems were developed for the analysis of the amino acids, and the corresponding analytical parameters are reported.

  7. Exogenous malic acid alleviates cadmium toxicity in Miscanthus sacchariflorus through enhancing photosynthetic capacity and restraining ROS accumulation.

    PubMed

    Guo, Haipeng; Chen, Houming; Hong, Chuntao; Jiang, Dean; Zheng, Bingsong

    2017-03-18

    Malic acid (MA) plays an important role in the regulation of plant growth, stomatal aperture, nutrition elements homeostasis and toxic metals tolerance. However, little is known about the effects of exogenous MA on physiological and biochemical responses to toxic metals in plants. To measure the alleviation roles of exogenous MA against cadmium (Cd), we determined the effects of MA on plant growth, net photosynthetic rate (Pn), reactive oxygen species (ROS) accumulation and the activities of anti-oxidant enzymes in the leaves of Miscanthus sacchariflorus (M. sacchariflorus) under Cd stress. The Cd exposure alone significantly inhibited plant growth and Pn, but increased the accumulation of ROS even though the anti-oxidant enzymes were markedly activated in the leaves of M. sacchariflorus. Treatment with MA significantly enhanced plant growth and decreased Cd accumulation accompanied by increasing Pn under Cd stress as compared to Cd stress alone, especially when treatment with high concentration of MA (200μM) was used. In addition, Cd and MA indicated synergistic effects by further increasing the activities and genes expression of partial anti-oxidant enzymes, thus resulting in higher glutathione accumulation and reduction of ROS production. The results showed that application of MA alleviated Cd-induced phytotoxicity and oxidant damage through the regulation of both enzymatic and non-enzymatic anti-oxidants under Cd stress in M. sacchariflorus.

  8. Cements containing syringic acid esters -- o-ethoxybenzoic acid and zinc oxide.

    PubMed

    Brauer, G M; Stansbury, J W

    1984-02-01

    Fissure caries is reduced when syringic acid is incorporated into a cariogenic diet of rats. It was therefore of interest to synthesize n-hexyl and 2-ethylhexyl syringate and to evaluate the properties of cements with these compounds as ingredients. Liquids containing the esters dissolved in o-ethoxybenzoic acid (EBA) - when mixed with powders made up from zinc oxide, aluminum oxide, and hydrogenated rosin - hardened in from four to nine min. Properties of the cements were determined, when possible, according to ANSI/ADA specification tests. Depending on the powder-liquid ratio employed, we obtained compositions with varying physical properties desirable for different dental applications. The syringate cements, compared with the commonly used ZOE materials, have improved compressive and tensile strength, lower water solubility, do not inhibit polymerization, and are compatible with acrylic monomers. These cements pass, and mostly greatly exceed, the requirements for ZOE-type restorative materials. They also bond significantly to resins, composites, and non-precious metals. The bond strength is somewhat less than that of n-hexyl vanillate-EBA cement, but greatly exceeds the adhesion to various substrates of ZOE luting agents. Cements containing n-hexyl syringate were somewhat brittle. Best results were obtained with liquid compositions containing 5% 2-ethylhexyl syringate, 7% n-hexyl vanillate, and 88% EBA, which yielded non-brittle materials. These cements, because of the syringate ingredient, may possess caries-reducing properties. Thus, perhaps in conjunction with fluoride additives, they would be useful as insulating bases, pulp capping agents, root canal sealers, soft tissue packs, or intermediate restoratives.

  9. Fish oil and 3-thia fatty acid have additive effects on lipid metabolism but antagonistic effects on oxidative damage when fed to rats for 50 weeks.

    PubMed

    Vigerust, Natalya Filipchuk; Cacabelos, Daniel; Burri, Lena; Berge, Kjetil; Wergedahl, Hege; Christensen, Bjørn; Portero-Otin, Manuel; Viste, Asgaut; Pamplona, Reinald; Berge, Rolf Kristian; Bjørndal, Bodil

    2012-11-01

    The 3-thia fatty acid tetradecylthioacetic acid (TTA) is a synthetic modified fatty acid, which, similar with dietary fish oil (FO), influences the regulation of lipid metabolism, the inflammatory response and redox status. This study was aimed to penetrate the difference in TTA's mode of action compared to FO in a long-term experiment (50 weeks of feeding). Male Wistar rats were fed a control, high-fat (25% w/v) diet or a high-fat diet supplemented with either TTA (0.375% w/v) or FO (10% w/v) or their combination. Plasma fatty acid composition, hepatic lipids and expression of relevant genes in the liver and biomarkers of oxidative damage to protein were assessed at the end point of the experiment. Both supplements given in combination demonstrated an additive effect on the decrease in plasma cholesterol levels. The FO diet alone led to removal of plasma cholesterol and a concurrent cholesterol accumulation in liver; however, with TTA cotreatment, the hepatic cholesterol level was significantly reduced. Dietary FO supplementation led to an increased oxidative damage, as seen by biomarkers of protein oxidation and lipoxidation. Tetradecylthioacetic acid administration reduced the levels of these biomarkers confirming its protective role against lipoxidation and protein oxidative damage. Our findings explore the lipid reducing effects of TTA and FO and demonstrate that these bioactive dietary compounds might act in a different manner. The experiment confirms the antioxidant capacity of TTA, showing an improvement in FO-induced oxidative stress.

  10. Seasonal and organ variations in antioxidant capacity, detoxifying competence and oxidative damage in freshwater and estuarine fishes from Southern Brazil.

    PubMed

    Da Rocha, A M; Salomão de Freitas, D P; Burns, M; Vieira, J P; de la Torre, F R; Monserrat, J M

    2009-11-01

    This study analyzed biochemical biomarkers of freshwater and estuarine fish species from Southern Brazil. It analyzed three organs (muscle, liver and gills), in four fish species (Micropogonias furnieri, Pimelodus pintado, Loricariichthys anus and Parapimelodus nigribarbis) in order to perform an environmental diagnosis. Obtained results showed that liver of L. anus and gills of M. furnieri presented higher total antioxidant capacity against peroxyl radicals during fall, whereas a clear seasonality was found for gill reduced glutathione (GSH) levels of all studied species, with higher concentration during spring. In terms of oxidative damage (TBARS), liver of M. furnieri and gills of P. nigribarbis showed higher TBARS levels during fall, whereas P. pintado showed the lowest TBARS value. Finally, a conspicuous seasonal effect was observed for purified and non-purified glutathione-S-transferase (GST), where minimum values were registered during fall, pointing to this season as one where fish species are less competent to perform detoxifying reactions.

  11. Protein synthesis assessed by ribosome analysis in human papillary muscle in relation to oxidative capacity: a comparison with skeletal muscle.

