Sample records for acid oxidation disorders

  1. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... Treatment of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... this page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  2. Reye's Syndrome

    MedlinePlus

    ... in children and teenagers who have an underlying fatty acid oxidation disorder. Fatty acid oxidation disorders are a group of inherited metabolic ... which the body is unable to break down fatty acids because an enzyme is missing or not working ...

  3. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    ERIC Educational Resources Information Center

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  4. Uric acid as one of the important factors in multifactorial disorders – facts and controversies

    PubMed Central

    Pasalic, Daria; Marinkovic, Natalija; Feher-Turkovic, Lana

    2012-01-01

    With considering serum concentration of the uric acid in humans we are observing hyperuricemia and possible gout development. Many epidemiological studies have shown the relationship between the uric acid and different disorders such are obesity, metabolic syndrome, hypertension and coronary artery disease. Clinicians and investigators recognized serum uric acid concentration as very important diagnostic and prognostic factor of many multifactorial disorders. This review presented few clinical conditions which are not directly related to uric acid, but the concentrations of uric acid might have a great impact in observing, monitoring, prognosis and therapy of such disorders. Uric acid is recognized as a marker of oxidative stress. Production of the uric acid includes enzyme xanthine oxidase which is involved in producing of radical-oxigen species (ROS). As by-products ROS have a significant role in the increased vascular oxidative stress and might be involved in atherogenesis. Uric acid may inhibit endothelial function by inhibition of nitric oxide-function under conditions of oxidative stress. Down regulation of nitric oxide and induction of endothelial dysfunction might also be involved in pathogenesis of hypertension. The most important and well evidenced is possible predictive role of uric acid in predicting short-term outcome (mortality) in acute myocardial infarction (AMI) patients and stroke. Nephrolithiasis of uric acid origin is significantly more common among patients with the metabolic syndrome and obesity. On contrary to this, uric acid also acts is an “antioxidant”, a free radical scavenger and a chelator of transitional metal ions which are converted to poorly reactive forms. PMID:22384520

  5. Uric acid as one of the important factors in multifactorial disorders--facts and controversies.

    PubMed

    Pasalic, Daria; Marinkovic, Natalija; Feher-Turkovic, Lana

    2012-01-01

    With considering serum concentration of the uric acid in humans we are observing hyperuricemia and possible gout development. Many epidemiological studies have shown the relationship between the uric acid and different disorders such are obesity, metabolic syndrome, hypertension and coronary artery disease. Clinicians and investigators recognized serum uric acid concentration as very important diagnostic and prognostic factor of many multifactorial disorders. This review presented few clinical conditions which are not directly related to uric acid, but the concentrations of uric acid might have a great impact in observing, monitoring, prognosis and therapy of such disorders. Uric acid is recognized as a marker of oxidative stress. Production of the uric acid includes enzyme xanthine oxidase which is involved in producing of radical-oxigen species (ROS). As by-products ROS have a significant role in the increased vascular oxidative stress and might be involved in atherogenesis. Uric acid may inhibit endothelial function by inhibition of nitric oxide-function under conditions of oxidative stress. Down regulation of nitric oxide and induction of endothelial dysfunction might also be involved in pathogenesis of hypertension. The most important and well evidenced is possible predictive role of uric acid in predicting short-term outcome (mortality) in acute myocardial infarction (AMI) patients and stroke. Nephrolithiasis of uric acid origin is significantly more common among patients with the metabolic syndrome and obesity. On contrary to this, uric acid also acts is an "antioxidant", a free radical scavenger and a chelator of transitional metal ions which are converted to poorly reactive forms.

  6. An Open-label Phase 2 Study of UX007 (Triheptanoin) in Subjects With Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD)

    ClinicalTrials.gov

    2018-06-01

    Long-chain Fatty Acid Oxidation Disorders (LC-FAOD); Carnitine Palmitoyltransferase (CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Longchain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency

  7. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    USDA-ARS?s Scientific Manuscript database

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been repor...

  8. Generalized Anxiety Disorder (GAD) and Comorbid Major Depression with GAD Are Characterized by Enhanced Nitro-oxidative Stress, Increased Lipid Peroxidation, and Lowered Lipid-Associated Antioxidant Defenses.

    PubMed

    Maes, Michael; Bonifacio, Kamila Landucci; Morelli, Nayara Rampazzo; Vargas, Heber Odebrecht; Moreira, Estefânia Gastaldello; St Stoyanov, Drozdstoy; Barbosa, Décio Sabbatini; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-05-07

    Accumulating evidence shows that nitro-oxidative pathways play an important role in the pathophysiology of major depressive disorder (MDD) and bipolar disorder (BD) and maybe anxiety disorders. The current study aims to examine superoxide dismutase (SOD1), catalase, lipid hydroperoxides (LOOH), nitric oxide metabolites (NOx), advanced oxidation protein products (AOPP), malondialdehyde (MDA), glutathione (GSH), paraoxonase 1 (PON1), high-density lipoprotein cholesterol (HDL), and uric acid (UA) in participants with and without generalized anxiety disorder (GAD) co-occurring or not with BD, MDD, or tobacco use disorder. Z unit-weighted composite scores were computed as indices of nitro-oxidative stress driving lipid and protein oxidation. SOD1, LOOH, NOx, and uric acid were significantly higher and HDL and PON1 significantly lower in participants with GAD than in those without GAD. GAD was more adequately predicted by increased SOD + LOOH + NOx and lowered HDL + PON1 composite scores. Composite scores of nitro-oxidative stress coupled with aldehyde and AOPP production were significantly increased in participants with comorbid GAD + MDD as compared with all other study groups, namely MDD, GAD + BD, BD, GAD, and healthy controls. In conclusion, GAD is characterized by increased nitro-oxidative stress and lipid peroxidation and lowered lipid-associated antioxidant defenses, while increased uric acid levels in GAD may protect against aldehyde production and protein oxidation. This study suggests that increased nitro-oxidative stress and especially increased SOD1 activity, NO production, and lipid peroxidation as well as lowered HDL-cholesterol and PON1 activity could be novel drug targets for GAD especially when comorbid with MDD.

  9. Advances in the Understanding and Treatment of Mitochondrial Fatty Acid Oxidation Disorders.

    PubMed

    Goetzman, Eric S

    2017-09-01

    This review focuses on advances made in the past three years with regards to understanding the mitochondrial fatty acid oxidation (FAO) pathway, the pathophysiological ramifications of genetic lesions in FAO enzymes, and emerging therapies for FAO disorders. FAO has now been recognized to play a key energetic role in pulmonary surfactant synthesis, T-cell differentiation and memory, and the response of the proximal tubule to kidney injury. Patients with FAO disorders may face defects in these cellular systems as they age. Aspirin, statins, and nutritional supplements modulate the rate of FAO under normal conditions and could be risk factors for triggering symptoms in patients with FAO disorders. Patients have been identified with mutations in the ACAD9 and ECHS1 genes, which may represent new FAO disorders. New interventions for long-chain FAODs are in clinical trials. Finally, post-translational modifications that regulate fatty acid oxidation protein activities have been characterized that represent important new therapeutic targets. Recent research has led to a deeper understanding of FAO. New therapeutic avenues are being pursued that may ultimately cause a paradigm shift for patient care.

  10. [Rhabdomyolysis - may it be a metabolic myopathy? Case report and diagnostic algorithm].

    PubMed

    Sebők, Ágnes; Pál, Endre; Molnár, Gergő Attila; Wittmann, István; Berenténé Bene, Judit; Melegh, Béla; Komoly, Sámuel; Hidvégi, Tibor; Balogh, Lídia; Szabó, Attila; Zsidegh, Petra

    2017-11-01

    We report the case of a 46-year-old female patient with recurrent rhabdomyolysis. In the background of her metabolic myopathy an inherited metabolic disorder of the fatty acid oxidation, very long-chain acyl-coenzyme A-dehydrogenase deficiency was diagnosed. The diagnosis was based on abnormal acyl-carnitine- and urine organic-acid profile in addition to low residual enzyme activity, and was confirmed by genetic testing. After introduction of dietotherapy metabolic crisis necessitating hospital admission has not occurred neither have fixed myopathic changes developed. We present here the differential diagnosis of rhabdomyolysis and exertional muscle complaints, with the metabolic myopathies in focus. The main features of fatty acid oxidation disorders are highlighted, acute and chronic managements of very long-chain acyl-coenzyme A-dehydrogenase deficiency are discussed. Metabolic myopathies respond well to treatment, so good quality of life can be achieved. However, especially in fatty acid oxidation disorders, a metabolic crisis may develop quickly and can be fatal, albeit rarely. Some of these disorders can be identified by newborn screening, but occasionally the symptoms may manifest only in adulthood. With the presentation of this case we would like to point out that in the differential diagnosis of recurrent rhabdomyolysis inherited metabolic disorders should be considered regardless of the patient's age. Orv Hetil. 2017; 158(46): 1873-1882.

  11. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats.

    PubMed

    Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami

    2016-03-01

    Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property.

  12. Increased breath ethane levels in medicated patients with schizophrenia and bipolar disorder are unrelated to erythrocyte omega-3 fatty acid abundance.

    PubMed

    Ross, Brian M; Maxwell, Ross; Glen, Iain

    2011-03-30

    Oxidative stress has been reported to be elevated in mental illness. Preliminary evidence suggests this phenomenon can be assessed non-invasively by determining breath levels of the omega-3 polyunsaturated fatty acid (PUFA) oxidation product ethane. This study compares alkane levels in chronic, medicated, patients with schizophrenia or bipolar disorder with those in healthy controls. Both ethane and butane levels were significantly increased in patients with schizophrenia or bipolar disorder, although elevated butane levels were likely due to increased ambient gas concentrations. Ethane levels were not correlated with symptom severity or with erythrocyte omega-3 PUFA levels. Our results support the hypothesis that oxidative stress is elevated in patients with schizophrenia and bipolar disorder leading to increased breath ethane abundance. This does not appear to be caused by increased abundance of omega-3 PUFA, but rather is likely due to enhanced oxidative damage of these lipids. As such, breath hydrocarbon analysis may represent a simple, non-invasive means to monitor the metabolic processes occurring in these disorders. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Aspirin Increases Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.; Bharathi, Sivakama S.; Zhang, Yuxun; Stolz, Donna B.; Goetzman, Eric S.

    2016-01-01

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 hr incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. PMID:27856258

  14. Effect of GABA on oxidative stress in the skeletal muscles and plasma free amino acids in mice fed high-fat diet.

    PubMed

    Xie, Z X; Xia, S F; Qiao, Y; Shi, Y H; Le, G W

    2015-06-01

    Increased levels of plasma free amino acids (pFAAs) can disturb the blood glucose levels in patients with obesity, diabetes mellitus and metabolic syndrome (MS) and are associated with enhanced protein oxidation. Oxidation of proteins, especially in the muscles, can promote protein degradation and elevate the levels of pFAAs. Gamma-aminobutyric acid (GABA), a food additive, can reduce high-fat diet (HFD)-induced hyperglycaemia; however, the mechanisms remain unclear. The aim of this study was to evaluate the effects of GABA on protein oxidation and pFAAs changes. One hundred male C57BL/6 mice were randomly divided into five groups that were fed with control diet, HFD and HFD supplied with 0.2%, 0.12% and 0.06% GABA in drinking water for 20 weeks respectively. HFD feeding led to muscular oxidative stress, protein oxidation, pFAA disorders, hyperglycaemia and augmented plasma GABA levels. Treatment with GABA restored normally fasting blood glucose level and dose-dependently inhibited body weight gains, muscular oxidation and protein degradation. While medium and low doses of GABA mitigated HFD-induced pFAA disorders, the high dose of GABA deteriorated the pFAA disorders. Medium dose of GABA increased the levels of GABA, but high dose of GABA reduced the levels of plasma GABA and increased the activity of succinic semialdehyde dehydrogenase in the liver. Therefore, treatment with GABA mitigated HFD-induced hyperglycaemia probably by repairing HFD-induced muscular oxidative stress and pFAA disorders in mice. Our data also suggest that an optimal dose of GABA is crucial for the prevention of excess GABA-related decrease in the levels of pFAA and GABA as well as obesity. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  15. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Department of Basic Medical Sciences, University of Bari, Piazza Giulio Cesare 11, Policlinico, I-70124 Bari

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacitymore » of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.« less

  16. Aspirin increases mitochondrial fatty acid oxidation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E.

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse themore » mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders. - Highlights: • Aspirin increases mitochondrial—but inhibits peroxisomal—fatty acid oxidation. • Aspirin acetylates mitochondrial proteins including fatty acid oxidation enzymes. • SIRT3 does not influence the effect of aspirin on fatty acid oxidation. • Increased fatty acid oxidation is likely due to altered mitochondrial morphology and respiration.« less

  17. Circadian preferences, oxidative stress and inflammatory cytokines in bipolar disorder: A community study.

    PubMed

    Mondin, Thaise Campos; de Azevedo Cardoso, Taiane; Moreira, Fernanda Pedrotti; Wiener, Carolina; Oses, Jean Pierre; de Mattos Souza, Luciano Dias; Jansen, Karen; da Silva Magalhães, Pedro Vieira; Kapczinski, Flávio; da Silva, Ricardo Azevedo

    2016-12-15

    To assess circadian preference among a community sample of people with bipolar disorder, major depression and without any mood disorders. Secondly, we investigated the association of circadian preference with cytokines interleukin-6 (IL-6), interleukin-10 (IL-10) and, tumor necrosis factor alpha (TNF-α) and oxidative stress assessed by thiobarbituric acid reactive substances (TBARS), uric acid and Protein Carbonyl Content (PCC). A cross-sectional study nested in a population-based sample. Caseness was confirmed with the Structured Clinical Interview for DSM-IV. A sample of 215 participants, in whom we measured circadian preferences, IL-6, IL-10, TNF-α, TBARS, uric acid, PCC. Biological rhythms were evaluated using the Biological Interview of Assessment in Neuropsychiatry. Bipolar group presented a higher alteration in biological rhythms (40.40±9.78) when compared with the major depression group (36.35±9.18) and control group (27.61±6.89) p<0.001. Subjects with bipolar disorder who were active at night and had a day/night cycle reverse showed decreased levels of IL-6 (t, 44=2.096; p=0.042), (t, 44=2.213; p=0.032), respectively. In the bipolar disorder group subjects who presented day/night cycle reverse had lower TBARS levels (t, 41=2.612; p=0.013). TNF-α were decreased in subjects more active at night with bipolar disorder. Lower serum levels of IL-6, TNF-α and TBARS were associated with evening preference in bipolar disorder group. These findings suggest that chronotype may alter the levels of interleukins and oxidative stress levels in bipolar and healthy subjects. A better understanding of the role of circadian preferences in levels of interleukins and oxidative stress are needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Metabolic Encephalopathy and Lipid Storage Myopathy Associated with a Presumptive Mitochondrial Fatty Acid Oxidation Defect in a Dog

    PubMed Central

    Biegen, Vanessa R.; McCue, John P.; Donovan, Taryn A.; Shelton, G. Diane

    2015-01-01

    A 1-year-old spayed female Shih Tzu presented for episodic abnormalities of posture and mentation. Neurological examination was consistent with a bilaterally symmetric multifocal encephalopathy. The dog had a waxing-and-waning hyperlactemia and hypoglycemia. Magnetic resonance imaging revealed bilaterally symmetric cavitated lesions of the caudate nuclei with less severe abnormalities in the cerebellar nuclei. Empirical therapy was unsuccessful, and the patient was euthanized. Post-mortem histopathology revealed bilaterally symmetric necrotic lesions of the caudate and cerebellar nuclei and multi-organ lipid accumulation, including a lipid storage myopathy. Malonic aciduria and ketonuria were found on urinary organic acid screen. Plasma acylcarnitine analysis suggested a fatty acid oxidation defect. Fatty acid oxidation disorders are inborn errors of metabolism documented in humans, but poorly described in dogs. Although neurological signs have been described in humans with this group of diseases, descriptions of advanced imaging, and histopathology are severely lacking. This report suggests that abnormalities of fatty acid metabolism may cause severe, bilateral gray matter necrosis, and lipid accumulation in multiple organs including the skeletal muscles, liver, and kidneys. Veterinarians should be aware that fatty acid oxidation disorders, although potentially fatal, may be treatable. A timely definitive diagnosis is essential in guiding therapy. PMID:26664991

  19. Long-chain omega 3 fatty acids: molecular bases of potential antioxidant actions.

    PubMed

    Giordano, Elena; Visioli, Francesco

    2014-01-01

    Several lines of investigation are being developed to assess the impact of polyunsaturated fatty acids, namely those of the omega 3 series, intake on oxidative stress. Keeping in mind that there might be a dose-response relation, in vivo and in vitro data strongly suggest that omega 3 fatty acids might act as anti- rather than pro-oxidant in several cells such as vascular cells, hence diminishing inflammation, oxidative stress, and, in turn, the risk of atherosclerosis and degenerative disorders such as cardiovascular disease. © 2013 Published by Elsevier Ltd.

  20. Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria.

    PubMed

    Tonin, Anelise M; Amaral, Alexandre U; Busanello, Estela N B; Grings, Mateus; Castilho, Roger F; Wajner, Moacir

    2013-02-01

    Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.

  1. Effects of oxidative stress on fatty acid- and one-carbon-metabolism in psychiatric and cardiovascular disease comorbidity

    PubMed Central

    Assies, J; Mocking, R J T; Lok, A; Ruhé, H G; Pouwer, F; Schene, A H

    2014-01-01

    Objective Cardiovascular disease (CVD) is the leading cause of death in severe psychiatric disorders (depression, schizophrenia). Here, we provide evidence of how the effects of oxidative stress on fatty acid (FA) and one-carbon (1-C) cycle metabolism, which may initially represent adaptive responses, might underlie comorbidity between CVD and psychiatric disorders. Method We conducted a literature search and integrated data in a narrative review. Results Oxidative stress, mainly generated in mitochondria, is implicated in both psychiatric and cardiovascular pathophysiology. Oxidative stress affects the intrinsically linked FA and 1-C cycle metabolism: FAs decrease in chain length and unsaturation (particularly omega-3 polyunsaturated FAs), and lipid peroxidation products increase; the 1-C cycle shifts from the methylation to transsulfuration pathway (lower folate and higher homocysteine and antioxidant glutathione). Interestingly, corresponding alterations were reported in psychiatric disorders and CVD. Potential mechanisms through which FA and 1-C cycle metabolism may be involved in brain (neurocognition, mood regulation) and cardiovascular system functioning (inflammation, thrombosis) include membrane peroxidizability and fluidity, eicosanoid synthesis, neuroprotection and epigenetics. Conclusion While oxidative-stress-induced alterations in FA and 1-C metabolism may initially enhance oxidative stress resistance, persisting chronically, they may cause damage possibly underlying (co-occurrence of) psychiatric disorders and CVD. This might have implications for research into diagnosis and (preventive) treatment of (CVD in) psychiatric patients. PMID:24649967

  2. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders.

    PubMed

    Ong, Wei-Yi; Farooqui, Tahira; Kokotos, George; Farooqui, Akhlaq A

    2015-06-17

    Phospholipases A2 (PLA2) are a diverse group of enzymes that hydrolyze membrane phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is metabolized to eicosanoids (prostaglandins, leukotrienes, thromboxanes), and lysophospholipids are converted to platelet-activating factors. These lipid mediators play critical roles in the initiation, maintenance, and modulation of neuroinflammation and oxidative stress. Neurological disorders including excitotoxicity; traumatic nerve and brain injury; cerebral ischemia; Alzheimer's disease; Parkinson's disease; multiple sclerosis; experimental allergic encephalitis; pain; depression; bipolar disorder; schizophrenia; and autism are characterized by oxidative stress, inflammatory reactions, alterations in phospholipid metabolism, accumulation of lipid peroxides, and increased activities of brain phospholipase A2 isoforms. Several old and new synthetic inhibitors of PLA2, including fatty acid trifluoromethyl ketones; methyl arachidonyl fluorophosphonate; bromoenol lactone; indole-based inhibitors; pyrrolidine-based inhibitors; amide inhibitors, 2-oxoamides; 1,3-disubstituted propan-2-ones and polyfluoroalkyl ketones as well as phytochemical based PLA2 inhibitors including curcumin, Ginkgo biloba and Centella asiatica extracts have been discovered and used for the treatment of neurological disorders in cell culture and animal model systems. The purpose of this review is to summarize information on selective and potent synthetic inhibitors of PLA2 as well as several PLA2 inhibitors from plants, for treatment of oxidative stress and neuroinflammation associated with the pathogenesis of neurological disorders.

  3. Antioxidant properties of nicergoline; inhibition of brain auto-oxidation and superoxide production of neutrophils in rats.

    PubMed

    Tanaka, M; Yoshida, T; Okamoto, K; Hirai, S

    1998-05-22

    Oxidative stress has been suggested to adversely influence cerebrovascular disorders and some neurodegenerative disorders. We examined whether nicergoline, an agent widely used for treating cerebrovascular disorders and senile mental impairment, possesses antioxidant activities and some beneficial effect on neutrophils generating free radicals. Although nicergoline did not scavenge superoxide produced from a superoxide-generating system, it significantly inhibited superoxide secretion from stimulated neutrophils. Auto-oxidation of brain homogenate of rats, monitored by formation of thiobarbituric acid-reactive substances, was suppressed by nicergoline in a dose-dependent manner. The oxidation of the homogenate was accelerated by activated neutrophils and was significantly suppressed by nicergoline. These observations suggest that nicergoine is an antioxidant that inhibits not only lipid peroxidation but also free radical generation from neutrophils. These properties of nicergoline should be beneficial in some pathological conditions including cerebrovascular and neurodegenerative disorders in which oxidative stress may have a pathoetiological role.

  4. Influence of media with different acidity on structure of FeNi nanotubes

    NASA Astrophysics Data System (ADS)

    Shumskaya, Alena; Kaniukov, Egor; Kutuzau, Maksim; Bundyukova, Victoria; Tulebayeva, Dinara; Kozlovskiy, Artem; Borgekov, Daryn; Kenzhina, Inesh; Zdorovets, Maxim

    2018-04-01

    A detailed analysis of the structure features of FeNi nanotubes exposed at environment with different acidity is carried out. It is demonstrated that the exposure of the nanostructures in the environment with high acidity causes the structure deformation, leading to sharply increasing of the presents of oxide phases and partial amorphization of nanotubes walls that determined the rate of FeNi nanotubes destruction. It was established that the evolution of the crystal structure parameters concerned with appearance of oxide phases and with formation of disorder regions as a result of oxidation processes.

  5. Altered maternal micronutrients (folic acid, vitamin B(12)) and omega 3 fatty acids through oxidative stress may reduce neurotrophic factors in preterm pregnancy.

    PubMed

    Dhobale, Madhavi; Joshi, Sadhana

    2012-04-01

    Preterm pregnancies account for approximately 10% of the total pregnancies and are associated with low birth weight (LBW) babies. Recent studies have shown that LBW babies are at an increased risk of developing brain disorders such as cognitive dysfunction and psychiatric disorders. Maternal nutrition, particularly, micronutrients involved in one-carbon metabolism (folic acid, vitamin B(12), and docosahexaenoic acid (DHA)) have a major role during pregnancy for developing fetus and are important determinants of epigenesis. A series of our studies in pregnancy complications have well established the importance of omega 3 fatty acids especially DHA. DHA regulates levels of neurotrophins like brain-derived neurotrophic factor and nerve growth factor, which are required for normal neurological development. We have recently described that in one carbon metabolic pathway, membrane phospholipids are major methyl group acceptors and reduced DHA levels may result in diversion of methyl groups toward deoxyribonucleic acid (DNA) ultimately resulting in DNA methylation. In this review, we propose that altered maternal micronutrients (folic acid, vitamin B(12)), increased homocysteine, and oxidative stress levels that cause epigenetic modifications may be one of the mechanisms that contribute to preterm birth and poor fetal outcome, increasing risk for behavioural disorders in children.

  6. Indole Alkaloids Inhibiting Neural Stem Cell from Uncaria rhynchophylla.

    PubMed

    Wei, Xin; Jiang, Li-Ping; Guo, Ying; Khan, Afsar; Liu, Ya-Ping; Yu, Hao-Fei; Wang, Bei; Ding, Cai-Feng; Zhu, Pei-Feng; Chen, Ying-Ying; Zhao, Yun-Li; Chen, Yong-Bing; Wang, Yi-Fen; Luo, Xiao-Dong

    2017-10-01

    Uncaria rhynchophylla is commonly recognized as a traditional treatment for dizziness, cerebrovascular diseases, and nervous disorders in China. Previously, the neuro-protective activities of the alkaloids from U. rhynchophylla were intensively reported. In current work, three new indole alkaloids (1-3), identified as geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), and 3β-sitsirikine N 4 -oxide (3), as well as 26 known analogues were isolated from U. rhynchophylla. However, in the neural stem cells (NSCs) proliferation assay for all isolated compounds, geissoschizic acid (1), geissoschizic acid N 4 -oxide (2), isocorynoxeine (6), isorhynchophylline (7), (4S)-akuammigine N-oxide (8), and (4S)-rhynchophylline N-oxide (10) showed unexpected inhibitory activities at 10 μM. Unlike previous neuro-protective reports, as a warning or caution, our finding showcased a clue for possible NSCs toxicity and the neural lesions risk of U. rhynchophylla, while the structure-activity relationships of the isolated compounds were discussed also.

  7. Astaxanthin improves behavioral disorder and oxidative stress in prenatal valproic acid-induced mice model of autism.

    PubMed

    Al-Amin, Md Mamun; Rahman, Md Mahbubur; Khan, Fazlur Rahman; Zaman, Fahmida; Mahmud Reza, Hasan

    2015-06-01

    Prenatal exposure to valproic acid on gestational day 12.5 may lead to the impaired behavior in the offspring, which is similar to the human autistic symptoms. To the contrary, astaxanthin shows neuroprotective effect by its antioxidant mechanism. We aimed to (i) develop mice model of autism and (ii) investigate the effect of astaxanthin on such model animals. Valproic acid (600 mg/kg) was administered intraperitoneally to the pregnant mice on gestational day 12.5. Prenatal valproic acid-exposed mice were divided into 2 groups on postnatal day 25 and astaxanthin (2mg/kg) was given to the experimental group (VPA_AST, n=10) while saline was given to the control group (VPA, n=10) for 4 weeks. Behavioral test including social interaction, open field and hot-plate were conducted on postnatal day 25 and oxidative stress markers such as lipid peroxidation, advanced protein oxidation product, nitric oxide, glutathione, and activity of superoxide dismutase and catalase were estimated on postnatal day 26 to confirm mice model of autism and on postnatal day 56 to assess the effect of astaxanthin. On postnatal day 25, prenatal valproic acid-exposed mice exhibited (i) delayed eye opening (ii) longer latency to respond painful stimuli, (iii) poor sociability and social novelty and (iv) high level of anxiety. In addition, an increased level of oxidative stress was found by determining different oxidative stress markers. Treatment with astaxanthin significantly (p<0.05) improved the behavioral disorder and reduced the oxidative stress in brain and liver. In conclusion, prenatal exposure to valproic day in pregnant mice leads to the development of autism-like features. Astaxanthin improves the impaired behavior in animal model of autism presumably by its antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry.

    PubMed

    Han, Lianshu; Han, Feng; Ye, Jun; Qiu, Wenjuan; Zhang, Huiwen; Gao, Xiaolan; Wang, Yu; Ji, Wenjun; Gu, Xuefan

    2015-03-01

    Information concerning inherited metabolic diseases in China is scarce. We investigated the prevalence and age distributions of amino acid, organic acid, and fatty acid oxidation disorders in Chinese patients. Blood levels of amino acids and acylcarnitines (tandem mass spectrometry) were measured in 18,303 patients with suspected inherited metabolic diseases. Diagnosis was based on clinical features, blood levels of amino acids or acylcarnitines, urinary organic acid levels (gas chromatography-mass spectrometry), and (in some) gene mutation tests. Inherited metabolic diseases were confirmed in 1,135 patients (739 males, 396 females). Median age was 12 months (1 day to 59 years). There were 28 diseases: 12 amino acid disorders (580 patients, 51.1%), with hyperphenylalaninemia (HPA) being the most common; nine organic acidemias (408 patients, 35.9%), with methylmalonic acidemia (MMA) as the most common; and seven fatty acid oxidation defects (147 patients, 13.0%), with multiple acyl-coenzyme A dehydrogenase deficiency (MADD) being the most common. Onset was mainly at 1-6 months for citrin deficiency, 0-6 months for MMA, and in newborns for ornithine transcarbamylase deficiency (OTCD). HPA was common in patients aged 1-3 years, and MADD was common in patients >18 years. In China, HPA, citrin deficiency, MMA, and MADD are the most common inherited disorders, particularly in newborns/infants. © 2014 Wiley Periodicals, Inc.

  9. Effect of alpha lipoic acid on intracerebroventricular streptozotocin model of cognitive impairment in rats.

    PubMed

    Sharma, Monisha; Gupta, Y K

    2003-08-01

    In the present study, the effect of alpha lipoic acid, a potent free radical scavenger, was investigated against the intracerebroventricular streptozotocin model of cognitive impairment in rats, which is characterized by a progressive deterioration of memory, cerebral glucose and energy metabolism, and oxidative stress. Wistar rats were injected with intracerebroventricular streptozotocin bilaterally. The rats were treated chronically with alpha lipoic acid (50, 100 and 200 mg/kg) orally for 21 days starting from day 1 of streptozotocin injection in separate groups. The learning and memory behavior was evaluated and the rats were sacrificed for estimation of oxidative stress. The intracerebroventricular streptozotocin rats treated with alpha lipoic acid (200 mg/kg, p.o.) showed significantly less cognitive impairment as compared to the vehicle treated rats. There was also an insignificant increase in oxidative stress in the alpha lipoic acid treated groups. The study demonstrated the effectiveness of alpha lipoic acid in preventing cognitive impairment and oxidative stress induced by intracerebroventricular streptozotocin and its potential in dementia associated with age and age related neurodegenerative disorders where oxidative stress is involved such as Alzheimer's disease.

  10. Essential fatty acid-rich diets protect against striatal oxidative damage induced by quinolinic acid in rats.

    PubMed

    Morales-Martínez, Adriana; Sánchez-Mendoza, Alicia; Martínez-Lazcano, Juan Carlos; Pineda-Farías, Jorge Baruch; Montes, Sergio; El-Hafidi, Mohammed; Martínez-Gopar, Pablo Eliasib; Tristán-López, Luis; Pérez-Neri, Iván; Zamorano-Carrillo, Absalom; Castro, Nelly; Ríos, Camilo; Pérez-Severiano, Francisca

    2017-09-01

    Essential fatty acids have an important effect on oxidative stress-related diseases. The Huntington's disease (HD) is a hereditary neurologic disorder in which oxidative stress caused by free radicals is an important damage mechanism. The HD experimental model induced by quinolinic acid (QUIN) has been widely used to evaluate therapeutic effects of antioxidant compounds. The aim of this study was to test whether the fatty acid content in olive- or fish-oil-rich diet prevents against QUIN-related oxidative damage in rats. Rats were fed during 20 days with an olive- or a fish-oil-rich diet (15% w/w). Posterior to diet period, rats were striatally microinjected with QUIN (240 nmol/µl) or saline solution. Then, we evaluated the neurological damage, oxidative status, and gamma isoform of the peroxisome proliferator-activated receptor (PPARγ) expression. Results showed that fatty acid-rich diet, mainly by fish oil, reduced circling behavior, prevented the fall in GABA levels, increased PPARγ expression, and prevented oxidative damage in striatal tissue. In addition none of the enriched diets exerted changes neither on triglycerides or cholesterol blood levels, nor or hepatic function. This study suggests that olive- and fish-oil-rich diets exert neuroprotective effects.

  11. Urinary biomarkers of oxidative damage in Maple syrup urine disease: the L-carnitine role.

    PubMed

    Guerreiro, Gilian; Mescka, Caroline Paula; Sitta, Angela; Donida, Bruna; Marchetti, Desirèe; Hammerschmidt, Tatiane; Faverzani, Jessica; Coelho, Daniella de Moura; Wajner, Moacir; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2015-05-01

    Maple syrup urine disease (MSUD) is a disorder of branched-chain amino acids (BCAA). The defect in the branched-chain α-keto acid dehydrogenase complex activity leads to an accumulation of these compounds and their corresponding α-keto-acids and α-hydroxy-acids. Studies have shown that oxidative stress may be involved in neuropathology of MSUD. L-carnitine (L-car), which has demonstrated an important role as antioxidant by reducing and scavenging free radicals formation and by enhancing the activity of antioxidant enzymes, have been used in the treatment of some metabolic rare disorders. This study evaluated the oxidative stress parameters, di-tyrosine, isoprostanes and antioxidant capacity, in urine of MSUD patients under protein-restricted diet supplemented or not with L-car capsules at a dose of 50 mg kg(-1) day(-1). It was also determined urinary α-keto isocaproic acid levels as well as blood free L-car concentrations in blood. It was found a deficiency of carnitine in patients before the L-car supplementation. Significant increases of di-tyrosine and isoprostanes, as well as reduced antioxidant capacity, were observed before the treatment with L-car. The L-car supplementation induced beneficial effects on these parameters reducing the di-tyrosine and isoprostanes levels and increasing the antioxidant capacity. It was also showed a significant increase in urinary of α-ketoisocaproic acid after 2 months of L-car treatment, compared to control group. In conclusion, our results suggest that L-car may have beneficial effects in the treatment of MSUD by preventing oxidative damage to the cells and that urine can be used to monitorize oxidative damage in patients affected by this disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The role of folic acid and selenium against oxidative damage from ethanol in early life programming: a review.

    PubMed

    Ojeda, Luisa; Nogales, Fátima; Murillo, Luisa; Carreras, Olimpia

    2018-04-01

    There are disorders in children, covered by the umbrella term "fetal alcohol spectrum disorder" (FASD), that occur as result of alcohol consumption during pregnancy and lactation. They appear, at least in part, to be related to the oxidative stress generated by ethanol. Ethanol metabolism generates reactive oxygen species and depletes the antioxidant molecule glutathione (GSH), leading to oxidative stress and lipid and protein damage, which are related to growth retardation and neurotoxicity, thereby increasing the incidence of FASD. Furthermore, prenatal and postnatal exposure to ethanol in dams, as well as increasing oxidation in offspring, causes malnutrition of several micronutrients such as the antioxidant folic acid and selenium (Se), affecting their metabolism and bodily distribution. Although abstinence from alcohol is the only way to prevent FASD, it is possible to reduce its harmful effects with a maternal dietary antioxidant therapy. In this review, folic acid and Se have been chosen to be analyzed as antioxidant intervention systems related to FASD because, like ethanol, they act on the methionine metabolic cycle, being related to the endogenous antioxidants GSH and glutathione peroxidase. Moreover, several birth defects are related to poor folate and Se status.

  13. Benefits of agomelatine in behavioral, neurochemical and blood brain barrier alterations in prenatal valproic acid induced autism spectrum disorder.

    PubMed

    Kumar, Hariom; Sharma, B M; Sharma, Bhupesh

    2015-12-01

    Valproic acid administration during gestational period causes behavior and biochemical deficits similar to those observed in humans with autism spectrum disorder. Although worldwide prevalence of autism spectrum disorder has been increased continuously, therapeutic agents to ameliorate the social impairment are very limited. The present study has been structured to investigate the therapeutic potential of melatonin receptor agonist, agomelatine in prenatal valproic acid (Pre-VPA) induced autism spectrum disorder in animals. Pre-VPA has produced reduction in social interaction (three chamber social behavior apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, Pre-VPA has increased locomotor activity (actophotometer), anxiety, brain oxidative stress (thiobarbituric acid reactive species, glutathione, and catalase), nitrosative stress (nitrite/nitrate), inflammation (brain and ileum myeloperoxidase activity), calcium levels and blood brain barrier leakage in animals. Treatment with agomelatine has significantly attenuated Pre-VPA induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, agomelatine also attenuated Pre-VPA induced increase in locomotion, anxiety, brain oxidative stress, nitrosative stress, inflammation, calcium levels and blood brain barrier leakage. It is concluded that, Pre-VPA has induced autism spectrum disorder, which was attenuated by agomelatine. Agomelatine has shown ameliorative effect on behavioral, neurochemical and blood brain barrier alteration in Pre-VPA exposed animals. Thus melatonin receptor agonists may provide beneficial therapeutic strategy for managing autism spectrum disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 5-Oxoproline reduces non-enzymatic antioxidant defenses in vitro in rat brain.

    PubMed

    Pederzolli, Carolina D; Sgaravatti, Angela M; Braum, César A; Prestes, Cristina C; Zorzi, Giovanni K; Sgarbi, Mirian B; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir; Dutra-Filho, Carlos S

    2007-03-01

    5-Oxoproline (pyroglutamic acid) accumulates in glutathione synthetase deficiency, an inborn metabolic defect of the gamma-glutamyl cycle. This disorder is clinically characterized by hemolytic anemia, metabolic acidosis and severe neurological disorders. Considering that the mechanisms of brain damage in this disease are poorly known, in the present study we investigated whether oxidative stress is elicited by 5-oxoproline. The in vitro effect of (0.5-3.0 mM) 5-oxoproline was studied on various parameters of oxidative stress, such as total radical-trapping antioxidant potential, total antioxidant reactivity, chemiluminescence, thiobarbituric acid-reactive substances, sulfhydryl content, carbonyl content, and 2',7'-dichlorofluorescein fluorescence, as well as on the activities of the antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase in cerebral cortex and cerebellum of 14-day-old rats. Total radical-trapping antioxidant potential and total antioxidant reactivity were significantly reduced in both cerebral structures. Carbonyl content and 2',7'-dichlorofluorescein fluorescence were significantly enhanced, while sulfhydryl content was significantly diminished. In contrast, chemiluminescence and thiobarbituric acid-reactive substances were not affected by 5-oxoproline. The activities of catalase, superoxide dismutase and glutathione peroxidase were also not altered by 5-oxoproline. These results indicate that 5-oxoproline causes protein oxidation and reactive species production and decrease the non-enzymatic antioxidant defenses in rat brain, but does not cause lipid peroxidation. Taken together, it may be presumed that 5-oxoproline elicits oxidative stress that may represent a pathophysiological mechanism in the disorder in which this metabolite accumulates.

  15. The Psychoneuroimmunological Role of Omega-3 Polyunsaturated Fatty Acids in Major Depressive Disorder and Bipolar Disorder.

    PubMed

    Rutkofsky, Ian Hunter; Khan, Anser Saeed; Sahito, Sindhu; Kumar, Vikram

    2017-01-01

    Context • Psychoneuroimmunology is the interdisciplinary study that links behavioral health with the neuroendocrinal system and investigates that link's bidirectional impact on the human immune system. Mechanistic studies have shown how omega-3 polyunsaturated fatty acids (PUFAs), like those found in fish oil, can modulate key pathways involved in inflammation, sympathetic activity, oxidative stress, transcription factors, and inflammatory cytokine production. Objective • The research team intended to investigate the effects that PUFAs have on the brain and the immune system, including the effects of proinflammatory cytokines and oxidative stress, and their therapeutic benefits in major depressive disorder (MDD) and bipolar disorder, either as an alternative monotherapy or a complementary adjunct treatment. Design • A literature search was conducted through PubMed and Google Scholar, with no restrictions on the publication dates or geographically. Setting • The research occurred at research facilities in Washington, DC, and Davis, California. Results • Well-described links between inflammation and MDD and bipolar disorder have been established. Similarly, a highly inflammatory state is a contributing factor to many significant health complications, and omega-3 PUFAs can help treat those issues. Conclusions • The research team concluded that omega-3 fatty acids have therapeutic benefits in the treatment of both MDD and bipolar disorder and are effective as a monotherapy and, particularly, as an adjunct therapy. The efficacy of omega-3 supplementation is clearly useful in promoting better health overall and supplementation should be encouraged in the primary care setting. A meta-analysis exploring an adjunct treatment of supplemental eicosapentaenoic acid or docosahexaenoic acid is likely to yield the greatest benefits to psychiatric conditions and provide an answer to proper dosing regimens. The team also created a chart of the supplements' salient features, demonstrating the overall health benefits of omega-3 fatty acids.

  16. Melatonin protects against taurolithocholic-induced oxidative stress in rat liver.

    PubMed

    Fuentes-Broto, Lorena; Miana-Mena, Francisco J; Piedrafita, Eduardo; Berzosa, César; Martínez-Ballarín, Enrique; García-Gil, Francisco A; Reiter, Russel J; García, Joaquín J

    2010-08-01

    Cholestasis, encountered in a variety of clinical disorders, is characterized by intracellular accumulation of toxic bile acids in the liver. Furthermore, oxidative stress plays an important role in the pathogenesis of bile acids. Taurolithocholic acid (TLC) was revealed in previous studies as the most pro-oxidative bile acid. Melatonin, a well-known antioxidant, is a safe and widely used therapeutic agent. Herein, we investigated the hepatoprotective role of melatonin on lipid and protein oxidation induced by TLC alone and in combination with FeCl(3) and ascorbic acid in rat liver homogenates and hepatic membranes. The lipid peroxidation products, malondialdehyde and 4-hydroxyalkenals (MDA + 4-HDA), and carbonyl levels were quantified as indices of oxidative damage to hepatic lipids and proteins, respectively. In the current study, the rise in MDA + 4-HDA levels induced by TLC was inhibited by melatonin in a concentration-dependent manner in both liver homogenates and in hepatic membranes. Melatonin also had protective effects against structural damage to proteins induced by TLC in membranes. These results suggest that the indoleamine melatonin may potentially act as a protective agent in the therapy of those diseases that involve bile acid toxicity. Published 2010 Wiley-Liss, Inc.

  17. Natural Versus Synthetic Vitamin B Complexes in Human

    ClinicalTrials.gov

    2018-04-12

    Healthy; Thiamine and Niacin Deficiency States; Pyridoxine Deficiency; Folic Acid Deficiency Anemia, Dietary; Vitamin B 12 Deficiency; Peroxidase; Defect; Polyphenols; Oxidative Stress; Homocystine; Metabolic Disorder

  18. Uric acid in major depressive and anxiety disorders.

    PubMed

    Black, Catherine N; Bot, Mariska; Scheffer, Peter G; Snieder, Harold; Penninx, Brenda W J H

    2018-01-01

    Uric acid has neuroprotective effects, owing to its antioxidant properties. Lowered antioxidant capacity, causing increased oxidative stress, may be involved in affective disorders and might be altered by antidepressants. This study investigated the association of plasma uric acid, the greatest contributor to blood antioxidant capacity, with major depressive disorder (MDD) and anxiety disorders. Data were from the Netherlands Study of Depression and Anxiety including patients with current (N = 1648), remitted (N = 609) MDD and/or anxiety disorders (of which N = 710 antidepressant users) and 618 controls. Diagnoses were established with the Composite International Diagnostic Interview. Symptom severity was assessed with the Inventory of Depressive Symptoms-Self Report, Beck Anxiety Inventory and Fear Questionnaire. Uric acid was measured in plasma. Analyses were adjusted for sociodemographic, health and lifestyle variables. Plasma uric acid adjusted mean levels were lower in current MDD and/or anxiety disorder(s) (289μmol/l) compared to remitted disorders (298μmol/l, p < .001) and controls (299μmol/l, p < .001; Cohen's d .10). This finding was independent of antidepressant use. Depressive (β-.05, p = .0012), anxiety (β-.04, p = .009) and phobic (β-.03, p = .036) symptom severity, and symptom duration (β-.04, p = .009) were negatively associated with uric acid. Limitations include the lack of data on dietary intake which could be a potential confounding factor. From these cross-sectional findings, the association between uric acid and psychopathology cannot be inferred to be causal. This large scale study finds plasma uric acid levels are lower in current, but not remitted, MDD and/or anxiety disorders, according to a dose-response gradient. This suggests the involvement of decreased antioxidant status in affective disorders, and points to their potential as an avenue for treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Role of ALDP (ABCD1) and Mitochondria in X-Linked Adrenoleukodystrophy

    PubMed Central

    McGuinness, M. C.; Lu, J.-F.; Zhang, H.-P.; Dong, G.-X.; Heinzer, A. K.; Watkins, P. A.; Powers, J.; Smith, K. D.

    2003-01-01

    Peroxisomal disorders have been associated with malfunction of peroxisomal metabolic pathways, but the pathogenesis of these disorders is largely unknown. X-linked adrenoleukodystrophy (X-ALD) is associated with elevated levels of very-long-chain fatty acids (VLCFA; C>22:0) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity. Previously, our laboratory and others have reported elevated VLCFA levels and reduced peroxisomal VLCFA β-oxidation in human and mouse X-ALD fibroblasts. In this study, we found normal levels of peroxisomal VLCFA β-oxidation in tissues from ALD mice with elevated VLCFA levels. Treatment of ALD mice with pharmacological agents resulted in decreased VLCFA levels without a change in VLCFA β-oxidation activity. These data indicate that ALDP does not determine the rate of VLCFA β-oxidation and that VLCFA levels are not determined by the rate of VLCFA β-oxidation. The rate of peroxisomal VLCFA β-oxidation in human and mouse fibroblasts in vitro is affected by the rate of mitochondrial long-chain fatty acid β-oxidation. We hypothesize that ALDP facilitates the interaction between peroxisomes and mitochondria, resulting, when ALDP is deficient in X-ALD, in increased VLCFA accumulation despite normal peroxisomal VLCFA β-oxidation in ALD mouse tissues. In support of this hypothesis, mitochondrial structural abnormalities were observed in adrenal cortical cells of ALD mice. PMID:12509471

  20. Can ω-3 fatty acids and tocotrienol-rich vitamin E reduce symptoms of neurodevelopmental disorders?

    PubMed

    Gumpricht, Eric; Rockway, Susie

    2014-01-01

    The incidence of childhood neurodevelopmental disorders, which include autism, attention-deficit hyperactivity disorders, and apraxia, are increasing worldwide and have a profound effect on the behaviors, cognitive skills, mood, and self-esteem of these children. Although the etiologies of these disorders are unclear, they often accompany genetic and biochemical abnormalities resulting in cognitive and communication difficulties. Because cognitive and neural development require essential fatty acids (particularly long-chain ω-3 fatty acids often lacking in mother's and children's diets) during critical growth periods, the potential behavior-modifying effects of these fatty acids as "brain nutrients" has attracted considerable attention. Additionally, there is compelling evidence for increased oxidative stress, altered antioxidant defenses, and neuroinflammation in these children. The purpose of this review is to provide a scientific rationale based on cellular, experimental animal model, observational, and clinical intervention studies for incorporating the combination of ω-3 fatty acids and tocotrienol-rich vitamin E as complementary nutritional therapies in children with neurodevelopmental disorders. Should this nutritional combination correct key clinical or biochemical outcomes and/or improve behavioral patterns, it would provide a safe, complementary option for these children. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... families in our new awareness campaign video. GO Zika services near you Visit Zika Care Connect to find providers who help families affected by Zika GO Zika and pregnancy fact sheet Download our ...

  2. Preventive effect of α-lipoic acid on prepulse inhibition deficits in a juvenile two-hit model of schizophrenia.

    PubMed

    Deslauriers, J; Racine, W; Sarret, P; Grignon, S

    2014-07-11

    Some pathophysiological models of schizophrenia posit that prenatal inflammation sensitizes the developing brain to second insults in early life and enhances brain vulnerability, thereby increasing the risk of developing the disorder during adulthood. We previously developed a two-hit animal model, based on the well-established prenatal immune challenge with poly-inosinic/cytidylic acid (polyI:C), followed by juvenile restraint stress (RS). We observed an additive disruption of prepulse inhibition (PPI) of acoustic startle in juvenile mice submitted to both insults. Previous studies have also reported that oxidative stress is associated with pathophysiological mechanisms of psychiatric disorders, including schizophrenia. We report here that PPI disruption in our two-hit animal model of schizophrenia is associated with an increase in oxidative stress. These findings led us to assess whether α-lipoic acid, an antioxidant, can prevent both increase in oxidative status and PPI deficits in our juvenile in vivo model of schizophrenia. In the offspring submitted to prenatal injection of polyI:C and to RS, treatment with α-lipoic acid prevented the development of PPI deficits 24h after the last period of RS. α-Lipoic acid also improved PPI performance in control mice. The reversal effect of α-lipoic acid pretreatment on these behavioral alterations was further accompanied by a normalization of the associated oxidative status and dopaminergic and GABAergic abnormalities in the prefrontal cortex. Based on our double insult paradigm, these results support the hypothesis that oxidative stress plays an important role in the development of PPI deficits, a well-known behavior associated with schizophrenia. These findings form the basis of future studies aiming to unravel mechanistic insights of the putative role of antioxidants in the treatment of schizophrenia, especially during the prodromal stage. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-06-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, commonly characterized by altered social behavior, communication, biochemistry and pathological conditions. One percent of the worldwide population suffers from autism and males suffer more than females. NMDA receptors have the important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. This study has been designed to investigate the role of memantine, a NMDA receptor modulator, in prenatal valproic acid-induced autism in rats. Animals with prenatal valproic acid have shown the reduction in social interaction (three-chamber social behavior apparatus), spontaneous alternation (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complex I, II, IV). Furthermore, prenatal valproic acid-treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood-brain barrier permeability. Treatment with memantine has significantly attenuated prenatal valproic acid-induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, memantine has also attenuated the prenatal valproic acid-induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood-brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behavior, biochemistry and blood-brain barrier impairment in animals, which were significantly attenuated by memantine. NMDA receptor modulators like memantine should be explored further for the therapeutic benefits in autism. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Newborn Urinary Metabolic Signatures of Prematurity and Other Disorders: A Case Control Study.

    PubMed

    Diaz, Sílvia O; Pinto, Joana; Barros, António S; Morais, Elisabete; Duarte, Daniela; Negrão, Fátima; Pita, Cristina; Almeida, Maria do Céu; Carreira, Isabel M; Spraul, Manfred; Gil, Ana M

    2016-01-04

    This work assesses the urinary metabolite signature of prematurity in newborns by nuclear magnetic resonance (NMR) spectroscopy, while establishing the role of possible confounders and signature specificity, through comparison to other disorders. Gender and delivery mode are shown to impact importantly on newborn urine composition, their analysis pointing out at specific metabolite variations requiring consideration in unmatched subject groups. Premature newborns are, however, characterized by a stronger signature of varying metabolites, suggestive of disturbances in nucleotide metabolism, lung surfactants biosynthesis and renal function, along with enhancement of tricarboxylic acid (TCA) cycle activity, fatty acids oxidation, and oxidative stress. Comparison with other abnormal conditions (respiratory depression episode, large for gestational age, malformations, jaundice and premature rupture of membranes) reveals that such signature seems to be largely specific of preterm newborns, showing that NMR metabolomics can retrieve particular disorder effects, as well as general stress effects. These results provide valuable novel information on the metabolic impact of prematurity, contributing to the better understanding of its effects on the newborn's state of health.

  5. Mangiferin Stimulates Carbohydrate Oxidation and Protects Against Metabolic Disorders Induced by High-Fat Diets

    PubMed Central

    Apontes, Pasha; Liu, Zhongbo; Su, Kai; Benard, Outhiriaradjou; Youn, Dou Y.; Li, Xisong; Li, Wei; Mirza, Raihan H.; Bastie, Claire C.; Jelicks, Linda A.; Pessin, Jeffrey E.; Muzumdar, Radhika H.; Sauve, Anthony A.

    2014-01-01

    Excessive dietary fat intake causes systemic metabolic toxicity, manifested in weight gain, hyperglycemia, and insulin resistance. In addition, carbohydrate utilization as a fuel is substantially inhibited. Correction or reversal of these effects during high-fat diet (HFD) intake is of exceptional interest in light of widespread occurrence of diet-associated metabolic disorders in global human populations. Here we report that mangiferin (MGF), a natural compound (the predominant constituent of Mangifera indica extract from the plant that produces mango), protected against HFD-induced weight gain, increased aerobic mitochondrial capacity and thermogenesis, and improved glucose and insulin profiles. To obtain mechanistic insight into the basis for these effects, we determined that mice exposed to an HFD combined with MGF exhibited a substantial shift in respiratory quotient from fatty acid toward carbohydrate utilization. MGF treatment significantly increased glucose oxidation in muscle of HFD-fed mice without changing fatty acid oxidation. These results indicate that MGF redirects fuel utilization toward carbohydrates. In cultured C2C12 myotubes, MGF increased glucose and pyruvate oxidation and ATP production without affecting fatty acid oxidation, confirming in vivo and ex vivo effects. Furthermore, MGF inhibited anaerobic metabolism of pyruvate to lactate but enhanced pyruvate oxidation. A key target of MGF appears to be pyruvate dehydrogenase, determined to be activated by MGF in a variety of assays. These findings underscore the therapeutic potential of activation of carbohydrate utilization in correction of metabolic syndrome and highlight the potential of MGF to serve as a model compound that can elicit fuel-switching effects. PMID:24848064

  6. Caffeic acid attenuates lipopolysaccharide-induced sickness behaviour and neuroinflammation in mice.

    PubMed

    Basu Mallik, Sanchari; Mudgal, Jayesh; Nampoothiri, Madhavan; Hall, Susan; Dukie, Shailendra Anoopkumar-; Grant, Gary; Rao, C Mallikarjuna; Arora, Devinder

    2016-10-06

    Accumulating data links inflammation, oxidative stress and immune system in the pathophysiology of major depressive disorders. Sickness behaviour is a set of behavioural changes that develop during infection, eventually leading to decrease in mobility and depressed behaviour. Lipopolysaccharide (LPS) induces a depression-like state in animals that mimics sickness behaviour. Caffeic acid, a naturally occurring polyphenol, possesses antioxidant and anti-inflammatory properties. The present study was designed to explore the potential of caffeic acid against LPS-induced sickness behaviour in mice. Caffeic acid (30mg/kg) and imipramine (15mg/kg) were administered orally one hour prior to LPS (1.5mg/kg) challenge. Behavioural assessment was carried out between 1 and 2h and blood samples were collected at 3h post-LPS injection. Additionally, cytokines (brain and serum) and brain oxidative stress markers were estimated. LPS increased the systemic and brain cytokine levels, altered the anti-oxidant defence and produced key signs of sickness behaviour in animals. Caffeic acid treatment significantly reduced the LPS-induced changes, including reduced expression of inflammatory markers in serum and whole brain. Caffeic acid also exerted an anti-oxidant effect, which was evident from the decreased levels of oxidative stress markers in whole brain. Our data suggests that caffeic acid can prevent the neuroinflammation-induced acute and probably the long term neurodegenerative changes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Study of Triheptanoin for Treatment of Long-Chain Fatty Acid Oxidation Disorder

    ClinicalTrials.gov

    2017-03-21

    Very Long-chain acylCoA Dehydrogenase (VLCAD) Deficiency; Carnitine Palmitoyltransferase 2 (CPT2) Deficiency; Mitochondrial Trifunctional Protein (TFP) Deficiency; Long-chain 3 hydroxyacylCoA Dehydrogenase (LCHAD) Deficiency

  8. Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile

    PubMed Central

    Gu, Lei; Zhang, Guo-Fang; Kombu, Rajan S.; Allen, Frederick; Kutz, Gerd; Brewer, Wolf-Ulrich; Roe, Charles R.

    2010-01-01

    The anaplerotic odd-medium-chain triglyceride triheptanoin is used in clinical trials for the chronic dietary treatment of patients with long-chain fatty acid oxidation disorders. We previously showed (Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Am J Physiol Endocrinol Metab 291: E860–E866, 2006) that the intravenous infusion of triheptanoin increases lipolysis traced by the turnover of glycerol. In this study, we tested whether lipolysis induced by triheptanoin infusion is accompanied by the potentially harmful release of long-chain fatty acids. Rats were infused with heptanoate ± glycerol or triheptanoin. Intravenous infusion of triheptanoin at 40% of caloric requirement markedly increased glycerol endogenous Ra but not oleate endogenous Ra. Thus, the activation of lipolysis was balanced by fatty acid reesterification in the same cells. The liver acyl-CoA profile showed the accumulation of intermediates of heptanoate β-oxidation and C5-ketogenesis and a decrease in free CoA but no evidence of metabolic perturbation of liver metabolism such as propionyl overload. Our data suggest that triheptanoin, administered either intravenously or intraduodenally, could be used for intensive care and nutritional support of metabolically decompensated long-chain fatty acid oxidation disorders. PMID:19903863

  9. Treatment of cardiomyopathy and rhabdomyolysis in long-chain fat oxidation disorders using an anaplerotic odd-chain triglyceride

    PubMed Central

    Roe, Charles R.; Sweetman, Lawrence; Roe, Diane S.; David, France; Brunengraber, Henri

    2002-01-01

    The current dietary treatment of long-chain fatty acid oxidation defects (high carbohydrate with medium-even-chain triglycerides and reduced amounts of long-chain fats) fails, in many cases, to prevent cardiomyopathy, rhabdomyolysis, and muscle weakness. We hypothesized that the apparent defect in energy production results from a depletion of the catalytic intermediates of the citric acid cycle via leakage through cell membranes (cataplerosis). We further hypothesized that replacing dietary medium-even-chain fatty acids (precursors of acetyl-CoA) by medium-odd-chain fatty acids (precursors of acetyl-CoA and anaplerotic propionyl-CoA) would restore energy production and improve cardiac and skeletal muscle function. We fed subjects with long-chain defects a controlled diet in which the fat component was switched from medium-even-chain triglycerides to triheptanoin. In three patients with very-long-chain acyl-CoA dehydrogenase deficiency, this treatment led rapidly to clinical improvement that included the permanent disappearance of chronic cardiomyopathy, rhabdomyolysis, and muscle weakness (for more than 2 years in one child), and of rhabdomyolysis and weakness in the others. There was no evidence of propionyl overload in these patients. The treatment has been well tolerated for up to 26 months and opens new avenues for the management of patients with mitochondrial fat oxidation disorders. PMID:12122118

  10. Disrupted fat distribution and composition due to medium-chain triglycerides in mice with a β-oxidation defect.

    PubMed

    Tucci, Sara; Flögel, Ulrich; Sturm, Marga; Borsch, Elena; Spiekerkoetter, Ute

    2011-08-01

    Because of the enhanced recognition of inherited long-chain fatty acid oxidation disorders by worldwide newborn screening programs, an increasing number of asymptomatic patients receive medium-chain triglyceride (MCT) supplements to prevent the development of cardiomyopathy and myopathy. MCT supplementation has been recognized as a safe dietary intervention, but long-term observations into later adulthood are still not available. We investigated the consequences of a prolonged MCT diet on abdominal fat distribution and composition and on liver fat. Mice with very-long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD(-/-)) were supplemented for 1 y with a diet in which MCTs replaced long-chain triglycerides without increasing the total fat content. The dietary effects on abdominal fat accumulation and composition were analyzed by in vivo (1)H- and (13)C-magnetic resonance spectroscopy (9.4 Tesla). After 1 y of MCT supplementation, VLCAD(-/-) mice accumulated massive visceral fat and had a dramatic increase in the concentration of serum free fatty acids. Furthermore, we observed a profound shift in body triglyceride composition, ie, concentrations of physiologically important polyunsaturated fatty acids dramatically decreased. (1)H-Magnetic resonance spectroscopy analysis and histologic evaluation of the liver also showed pronounced fat accumulation and marked oxidative stress. Although the MCT-supplemented diet has been reported to prevent the development of cardiomyopathy and skeletal myopathy in fatty acid oxidation disorders, our data show that long-term MCT supplementation results in a severe clinical phenotype similar to that of nonalcoholic steatohepatitis and the metabolic syndrome.

  11. Devastating metabolic brain disorders of newborns and young infants.

    PubMed

    Yoon, Hyun Jung; Kim, Ji Hye; Jeon, Tae Yeon; Yoo, So-Young; Eo, Hong

    2014-01-01

    Metabolic disorders of the brain that manifest in the neonatal or early infantile period are usually associated with acute and severe illness and are thus referred to as devastating metabolic disorders. Most of these disorders may be classified as organic acid disorders, amino acid metabolism disorders, primary lactic acidosis, or fatty acid oxidation disorders. Each disorder has distinctive clinical, biochemical, and radiologic features. Early diagnosis is important both for prompt treatment to prevent death or serious sequelae and for genetic counseling. However, diagnosis is often challenging because many findings overlap and may mimic those of more common neonatal conditions, such as hypoxic-ischemic encephalopathy and infection. Ultrasonography (US) may be an initial screening method for the neonatal brain, and magnetic resonance (MR) imaging is the modality of choice for evaluating metabolic brain disorders. Although nonspecific imaging findings are common in early-onset metabolic disorders, characteristic patterns of brain involvement have been described for several disorders. In addition, diffusion-weighted images may be used to characterize edema during an acute episode of encephalopathy, and MR spectroscopy depicts changes in metabolites that may help diagnose metabolic disorders and assess response to treatment. Imaging findings, including those of advanced MR imaging techniques, must be closely reviewed. If one of these rare disorders is suspected, the appropriate biochemical test or analysis of the specific gene should be performed to confirm the diagnosis. ©RSNA, 2014.

  12. Transcriptional control of amino acid homeostasis is disrupted in Huntington’s disease

    PubMed Central

    Sbodio, Juan I.; Snyder, Solomon H.; Paul, Bindu D.

    2016-01-01

    Disturbances in amino acid metabolism, which have been observed in Huntington’s disease (HD), may account for the profound inanition of HD patients. HD is triggered by an expansion of polyglutamine repeats in the protein huntingtin (Htt), impacting diverse cellular processes, ranging from transcriptional regulation to cognitive and motor functions. We show here that the master regulator of amino acid homeostasis, activating transcription factor 4 (ATF4), is dysfunctional in HD because of oxidative stress contributed by aberrant cysteine biosynthesis and transport. Consistent with these observations, antioxidant supplementation reverses the disordered ATF4 response to nutrient stress. Our findings establish a molecular link between amino acid disposition and oxidative stress leading to cytotoxicity. This signaling cascade may be relevant to other diseases involving redox imbalance and deficits in amino acid metabolism. PMID:27436896

  13. Anti-Wrinkle and Anti-Inflammatory Effects of Active Garlic Components and the Inhibition of MMPs via NF-κB Signaling

    PubMed Central

    Kim, So Ra; Jung, Yu Ri; An, Hye Jin; Kim, Dae Hyun; Jang, Eun Ji; Choi, Yeon Ja; Moon, Kyoung Mi; Park, Min Hi; Park, Chan Hum; Chung, Ki Wung; Bae, Ha Ram; Choi, Yung Whan; Kim, Nam Deuk; Chung, Hae Young

    2013-01-01

    Skin aging is a multisystem degenerative process caused by several factors, such as, UV irradiation, stress, and smoke. Furthermore, wrinkle formation is a striking feature of photoaging and is associated with oxidative stress and inflammatory response. In the present study, we investigated whether caffeic acid, S-allyl cysteine, and uracil, which were isolated from garlic, modulate UVB-induced wrinkle formation and effect the expression of matrix-metalloproteinase (MMP) and NF-κB signaling. The results obtained showed that all three compounds significantly inhibited the degradation of type І procollagen and the expressions of MMPs in vivo and attenuated the histological collagen fiber disorder and oxidative stress in vivo. Furthermore, caffeic acid and S-allyl cysteine were found to decrease oxidative stress and inflammation by modulating the activities of NF-κB and AP-1, and uracil exhibited an indirect anti-oxidant effect by suppressing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions levels and downregulating transcriptional factors. These results suggest that the anti-wrinkle effects of caffeic acid, S-allyl cysteine, and uracil are due to anti-oxidant and/or anti-inflammatory effects. Summarizing, caffeic acid, S-allyl cysteine, and uracil inhibited UVB-induced wrinkle formation by modulating MMP via NF-κB signaling. PMID:24066081

  14. Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region.

    PubMed

    Rawat, Sandeep; Jugran, Arun K; Bahukhandi, Amit; Bahuguna, Asutosh; Bhatt, Indra D; Rawal, Ranbeer S; Dhar, Uppeandra

    2016-12-01

    Therapeutic potential of medicinal plants as a source of noble natural anti-oxidants and anti-microbial agents has been well recognised all across the globe. In this study, phenolic compounds, in vitro anti-oxidant activity and anti-microbial properties have been investigated in five Himalayan medicinal plants, (e.g., Acorus calamus, Habenaria intermedia, Hedychium spicatum, Roscoea procera and Valeriana jatamansi) in different solvent systems. R. procera exhibited significantly (p < 0.05) higher phenolics; while H. spicatum was rich in flavonoids and V. jatamansi in anti-oxidant activity. Also, R. procera and H. spicatum were found rich in gallic acid; V. jatamansi in catechin, hydroxylbenzoic acid and caffeic acid and H. intermedia in hydroxyl benzoic acid. Solvent systems showed species specific response for extraction of total flavonoids and anti-oxidant activity. All the extracts were found effective against different bacterial and fungal strains in a dose dependent manner and maximum antimicrobial activity was found in R. procera as compared to other species. All the plant extracts showed greater activity against bacterial strains as compared to fungal strains. The results of this study suggest that extract of these species can be used as natural anti-oxidant to reduce free radical mediated disorders and as natural alternative for food preservation.

  15. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum

    PubMed Central

    Wanders, Ronald J. A.; Waterham, Hans R.; Ferdinandusse, Sacha

    2016-01-01

    Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved. PMID:26858947

  16. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets.

    PubMed

    Apontes, Pasha; Liu, Zhongbo; Su, Kai; Benard, Outhiriaradjou; Youn, Dou Y; Li, Xisong; Li, Wei; Mirza, Raihan H; Bastie, Claire C; Jelicks, Linda A; Pessin, Jeffrey E; Muzumdar, Radhika H; Sauve, Anthony A; Chi, Yuling

    2014-11-01

    Excessive dietary fat intake causes systemic metabolic toxicity, manifested in weight gain, hyperglycemia, and insulin resistance. In addition, carbohydrate utilization as a fuel is substantially inhibited. Correction or reversal of these effects during high-fat diet (HFD) intake is of exceptional interest in light of widespread occurrence of diet-associated metabolic disorders in global human populations. Here we report that mangiferin (MGF), a natural compound (the predominant constituent of Mangifera indica extract from the plant that produces mango), protected against HFD-induced weight gain, increased aerobic mitochondrial capacity and thermogenesis, and improved glucose and insulin profiles. To obtain mechanistic insight into the basis for these effects, we determined that mice exposed to an HFD combined with MGF exhibited a substantial shift in respiratory quotient from fatty acid toward carbohydrate utilization. MGF treatment significantly increased glucose oxidation in muscle of HFD-fed mice without changing fatty acid oxidation. These results indicate that MGF redirects fuel utilization toward carbohydrates. In cultured C2C12 myotubes, MGF increased glucose and pyruvate oxidation and ATP production without affecting fatty acid oxidation, confirming in vivo and ex vivo effects. Furthermore, MGF inhibited anaerobic metabolism of pyruvate to lactate but enhanced pyruvate oxidation. A key target of MGF appears to be pyruvate dehydrogenase, determined to be activated by MGF in a variety of assays. These findings underscore the therapeutic potential of activation of carbohydrate utilization in correction of metabolic syndrome and highlight the potential of MGF to serve as a model compound that can elicit fuel-switching effects. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  17. [Clinical application of mass spectrometry in the pediatric field: current topics].

    PubMed

    Yamaguchi, Seiji

    2013-09-01

    Mass spectrometry, including tandem mass spectrometry (MS/MS) and gas chromatography-mass spectrometry (GC/MS), is becoming prominent in the diagnosis of metabolic disorders in the pediatric field. It enables biochemical diagnosis of metabolic disorders from the metabolic profiles obtained by MS/MS and/or GC/MS. In neonatal mass screening for inherited metabolic disease (IMD) using MS/MS, amino acids and acylcarnitines on dried blood spots are analyzed. The target diseases include amino acidemia, urea cycle disorder, organic acidemia, and fatty acid oxidation disorder. In the MS/MS screening, organic acid analysis using GC/MS is required for differential and/or definite diagnosis of the IMDs. GC/MS data processing, however, is difficult, and metabolic diagnosis often requires the necessary skills and expertize. We developed an automated system of GC/MS data processing and autodiagnosis, and the biochemical diagnosis using GC/MS became markedly easier and user-friendly. Mass spectrometric techniques will expand from research laboratories to clinical laboratories in the near future.

  18. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages.

    PubMed

    Hernández-Ledesma, Blanca; Hsieh, Chia-Chien; de Lumen, Ben O

    2009-12-18

    Oxidative stress and inflammation are two of the most critical factors implicated in carcinogenesis and other degenerative disorders. We have investigated how lunasin, a known anti-cancer seed peptide, affect these factors. This peptide inhibits linoleic acid oxidation and acts as 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) radical scavenger. Furthermore, using LPS-stimulated RAW 264.7 macrophages, we have demonstrated that lunasin reduces, in a significant dose-dependent manner, the production of reactive oxygen species (ROS) by LPS-induced macrophages. Lunasin also inhibits the release of pro-inflammatory cytokines (tumor necrosis factor-alpha [TNF-alpha] and interleukine-6 [IL-6]). On the basis of these potent antioxidant and anti-inflammatory properties, we propose lunasin not only as a cancer preventive and therapeutic agent but also as an agent against other inflammatory-related disorders.

  19. A neuro-immune, neuro-oxidative and neuro-nitrosative model of prenatal and postpartum depression.

    PubMed

    Roomruangwong, Chutima; Anderson, George; Berk, Michael; Stoyanov, Drozdstoy; Carvalho, André F; Maes, Michael

    2018-02-02

    A large body of evidence indicates that major affective disorders are accompanied by activated neuro-immune, neuro-oxidative and neuro-nitrosative stress (IO&NS) pathways. Postpartum depression is predicted by end of term prenatal depressive symptoms whilst a lifetime history of mood disorders appears to increase the risk for both prenatal and postpartum depression. This review provides a critical appraisal of available evidence linking IO&NS pathways to prenatal and postpartum depression. The electronic databases Google Scholar, PubMed and Scopus were sources for this narrative review focusing on keywords, including perinatal depression, (auto)immune, inflammation, oxidative, nitric oxide, nitrosative, tryptophan catabolites (TRYCATs), kynurenine, leaky gut and microbiome. Prenatal depressive symptoms are associated with exaggerated pregnancy-specific changes in IO&NS pathways, including increased C-reactive protein, advanced oxidation protein products and nitric oxide metabolites, lowered antioxidant levels, such as zinc, as well as lowered regulatory IgM-mediated autoimmune responses. The latter pathways coupled with lowered levels of endogenous anti-inflammatory compounds, including ω3 polyunsaturated fatty acids, may also underpin the pathophysiology of postpartum depression. Although increased bacterial translocation, lipid peroxidation and TRYCAT pathway activation play a role in mood disorders, similar changes do not appear to be relevant in perinatal depression. Some IO&NS biomarker characteristics of mood disorders are found in prenatal depression indicating that these pathways partly contribute to the association of a lifetime history of mood disorders and perinatal depression. However, available evidence suggests that some IO&NS pathways differ significantly between perinatal depression and mood disorders in general. This review provides a new IO&NS model of prenatal and postpartum depression. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Minocycline ameliorates prenatal valproic acid induced autistic behaviour, biochemistry and blood brain barrier impairments in rats.

    PubMed

    Kumar, Hariom; Sharma, Bhupesh

    2016-01-01

    Autism is a neurodevelopment disorder. One percent worldwide population suffers with autism and males suffer more than females. Microglia plays an important role in neurodevelopment, neuropsychiatric and neurodegenerative disorders. The present study has been designed to investigate the role of minocycline in prenatal valproic acid induced autism in rats. Animals with prenatal valproic acid have reduced social interaction (three chamber social behaviour apparatus), spontaneous alteration (Y-Maze), exploratory activity (Hole board test), intestinal motility, serotonin levels (both in prefrontal cortex and ileum) and prefrontal cortex mitochondrial complex activity (complexes I, II, IV). Furthermore, prenatal valproic acid treated animals have shown an increase in locomotion (actophotometer), anxiety (elevated plus maze), brain oxidative stress (thiobarbituric acid reactive species, glutathione, catalase), nitrosative stress (nitrite/nitrate), inflammation (both in brain and ileum myeloperoxidase activity), calcium and blood brain barrier permeability. Treatment with minocycline significantly attenuated prenatal valproic acid induced reduction in social interaction, spontaneous alteration, exploratory activity intestinal motility, serotonin levels and prefrontal cortex mitochondrial complex activity. Furthermore, minocycline has also attenuated prenatal valproic acid induced increase in locomotion, anxiety, brain oxidative and nitrosative stress, inflammation, calcium and blood brain barrier permeability. Thus, it may be concluded that prenatal valproic acid has induced autistic behaviour, biochemistry and blood brain barrier impairment in animals, which were significantly attenuated by minocycline. Minocycline should be explored further for its therapeutic benefits in autism. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Association of 3-methylglutaconic aciduria with sensori-neural deafness, encephalopathy, and Leigh-like syndrome (MEGDEL association) in four patients with a disorder of the oxidative phosphorylation.

    PubMed

    Wortmann, S; Rodenburg, R J T; Huizing, M; Loupatty, F J; de Koning, T; Kluijtmans, L A J; Engelke, U; Wevers, R; Smeitink, J A M; Morava, E

    2006-05-01

    In this paper, we describe a distinct clinical subtype of 3-methylglutaconic aciduria. 3-Methylglutaconic aciduria is a group of different metabolic disorders biochemically characterized by increased urinary excretion of 3-methylglutaconic acid. We performed biochemical and genetic investigations, including urine organic acid analysis, NMR spectroscopy, measurement of 3-methylglutaconyl-CoA hydratase activity, cardiolipin levels, OPA3 gene analysis and measurement of the oxidative phosphorylation in four female patients with 3-methylglutaconic aciduria. 3-Methylglutaconic aciduria type I, Barth syndrome, and Costeff syndrome were excluded as the activity of 3-methylglutaconyl-CoA hydratase, the cardiolipin levels, and molecular analysis of the OPA3 gene, respectively, showed no abnormalities. The children presented with characteristic association of hearing loss and the neuro-radiological evidence of Leigh disease. They also had neonatal hypotonia, recurrent lactic acidemia, episodes with hypoglycemia and severe recurrent infections, feeding difficulties, failure to thrive, developmental delay, and progressive spasticity with extrapyramidal symptoms. Our patients were further biochemically characterized by a mitochondrial dysfunction and persistent urinary excretion of 3-methylglutaconic acid.

  2. [Uric acid predicts type 2 diabetes mellitus in the general population].

    PubMed

    Cardona, Fernando; Rojo-Martínez, Gemma; de la Cruz Almaraz, María; Soriguer, Federico; García-Fuentes, Eduardo; Tinahones, Francisco José

    2009-02-01

    Abnormal uric acid levels are considered by some to be a risk factor for metabolic disorders, whereas others consider it to be just a marker. We therefore examined the association between plasma uric acid concentrations and the risk of type 2 diabetes mellitus. We undertook a prospective, 8-year study of 411 persons from the general population with no carbohydrate metabolism disorder at the start of the study evaluated by oral glucose overload. The following variables were measured at the beginning and end of the study: uric acid, triglycerides, cholesterol, high-density lipoprotein cholesterol, glucose and insulin in plasma, body mass index and waist-to-hip ratio. The participants were classified according to their plasma uric acid concentration, with a cut-off at the 33rd percentile (men, 291.45 and women, 208.18 micromol/l). Participants with plasma uric acid concentrations above the 33rd percentile at the start of the study had worse lipid and anthropometric profiles. These persons were at greater risk for carbohydrate disorder at the end of the 8- year follow-up study (relative risk, 1.73; 95% confidence interval, 1.04-2.8). No significant differences were found in age or in the remaining variables studied between these two groups. Increased uric acid levels in response to a possible chronic increase in oxidative stress may predict future disorders or complications such as type 2 diabetes in otherwise healthy persons.

  3. Fatty Acid Oxidation Is Required for Myxococcus xanthus Development.

    PubMed

    Bullock, Hannah A; Shen, Huifeng; Boynton, Tye O; Shimkets, Lawrence J

    2018-05-15

    Myxococcus xanthus cells produce lipid bodies containing triacylglycerides during fruiting body development. Fatty acid β-oxidation is the most energy-efficient pathway for lipid body catabolism. In this study, we used mutants in fadJ (MXAN_5371 and MXAN_6987) and fadI (MXAN_5372) homologs to examine whether β-oxidation serves an essential developmental function. These mutants contained more lipid bodies than the wild-type strain DK1622 and 2-fold more flavin adenine dinucleotide (FAD), consistent with the reduced consumption of fatty acids by β-oxidation. The β-oxidation pathway mutants exhibited differences in fruiting body morphogenesis and produced spores with thinner coats and a greater susceptibility to thermal stress and UV radiation. The MXAN_5372/5371 operon is upregulated in sporulating cells, and its expression could not be detected in csgA , fruA , or mrpC mutants. Lipid bodies were found to persist in mature spores of DK1622 and wild strain DK851, suggesting that the roles of lipid bodies and β-oxidation may extend to spore germination. IMPORTANCE Lipid bodies act as a reserve of triacylglycerides for use when other sources of carbon and energy become scarce. β-Oxidation is essential for the efficient metabolism of fatty acids associated with triacylglycerides. Indeed, the disruption of genes in this pathway has been associated with severe disorders in animals and plants. Myxococcus xanthus , a model organism for the study of development, is ideal for investigating the complex effects of altered lipid metabolism on cell physiology. Here, we show that β-oxidation is used to consume fatty acids associated with lipid bodies and that the disruption of the β-oxidation pathway is detrimental to multicellular morphogenesis and spore formation. Copyright © 2018 American Society for Microbiology.

  4. Spectroscopic investigations on oxidized multi-walled carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anandhi, C. M. S.; Premkumar, S.; Asath, R. Mohamed

    2016-05-06

    The pristine multi-walled carbon nanotubes (MWCNTs) were oxidized by the ultrasonication process. The oxidized MWCNTs were characterized by the X-ray diffraction (XRD), ultraviolet–visible (UV-Vis) and Fourier transform -Raman (FT-Raman) spectroscopic techniques. The XRD analysis confirms that the oxidized MWCNTs exist in a hexagonal structure and the sharp XRD peak corresponds to the (002) Bragg’s reflection plane, which indicates that the MWCNTs have higher crystalline nature. The UV-Vis analysis confirms that the MWCNTs functionalized with the carboxylic acid. The red shift was observed corresponds to the D band in the Raman spectrum, which reveals that the reduced disordered graphitic structure ofmore » oxidized MWCNTs. The strong Raman peak was observed at 2563 cm{sup -1} corresponds to the overtone of the D band, which is the characteristic vibrational mode of oxidized MWCNTs. The carboxylic acid functionalization of MWCNTs enhances the dispersibility, which paves the way for potential applications in the field of biosensors and targeted drug delivery.« less

  5. Maternal dietary omega-3 fatty acid supplementation reduces placental oxidative stress and increases fetal and placental growth in the rat.