    PubMed

    Wernerman, J; Sylvén, C; von der Decken, A; Jansson, E; Böök, K; Vinnars, E

    1988-08-01

    Protein synthesis as assessed by the concentration and size distribution of ribosomes was determined together with citrate synthase activity in papillary muscles obtained at open heart surgery from patients with mitral valve disease. The results were compared with corresponding data from the quadriceps femoris muscle of patients undergoing cholecystectomy. Citrate synthase activity was six times higher in papillary muscle than in skeletal muscle. The total ribosome concentration per mg DNA was similar in the two types of muscle. Compared with skeletal muscle, in papillary muscle polyribosomes constituted a higher proportion of the ribosomes (p less than 0.001), and there was a tendency towards larger polyribosome aggregates. It is proposed that the high concentration of polyribosomes in papillary muscle is related to the high oxidative capacity of that tissue.

  12. Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology.

    PubMed

    Hosseinpour, Negahdar; Khodadadi, Abbas Ali; Bahramian, Alireza; Mortazavi, Yadollah

    2013-11-19

    The effects of surface acidity and basicity of metal oxide nanoparticles on the thermodynamics of asphaltene adsorption were studied. Three different categories of metal oxides/salts with acidic (WO3 and NiO), amphoteric (Fe2O3 and ZrO2), and basic (MgO and CaCO3) surfaces were synthesized, and their textural, structural, and acid-base properties were characterized. Asphaltenes were extracted from a dead oil sample and characterized by X-ray powder diffraction and Fourier transform infrared spectroscopy. The acid and base numbers of the asphaltenes were measured. The nanoparticles were added to the asphaltene-toluene solutions, and the amount of adsorbed asphaltene was obtained through centrifugation followed by UV-vis spectroscopy of the supernatant liquid and temperature-programmed oxidation analysis of the precipitated solid. The concentrations of organic acid and base groups in the asphaltenes are 2.75 and 12.34 mg of KOH/g, respectively, indicating that the asphaltenes are more basic in nature. Isotherms of the asphaltene adsorption onto the six metal oxides/salts fit the Langmuir model closely. The asphaltene adsorption capacity of the nanoparticles is 1.23-3.67 mg/m(2) and decreases in the order of NiO > Fe2O3 > WO3 > MgO > CaCO3 > ZrO2, concomitant with the synergetic effects of acidity and the net charge of the surfaces. High-resolution transmission electron microscopy illustrates that the asphaltenes are spread out over the surfaces with no short-range/long-range order. The adsorption of the asphaltenes onto the six samples is exothermic and spontaneous with the Gibbs energy change of -27.80 to -28.79 kJ/mol at 25 °C. The absolute value of the enthalpy change of the adsorption is calculated to be within the range of 5-20 kJ/mol. Acid-base interaction and electrostatic attraction seem to be the dominant forces contributing to the adsorption of the asphaltenes onto the metal oxide/salt surfaces.

  13. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis.

    PubMed

    Shang, Baoshuan; Xu, Chongyi; Zhang, Xixi; Cao, Huifen; Xin, Wei; Hu, Yuxin

    2016-05-03

    The already differentiated organs in plants have a remarkable capacity to regenerate new individuals under culture conditions. Plant in vitro regeneration practically starts with the induction of a pluripotent cell mass, the callus, from detached organs on auxin-rich callus-inducing medium (CIM), which is generally required for subsequent regeneration of new bodies. Recent studies show that CIM-induced callus formation occurs from the pericycle or pericycle-like cells through a root developmental pathway, whereas the signals involved in governing callus-forming capacity of pericycle cells remain unknown. Here we report that very-long-chain fatty acids (VLCFAs) play a critical role in confining the pericycle competence for callus formation and thus the regeneration capacity of Arabidopsis By genetic screening, we identified the callus formation-related 1 (cfr1) mutant, which bypasses the inhibition of callus-forming capacity in roots by solitary-root (slr/iaa14). We show that CFR1 encodes 3-ketoacyl-CoA synthase 1 (KCS1), which catalyzes a rate-limiting step of VLCFA biosynthesis. Our biochemical and genetic analyses demonstrate that VLCFAs restrict the pericycle competence for callus formation, at least in part, by regulating the transcription of Aberrant Lateral Root Formation 4 (ALF4). Moreover, we provide evidence that VLCFAs act as cell layer signals to mediate the pericycle competence for callus formation. Taken together, our results identify VLCFAs or their derivatives as the confining signals for mediating the pericycle competence for callus formation and thus the regeneration capacity of plant organs.

  14. Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis

    PubMed Central

    Shang, Baoshuan; Xu, Chongyi; Zhang, Xixi; Cao, Huifen; Xin, Wei; Hu, Yuxin

    2016-01-01

    The already differentiated organs in plants have a remarkable capacity to regenerate new individuals under culture conditions. Plant in vitro regeneration practically starts with the induction of a pluripotent cell mass, the callus, from detached organs on auxin-rich callus-inducing medium (CIM), which is generally required for subsequent regeneration of new bodies. Recent studies show that CIM-induced callus formation occurs from the pericycle or pericycle-like cells through a root developmental pathway, whereas the signals involved in governing callus-forming capacity of pericycle cells remain unknown. Here we report that very-long-chain fatty acids (VLCFAs) play a critical role in confining the pericycle competence for callus formation and thus the regeneration capacity of Arabidopsis. By genetic screening, we identified the callus formation-related 1 (cfr1) mutant, which bypasses the inhibition of callus-forming capacity in roots by solitary-root (slr/iaa14). We show that CFR1 encodes 3-ketoacyl-CoA synthase 1 (KCS1), which catalyzes a rate-limiting step of VLCFA biosynthesis. Our biochemical and genetic analyses demonstrate that VLCFAs restrict the pericycle competence for callus formation, at least in part, by regulating the transcription of Aberrant Lateral Root Formation 4 (ALF4). Moreover, we provide evidence that VLCFAs act as cell layer signals to mediate the pericycle competence for callus formation. Taken together, our results identify VLCFAs or their derivatives as the confining signals for mediating the pericycle competence for callus formation and thus the regeneration capacity of plant organs. PMID:27092001

  15. Recent new additives for electric vehicle lead-acid batteries for extending the cycle life and capacity

    SciTech Connect

    Kozawa, A.; Sato, A.; Fujita, K.; Brodd, D.