    PubMed

    Jones, Megan L; Mark, Peter J; Mori, Trevor A; Keelan, Jeffrey A; Waddell, Brendan J

    2013-02-01

    Placental oxidative stress plays a key role in the pathophysiology of several placenta-related disorders including intrauterine growth restriction. Oxidative stress occurs when accumulation of reactive oxygen species damages DNA, proteins, and lipids, an outcome normally limited by antioxidant defenses. Dietary supplementation with omega-3 polyunsaturated fatty acids (n-3 PUFAs) may limit oxidative stress by increasing antioxidant capacity, but n-3 PUFAs are also highly susceptible to lipid peroxidation; so n-3 PUFA supplementation is potentially harmful. Here we examined the effect of n-3 PUFAs on placental oxidative stress and on placental and fetal growth in the rat. We also investigated whether diet-induced changes in maternal plasma fatty acid profiles are associated with comparable changes in placental and fetal tissues. Rats were fed either standard or high n-3 PUFA diets from Day 1 of pregnancy, and tissues were collected on Day 17 or 22 (term = Day 23). Dietary supplementation with n-3 PUFAs increased fetal (6%) and placental (12%) weights at Day 22, the latter attributable primarily to growth of the labyrinth zone (LZ). Increased LZ weight was accompanied by reduced LZ F(2)-isoprostanes (by 31% and 11% at Days 17 and 22, respectively), a marker of oxidative damage. Maternal plasma PUFA profiles were altered by dietary fatty acid intake and were strongly predictive of corresponding profiles in placental and fetal tissues. Our data indicate that n-3 PUFA supplementation reduces placental oxidative stress and enhances placental and fetal growth. Moreover, fatty acid profiles in the mother, placenta, and fetus are highly dependent on dietary fatty acid intake.

  6. Strategies for Correcting Very Long Chain Acyl-CoA Dehydrogenase Deficiency*

    PubMed Central

    Tenopoulou, Margarita; Chen, Jie; Bastin, Jean; Bennett, Michael J.; Ischiropoulos, Harry; Doulias, Paschalis-Thomas

    2015-01-01

    Very long acyl-CoA dehydrogenase (VLCAD) deficiency is a genetic pediatric disorder presenting with a spectrum of phenotypes that remains for the most part untreatable. Here, we present a novel strategy for the correction of VLCAD deficiency by increasing mutant VLCAD enzymatic activity. Treatment of VLCAD-deficient fibroblasts, which express distinct mutant VLCAD protein and exhibit deficient fatty acid β-oxidation, with S-nitroso-N-acetylcysteine induced site-specific S-nitrosylation of VLCAD mutants at cysteine residue 237. Cysteine 237 S-nitrosylation was associated with an 8–17-fold increase in VLCAD-specific activity and concomitant correction of acylcarnitine profile and β-oxidation capacity, two hallmarks of the disorder. Overall, this study provides biochemical evidence for a potential therapeutic modality to correct β-oxidation deficiencies. PMID:25737446

  7. [The unity of pathogenesis of insulin resistance syndrome and non-alcoholic fatty disease of liver. The metabolic disorder of fatty acids and triglycerides].

    PubMed

    Titov, V N; Ivanova, K V; Malyshev, P P; Kaba, S I; Shiriaeva, Iu K

    2012-11-01

    The pathogenesis of non-alcoholic fatty disease of liver (steatosis) is still as unclear as a loss of hepatocytes similar to apoptosis, development of biological reaction of inflammation, its transformation into steatohepatitis with subsequent fibrosis and formation of atrophic cirrhosis. The article suggests that steatosis is developed due to higher concentration of palmitic saturated fatty acid (C 16:0) in food, intensification of its endogenic synthesis from food carbohydrates and glucose and development of insulin resistance. It is displayed in in hormone ability to activate both oxidation in cells of glucose and synthesis of oleic monoene fatty acid from palmitic saturated fatty acid (C 18:1). The insulin resistance initiates pathologic process on the level of paracrine associations of cells resulting in permanent increase of concentration of non-etherified fatty acids in intercellular medium and intensification of their passive absorption by cells. The phylogenetically ancient mitochondrions will not to oxidize glucose until non-etherified fatty acids are present in cytosol and hence there is an opportunity to oxidize them. To eliminate undesirable action of polar saturated palmitic fatty acid, the cells etherify it by spirit glyceride into triglycerides to deposit in cytosol or to secrete into blood in a form of lipoproteins of very low density. Under insulin resistance, saturated palmitic fatty acid synthesized by hepatocytes from glucose, does not further transform into oleic monoenic fatty acid. The cells are to etherify endogenic (exogenic) palmnitic saturated fatty acid into composition of aphysiologic palmitic triglycerides (saturated palmitic fatty acid in position sn-2 of spirit glyceride). At that, triglycerides of palmitat-palmitat-oleat and even tripalmitat type are formed. The melting temperature of tripalmitat is 48 degrees C and melting temperature of physiologic trioletat is 13 degrees C. The intracellular lipases factually can't hydrolyze palmitic triglycerides. So, hepatocytes, overloaded by them, are destroyed in a way similar to apoptosis. The formed corpuscles of apoptosis disorder the biologic function of endoecology and trigger biologic reaction of inflammation. At that, steatosis changes into steato-hepatitis. The prevention of steatosis consists in dramatic restriction of concentration of palmitic saturated fatty acid in food. The treatment effect is targeted to: decreasing the formation of palmitine triglycerides by force of concurrent etherification of palmitic saturated fatty acid not into triglycerides but into phosphatidylcholine (symmetric phospholipids of soya); intensification of oxidation of palmitic saturated fatty acid in peroxisomes (glytazones and fibrates); decrease of insulin resistance (binuanide metformine).

  8. Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol.

    PubMed

    Bispo, Vanderson S; Dantas, Lucas S; Chaves, Adriano B; Pinto, Isabella F D; Silva, Railmara P DA; Otsuka, Felipe A M; Santos, Rodrigo B; Santos, Aline C; Trindade, Danielle J; Matos, Humberto R

    2017-01-01

    Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM), caffeic acid (1.1 µM), methyl caffeate (0.03 µM), quercetin (0.08 µM) and ferulic acid (0.02 µM) isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT) was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05). Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS) in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.

  9. Indices of insulin resistance and glucotoxicity are not associated with bipolar disorder or major depressive disorder, but are differently associated with inflammatory, oxidative and nitrosative biomarkers.

    PubMed

    Landucci Bonifácio, Kamila; Sabbatini Barbosa, Décio; Gastaldello Moreira, Estefânia; de Farias, Carine Coneglian; Higachi, Luciana; Camargo, Alissana Ester Iakmiu; Favaro Soares, Janaina; Odebrecht Vargas, Heber; Nunes, Sandra Odebrecht Vargas; Berk, Michael; Dodd, Seetal; Maes, Michael

    2017-11-01

    Insulin resistance (IR) is a key factor in diabetes mellitus, metabolic syndrome (MetS) and obesity and may occur in mood disorders and tobacco use disorder (TUD), where disturbances of immune-inflammatory, oxidative and nitrosative stress (IO&NS) pathways are important shared pathophysiological pathways. This study aimed to a) examine IR and β-cell function as measured by the homeostasis model assessment of insulin resistance (HOMA-IR) and insulin sensitivity and β cell function (HOMA-B) and glucotoxicity (conceptualized as increased glucose levels versus lowered HOMA-B values) in 74 participants with major depressive disorder (MDD) and bipolar disorder, with and or without MetS and TUD, versus 46 healthy controls, and b) whether IR is associated with IO&NS biomarkers, including nitric oxide metabolites (NOx), lipid hydroperoxides (LOOH), plasma advanced oxidation protein products (AOPP), C-reactive protein (CRP), haptoglobin (Hp) and uric acid. Mood disorders are not associated with changes in IR or glucotoxicity, although the number of mood episodes may increase IR. 47.8% of the variance in HOMA-IR is explained by AOPP and body mass index (BMI, both positively) and NOx, Hp and TUD (all inversely). 43.2% of the variance in HOMA-B is explained by NOx, Hp and age (all inversely associated) and higher BMI and sex. The glucotoxic index is strongly associated with NOx, Hp and BMI (positively), male gender and lower education. This is a cross-sectional study and therefore we cannot draw firm conclusions on causal associations. Activated IO&NS pathways (especially increased Hp and NOx) increase glucotoxicity and exert very complex effects modulating IR. Mood disorders are not associated with increased IR. Copyright © 2017. Published by Elsevier B.V.

  10. Severe Hyperammonemic Encephalopathy Requiring Dialysis Aggravated by Prolonged Fasting and Intermittent High Fat Load in a Ramadan Fasting Month in a Patient with CPTII Homozygous Mutation.

    PubMed

    Phowthongkum, P; Ittiwut, C; Shotelersuk, V

    2017-11-21

    Carnitine palmitoyltransferase II (CPTII) deficiency is a mitochondrial fatty acid oxidation disorder that can present antenatally as congenital brain malformations, or postnatally with lethal neonatal, severe infantile, or the most common adult myopathic forms. No case of severe hyperammonemia without liver dysfunction has been reported. We described a 23-year-old man who presented to the emergency department with seizures and was found to have markedly elevation of serum ammonia. Continuous renal replacement therapy was initiated with successfully decreased ammonia to a safety level. He had a prolonged history of epilepsies and encephalopathic attacks that was associated with high ammonia level. Molecular diagnosis revealed a homozygous mutation in CPTII. The plasma acylcarnitine profile was consistent with the diagnosis. Failure to produce acetyl-CoA, the precursor of urea cycle from fatty acid in prolonged fasting state in Ramadan month, worsening mitochondrial functions from circulating long chain fatty acid and valproate toxicities were believed to contribute to this critical metabolic decompensation. Fatty acid oxidation disorders should be considered in the differential diagnosis of hyperammonemia even without liver dysfunction. To our knowledge, this is the first case of CPTII deficiency presented with severe hyperammonemic encephalopathy required dialysis after prolonged religious related fasting.

  11. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease

    PubMed Central

    Nsiah-Sefaa, Abena; McKenzie, Matthew

    2016-01-01

    Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis. PMID:26839416

  12. Chlorogenic Acid: Recent Advances on Its Dual Role as a Food Additive and a Nutraceutical against Metabolic Syndrome.

    PubMed

    Santana-Gálvez, Jesús; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2017-02-26

    Chlorogenic acid (5-O-caffeoylquinic acid) is a phenolic compound from thehydroxycinnamic acid family. This polyphenol possesses many health-promoting properties, mostof them related to the treatment of metabolic syndrome, including anti-oxidant, anti-inflammatory,antilipidemic, antidiabetic, and antihypertensive activities. The first part of this review will discussthe role of chlorogenic acid as a nutraceutical for the prevention and treatment of metabolicsyndrome and associated disorders, including in vivo studies, clinical trials, and mechanisms ofaction. The second part of the review will be dealing with the role of chlorogenic acid as a foodadditive. Chlorogenic acid has shown antimicrobial activity against a wide range of organisms,including bacteria, yeasts, molds, viruses, and amoebas. These antimicrobial properties can beuseful for the food industry in its constant search for new and natural molecules for thepreservation of food products. In addition, chlorogenic acid has antioxidant activity, particularlyagainst lipid oxidation; protective properties against degradation of other bioactive compoundspresent in food, and prebiotic activity. The combination of these properties makes chlorogenic acidan excellent candidate for the formulation of dietary supplements and functional foods.

  13. Long-Chain Fatty Acid Oxidation Disorders (LC-FAOD) Extension Study for Subjects Previously Enrolled in Triheptanoin Studies.

    ClinicalTrials.gov

    2018-06-19

    Carnitine Palmitoyltransferase (CPT I or CPT II) Deficiency; Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency; Long-chain 3-hydroxy-acyl-CoA Dehydrogenase (LCHAD) Deficiency; Trifunctional Protein (TFP) Deficiency; Carnitine-acylcarnitine Translocase (CACT) Deficiency

  14. Measurement of free carnitine and acylcarnitines in plasma by HILIC-ESI-MS/MS without derivatization.

    PubMed

    Peng, Minzhi; Liu, Li; Jiang, Minyan; Liang, Cuili; Zhao, Xiaoyuan; Cai, Yanna; Sheng, Huiying; Ou, Zhiying; Luo, Hong

    2013-08-01

    Measurement of carnitine and acylcarnitines in plasma is important in diagnosis of fatty acid β-oxidation disorders and organic acidemia. The usual method uses flow injection tandem mass spectrometry (FIA-MS/MS), which has limitations. A rapid and more accurate method was developed to be used for high-risk screening and diagnosis. Carnitine and acylcarnitines were separated by hydrophilic interaction liquid chromatography (HILIC) without derivatization and detected with a QTRAP MS/MS System. Total analysis time was 9.0min. The imprecision of within- and between-run were less than 6% and 17%, respectively. Recoveries were in the range of 85-110% at three concentrations. Some acylcarnitine isomers could be separated, such as dicarboxylic and hydroxyl acylcarnitines. The method could also separate interferent to avoid false positive results. 216 normal samples and 116 patient samples were detected with the validated method, and 49 patients were identified with fatty acid oxidation disorders or organic acidemias. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Methamphetamine-induced dopaminergic toxicity prevented owing to the neuroprotective effects of salicylic acid.

    PubMed

    Thrash-Williams, Bessy; Karuppagounder, Senthilkumar S; Bhattacharya, Dwipayan; Ahuja, Manuj; Suppiramaniam, Vishnu; Dhanasekaran, Muralikrishnan

    2016-06-01

    Methamphetamine (Schedule-II drug, U.S. Drug Enforcement Administration) is one of the most abused illicit drug following cocaine, marijuana, and heroin in the USA. There are numerous health impairments and substantial economic burden caused by methamphetamine abuse. Salicylic acid, potent anti-inflammatory drug and a known neuroprotectant has shown to protect against toxicity-induced by other dopaminergic neurotoxins. Hence, in this study we investigated the neuroprotective effects of salicylic acid against methamphetamine-induced toxicity in mice. The current study investigated the effects of sodium salicylate and/or methamphetamine on oxidative stress, monoamine oxidase, mitochondrial complex I & IV activities using spectrophotometric and fluorimetric methods. Behavioral analysis evaluated the effect on movement disorders-induced by methamphetamine. Monoaminergic neurotransmitter levels were evaluated using high pressure liquid chromatography-electrochemical detection. Methamphetamine caused significant generation of reactive oxygen species and decreased complex-I activity leading to dopamine depletion. Striatal dopamine depletion led to significant behavioral changes associated with movement disorders. Sodium salicylate (50 & 100mg/kg) significantly scavenged reactive oxygen species, blocked mitochondrial dysfunction and exhibited neuroprotection against methamphetamine-induced neurotoxicity. In addition, sodium salicylate significantly blocked methamphetamine-induced behavioral changes related to movement abnormalities. One of the leading causative theories in nigral degeneration associated with movement disorders such as Parkinson's disease is exposure to stimulants, drugs of abuse, insecticide and pesticides. These neurotoxic substances can induce dopaminergic neuronal insult by oxidative stress, apoptosis, mitochondrial dysfunction and inflammation. Salicylic acid due to its antioxidant and anti-inflammatory effects could provide neuroprotection against the stimulants or drugs of abuse. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation

    NASA Astrophysics Data System (ADS)

    Hu, Xiangang; Zhou, Qixing

    2014-01-01

    It is well known that graphene (G) induces nanotoxicity towards living organisms. Here, a novel and biocompatible hydrated graphene ribbon (HGR) unexpectedly promoted aged (two years) seed germination. HGR formed at the normal temperature and pressure (120 days hydration), presented 17.1% oxygen, 0.9% nitrogen groups, disorder-layer structure, with 0.38 nm thickness ribbon morphology. Interestingly, there were bulges around the edges of HGR. Compared to G and graphene oxide (GO), HGR increased seed germination by 15% root differentiation between 52 and 59% and enhanced resistance to oxidative stress. The metabonomics analysis discovered that HGR upregulated carbohydrate, amino acid, and fatty acids metabolism that determined secondary metabolism, nitrogen sequestration, cell membrane integrity, permeability, and oxidation resistance. Hexadecanoic acid as a biomarker promoted root differentiation and increased the germination rate. Our discovery is a novel HGR that promotes aged seed germination, illustrates metabolic specificity among graphene-based materials, and inspires innovative concepts in the regulation of seed development.

  17. Alpha-lipoic acid: molecular mechanisms and therapeutic potential in diabetes.

    PubMed

    Rochette, Luc; Ghibu, Steliana; Muresan, Adriana; Vergely, Catherine

    2015-12-01

    Diabetes is a chronic metabolic disease with a high prevalence worldwide. Diabetes and insulin resistance are associated with the development of cardiovascular and nervous diseases. The development of these disorders reflects complex pathological processes in which the oxidative stress caused by reactive oxygen species (ROS) and reactive nitrogen species (RNS) plays a pivotal role. It is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity and increases the production of ROS, thus resulting in diminished NO bioavailability and increased oxidative stress. Alpha-lipoic acid (LA) possesses beneficial effects both in the prevention and in the treatment of diabetes. LA is a potent antioxidant with insulin-mimetic and anti-inflammatory activity. LA in the diet is quickly absorbed, transported to the intracellular compartments, and reduced to dihydrolipoic acid (DHLA) under the action of enzymes. LA, which plays an essential role in mitochondrial bioenergetic reactions, has drawn considerable attention as an antioxidant for use in managing diabetic complications such as retinopathy, neuropathy and other vascular diseases.

  18. Relative levels of dietary EPA and DHA impact gastric oxidation and essential fatty acid uptake.

    PubMed

    Dasilva, Gabriel; Boller, Matthew; Medina, Isabel; Storch, Judith

    2018-05-01

    Previous research showed that increasing the proportion of docosahexaenoic acid (DHA) in marine lipid supplements significantly reduces associated health benefits compared with balanced eicosapentaenoic acid (EPA):DHA supplementation Dasilva et al., 2015 [1]. It was therefore hypothesized that the EPA and DHA molecules might have differential resistance to oxidation during gastric digestion and that the oxidation level achieved could be inversely correlated with intestinal absorption and, hence, with the resultant health benefits. Accordingly, we tested this proposed mechanism of action by investigating the degree of oxidation in the stomach, and the levels of bioaccessible lipids, of varying molar proportions of DHA and EPA (2:1, 1:1 and 1:2) using the dynamic gastrointestinal tract model TIM-1. In addition, small intestine enterocyte absorption and metabolism were simulated by Caco-2 cell monolayers that were incubated with these same varying proportions of DHA and EPA, and comparing oxidized and nonoxidized polyunsaturated fatty acids (PUFAs). The results show an inverse correlation between lipid oxidation products in the stomach and the levels of bioaccessible lipids. The balanced 1:1 EPA:DHA diet resulted in lower oxidation of PUFAs during stomach digestion relative to the other ratios tested. Finally, cell-based studies showed significantly lower assimilation of oxidized EPA and DHA substrates compared to nonoxidized PUFAs, as well as significant differences between the net uptake of EPA and DHA. Overall, the present work suggests that the correct design of diets and/or supplements containing marine lipids can strongly influence the stability and bioaccessibility of PUFAs during gastrointestinal digestion and subsequent absorption. This could modulate their health benefits related with inflammation, oxidative stress and metabolic disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Diabetes and Alpha Lipoic Acid

    PubMed Central

    Golbidi, Saeid; Badran, Mohammad; Laher, Ismail

    2011-01-01

    Diabetes mellitus is a multi-faceted metabolic disorder where there is increased oxidative stress that contributes to the pathogenesis of this debilitating disease. This has prompted several investigations into the use of antioxidants as a complementary therapeutic approach. Alpha lipoic acid, a naturally occurring dithiol compound which plays an essential role in mitochondrial bioenergetic reactions, has gained considerable attention as an antioxidant for use in managing diabetic complications. Lipoic acid quenches reactive oxygen species, chelates metal ions, and reduces the oxidized forms of other antioxidants such as vitamin C, vitamin E, and glutathione. It also boosts antioxidant defense system through Nrf-2-mediated antioxidant gene expression and by modulation of peroxisome proliferator activated receptors-regulated genes. ALA inhibits nuclear factor kappa B and activates AMPK in skeletal muscles, which in turn have a plethora of metabolic consequences. These diverse actions suggest that lipoic acid acts by multiple mechanisms, many of which have only been uncovered recently. In this review we briefly summarize the known biochemical properties of lipoic acid and then discussed the oxidative mechanisms implicated in diabetic complications and the mechanisms by which lipoic acid may ameliorate these reactions. The findings of some of the clinical trials in which lipoic acid administration has been tested in diabetic patients during the last 10 years are summarized. It appears that the clearest benefit of lipoic acid supplementation is in patients with diabetic neuropathy. PMID:22125537

  20. Treatment of oxidative stress in brain of ovariectomized rats with omega-3 and lipoic acid.

    PubMed

    Behling, Camile S; Andrade, Alexey S; Putti, Jordana S; Mahl, Camila D; Hackenhaar, Fernanda S; da Silva, Ana Carolina A; e Silva, Mélany Natuane C; Salomon, Tiago B; Dos Santos, Carla E I; Dias, Johnny F; Benfato, Mara S

    2015-12-01

    Postmenopausal women are often affected by a group of metabolic disorders related to oxidative stress. Alternative treatments that can improve the quality of life of these women have been the subject of recent studies. The objective of this study was to evaluate the response to oxidative stress in the brains of rats following ovariectomy, and to determine enzymatic and nonenzymatic antioxidant responses when the animals received 3 months of dietary supplementation. Ovariectomy produced changes in antioxidant profiles characterized by reductions in glutathione S-transferase activity, H2 O2 consumption, superoxide dismutase activity, and vitamin C levels and increases in protein carbonylation. Docosahexaenoic fatty acid (DHA) supplementation restored these parameters to normal values and increased values of other antioxidants (glutathione peroxidase and total glutathione). However, DHA supplementation also increased protein carbonylation and lipid peroxidation. Eicosapentaenoic acid supplementation produced no changes in antioxidants, but decreased lipid peroxidation. Lipoic acid supplementation increased consumption of H2 O2 and decreased protein carbonylation and lipid peroxidation. These results suggest that the antioxidant response to omega-3 varies in different tissues, and in this study DHA treatment had a prooxidant effect in the brain. Lipoic acid treatment, on the other hand, had a protective effect, reducing markers of oxidative damage. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Therapeutic Applications of Rose Hips from Different Rosa Species.

    PubMed

    Mármol, Inés; Sánchez-de-Diego, Cristina; Jiménez-Moreno, Nerea; Ancín-Azpilicueta, Carmen; Rodríguez-Yoldi, María Jesús

    2017-05-25

    Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view.

  2. Therapeutic Applications of Rose Hips from Different Rosa Species

    PubMed Central

    Mármol, Inés; Sánchez-de-Diego, Cristina; Jiménez-Moreno, Nerea; Ancín-Azpilicueta, Carmen; Rodríguez-Yoldi, María Jesús

    2017-01-01

    Rosa species, rose hips, are widespread wild plants that have been traditionally used as medicinal compounds for the treatment of a wide variety of diseases. The therapeutic potential of these plants is based on its antioxidant effects caused by or associated with its phytochemical composition, which includes ascorbic acid, phenolic compounds and healthy fatty acids among others. Over the last few years, medicinal interest in rose hips has increased as a consequence of recent research that has studied its potential application as a treatment for several diseases including skin disorders, hepatotoxicity, renal disturbances, diarrhoea, inflammatory disorders, arthritis, diabetes, hyperlipidaemia, obesity and cancer. In this review, the role of different species of Rosa in the prevention of treatment of various disorders related to oxidative stress, is examined, focusing on new therapeutic approaches from a molecular point of view. PMID:28587101

  3. Succinic Semialdehyde Dehydrogenase: Biochemical–Molecular–Clinical Disease Mechanisms, Redox Regulation, and Functional Significance

    PubMed Central

    Kim, Kyung-Jin; Pearl, Phillip L.; Jensen, Kimmo; Snead, O. Carter; Malaspina, Patrizia; Jakobs, Cornelis

    2011-01-01

    Abstract Succinic semialdehyde dehydrogenase (SSADH; aldehyde dehydrogenase 5a1, ALDH5A1; E.C. 1.2.1.24; OMIM 610045, 271980) deficiency is a rare heritable disorder that disrupts the metabolism of the inhibitory neurotransmitter 4-aminobutyric acid (GABA). Identified in conjunction with increased urinary excretion of the GABA analog gamma-hydroxybutyric acid (GHB), numerous patients have been identified worldwide and the autosomal-recessive disorder has been modeled in mice. The phenotype is one of nonprogressive neurological dysfunction in which seizures may be prominently displayed. The murine model is a reasonable phenocopy of the human disorder, yet the severity of the seizure disorder in the mouse exceeds that observed in SSADH-deficient patients. Abnormalities in GABAergic and GHBergic neurotransmission, documented in patients and mice, form a component of disease pathophysiology, although numerous other disturbances (metabolite accumulations, myelin abnormalities, oxidant stress, neurosteroid depletion, altered bioenergetics, etc.) are also likely to be involved in developing the disease phenotype. Most recently, the demonstration of a redox control system in the SSADH protein active site has provided new insights into the regulation of SSADH by the cellular oxidation/reduction potential. The current review summarizes some 30 years of research on this protein and disease, addressing pathological mechanisms in human and mouse at the protein, metabolic, molecular, and whole-animal level. Antioxid. Redox Signal. 15, 691–718. PMID:20973619

  4. [Does diet affect our mood? The significance of folic acid and homocysteine].

    PubMed

    Karakuła, Hanna; Opolska, Aneta; Kowal, Anna; Domański, Maciej; Płotka, Aniela; Perzyński, Janusz

    2009-02-01

    In recent years, there has been growing interest in the association between national diet and the possibility of developing various mental disorders, as well as between deficiency of such vitamins as, e.g. folic acid, vitamin B12, B6, and others (e.g., omega-3 fatty acids), elevated serum homocysteine level and the functioning of human brain as well as the occurrence of such disorders as dementia, central nervous system vascular disorders and depression. was to present the current state of knowledge about the role of folic acid and homocysteine in the human organism as well as the significance of vitamin deficiency, mainly folic acid and hyperhomocysteinemy for the occurrence of mood disorders. The authors conducted the search of the Internet database Medline (www.pubmed.com) using as key words: depression, mood, homocysteine, vitamin deficiencies: folic acid, B6 and 812 and time descriptors: 1990-2007. In depression, folate, vitamins B12 and B6, as well as unsaturated omega-3 fatty acids deficiency affects the biochemical processes in the CNS, as folic acid and vitamin B12, participate in the metabolism of S-adenosylmethionine (SAM), a donator of methyl groups, which play a decisive role in the functioning of the nervous system; they are, among others, active in the formation of neurotransmitters (e.g. serotonin), phospholipids that are a component of neuronal myelin sheaths, and cell receptors. The deficiency of the vitamins in question results in hyperhomocysteinemia (the research shows that approximately 45-55% of patients with depression develop significantly elevated serum homocysteine), which causes a decrease in SAM, followed by impaired methylation and, consequently, impaired metabolism of neurotransmitters, phospholipids, myelin, and receptors. Hyperhomocysteinemia also leads to activation of NMDA receptors, lesions in vascular endothelium, and oxidative stress. All this effects neurotoxicity and promotes the development of various disorders, including depression. Vitamins B12 and B6, folic acid and omega-3 fatty acids supplementation is thus important in patients suffering from their deficiency; national diet as a significant factor in prevention of numerous CNS disorders, including depression, is also worth consideration.

  5. Copper toxicity, oxidative stress, and antioxidant nutrients.

    PubMed

    Gaetke, Lisa M; Chow, Ching Kuang

    2003-07-15

    Copper (Cu) is an integral part of many important enzymes involved in a number of vital biological processes. Although normally bound to proteins, Cu may be released and become free to catalyze the formation of highly reactive hydroxyl radicals. Data obtained from in vitro and cell culture studies are largely supportive of Cu's capacity to initiate oxidative damage and interfere with important cellular events. Oxidative damage has been linked to chronic Cu-overload and/or exposure to excess Cu caused by accidents, occupational hazards, and environmental contamination. Additionally, Cu-induced oxidative damage has been implicated in disorders associated with abnormal Cu metabolism and neurodegenerative changes. Interestingly, a deficiency in dietary Cu also increases cellular susceptibility to oxidative damage. A number of nutrients have been shown to interact with Cu and alter its cellular effects. Vitamin E is generally protective against Cu-induced oxidative damage. While most in vitro or cell culture studies show that ascorbic acid aggravates Cu-induced oxidative damage, results obtained from available animal studies suggest that the compound is protective. High intakes of ascorbic acid and zinc may provide protection against Cu toxicity by preventing excess Cu uptake. Zinc also removes Cu from its binding site, where it may cause free radical formation. Beta-carotene, alpha-lipoic acid and polyphenols have also been shown to attenuate Cu-induced oxidative damage. Further studies are needed to better understand the cellular effects of this essential, but potentially toxic, trace mineral and its functional interaction with other nutrients.

  6. Phenylbutyrate reduces plasma leucine concentrations without affecting the flux of leucine

    USDA-ARS?s Scientific Manuscript database

    Phenylbutyrate (PB) has been used as an alternative pathway to excrete nitrogen in urea cycle disorder patients for the last 20 years. PB, after oxidation to phenylacetate, is conjugated with glutamine and excreted in the urine. A reduction in the plasma concentration of branched amino acids (BCAA) ...

  7. PEROXISOME-PROLIFERATOR ACTIVATED RECEPTORS AS A MACROMOLECULAR TARGET FOR CHEMICAL TOXICITY: MODELS OF THE INTERACTIONS OF PPARS WITH PERFLUORINATED ORGANIC COMPOUNDS.

    EPA Science Inventory

    The Peroxisome Proliferator Activated Receptors (PPARs), a class of nuclear receptors that modulate both transcription and metabolic processes, are implicated in a variety of metabolic disorders linked to lipidogenesis, adipose tissue accumulation, fatty-acid oxidation pathways, ...

  8. Enzymes involved in branched-chain amino acid metabolism in humans.

    PubMed

    Adeva-Andany, María M; López-Maside, Laura; Donapetry-García, Cristóbal; Fernández-Fernández, Carlos; Sixto-Leal, Cristina

    2017-06-01

    Branched-chain amino acids (leucine, isoleucine and valine) are structurally related to branched-chain fatty acids. Leucine is 2-amino-4-methyl-pentanoic acid, isoleucine is 2-amino-3-methyl-pentanoic acid, and valine is 2-amino-3-methyl-butanoic acid. Similar to fatty acid oxidation, leucine and isoleucine produce acetyl-coA. Additionally, leucine generates acetoacetate and isoleucine yields propionyl-coA. Valine oxidation produces propionyl-coA, which is converted into methylmalonyl-coA and succinyl-coA. Branched-chain aminotransferase catalyzes the first reaction in the catabolic pathway of branched-chain amino acids, a reversible transamination that converts branched-chain amino acids into branched-chain ketoacids. Simultaneously, glutamate is converted in 2-ketoglutarate. The branched-chain ketoacid dehydrogenase complex catalyzes the irreversible oxidative decarboxylation of branched-chain ketoacids to produce branched-chain acyl-coA intermediates, which then follow separate catabolic pathways. Human tissue distribution and function of most of the enzymes involved in branched-chain amino acid catabolism is unknown. Congenital deficiencies of the enzymes involved in branched-chain amino acid metabolism are generally rare disorders. Some of them are associated with reduced pyruvate dehydrogenase complex activity and respiratory chain dysfunction that may contribute to their clinical phenotype. The biochemical phenotype is characterized by accumulation of the substrate to the deficient enzyme and its carnitine and/or glycine derivatives. It was established at the beginning of the twentieth century that the plasma level of the branched-chain amino acids is increased in conditions associated with insulin resistance such as obesity and diabetes mellitus. However, the potential clinical relevance of this elevation is uncertain.

  9. Influence of folic acid, pyridoxal phosphate and cobalamin on plasma homocyst(e)ine levels and the susceptibility of low-density lipoprotein to ex-vivo oxidation.

    PubMed

    Weiss, N; Feussner, A; Hailer, S; Spengel, F A; Keller, C; Wolfram, G

    1999-10-15

    Mild hyperhomocyst(e)inaemia is a risk factor for atherosclerotic vascular disease. In-vitro studies have shown that autooxidation of homocyst(e)ine is accompanied by the generation of oxygen radicals. This may lead to oxidative modification of low-density lipoproteins (LDL) and promote atherosclerotic vascular lesions. In male patients with peripheral arterial occlusive disease we determined fasting and post methionine load homocyst(e)ine levels by high performance liquid chromatography and the susceptibility of their LDL particles to ex-vivo oxidation by continously measuring the conjugated diene production induced by incubation with copper ions. Oxidation resistance (expressed as lag time), maximal oxidation rate, and extent of oxidation (expressed of total diene production) of LDL from patients with normal or mildly elevated homocyst(e)ine levels did not differ significantly. Folic acid, pyridoxal phosphate and cobalamin supplementation significantly decreased plasma homocyst(e)ine levels in hyperhomocyst(e)inaemic patients. This went along with a significant decrease in the extent of LDL oxidation and additionally increased HDL-cholesterol levels. The clinical relevance of these findings for the long-term course of atherosclerotic vascular disorders has to be determined by intervention studies.

  10. Attenuation of acute restraint stress-induced depressive like behavior and hippocampal alterations with protocatechuic acid treatment in mice.

    PubMed

    Thakare, Vishnu N; Dhakane, Valmik D; Patel, Bhoomika M

    2017-04-01

    Protocatechuic acid ethyl ester (PCA), a phenolic compound, exhibits neuroprotective effects through improving endogenous antioxidant enzymatic and nonezymatic system. Based on the role of oxidative stress in modulating depressive disorders and the relationship between neuroprotective and antioxidant potential of PCA, we studied if its antidepressant like effect is associated by modulation of cerebral cortex and hippocampal antioxidant alterations. Acute restraint stress (ARS) is known to induce depressive like behavior by neuronal oxidative damage in mice. Swiss albino mice subjected to ARS exhibited an increased immobility time in forced swim test, elevated serum corticosterone and produced oxidative stress dependent alterations in cerebral cortex and hippocampus mainly increased thiobarbituric acid reactive substances and reduced catalase (CAT), superoxide dismutase (SOD) activity. Treatment with PCA was able to prevent stress induced immobility time in forced swim test without altering locomotor activity in mice. Further, PCA treatment attenuated the elevation of serum corticosterone, lipid peroxidation and restored enzymatic antioxidants in cerebral cortex and hippocampus in ARS mice. Altogether, the experimental findings demonstrate the notion that PCA exhibit antidepressant like activity might be related, at least in part, to its capability of modulating antioxidant defense system and oxidative damage induced by ARS in cerebral cortex and hippocampus in mice and thus maintain the pro-/anti-oxidative homeostasis.

  11. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function.

    PubMed

    Item, Flurin; Wueest, Stephan; Lemos, Vera; Stein, Sokrates; Lucchini, Fabrizio C; Denzler, Rémy; Fisser, Muriel C; Challa, Tenagne D; Pirinen, Eija; Kim, Youngsoo; Hemmi, Silvio; Gulbins, Erich; Gross, Atan; O'Reilly, Lorraine A; Stoffel, Markus; Auwerx, Johan; Konrad, Daniel

    2017-09-07

    Nonalcoholic fatty liver disease is one of the most prevalent metabolic disorders and it tightly associates with obesity, type 2 diabetes, and cardiovascular disease. Reduced mitochondrial lipid oxidation contributes to hepatic fatty acid accumulation. Here, we show that the Fas cell surface death receptor (Fas/CD95/Apo-1) regulates hepatic mitochondrial metabolism. Hepatic Fas overexpression in chow-fed mice compromises fatty acid oxidation, mitochondrial respiration, and the abundance of mitochondrial respiratory complexes promoting hepatic lipid accumulation and insulin resistance. In line, hepatocyte-specific ablation of Fas improves mitochondrial function and ameliorates high-fat-diet-induced hepatic steatosis, glucose tolerance, and insulin resistance. Mechanistically, Fas impairs fatty acid oxidation via the BH3 interacting-domain death agonist (BID). Mice with genetic or pharmacological inhibition of BID are protected from Fas-mediated impairment of mitochondrial oxidation and hepatic steatosis. We suggest Fas as a potential novel therapeutic target to treat obesity-associated fatty liver and insulin resistance.Hepatic steatosis is a common disease closely associated with metabolic syndrome and insulin resistance. Here Item et al. show that Fas, a member of the TNF receptor superfamily, contributes to mitochondrial dysfunction, steatosis development, and insulin resistance under high fat diet.

  12. Ultrasmall iron oxide nanoparticles for biomedical applications: improving the colloidal and magnetic properties.

    PubMed

    Costo, Rocio; Bello, Valentina; Robic, Caroline; Port, Marc; Marco, Jose F; Puerto Morales, M; Veintemillas-Verdaguer, Sabino

    2012-01-10

    A considerable increase in the saturation magnetization, M(s) (40%), and initial susceptibility of ultrasmall (<5 nm) iron oxide nanoparticles prepared by laser pyrolysis was obtained through an optimized acid treatment. Moreover, a significant enhancement in the colloidal properties, such as smaller aggregate sizes in aqueous media and increased surface charge densities, was found after this chemical protocol. The results are consistent with a reduction in nanoparticle surface disorder induced by a dissolution-recrystallization mechanism.

  13. Chlorogenic acid from honeysuckle improves hepatic lipid dysregulation and modulates hepatic fatty acid composition in rats with chronic endotoxin infusion.

    PubMed

    Zhou, Yan; Ruan, Zheng; Wen, Yanmei; Yang, Yuhui; Mi, Shumei; Zhou, Lili; Wu, Xin; Ding, Sheng; Deng, Zeyuan; Wu, Guoyao; Yin, Yulong

    2016-03-01

    Chlorogenic acid as a natural hydroxycinnamic acid has protective effect for liver. Endotoxin induced metabolic disorder, such as lipid dysregulation and hyperlipidemia. In this study, we investigated the effect of chlorogenic acid in rats with chronic endotoxin infusion. The Sprague-Dawley rats with lipid metabolic disorder (LD group) were intraperitoneally injected endotoxin. And the rats of chlorogenic acid-LD group were daily received chlorogenic acid by intragastric administration. In chlorogenic acid-LD group, the area of visceral adipocyte was decreased and liver injury was ameliorated, as compared to LD group. In chlorogenic acid-LD group, serum triglycerides, free fatty acids, hepatic triglycerides and cholesterol were decreased, the proportion of C20:1, C24:1 and C18:3n-6, Δ9-18 and Δ6-desaturase activity index in the liver were decreased, and the proportion of C18:3n-3 acid was increased, compared to the LD group. Moreover, levels of phosphorylated AMP-activated protein kinase, carnitine palmitoyltransferase-I, and fatty acid β-oxidation were increased in chlorogenic acid-LD group compared to LD rats, whereas levels of fatty acid synthase and acetyl-CoA carboxylase were decreased. These findings demonstrate that chlorogenic acid effectively improves hepatic lipid dysregulation in rats by regulating fatty acid metabolism enzymes, stimulating AMP-activated protein kinase activation, and modulating levels of hepatic fatty acids.