    1997-12-01

    An electrochemically prepared colloidal graphite was found to be an excellent additive for lead-acid batteries. The new additive extends the capacity and cycle life of new and old batteries and can regenerate old, almost dead, batteries. The colloidal graphite is stable in aqueous solution and the extremely fine particles are adsorbed mainly on the positive electrode. This additive has been given the name, {alpha}-Pholon. The amount required is very small: only 6% to 10% of volume of the {alpha}-Pholon solution (about 2% colloidal graphite in water solution). The beneficial effect of the new additive was demonstrated with motorcycle batteries and forklift batteries.

  16. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    PubMed

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  17. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  18. Structural originations of irreversible capacity loss from highly lithiated copper oxides

    SciTech Connect

    Love, Corey T.; Dmowski, Wojtek; Johannes, Michelle D.; Swider-Lyons, Karen E.

    2012-02-07

    We use electrochemistry, high-energy X-ray diffraction (XRD) with pair-distribution function analysis (PDF), and density functional theory (DFT) to study the instabilities of Li{sub 2}CuO{sub 2} at varying state of charge. Rietveld refinement of XRD patterns revealed phase evolution from pure Li{sub 2}CuO{sub 2} body-centered orthorhombic (Immm) space group to multiphase compositions after cycling. The PDF showed CuO{sub 4} square chains with varying packing during electrochemical cycling. Peaks in the G(r) at the Cu-O distance for delithiated, LiCuO{sub 2}, showed CuO{sub 4} square chains with reduced ionic radius for Cu in the 3+ state. At full depth of discharge to 1.5 V, CuO was observed in fractions greater than the initial impurity level which strongly affects the reversibility of the lithiation reactions contributing to capacity loss. DFT calculations showed electron removal from Cu and O during delithiation of Li{sub 2}CuO{sub 2}.

  19. Structural originations of irreversible capacity loss from highly lithiated copper oxides

    NASA Astrophysics Data System (ADS)

    Love, Corey T.; Dmowski, Wojtek; Johannes, Michelle D.; Swider-Lyons, Karen E.

    2011-09-01

    We use electrochemistry, high-energy X-ray diffraction (XRD) with pair-distribution function analysis (PDF), and density functional theory (DFT) to study the instabilities of Li 2CuO 2 at varying state of charge. Rietveld refinement of XRD patterns revealed phase evolution from pure Li 2CuO 2 body-centered orthorhombic ( Immm) space group to multiphase compositions after cycling. The PDF showed CuO 4 square chains with varying packing during electrochemical cycling. Peaks in the G( r) at the Cu-O distance for delithiated, LiCuO 2, showed CuO 4 square chains with reduced ionic radius for Cu in the 3+ state. At full depth of discharge to 1.5 V, CuO was observed in fractions greater than the initial impurity level which strongly affects the reversibility of the lithiation reactions contributing to capacity loss. DFT calculations showed electron removal from Cu and O during delithiation of Li 2CuO 2.

  20. Abscisic acid related compounds and lignans in prunes (Prunus domestica L.) and their oxygen radical absorbance capacity (ORAC).

    PubMed

    Kikuzaki, Hiroe; Kayano, Shin-ichi; Fukutsuka, Naoko; Aoki, Asuka; Kasamatsu, Kumi; Yamasaki, Yuka; Mitani, Takahiko; Nakatani, Nobuji

    2004-01-28

    Four new abscisic acid related compounds (1-4), together with (+)-abscisic acid (5), (+)-beta-D-glucopyranosyl abscisate (6), (6S,9R)-roseoside (7), and two lignan glucosides ((+)-pinoresinol mono-beta-D-glucopyranoside (8) and 3-(beta-D-glucopyranosyloxymethyl)-2- (4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-(2R,3S)-dihydrobenzofuran (9)) were isolated from the antioxidative ethanol extract of prunes (Prunus domestica L.). The structures of 1-4 were elucidated on the basis of NMR and MS spectrometric data to be rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (1), rel-5-(3S,8S-dihydroxy-1R,5S-dimethyl-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid 3'-O-beta-d-glucopyranoside (2), rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxa-6-oxobicyclo[3,2,1]oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (3), and rel-5-(1R,5S-dimethyl-3R,4R,8S-trihydroxy-7-oxabicyclo[3,2,1]- oct-8-yl)-3-methyl-2Z,4E-pentadienoic acid (4). The antioxidant activities of these isolated compounds were evaluated on the basis of oxygen radical absorbance capacity (ORAC). The ORAC values of abscisic acid related compounds (1-7) were very low. Two lignans (8 and 9) were more effective antioxidants whose ORAC values were 1.09 and 2.33 micromol of Trolox equiv/micromol, respectively.

  1. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode

    NASA Astrophysics Data System (ADS)

    Kundu, Dipan; Adams, Brian D.; Duffort, Victor; Vajargah, Shahrzad Hosseini; Nazar, Linda F.

    2016-10-01

    Although non-aqueous Li-ion batteries possess significantly higher energy density than their aqueous counterparts, the latter can be more feasible for grid-scale applications when cost, safety and cycle life are taken into consideration. Moreover, aqueous Zn-ion batteries have an energy storage advantage over alkali-based batteries as they can employ Zn metal as the negative electrode, dramatically increasing energy density. However, their development is plagued by a limited choice of positive electrodes, which often show poor rate capability and inadequate cycle life. Here we report a vanadium oxide bronze pillared by interlayer Zn2+ ions and water (Zn0.25V2O5.nH2O), as the positive electrode for a Zn cell. A reversible Zn2+ ion (de)intercalation storage process at fast rates, with more than one Zn2+ per formula unit (a capacity up to 300 mAh g-1), is characterized. The Zn cell offers an energy density of ˜450 Wh l-1 and exhibits a capacity retention of more than 80% over 1,000 cycles, with no dendrite formation at the Zn electrode.

  2. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  3. Evaluation of Humic Acid and Tannic Acid Fouling in Graphene Oxide-Coated Ultrafiltration Membranes.

    PubMed

    Chu, Kyoung Hoon; Huang, Yi; Yu, Miao; Her, Namguk; Flora, Joseph R V; Park, Chang Min; Kim, Suhan; Cho, Jaeweon; Yoon, Yeomin

    2016-08-31

    Three commercially available ultrafiltration (UF) membranes (poly(ether sulfone), PES) that have nominal molecular weight cut-offs (5, 10, and 30 kDa) were coated with graphene oxide (GO) nanosheets. Field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, confocal laser scanning microscopy, water contact angle measurements, and X-ray photoelectron spectroscopy were employed to determine the changed physicochemical properties of the membranes after GO coating. The water permeability and single-solute rejection of GO-coated (GOC) membranes for humic acid (HA) molecules were significantly higher by approximately 15% and 55%, respectively, compared to those of pristine UF membranes. However, the GOc membranes for single-solute tannic acid (TA) rejection showed similar trends of higher flux decline versus pristine PES membranes, because the relatively smaller TA molecules were readily adsorbed onto the membrane pores. When the mixed-solute of HA and TA rejection tests were performed, in particular, the adsorbed small TA molecules resulted in irreversible membrane fouling due to cake formation and membrane pore blocking on the membrane surface for the HA molecules. Although both membranes showed significantly higher flux declines for small molecules rejection, the GOc membranes showed better performance than the pristine UF membranes in terms of the rejection of various mixed-solute molecules, due to higher membrane recovery and antifouling capabilities.