  14. Developmental Ethanol Exposure Leads to Dysregulation of Lipid Metabolism and Oxidative Stress in Drosophila

    PubMed Central

    Logan-Garbisch, Theresa; Bortolazzo, Anthony; Luu, Peter; Ford, Audrey; Do, David; Khodabakhshi, Payam; French, Rachael L.

    2014-01-01

    Ethanol exposure during development causes an array of developmental abnormalities, both physiological and behavioral. In mammals, these abnormalities are collectively known as fetal alcohol effects (FAE) or fetal alcohol spectrum disorder (FASD). We have established a Drosophila melanogaster model of FASD and have previously shown that developmental ethanol exposure in flies leads to reduced expression of insulin-like peptides (dILPs) and their receptor. In this work, we link that observation to dysregulation of fatty acid metabolism and lipid accumulation. Further, we show that developmental ethanol exposure in Drosophila causes oxidative stress, that this stress is a primary cause of the developmental lethality and delay associated with ethanol exposure, and, finally, that one of the mechanisms by which ethanol increases oxidative stress is through abnormal fatty acid metabolism. These data suggest a previously uncharacterized mechanism by which ethanol causes the symptoms associated with FASD. PMID:25387828

  15. Anaplerotic Treatment of Long-Chain Fat Oxidation Disorders with Triheptanoin: Review of 15 years Experience

    PubMed Central

    Roe, Charles R.; Brunengraber, Henri

    2015-01-01

    Background The treatment of long-chain mitochondrial β-oxidation disorders (LC-FOD) with a low fat-high carbohydrate diet, a diet rich in medium-even-chain triglycerides (MCT), or a combination of both has been associated with high morbidity and mortality for decades. The pathological tableau appears to be caused by energy deficiency resulting from reduced availability of citric acid cycle (CAC) intermediates required for optimal oxidation of acetyl-CoA. This hypothesis was investigated by diet therapy with carnitine and anaplerotic triheptanoin (TH). Methods Fifty-two documented LC-FOD patients were studied in this investigation (age range: birth to 51 years). Safety monitoring included serial quantitative measurements of routine blood chemistries, blood levels of carnitine and acylcarnitines, and urinary organic acids. Results The average frequency of serious clinical complications were reduced from ~ 60 % with conventional diet therapy to 10 % with TH and carnitine treatment and mortality decreased from ~ 65 % with conventional diet therapy to 3.8 %. Carnitine supplementation was uncomplicated. Conclusion The energy deficiency in LC-FOD patients was corrected safely and more effectively with the triheptanoin diet and carnitine supplement than with conventional diet therapy. Safe intervention in neonates and infants will permit earlier intervention following pre-natal diagnosis or diagnosis by expanded newborn screening. PMID:26547562

  16. Hypoglycaemia related to inherited metabolic diseases in adults

    PubMed Central

    2012-01-01

    In non-diabetic adult patients, hypoglycaemia may be related to drugs, critical illness, cortisol or glucagon insufficiency, non-islet cell tumour, insulinoma, or it may be surreptitious. Nevertheless, some hypoglycaemic episodes remain unexplained, and inborn errors of metabolism (IEM) should be considered, particularly in cases of multisystemic involvement. In children, IEM are considered a differential diagnosis in cases of hypoglycaemia. In adulthood, IEM-related hypoglycaemia can persist in a previously diagnosed childhood disease. Hypoglycaemia may sometimes be a presenting sign of the IEM. Short stature, hepatomegaly, hypogonadism, dysmorphia or muscular symptoms are signs suggestive of IEM-related hypoglycaemia. In both adults and children, hypoglycaemia can be clinically classified according to its timing. Postprandial hypoglycaemia can be an indicator of either endogenous hyperinsulinism linked to non-insulinoma pancreatogenic hypoglycaemia syndrome (NIPHS, unknown incidence in adults) or very rarely, inherited fructose intolerance. Glucokinase-activating mutations (one family) are the only genetic disorder responsible for NIPH in adults that has been clearly identified so far. Exercise-induced hyperinsulinism is linked to an activating mutation of the monocarboxylate transporter 1 (one family). Fasting hypoglycaemia may be caused by IEM that were already diagnosed in childhood and persist into adulthood: glycogen storage disease (GSD) type I, III, 0, VI and IX; glucose transporter 2 deficiency; fatty acid oxidation; ketogenesis disorders; and gluconeogenesis disorders. Fasting hypoglycaemia in adulthood can also be a rare presenting sign of an IEM, especially in GSD type III, fatty acid oxidation [medium-chain acyl-CoA dehydrogenase (MCAD), ketogenesis disorders (3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) lyase deficiency, and gluconeogenesis disorders (fructose-1,6-biphosphatase deficiency)]. PMID:22587661

  17. Downregulation of peroxiredoxin-3 by hydrophobic bile acid induces mitochondrial dysfunction and cellular senescence in human trophoblasts

    PubMed Central

    Wu, Wei-Bin; Menon, Ramkumar; Xu, Yue-Ying; Zhao, Jiu-Ru; Wang, Yan-Lin; Liu, Yuan; Zhang, Hui-Juan

    2016-01-01

    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific disorder characterised by raised bile acids in foetal-maternal circulation, which threatens perinatal health. During the progression of ICP, the effect of oxidative stress is underscored. Peroxiredoxin-3 (PRDX3) is a mitochondrial antioxidant enzyme that is crucial to balance intracellular oxidative stress. However, the role of PRDX3 in placental trophoblast cells under ICP is not fully understood. We demonstrated that the level of PRDX3 was downregulated in ICP placentas as well as bile acids–treated trophoblast cells and villous explant in vitro. Toxic levels of bile acids and PRDX3 knockdown induced oxidative stress and mitochondrial dysfunction in trophoblast cells. Moreover, silencing of PRDX3 in trophoblast cell line HTR8/SVneo induced growth arrest and cellular senescence via activation of p38-mitogen-activated protein kinase (MAPK) and induction of p21WAF1/CIP and p16INK4A. Additionally, enhanced cellular senescence, determined by senescence-associated beta-galactosidase staining, was obviously attenuated by p38-MAPK inhibitor SB203580. Our data determined that exposure to bile acid decreased PRDX3 level in human trophoblasts. PRDX3 protected trophoblast cells against mitochondrial dysfunction and cellular senescence induced by oxidative stress. Our results suggest that decreased PRDX3 by excessive bile acids in trophoblasts plays a critical role in the pathogenesis and progression of ICP. PMID:27958341

  18. Surface characterization of adsorbents in ultrasound-assisted oxidative desulfurization process of fossil fuels.

    PubMed

    Etemadi, Omid; Yen, Teh Fu

    2007-09-01

    Surface properties of two different phases of alumina were studied through SEM images. Characterization of amorphous acidic alumina and crystalline boehmite by XRD explains the differences in adsorption capacities of each sample. Data from small angle neutron scattering (SANS) provide further results regarding the ordering in amorphous and crystalline samples of alumina. Quantitative measurements from SANS are used for pore size calculations. Higher disorder provides more topological traps, irregularities, and hidden grooves for higher adsorption capacity. An isotherm model was derived for adsorption of dibenzothiophene sulfone (DBTO) by amorphous acidic alumina to predict and calculate the adsorption of sulfur compounds. The Langmuir-Freundlich model covers a wide range of sulfur concentrations. Experiments prove that amorphous acidic alumina is the adsorbent of choice for selective adsorption in the ultrasound-assisted oxidative desulfurization (UAOD) process to produce ultra-low-sulfur fuel (ULSF).

  19. Modulation of Antioxidant Enzymatic Activities by Certain Antiepileptic Drugs (Valproic Acid, Oxcarbazepine, and Topiramate): Evidence in Humans and Experimental Models

    PubMed Central

    Cárdenas-Rodríguez, Noemí; Coballase-Urrutia, Elvia; Rivera-Espinosa, Liliana; Romero-Toledo, Arantxa; Sampieri, Aristides III; Ortega-Cuellar, Daniel; Montesinos-Correa, Hortencia; Floriano-Sánchez, Esaú; Carmona-Aparicio, Liliana

    2013-01-01

    It is estimated that at least 100 million people worldwide will suffer from epilepsy at some point in their lives. This neurological disorder induces brain death due to the excessive liberation of glutamate, which activates the postsynaptic N-methyl-D-aspartic acid (NMDA) receptors, which in turn cause the reuptake of intracellular calcium (excitotoxicity). This excitotoxicity elicits a series of events leading to nitric oxide synthase (NOS) activation and the generation of reactive oxygen species (ROS). Several studies in experimental models and in humans have demonstrated that certain antiepileptic drugs (AEDs) exhibit antioxidant effects by modulating the activity of various enzymes associated with this type of stress. Considering the above-mentioned data, we aimed to compile evidence elucidating how AEDs such as valproic acid (VPA), oxcarbazepine (OXC), and topiramate (TPM) modulate oxidative stress. PMID:24454986

  20. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.

    PubMed

    Busanello, Estela Natacha Brandt; Lobato, Vannessa Gonçalves Araujo; Zanatta, Ângela; Borges, Clarissa Günther; Tonin, Anelise Miotti; Viegas, Carolina Maso; Manfredini, Vanusa; Ribeiro, César Augusto João; Vargas, Carmen Regla; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-12-01

    Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and α-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced α-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by α-tocopherol but not by the nitric oxide synthase inhibitor N(ω)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The present findings may contribute to clarify the pathogenesis of the cerebellar alterations observed in patients affected by ZS and some peroxisomal disorders in which Prist is accumulated.

  1. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond.

    PubMed

    Erez, Ayelet; Nagamani, Sandesh C Sreenath; Lee, Brendan

    2011-02-15

    The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCD), a group of inborn errors of hepatic metabolism that often result in life threatening hyperammonemia. Argininosuccinate lyase (ASL) is a cytosolic enzyme which catalyzes the fourth reaction in the cycle and the first degradative step, that is, the breakdown of argininosuccinic acid to arginine and fumarate. Deficiency of ASL results in an accumulation of argininosuccinic acid in tissues, and excretion of argininosuccinic acid in urine leading to the condition argininosuccinic aciduria (ASA). ASA is an autosomal recessive disorder and is the second most common UCD. In addition to the accumulation of argininosuccinic acid, ASL deficiency results in decreased synthesis of arginine, a feature common to all UCDs except argininemia. Arginine is not only the precursor for the synthesis of urea and ornithine as part of the urea cycle but it is also the substrate for the synthesis of nitric oxide, polyamines, proline, glutamate, creatine, and agmatine. Hence, while ASL is the only enzyme in the body able to generate arginine, at least four enzymes use arginine as substrate: arginine decarboxylase, arginase, nitric oxide synthetase (NOS) and arginine/glycine aminotransferase. In the liver, the main function of ASL is ureagenesis, and hence, there is no net synthesis of arginine. In contrast, in most other tissues, its role is to generate arginine that is designated for the specific cell's needs. While patients with ASA share the acute clinical phenotype of hyperammonemia, encephalopathy, and respiratory alkalosis common to other UCD, they also present with unique chronic complications most probably caused by a combination of tissue specific deficiency of arginine and/or elevation of argininosuccinic acid. This review article summarizes the clinical characterization, biochemical, enzymatic, and molecular features of this disorder. Current treatment, prenatal diagnosis, diagnosis through the newborn screening as well as hypothesis driven future treatment modalities are discussed. Copyright © 2011 Wiley-Liss, Inc.

  2. Evaluation of pharmacological induction of fatty acid beta-oxidation in X-linked adrenoleukodystrophy.

    PubMed

    McGuinness, M C; Zhang, H P; Smith, K D

    2001-01-01

    X-linked adrenoleukodystrophy (X-ALD) is an inherited neurometabolic disorder associated with elevated levels of saturated unbranched very-long-chain fatty acids (VLCFA; C > 22:0) in plasma and tissues, and reduced VLCFA beta-oxidation in fibroblasts, white blood cells, and amniocytes from X-ALD patients. The X-ALD gene (ABCD1) at Xq28 encodes the adrenoleukodystrophy protein (ALDP) that is related to the peroxisomal ATP-binding cassette (ABCD) transmembrane half-transporter proteins. The function of ALDP is unknown and its role in VLCFA accumulation unresolved. Previously, our laboratory has shown that sodium 4-phenylbutyrate (4PBA) treatment of X-ALD fibroblasts results in increased peroxisomal VLCFA beta-oxidation activity and increased expression of the X-ALD-related protein, ALDRP, encoded by the ABCD2 gene. In this study, the effect of various pharmacological agents on VLCFA beta-oxidation in ALD mouse fibroblasts is tested. 4PBA, styrylacetate and benzyloxyacetate (structurally related to 4PBA), and trichostatin A (functionally related to 4PBA) increase both VLCFA (peroxisomal) and long-chain fatty acid [LCFA (peroxisomal and mitochondrial)] beta-oxidation. Isobutyrate, zaprinast, hydroxyurea, and 5-azacytidine had no effect on VLCFA or LCFA beta-oxidation. Lovastatin had no effect on fatty acid beta-oxidation under normal tissue culture conditions but did result in an increase in both VLCFA and LCFA beta-oxidation when ALD mouse fibroblasts were cultured in the absence of cholesterol. The effect of trichostatin A on peroxisomal VLCFA beta-oxidation is shown to be independent of an increase in ALDRP expression, suggesting that correction of the biochemical abnormality in X-ALD is not dependent on pharmacological induction of a redundant gene (ABCD2). These studies contribute to a better understanding of the role of ALDP in VLCFA accumulation and may lead to the development of more effective pharmacological therapies. Copyright 2001 Academic Press.

  3. Omega-3 polyunsaturated fatty acid has an anti-oxidant effect via the Nrf-2/HO-1 pathway in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusunoki, Chisato, E-mail: yosizaki@belle.shiga-med.ac.jp; Yang, Liu; Yoshizaki, Takeshi

    Highlights: Black-Right-Pointing-Pointer Omega-3 PUFA has a direct anti-oxidant effect in adipocytes. Black-Right-Pointing-Pointer EPA and DHA induce HO-1 expression in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer Omega-3 PUFA and its end-product, 4-HHE, activates the Nrf-2/HO-1 pathway. Black-Right-Pointing-Pointer Omega-3 PUFA protects against oxidative stress-induced cytotoxicity. -- Abstract: Oxidative stress is produced in adipose tissue of obese subjects and has been associated with obesity-related disorders. Recent studies have shown that omega-3 polyunsaturated fatty acid ({omega}3-PUFA) has beneficial effects in preventing atherosclerotic diseases and insulin resistance in adipose tissue. However, the role of {omega}3-PUFA on adipocytes has not been elucidated. In this study, 3T3-L1 adipocytes were treatedmore » with {omega}3-PUFA and its metabolites, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or 4-hydroxy hexenal (4-HHE). {omega}3-PUFA and its metabolites dose-dependently increased mRNA and protein levels of the anti-oxidative enzyme, heme oxygenase-1 (HO-1); whereas no changes in the well-known anti-oxidant molecules, superoxide dismutase, catalase, and glutathione peroxidase, were observed. Knockdown of nuclear factor erythroid 2-related factor 2 (Nrf-2) significantly reduced EPA, DHA or 4-HHE-induced HO-1 mRNA and protein expression. Also, pretreatment with {omega}3-PUFA prevented H{sub 2}O{sub 2}-induced cytotoxicity in a HO-1 dependent manner. In conclusion, treatment with EPA and DHA induced HO-1 through the activation of Nrf-2 and prevented oxidative stress in 3T3-L1 adipocytes. This anti-oxidant defense may be of high therapeutic value for clinical conditions associated with systemic oxidative stress.« less

  4. Infant with cardiomyopathy: When to suspect inborn errors of metabolism?

    PubMed Central

    Byers, Stephanie L; Ficicioglu, Can

    2014-01-01

    Inborn errors of metabolism are identified in 5%-26% of infants and children with cardiomyopathy. Although fatty acid oxidation disorders, lysosomal and glycogen storage disorders and organic acidurias are well-known to be associated with cardiomyopathies, emerging reports suggest that mitochondrial dysfunction and congenital disorders of glycosylation may also account for a proportion of cardiomyopathies. This review article clarifies when primary care physicians and cardiologists should suspect inborn errors of metabolism in a patient with cardiomyopathy, and refer the patient to a metabolic specialist for a further metabolic work up, with specific discussions of “red flags” which should prompt additional evaluation. PMID:25429327

  5. Oxidative modification of lipoic acid by HNE in Alzheimer disease brain.

    PubMed

    Hardas, Sarita S; Sultana, Rukhsana; Clark, Amy M; Beckett, Tina L; Szweda, Luke I; Murphy, M Paul; Butterfield, D Allan

    2013-01-01

    Alzheimer disease (AD) is an age-related neurodegenerative disease characterized by the presence of three pathological hallmarks: synapse loss, extracellular senile plaques (SP) and intracellular neurofibrillary tangles (NFTs). The major component of SP is amyloid β-peptide (Aβ), which has been shown to induce oxidative stress. The AD brain shows increased levels of lipid peroxidation products, including 4-hydroxy-2-nonenal (HNE). HNE can react covalently with Cys, His, or Lys residues on proteins, altering structure and function of the latter. In the present study we measured the levels of the HNE-modified lipoic acid in brain of subjects with AD and age-matched controls. Lipoic acid is a key co-factor for a number of proteins including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, key complexes for cellular energetics. We observed a significant decrease in the levels of HNE-lipoic acid in the AD brain compared to that of age-matched controls. To investigate this phenomenon further, the levels and activity of lipoamide dehydrogenase (LADH) were measured in AD and control brains. Additionally, LADH activities were measured after in-vitro HNE-treatment to mice brains. Both LADH levels and activities were found to be significantly reduced in AD brain compared to age-matched control. HNE-treatment also reduced the LADH activity in mice brain. These data are consistent with a two-hit hypothesis of AD: oxidative stress leads to lipid peroxidation that, in turn, causes oxidative dysfunction of key energy-related complexes in mitochondria, triggering neurodegeneration. This study is consonant with the notion that lipoic acid supplementation could be a potential treatment for the observed loss of cellular energetics in AD and potentiate the antioxidant defense system to prevent or delay the oxidative stress in and progression of this devastating dementing disorder.

  6. The role of oxidative stress in Huntington's disease: are antioxidants good therapeutic candidates?

    PubMed

    Gil-Mohapel, Joana; Brocardo, Patricia S; Christie, Brian R

    2014-04-01

    Huntington's disease (HD) is the most common polyglutamine neurodegenerative disorder in humans, and is caused by a mutation of an unstable expansion of CAG repeats within the coding region of the HD gene, which expresses the protein huntingtin. Although abnormal protein is ubiquitously expressed throughout the organism, cell degeneration occurs mainly in the brain, and there, predominantly in the striatum and cortex. The mechanisms that account for this selective neuronal death are multifaceted in nature and several lines of evidence suggest that mitochondrial dysfunction, overproduction of reactive oxygen species (ROS) and oxidative stress (an imbalance between pro-oxidant and antioxidant systems resulting in oxidative damage to proteins, lipids and DNA) might play important roles. Over time, this can result in the death of the affected neuronal populations. In this review article we present an overview of the preclinical and clinical studies that have indicated a link between oxidative stress, neurodegeneration, and cell death in HD. We also discuss how changes in ROS production affect neuronal survival, highlighting the evidence for the use of antioxidants including essential fatty acids, coenzyme Q10, and creatine, as potential therapeutic strategies for the treatment of this devastating neurodegenerative disorder.

  7. Inherited metabolic disorders in Thailand.

    PubMed

    Wasant, Pornswan; Svasti, Jisnuson; Srisomsap, Chantragan; Liammongkolkul, Somporn

    2002-08-01

    The study of inborn errors of metabolism (IEM) in Thailand is in its infancy. The majority are clinically diagnosed since there are only a handful of clinicians and scientists with expertise in inherited metabolic disorders, shortage of well-equipped laboratory facilities and lack of governmental financial support. Genetic metabolic disorders are usually not considered a priority due to prevalence of infectious diseases and congenital infections. From a retrospective study at the Medical Genetics Unit, Department of Pediatrics, Siriraj Hospital; estimated pediatrics patients with suspected IEM were approximately 2-3 per cent of the total pediatric admissions of over 5,000 annually. After more than 10 years of research and accumulated clinical experiences, a genetic metabolic center is being established in collaboration with expert laboratories both in Bangkok (Chulabhorn Research Institute) and abroad (Japan and the United States). Numerous inherited metabolic disorders were identified--carbohydrate, amino acids, organic acids, mitochondrial fatty acid oxidation, peroxisomal, mucopolysaccharidoses etc. This report includes the establishment of genetic metabolic center in Thailand, research and pilot studies in newborn screening in Thailand and a multicenter study from 5 institutions (Children's National Center, King Chulalongkorn Memorial Hospital, Pramongkutklao Hospital, Ramathibodi and Siriraj Hospitals). Inherited metabolic disorders reported are fructose-1,6-bisphosphatase deficiency, phenylketonuria, homocystinuria, nonketotic hyperglycinemia, urea cycle defect (arginino succinate lyase deficiency, argininosuccinate synthetase deficiency), Menkes disease, propionic acidemia and mucopolysaccharidoses (Hurler, Hurler-Scheie).

  8. Emerging roles for riboflavin in functional rescue of mitochondrial β-oxidation flavoenzymes.

    PubMed

    Henriques, Bárbara J; Olsen, Rikke K; Bross, Peter; Gomes, Cláudio M

    2010-01-01

    Riboflavin, commonly known as vitamin B2, is the precursor of flavin cofactors. It is present in our typical diet, and inside the cells it is metabolized to FMN and FAD. As a result of their rather unique and flexible chemical properties these flavins are among the most important redox cofactors present in a large series of different enzymes. A problem in riboflavin metabolism or a low intake of this vitamin will have consequences on the level of FAD and FMN in the cell, resulting in disorders associated with riboflavin deficiency. In a few number of cases, riboflavin deficiency is associated with impaired oxidative folding, cell damage and impaired heme biosynthesis. More relevant are several studies referring reduced activity of enzymes such as dehydrogenases involved in oxidative reactions, respiratory complexes and enzymes from the fatty acid β-oxidation pathway. The role of this vitamin in mitochondrial metabolism, and in particular in fatty acid oxidation, will be discussed in this review. The basic aspects concerning riboflavin and flavin metabolism and deficiency will be addressed, as well as an overview of the role of the different flavoenzymes and flavin chemistry in fatty acid β-oxidation, merging clinical, cellular and biochemical perspectives. A number of recent studies shedding new light on the cellular processes and biological effects of riboflavin supplementation in metabolic disease will also be overviewed. Overall, a deeper understanding of these emerging roles of riboflavin intake is essential to design better therapies.

  9. Phenylbutyrate improves nitrogen disposal via alternative pathway without eliciting an increase in protein breakdown and catabolism in control and ornithine transcarbamylace-deficient patients

    USDA-ARS?s Scientific Manuscript database

    Phenylbutyrate (PB) is a drug used in urea cycle disorder patients to elicit alternative pathways for nitrogen disposal. However, PB decreases plasma branched chain amino acid (BCAA) concentrations and prior research suggests that PB may increase leucine oxidation, indicating increased protein degra...

  10. Chronic inflammation aggravates metabolic disorders of hepatic fatty acids in high-fat diet-induced obese mice

    PubMed Central

    Zhao, Lei; Zhong, Shan; Qu, Haiyang; Xie, Yunxia; Cao, Zhennan; Li, Qing; Yang, Ping; Varghese, Zac; Moorhead, John F.; Chen, Yaxi; Ruan, Xiong Z.

    2015-01-01

    The prevalence of nonalcoholic fatty liver disease (NAFLD) increases with increasing body mass index (BMI). However, approximately 40–50% of obese adults do not develop hepatic steatosis. The level of inflammatory biomarkers is higher in obese subjects with NAFLD compared to BMI-matched subjects without hepatic steatosis. We used a casein injection in high-fat diet (HFD)-fed C57BL/6J mice to induce inflammatory stress. Although mice on a HFD exhibited apparent phenotypes of obesity and hyperlipidemia regardless of exposure to casein injection, only the HFD+Casein mice showed increased hepatic vacuolar degeneration accompanied with elevated inflammatory cytokines in the liver and serum, compared to mice on a normal chow diet. The expression of genes related to hepatic fatty acid synthesis and oxidation were upregulated in the HFD-only mice. The casein injection further increased baseline levels of lipogenic genes and decreased the levels of oxidative genes in HFD-only mice. Inflammatory stress induced both oxidative stress and endoplasmic reticulum stress in HFD-fed mice livers. We conclude that chronic inflammation precedes hepatic steatosis by disrupting the balance between fatty acid synthesis and oxidation in the livers of HFD-fed obese mice. This mechanism may operate in obese individuals with chronic inflammation, thus making them more prone to NAFLD. PMID:25974206

  11. Metabolic myopathies: functional evaluation by different exercise testing approaches.

    PubMed

    Volpi, L; Ricci, G; Orsucci, D; Alessi, R; Bertolucci, F; Piazza, S; Simoncini, C; Mancuso, M; Siciliano, G

    2011-08-01

    Metabolic myopathies are a clinically and etiologically heterogeneous group of disorders due to defects in muscular energy metabolism. They include glycogen storage diseases, fatty acid oxidation defects, and mitochondrial disorders. The typical manifestations of a metabolic myopathy are exercise-induced myalgias, exercise intolerance, and cramps. Evaluating subjects with such symptoms is not easy because of the frequent lack of clinical features. Exercise tests are, therefore, reliable screening tools. Here, we discuss the possible role of such exercise testing techniques in the diagnostic approach of a patient with suspected metabolic myopathy.

  12. Radiation-induced cognitive dysfunction and cerebellar oxidative stress in mice: protective effect of alpha-lipoic acid.

    PubMed

    Manda, Kailash; Ueno, Megumi; Moritake, Takashi; Anzai, Kazunori

    2007-02-12

    Reactive oxygen species are implicated in neurodegeneration and cognitive disorders due to higher vulnerability of neuronal tissues. The cerebellum is recently reported to be involved in cognitive function. Therefore, present study aimed at investigating the role alpha-lipoic acid against radiation-induced oxidative stress and antioxidant status in cerebellum and its correlation with cognitive dysfunction. We observed spontaneous motor activities and spatial memory task of mice using pyroelectric infrared sensor and programmed video tracking system, respectively. Whole body X-irradiation (6 Gy) of mice substantially impaired the reference memory and motor activities of mice. However, acute intraperitoneal treatment of mice with alpha-lipoic acid prior to irradiation significantly attenuated such cognitive dysfunction. Alpha-lipoic acid pretreatment exerted a very high magnitude of protection against radiation-induced augmentation of protein carbonyls and thiobarbituric acid reactive substance (TBARS) in mice cerebellum. Further, radiation-induced deficit of total, nonprotein and protein-bound sulfhydryl (T-SH, NP-SH, PB-SH) contents of cerebellum and plasma ferric reducing power (FRAP) was also inhibited by alpha-lipoic acid pre-treatment. Moreover, alpha-lipoic acid treated mice showed an intact cytoarchitecture of cerebellum, higher counts of intact Purkinje cells and granular cells in comparison to untreated irradiated mice. Results clearly indicate that alpha-lipoic acid is potent neuroprotective antioxidant.

  13. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases

    PubMed Central

    Boynton, Tye O'Hara; Shimkets, Lawrence Joseph

    2015-01-01

    Myxococcus xanthus development requires CsgA, a member of the short-chain alcohol dehydrogenase (SCAD) family of proteins. We show that CsgA and SocA, a protein that can replace CsgA function in vivo, oxidize the 2′-OH glycerol moiety on cardiolipin and phosphatidylglycerol to produce diacylglycerol (DAG), dihydroxyacetone, and orthophosphate. A lipid extract enriched in DAGs from wild-type cells initiates development and lipid body production in a csgA mutant to bypass the mutational block. This novel phospholipase C-like reaction is widespread. SCADs that prevent neurodegenerative disorders, such as Drosophila Sniffer and human HSD10, oxidize cardiolipin with similar kinetic parameters. HSD10 exhibits a strong preference for cardiolipin with oxidized fatty acids. This activity is inhibited in the presence of the amyloid β peptide. Three HSD10 variants associated with neurodegenerative disorders are inactive with cardiolipin. We suggest that HSD10 protects humans from reactive oxygen species by removing damaged cardiolipin before it induces apoptosis. PMID:26338420

  14. Peroxisome-mitochondria interplay and disease.

    PubMed

    Schrader, Michael; Costello, Joseph; Godinho, Luis F; Islinger, Markus

    2015-07-01

    Peroxisomes and mitochondria are ubiquitous, highly dynamic organelles with an oxidative type of metabolism in eukaryotic cells. Over the years, substantial evidence has been provided that peroxisomes and mitochondria exhibit a close functional interplay which impacts on human health and development. The so-called "peroxisome-mitochondria connection" includes metabolic cooperation in the degradation of fatty acids, a redox-sensitive relationship, an overlap in key components of the membrane fission machineries and cooperation in anti-viral signalling and defence. Furthermore, combined peroxisome-mitochondria disorders with defects in organelle division have been revealed. In this review, we present the latest progress in the emerging field of peroxisomal and mitochondrial interplay in mammals with a particular emphasis on cooperative fatty acid β-oxidation, redox interplay, organelle dynamics, cooperation in anti-viral signalling and the resulting implications for disease.

  15. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features.

    PubMed

    Ghezzo, Alessandro; Visconti, Paola; Abruzzo, Provvidenza M; Bolotta, Alessandra; Ferreri, Carla; Gobbi, Giuseppe; Malisardi, Gemma; Manfredini, Stefano; Marini, Marina; Nanetti, Laura; Pipitone, Emanuela; Raffaelli, Francesca; Resca, Federica; Vignini, Arianna; Mazzanti, Laura

    2013-01-01

    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na(+)/K(+)-ATPase activity (-66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD.

  16. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats.

    PubMed

    Olatunji, L A; Soladoye, A O

    2007-06-01

    Cardiovascular disorders are the primary causes of morbidity and mortality in patients with diabetes mellitus (DM). Agents that improve lipid profile and reduce oxidative stress have been shown to reduce the ensuing risk factors. In the present study, we investigated whether increased magnesium intake could improve hyperglycaemia, dyslipidaemia, and reduce oxidative stress in alloxan-induced diabetic rats. Male Wistar rats were divided into non-diabetic (ND), diabetic (DM) and diabetic fed on a high magnesium diet (DM-Mg) groups. Plasma concentrations of thiobarbituric acid reactive substances (TBARS) were used as markers of oxidative stress. Plasma levels of ascorbic acid, magnesium and calcium were also determined. Diabetes was induced by injecting alloxan (100 mg/kg B.W). The fasting blood glucose levels were significantly lower in the DM-Mg rats than in the DM rats. Plasma total cholesterol, triglyceride, TBARS levels were significantly higher while plasma HDL-cholesterol, HDL-cholesterol/total cholesterol ratio, ascorbic acid levels were significantly lowered in DM rats compared with the ND rats. Increased intake of magnesium significantly abrogated these alterations. There were no significant differences in the plasma levels of magnesium and calcium between the DM and ND groups. However, plasma levels of magnesium but not calcium were significantly elevated in DM-Mg rats when compared with other groups. In conclusion, these results suggest that diet rich in magnesium could exert cardioprotective effect through reduced plasma total cholesterol, triglyceride, oxidative stress and ameliorated HDL-cholesterol/total cholesterol ratio as well as increased plasma ascorbic acid and magnesium in diabetic rats.

  17. Physicochemical interactions among α-eleostearic acid-loaded liposomes applied to the development of drug delivery systems

    NASA Astrophysics Data System (ADS)

    Nogueira, Alessandro Oliveira de Moraes; de Sousa, Robson Simplício; Pereira, Luiza Silveira; Mallmann, Christian; da Silva Ferreira, Ailton; Clementin, Rosilene Maria; de Lima, Vânia Rodrigues

    2018-02-01

    In this study, α-eleostearic acid-loaded (α-ESA-loaded) dimyristoylphosphatidylcholine (DMPC) liposomes had their physicochemical properties characterized by horizontal attenuated total reflectance Fourier transform infrared (HATR-FTIR) spectroscopy, nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). In vitro thiobarbituric acid reactive substance (TBARS) assays were performed to obtain preliminary information on the oxidative potential of the system. An α-ESA-promoted ordering effect in the lipid phosphate region was observed. It was associated with a rotation restriction due to an increase in the amount of lipid group hydrogen bonds. The fatty acid was responsible for the reduction in the degree of hydration of carbonyl groups located in the interfacial region of lipids. α-ESA disordered the DMPC methylene acyl chains by trans-gauche isomerization and increased its rotation rate. TBARS results showed pro-oxidant behavior on liposomes, induced by α-ESA. The discussion about the responses considered the degree of saturation of phosphatidylcholines and suggested that the α-ESA oxidative effects may be modulated by the liposome lipid composition. The versatility of liposomal carriers may be promising for the development of efficacious α-ESA-based drug delivery systems. Results described in this study contribute to the selection of adequate material to produce them.

  18. Metabolic profiling of PPARalpha-/- mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation.

    PubMed

    Makowski, Liza; Noland, Robert C; Koves, Timothy R; Xing, Weibing; Ilkayeva, Olga R; Muehlbauer, Michael J; Stevens, Robert D; Muoio, Deborah M

    2009-02-01

    Peroxisome proliferator-activated receptor-alpha (PPARalpha) is a master transcriptional regulator of beta-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARalpha(+/+) and PPARalpha(-/-) mice. Compared to PPARalpha(+/+) animals, acylcarnitine profiles of PPARalpha(-/-) mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in beta-oxidation. Organic and amino acid profiles of starved PPARalpha(-/-) mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARalpha(-/-) mice had 40-50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARalpha(-/-) mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.

  19. Disorders of fatty acid oxidation and autosomal recessive polycystic kidney disease-different clinical entities and comparable perinatal renal abnormalities.

    PubMed

    Hackl, Agnes; Mehler, Katrin; Gottschalk, Ingo; Vierzig, Anne; Eydam, Marcus; Hauke, Jan; Beck, Bodo B; Liebau, Max C; Ensenauer, Regina; Weber, Lutz T; Habbig, Sandra

    2017-05-01

    Differential diagnosis of prenatally detected hyperechogenic and enlarged kidneys can be challenging as there is a broad phenotypic overlap between several rare genetic and non-genetic disorders. Metabolic diseases are among the rarest underlying disorders, but they demand particular attention as their prognosis and postnatal management differ from those of other diseases. We report two cases of cystic, hyperechogenic and enlarged kidneys detected on prenatal ultrasound images, resulting in the suspected diagnosis of autosomal recessive polycystic kidney disease (ARPKD). Postnatal clinical course and work-up, however, revealed early, neonatal forms of disorders of fatty acid oxidation (DFAO) in both cases, namely, glutaric acidemia type II, based on identification of the novel, homozygous splice-site mutation c.1117-2A > G in the ETFDH gene, in one case and carnitine palmitoyltransferase II deficiency in the other case. Review of pre- and postnatal sonographic findings resulted in the identification of some important differences that might help to differentiate DFAO from ARPKD. In DFAO, kidneys are enlarged to a milder degree than in ARPKD, and the cysts are located ubiquitously, including also in the cortex and the subcapsular area. Interestingly, recent studies have pointed to a switch in metabolic homeostasis, referred to as the Warburg effect (aerobic glycolysis), as one of the underlying mechanisms of cell proliferation and cyst formation in cystic kidney disease. DFAO are characterized by the inhibition of oxidative phosphorylation, resulting in aerobic glycolysis, and thus they do resemble the Warburg effect. We therefore speculate that this inhibition might be one of the pathomechanisms of renal hyperproliferation and cyst formation in DFAO analogous to the reported findings in ARPKD. Neonatal forms of DFAO can be differentially diagnosed in neonates with cystic or hyperechogenic kidneys and necessitate immediate biochemical work-up to provide early metabolic management.

  20. Substrate kinetics in patients with disorders of skeletal muscle metabolism.

    PubMed

    Ørngreen, Mette Cathrine

    2016-07-01

    The main purpose of the following studies was to investigate pathophysiological mechanisms in fat and carbohydrate metabolism and effect of nutritional interventions in patients with metabolic myopathies and in patients with severe muscle wasting. Yet there is no cure for patients with skeletal muscle disorders. The group of patients is heterozygous and this thesis is focused on patients with metabolic myopathies and low muscle mass due to severe muscle wasting. Disorders of fatty acid oxidation (FAO) are, along with myophosphorylase deficiency (McArdle disease), the most common inborn errors of metabolism leading to recurrent episodes of rhabdomyolysis in adults. Prolonged exercise, fasting, and fever are the main triggering factors for rhabdomyolysis in these conditions, and can be complicated by acute renal failure. Patients with low muscle mass are in risk of loosing their functional skills and depend on a wheel chair and respiratory support. We used nutritional interventions and metabolic studies with stable isotope technique and indirect calorimetry in patients with metabolic myopathies and patients with low muscle mass to get information of the metabolism of the investigated diseases, and to gain knowledge of the biochemical pathways of intermediary metabolism in human skeletal muscle. We have shown that patients with fat metabolism disorders in skeletal muscle affecting the transporting enzyme of fat into the mitochondria (carnitine palmitoyltransferase II deficiency) and affecting the enzyme responsible for breakdown of the long-chain fatty acids (very long chain acyl-CoA dehydrogenase deficiency) have a normal fatty acid oxidation at rest, but enzyme activity is too low to increase fatty acid oxidation during exercise. Furthermore, these patients benefit from a carbohydrate rich diet. Oppositely is exercise capacity worsened by a fat-rich diet in these patients. The patients also benefit from IV glucose, however, when glucose is given orally just before exercise, exercise capacity is worsened, most likely due to the sympatho-adrenergt response, that increases heart rate and blocks gluconeogenesis. Substrate turnover studies in patients with McArdle disease and phosphorylase b kinase deficiency showed that palmitate lipolysis, utilization and plasma concentration was higher and total CHO lower in the patients during exercise vs. healthy subjects. In patients with low muscle mass glucose homeostasis is impaired, and our findings showed that these patients are prone to develop hypoglycaemia during prolonged fasting. The following studies emphasize the importance of skeletal muscle in production of energy, both when skeletal muscle lack important metabolic enzymes (metabolic myopathies), and when skeletal muscle mass is low.

  1. Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders.

    PubMed

    Bhandari, Ranjana; Kuhad, Anurag

    2015-11-15

    Neuroinflammatory response triggered by the stimulation of matrix metalloproteinases plays a pivotal role in the development of autistic phenotype. MMPs stimulate inflammatory cytokines release along with mitochondrial deficits that ultimately lead to neuronal dysfunction and precipitate autistic symptoms. The aim of the present study was to explore the neuropsychopharmacotherapeutic efficacy of curcumin in the experimental paradigm of autism spectrum disorders. 1M propanoic acid (4μl) was infused over 10min into the anterior portion of the caudoputamen to induce autistic behavior in rats. Curcumin (50, 100 and 200mg/kg) was administered per orally starting from 2nd day of surgery and continued up to 28th day. Rats were tested for various neurobehavioural paradigms like social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning and memory as well as for repetitive and pervasive behavior. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also carried out. Intracerebroventricular injection of propanoic acid produced neurological, sensory, behavioral, biochemical and molecular deficits which were assessed as endophenotype of autism spectrum disorders. Regular treatment with curcumin for four weeks significantly and dose dependently restored neurological, behavioral, biochemical and molecular changes associated with autistic phenotype in rats. The major finding of the study is that curcumin restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 in PPA-induced autism in rats. Therefore, curcumin can be developed as a potential neuropsychopharmacotherapeutic adjunct for autism spectrum disorders (ASD). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Alkaptonuria-associated aortic stenosis.