  4. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  5. Capacity of lactic acid bacteria in immunity enhancement and cancer prevention.

    PubMed

    Riaz Rajoka, Muhammad Shahid; Shi, Junling; Zhu, Jing; Shao, Dongyan; Huang, Qingsheng; Yang, Hui; Jin, Mingliang

    2017-01-01

    Lactic acid bacteria are associated with the human gastrointestinal tract. They are important for maintaining the balance of microflora in the human gut. An increasing number of published research reports in recent years have denoted the importance of producing interferon-gamma and IgA for treatment of disease. These agents can enhance the specific and nonspecific immune systems that are dependent on specific bacterial strains. The mechanisms of these effects were revealed in this investigation, where the cell walls of these bacteria were modulated by the cytokine pathways, while the whole bacterial cell mediated the host cell immune system and regulated the production of tumor necrosis factors and interleukins. A supplement of highly active lactic acid bacteria strains provided significant potential to enhance host's immunity, offering prevention from many diseases including some cancers. This review summarizes the current understanding of the function of lactic acid bacteria immunity enhancement and cancer prevention.

  6. Effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and immunity of sea cucumber Apostichopus japonicus (Selenka).

    PubMed

    Yu, Haibo; Gao, Qinfeng; Dong, Shuanglin; Zhou, Jishu; Ye, Zhi; Lan, Ying

    2016-07-01

    The present study was conducted to understand the effects of dietary n-3 highly unsaturated fatty acids (HUFAs) on growth, fatty acid profiles, antioxidant capacity and the immunity of sea cucumber Apostichopus japonicus (Selenka). Five experimental diets were prepared, containing graded levels of n-3 HUFAs (0.46%, 0.85%, 1.25%, 1.61% and 1.95%, respectively), and the 0.46% group was used as control group. The specific growth rates, fatty acid profiles, activities and gene expression of antioxidative enzymes and lysozyme of the sea cucumbers that were fed with the 5 experimental diets were determined. The results showed that the specific growth rate of sea cucumbers in all the treatment groups significantly increased compared to the control group (P < 0.05), indicating the positive effects of n-3 HUFAs on the growth of sea cucumbers. The contents of eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) in the body wall of the sea cucumbers gradually increased with the increasing levels of n-3 HUFAs in the diets. The suitable supplement of n-3 HUFAs in diets improved the activities of superoxide dismutase (SOD) and catalase (CAT) of sea cucumbers by up-regulating the expression of SOD and CAT mRNA in sea cucumbers. However, excess n-3 HUFAs in diets caused lipid peroxidation, inhibited the expression of lysozyme (LSZ) mRNA and decreased the activities of LSZ in sea cucumbers. In summary, the suitable supplement levels of n-3 HUFAs in diets of sea cucumbers A. japonicus were estimated between 0.85% and 1.25% considering the growth performance, cost and the indicators of antioxidant capacity and immunity.

  7. Oxidation of cyclohexanediol derivatives with 12-tungstophosphoric acid-hydrogen peroxide system.

    PubMed

    Fujitani, Kango; Mizutani, Toshihiro; Oida, Tatsuo; Kawase, Tokuzo

    2009-01-01

    Oxidation of cyclohexanediol derivatives with 12-tungstophospholic acid-hydrogen peroxide system was investigated focusing on a reaction mechanism in the preparation of dicarboxylic acids from olefin because oxidative cleavage of vicinal diols would be a rate-determining step in oxidative cleavage of carbon-carbon double bonds. trans-1,2-Cyclohexanediol (DHC) was converted to adipic acid almost quantatively, while 1-hydroxy-2-methoxycyclohexane (HMC) gave a mixture of adipic acid, glutaric acid and monomethyl adipate. In the case of 1,4-cyclohexanediol, 4-hydroxy-cyclohexanone and many hyperoxidated products were obtained. Based on results for HMC, it is concluded that following route would be also reasonable in oxidative cleavage of vicinal diol with 12-tungstophospholic acid-hydrogen peroxide system: (1) first oxidation of vicinal diol to alpha-hydroxyketone, (2) nucleophilic attack of hydrogen peroxide attacks to carbonyl carbon, (3) Baiyer-Villiger rearrangement of dihydroxy-hydroperoxide to a cyclic ester, (4) hydrolysis and final oxidation to dicarboxylic acid.

  8. Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-05-25

    Objective of the present study was to explore the possible role of oxidative stress in the malonic acid induced behavioral, biochemical and mitochondrial alterations in rats. In the present study, unilateral single injections of malonic acid at different doses (1.5, 3 and 6 micromol) were made into the ipsilateral striatum in rats. Behavioral parameters were accessed on 1st, 7th and 14th day post malonic acid administration. Oxidative stress parameters and mitochondrial enzyme functions were assessed on day 14 after behavioral observations. Ipsilateral striatal malonic acid (3 and 6 micromol) administration significantly reduced body weight, locomotor activity, motor coordination and caused oxidative damage (lipid peroxidation, nitrite, superoxide dismutase, catalase and glutathione) in the striatum as compared to sham treated animal. Mitochondrial enzyme complexes and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolinium bromide) activity were significantly inhibited by malonic acid. Vitamin E treatment (50 and 100 mg/kg, p.o.) significantly reversed the various behavioral, biochemical and mitochondrial alterations in malonic acid treated animals. Our findings show that targeting oxidative stress by vitamin E in malonic acid model, results in amelioration of behavioral and mitochondrial alterations are linked to inhibition of oxidative damage. Based upon these finding present study hypothesize that protection exerted by vitamin E on behavioral, mitochondrial markers indicates the possible preservation of the functional status of the striatal neurons by targeting the deleterious actions of oxidative stress.

  9. A trimethoxyellagic acid glucuronide from Conocarpus erectus leaves: isolation, characterization and assay of antioxidant capacity.