    PubMed

    Lok, Zoe S Y; Goldstein, Jacob; Smith, Julian A

    2013-07-01

    Alkaptonuria is an autosomal recessive disorder of tyrosine metabolism, which results in accumulation of unmetabolized homogentisic acid and its oxidized product in various tissues, including the heart. Cardiovascular involvement is a rare but serious complication of the disease. We present two patients who have undergone successful aortic valve replacement for alkaptonuria-associated aortic stenosis along with a review of the literature. © 2013 Wiley Periodicals, Inc.

  3. Hyperhomocysteinemia, endoplasmic reticulum stress, and alcoholic liver injury

    PubMed Central

    Ji, Cheng; Kaplowitz, Neil

    2004-01-01

    Deficiencies in vitamins or other factors (B6, B12, folic acid, betaine) and genetic disorders for the metabolism of the non-protein amino acid-homocysteine (Hcy) lead to hyperhomocysteinemia (HHcy). HHcy is an integral component of several disorders including cardiovascular disease, neurodegeneration, diabetes and alcoholic liver disease. HHcy unleashes mediators of inflammation such as NFκB, IL-1β, IL-6, and IL-8, increases production of intracellular superoxide anion causing oxidative stress and reducing intracellular level of nitric oxide (NO), and induces endoplasmic reticulum (ER) stress which can explain many processes of Hcy-promoted cell injury such as apoptosis, fat accumulation, and inflammation. Animal models have played an important role in determining the biological effects of HHcy. ER stress may also be involved in other liver diseases such as α1-antitrypsin (α1-AT) deficiency and hepatitis C and/or B virus infection. Future research should evaluate the possible potentiative effects of alcohol and hepatic virus infection on ER stress-induced liver injury, study potentially beneficial effects of lowering Hcy and preventing ER stress in alcoholic humans, and examine polymorphism of Hcy metabolizing enzymes as potential risk-factors for the development of HHcy and liver disease. PMID:15188490

  4. Probing the local structure of crystalline NaBiO3·XH2O and its acidified derivatives

    NASA Astrophysics Data System (ADS)

    Kozma, Karoly; Surta, T. Wesley; Molina, Pedro I.; Lyubinetsky, Igor; Stoxen, Wynn; Byrne, Nicole M.; Dolgos, Michelle; Nyman, May

    2018-07-01

    Sodium bismuthate is a commercially available, inexpensive, non-toxic and very potent inorganic oxidant and photocatalyst. It is one of the important reagents for oxidative separation of Am3+ from the chemically similar lanthanide ions, for its recovery or safe disposal from reprocessed nuclear fuel. While the structure of NaBiO3 has been described from powder and neutron diffraction; the structure of NaBiO3·XH2O, the manufactured form of sodium bismuthate, is currently unknown. Herein, we describe the structure of NaBiO3·XH2O (X = 3) using pair distribution function (PDF) analysis of X-ray total scattering data. In our proposed structure model, NaBiO3·3H2O is similar to NaBiO3, but with turbostratic disorder in the stacking direction of the alternating Bi-O and Na-O layers. We propose locations for the lattice water, and its role in creating turbostratic disorder. We also used PDF to describe the structural evolution of sodium bismuthate upon exposure to nitric acid, the conditions employed in for nuclear fuel reprocessing. We supported the proposed model for pristine NaBiO3·3H2O and its acidified derivatives by a variety of techniques including thermogravimetry, powder X-ray diffraction (PXRD), energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). By employing both surface and bulk techniques, we hypothesize that the bismuth reduced to Bi3+ upon aqueous acid exposure remains in the lattice, rather than completely dissolving and/or depositing on the surface, as prior suggested. Using pretreated acidified sodium bismuthate samples, we delineated the effects of acid strength vs. bismuthate structure/composition on Ce3+ to Ce4+ oxidation efficacy.

  5. Ursolic acid improves domoic acid-induced cognitive deficits in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Dong-mei; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Xuzhou Normal University, Xuzhou 221116, Jiangsu Province; Lu, Jun, E-mail: lu-jun75@163.com

    Our previous findings suggest that mitochondrial dysfunction is the mechanism underlying cognitive deficits induced by domoic acid (DA). Ursolic acid (UA), a natural triterpenoid compound, possesses many important biological functions. Evidence shows that UA can activate PI3K/Akt signaling and suppress Forkhead box protein O1 (FoxO1) activity. FoxO1 is an important regulator of mitochondrial function. Here we investigate whether FoxO1 is involved in the oxidative stress-induced mitochondrial dysfunction in DA-treated mice and whether UA inhibits DA-induced mitochondrial dysfunction and cognitive deficits through regulating the PI3K/Akt and FoxO1 signaling pathways. Our results showed that FoxO1 knockdown reversed the mitochondrial abnormalities and cognitivemore » deficits induced by DA in mice through decreasing HO-1 expression. Mechanistically, FoxO1 activation was associated with oxidative stress-induced JNK activation and decrease of Akt phosphorylation. Moreover, UA attenuated the mitochondrial dysfunction and cognitive deficits through promoting Akt phosphorylation and FoxO1 nuclear exclusion in the hippocampus of DA-treated mice. LY294002, an inhibitor of PI3K/Akt signaling, significantly decreased Akt phosphorylation in the hippocampus of DA/UA mice, which weakened UA actions. These results suggest that UA could be recommended as a possible candidate for the prevention and therapy of cognitive deficits in excitotoxic brain disorders. - Highlights: • Ursolic acid (UA) is a naturally triterpenoid compound. • UA attenuated the mitochondrial dysfunction and cognitive deficits. • Mechanistically, UA activates PI3K/Akt signaling and suppresses FoxO1 activity. • UA could be recommended as a possible candidate for anti-excitotoxic brain disorders.« less

  6. Oxidative stress and neurological disorders in relation to blood lead levels in children.

    PubMed

    Ahamed, M; Fareed, Mohd; Kumar, A; Siddiqui, W A; Siddiqui, M K J

    2008-01-01

    Oxidative stress plays a pivotal role in the pathogenesis of neurological disorders. Free radical generation appears to be the mode of lead toxicity. We evaluated the effects of blood lead levels on oxidative stress parameters in children suffering from neurological disorders. Thirty children (aged 3-12 years) with neurological disorders (cerebral palsy [n = 12], seizures [n = 11], and encephalopathy [n = 7]) were recruited in the study group. Sixty healthy children (aged 3-12 years) from similar socio-economic environments and not suffering from any chronic disease were taken as the controls. Blood lead levels and oxidant/antioxidant status were determined. Mean blood lead level was significantly higher while delta-aminolevulinic acid dehydratase (delta-ALAD) activity, a biomarker for lead exposure, was significantly lower in the study group as compared to the control group (P < 0.05 for each). Malondialdehyde (MDA) levels, an end-product of lipid peroxidation, were significantly higher while the antioxidant glutathione (GSH) levels were significantly lower in the study group as compared to the control group (P < 0.05 for each). Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were significantly higher in the study group than those of the control group (P < 0.05 for each). There were significant negative correlations of blood lead levels with delta-ALAD (r = -0.35; P < 0.05) and GSH (r = -0.31; P < 0.05), and positive correlations with MDA (r = 0.37; P < 0.05), SOD (r = 0.53; P < 0.05), and CAT (r = 0.31; P < 0.05). In turn, delta-ALAD had significant negative correlations with MDA (r = -0.29; P < 0.05), SOD (r = -0.28; P < 0.05) and CAT (r = -0.34; P < 0.05), but positive correlation with GSH (r = 0.32; P < 0.05). Although a causal pathway can not be determined from the present study, our findings indicate lead-induced oxidative stress in blood of children with neurological disorders. Lead-induced oxidative stress as an underlying mechanism for neurological diseases in children warranted further investigation.

  7. Oxidative Stress and Erythrocyte Membrane Alterations in Children with Autism: Correlation with Clinical Features

    PubMed Central

    Visconti, Paola; Bolotta, Alessandra; Ferreri, Carla; Gobbi, Giuseppe; Malisardi, Gemma; Manfredini, Stefano; Marini, Marina; Nanetti, Laura; Pipitone, Emanuela; Raffaelli, Francesca; Resca, Federica; Mazzanti, Laura

    2013-01-01

    It has been suggested that oxidative stress may play a role in the pathogenesis of Autism Spectrum Disorders (ASD), but the literature reports somewhat contradictory results. To further investigate the issue, we evaluated a high number of peripheral oxidative stress parameters, and some related issues such as erythrocyte membrane functional features and lipid composition. Twenty-one autistic children (Au) aged 5 to 12 years, were gender and age-matched with 20 typically developing children (TD). Erythrocyte thiobarbituric acid reactive substances, urinary isoprostane and hexanoyl-lysine adduct levels were elevated in Au, thus confirming the occurrence of an imbalance of the redox status of Au, whilst other oxidative stress markers or associated parameters (urinary 8-oxo-dG, plasma radical absorbance capacity and carbonyl groups, erythrocyte superoxide dismutase and catalase activities) were unchanged. A very significant reduction of Na+/K+-ATPase activity (−66%, p<0.0001), a reduction of erythrocyte membrane fluidity and alteration in erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in Au compared to TD, without change in membrane sialic acid content. Some Au clinical features appear to be correlated with these findings; in particular, hyperactivity score appears to be related with some parameters of the lipidomic profile and membrane fluidity. Oxidative stress and erythrocyte membrane alterations may play a role in the pathogenesis of ASD and prompt the development of palliative therapeutic protocols. Moreover, the marked decrease in NKA could be potentially utilized as a peripheral biomarker of ASD. PMID:23840462

  8. Silymarin protects against renal injury through normalization of lipid metabolism and mitochondrial biogenesis in high fat-fed mice.

    PubMed

    Bin Feng; Meng, Ran; Bin Huang; Bi, Yan; Shen, Shanmei; Zhu, Dalong

    2017-09-01

    Obesity is associated with an increased risk of chronic kidney diseases and the conventional treatment with renin-angiotensin-aldosterone system (RAAS) inhibitors is not enough to prevent renal injury and prolong the progression of disease. Recently, silymarin has shown protective effects on renal tissue injury, but the underlying mechanisms remain elusive. The goal of this study was to investigate the potential capacity of silymarin to prevent renal injury during obesity induced by high fat diet (HFD) in mice. In vivo, male C57BL/6 mice received HFD (60% of total calories) for 12 weeks, randomized and treated orally with vehicle saline or silymarin (30mg/kg body weight/d) for 4 weeks. In vitro, human proximal tubular epithelial cells (HK2) were exposed to 300μM palmitic acid (PA) for 36h followed by silymarin administration at different concentrations. The administration of silymarin significantly ameliorated HFD induced glucose metabolic disorders, oxidative stress and pathological alterations in the kidney. Silymarin significantly mitigated renal lipid accumulation, fatty acid β-oxidation and mitochondrial biogenesis in HFD mice and PA treated HK2 cells. Furthermore, silymarin partly restored mitochondrial membrane potential of HK2 cells after PA exposure. In conclusion, silymarin can improve oxidative stress and preserve mitochondrial dysfunction in the kidney, potentially via preventing accumulation of renal lipids and fatty acid β-oxidation. Copyright © 2017. Published by Elsevier Inc.

  9. Oxidative damage to macromolecules in human Parkinson’s disease and the rotenone model

    PubMed Central

    Sanders, Laurie H.; Greenamyre, J. Timothy

    2013-01-01

    Parkinson’s disease (PD), the most common neurodegenerative movement disorder, is associated with selective degeneration of nigrostriatal dopamine neurons. While the underlying mechanisms contributing to neurodegeneration in PD appear to be multifactorial, mitochondrial impairment and oxidative stress are widely considered to be central to many forms of the disease. Whether oxidative stress is a cause or consequence of dopaminergic death, there is substantial evidence for oxidative stress in both human PD patients and in animal models of PD, especially using rotenone, a complex I inhibitor. There are many indices of oxidative stress, but this review covers the recent evidence for oxidative damage to nucleic acids, lipids and proteins in both the brain and peripheral tissues in human PD and in the rotenone model. Limitations of the existing literature and future perspectives are discussed. Understanding how each particular macromolecule is damaged by oxidative stress and the interplay of secondary damage to other biomolecules may help design better targets for treatment of PD. PMID:23328732

  10. Differential vulnerability of substantia nigra and corpus striatum to oxidative insult induced by reduced dietary levels of essential fatty acids

    PubMed Central

    Cardoso, Henriqueta D.; Passos, Priscila P.; Lagranha, Claudia J.; Ferraz, Anete C.; Santos Júnior, Eraldo F.; Oliveira, Rafael S.; Oliveira, Pablo E. L.; Santos, Rita de C. F.; Santana, David F.; Borba, Juliana M. C.; Rocha-de-Melo, Ana P.; Guedes, Rubem C. A.; Navarro, Daniela M. A. F.; Santos, Geanne K. N.; Borner, Roseane; Picanço-Diniz, Cristovam W.; Beltrão, Eduardo I.; Silva, Janilson F.; Rodrigues, Marcelo C. A.; Andrade da Costa, Belmira L. S.

    2012-01-01

    Oxidative stress (OS) has been implicated in the etiology of certain neurodegenerative disorders. Some of these disorders have been associated with unbalanced levels of essential fatty acids (EFA). The response of certain brain regions to OS, however, is not uniform and a selective vulnerability or resilience can occur. In our previous study on rat brains, we observed that a two-generation EFA dietary restriction reduced the number and size of dopaminergic neurons in the substantia nigra (SN) rostro-dorso-medial. To understand whether OS contributes to this effect, we assessed the status of lipid peroxidation (LP) and anti-oxidant markers in both SN and corpus striatum (CS) of rats submitted to this dietary treatment for one (F1) or two (F2) generations. Wistar rats were raised from conception on control or experimental diets containing adequate or reduced levels of linoleic and α-linolenic fatty acids, respectively. LP was measured using the thiobarbituric acid reaction method (TBARS) and the total superoxide dismutase (t-SOD) and catalase (CAT) enzymatic activities were assessed. The experimental diet significantly reduced the docosahexaenoic acid (DHA) levels of SN phospholipids in the F1 (~28%) and F2 (~50%) groups. In F1 adult animals of the experimental group there was no LP in both SN and CS. Consistently, there was a significant increase in the t-SOD activity (p < 0.01) in both regions. In EF2 young animals, degeneration in dopaminergic and non-dopaminergic neurons and a significant increase in LP (p < 0.01) and decrease in the CAT activity (p < 0.001) were detected in the SN, while no inter-group difference was found for these parameters in the CS. Conversely, a significant increase in t-SOD activity (p < 0.05) was detected in the CS of the experimental group compared to the control. The results show that unbalanced EFA dietary levels reduce the redox balance in the SN and reveal mechanisms of resilience in the CS under this stressful condition. PMID:22969716

  11. Identification of 4-oxo-13-cis-retinoic acid as the major metabolite of 13-cis-retinoic acid in human blood.

    PubMed

    Vane, F M; Buggé, C J

    1981-01-01

    The metabolites of 13-cis-retinoic acid (Accutane) were investigated in blood samples from human volunteers on chronic treatment for dermatological disorders. The major metabolite was isolated by reverse-phase high-pressure liquid chromatography and identified as 4-oxo-13-cis-retinoic acid by comparison of its mass and NMR spectra to the spectra of the reference compound. 4-Oxo-all-trans-retinoic acid was also identified, but the extent to which this compound was a metabolite of 13-cis-retinoic acid or an artifactual isomerization product of the major metabolite is unknown. Chromatographic data suggested that small amounts of 13-cis-retinoic acid, 4-hydroxy-13-cis-retinoic acid, and dioxygenated metabolites of 13-cis-retinoic acid may also be present in the blood. This study indicates that a major metabolic pathway of 13-cis-retinoic acid in humans is oxidation at C4 of the cyclohexenyl group.

  12. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    PubMed

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-06-17

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  13. The chilean superfruit black-berry Aristotelia chilensis (Elaeocarpaceae), Maqui as mediator in inflammation-associated disorders.

    PubMed

    Cespedes, Carlos L; Pavon, Natalia; Dominguez, Mariana; Alarcon, Julio; Balbontin, Cristian; Kubo, Isao; El-Hafidi, Mohammed; Avila, Jose G

    2017-10-01

    The effects of phytochemicals occurred in fractions and extracts of fruits of "Maqui-berry" (Aristotelia chilensis), on the expression of cyclooxygenase-2 (COX-2), inducible-nitric oxide synthases (iNOS) and the production of proinflammatory mediators were investigated in lipopolysaccharide (LPS)-activated murine macrophage RAW-264 cells, as well as their antioxidant activities. The MeOH extract (A), acetone/methanol extract (B), fractions F3, F4, subfractions (SF4-SF6, SF7, SF8-SF10, SF11-SF15, SF16-SF20), quercetin, gallic acid, luteolin, myricetin, mixtures M1, M2 and M3 exhibited potent anti-inflammatory and antioxidant activities. The results indicated that anthocyanins, flavonoids and its mixtures suppressed the LPS induced production of nitric oxide (NO), through the down-regulation of iNOS and COX-2 protein expressions and showed a potent antioxidant activity against SOD, ABTS, TBARS, ORAC, FRAP and DCFH. The inhibition of enzymes and NO production by selected fractions and compounds was dose-dependent with significant effects seen at concentration as low as 1.0-50.0 (ppm) and 5.0-10.0 μM, for samples (extracts, fractions, subfractions and mixtures) and pure compounds, respectively. Thus, the phenolics (anthocyanins, flavonoids, and organic acids) as the fractions and mixtures may provide a potential therapeutic approach for inflammation associated disorders and therefore might be used as antagonizing agents to ameliorate the effects of oxidative stress. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice

    PubMed Central

    Sun, Rongli; Cao, Meng; Zhang, Juan; Yang, Wenwen; Wei, Haiyan; Meng, Xing; Yin, Lihong; Pu, Yuepu

    2016-01-01

    Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity. PMID:27809262

  15. Benzene Exposure Alters Expression of Enzymes Involved in Fatty Acid β-Oxidation in Male C3H/He Mice.

    PubMed

    Sun, Rongli; Cao, Meng; Zhang, Juan; Yang, Wenwen; Wei, Haiyan; Meng, Xing; Yin, Lihong; Pu, Yuepu

    2016-10-31

    Benzene is a well-known hematotoxic carcinogen that can cause leukemia and a variety of blood disorders. Our previous study indicated that benzene disturbs levels of metabolites in the fatty acid β-oxidation (FAO) pathway, which is crucial for the maintenance and function of hematopoietic and leukemic cells. The present research aims to investigate the effects of benzene on changes in the expression of key enzymes in the FAO pathway in male C3H/He mice. Results showed that benzene exposure caused reduced peripheral white blood cell (WBC), red blood cell (RBC), platelet (Pit) counts, and hemoglobin (Hgb) concentration. Investigation of the effects of benzene on the expression of FA transport- and β-oxidation-related enzymes showed that expression of proteins Cpt1a, Crat, Acaa2, Aldh1l2, Acadvl, Crot, Echs1, and Hadha was significantly increased. The ATP levels and mitochondrial membrane potential decreased in mice exposed to benzene. Meanwhile, reactive oxygen species (ROS), hydrogen peroxide (H₂O₂), and malondialdehyde (MDA) levels were significantly increased in the benzene group. Our results indicate that benzene induces increased expression of FA transport and β-oxidation enzymes, mitochondrial dysfunction, and oxidative stress, which may play a role in benzene-induced hematotoxicity.

  16. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases.

    PubMed

    Boynton, Tye O'Hara; Shimkets, Lawrence Joseph

    2015-09-15

    Myxococcus xanthus development requires CsgA, a member of the short-chain alcohol dehydrogenase (SCAD) family of proteins. We show that CsgA and SocA, a protein that can replace CsgA function in vivo, oxidize the 2'-OH glycerol moiety on cardiolipin and phosphatidylglycerol to produce diacylglycerol (DAG), dihydroxyacetone, and orthophosphate. A lipid extract enriched in DAGs from wild-type cells initiates development and lipid body production in a csgA mutant to bypass the mutational block. This novel phospholipase C-like reaction is widespread. SCADs that prevent neurodegenerative disorders, such as Drosophila Sniffer and human HSD10, oxidize cardiolipin with similar kinetic parameters. HSD10 exhibits a strong preference for cardiolipin with oxidized fatty acids. This activity is inhibited in the presence of the amyloid β peptide. Three HSD10 variants associated with neurodegenerative disorders are inactive with cardiolipin. We suggest that HSD10 protects humans from reactive oxygen species by removing damaged cardiolipin before it induces apoptosis. © 2015 Boynton and Shimkets; Published by Cold Spring Harbor Laboratory Press.

  17. Effects of intermittent fasting on age-related changes on Na,K-ATPase activity and oxidative status induced by lipopolysaccharide in rat hippocampus.

    PubMed

    Vasconcelos, Andrea Rodrigues; Kinoshita, Paula Fernanda; Yshii, Lidia Mitiko; Marques Orellana, Ana Maria; Böhmer, Ana Elisa; de Sá Lima, Larissa; Alves, Rosana; Andreotti, Diana Zukas; Marcourakis, Tania; Scavone, Cristoforo; Kawamoto, Elisa Mitiko

    2015-05-01

    Chronic neuroinflammation is a common characteristic of neurodegenerative diseases, and lipopolysaccharide (LPS) signaling is linked to glutamate-nitric oxide-Na,K-ATPase isoforms pathway in central nervous system (CNS) and also causes neuroinflammation. Intermittent fasting (IF) induces adaptive responses in the brain that can suppress inflammation, but the age-related effect of IF on LPS modulatory influence on nitric oxide-Na,K-ATPase isoforms is unknown. This work compared the effects of LPS on the activity of α1,α2,3 Na,K-ATPase, nitric oxide synthase gene expression and/or activity, cyclic guanosine monophosphate, 3-nitrotyrosine-containing proteins, and levels of thiobarbituric acid-reactive substances in CNS of young and older rats submitted to the IF protocol for 30 days. LPS induced an age-related effect in neuronal nitric oxide synthase activity, cyclic guanosine monophosphate, and levels of thiobarbituric acid-reactive substances in rat hippocampus that was linked to changes in α2,3-Na,K-ATPase activity, 3-nitrotyrosine proteins, and inducible nitric oxide synthase gene expression. IF induced adaptative cellular stress-response signaling pathways reverting LPS effects in rat hippocampus of young and older rats. The results suggest that IF in both ages would reduce the risk for deficits on brain function and neurodegenerative disorders linked to inflammatory response in the CNS. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Are oxidative stress markers useful to distinguish schizoaffective disorder from schizophrenia and bipolar disorder?

    PubMed

    Bulbul, Feridun; Virit, Osman; Alpak, Gokay; Unal, Ahmet; Bulut, Mahmut; Kaya, Mehmet Cemal; Altindag, Abdurrahman; Celik, Hakim; Savas, Haluk A

    2014-04-01

    Schizoaffective disorder is a disease with both affective and psychotic symptoms. In this study, we aimed to compare oxidative metabolism markers of schizoaffective disorder, bipolar disorder and schizophrenic patients. Furthermore, we also aimed to investigate whether schizoaffective disorder could be differentiated from schizophrenia and bipolar disorder in terms of oxidative metabolism. Total oxidant status (TOS) and total antioxidant status (TAS) were measured in the blood samples that were collected from schizoaffective patients (n = 30), bipolar disorder patients (n = 30) and schizophrenic patients (n = 30). Oxidative stress index (OSI) was calculated by dividing TOS by TAS. TOS and OSI were found to be higher in patients with schizoaffective disorder compared with those in schizophrenia and bipolar disorder patients. TAS was not significantly different between the groups. Schizoaffective disorder was found to be different from bipolar disorder and schizophrenia in terms of oxidative parameters. This result may indicate that schizoaffective disorder could differ from bipolar disorder and schizophrenia in terms of biochemical parameters. Increased TOS levels observed in schizoaffective disorder may suggest poor clinical course and may be an indicator of poor prognosis.

  19. Ligand complex structures of l-amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 and its conformational change.

    PubMed

    Im, Dohyun; Matsui, Daisuke; Arakawa, Takatoshi; Isobe, Kimiyasu; Asano, Yasuhisa; Fushinobu, Shinya

    2018-03-01

    l-Amino acid oxidase/monooxygenase from Pseudomonas sp. AIU 813 (l-AAO/MOG) catalyzes both the oxidative deamination and oxidative decarboxylation of the α-group of l-Lys to produce a keto acid and amide, respectively. l-AAO/MOG exhibits limited specificity for l-amino acid substrates with a basic side chain. We previously determined its ligand-free crystal structure and identified a key residue for maintaining the dual activities. Here, we determined the structures of l-AAO/MOG complexed with l-Lys, l-ornithine, and l-Arg and revealed its substrate recognition. Asp238 is located at the ceiling of a long hydrophobic pocket and forms a strong interaction with the terminal, positively charged group of the substrates. A mutational analysis on the D238A mutant indicated that the interaction is critical for substrate binding but not for catalytic control between the oxidase/monooxygenase activities. The catalytic activities of the D238E mutant unexpectedly increased, while the D238F mutant exhibited altered substrate specificity to long hydrophobic substrates. In the ligand-free structure, there are two channels connecting the active site and solvent, and a short region located at the dimer interface is disordered. In the l-Lys complex structure, a loop region is displaced to plug the channels. Moreover, the disordered region in the ligand-free structure forms a short helix in the substrate complex structures and creates the second binding site for the substrate. It is assumed that the amino acid substrate enters the active site of l-AAO/MOG through this route. The atomic coordinates and structure factors (codes 5YB6, 5YB7, and 5YB8) have been deposited in the Protein Data Bank (http://wwpdb.org/). 1.4.3.2 (l-amino acid oxidase), 1.13.12.2 (lysine 2-monooxygenase).

  20. Attenuation of Oxidative Damage by Boerhaavia diffusa L. Against Different Neurotoxic Agents in Rat Brain Homogenate.

    PubMed

    Ayyappan, Prathapan; Palayyan, Salin Raj; Kozhiparambil Gopalan, Raghu

    2016-01-01

    Due to a high rate of oxidative metabolic activity in the brain, intense production of reactive oxygen metabolite occurs, and the subsequent generation of free radicals is implicated in the pathogenesis of traumatic brain injury, epilepsy, and ischemia as well as chronic neurodegenerative diseases. In the present study, protective effects of polyphenol rich ethanolic extract of Boerhaavia diffusa (BDE), a neuroprotective edible medicinal plant against oxidative stress induced by different neurotoxic agents, were evaluated. BDE was tested against quinolinic acid (QA), 3-nitropropionic acid (NPA), sodium nitroprusside (SNP), and Fe (II)/EDTA complex induced oxidative stress in rat brain homogenates. QA, NPA, SNP, and Fe (II)/EDTA treatment caused an increased level of thiobarbituric acid reactive substances (TBARS) in brain homogenates along with a decline in the activities of antioxidant enzymes. BDE treatment significantly decreased the production of TBARS (p < .05) and increased the activities of antioxidant enzymes like catalase and superoxide dismutase along with increased concentration of non-enzymatic antioxidant, reduced glutathione (GSH). Similarly, BDE caused a significant decrease in the lipid peroxidation (LPO) in the cerebral cortex. Inhibitory potential of BDE against deoxyribose degradation (IC50 value 38.91 ± 0.12 μg/ml) shows that BDE can protect hydroxyl radical induced DNA damage in the tissues. Therefore, B. diffusa had high antioxidant potential that could inhibit the oxidative stress induced by different neurotoxic agents in brain. Since many of the neurological disorders are associated with free radical injury, these data may imply that B. diffusa, functioning as an antioxidant agent, may be beneficial for reducing various neurodegenerative complications.

  1. Control mechanisms in mitochondrial oxidative phosphorylation☆

    PubMed Central

    Hroudová, Jana; Fišar, Zdeněk

    2013-01-01

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5’- triphosphate production is regulated by many control mechanism–firstly by oxygen, substrate level, adenosine-5’-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by “second control mechanisms,” such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5’-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production. PMID:25206677

  2. Control mechanisms in mitochondrial oxidative phosphorylation.

    PubMed

    Hroudová, Jana; Fišar, Zdeněk

    2013-02-05

    Distribution and activity of mitochondria are key factors in neuronal development, synaptic plasticity and axogenesis. The majority of energy sources, necessary for cellular functions, originate from oxidative phosphorylation located in the inner mitochondrial membrane. The adenosine-5'- triphosphate production is regulated by many control mechanism-firstly by oxygen, substrate level, adenosine-5'-diphosphate level, mitochondrial membrane potential, and rate of coupling and proton leak. Recently, these mechanisms have been implemented by "second control mechanisms," such as reversible phosphorylation of the tricarboxylic acid cycle enzymes and electron transport chain complexes, allosteric inhibition of cytochrome c oxidase, thyroid hormones, effects of fatty acids and uncoupling proteins. Impaired function of mitochondria is implicated in many diseases ranging from mitochondrial myopathies to bipolar disorder and schizophrenia. Mitochondrial dysfunctions are usually related to the ability of mitochondria to generate adenosine-5'-triphosphate in response to energy demands. Large amounts of reactive oxygen species are released by defective mitochondria, similarly, decline of antioxidative enzyme activities (e.g. in the elderly) enhances reactive oxygen species production. We reviewed data concerning neuroplasticity, physiology, and control of mitochondrial oxidative phosphorylation and reactive oxygen species production.

  3. MRI-visual order-disorder micellar nanostructures for smart cancer theranostics.

    PubMed

    Patra, Hirak K; Ul Khaliq, Nisar; Romu, Thobias; Wiechec, Emilia; Borga, Magnus; Turner, Anthony P F; Tiwari, Ashutosh

    2014-04-01

    The development of MRI-visual order-disorder structures for cancer nanomedicine explores a pH-triggered mechanism for theragnosis of tumor hallmark functions. Superparamagnetic iron oxide nanoparticles (SPIONs) stabilized with amphiphilic poly(styrene)-b-poly(acrylic acid)-doxorubicin with folic acid (FA) surfacing are employed as a multi-functional approach to specifically target, diagnose, and deliver drugs via a single nanoscopic platform for cancer therapy. The functional aspects of the micellar nanocomposite is investigated in vitro using human breast SkBr3 and colon cancer HCT116 cell lines for the delivery, release, localization, and anticancer activity of the drug. For the first time, concentration-dependent T2 -weighted MRI contrast for a monolayer of clustered cancer cells is shown. The pH tunable order-disorder transition of the core-shell structure induces the relative changes in MRI contrast. The outcomes elucidate the potential of this material for smart cancer theranostics by delivering non-invasive real-time diagnosis, targeted therapy, and monitoring the course and response of the action before, during, and after the treatment regimen. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes.

    PubMed

    Valvassori, Samira S; Bavaresco, Daniela V; Feier, Gustavo; Cechinel-Recco, Kelen; Steckert, Amanda V; Varela, Roger B; Borges, Cenita; Carvalho-Silva, Milena; Gomes, Lara M; Streck, Emílio L; Quevedo, João

    2018-06-01

    The present study aims to investigate the oxidative stress parameters in isolated mitochondria, as well as looking at mitochondrial complex activity in patients with Bipolar Disorder (BD) during depressive or euthymic episodes. This study evaluated the levels of mitochondrial complex (I, II, II-III and IV) activity in lymphocytes from BD patients. We evaluated the following oxidative stress parameters: superoxide, thiobarbituric acid reactive species (TBARS) and carbonyl levels in submitochondrial particles of lymphocytes from bipolar patients. 51 bipolar patients were recruited into this study: 34 in the euthymic phase, and 17 in the depressive phase. Our results indicated that the depressive phase could increase the levels of mitochondrial superoxide, carbonyl and TBARS, and superoxide dismutase, and could decrease the levels of mitochondrial complex II activity in the lymphocytes of bipolar patients. It was also observed that there was a negative correlation between the Hamilton Depression Rating Scale (HDRS) and complex II activity in the lymphocytes of depressive bipolar patients. In addition, there was a positive correlation between HDRS and superoxide, superoxide dismutase, TBARS and carbonyl. Additionally, there was a negative correlation between complex II activity and oxidative stress parameters. In conclusion, our results suggest that mitochondrial oxidative stress and mitochondrial complex II dysfunction play important roles in the depressive phase of BD. Copyright © 2018. Published by Elsevier B.V.

  5. Oocyte developmental failure in response to elevated nonesterified fatty acid concentrations: mechanistic insights.

    PubMed

    Van Hoeck, V; Leroy, J L M R; Arias Alvarez, M; Rizos, D; Gutierrez-Adan, A; Schnorbusch, K; Bols, P E J; Leese, H J; Sturmey, R G

    2013-01-01

    Elevated plasma nonesterified fatty acid (NEFA) concentrations are associated with negative energy balance and metabolic disorders such as obesity and type II diabetes. Such increased plasma NEFA concentrations induce changes in the microenvironment of the ovarian follicle, which can compromise oocyte competence. Exposing oocytes to elevated NEFA concentrations during maturation affects the gene expression and phenotype of the subsequent embryo, notably prompting a disrupted oxidative metabolism. We hypothesized that these changes in the embryo are a consequence of modified energy metabolism in the oocyte. To investigate this, bovine cumulus oocyte complexes were matured under elevated NEFA conditions, and energy metabolism-related gene expression, mitochondrial function, and ultrastructure evaluated. It was found that expression of genes related to REDOX maintenance was modified in NEFA-exposed oocytes, cumulus cells, and resultant blastocysts. Moreover, the expression of genes related to fatty acid synthesis in embryos that developed from NEFA-exposed oocytes was upregulated. From a functional perspective, inhibition of fatty acid β-oxidation in maturing oocytes exposed to elevated NEFA concentrations restored developmental competence. There were no clear differences in mitochondrial morphology or oxygen consumption between treatments, although there was a trend for a higher mitochondrial membrane potential in zygotes derived from NEFA-exposed oocytes. These data show that the degree of mitochondrial fatty acid β-oxidation has a decisive impact on the development of NEFA-exposed oocytes. Furthermore, the gene expression data suggest that the resulting embryos adapt through altered metabolic strategies, which might explain the aberrant energy metabolism previously observed in these embryos originating from NEFA-exposed maturing oocytes.

  6. Effect of astaxanthin in combination with alpha-tocopherol or ascorbic acid against oxidative damage in diabetic ODS rats.

    PubMed

    Nakano, Masako; Onodera, Aya; Saito, Emi; Tanabe, Miyako; Yajima, Kazue; Takahashi, Jiro; Nguyen, Van Chuyen

    2008-08-01

    The present study was performed to investigate the effect of astaxanthin in combination with other antioxidants against oxidative damage in streptozotocin (STZ)-induced diabetic Osteogenic Disorder Shionogi (ODS) rats. Diabetic-ODS rats were divided into five groups: control, astaxanthin, ascorbic acid, alpha-tocopherol, and tocotrienol. Each of the four experimental groups was administered a diet containing astaxanthin (0.1 g/kg), in combination with ascorbic acid (3.0 g/kg), alpha-tocopherol (0.1 g/kg), or tocotrienol (0.1 g/kg) for 20 wk. The effects of astaxanthin with other antioxidants on lipid peroxidation, urinary 8-hydroxy-2-deoxyguanosine (8-OHdG) excretion, serum creatinine (Cr) level, creatinine clearance (Ccr), and urinary protein content were assessed. The serum lipid peroxide levels and chemiluminescent (CL) intensity in the liver of the alpha-tocopherol and tocotrienol groups were significantly reduced in comparison to that of the control group. In the alpha-tocopherol group, urinary 8-OHdG excretion, serum Cr level, Ccr, urinary albumin excretion, and urinary protein concentration were significantly decreased as compared with those in the control group. Additionally, the CL intensity in the kidney of the alpha-tocopherol group was significantly lower, but that of the ascorbic acid group was significantly higher than that in the control group. These results indicate that dietary astaxanthin in combination with alpha-tocopherol has an inhibitory effect on oxidative stress. On the other hand, our study suggests that excessive ascorbic acid intake increases lipid peroxidation in diabetic rats.

  7. Dietary fats and F2-isoprostanes: A review of the clinical evidence.

    PubMed

    Da Silva, Marine S; Bilodeau, Jean-François; Julien, Pierre; Rudkowska, Iwona

    2017-12-12

    Evidence supports that a high dietary fat intake increases oxidative stress and the risk of diet-induced metabolic disorders such as obesity, diabetes and cardiovascular diseases. F 2 -isoprostanes (F 2 -isoP) are formed by the non-enzymatic oxidation of arachidonic acid and are widely used as reliable biomarkers of oxidative stress in clinical studies. Dietary fats may influence F 2 -isoP levels, as they (1) are metabolic substrates for their formation, (2) modify the lipid composition of tissues, and (3) affect the plasma lipoprotein concentrations which are involved in F 2 -isoP transport. This review examined the latest clinical evidence on how dietary fats can affect blood circulation and excretion of F 2 -isoP in individuals with healthy or deteriorated metabolic profiles. Clinical studies reported that saturated or monounsaturated fat-rich diets did not affect F 2 -isoP levels in adults with healthy or deteriorated metabolic profiles. Though, ω-3 polyunsaturated fatty acids decreased F 2 -isoP levels in numerous studies, whereas trans-fatty acids raised F 2 -isoP excretion. Yet, the reported heterogeneous results reveal important considerations, such as the health status of the participants, the biological fluids used to determine F 2 -isoP, the analytical methods employed and the specific F 2 -isoP isomers detected. Therefore, future clinical studies should be designed in order to consider these issues in the studies of the effects of fat intake on oxidative stress.

  8. Cell-permeable, mitochondrial-targeted, peptide antioxidants.

    PubMed

    Szeto, Hazel H

    2006-04-21

    Cellular oxidative injury has been implicated in aging and a wide array of clinical disorders including ischemia-reperfusion injury; neurodegenerative diseases; diabetes; inflammatory diseases such as atherosclerosis, arthritis, and hepatitis; and drug-induced toxicity. However, available antioxidants have not proven to be particularly effective against many of these disorders. A possibility is that some of the antioxidants do not reach the relevant sites of free radical generation, especially if mitochondria are the primary source of reactive oxygen species (ROS). The SS (Szeto-Schiller) peptide antioxidants represent a novel approach with targeted delivery of antioxidants to the inner mitochondrial membrane. The structural motif of these SS peptides centers on alternating aromatic residues and basic amino acids (aromatic-cationic peptides). These SS peptides can scavenge hydrogen peroxide and peroxynitrite and inhibit lipid peroxidation. Their antioxidant action can be attributed to the tyrosine or dimethyltyrosine residue. By reducing mitochondrial ROS, these peptides inhibit mitochondrial permeability transition and cytochrome c release, thus preventing oxidant-induced cell death. Because these peptides concentrate >1000-fold in the inner mitochondrial membrane, they prevent oxidative cell death with EC50 in the nM range. Preclinical studies support their potential use for ischemia-reperfusion injury and neurodegenerative disorders. Although peptides have often been considered to be poor drug candidates, these small peptides have excellent "druggable" properties, making them promising agents for many diseases with unmet needs.