    PubMed

    Ayoub, Nahla A

    2010-03-01

    The new trimethoxy-ellagic glycoside, 3,3',4'-tri-O-methylellagic acid 4-O-beta-glucupyranuronide and twelve known phenolics were isolated from the leaves of Conocarpus erectus L. (Combretaceae). Structures of all compounds were determined on the basis of spectroscopic methods and chemical degradation. The new compound, together with four of the isolated known constituents and the plant extract itself, showed potent inhibitory effect against reactive oxygen species attack on salicylic acid in a dose-dependent manner adopting xanthine/hypoxanthine oxidase assay.

  10. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  11. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells

    PubMed Central

    Sebastián, David; Guitart, Maria; García-Martínez, Celia; Mauvezin, Caroline; Orellana-Gavaldà, Josep M.; Serra, Dolors; Gómez-Foix, Anna M.; Hegardt, Fausto G.; Asins, Guillermina

    2009-01-01

    Carnitine palmitoyltransferase 1 (CPT1) catalyzes the first step in long-chain fatty acid import into mitochondria, and it is believed to be rate limiting for β-oxidation of fatty acids. However, in muscle, other proteins may collaborate with CPT1. Fatty acid translocase/CD36 (FAT/CD36) may interact with CPT1 and contribute to fatty acid import into mitochondria in muscle. Here, we demonstrate that another membrane-bound fatty acid binding protein, fatty acid transport protein 1 (FATP1), collaborates with CPT1 for fatty acid import into mitochondria. Overexpression of FATP1 using adenovirus in L6E9 myotubes increased both fatty acid oxidation and palmitate esterification into triacylglycerides. Moreover, immunocytochemistry assays in transfected L6E9 myotubes showed that FATP1 was present in mitochondria and coimmunoprecipitated with CPT1 in L6E9 myotubes and rat skeletal muscle in vivo. The cooverexpression of FATP1 and CPT1 also enhanced mitochondrial fatty acid oxidation, similar to the cooverexpression of FAT/CD36 and CPT1. However, etomoxir, an irreversible inhibitor of CPT1, blocked all these effects. These data reveal that FATP1, like FAT/CD36, is associated with mitochondria and has a role in mitochondrial oxidation of fatty acids. PMID:19429947

  12. Ablation of Protein Kinase CK2β in Skeletal Muscle Fibers Interferes with Their Oxidative Capacity

    PubMed Central

    Eiber, Nane; Simeone, Luca; Hashemolhosseini, Said

    2017-01-01

    The tetrameric protein kinase CK2 was identified playing a role at neuromuscular junctions by studying CK2β-deficient muscle fibers in mice, and in cultured immortalized C2C12 muscle cells after individual knockdown of CK2α and CK2β subunits. In muscle cells, CK2 activity appeared to be at least required for regular aggregation of nicotinic acetylcholine receptors, which serves as a hallmark for the presence of a postsynaptic apparatus. Here, we set out to determine whether any other feature accompanies CK2β-deficient muscle fibers. Hind limb muscles gastrocnemius, plantaris, and soleus of adult wildtype and CK2β-deficient mice were dissected, cross-sectioned, and stained histochemically by Gomori trichrome and for nicotinamide adenine dinucleotide (NADH) dehydrogenase and succinate dehydrogenase (SDH) enzymatic activities. A reduction of oxidative enzymatic activity was determined for CK2β-deficient muscle fibers in comparison with wildtype controls. Importantly, the CK2β-deficient fibers, muscle fibers that typically exhibit high NADH dehydrogenase and SDH activities, like slow-type fibers, showed a marked reduction in these activities. Altogether, our data indicate additional impairments in the absence of CK2β in skeletal muscle fibers, pointing to an eventual mitochondrial myopathy. PMID:28106831

  13. Regulation of Skeletal Muscle Oxidative Capacity and Insulin Signaling by the Mitochondrial Rhomboid Protease PARL

    PubMed Central

    Civitarese, Anthony E.; MacLean, Paul S.; Carling, Stacy; Kerr-Bayles, Lyndal; McMillan, Ryan P.; Pierce, Anson; Becker, Thomas C.; Moro, Cedric; Finlayson, Jean; Lefort, Natalie; Newgard, Christopher B.; Mandarino, Lawrence; Cefalu, William; Walder, Ken; Collier, Greg R.; Hulver, Matthew W.; Smith, Steven R.; Ravussin, Eric

    2010-01-01

    SUMMARY Type 2 diabetes Mellitus (T2DM) and aging are characterized by insulin resistance, lower mitochondrial density and function and increased production of reactive oxygen species (ROS). In lower organisms continuous remodeling critically maintains the function and life cycle of mitochondria, in part by the protease pcp1 (PARL ortholog). We therefore examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. Relative to healthy, young individuals (23±1y), PARL mRNA and mitochondrial mass were both reduced in elderly subjects (64.4±1.2 y; 51% and 44% respectively) and in subjects with T2DM (51.8±3 y; 31% and 41% respectively; all p<0.05). Muscle knock-down of PARL in mice resulted in lower mitochondrial content (−31±3%, p<0.05), lower OPA1 and PGC1α protein levels and impaired insulin signaling. Furthermore, mitochondrial cristae were malformed and resulted in elevated in vivo oxidative stress. Adenoviral suppression of PARL protein in healthy myotubes lowered mitochondrial mass (−33±8%), insulin stimulated glycogen synthesis (−33±9%) and increased ROS production (2-fold) (all p<0.05). We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM. PMID:20444421

  14. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    PubMed

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3).

  15. [Method for determining the acid-reducing capacity of antacid preparations].

    PubMed

    Chakŭrski, I; Dobrev, Kh; Dobreva, P

    1986-01-01

    A method is proposed for the determination of acid-binding ability of antacids, enabling the automatic reading of pH changes. Changes are provided for work with original gastric juice. The method allows the determination of individual dosage of antacid for each patient.

  16. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  17. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  18. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

    USGS Publications Warehouse

    Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K.

    1984-01-01

    The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions. ?? 1984 Nature Publishing Group.