  9. Effect of (+)-usnic acid on mitochondrial functions as measured by mitochondria-specific oligonucleotide microarray in liver of B6C3F1 mice.

    PubMed

    Joseph, Ajay; Lee, Taewon; Moland, Carrie L; Branham, William S; Fuscoe, James C; Leakey, Julian E A; Allaben, William T; Lewis, Sherry M; Ali, Akhtar A; Desai, Varsha G

    2009-04-01

    Usnic acid is a lichen metabolite used as a weight-loss dietary supplement due to its uncoupling action on mitochondria. However, its use has been associated with severe liver disorders in some individuals. Animal studies conducted thus far evaluated the effects of usnic acid on mitochondria primarily by measuring the rate of oxygen consumption and/or ATP generation. To obtain further insight into usnic acid-mediated effects on mitochondria, we examined the expression levels of 542 genes associated with mitochondrial structure and functions in liver of B6C3F(1) female mice using a mitochondria-specific microarray. Beginning at 8 weeks of age, mice received usnic acid at 0, 60, 180, and 600 ppm in ground, irradiated 5LG6 diet for 14 days. Microarray analysis showed a significant effect of usnic acid on the expression of several genes only at the highest dose of 600 ppm. A prominent finding of the study was a significant induction of genes associated with complexes I through IV of the electron transport chain. Moreover, several genes involved in fatty acid oxidation, the Krebs cycle, apoptosis, and membrane transporters were over-expressed. Usnic acid is a lipophilic weak acid that can diffuse through mitochondrial membranes and cause a proton leak (uncoupling). The up-regulation of complexes I-IV may be a compensatory mechanism to maintain the proton gradient across the mitochondrial inner membrane. In addition, induction of fatty acid oxidation and the Krebs cycle may be an adaptive response to uncoupling of mitochondria.

  10. The effects of anesthetic agents on oxidative stress

    NASA Astrophysics Data System (ADS)

    Yakan, Selvinaz; Düzgüner, Vesile

    2016-04-01

    Oxidative stress can be defined as the instability between antioxidant defense of the body and the production of free radical that causes peroxydation on the lipid layer. Free radicals are reactive oxygen species that are produced in the course of normal metabolisms of aerobe organisms and they may cause disorders in cell structure and organelles by interacting macromolecules, like lipid, protein, nucleic acids. Therefore, they may cause cardiovascular, immune system, liver, kidney illnesses and many other illnesses like cancer, aging, cataract, diabetes. It is known that many drugs used for the purpose of anesthetizing may cause lipid peroxidation in organism. For these reasons, determining the Oxidative stress index of anaesthetic stress chosen in the ones that are exposed to long term anaesthetic agents and anaesthesia appliccations, is so substantial.

  11. Placebo neural systems: nitric oxide, morphine and the dopamine brain reward and motivation circuitries.

    PubMed

    Fricchione, Gregory; Stefano, George B

    2005-05-01

    Evidence suggests that the placebo response is related to the tonic effects of constitutive nitric oxide in neural, vascular and immune tissues. Constitutive nitric oxide levels play a role in the modulation of dopamine outflow in the nigrostriatal movement and the mesolimbic and mesocortical reward and motivation circuitries. Endogenous morphine, which stimulates constitutive nitric oxide, may be an important signal molecule working at mu receptors on gamma aminobutyric acid B interneurons to disinhibit nigral and tegmental dopamine output. We surmise that placebo induced belief will activate the prefrontal cortex with downstream stimulatory effects on these dopamine systems as well as on periaqueductal grey opioid output neurons. Placebo responses in Parkinson's disease, depression and pain disorder may result. In addition, mesolimbic/mesocortical control of the stress response systems may provide a way for the placebo response to benefit other medical conditions.

  12. Detection and Quantification of Free Radicals in Peroxisomal Disorders: A Comparative Study with Oxidative Stress Parameters.

    PubMed

    Abd-Elmaksoud, Sohair Abd-El Mawgood; El-Bassyouni, Hala; Afifi, Hanan; Thomas, Manal Micheal; Ibrahim, Alshaymaa Ahmed; Shalaby, Aliaa; Hamid, Tamer Ahmed Abdel; Hamid, Nehal Abdel; El-Ghobary, Hany

    2015-11-01

    Free radicals have been thought to participate in pathogenesis of peroxisomal disorders. The aim of the work is to detect free oxide radicals in blood of patients with peroxisomal disorders and to study their relation with various oxidative stress parameters. Twenty patients with peroxisomal disorders and 14 age and sex matched healthy subjects were included in the study. Patients with peroxisomal disorders were subdivided according to diagnosis into peroxisomal biogenesis disorders and single enzyme deficiency. Oxidative stress was evaluated in both patients and control subjects by assessment of free radicals, malondialdehyde, nitric oxide metabolites and superoxide dismutase. There was increase in free radicals, malondialdehyde, nitric oxide metabolites in patients compared with control subjects. However, there was decrease in superoxide dismutase levels in patients compared with control subjects. We concluded that there is excess free radicals production accompanied with decrease in antioxidant defenses in patients with peroxisomal disorders. These results strongly support a role of free radicals in the pathophysiology of peroxisomal disorders and strengthen the importance of oxidative stress phenomenon in peroxisomal disorders pathogenesis.

  13. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index

    PubMed Central

    CİNGİ YİRÜN, Merve; ÜNAL, Kübranur; ALTUNSOY ŞEN, Neslihan; YİRÜN, Onur; AYDEMİR, Çiğdem; GÖKA, Erol

    2016-01-01

    Introduction Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). Methods The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Results Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. Conclusion To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed. PMID:28373794

  14. Evaluation of Oxidative Stress in Bipolar Disorder in terms of Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index.

    PubMed

    Cingi Yirün, Merve; Ünal, Kübranur; Altunsoy Şen, Neslihan; Yirün, Onur; Aydemir, Çiğdem; Göka, Erol

    2016-09-01

    Bipolar disorder is one of the most debilitating psychiatric disorders characterized by disruptive episodes of mania/hypomania and depression. Considering the complex role of biological and environmental factors in the etiology of affective disorders, recent studies have focused on oxidative stress, which may damage nerve cell components and take part in pathophysiology. The aim of the present study was to contribute to the data about oxidative stress in bipolar disorder by detecting the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) levels of manic episode (ME) and euthymic (EU) patients and by comparing these results with those of healthy controls (HCs). The study population consisted of 28 EU outpatients meeting the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria for bipolar disorder I and 23 inpatients who were currently hospitalized in a psychiatry ward with the diagnosis of the bipolar disorder ME according to the DSM-5 criteria. Forty-three healthy subjects were included in the study as the control group (HC). Serum TAS, TOS, and OSI levels of all the participants were determined. Statistical analysis of serum TAS, TOS, and OSI levels did not show any significant differences between the ME patients, EU patients, and HCs. Comparison between the bipolar disorder patients (ME+EU) and HC also did not reveal any statistically significant difference between these two groups in terms of serum TAS, TOS, and OSI levels. To date, studies on oxidative stress in bipolar disorder have led to controversial results. In the present study, no statistically significant difference was detected between the oxidative parameters of bipolar disorder patients and HCs. In order to comprehensively evaluate oxidative stress in bipolar disorder, further studies are needed.

  15. Riboflavin Responsive Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Udhayabanu, Tamilarasan; Manole, Andreea; Rajeshwari, Mohan; Varalakshmi, Perumal; Houlden, Henry; Ashokkumar, Balasubramaniem

    2017-01-01

    Mitochondria are the repository for various metabolites involved in diverse energy-generating processes, like the TCA cycle, oxidative phosphorylation, and metabolism of amino acids, fatty acids, and nucleotides, which rely significantly on flavoenzymes, such as oxidases, reductases, and dehydrogenases. Flavoenzymes are functionally dependent on biologically active flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN), which are derived from the dietary component riboflavin, a water soluble vitamin. Riboflavin regulates the structure and function of flavoenzymes through its cofactors FMN and FAD and, thus, protects the cells from oxidative stress and apoptosis. Hence, it is not surprising that any disturbance in riboflavin metabolism and absorption of this vitamin may have consequences on cellular FAD and FMN levels, resulting in mitochondrial dysfunction by reduced energy levels, leading to riboflavin associated disorders, like cataracts, neurodegenerative and cardiovascular diseases, etc. Furthermore, mutations in either nuclear or mitochondrial DNA encoding for flavoenzymes and flavin transporters significantly contribute to the development of various neurological disorders. Moreover, recent studies have evidenced that riboflavin supplementation remarkably improved the clinical symptoms, as well as the biochemical abnormalities, in patients with neuronopathies, like Brown-Vialetto-Van-Laere syndrome (BVVLS) and Fazio-Londe disease. This review presents an updated outlook on the cellular and molecular mechanisms of neurodegenerative disorders in which riboflavin deficiency leads to dysfunction in mitochondrial energy metabolism, and also highlights the significance of riboflavin supplementation in aforementioned disease conditions. Thus, the outcome of this critical assessment may exemplify a new avenue to enhance the understanding of possible mechanisms in the progression of neurodegenerative diseases and may provide new rational approaches of disease surveillance and treatment. PMID:28475111

  16. Novel catalase loaded nanocores for the treatment of inflammatory bowel diseases.

    PubMed

    Parihar, Arun K S; Srivastava, Shikha; Patel, Satish; Singh, Manju R; Singh, Deependra

    2017-08-01

    Inflammatory bowel disease (IBD) is an inflammatory disorder of the digestive tract reported to be primarily caused by oxidative stress. In this study, alginate encapsulated nanoceramic carriers were designed to deliver acid labile antioxidant enzyme catalase orally. Complete system was characterized for size, loading efficiency, in vitro antioxidant assay and in vitro release. The prepared nanoceramic system was found to be spherical with diameter of 925 ± 6.81 nm. The in vitro release data followed the Higuchi model in acidic buffer whereas in alkaline pH sustained and almost first order release of enzyme was observed up to 6 h.

  17. Multi-Tissue Computational Modeling Analyzes Pathophysiology of Type 2 Diabetes in MKR Mice

    PubMed Central

    Kumar, Amit; Harrelson, Thomas; Lewis, Nathan E.; Gallagher, Emily J.; LeRoith, Derek; Shiloach, Joseph; Betenbaugh, Michael J.

    2014-01-01

    Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective. PMID:25029527

  18. 4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

    PubMed

    Liu, Liangming; Wu, Huiling; Zang, JiaTao; Yang, Guangming; Zhu, Yu; Wu, Yue; Chen, Xiangyun; Lan, Dan; Li, Tao

    2016-08-01

    Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Laboratory investigation. State Key Laboratory of Trauma, Burns and Combined Injury. Sprague-Dawley rats. Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stress-mediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-κB, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to septic shock. This beneficial effect of 4-phenylbutyric acid is closely related to the inhibition of endoplasmic reticulum stress-mediated oxidative stress, apoptosis, and cytokine release. This finding provides a potential therapeutic measure for clinical critical conditions, such as severe sepsis.

  19. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice.

    PubMed

    Farr, Susan A; Poon, H Fai; Dogrukol-Ak, Dilek; Drake, Jeniffer; Banks, William A; Eyerman, Edward; Butterfield, D Allan; Morley, John E

    2003-03-01

    Oxidative stress may play a crucial role in age-related neurodegenerative disorders. Here, we examined the ability of two antioxidants, alpha-lipoic acid (LA) and N-acetylcysteine (NAC), to reverse the cognitive deficits found in the SAMP8 mouse. By 12 months of age, this strain develops elevated levels of Abeta and severe deficits in learning and memory. We found that 12-month-old SAMP8 mice, in comparison with 4-month-old mice, had increased levels of protein carbonyls (an index of protein oxidation), increased TBARS (an index of lipid peroxidation) and a decrease in the weakly immobilized/strongly immobilized (W/S) ratio of the protein-specific spin label MAL-6 (an index of oxidation-induced conformational changes in synaptosomal membrane proteins). Chronic administration of either LA or NAC improved cognition of 12-month-old SAMP8 mice in both the T-maze footshock avoidance paradigm and the lever press appetitive task without inducing non-specific effects on motor activity, motivation to avoid shock, or body weight. These effects probably occurred directly within the brain, as NAC crossed the blood-brain barrier and accumulated in the brain. Furthermore, treatment of 12-month-old SAMP8 mice with LA reversed all three indexes of oxidative stress. These results support the hypothesis that oxidative stress can lead to cognitive dysfunction and provide evidence for a therapeutic role for antioxidants.

  20. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation.

    PubMed

    Tung, Yu-Tang; Chen, Hsiao-Ling; Wu, Hsin-Shan; Ho, Mei-Hsuan; Chong, Kowit-Yu; Chen, Chuan-Mu

    2018-02-01

    Obesity has reached epidemic proportions worldwide. Obesity is a complex metabolic disorder that is linked to numerous serious health complications with high morbidity. The present study evaluated the effects of kefir peptides on high fat diet (HFD)-induced obesity in rats. Kefir peptides markedly improved obesity, including body weight gain, inflammatory reactions and the formation of adipose tissue fat deposits around the epididymis and kidney, and adipocyte size. Treating high fat diet (HFD)-induced obese rats with kefir peptides significantly reduced the fatty acid synthase protein and increased the p-acetyl-CoA carboxylase protein to block lipogenesis in the livers. Kefir peptides also increased fatty acid oxidation by increasing the protein expressions of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the livers. In addition, administration of kefir peptides significantly decreased the inflammatory response (TNF-α, IL-1β, and TGF-β) to modulate oxidative damage. These results demonstrate that kefir peptides treatment improves obesity via inhibition of lipogenesis, modulation of oxidative damage, and stimulation of lipid oxidation. Therefore, kefir peptides may act as an anti-obesity agent to prevent body fat accumulation and obesity-related metabolic diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Oxidative stress markers imbalance in late-life depression.

    PubMed

    Diniz, Breno S; Mendes-Silva, Ana Paula; Silva, Lucelia Barroso; Bertola, Laiss; Vieira, Monica Costa; Ferreira, Jessica Diniz; Nicolau, Mariana; Bristot, Giovana; da Rosa, Eduarda Dias; Teixeira, Antonio L; Kapczinski, Flavio

    2018-03-20

    Oxidative stress has been implicated in the pathophysiology of mood disorders in young adults. However, there is few data to support its role in the elderly. The primary aim of this study was to evaluate whether subjects with late-life depression (LLD) presented with changes in oxidative stress response in comparison with the non-depressed control group. We then explored how oxidative stress markers associated with specific features of LLD, in particular cognitive performance and age of onset of major depressive disorder in these individuals. We included a convenience sample of 124 individuals, 77 with LLD and 47 non-depressed subjects (Controls). We measure the plasma levels of 6 oxidative stress markers: thiobarbituric acid reactive substances (TBARS), protein carbonil content (PCC), free 8-isoprostane, glutathione peroxidase (GPx) activity, glutathione reductase (GR) activity, and glutathione S-transferase (GST) activity. We found that participants with LLD had significantly higher free 8-isoprostane levels (p = 0.003) and lower glutathione peroxidase activity (p = 0.006) compared to controls. Free 8-isoprostane levels were also significantly correlated with worse scores in the initiation/perseverance (r = -0.24, p = 0.01), conceptualization (r = -0.22, p = 0.02) sub-scores, and the total scores (r = -0.21, p = 0.04) on the DRS. Our study provides robust evidence of the imbalance between oxidative stress damage, in particular lipid peroxidation, and anti-oxidative defenses as a mechanism related to LLD, and cognitive impairment in this population. Interventions aiming to reduce oxidative stress damage can have a potential neuroprotective effect for LLD subjects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. PHARMACOLOGIC SUPPRESSION OF OXIDATIVE DAMAGE AND DENDRITIC DEGENERATION FOLLOWING KAINIC ACID-INDUCED EXCITOTOXICITY IN MOUSE CEREBRUM

    PubMed Central

    Zaja-Milatovic, Snjezana; Gupta, Ramesh C.; Aschner, Michael; Montine, Thomas J.; Milatovic, Dejan

    2008-01-01

    Intense seizure activity associated with status epilepticus and excitatory amino acid (EAA) imbalance initiates oxidative damage and neuronal injury in CA1 of the ventral hippocampus. We tested the hypothesis that dendritic degeneration of pyramidal neurons in the CA1 hippocampal area resulting from seizure-induced neurotoxicity is modulated by cerebral oxidative damage. Kainic acid (KA, 1 nmol/5 μl) was injected intracerebroventricularly to C57Bl/6 mice. F2-isoprostanes (F2-IsoPs) and F4-neuroprostanes (F4-NeuroPs) were used as surrogate measures of in vivo oxidative stress and biomarkers of lipid peroxidation. Nitric oxide synthase (NOS) activity was quantified by evaluating citrulline level and pyramidal neuron dendrites and spines were evaluated using rapid Golgi stains and a Neurolucida system. KA produced severe seizures in mice immediately after its administration and a significant (p<0.001) increase in F2-IsoPs, F4-NeuroPs and citrulline levels were seen 30 min following treatment. At the same time, hippocampal pyramidal neurons showed significant (p<0.001) reduction in dendritic length and spine density. In contrast, no significant change in neuronal dendrite and spine density or F2-IsoP, F4-NeuroPs and citrulline levels were found in mice pretreated with Vitamin E (α-tocopherol, 100 mg/kg, ip) for 3 days, or with N-tert-butyl-α-phenylnitrone (PBN, 200 mg/kg, ip) or ibuprofen (inhibitors of cyclooxygenase, COX, 14 μg/ml of drinking water) for 2 weeks prior to KA treatment. These findings indicate novel interactions among free radical-induced generation of F2-IsoPs and F4-NeuroPs, nitric oxide and dendritic degeneration, closely associate oxidative damage to neuronal membranes with degeneration of the dendritic system, and point to possible interventions to limit severe damage in acute neurological disorders. PMID:18556069

  3. Acute fatal metabolic complications in alkaptonuria.

    PubMed

    Davison, A S; Milan, A M; Gallagher, J A; Ranganath, L R

    2016-03-01

    Alkaptonuria (AKU) is a rare inherited metabolic disorder of tyrosine metabolism that results from a defect in an enzyme called homogentisate 1,2-dioxygenase. The result of this is that homogentisic acid (HGA) accumulates in the body. HGA is central to the pathophysiology of this disease and the consequences observed; these include spondyloarthropathy, rupture of ligaments/muscle/tendons, valvular heart disease including aortic stenosis and renal stones. While AKU is considered to be a chronic progressive disorder, it is clear from published case reports that fatal acute metabolic complications can also occur. These include oxidative haemolysis and methaemoglobinaemia. The exact mechanisms underlying the latter are not clear, but it is proposed that disordered metabolism within the red blood cell is responsible for favouring a pro-oxidant environment that leads to the life threatening complications observed. Herein the role of red blood cell in maintaining the redox state of the body is reviewed in the context of AKU. In addition previously reported therapeutic strategies are discussed, specifically with respect to why reported treatments had little therapeutic effect. The potential use of nitisinone for the management of patients suffering from the acute metabolic decompensation in AKU is proposed as an alternative strategy.

  4. Proteomics analysis of human placenta reveals glutathione metabolism dysfunction as the underlying pathogenesis for preeclampsia.

    PubMed

    Jin, Xiaohan; Xu, Zhongwei; Cao, Jin; Shao, Ping; Zhou, Maobin; Qin, Zhe; Liu, Yan; Yu, Fang; Zhou, Xin; Ji, Wenjie; Cai, Wei; Ma, Yongqiang; Wang, Chengyan; Shan, Nana; Yang, Ning; Chen, Xu; Li, Yuming

    2017-09-01

    Hypertensive disorder in pregnancy (HDP) refers to a series of diseases that cause the hypertension during pregnancy, including HDP, preeclampsia (PE) and eclampsia. This study screens differentially expressed proteins of placenta tissues in PE cases using 2D LC-MS/MS quantitative proteomics strategy. A total of 2281 proteins are quantified, of these, 145 altering expression proteins are successfully screened between PE and control cases (p<0.05). Bioinformatics analysis suggests that these proteins are mainly involved in many biological processes, such as oxidation reduction, mitochondrion organization, and acute inflammatory response. Especially, the glutamine metabolic process related molecules, GPX1, GPX3, SMS, GGCT, GSTK1, NFκB, GSTT2, SOD1 and GCLM, are involved in the switching process from oxidized glutathione (GSSG) conversion to the reduced glutathione (GSH) by glutathione, mercapturic acid and arginine metabolism process. Results of this study revealed that glutathione metabolism disorder of placenta tissues may contribute to the occurrence of PE disease. Copyright © 2017. Published by Elsevier B.V.

  5. Ratio of serum levels of AGEs to soluble RAGE is correlated with trimethylamine-N-oxide in non-diabetic subjects.

    PubMed

    Tahara, Atsuko; Tahara, Nobuhiro; Yamagishi, Sho-Ichi; Honda, Akihiro; Igata, Sachiyo; Nitta, Yoshikazu; Bekki, Munehisa; Nakamura, Tomohisa; Sugiyama, Yoichi; Sun, Jiahui; Takeuchi, Masayoshi; Shimizu, Makiko; Yamazaki, Hiroshi; Fukami, Kei; Fukumoto, Yoshihiro

    2017-12-01

    Trimethylamine (TMA), an intestinal microflora-dependent metabolite formed from phosphatidylcholine- and L-carnitine-rich food, such as red meat, is further converted to trimethylamine-N-oxide (TMAO), which could play a role in cardiometabolic disease. Red meat-derived products are one of the major environmental sources of advanced glycation end products (AGEs) that may also contribute to the pathogenesis of cardiometabolic disorders through the interaction with receptor for AGEs (RAGE). However, the relationship among AGEs, soluble form of RAGE (sRAGE) and TMAO in humans remains unclear. Non-diabetic subjects underwent a physical examination, determination of blood chemistry and anthropometric variables, including AGEs, sRAGE, TMA and TMAO. Multiple regression analyses revealed that HbA1c, uric acid and AGEs were independently associated with log TMA, whereas log AGEs to sRAGE ratio and statin non-use were independently correlated with log TMAO. Our present findings indicated that AGEs to sRAGE ratio was correlated with log TMAO, a marker of cardiometabolic disorders.

  6. Targeting cellular energy production in neurological disorders.

    PubMed

    Baker, Steven K; Tarnopolsky, Mark A

    2003-10-01

    The concepts of energy dysregulation and oxidative stress and their complicated interdependence have rapidly evolved to assume primary importance in understanding the pathophysiology of numerous neurological disorders. Therefore, neuroprotective strategies addressing specific bioenergetic defects hold particular promise in the treatment of these conditions (i.e., amyotrophic lateral sclerosis, Huntington's disease, Parkinson's disease, Friedreich's ataxia, mitochondrial cytopathies and other neuromuscular diseases), all of which, to some extent, share 'the final common pathway' leading to cell death through either necrosis or apoptosis. Compounds such as creatine monohydrate and coenzyme Q(10) offer substantial neuroprotection against ischaemia, trauma, oxidative damage and neurotoxins. Miscellaneous agents, including alpha-lipoic acid, beta-OH-beta-methylbutyrate, riboflavin and nicotinamide, have also been shown to improve various metabolic parameters in brain and/or muscle. This review will highlight the biological function of each of the above mentioned compounds followed by a discussion of their utility in animal models and human neurological disease. The balance of this work will be comprised of discussions on the therapeutic applications of creatine and coenzyme Q(10).

  7. Systemic oxidoreductive balance and vascular function in individuals without clinical manifestation of atherosclerosis

    PubMed Central

    Majer, Marcin; Gackowski, Daniel; Różalski, Rafał; Siomek-Górecka, Agnieszka; Oliński, Ryszard; Budzyński, Jacek

    2017-01-01

    Introduction Endothelial dysfunction is recognized as the earliest disorder in the development of atherosclerosis, in the pathogenesis of which oxidative stress plays a crucial role. The aim of this study was to determine the relationships between non-invasive parameters of vascular dysfunction and oxidative stress. Material and methods Forty-eight individuals without clinical manifestation of atherosclerosis were studied. The plasma concentrations of the following were determined in all 48 subjects: retinol, ascorbic acid, α-tocopherol and uric acid, as well as the products of oxidative DNA damage repair: 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG) in blood leukocytes and urine, and 8-oxo-7,8-dihydroguanine (8-oxoGua) in urine. The following parameters of vascular dysfunction were also examined: flow- (FMD) and nitroglycerin- (NMD) mediated dilatation of the brachial artery, pulse pressure (PP), distensibility coefficient (DC), pulsation (PI) and resistance (RI) index, carotid intima-media thickness (cIMT), and ankle-brachial index (ABI). Results Individuals with an FMD value of ≥ 8.8% had significantly higher blood concentrations of antioxidative vitamins and lower concentrations of 8-oxodG in their urine and blood leukocytes than their counterparts. Blood concentration of alpha-tocopherol or ascorbic acid positively correlated with FMD, PI, RI, DC and ABI and negatively with PP and cIMT. The reverse was the case for 8-oxodG in urine and leukocytes. In multiple regression analysis, markers of oxidative DNA damage positively determined the variance in PP and ABI. Conclusions In persons without clinical manifestation of atherosclerosis, oxidative stress was an independent factor associated with vascular wall dysfunction, and a better predictor than smoking and blood concentrations of glucose, lipids and creatinine. PMID:29242843

  8. OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability.

    PubMed

    Banan, A; Fitzpatrick, L; Zhang, Y; Keshavarzian, A

    2001-02-01

    Rebamipide (OPC-12759), a quinolone derivative, and OPC-6535, a thiazol-carboxylic acid derivative, are compounds with ability to protect gastrointestinal (GI) mucosal integrity against reactive oxygen metabolites (ROM). The underlying mechanism of OPC-mediated protection remains poorly understood. It is now established that ROM can injure the mucosa by disruption of the cytoskeletal network, a key component of mucosal barrier integrity. We, therefore, investigated whether OPC compounds prevent the oxidation, disassembly, and instability of the cytoskeletal protein actin and, in turn, protect intestinal barrier function against ROM. Human intestinal (Caco-2) cell monolayers were pretreated with OPC (-12759 or -6535) prior to incubation with ROM (H2O2) or HOCl). Effects on cell integrity (ethidium homodimer-1), epithelial barrier function (fluorescein sulfonic acid clearance), and actin cytoskeletal integrity (high-resolution laser confocal) were then determined. Cells were also processed for quantitative immunoblotting of G- and F-actin to measure oxidation (carbonylation) and disassembly of actin. In monolayers exposed to ROM, preincubation with OPC compounds prevented actin oxidation, decreased depolymerized G-actin, and enhanced the stable F-actin. Concomitantly, OPC agents abolished both actin cytoskeletal disruption and monolayer barrier dysfunction. Data suggest for the first time that OPC drugs prevent oxidation of actin and lead to the protection of actin cytoskeleton and intestinal barrier integrity against oxidant insult. Accordingly, these compounds may be used as novel therapeutic agents for the treatment of a variety of oxidative inflammatory intestinal disorders with an abnormal mucosal barrier such as inflammatory bowel disease.

  9. Protein and lipid damage in maple syrup urine disease patients: l-carnitine effect.

    PubMed

    Mescka, Caroline Paula; Wayhs, Carlos Alberto Yasin; Vanzin, Camila Simioni; Biancini, Giovana Brondani; Guerreiro, Gilian; Manfredini, Vanusa; Souza, Carolina; Wajner, Moacir; Dutra-Filho, Carlos Severo; Vargas, Carmen Regla

    2013-02-01

    Maple syrup urine disease (MSUD) is an inborn error of metabolism biochemically characterized by elevated levels of the branched chain amino acids (BCAA) leucine, isoleucine, valine and the corresponding branched-chain α-keto acids. This disorder is clinically characterized by ketoacidosis, seizures, coma, psychomotor delay and mental retardation whose pathophysiology is not completely understood. Recent studies have shown that oxidative stress may be involved in neuropathology of MSUD. l-Carnitine (l-Car) plays a central role in the cellular energy metabolism because it transports long-chain fatty acids for oxidation and ATP generation. In recent years many studies have demonstrated the antioxidant role of this compound. In this work, we investigated the effect of BCAA-restricted diet supplemented or not with l-Car on lipid peroxidation and in protein oxidation in MSUD patients. We found a significant increase of malondialdehyde and of carbonyl content in plasma of MSUD patients under BCAA-restricted diet compared to controls. Furthermore, patients under BCAA-restricted diet plus l-Car supplementation presented a marked reduction of malondialdehyde content in relation to controls, reducing the lipid peroxidation. In addition, free l-Car concentrations were negatively correlated with malondialdehyde levels. Our data show that l-Car may have an antioxidant effect, protecting against the lipid peroxidation and this could represent an additional therapeutic approach to the patients affected by MSUD. Copyright © 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

  10. Loss of macrophage fatty acid oxidation does not potentiate systemic metabolic dysfunction

    PubMed Central

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S.; Collins, Samuel L.; Horton, Maureen R.

    2017-01-01

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose-driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase II (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation-deficient CPT2 Mϕ-KO bone marrow-derived macrophages displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet-induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although IL-4-stimulated alternatively activated macrophages upregulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative, rather than causative, role in systemic metabolic dysfunction. PMID:28223293

  11. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells.

    PubMed

    Hsiang, Chien-Yun; Lin, Li-Jen; Kao, Shung-Te; Lo, Hsin-Yi; Chou, Shun-Ting; Ho, Tin-Yun

    2015-07-15

    Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation

    PubMed Central

    Makowski, Liza; Noland, Robert C.; Koves, Timothy R.; Xing, Weibing; Ilkayeva, Olga R.; Muehlbauer, Michael J.; Stevens, Robert D.; Muoio, Deborah M.

    2009-01-01

    Peroxisome proliferator-activated receptor-α (PPARα) is a master transcriptional regulator of β-oxidation and a prominent target of hypolipidemic drugs. To gain deeper insights into the systemic consequences of impaired fat catabolism, we used quantitative, mass spectrometry-based metabolic profiling to investigate the fed-to-fasted transition in PPARα+/+ and PPARα−/− mice. Compared to PPARα+/+ animals, acylcarnitine profiles of PPARα−/− mice revealed 2- to 4-fold accumulation of long-chain species in the plasma, whereas short-chain species were reduced by as much as 69% in plasma, liver, and skeletal muscle. These results reflect a metabolic bottleneck downstream of carnitine palmitoyltransferase-1, a mitochondrial enzyme that catalyzes the first step in β-oxidation. Organic and amino acid profiles of starved PPARα−/− mice suggested compromised citric acid cycle flux, enhanced urea cycle activity, and increased amino acid catabolism. PPARα−/− mice had 40–50% lower plasma and tissue levels of free carnitine, corresponding with diminished hepatic expression of genes involved in carnitine biosynthesis and transport. One week of oral carnitine supplementation conferred partial metabolic recovery in the PPARα−/− mice. In summary, comprehensive metabolic profiling revealed novel biomarkers of defective fat oxidation, while also highlighting the potential value of supplemental carnitine as a therapy and diagnostic tool for metabolic disorders.—Makowski, L., Noland, R. C., Koves, T. R., Xing, W., Ilkayeva, O. R., Muehlbauer, M. J., Stevens, R. D., Muoio, D. M. Metabolic profiling of PPARα−/− mice reveals defects in carnitine and amino acid homeostasis that are partially reversed by oral carnitine supplementation. PMID:18945875

  13. Ellagic acid ameliorates learning and memory deficits in a rat model of Alzheimer's disease: an exploration of underlying mechanisms.

    PubMed

    Kiasalari, Zahra; Heydarifard, Rana; Khalili, Mohsen; Afshin-Majd, Siamak; Baluchnejadmojarad, Tourandokht; Zahedi, Elham; Sanaierad, Ashkan; Roghani, Mehrdad

    2017-06-01

    Alzheimer's disease (AD) is a neurodegenerative disorder with irreversible loss of intellectual abilities. Current therapies for AD are still insufficient. In this study, the effect of ellagic acid on learning and memory deficits was evaluated in intrahippocampal amyloid beta (Aβ 25-35 )-microinjected rats and its modes of action were also explored. AD rat model was induced by bilateral intrahippocampal microinjection of Aβ 25-35 and ellagic acid was daily administered (10, 50, and 100 mg/kg), and learning, recognition memory, and spatial memory were evaluated in addition to histochemical assessment, oxidative stress, cholinesterases activity, and level of nuclear factor-kappaB (NF-κB), Toll-like receptor 4 (TLR4), and nuclear factor (erythroid-derived 2)-like 2 (Nrf2). The amyloid beta-microinjected rats showed a lower discrimination ratio in novel object and alternation score in Y maze tasks and exhibited an impairment of retention and recall capability in passive avoidance paradigm and higher working and reference memory errors in radial arm maze (RAM). In addition, amyloid beta group showed a lower number of Nissl-stained neurons in CA1 area in addition to enhanced oxidative stress, higher activity of cholinesterases, greater level of NF-κB and TLR4, and lower level of nuclear/cytoplasmic ratio for Nrf2 and ellagic acid at a dose of 100 mg/kg significantly prevented most of these abnormal alterations. Ellagic acid pretreatment of intrahippocampal amyloid beta-microinjected rats could dose-dependently improve learning and memory deficits via neuronal protection and at molecular level through mitigation of oxidative stress and acetylcholinesterase (AChE) activity and modulation of NF-κB/Nrf2/TLR4 signaling pathway.

  14. Comparative study on anti-oxidant and anti-inflammatory activities of Caesalpinia crista and Centella asiatica leaf extracts

    PubMed Central

    Ramesh, B. N.; Girish, T. K.; Raghavendra, R. H.; Naidu, K. Akhilender; Rao, U. J. S. Prasada; Rao, K. S.

    2014-01-01

    Background: Amyloidosis, oxidative stress and inflammation have been strongly implicated in neurodegenerative disorders like Alzheimer's disease. Traditionally, Caesalpinia crista and Centella asiatica leaf extracts are used to treat brain related diseases in India. C. crista is used as a mental relaxant drink as well as to treat inflammatory diseases, whereas C. asiatica is reported to be used to enhance memory and to treat dementia. Objective: The present study is aimed to understand the anti-oxidant and anti-inflammatory potential of C. asiatica and C. crista leaf extracts. Materials and Methods: Phenolic acid composition of the aqueous extracts of C. crista and C. asiatica were separated on a reverse phase C18 column (4.6 x 250 mm) using HPLC system. Antioxidant properties of the leaf extracts were determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay and the reducing potential assay. The anti-inflammatory activities of aqueous extracts of C. crista and C. asiatica were studied using 5-lipoxygenase assay. Polymorphonuclear leukocytes (PMNLs) were isolated from blood by Ficoll-Histopaque density gradient followed by hypotonic lysis of erythrocytes. Results: Gallic, protocatechuic, gentisic, chlorogenic, caffeic, p-coumaric and ferulic acids were the phenolic acids identified in C. crista and C. asiatica leaf aqueous extracts. However, gallic acid and ferulic acid contents were much higher in C. crista compared to C. asiatica. Leaf extracts of C. asiatica and C. crista exhibited antioxidant properties and inhibited 5-lipoxygenase (anti-inflammatory) in a dose dependent manner. However, leaf extracts of C. crista had better antioxidant and anti-inflammatory activity compared to that of C. asiatica. The better activity of C. crista is attributed to high gallic acid and ferulic acid compared to C. asiatica. Conclusions: Thus, the leaf extract of C. crista can be a potential therapeutic role for Alzheimer's disease. PMID:24741275

  15. Influence of mitochondrion-toxic agents on the cardiovascular system.

    PubMed

    Finsterer, Josef; Ohnsorge, Peter

    2013-12-01

    Cardiovascular disease may be induced or worsened by mitochondrion-toxic agents. Mitochondrion-toxic agents may be classified as those with or without a clinical effect, those which induce cardiac disease only in humans or animals or both, as prescribed drugs, illicit drugs, exotoxins, or nutritiants, as those which affect the heart exclusively or also other organs, as those which are effective only in patients with a mitochondrial disorder or cardiac disease or also in healthy subjects, or as solid, liquid, or volatile agents. In humans, cardiotoxic agents due to mitochondrial dysfunction include anthracyclines (particularly doxorubicin), mitoxantrone, cyclophosphamide, cisplatin, fluorouracil, imatinib, bortezomib, trastuzumab, arsenic trioxide, cyclosporine-A, zidovudine, lamotrigine, glycosides, lidocain, isoproterenol, nitroprusside, pivalic acid, alcohol, cocaine, pesticides, cadmium, mycotoxins, cyanotoxins, meat meal, or carbon monoxide. Even more agents exhibit cardiac abnormalities due to mitochondrion-toxicity only in animals or tissue cultures. The mitochondrion-toxic effect results from impairment of the respiratory chain, the oxidative phosphorylation, the Krebs cycle, or the β-oxidation, from decrease of the mitochondrion-membrane potential, from increased oxidative stress, reduced anti-oxidative capacity, or from induction of apoptosis. Cardiac abnormalities induced via these mechanisms include cardiomyopathy, myocarditis, coronary heart disease, arrhythmias, heart failure, or Takotsubo syndrome. Discontinuation of the cardiotoxic agent results in complete recovery in the majority of the cases. Antioxidants and nutritiants may be of additional help. Particularly coenzyme-Q, riboflavin, vitamin-E, vitamin-C, L-carnitine, vitamin-D, thiamin, folic acid, omega-3 fatty acids, and D-ribose may alleviate mitochondrial cardiotoxic effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Triheptanoin: long-term effects in the very long-chain acyl-CoA dehydrogenase-deficient mouse[S

    PubMed Central

    Tucci, Sara; Floegel, Ulrich; Beermann, Frauke; Behringer, Sidney; Spiekerkoetter, Ute

    2017-01-01

    A rather new approach in the treatment of long-chain fatty acid oxidation disorders is represented by triheptanoin, a triglyceride with three medium-odd-chain heptanoic acids (C7), due to its anaplerotic potential. We here investigate the effects of a 1-year triheptanoin-based diet on the clinical phenotype of very long-chain-acyl-CoA-dehydrogenase-deficient (VLCAD−/−) mice. The cardiac function was assessed in VLCAD−/− mice by in vivo MRI. Metabolic adaptations were identified by the expression of genes regulating energy metabolism and anaplerotic processes using real-time PCR, and the results were correlated with the measurement of the glycolytic enzymes pyruvate dehydrogenase and pyruvate kinase. Finally, the intrahepatic lipid accumulation and oxidative stress in response to the long-term triheptanoin diet were assessed. Triheptanoin was not able to prevent the development of systolic dysfunction in VLCAD−/− mice despite an upregulation of cardiac glucose oxidation. Strikingly, the anaplerotic effects of triheptanoin were restricted to the liver. Despite this, the hepatic lipic content was increased upon triheptanoin supplementation. Our data demonstrate that the concept of anaplerosis does not apply to all tissues equally. PMID:27884962

  17. Effect of quercitrin gallate on zymosan A-induced peroxynitrite production in macrophages.

    PubMed

    Kim, Byung Hak; Cho, Sung-Min; Chang, Yoon Sook; Han, Sang Bae; Kim, Youngsoo

    2007-06-01

    We previously isolated quercetin 3-O-beta-(2"-galloyl)-rhamnopyranoside (QGR), a quercitrin gallate, from aerial parts of Persicaria lapathifolia (Polygonaceae) to prevent superoxide produc tion in monocytes from venous blood of healthy human donors. In this study, effects of QGR and its building moieties (quercitrin, quercetin and gallic acid) on the production of peroxyni trite, a coupling oxidant between superoxide and nitric oxide (NO) radicals, were investigated in zymosan A-stimulated macrophages RAW 264.7. The QGR, quercitrin and quercetin inhib ited peroxynitrite production in dose-dependent manners with IC50 values of 2.1 microM, 24.5 microM and 5.1 microM, respectively, but gallic acid even at 100 microM was inactive. QGR also inhibited both zymosan A- and phorbol 12-myristate 13-acetate-induced superoxide productions with IC50 values of 3.2 microM and 4.7 microM, respectively. However, QGR affected neither zymosan A-induced NO production nor inducible NO synthase synthesis. Taken together, QGR could inhibit peroxynitrite production by blocking superoxide production without affecting NO production. Finally, this study could provide a pharmacological potential of QGR in the oxidative stress-implicated disorders.

  18. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver.

    PubMed

    Tayeb, Wafa; Nakbi, Amel; Cheraief, Imed; Miled, Abdelhedi; Hammami, Mohamed

    2013-07-01

    This study aims to investigate the effects of the 2,4-dichlorophenoxyacetic herbicide (2,4-D) on plasma lipids, lipoproteins concentrations, hepatic lipid peroxidation, fatty acid composition and antioxidant enzyme activities in rats. Animals were randomly divided into four groups of 10 each: control group and three 2,4-D-treated groups G1, G2 and G3 were administered 15, 75 and 150 mg/kg/BW/d 2,4-D by gavage for 28 d, respectively. Results showed that 2,4-D caused significant negative changes in the biochemical parameters investigated. The malondialdehyde level was significantly increased in 2,4-D-treated groups. Fatty acid composition of the liver was also significantly changed with 2,4-D exposure. Furthermore, the hepatic antioxidant enzyme activities were significantly affected. Finally, 2,4-D at the studied doses modifies lipidic status, disrupt lipid metabolism and induce hepatic oxidative stress. In conclusion, at higher doses, 2,4-D may play an important role in the development of vascular disease via metabolic disorder of lipoproteins, lipid peroxidation and oxidative stress.

  19. AMP-activated protein kinase and type 2 diabetes.

    PubMed

    Musi, Nicolas

    2006-01-01

    AMP-activated protein kinase (AMPK) is an enzyme that works as a fuel gauge, being activated in situations of high-energy phosphate depletion. Upon activation, AMPK functions to restore cellular ATP by modifying diverse metabolic pathways. AMPK is activated robustly by skeletal muscle contraction and myocardial ischemia, and may be involved in the stimulation of glucose transport and fatty acid oxidation produced by these stimuli. In liver, activation of AMPK results in enhanced fatty acid oxidation and in decreased production of glucose, cholesterol, and triglycerides. Recent studies have shown that AMPK is the cellular mediator for many of the metabolic effects of drugs such as metformin and thiazolidinediones, as well as the insulin sensitizing adipocytokines leptin and adiponectin. These data, along with evidence from studies showing that chemical activation of AMPK in vivo with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) improves blood glucose concentrations and lipid profiles, make this enzyme an attractive pharmacological target for the treatment of type 2 diabetes and other metabolic disorders.

  20. Inhibition of Cholinesterases and Some Pro-Oxidant induced Oxidative Stress in Rats Brain by Two Tomato (Lycopersicon Esculentum) Varieties

    PubMed Central

    Oboh, G.; Bakare, O.O.; Ademosun, A.O.; Akinyemi, A.J.; Olasehinde, T.A.

    2015-01-01

    This study sought to investigate the effects of two tomato varieties [Lycopersicon esculentum Mill. var. esculentum (ESC) and Lycopersicon esculentum Mill. var. cerasiforme (CER)] on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities in vitro. Phenolics content, carotenoids characterisation, inhibition of Fe2+ and quinolinic acid-induced malondialdehyde (MDA) production in rats brain homogenate and NO* scavenging abilities were also assesed in addition to the AChE and BChE inhibition assays. There was no significant difference in the AChE inhibitory ability of the samples, while CER had significantly higher BChE inhibitory activity. Furthermore, the tomatoes inhibited Fe2+ and quinolinic acid-induced MDA production and further exhibited antioxidant activities through their NO* scavenging abilities. There was no significant difference in the phenolic content of the samples, while significantly high amounts of lycopene were detected in the tomatoes. The cholinesterase-inhibition and antioxidant properties of the “tomatoes” could make them good dietary means for the management of neurodegenerative disorders.

  1. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches

    PubMed Central

    Balmus, Ioana Miruna; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context. PMID:27563374

  2. The Edible Marine Alga Gracilariopsis chorda Alleviates Hypoxia/Reoxygenation-Induced Oxidative Stress in Cultured Hippocampal Neurons

    PubMed Central

    Mohibbullah, Md.; Hannan, Md. Abdul; Choi, Ji-Young; Bhuiyan, Mohammad Maqueshudul Haque; Hong, Yong-Ki; Choi, Jae-Suk; Choi, In Soon; Moon, Il Soo

    2015-01-01

    Abstract Age-related neurological disorders are of growing concern among the elderly, and natural products with neuroprotective properties have been attracting increasing attention as candidates for the prevention or treatment of neurological disorders induced by oxidative stress. In an effort to explore natural resources, we collected some common marine seaweed from the Korean peninsula and Indonesia and screened them for neuroprotective activity against hypoxia/reoxygenation (H/R)-induced oxidative stress. Of the 23 seaweeds examined, the ethanol extract of Gracilariopsis chorda (GCE) provided maximum neuroprotection at an optimum concentration of 15 μg/mL, followed by Undaria pinnatifida. GCE increased cell viability after H/R, decreased the formation of reactive oxygen species (measured by 2′,7′-dichlorodihydrofluorescein diacetate [DCF-DA] staining), and inhibited the double-stranded DNA breaks (measured by H2AX immunocytochemistry), apoptosis (measured by Annexin V/propidium iodide staining), internucleosomal DNA fragmentation (measured by DNA laddering), and dissipation of mitochondrial membrane potential (measured by JC-1 staining). Using reverse-phase high-pressure liquid chromatography, we quantitated the arachidonic acid (AA) in GCE, which provides neuroprotection against H/R-induced oxidative stress. This neuroprotective effect of AA was comparable to that of GCE. These findings suggest that the neuroprotective effect of GCE against H/R-induced neuronal death is due, at least in part, to the AA content that suppresses neuronal apoptosis. PMID:26106876

  3. Cyclopiazonic acid augments the hepatic and renal oxidative stress in broiler chicks.

    PubMed

    Malekinejad, H; Akbari, P; Allymehr, M; Hobbenaghi, R; Rezaie, A

    2011-08-01

    Generation of reactive oxygen species (ROS) leads to serious tissue injuries. The effect of cyclopiazonic acid (CPA) on oxidative stress markers in the liver and kidneys of broiler chicks was studied. Ten-day-old male broiler chicks (Ross 308) were assigned into the control and test groups, which received normal saline and 10, 25, and 50 μg/kg CPA, respectively, for 28 days. Body weight gain, serum level of alkaline phosphatase (ALP), γ-glutamyl transferase (GGT), uric acid, creatinine, and blood urea nitrogen (BUN) were measured after 2 and 4 weeks exposure. Moreover, the total thiol molecules (TTM) and malondialdehyde (MDA) content of the liver and kidneys were assessed. No significant differences (p > 0.05) were found in body weight gain between the control and test groups. Whereas, the hepatic weight increased significantly (p < 0.05) in animals that received 25 and 50 μg/kg CPA. Both ALP and GGT level in serum were elevated in comparison to the control group. CPA also resulted in uric acid, creatinine, and BUN enhancement in broilers. The MDA content of the liver and kidneys showed remarkable increase. By contrast, the TTM levels in the liver and kidneys were significantly (p < 0.05) attenuated. Histopathological findings confirmed the biochemical changes in either organ characterized by inflammatory cells infiltration along with severe congestion and cell swelling, suggesting an inflammatory response. These data suggest that exposure to CPA resulted in hepatic and renal disorders, which were reflected as biochemical markers alteration and pathological injuries in either organ. The biochemical alteration and pathological abnormalities may be attributed to CPA-induced oxidative stress.

  4. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System

    PubMed Central

    Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.

    2015-01-01

    Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. PMID:25618404

  5. Increased Contextual Fear Conditioning in iNOS Knockout Mice: Additional Evidence for the Involvement of Nitric Oxide in Stress-Related Disorders and Contribution of the Endocannabinoid System.

    PubMed

    Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M

    2015-01-24

    Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  6. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  7. Triheptanoin - a medium chain triglyceride with odd chain fatty acids: a new anaplerotic anticonvulsant treatment?

    PubMed Central

    Borges, Karin; Sonnewald, Ursula

    2012-01-01

    The triglyceride of heptanoate (C7 fatty acid), triheptanoin, is a tasteless oil used to treat rare metabolic disorders in USA and France. Heptanoate is metabolized by β-oxidation to provide propionyl-CoA, which after carboxylation can produce succinyl-CoA, resulting in anaplerosis – the refilling of the tricarboxylic acid cycle. Heptanoate is also metabolized by the liver to the “C5 ketones”, β-ketopentanoate and/or β-hydroxypentanoate, which are released into the blood and thought to enter the brain via monocarboxylate transporters. Oral triheptanoin has recently been discovered to be reproducibly anticonvulsant in acute and chronic mouse seizures models. However, current knowledge on alterations of brain metabolism after triheptanoin administration and anaplerosis via propionyl-CoA carboxylation in the brain is limited. This review outlines triheptanoin’s unique anticonvulsant profile and its clinical potential for the treatment of medically refractory epilepsy. Anaplerosis as a therapeutic approach for the treatment of epilepsy is discussed. More research is needed to elucidate the anticonvulsant mechanism of triheptanoin and to reveal its clinical potential for the treatment of epilepsy and other disorders of the brain. PMID:21855298

  8. Hyperprolinemia in Type 2 Glutaric Aciduria and MADD-Like Profiles.

    PubMed

    Pontoizeau, Clément; Habarou, Florence; Brassier, Anaïs; Veauville-Merllié, Alice; Grisel, Coraline; Arnoux, Jean-Baptiste; Vianey-Saban, Christine; Barouki, Robert; Chadefaux-Vekemans, Bernadette; Acquaviva, Cécile; de Lonlay, Pascale; Ottolenghi, Chris

    2016-01-01

    Classical neonatal-onset glutaric aciduria type 2 (MAD deficiency) is a severe disorder of mitochondrial fatty acid oxidation associated with poor survival. Secondary dysfunction of acyl-CoA dehydrogenases may result from deficiency for riboflavin transporters, leading to severe disorders that, nevertheless, are treatable by riboflavin supplementation. In the last 10 years, we identified nine newborns with biochemical features consistent with MAD deficiency, only four of whom survived past the neonatal period. A likely iatrogenic cause of riboflavin deficiency was found in two premature newborns having parenteral nutrition, one of whom recovered upon multivitamin supplementation, whereas the other died before diagnosis. Four other patients had demonstrated mutations involving ETF or ETF-DH flavoproteins, whereas the remaining three patients presumably had secondary deficiencies of unknown mechanism. Interestingly, six newborns among the seven tested for plasma amino acids had pronounced hyperprolinemia. In one case, because the initial diagnostic workup did not include organic acids and acylcarnitine profiling, clinical presentation and hyperprolinemia suggested the diagnosis. Analysis of our full cohort of >50,000 samples from >30,000 patients suggests that the proline/alanine ratio may be a good marker of MAD deficiency and could contribute to a more effective management of the treatable forms.

  9. Effect of Acacia catechu (L.f.) Willd. on Oxidative Stress with Possible Implications in Alleviating Selected Cognitive Disorders

    PubMed Central

    Saha, Manas Ranjan; Dey, Priyankar; Begum, Sainiara; De, Bratati; Chaudhuri, Tapas Kr.; Sarker, Dilip De; Das, Abhaya Prasad; Sen, Arnab

    2016-01-01

    In human body, several categories of degenerative processes are largely determined by free radicals originating in cell. Free radicals are also known to have correlated with a variety of cognitive disorders (CDs) resulting in neuronal injury and eventually to death. Alzheimer’s disease (AD) and Parkinson's disease (PD) are such kind of killer CDs that occur due to dysfunction of cholinergic and dopaminergic neurons. Plant parts of Ginkgo biloba, Bacopa monnieri etc. are being used for the treatment of cognitive disorders in several countries. The present study was aimed to explore the detailed antioxidant and anti-cholinesterase activity of Acaciacatechu leaf (ACL) over CDs. Gas chromatography-Mass spectroscopy (GC-MS) analysis and Nuclear Magnetic Resonance (NMR) were employed to identify the bioactive components present in ACL. Furthermore, the extract was evaluated to check the cytotoxic effects of ACL on normal cells. Amongst several antioxidant assays, DPPH assay, hydroxyl radical, nitric oxide radical and hypochlorous acid inhibitory activities were found to be greater in ACL than that of the respective standards while other assays exhibited a moderate or at per inhibitory activity with standards. Total phenolic and flavonoid content were also found to be present in decent amount. In addition, we found, a greater acetylcholinesterase (AChE) inhibitory activity of ACL when compared to other medicinally important plants, indicating its positive effect over CDs. Forty one bioactive components were explored through GC-MS. Of these, gallic acid, epicatechin, catechin, isoquercitrin etc. were found, which are potent antioxidant and a few of them have anti-neurodegenerative properties. Eventually, ACL was found to be nontoxic and safer to consume. Further studies with animal or human model however, would determine its efficacy as a potential anti-schizophrenic drug. PMID:26949964

  10. The effect of carboxylic acids on the oxidation of coated iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Lengyel, Attila; Tolnai, Gyula; Klencsár, Zoltán; Garg, Vijayendra Kumar; de Oliveira, Aderbal Carlos; Herojit Singh, L.; Homonnay, Zoltán; Szalay, Roland; Németh, Péter; Szabolcs, Bálint; Ristic, Mira; Music, Svetozar; Kuzmann, Ernő

    2018-05-01

    57Fe Mössbauer spectroscopy, XRD, and TEM were used to investigate the effect of mandelic- and salicylic acid coatings on the iron oxide nanoparticles. These two carboxylic acids have similar molecules size and stoichiometry, but different structure and acidity. Significant differences were observed between the Mössbauer spectra of samples coated with mandelic acid and salicylic acid. These results indicate that the occurrence of iron microenvironments in the mandelic- and salicylic acid-coated iron oxide nanoparticles is different. The results can be interpreted in terms of the influence of the acidity of carboxylic acids on the formation, core/shell structure, and oxidation of coated iron oxide nanocomposites.

  11. Identification of enzymes involved in oxidation of phenylbutyrate.

    PubMed

    Palir, Neža; Ruiter, Jos P N; Wanders, Ronald J A; Houtkooper, Riekelt H

    2017-05-01

    In recent years the short-chain fatty acid, 4-phenylbutyrate (PB), has emerged as a promising drug for various clinical conditions. In fact, PB has been Food and Drug Administration-approved for urea cycle disorders since 1996. PB is more potent and less toxic than its metabolite, phenylacetate (PA), and is not just a pro-drug for PA, as was initially assumed. The metabolic pathway of PB, however, has remained unclear. Therefore, we set out to identify the enzymes involved in the β-oxidation of PB. We used cells deficient in specific steps of fatty acid β-oxidation and ultra-HPLC to measure which enzymes were able to convert PB or its downstream products. We show that the first step in PB oxidation is catalyzed solely by the enzyme, medium-chain acyl-CoA dehydrogenase. The second (hydration) step can be catalyzed by all three mitochondrial enoyl-CoA hydratase enzymes, i.e., short-chain enoyl-CoA hydratase, long-chain enoyl-CoA hydratase, and 3-methylglutaconyl-CoA hydratase. Enzymes involved in the third step include both short- and long-chain 3-hydroxyacyl-CoA dehydrogenase. The oxidation of PB is completed by only one enzyme, i.e., long-chain 3-ketoacyl-CoA thiolase. Taken together, the enzymatic characteristics of the PB degradative pathway may lead to better dose finding and limiting the toxicity of this drug. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  12. Properties of kojic acid and curcumin: Assay on cell B16-F1

    NASA Astrophysics Data System (ADS)

    Sugiharto, Ariff, Arbakariya; Ahmad, Syahida; Hamid, Muhajir

    2016-03-01

    Ultra violet (UV) exposure and oxidative stress are casually linked to skin disorders. They can increase melanin synthesis, proliferation of melanocytes, and hyperpigmentation. It is possible that antioxidants or inhibitors may have a beneficial effect on skin health to reduce hyperpigmentation. In the last few years, a huge number of natural herbal extracts have been tested to reduce hyperpigmentation. The objective of this study was to determine and to compare of kojic acid and curcumin properties to viability cell B16-F1. In this study, our data showed that the viability of cell B16-F1 was 63.91% for kojic acid and 64.12% for curcumin at concentration 100 µg/ml. Further investigation assay of antioxidant activities, indicated that IC50 for kojic acid is 63.8 µg/ml and curcumin is 16.05 µg/ml. Based on the data, kojic acid and curcumin have potential antioxidant properties to reduce hyperpigmentation with low toxicity effect in cell B16-F1.

  13. Advantages of the Alpha-lipoic Acid Association with Chlorpromazine in a Model of Schizophrenia Induced by Ketamine in Rats: Behavioral and Oxidative Stress evidences.

    PubMed

    Sampaio, Luis Rafael Leite; Cysne Filho, Francisco Maurício Sales; de Almeida, Jamily Cunha; Diniz, Danilo Dos Santos; Patrocínio, Cláudio Felipe Vasconcelos; de Sousa, Caren Nádia Soares; Patrocínio, Manoel Cláudio Azevedo; Macêdo, Danielle; Vasconcelos, Silvânia Maria Mendes

    2018-03-01

    Schizophrenia is a chronic mental disorder reported to compromise about 1% of the world's population. Although its pathophysiological process is not completely elucidated, evidence showing the presence of an oxidative imbalance has been increasingly highlighted in the literature. Thus, the use of antioxidant substances may be of importance for schizophrenia treatment. The objective of this study was to evaluate the behavioral and oxidative alterations by the combination of chlorpromazine (CP) and alpha-lipoic acid (ALA), a potent antioxidant, in the ketamine (KET) model of schizophrenia in rats. Male Wistar rats (200-300 g) were treated for 10 days with saline, CP or ALA alone or in combination with CP previous to KET and the behavioral (open field, Y-maze and PPI tests) and oxidative tests were performed on the last day of treatment. The results showed that KET induced hyperlocomotion, impaired working memory and decreased PPI. CP alone or in combination with ALA prevented KET-induced behavioral effects. In addition, the administration of KET decreased GSH and increased nitrite, lipid peroxidation and myeloperoxidase activity. CP alone or combined with ALA prevented the oxidative alterations induced by KET. In conclusion, the treatment with KET in rats induced behavioral impairments accompanied by hippocampal oxidative alterations, possibly related to NMDA receptors hypofunction. Besides that, CP alone or combined with ALA prevented these effects, showing a beneficial activity as antipsychotic agents. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Action of 6-amino-3-pyridinols as novel antioxidants against free radicals and oxidative stress in solution, plasma, and cultured cells.

    PubMed

    Omata, Yo; Saito, Yoshiro; Yoshida, Yasukazu; Jeong, Byeong-Seon; Serwa, Remigiusz; Nam, Tae-gyu; Porter, Ned A; Niki, Etsuo

    2010-05-15

    Free radical-mediated lipid peroxidation has been implicated in the pathogenesis of various diseases. Lipid peroxidation products are cytotoxic and they modify proteins and DNA bases, leading eventually to degenerative disorders. Various synthetic antioxidants have been developed and assessed for their capacity to inhibit lipid peroxidation and oxidative stress induced by free radicals. In this study, the capacity of novel 6-amino-2,4,5-trimethyl-3-pyridinols for scavenging peroxyl radicals, inhibiting plasma lipid peroxidation in vitro, and preventing cytotoxicity induced by glutamate, 6-hydroxydopamine, 1-methyl-4-phenylpyridium (MPP(+) ), and hydroperoxyoctadecadienoic acid was assessed. It was found that they exerted higher reactivity toward peroxyl radicals and more potent activity for inhibiting the above oxidative stress than alpha-tocopherol, the most potent natural antioxidant, except against the cytotoxicity induced by MPP(+). These results suggest that the novel 6-amino-3-pyridinols may be potent antioxidants against oxidative stress. Copyright 2010 Elsevier Inc. All rights reserved.

  15. Systemic oxidative stress associated with the neurological diseases of aging.

    PubMed

    Serra, Jorge A; Domínguez, Raúl O; Marschoff, Enrique R; Guareschi, Eduardo M; Famulari, Arturo L; Boveris, Alberto

    2009-12-01

    Markers of oxidative stress were measured in blood samples of 338 subjects (965 observations): Alzheimer's, vascular dementia, diabetes (type II) superimposed to dementias, Parkinson's disease and controls. Patients showed increased thiobarbituric acid reactive substances (+21%; P < 0.05), copper-zinc superoxide dismutase (+64%; P < 0.001) and decreased antioxidant capacity (-28%; P < 0.001); pairs of variables resulted linearly related across groups (P < 0.001). Catalase and glutathione peroxidase, involved in discrimination between diseases, resulted non-significant. When diabetes is superimposed with dementias, changes resulted less marked but significant. Also, superoxide dismutase resulted not linearly correlated with any other variable or age-related (pure Alzheimer's peaks at 70 years, P < 0.001). Systemic oxidative stress was significantly associated (P < 0.001) with all diseases indicating a disbalance in peripheral/adaptive responses to oxidative disorders through different free radical metabolic pathways. While other changes - methionine cycle, insulin correlation - are also associated with dementias, the responses presented here show a simple linear relation between prooxidants and antioxidant defenses.

  16. Multimetallic nanoparticle catalysts with enhanced electrooxidation

    DOEpatents

    Sun, Shouheng; Zhang, Sen; Zhu, Huiyuan; Guo, Shaojun

    2015-07-28

    A new structure-control strategy to optimize nanoparticle catalysis is provided. The presence of Au in FePtAu facilitates FePt structure transformation from chemically disordered face centered cubic (fcc) structure to chemically ordered face centered tetragonal (fct) structure, and further promotes formic acid oxidation reaction (FAOR). The fct-FePtAu nanoparticles show high CO poisoning resistance, achieve mass activity as high as about 2810 mA/mg Pt, and retain greater than 90% activity after a 13 hour stability test.

  17. Template confined synthesis of amorphous carbon nanotubes and its confocal Raman microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, Supratim; Roychowdhury, Tuhin; Chattopadhyay, Kalyan Kumar, E-mail: kalyan-chattopadhyay@yahoo.com

    2014-04-24

    Amorphous carbon nanotubes (aCNTs) were synthesized by AAO (anodic aluminum oxide) template at a temperature 500 °C in nitrogen atmosphere using the citric acid as a carbon source without the help of any catalyst particles. Morphological analysis of the as prepared samples was carried out by field emission scanning electron microscopy (FESEM). Confocal Raman imaging has been studied and an attempt has been made to find out the graphitic (sp{sup 2}) and disordered phase of the CNTs.

  18. Superoxide dismutase 1 mutation in a cellular model of amyotrophic lateral sclerosis shifts energy generation from oxidative phosphorylation to glycolysis.

    PubMed

    Allen, Scott P; Rajan, Sandeep; Duffy, Lynn; Mortiboys, Heather; Higginbottom, Adrian; Grierson, Andrew J; Shaw, Pamela J

    2014-06-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder involving the progressive degeneration of motor neurons in the brain and spinal cord. Mitochondrial dysfunction plays a key role in ALS disease progression and has been observed in several ALS cellular and animal models. Here, we show that fibroblasts isolated from ALS cases with a Cu/Zn superoxide dismutase (SOD1) I113T mutation recapitulate these mitochondrial defects. Using a novel technique, which measures mitochondrial respiration and glycolytic flux simultaneously in living cells, we have shown that SOD1 mutation causes a reduction in mitochondrial respiration and an increase in glycolytic flux. This causes a reduction in adenosine triphosphate produced by oxidative phosphorylation and an increase in adenosine triphosphate produced by glycolysis. Switching the energy source from glucose to galactose caused uncoupling of mitochondria with increased proton leak in SOD1(I113T) fibroblasts. Assessment of the contribution of fatty acid oxidation to total respiration, suggested that fatty acid oxidation is reduced in SOD1 ALS fibroblasts, an effect which can be mimicked by starving the control cells of glucose. These results highlight the importance of understanding the interplay between the major metabolic pathways, which has the potential to lead to strategies to correct the metabolic dysregulation observed in ALS cases. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. The Role of Nutrients in Protecting Mitochondrial Function and Neurotransmitter Signaling: Implications for the Treatment of Depression, PTSD, and Suicidal Behaviors.

    PubMed

    Du, Jing; Zhu, Ming; Bao, Hongkun; Li, Bai; Dong, Yilong; Xiao, Chunjie; Zhang, Grace Y; Henter, Ioline; Rudorfer, Matthew; Vitiello, Benedetto

    2016-11-17

    Numerous studies have linked severe stress to the development of major depressive disorder (MDD) and suicidal behaviors. Furthermore, recent preclinical studies from our laboratory and others have demonstrated that in rodents, chronic stress and the stress hormone cortisol cause oxidative damage to mitochondrial function and membrane lipids in the brain. Mitochondria play a key role in synaptic neurotransmitter signaling by providing adenosine triphosphate (ATP), mediating lipid and protein synthesis, buffering intracellular calcium, and regulating apoptotic and resilience pathways. Membrane lipids are similarly essential to central nervous system (CNS) function because cholesterol, polyunsaturated fatty acids, and sphingolipids form a lipid raft region, a special lipid region on the membrane that mediates neurotransmitter signaling through G-protein-coupled receptors and ion channels. Low serum cholesterol levels, low antioxidant capacity, and abnormal early morning cortisol levels are biomarkers consistently associated with both depression and suicidal behaviors. In this review, we summarize the manner in which nutrients can protect against oxidative damage to mitochondria and lipids in the neuronal circuits associated with cognitive and affective behaviors. These nutrients include ω3 fatty acids, antioxidants (vitamin C and zinc), members of the vitamin B family (Vitamin B12 and folic acid), and magnesium. Accumulating data have shown that these nutrients can enhance neurocognitive function, and may have therapeutic benefits for depression and suicidal behaviors. A growing body of studies suggests the intriguing possibility that regular consumption of these nutrients may help prevent the onset of mood disorders and suicidal behaviors in vulnerable individuals, or significantly augment the therapeutic effect of available antidepressants. These findings have important implications for the health of both military and civilian populations.

  20. The Role of Nutrients in Protecting Mitochondrial Function and Neurotransmitter Signaling: Implications for the Treatment of Depression, PTSD, and Suicidal Behaviors

    PubMed Central

    Du, Jing; Zhu, Ming; Bao, Hongkun; Li, Bai; Dong, Yilong; Xiao, Chunjie; Zhang, Grace Y.; Henter, Ioline; Rudorfer, Matthew; Vitiello, Benedetto

    2015-01-01

    Numerous studies have linked severe stress to the development of major depressive disorder (MDD), and suicidal behaviors. Furthermore, recent preclinical studies from our laboratory and others have demonstrated that in rodents, chronic stress and the stress hormone cortisol has caused oxidative damage to mitochondrial function and membrane lipids in the brain. Mitochondria play a key role in synaptic neurotransmitter signaling by providing adenosine triphosphate (ATP), mediating lipid and protein synthesis, buffering intracellular calcium, and regulating apoptotic and resilience pathways. Membrane lipids are similarly essential to central nervous system (CNS) function, because cholesterol, polyunsaturated fatty acids, and sphingolipids form a lipid raft region, a special lipid region on the membrane that mediates neurotransmitter signaling through G-protein coupled receptors and ion channels. Low serum cholesterol levels, low antioxidant capacity, and abnormal early morning cortisol levels are biomarkers consistently associated with both depression and suicidal behaviors. In this review, we summarize the manner in which nutrients can protect against oxidative damage to mitochondria and lipids in the neuronal circuits associated with cognitive and affective behaviors. These nutrients include ω3 fatty acids, antioxidants (vitamin C and zinc), members of the vitamin B family (Vitamin B12 and folic acid) and magnesium. Accumulating data have shown that these nutrients can enhance neurocognitive function, and may have therapeutic benefits for depression and suicidal behaviors. A growing body of studies suggests the intriguing possibility that regular consumption of these nutrients may help prevent the onset of mood disorders and suicidal behaviors in vulnerable individuals, or significantly augment the therapeutic effect of available antidepressants. These findings have important implications for the health of both military and civilian populations. PMID:25365455

  1. Redox proteomics gives insights into the role of oxidative stress in alkaptonuria.

    PubMed

    Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Santucci, Annalisa

    2013-12-01

    Alkaptonuria (AKU) is an ultra-rare metabolic disorder of the catabolic pathway of tyrosine and phenylalanine that has been poorly characterized at molecular level. As a genetic disease, AKU is present at birth, but its most severe manifestations are delayed due to the deposition of a dark-brown pigment (ochronosis) in connective tissues. The reasons for such a delayed manifestation have not been clarified yet, though several lines of evidence suggest that the metabolite accumulated in AKU sufferers (homogentisic acid) is prone to auto-oxidation and induction of oxidative stress. The clarification of the pathophysiological molecular mechanisms of AKU would allow a better understanding of the disease, help find a cure for AKU and provide a model for more common rheumatic diseases. With this aim, we have shown how proteomics and redox proteomics might successfully overcome the difficulties of studying a rare disease such as AKU and the limitations of the hitherto adopted approaches.

  2. Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder

    PubMed Central

    Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio

    2016-01-01

    Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915

  3. Association of serum uric acid level and blood pressure in type 2 diabetes mellitus

    NASA Astrophysics Data System (ADS)

    Savira, M.; Rusdiana; Syahputra, M.

    2018-03-01

    Uric acid is an end product of purine degradation in humans and primarily excreted through urine. In adulthood, concentrations rise steadily over time and vary with height, body weight, blood pressure, renal function, and alcohol intake. Uric acid is known as anti-oxidant, it has a beneficial role in diseases. Elevated serum uric acid associated with anincreased risk of cardiovascular disease. It has been found that elevated levels of uric acid associated with high risks of acomplication of type 2 diabetes mellitus and It has astrong association between elevated uric acid levels and obesity, metabolic syndrome, diabetes mellitus, hypertension, cardiovascular and renal disorders. The aim of the study analyzed the association between serum uric acid level and blood pressure in type 2 diabetes mellitus patients. This research is descriptive analytic research with a cross sectional design included 50 diabetic subjects aged over 40 years old. Subjects picked by consecutive sampling then we examined the weight, height, waist size, blood pressure, fasting blood sugar, and serum uric acid level. Statistical analysis using chi-square found that there was no significant association between serum uric acid level and systole and diastole pressure in type 2 diabetes mellitus patients (p>0.005).

  4. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  5. Peripheral markers of oxidative stress and antioxidative defense in euthymia of bipolar disorder--Gender and obesity effects.

    PubMed

    Bengesser, S A; Lackner, N; Birner, A; Fellendorf, F T; Platzer, M; Mitteregger, A; Unterweger, R; Reininghaus, B; Mangge, H; Wallner-Liebmann, S J; Zelzer, S; Fuchs, D; McIntyre, R S; Kapfhammer, H P; Reininghaus, E Z

    2015-02-01

    Oxidative and nitrosative stress are implicated in the pathogenesis of uni- and bipolar disorder. Herein we primarily sought to characterize markers of oxidative/nitrosative stress during euthymia in adults with bipolar disorder (BD). Oxidative markers were further evaluated in this BD sample in synopsis with excess overweight or obesity and/or comorbid metabolic syndrome (MetS). Peripheral markers of oxidative stress [i.e. thiobarbituric acid reactive substance, (TBARS), malondialdehyde (MDA), and carbonyl proteins] and antioxidant markers [e.g. total antioxidative capacity (TAC), superoxide dismutase (SOD), glutathione S-transferase (GST)] were obtained in a cohort of euthymic adults with BD (N=113) and compared to healthy controls (CG) (N=78). Additionally, anthropometric measures included the body mass index (BMI) [kg/m(2)], waist and hip circumference [cm], waist-to-hip-ratio (WHR), waist to height ratio (WtHR) as well as the IDF-defined MetS. The major finding was a significantly decreased TAC in BD compared to the CG (p<0.01; BD: M 1.18, SD 0.47; CG: M 1.39, SD 0.49). MDA was significantly and TBARS by trend higher in the CG compared to the euthymic bipolar test persons (MDA: p<0.01, BD: M 0.70, SD 0.18; CG: M 0.81, SD 0.25; TBARS: p<0.1, BD: M 0.78, SD 0.28; CG: M 0.76, SD 0.30). The antioxidative enzyme GST was significantly elevated in both patients and controls (BD: M 298.24, SD 133.02; CG: M 307.27 SD 118.18). Subgroup analysis revealed that the CG with concurrent MetS and obesity had significantly elevated TAC when compared to CG without concurrent MetS (p<0.05, no MetS: M 1.33, SD 0.50; MetS: M 1.67, SD 0.32), as well as persons with BD with or without current MetS (no MetS: M 1.18, SD 0.44; MetS: M 1.15, SD 0.49). Significant correlations between GST and anthropometric variables were found in male study participants. Multivariate analysis indicated a significant gender effect concerning TBARS values in all patients and CG (p<0.01, females: M 0.73, SD 0.29; males: M 0.83, SD 0.28). Euthymic bipolar adults exhibit peripheral evidence of a disturbed biosignature of oxidative stress and antioxidative defense. Male test persons showed significantly higher peripheral markers of oxidative stress than women- female sex may exert protective effects. Furthermore, the biosignature of oxidative stress obtained herein was more pronounced in males with concurrent metabolic disorders. Our results further extend knowledge by introducing the moderating influence of gender and obesity on oxidative stress and BD. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  7. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers.

    PubMed

    Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc

    2016-03-09

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO(x)) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β(mono)  =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β(bis) =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of 'through-space' tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.

  8. Disorder-derived, strong tunneling attenuation in bis-phosphonate monolayers

    NASA Astrophysics Data System (ADS)

    Pathak, Anshuma; Bora, Achyut; Liao, Kung-Ching; Schmolke, Hannah; Jung, Antje; Klages, Claus-Peter; Schwartz, Jeffrey; Tornow, Marc

    2016-03-01

    Monolayers of alkyl bisphosphonic acids (bisPAs) of various carbon chain lengths (C4, C8, C10, C12) were grown on aluminum oxide (AlO x ) surfaces from solution. The structural and electrical properties of these self-assembled monolayers (SAMs) were compared with those of alkyl monophosphonic acids (monoPAs). Through contact angle (CA) and Kelvin-probe (KP) measurements, ellipsometry, and infrared (IR) and x-ray photoelectron (XPS) spectroscopies, it was found that bisPAs form monolayers that are relatively disordered compared to their monoPA analogs. Current-voltage (J-V) measurements made with a hanging Hg drop top contact show tunneling to be the prevailing transport mechanism. However, while the monoPAs have an observed decay constant within the typical range for dense monolayers, β mono  =  0.85  ±  0.03 per carbon atom, a surprisingly high value, β bis  =  1.40  ±  0.05 per carbon atom, was measured for the bisPAs. We attribute this to a strong contribution of ‘through-space’ tunneling, which derives from conformational disorder in the monolayer due to strong interactions of the distal phosphonic acid groups; they likely form a hydrogen-bonding network that largely determines the molecular layer structure. Since bisPA SAMs attenuate tunnel currents more effectively than do the corresponding monoPA SAMs, they may find future application as gate dielectric modification in organic thin film devices.

  9. Vitamin B12-responsive neuropathies: A case series.

    PubMed

    Solomon, Lawrence R

    2016-05-01

    Neuropathies often accompany vitamin B12 deficiency. Since many neuropathies are linked to oxidative stress and since B12 has both antioxidant and neurotrophic properties, B12 may also be effective treatment in non-deficient subjects. Thus, the characteristics and predictors of B12-responsive neuropathies and their relationship to disorders associated with increased oxidative stress (oxidant risks) were examined. Retrospective review of 78 subjects with neurological abnormalities treated with B12 and evaluated by the measurement of B12 and the B12-dependent metabolites, methylmalonic acid (MMA), and homocysteine. Sixty-five subjects had neurological improvement (83%), including 35 with other known causes of neuropathy. Only two responders had B12-responsive macrocytosis. Pretherapy B12, MMA, and homocysteine values were normal in 72, 33 and 54% of responders, with all three normal in 23%. Moreover, B12 therapy did not significantly decrease elevated MMA and homocysteine levels in 20 and 37%, respectively, of responders tested but did decrease both metabolites in 75% of evaluable non-responders. At least one oxidant risk was present in 41 of the 46 responders with normal B12 levels (89%). Oral therapy was effective, but parenteral B12 improved responses in four subjects. B12-responsive neuropathies are thus (1) common even when confounding disorders are present; (2) dissociated from the presence of hematological abnormalities; (3) dissociated from the presence of B12-responsive metabolical abnormalities; and (4) associated with the presence of oxidant risks when B12 levels are normal. Since no predictors of responses to B12 therapy were identified, empiric trials with parenteral B12 should be considered in appropriate subjects.

  10. An in vitro metabolomics approach to identify hepatotoxicity biomarkers in human L02 liver cells treated with pekinenal, a natural compound.

    PubMed

    Shi, Jiexia; Zhou, Jing; Ma, Hongyue; Guo, Hongbo; Ni, Zuyao; Duan, Jin'ao; Tao, Weiwei; Qian, Dawei

    2016-02-01

    An in vitro cell metabolomics study was performed on human L02 liver cells to investigate the toxic biomarkers of pekinenal from the herb Euphorbia pekinensis Rupr. Pekinenal significantly induced L02 cell damage, which was characterised by necrosis and apoptosis. Metabolomics combined with data pattern recognition showed that pekinenal significantly altered the profiles of more than 1299 endogenous metabolites with variable importance in the projection (VIP) > 1. Further, screening correlation coefficients between the intensities of all metabolites and the extent of L02 cell damage (MTT) identified 12 biomarker hits: ten were downregulated and two were upregulated. Among these hits, LysoPC(18:1(9Z)/(11Z)), PC(22:0/15:0) and PC(20:1(11Z)/14:1(9Z)) were disordered, implying the initiation of inflammation and cell damage. Several fatty acids (FAs) (3-hydroxytetradecanedioic acid, pivaloylcarnitine and eicosapentaenoyl ethanolamide) decreased due to fatty acid oxidation. Dihydroceramide and Cer(d18:0/14:0) were also altered and are associated with apoptosis. Additional examination of the levels of intracellular reactive oxygen species (ROS) and two eicosanoids (PGE2, PGF2α) in the cell supernatant confirmed the fatty acid oxidation and arachidonic acid metabolism pathways, respectively. In summary, cell metabolomics is a highly efficient approach for identifying toxic biomarkers and helping understand toxicity mechanisms and predict herb-induced liver injury.

  11. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes.