  19. The effects of conjugated linoleic acid on growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles.

    PubMed

    Jiang, Wen; Nie, Shaoping; Qu, Zhe; Bi, Chongpeng; Shan, Anshan

    2014-05-01

    This study investigated the effects of dietary supplementation with conjugated linoleic acid (CLA) on the growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles (DDGS). Four hundred eighty 1-d-old broilers were randomly assigned to 4 groups, consisting of 6 replicates with 20 broilers each. Broilers were allocated 1 of 4 diets and fed for 49 d in a 2 × 2 factorial design. The dietary treatments consisted of 2 levels of DDGS (0 or 15%) and 2 levels of CLA (0 or 1%). The results of growth performance analyses showed that dietary supplementation with 1% CLA, 15% DDGS, or both in broilers had no significant effects on ADG, ADFI, and feed/gain (P > 0.05). Dietary supplementation with 15% DDGS did not significantly affect meat color values, drip loss percentage, pH value at 15 min, crude fat content, or shear force value (P > 0.05). Diets supplemented with 15% DDGS decreased the proportions of saturated fatty acids (P < 0.05) and monounsaturated fatty acids but increased the proportion of polyunsaturated fatty acids of the thigh meat (P < 0.05). Diets supplemented with 1% CLA significantly decreased the abdominal fat percentage (P < 0.05). Supplementation with 1% CLA increased the crude fat content and decreased the color (b*) value and shear force value of the breast meat (P < 0.05). Diets supplemented with 1% CLA increased the total superoxide dismutase activity of the serum, breast meat, and liver, and decreased the malondialdehyde content of the serum and breast meat (P < 0.05). Supplementation with 1% CLA decreased the proportion of monounsaturated fatty acids and increased the proportion of saturated fatty acids (P < 0.05). Accumulation of CLA in the thigh meat was significantly increased (P < 0.05) with increasing CLA level in the diet. In conclusion, dietary supplementation with 1% CLA had positive effects on meat quality, antioxidant capacity, and fatty acid

  20. Fatty acids and oxidative stability of meat from lambs fed carob-containing diets.

    PubMed

    Gravador, Rufielyn S; Luciano, Giuseppe; Jongberg, Sisse; Bognanno, Matteo; Scerra, Manuel; Andersen, Mogens L; Lund, Marianne N; Priolo, Alessandro

    2015-09-01

    Male Comisana lambs were individually stalled and, for 56 days, were fed concentrates with 60% barley (n = 8 lambs), or concentrates in which barley was partially replaced by 24% or 35% carob pulp (n = 9 lambs in each group). The intramuscular fatty acids were analyzed and the color stability, lipid and protein oxidation were measured in fresh meat overwrapped with polyvinyl chloride film at 0, 3 or 6 days of storage at 4 °C in the dark. Carob pulp increased the concentration of polyunsaturated fatty acids (PUFA) in muscle, including the rumenic acid (P < 0.01), and reduced the saturated fatty acids (P < 0.01) and the n-6/n-3 PUFA ratio (P = 0.01). The meat did not undergo extensive oxidative deterioration and the diet did not affect the oxidative stability parameters. Therefore, carob in lamb diet could increase PUFA in muscle without compromising meat oxidative stability.

  1. An Observationally Constrained Evaluation of the Oxidative Capacity in the Tropical Western Pacific Troposphere

    NASA Technical Reports Server (NTRS)

    Nicely, Julie M.; Anderson, Daniel C.; Canty, Timothy P.; Salawitch, Ross J.; Wolfe, Glenn M.; Apel, Eric C.; Arnold, Steve R.; Atlas, Elliot L.; Blake, Nicola J.; Bresch, James F.; Campos, Teresa L.; Dickerson, Russell R.; Duncan, Bryan; Emmons, Louisa K.; Evans, Mathew J.; Fernandez, Rafael P.; Flemming, Johannes; Hall, Samuel R.; Hanisco, Thomas F.; Honomichl, Shawn B.; Hornbrook, Rebecca S.; Huijnen, Vincent; Kaser, Lisa; Kinnison, Douglas E.; Lamarque, Jean-Francois; Mao, Jingqui; Monks, Sarah A.; Montzka, Denise D.; Pan, Laura L.; Riemer, Daniel D.; Saiz-Lopez, Alfonso; Steenrod, Stephen D.; Stell, Meghan H.; Tilmes, Simone; Turquety, Solene; Ullmann, Kirk; Weinheimer, Andrew J.

    2016-01-01

    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January-February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO +NO2) by a factor of 2, resulting in OHCOL approx.30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January-February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP.

  2. An observationally constrained evaluation of the oxidative capacity in the tropical western Pacific troposphere

    NASA Astrophysics Data System (ADS)

    Nicely, Julie M.; Anderson, Daniel C.; Canty, Timothy P.; Salawitch, Ross J.; Wolfe, Glenn M.; Apel, Eric C.; Arnold, Steve R.; Atlas, Elliot L.; Blake, Nicola J.; Bresch, James F.; Campos, Teresa L.; Dickerson, Russell R.; Duncan, Bryan; Emmons, Louisa K.; Evans, Mathew J.; Fernandez, Rafael P.; Flemming, Johannes; Hall, Samuel R.; Hanisco, Thomas F.; Honomichl, Shawn B.; Hornbrook, Rebecca S.; Huijnen, Vincent; Kaser, Lisa; Kinnison, Douglas E.; Lamarque, Jean-Francois; Mao, Jingqiu; Monks, Sarah A.; Montzka, Denise D.; Pan, Laura L.; Riemer, Daniel D.; Saiz-Lopez, Alfonso; Steenrod, Stephen D.; Stell, Meghan H.; Tilmes, Simone; Turquety, Solene; Ullmann, Kirk; Weinheimer, Andrew J.

    2016-06-01

    Hydroxyl radical (OH) is the main daytime oxidant in the troposphere and determines the atmospheric lifetimes of many compounds. We use aircraft measurements of O3, H2O, NO, and other species from the Convective Transport of Active Species in the Tropics (CONTRAST) field campaign, which occurred in the tropical western Pacific (TWP) during January-February 2014, to constrain a photochemical box model and estimate concentrations of OH throughout the troposphere. We find that tropospheric column OH (OHCOL) inferred from CONTRAST observations is 12 to 40% higher than found in chemical transport models (CTMs), including CAM-chem-SD run with 2014 meteorology as well as eight models that participated in POLMIP (2008 meteorology). Part of this discrepancy is due to a clear-sky sampling bias that affects CONTRAST observations; accounting for this bias and also for a small difference in chemical mechanism results in our empirically based value of OHCOL being 0 to 20% larger than found within global models. While these global models simulate observed O3 reasonably well, they underestimate NOx (NO + NO2) by a factor of 2, resulting in OHCOL ~30% lower than box model simulations constrained by observed NO. Underestimations by CTMs of observed CH3CHO throughout the troposphere and of HCHO in the upper troposphere further contribute to differences between our constrained estimates of OH and those calculated by CTMs. Finally, our calculations do not support the prior suggestion of the existence of a tropospheric OH minimum in the TWP, because during January-February 2014 observed levels of O3 and NO were considerably larger than previously reported values in the TWP.

  3. Nasturtium officinale reduces oxidative stress and enhances antioxidant capacity in hypercholesterolaemic rats.

    PubMed

    Yazdanparast, Razieh; Bahramikia, Seifollah; Ardestani, Amin

    2008-04-15

    Nasturtium officinale R. Br. (Brassicaceae) has been used as a home remedy by the people of south eastern (SE) region of Iran as a medicinal plant. This therapeutical application has been attributed to Nasturtium officinale (N. officinale) antioxidant capacity which is mostly tested by means of cell-free assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). In addition, the antioxidant effect of N. officinale extract has been investigated in hypercholesterolaemic rats in vivo. The results revealed that the extract has notable scavenging activity against DPPH radicals as well as potent reducing power in FRAP assay. Intragastric administration of N. officinale (500 mg/kg body weight per day) to groups of hypercholesterolaemic rats for 30 days lowered their blood total cholesterol (TC), triglyceride (TG), and low density lipoprotein cholesterol (LDL-C) levels by 37, 44 and 48%, respectively. However, the blood high density lipoprotein cholesterol (HDL-C) levels in the same treated rats increased by 16%. To evaluate the mechanism(s) of action, we studied the antioxidative potential of N. officinale extract in terms of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) activities and also the level of reduced glutathione (GSH) in the liver tissues. In addition, hepatic tissue malondialdehyde level (MDA, an index of lipid peroxidation) was also determined. Under hypercholesterolaemic condition, hepatic MDA was increased. Moreover, our data indicated GSH depletion along with significant reduction in the activities of CAT and SOD in rats fed high-fat diet rats. On the other hand, significant elevation in the activities of GPx and GR were seen in the same group of rats. Treatment of hypercholesterolaemic rats with N. officinale extract significantly increased the GSH level along with enhanced CAT and SOD activities in liver tissues. Furthermore, N. officinale extract significantly

  4. Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO(2).

    PubMed

    Saravanamurugan, Shunmugavel; Kunov-Kruse, Andreas J; Fehrmann, Rasmus; Riisager, Anders

    2014-03-01

    Ionic liquids (ILs) comprised of ammonium cations and anions of naturally occurring amino acids containing an additional amine group (e.g., lysine, histidine, asparagine, and glutamine) were examined as high-capacity absorbents for CO2. An absorption capacity of 2.1 mol CO2 per mol of IL (3.5 mol CO2 per kg IL, 13.1 wt% CO2) was measured for [N66614][Lys] at ambient temperature and about 1 mol CO2 per mol of IL at 808C (under 1 bar of CO2). This demonstrated that desorption is possible under CO2-rich conditions by temperature-swing absorption; three consecutive sorption cycles were performed with the IL. The mechanistic and kinetic study of the absorption process was further substantiated by NMR spectroscopy and in situ attenuated total reflectance FTIR for [N66614][Lys] and the homologous phosphonium-based IL [P66614][Lys]. This study revealed that carbamic acid was formed with CO2 in both ILs by chemisorption; however, the amino acid–carboxyl groups on the anion played an important—but different—catalytic role for the sorption kinetics in the two ILs. The origin of the cationic effect is speculated to be correlated with the strength of the ion interactions in the two ILs.

  5. Understanding the capacity fade mechanisms of spinel manganese oxide cathodes and improving their performance in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Choi, Won Chang

    Lithium ion batteries have been successful in portable electronics market due to their high energy density, adopting the layered LiCoO2 as the cathode material in commercial lithium ion cells. However, increasing interest in lithium ion batteries for electric vehicle and hybrid electric vehicle applications requires alternative cathode materials due to the high cost, toxicity, and limited power capability of the layered LiCoO2 cathode. In this regard, spinel LiMn2O4 has become appealing as manganese is inexpensive and environmentally benign, but LiMn2O 4 is plagued by severe capacity fade at elevated temperatures. This dissertation explores the factors that control and limit the electrochemical performance of spinel LiMn2O4 cathodes and focuses on improving the performance parameters such as the capacity, cyclability, and rate capability of various spinel cathodes derived from LiMn2O 4. From a systematic investigation of a number of cationic and anionic (fluorine) substituted spinel oxide compositions, the improvements in electrochemical properties and performances are found to be due to the reduced manganese dissolution and suppressed lattice parameter difference between the two cubic phases formed during the charge-discharge process. Investigations focused on fluorine substitution reveal that spinel LiMn 2-y-zLiyZnzO4-etaFeta oxyfluoride cathodes synthesized by solid-state reactions at 800°C employing ZnF2 as a raw material and spinel LiMn2-y-zLiy NizO4-etaFeta oxyfluoride cathodes synthesized by firing the cation-substituted LiMn2-y-zLiy NizO4 oxides with NH4HF2 at a moderate temperature of 450°C show superior cyclability, increased capacity, reduced Mn dissolution, and excellent storage performance compared to the corresponding oxide analogs and the conventional LiMn2O 4. Spinel-layered composite cathodes are found to exhibit better electrochemical performance with graphite anode when charged to 4.7 V in the first cycle followed by cycling at 4.3--3.5 V

  6. Formation of the carboxamidine precursor of cyanuric acid from guanine oxidative lesion dehydro-guanidinohydantoin.

    PubMed

    Irvoas, Joris; Trzcionka, Jérôme; Pratviel, Geneviève

    2014-09-01

    DNA damage under oxidative stress leads to oxidation of guanine base. The identification of the resulting guanine lesions in cellular DNA is difficult due to the sensitivity of the primary oxidation products to hydrolysis and/or further oxidation. We isolated dehydroguanidino-hydantoin (DGh) (or oxidized guanidinohydantoin), a secondary oxidation product of guanine, and showed that this lesion reacts readily with nucleophiles such as asymmetric peroxides and transforms to 2,4,6-trioxo-1,3,5-triazinane-1-carboxamidine residue. Further hydrolysis of this intermediate leads to cyanuric acid and finally to urea residue. This work demonstrates a new possible pathway for the formation of the well-known carboxamidine precursor of cyanuric acid lesion.

  7. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    SciTech Connect

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic form and thereby activates hydrogen.

  8. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE PAGES

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; ...

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic formmore » and thereby activates hydrogen.« less

  9. A 9-wk docosahexaenoic acid-enriched supplementation improves endurance exercise capacity and skeletal muscle mitochondrial function in adult rats.

    PubMed

    Le Guen, Marie; Chaté, Valérie; Hininger-Favier, Isabelle; Laillet, Brigitte; Morio, Béatrice; Pieroni, Gérard; Schlattner, Uwe; Pison, Christophe; Dubouchaud, Hervé

    2016-02-01

    Decline in skeletal muscle mass and function starts during adulthood. Among the causes, modifications of the mitochondrial function could be of major importance. Polyunsaturated fatty (ω-3) acids have been shown to play a role in intracellular functions. We hypothesize that docosahexaenoic acid (DHA) supplementation could improve muscle mitochondrial function that could contribute to limit the early consequences of aging on adult muscle. Twelve-month-old male Wistar rats were fed a low-polyunsaturated fat diet and were given DHA (DHA group) or placebo (control group) for 9 wk. Rats from the DHA group showed a higher endurance capacity (+56%, P < 0.05) compared with control animals. Permeabilized myofibers from soleus muscle showed higher O2 consumptions (P < 0.05) in the DHA group compared with the control group, with glutamate-malate as substrates, both in basal conditions (i.e., state 2) and under maximal conditions (i.e., state 3, using ADP), along with a higher apparent Km for ADP (P < 0.05). Calcium retention capacity of isolated mitochondria was lower in DHA group compared with the control group (P < 0.05). Phospho-AMPK/AMPK ratio and PPARδ mRNA content were higher in the DHA group compared with the control group (P < 0.05). Results showed that DHA enhanced endurance capacity in adult animals, a beneficial effect potentially resulting from improvement in mitochondrial function, as suggested by our results on permeabilized fibers. DHA supplementation could be of potential interest for the muscle function in adults and for fighting the decline in exercise tolerance with age that could imply energy-sensing pathway, as suggested by changes in phospho-AMPK/AMPK ratio.

  10. Adsorption capacities of poly-γ-glutamic acid and its sodium salt for cesium removal from radioactive wastewaters.

    PubMed

    Sakamoto, Shigeki; Kawase, Yoshinori

    2016-12-01

    Cesium removal from radioactive wastewaters was examined using water-insoluble poly-γ-glutamic acid (γ-PGA) and water-soluble sodium salt form poly-γ-L-glutamic acid (γ-PGANa) as biosorbents. The maximum adsorption capacities at equilibrium of γ-PGA and γ-PGANa for Cs were 345 mg-Cs(g-γ-PGA)(-1) at pH 6.0 and 290 mg-Cs(g-γ-PGANa)(-1) at pH 9.0, respectively. At lower pH < pKa, the carboxyl groups of γ-PGA primarily remained in the protonated form and adsorption of Cs only slightly occurred. At higher pH > pKa, the adsorption of Cs was significantly facilitated due to ionization of carboxyl groups to carboxylate ion. Adsorption of Cs at pH > 9.0 was inhibited due to the hydrolysis of Cs. The Langmuir model could successfully describe the isotherm data. For γ-PGA and γ-PGANa, the maximum adsorption capacities at equilibrium in the Langmuir model were 446 and 333 mg-Cs(g-adsorbent)(-1), respectively. The high adsorption capacities confirmed a potential utilization of γ-PGA and γ-PGANa for Cs removal. The adsorption of Cs by both γ-PGA and γ-PGANa attained the equilibrium within 0.5 min. The very quick equilibration is a benefit from the viewpoint of practical application. The spectra of FT-IR and XPS before and after adsorption confirmed the adsorption of Cs onto γ-PGA and γ-PGANa via electrostatic interaction with carboxylate anions.

  11. Effect of surface acidic oxides of activated carbon on adsorption of ammonia.

    PubMed

    Huang, Chen-Chia; Li, Hong-Song; Chen, Chien-Hung

    2008-11-30

    The influence of surface acidity of activated carbon (AC) was experimentally studied on adsorption of ammonia (NH(3)). Coconut shell-based AC was modified by various acids at different concentrations. There were five different acids employed to modified AC, which included nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, and acetic acid. Acidic functional groups on the surface of ACs were determined by a Fourier transform infrared spectrograph (FTIR) and by the Boehm titration method. Specific surface area and pore volume of the ACs were measured by a nitrogen adsorption apparatus. Adsorption amounts of NH(3) onto the ACs were measured by a dynamic adsorption system at room temperature according to the principle of the ASTM standard test method. The concentration of NH(3) in the effluent stream was monitored by a gas-detecting tube technique. Experimental results showed that adsorption amounts of NH(3) on the modified ACs were all enhanced. The ammonia adsorption amounts on various activated carbons modified by different acids are in the following order: nitric acid>sulfuric acid>acetic acid approximately phosphoric acid>hydrochloric acid. It is worth to note that the breakthrough capacity of NH(3) is linearly proportional to the amount of acidic functional groups of the ACs.

  12. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.

    PubMed

    Horowitz, J F; Klein, S

    2000-12-01

    We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.

  13. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  14. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    SciTech Connect

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; Neumman, Anica; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show that all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.

  15. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  16. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  17. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  18. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  19. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  20. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  1. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  2. Synthesis of citric acid functionalized magnetic graphene oxide coated corn straw for methylene blue adsorption.

    PubMed

    Ge, Heyi; Wang, Cuicui; Liu, Shanshan; Huang, Zhen

    2016-12-01

    The citric acid functionalized magnetic graphene oxide coated corn straw (CA-mGOCS) as a new adsorbent was synthesized in this work for the elimination of methylene blue (MB) from waste water. The as-prepared CA-mGOCS was tested by SEM, FTIR, XRD, Roman spectrum, TGA, particle size analyzer, BET and magnetic properties analyzer. Some factors affecting adsorption removal efficiency were explored. As a result, the addition of 5g CS (CA-mGO5CS) had the better adsorption performance than other adsorbents. The pseudo-second-order model and the Freundlich described the adsorption behavior well. The equilibrium adsorption capacity was 315.5mgg(-1) for MB at pH=12 and 298k. The electrostatic incorporation as well as hydrophobic interactions between CA-mGO5CS and MB determined the favourable adsorption property. Besides, the thermodynamic studies results ΔG<0, ΔH<0, ΔS<0 suggested that the adsorption was a spontaneous, exothermic and randomness decrease process. Finally, reusability studies imply that CA-mGO5CS has an excellent reproducibility.

  3. Effect of aniline on cadmium adsorption by sulfanilic acid-grafted magnetic graphene oxide sheets.

    PubMed

    Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; Hu, Xi; Chen, An-wei; Wang, Ya-qin; Guo, Yi-Mming; Li, Ting-ting; Zhou, Lu; Liu, Shao-heng; Zeng, Xiao-xia

    2014-07-15

    Cd(II) has posed severe health risks worldwide. To remove this contaminant from aqueous solution, the sulfanilic acid-grafted magnetic graphene oxide sheets (MGOs/SA) were prepared and characterized. The mutual effects of Cd(II) and aniline adsorption on MGOs/SA were studied. The effects of operating parameters such as pH, ionic strength, contact time and temperature on the Cd(II) enrichment, as well as the adsorption kinetics and isotherm were also investigated. The results demonstrated that MGOs/SA could effectively remove Cd(II) and aniline from the aqueous solution and the two