    PubMed

    Yu, Hea Min; Chung, Hyo Kyun; Kim, Koon Soon; Lee, Jae Min; Hong, Jun Hwa; Park, Kang Seo

    2017-11-04

    Adipocytes are involved in many metabolic disorders. It was recently reported that phosphodiesterase type 5 (PDE5) is expressed in human adipose tissue. In addition, PDE5 inhibitors have been shown to improve insulin sensitivity in humans. However, the mechanism underlying the role of PDE5 inhibitors as an insulin sensitizer remains largely unknown. The present study was undertaken to investigate the role of the PDE5 inhibitor udenafil in insulin signaling in adipocytes and whether this is mediated through the regulation of mitochondrial function. To study the mechanism underlying the insulin sensitizing action of PDE5 inhibitors, we evaluated quantitative changes in protein or mRNA levels of mitochondrial oxidative phosphorylation (OxPhos) complex, oxygen consumption rate (OCR), and fatty acid oxidation with varying udenafil concentrations in 3T3-L1 cells. Our cell study suggested that udenafil enhanced the insulin signaling pathway in 3T3-L1 cells. Following udenafil treatment, basal mitochondrial OCR, maximal OxPhos capacity, and OxPhos gene expression significantly increased. Finally, we examined whether udenafil can affect the fatty acid oxidation process. Treatment of 3T3-L1 cells with udenafil (10 and 20 μM) significantly increased fatty acid oxidation rate in a dose-dependent manner. In addition, the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) significantly increased. We demonstrated that the PDE5 inhibitor udenafil enhances insulin sensitivity by improving mitochondrial function in 3T3-L1 cells. This might be the mechanism underlying the PDE5 inhibitor-enhanced insulin signaling in adipocytes. This also suggests that udenafil may provide benefit in the treatment of type 2 diabetes and other related cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Protecting the BBB Endothelium against Cigarette Smoke-Induced Oxidative Stress Using Popular Antioxidants: Are they really beneficial?

    PubMed Central

    Kaisar, Mohammad Abul; Prasad, Shikha; Cucullo, Luca

    2015-01-01

    Blood Brain Barrier (BBB) exposed to realistic concentrations (comparable to a chronic heavy smoker) of Cigarette Smoke Extract (CSE) triggers a strong endothelial inflammatory which can lead to the onset of neurological disorders. The involvement of Reactive Oxygen Species (ROS) in this inflammatory cascade is evident from the up-regulation of nuclear factor erythroid 2 related factor 2 (Nrf-2), a transcription factor involved in anti-oxidant response signaling in CSE exposed endothelial cells. We have shown that pre-treatment with α-tocopherol and/or ascorbic acid is highly protective for the BBB, thus suggesting that, prophylactic administration of antioxidants can reduce CSE and/or inflammatory-dependent BBB damage. We have assessed and ranked the protective effects of 5 popular OTC antioxidants (Coenzyme Q10, Melatonin, Glutathione, Lipoic acid and Resveratrol) against CSE-induced BBB endothelial damage using hCMEC/D3 cells. The analysis of pro-inflammatory cytokines release by ELISA revealed that, resveratrol, lipoic acid melatonin and Co-Q10 inhibited the BBB endothelial release of pro-inflammatory cytokines IL-6 & IL-8, reduced (not Co-Q10) CSE-induced up-regulation of Platelet Endothelial Cell Adhesion Molecule -1 (PECAM-1), Vascular Endothelial Cell Adhesion Molecule-1 (VCAM-1) & E-selectin and inhibited monocytes-endothelial cell adhesion. The anti-inflammatory effects correlated with the anti-oxidative protection endowed by these compounds as evidenced by upregulation of NADPH: Quinone Oxidoreductase 1 (NQO1) and reduced cellular oxidative stress. CSE-induced release of Vascular Endothelial Growth Factor (VEGF) was inhibited by all tested compounds although the effect was not strictly dose-dependent. Further in vivo studies are required to validate our results and expand our current study to include combinatorial treatments. PMID:26410779

  13. Surface and Internal Structure of Pristine Presolar Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda, M.; Bernatowicz, Thomas J.

    2005-01-01

    Silicon carbide is the most well-studied type of presolar grain. Isotope measurements of thousands [1,2] and structural data from over 500 individual grains have been reported [3]. The isotope data indicate that approximately 98% originated in asymptotic giant branch stars and 2% in supernovae. Although tens of different polytypes of SiC are known to form synthetically, only two polytypes have been reported for presolar grains. Daulton et al. [3] found that for SiC grains isolated from Murchison by acid treatments, 79.4% are 3C cubic beta-SiC, 2.7% are 2H hexagonal alpha-SiC, 17.1% are intergrowths of and , and 0.9% are heavily disordered. They report that the occurrence of only the and polytypes is consistent with the observed range of condensation temperatures of circumstellar dust for carbon stars. Further constraint on the formation and subsequent alteration of the grains can be obtained from studies of the surfaces and interior structure of grains in pristine form, i.e., prepared without acid treatments [4,5]. The acid treatments remove surface coatings, produce etch pits around defect sites and could remove some subgrains. Surface oxides have been predicted by theoretical modeling as a survival mechanism for SiC grains exposed to the hot oxidizing solar nebula [6]. Scanning electron microscopy studies of pristine SiC shows some evidence for the existence of oxide and organic coatings [4]. We report herein on transmission electron microscopy studies of the surface and internal structure of two pristine SiC grains, including definitive evidence of an oxide rim on one grain, and the presence of internal TiC and AlN grains.

  14. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood-brain barrier function in wild-type mice.

    PubMed

    Takechi, Ryusuke; Pallebage-Gamarallage, Menuka M; Lam, Virginie; Giles, Corey; Mamo, John C

    2013-06-19

    Emerging evidence suggests that disturbances in the blood-brain barrier (BBB) may be pivotal to the pathogenesis and pathology of vascular-based neurodegenerative disorders. Studies suggest that heightened systemic and central inflammations are associated with BBB dysfunction. This study investigated the effect of the anti-inflammatory nutraceuticals garlic extract-aged (GEA), alpha lipoic acid (ALA), niacin, and nicotinamide (NA) in a murine dietary-induced model of BBB dysfunction. C57BL/6 mice were fed a diet enriched in saturated fatty acids (SFA, 40% fat of total energy) for nine months to induce systemic inflammation and BBB disturbances. Nutraceutical treatment groups included the provision of either GEA, ALA, niacin or NA in the positive control SFA-group and in low-fat fed controls. Brain parenchymal extravasation of plasma derived immunoglobulin G (IgG) and large macromolecules (apolipoprotein (apo) B lipoproteins) measured by quantitative immunofluorescent microscopy, were used as markers of disturbed BBB integrity. Parenchymal glial fibrillar acidic protein (GFAP) and cyclooxygenase-2 (COX-2) were considered in the context of surrogate markers of neurovascular inflammation and oxidative stress. Total anti-oxidant status and glutathione reductase activity were determined in plasma. Brain parenchymal abundance of IgG and apoB lipoproteins was markedly exaggerated in mice maintained on the SFA diet concomitant with significantly increased GFAP and COX-2, and reduced systemic anti-oxidative status. The nutraceutical GEA, ALA, niacin, and NA completely prevented the SFA-induced disturbances of BBB and normalized the measures of neurovascular inflammation and oxidative stress. The anti-inflammatory nutraceutical agents GEA, ALA, niacin, or NA are potent inhibitors of dietary fat-induced disturbances of BBB induced by systemic inflammations.

  15. Propolis ameliorates tumor nerosis factor-α, nitric oxide levels, caspase-3 and nitric oxide synthase activities in kainic acid mediated excitotoxicity in rat brain.

    PubMed

    Swamy, Mummedy; Suhaili, Dian; Sirajudeen, K N S; Mustapha, Zulkarnain; Govindasamy, Chandran

    2014-01-01

    Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA). Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant. The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA. Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

  16. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  17. Novel Directions for Diabetes Mellitus Drug Discovery

    PubMed Central

    Maiese, Kenneth; Chong, Zhao Zhong; Shang, Yan Chen; Wang, Shaohui

    2012-01-01

    Introduction Diabetes mellitus impacts almost 200 million individuals worldwide and leads to debilitating complications. New avenues of drug discovery must target the underlying cellular processes of oxidative stress, apoptosis, autophagy, and inflammation that can mediate multi-system pathology during diabetes mellitus. Areas Covered We examine novel directions for drug discovery that involve the β-nicotinamide adenine dinucleotide (NAD+) precursor nicotinamide, the cytokine erythropoietin, the NAD+-dependent protein histone deacetylase SIRT1, the serine/threonine-protein kinase mammalian target of rapamycin (mTOR), and the wingless pathway. Implications for the targeting of these pathways that oversee gluconeogenic genes, insulin signaling and resistance, fatty acid beta-oxidation, inflammation, and cellular survival are presented. Expert Opinion Nicotinamide, erythropoietin, and the downstram pathways of SIRT1, mTOR, forkhead transcription factors, and wingless signaling offer exciting prospects for novel directions of drug discovery for the treatment of metabolic disorders. Future investigations must dissect the complex relationship and fine modulation of these pathways for the successful translation of robust reparative and regenerative strategies against diabetes mellitus and the complications of this disorder. PMID:23092114

  18. L-carnitine--metabolic functions and meaning in humans life.

    PubMed

    Pekala, Jolanta; Patkowska-Sokoła, Bozena; Bodkowski, Robert; Jamroz, Dorota; Nowakowski, Piotr; Lochyński, Stanisław; Librowski, Tadeusz

    2011-09-01

    L-Carnitine is an endogenous molecule involved in fatty acid metabolism, biosynthesized within the human body using amino acids: L-lysine and L-methionine, as substrates. L-Carnitine can also be found in many foods, but red meats, such as beef and lamb, are the best choices for adding carnitine into the diet. Good carnitine sources also include fish, poultry and milk. Essentially, L-carnitine transports the chains of fatty acids into the mitochondrial matrix, thus allowing the cells to break down fat and get energy from the stored fat reserves. Recent studies have started to shed light on the beneficial effects of L-carnitine when used in various clinical therapies. Because L-carnitine and its esters help reduce oxidative stress, they have been proposed as a treatment for many conditions, i.e. heart failure, angina and weight loss. For other conditions, such as fatigue or improving exercise performance, L-carnitine appears safe but does not seem to have a significant effect. The presented review of the literature suggests that continued studies are required before L-carnitine administration could be recommended as a routine procedure in the noted disorders. Further research is warranted in order to evaluate the biochemical, pharmacological, and physiological determinants of the response to carnitine supplementation, as well as to determine the potential benefits of carnitine supplements in selected categories of individuals who do not have fatty acid oxidation defects.

  19. Anti-inflammatory activities of aqueous extract of Mesona procumbens in experimental mice.

    PubMed

    Huang, Guan-Jhong; Liao, Jung-Chun; Chiu, Chuan-Sung; Huang, Shyh-Shyun; Lin, Tsung-Hui; Deng, Jeng-Shyan

    2012-04-01

    Mesona procumbens is consumed as a herbal drink and jelly-type dessert in Taiwan. The aim of this study was to determine the mechanism of anti-inflammatory activities of the aqueous extract of M. procumbens (AMP) using the λ-carrageenin (Carr)-induced mouse paw oedema model. The fingerprint chromatogram of AMP was obtained by high-performance liquid chromatography (HPLC) analysis. To investigate the anti-inflammatory mechanism of AMP, the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) and the level of malondialdehyde (MDA) in paw oedema were monitored. Serum nitric oxide (NO), tumour necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were also evaluated. The fingerprint chromatogram from HPLC indicated that AMP contained protocatechuic acid, chlorogenic acid, vanillic acid and caffeic acid. In the anti-inflammatory test, AMP decreased paw oedema after Carr administration and increased the CAT, SOD and GPx activities and decreased the MDA level in paw oedema at 5 h after Carr injection. AMP also affected the serum NO, TNF-α and IL-1β levels at 5 h after Carr injection. Western blotting revealed that AMP decreased the expression of Carr-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Mesona procumbens has the potential to provide a therapeutic approach to inflammation-associated disorders. Copyright © 2011 Society of Chemical Industry.

  20. Effects of high-fat diets on hepatic fatty acid oxidation in the rat. Isolation of rat liver peroxisomes by vertical-rotor centrifugation by using a self-generated, iso-osmotic, Percoll gradient.

    PubMed Central

    Neat, C E; Thomassen, M S; Osmundsen, H

    1981-01-01

    1. Rat liver peroxisomal fractions were isolated in iso-osmotic Percoll gradients by using vertical-rotor centrifugation. The fractions obtained with rats given various dietary treatments were characterized. 2. The effect on peroxisomal beta-oxidation of feeding 15% by wt. of dietary fat for 3 weeks was investigated. High-fat diets caused induction of peroxisomal beta-oxidation, but diets rich in very-long-chain mono-unsaturated fatty acids produced a more marked induction. 3. Peroxisomal beta-oxidation induced by diets rich in very-long-chain mono-unsaturated fatty acids can oxidize such acids. Trans-isomers of mono-unsaturated fatty acids are oxidized at rates that are faster than, or similar to, those obtained with corresponding cis-isomers. 4. Rates of oxidation of [14-14C]erucic acid by isolated rat hepatocytes isolated from rats fed on high-fat diets increased with the time on those diets in a fashion very similar to that previously reported for peroxisomal beta-oxidation [see Neat, Thomassen & Osmundsen (1980) Biochem, J. 186, 369-371]. 5. Total liver capacities for peroxisomal beta-oxidation (expressed as acetyl groups produced per min) were estimated to range from 10 to 30% of mitochondrial capacities, depending on dietary treatment and fatty acid substrate. A role is proposed for peroxisomal beta-oxidation in relation to the metabolism of fatty acids that are poorly oxidized by mitochondrial beta-oxidation, and, in general, as regards oxidation of fatty acids during periods of sustained high hepatic influx of fatty acids. PMID:6272750

  1. 46 CFR 153.1011 - Changing containment systems and hoses to and from alkylene oxide service.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reactive with alkylene oxides: (1) Non-oxidizing mineral acids (e.g. hydrochloric, phosphoric); (2) Sulfuric acid; (3) Nitric acid; (4) Organic acids (e.g. acetic, formic); (5) Halogenated organic acids (e.g... condition with no heavy rust accumulations or traces of previous cargoes; (2) No alkylene oxide is loaded...

  2. 46 CFR 153.1011 - Changing containment systems and hoses to and from alkylene oxide service.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... reactive with alkylene oxides: (1) Non-oxidizing mineral acids (e.g. hydrochloric, phosphoric); (2) Sulfuric acid; (3) Nitric acid; (4) Organic acids (e.g. acetic, formic); (5) Halogenated organic acids (e.g... condition with no heavy rust accumulations or traces of previous cargoes; (2) No alkylene oxide is loaded...

  3. 46 CFR 153.1011 - Changing containment systems and hoses to and from alkylene oxide service.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... reactive with alkylene oxides: (1) Non-oxidizing mineral acids (e.g. hydrochloric, phosphoric); (2) Sulfuric acid; (3) Nitric acid; (4) Organic acids (e.g. acetic, formic); (5) Halogenated organic acids (e.g... condition with no heavy rust accumulations or traces of previous cargoes; (2) No alkylene oxide is loaded...

  4. 46 CFR 153.1011 - Changing containment systems and hoses to and from alkylene oxide service.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reactive with alkylene oxides: (1) Non-oxidizing mineral acids (e.g. hydrochloric, phosphoric); (2) Sulfuric acid; (3) Nitric acid; (4) Organic acids (e.g. acetic, formic); (5) Halogenated organic acids (e.g... condition with no heavy rust accumulations or traces of previous cargoes; (2) No alkylene oxide is loaded...

  5. 46 CFR 153.1011 - Changing containment systems and hoses to and from alkylene oxide service.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... reactive with alkylene oxides: (1) Non-oxidizing mineral acids (e.g. hydrochloric, phosphoric); (2) Sulfuric acid; (3) Nitric acid; (4) Organic acids (e.g. acetic, formic); (5) Halogenated organic acids (e.g... condition with no heavy rust accumulations or traces of previous cargoes; (2) No alkylene oxide is loaded...

  6. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    NASA Astrophysics Data System (ADS)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  7. Plasma fatty acid profile in depressive disorder resembles insulin resistance state.

    PubMed

    Vareka, Tomas; Vecka, Marek; Jirak, Roman; Tvrzicka, Eva; Macasek, Jaroslav; Zak, Ales; Zeman, Miroslav

    2012-01-01

    Depressive disorder is related to an increased risk of type 2 diabetes mellitus (DM2) and cardiovascular disease (CVD). Insulin resistance (IR), connected with altered fatty acid (FA) composition, namely with decreased proportion of polyunsaturated FA could participate in these associations. The aim of the study was to investigate the composition of FA in plasma cholesterol esters (CE) and phosphatidylcholine (PC) as well as indices of insulin resistance and oxidative stress in the patients with depressive disorder. Parameters of lipid and glucose homeostasis, concentrations of FA in plasma cholesteryl esters (CE) and phosphatidylcholine (PC) and conjugated dienes in LDL were investigated in a group of 47 patients (9M/38F) with depression and compared with 47 control persons (16M/31F). Delta-9 desaturase (D9D) and D6D desaturase were estimated as product to precursor fatty acid ratios. In depressive patients increased concentrations of palmitoleic acid and total monounsaturated FA with decreased proportion of total polyunsaturated FA n-6 (PUFA n-6) (all p<0.05) in CE were found, while in PC increased proportion of saturated FA was observed (p<0.05). Moreover, index of D6D activity was significantly increased in PC and CE (p<0.05). Concomitantly, in depressive patients higher levels of plasma triacylglycerols (p<0.05), conjugated dienes in LDL (p<0.001) and HOMA index of IR (p<0.05) were found. Esterified FA composition of depressive patients revealed changes, similar to those, usually observed in insulin resistance. Dysregulation of FA could participate in the pathogenesis of depression and be associated with an increased risk of CVD and DM2.

  8. Neurodegeneration from mitochondrial insufficiency: nutrients, stem cells, growth factors, and prospects for brain rebuilding using integrative management.

    PubMed

    Kidd, Parris M

    2005-12-01

    Degenerative brain disorders (neurodegeneration) can be frustrating for both conventional and alternative practitioners. A more comprehensive, integrative approach is urgently needed. One emerging focus for intervention is brain energetics. Specifically, mitochondrial insufficiency contributes to the etiopathology of many such disorders. Electron leakages inherent to mitochondrial energetics generate reactive oxygen free radical species that may place the ultimate limit on lifespan. Exogenous toxins, such as mercury and other environmental contaminants, exacerbate mitochondrial electron leakage, hastening their demise and that of their host cells. Studies of the brain in Alzheimer's and other dementias, Down syndrome, stroke, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, Friedreich's ataxia, aging, and constitutive disorders demonstrate impairments of the mitochondrial citric acid cycle and oxidative phosphorylation (OXPHOS) enzymes. Imaging or metabolic assays frequently reveal energetic insufficiency and depleted energy reserve in brain tissue in situ. Orthomolecular nutrients involved in mitochondrial metabolism provide clinical benefit. Among these are the essential minerals and the B vitamin group; vitamins E and K; and the antioxidant and energetic cofactors alpha-lipoic acid (ALA), ubiquinone (coenzyme Q10; CoQ10), and nicotinamide adenine dinucleotide, reduced (NADH). Recent advances in the area of stem cells and growth factors encourage optimism regarding brain regeneration. The trophic nutrients acetyl L-carnitine (ALCAR), glycerophosphocholine (GPC), and phosphatidylserine (PS) provide mitochondrial support and conserve growth factor receptors; all three improved cognition in double-blind trials. The omega-3 fatty acid docosahexaenoic acid (DHA) is enzymatically combined with GPC and PS to form membrane phospholipids for nerve cell expansion. Practical recommendations are presented for integrating these safe and well-tolerated orthomolecular nutrients into a comprehensive dietary supplementation program for brain vitality and productive lifespan.

  9. Mercury exposure, nutritional deficiencies and metabolic disruptions may affect learning in children

    PubMed Central

    Dufault, Renee; Schnoll, Roseanne; Lukiw, Walter J; LeBlanc, Blaise; Cornett, Charles; Patrick, Lyn; Wallinga, David; Gilbert, Steven G; Crider, Raquel

    2009-01-01

    Among dietary factors, learning and behavior are influenced not only by nutrients, but also by exposure to toxic food contaminants such as mercury that can disrupt metabolic processes and alter neuronal plasticity. Neurons lacking in plasticity are a factor in neurodevelopmental disorders such as autism and mental retardation. Essential nutrients help maintain normal neuronal plasticity. Nutritional deficiencies, including deficiencies in the long chain polyunsaturated fatty acids eicosapentaenoic acid and docosahexaenoic acid, the amino acid methionine, and the trace minerals zinc and selenium, have been shown to influence neuronal function and produce defects in neuronal plasticity, as well as impact behavior in children with attention deficit hyperactivity disorder. Nutritional deficiencies and mercury exposure have been shown to alter neuronal function and increase oxidative stress among children with autism. These dietary factors may be directly related to the development of behavior disorders and learning disabilities. Mercury, either individually or in concert with other factors, may be harmful if ingested in above average amounts or by sensitive individuals. High fructose corn syrup has been shown to contain trace amounts of mercury as a result of some manufacturing processes, and its consumption can also lead to zinc loss. Consumption of certain artificial food color additives has also been shown to lead to zinc deficiency. Dietary zinc is essential for maintaining the metabolic processes required for mercury elimination. Since high fructose corn syrup and artificial food color additives are common ingredients in many foodstuffs, their consumption should be considered in those individuals with nutritional deficits such as zinc deficiency or who are allergic or sensitive to the effects of mercury or unable to effectively metabolize and eliminate it from the body. PMID:19860886

  10. Unique plasma metabolomic signatures of individuals with inherited disorders of long-chain fatty acid oxidation

    PubMed Central

    McCoin, Colin S.; Piccolo, Brian D.; Knotts, Trina A.; Matern, Dietrich; Vockley, Jerry; Gillingham, Melanie B.; Adams, Sean H.

    2016-01-01

    Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been reported. We utilized untargeted metabolomics to characterize plasma metabolites in 12 overnight-fasted individuals with FAOD (10 LCHAD, 2 CPT2) and 11 healthy age-, sex-, and body mass index (BMI)-matched controls, with the caveat that individuals with FAOD consume a low-fat diet supplemented with medium-chain triglycerides (MCT) while matched controls consume a typical American diet. 832 metabolites were identified in plasma, and partial least squared-discriminant analysis (PLS-DA) identified 114 non-acylcarnitine variables that discriminated FAOD subjects and controls. FAOD individuals had significantly higher triglycerides and lower specific phosphatidylethanolamines, ceramides and sphingomyelins. Differences in phosphatidylcholines were also found but the directionality differed by species. Further, there were few differences in non-lipid metabolites indicating the metabolic impact of FAOD specifically on lipid pathways. This analysis provides evidence that LCHAD/CPT2 deficiency significantly alters complex lipid pathway flux. This metabolic signature may provide powerful clinical tools capable of confirming or diagnosing FAOD, even in subjects with a mild phenotype, and provide clues regarding the biochemical and metabolic impact of FAOD that could be relevant to the etiology of FAOD symptoms. PMID:26907176

  11. Nursing sickness in the mink--a metabolic mystery or a familiar foe?

    PubMed

    Rouvinen-Watt, Kirsti

    2003-07-01

    Nursing sickness, the largest single cause of mortality in adult female mink (Mustela vison), is an example of a metabolic disorder, which develops when the demands for lactation require extensive mobilization of body energy reserves. The condition is characterized by progressive weight loss, emaciation, and dehydration with high concentrations of glucose and insulin in the blood. Morbidity due to nursing sickness can be as high as 15% with mortality around 8%, but the incidence is known to vary from year to year. Stress has been shown to trigger the onset of the disease and old females and females with large litters are most often affected. Increasing demand for gluconeogenesis from amino acids due to heavy milk production may be a predisposing factor. Glucose metabolism is inextricably linked to that of protein and fats. In obesity (or lipodystrophy), the ability of adipose tissue to buffer the daily influx of nutrients is overwhelmed (or absent), interfering with insulin-mediated glucose disposal and leading to insulin resistance. Polyunsaturated fatty acids of the n-3 family play an important role in modulating insulin signalling and glucose uptake by peripheral tissue. The increasing demand on these fatty acids for milk fat synthesis towards late lactation may result in deficiency in the lactating female, thus impairing glucose disposal. It is suggested that the underlying cause of mink nursing sickness is the development of acquired insulin resistance with 3 contributing key elements: obesity (or lipodystrophy), n-3 fatty acid deficiency, and high protein oxidation rate. It is recommended that mink breeder females be kept in moderate body condition during fall and winter to avoid fattening or emaciation. A dietary n-3 fatty acid supplement during the lactation period may be beneficial for improved glycemic control. Lowering of dietary protein reduces (oxidative) stress and improves water balance in the nursing females and may, therefore, prevent the development and help in the management of nursing sickness. It is also surmised that other, thus far unexplained, metabolic disorders seen in male and female mink may be related to acquired insulin resistance.

  12. Oxidative Stress and Nucleic Acid Oxidation in Patients with Chronic Kidney Disease

    PubMed Central

    Sung, Chih-Chien; Hsu, Yu-Chuan; Lin, Yuh-Feng

    2013-01-01

    Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies. PMID:24058721

  13. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression in Jurkat Cells.

    PubMed

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-08-28

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells.

  14. Trichloroethylene and Its Oxidative Metabolites Enhance the Activated State and Th1 Cytokine Gene Expression inJurkat Cells

    PubMed Central

    Pan, Yao; Wei, Xuetao; Hao, Weidong

    2015-01-01

    Trichloroethylene (TCE) is an occupational and ubiquitous environmental contaminant, and TCE exposure will increase the risk of autoimmune diseases and allergic diseases. T cells play an important role in the pathogenesis of TCE-related immune disorders, but the effect of TCE and its oxidative metabolites, trichloroacetic acid (TCA) and dichloroacetic acid (DCA), on the activation of human T cells is still unknown. In this study, Jurkat cells were pre-treated with TCE, TCA and DCA overnight and then stimulated with phorbol 12-myristate 13-acetate and ionomycin for another 4, 8 and 24 hours. IL-2 secretion was detected by ELISA; the expressions of CD25 and CD69 were tested by flow cytometry; and IFN-γ and IL-2 mRNA expression levels were investigated by real-time PCR. The results showed that TCE and its oxidative metabolites, TCA and DCA, significantly enhanced IL-2 releasing and the expression of T cell activation markers, CD25 and CD69. Consistent with this result, these compounds markedly up-regulated the expression levels of IFN-γ and IL-2 mRNA. Collectively, these findings suggest that TCE and its metabolites, TCA and DCA, might enhance the activation of T cells and disrupt various activities of peripheral T cells. PMID:26343699

  15. Long Chain Fatty Acid Acylated Derivatives of Quercetin-3-O-Glucoside as Antioxidants to Prevent Lipid Oxidation

    PubMed Central

    Warnakulasuriya, Sumudu N.; Ziaullah; Rupasinghe, H.P. Vasantha

    2014-01-01

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G. PMID:25384198

  16. Long chain fatty acid acylated derivatives of quercetin-3-o-glucoside as antioxidants to prevent lipid oxidation.

    PubMed

    Warnakulasuriya, Sumudu N; Ziaullah; Rupasinghe, H P Vasantha

    2014-11-06

    Flavonoids have shown promise as natural plant-based antioxidants for protecting lipids from oxidation. It was hypothesized that their applications in lipophilic food systems can be further enhanced by esterification of flavonoids with fatty acids. Quercetin-3-O-glucoside (Q3G) was esterified individually with six selected long chain fatty acids: stearic acid (STA), oleic acid (OLA), linoleic acid (LNA), α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and decosahexaenoic acid (DHA), using Candida antarctica B lipase as the biocatalyst. The antioxidant activity of esterified flavonoids was evaluated using lipid oxidation model systems of poly-unsaturated fatty acids-rich fish oil and human low density lipoprotein (LDL), in vitro. In the oil-in-water emulsion, Q3G esters exhibited 50% to 100% inhibition in primary oxidation and 30% to 75% inhibition in secondary oxidation. In bulk oil, Q3G esters did not provide considerable protection from lipid oxidation; however, Q3G demonstrated more than 50% inhibition in primary oxidation. EPA, DHA and ALA esters of Q3G showed significantly higher inhibition in Cu2+- and peroxyl radical-induced LDL oxidation in comparison to Q3G.

  17. Tang-Nai-Kang Alleviates Pre-diabetes and Metabolic Disorders and Induces a Gene Expression Switch toward Fatty Acid Oxidation in SHR.Cg-Leprcp/NDmcr Rats

    PubMed Central

    Li, Linyi; Yoshitomi, Hisae; Wei, Ying; Qin, Lingling; Zhou, Jingxin; Xu, Tunhai; Wu, Xinli; Zhou, Tian; Sun, Wen; Guo, Xiangyu; Wu, Lili; Wang, Haiyan; Zhang, Yan; Li, Chunna; Liu, Tonghua; Gao, Ming

    2015-01-01

    Increased energy intake and reduced physical activity can lead to obesity, diabetes and metabolic syndrome. Transcriptional modulation of metabolic networks has become a focus of current drug discovery research into the prevention and treatment of metabolic disorders associated with energy surplus and obesity. Tang-Nai-Kang (TNK), a mixture of five herbal plant extracts, has been shown to improve abnormal glucose metabolism in patients with pre-diabetes. Here, we report the metabolic phenotype of SHR.Cg-Lepr cp/NDmcr (SHR/cp) rats treated with TNK. Pre-diabetic SHR/cp rats were randomly divided into control, TNK low-dose (1.67 g/kg) and TNK high-dose (3.24 g/kg) groups. After high-dose treatment for 2 weeks, the serum triglycerides and free fatty acids in SHR/cp rats were markedly reduced compared to controls. After 3 weeks of administration, the high dose of TNK significantly reduced the body weight and fat mass of SHR/cp rats without affecting food consumption. Serum fasting glucose and insulin levels in the TNK-treated groups decreased after 6 weeks of treatment. Furthermore, TNK-treated rats exhibited obvious improvements in glucose intolerance and insulin resistance. The improved glucose metabolism may be caused by the substantial reduction in serum lipids and body weight observed in SHR/cp rats starting at 3 weeks of TNK treatment. The mRNA expression of NAD+-dependent deacetylase sirtuin 1 (SIRT1) and genes related to fatty acid oxidation was markedly up-regulated in the muscle, liver and adipose tissue after TNK treatment. Furthermore, TNK promoted the deacetylation of two well-established SIRT1 targets, PPARγ coactivator 1α (PGC1α) and forkhead transcription factor 1 (FOXO1), and induced the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) in different tissues. These observations suggested that TNK may be an alternative treatment for pre-diabetes and metabolic syndrome by inducing a gene expression switch toward fat oxidation through the activation of SIRT1 and AMPK signaling. PMID:25874615

  18. Evaluation of Oxidant/Antioxidant Status and Cytokine Levels in Patients with Cannabis Use Disorder.

    PubMed

    Bayazit, Huseyin; Selek, Salih; Karababa, Ibrahim Fatih; Cicek, Erdinc; Aksoy, Nurten

    2017-08-31

    Cannabis is the most commonly used illegal drug in the world and it has several adverse effects such as anxiety, panic reactions and psychotic symptoms. In this study, we aimed to evaluate oxidant, anti-oxidant status and cytokine levels in individuals with cannabis use disorder. Thirty-four patients with cannabis use disorder and 34 healthy controls were enrolled to the study. Serum total antioxidant status, total oxidant status and cytokine levels were investigated in patients with cannabis use disorder and healthy controls. We found increased levels of total oxidant status, oxidative stress index and interleukin (IL) 1β, IL-6, IL-8, and tumor necrosis factor (TNF) α in individuals with cannabis dependency compared to healthy people. When we compared total antioxidant status, IL-12, and interferon (IFN) γ levels, there were no differences in both groups. There was positive correlation between IL-6 and total oxidant status, oxidative stress index levels. The oxidative balance of individuals with cannabis use disorder was impaired and they had higher levels of IL-1β, IL-6, IL-8, and TNF-α, which is a pro-inflammatory cytokine and indicates increased inflammation compared to healthy controls. Thus, these findings suggest that cannabis increased inflammation and impaired the oxidative balance.

  19. Evaluation of dynamic thiol/disulphide homeostasis as a novel indicator of oxidative stress in maple syrup urine disease patients under treatment.

    PubMed

    Zubarioglu, Tanyel; Kiykim, Ertugrul; Cansever, Mehmet Serif; Neselioglu, Salim; Aktuglu-Zeybek, Cigdem; Erel, Ozcan

    2017-02-01

    Maple syrup urine disease (MSUD) is a metabolic disorder that is caused by deficiency of branched-chain α-keto acid dehydrogenase complex. Although accumulation of toxic metabolites is associated with neurotoxicity, mechanisms underlying brain damage remain unclear. Aim of this study is to evaluate thiol/disulphide homeostasis as a novel indicator of oxidative stress in MSUD patients under treatment. Twenty patients with MSUD and 20 healthy individuals were included in study. All patients were under regular follow-up and had a good metabolic control. Serum native thiol (-SH), total thiol (-SH + -S-S-), disulphide (-S-S) levels were measured in all subjects. Disulphide/native thiol, disulphide/total thiol and native thiol/total thiol ratios were calculated from these values. Simultaneous blood sampling for plasma quantitative amino acid analysis was performed in both groups. Any significant difference was not observed in -SH, -SH + -S-S-, -S-S levels between two groups. In addition no increase of disulphide/native thiol and disulphide/total thiol ratios was detected in patient group. This study is the first study that evaluates dynamic thiol/disulphide homeostasis as an indicator of oxidative stress in MSUD patients. Among previous studies that were made to determine oxidative stress in treated MSUD patients, this study had the largest sample size also. In recent studies, it was claimed that oxidative stress could be responsible from neurotoxicity even in treated patients. Here, dynamic thiol/disulfide homeostasis status showed that providing good metabolic control in MSUD patients prevent oxidative stress. Under regular follow-up and good compliance with diet, additional antioxidant therapies would possibly not be necessary.

  20. Simultaneous quantification and inhibitory effect on LDL oxidation of the traditional Korean medicine, Leejung-tang

    PubMed Central

    2014-01-01

    Background Leejung-tang (LJT) is a traditional Korean herbal medicine for the treatment of gastrointestinal disorders. In this study, we performed quantification analysis of five marker components, liquiritin (1), ginsenoside Rg1 (2), ginsenoside Rb1 (3), glycyrrhizin (4), and 6-gingerol (5) in LJT using a high performance liquid chromatography-photodiode array (HPLC–PDA). In addition, we investigated the inhibitory effect on low-density lipoprotein (LDL) oxidation by the LJT sample. Methods Compounds 1–5 were separated within 35 min using a Gemini C18 column. The mobile phase used gradient elution with 1.0% (v/v) aqueous acetic acid (A) and 1.0% (v/v) acetic acid in acetonitrile (B). The flow rate was 1.0 mL/min and the detector was a photodiode array (PDA) set at 203 nm, 254 nm, and 280 nm. The inhibitory effect on LDL oxidation conduct an experiment on thiobarbituric acid reactive substance (TBARS) assay, relative electrophoretic mobility (REM) assay, and electrophoresis of ApoB fragmentation of LJT. Results Calibration curves of compounds 1–5 showed good linearity (r2 ≥0.9995) in different concentration ranges. The recoveries of compounds 1–5 were in the range of 98.90–103.39%, with relative standard deviations (RSD) below 3.0%. The RSDs (%) of intra-day and inter-day precision were 0.10–1.08% and 0.29–1.87%, respectively. The inhibitory effect of LJT on Cu2+-induced LDL oxidation was defined by TBARS assay (IC50: 165.7 μg/mL) and REM of oxLDL (decrease of 50% at 127.7 μg/mL). Furthermore LJT reduced the fragmentation of ApoB of oxLDL in a dose-dependent manner. Conclusions The established HPLC-PDA method will be helpful to improve quality control of LJT. In addition, LJT is a potential LDL oxidation inhibitor. PMID:24383717

  1. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis.

    PubMed

    Koo, Seung-Hoi

    2013-09-01

    Liver plays a central role in the biogenesis of major metabolites including glucose, fatty acids, and cholesterol. Increased incidence of obesity in the modern society promotes insulin resistance in the peripheral tissues in humans, and could cause severe metabolic disorders by inducing accumulation of lipid in the liver, resulting in the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD, which is characterized by increased fat depots in the liver, could precede more severe diseases such as non-alcoholic steatohepatitis (NASH), cirrhosis, and in some cases hepatocellular carcinoma. Accumulation of lipid in the liver can be traced by increased uptake of free fatty acids into the liver, impaired fatty acid beta oxidation, or the increased incidence of de novo lipogenesis. In this review, I would like to focus on the roles of individual pathways that contribute to the hepatic steatosis as a precursor for the NAFLD.

  2. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids*

    PubMed Central

    Yagita, Yuichi; Shinohara, Kyoko; Abe, Yuichi; Nakagawa, Keiko; Al-Owain, Mohammed; Alkuraya, Fowzan S.; Fujiki, Yukio

    2017-01-01

    Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA β-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA β-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent β-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder. PMID:27899449

  3. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  4. SAXS fingerprints of aldehyde dehydrogenase oligomers.

    PubMed

    Tanner, John J

    2015-12-01

    Enzymes of the aldehyde dehydrogenase (ALDH) superfamily catalyze the nicotinamide adenine dinucleotide-dependent oxidation of aldehydes to carboxylic acids. ALDHs are important in detoxification of aldehydes, amino acid metabolism, embryogenesis and development, neurotransmission, oxidative stress, and cancer. Mutations in genes encoding ALDHs cause metabolic disorders, including alcohol flush reaction (ALDH2), Sjögren-Larsson syndrome (ALDH3A2), hyperprolinemia type II (ALDH4A1), γ-hydroxybutyric aciduria (ALDH5A1), methylmalonic aciduria (ALDH6A1), pyridoxine dependent epilepsy (ALDH7A1), and hyperammonemia (ALDH18A1). We previously reported crystal structures and small-angle X-ray scattering (SAXS) analyses of ALDHs exhibiting dimeric, tetrameric, and hexameric oligomeric states (Luo et al., Biochemistry 54 (2015) 5513-5522; Luo et al., J. Mol. Biol. 425 (2013) 3106-3120). Herein I provide the SAXS curves, radii of gyration, and distance distribution functions for the three types of ALDH oligomer. The SAXS curves and associated analysis provide diagnostic fingerprints that allow rapid identification of the type of ALDH oligomer that is present in solution. The data sets provided here serve as a benchmark for characterizing oligomerization of ALDHs.

  5. Effects of Astaxanthin and Docosahexaenoic-Acid-Acylated Astaxanthin on Alzheimer's Disease in APP/PS1 Double-Transgenic Mice.

    PubMed

    Che, Hongxia; Li, Qian; Zhang, Tiantian; Wang, Dandan; Yang, Lu; Xu, Jie; Yanagita, Teruyoshi; Xue, Changhu; Chang, Yaoguang; Wang, Yuming

    2018-05-16

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder with the characteristics of senile plaques, neuroinflammation, neurofibrillary tangles, and destruction of synapse structure stability. Previous studies have verified the protective effects of astaxanthin (AST). However, whether synthesized docosahexaenoic-acid-acylated AST diesters (AST-DHA) could delay AD pathogenesis remains unclear. In the present study, APP/PSEN1 (APP/PS1) double-transgenic mice were administrated with AST and AST-DHA for 2 months. The results of radial 8-arm maze and Morris water maze tests showed that AST-DHA exerted more significant effects than AST in enhancing learning and memory levels of APP/PS1 mice. Further mechanical studies suggested that AST-DHA was superior to AST in regulating the parameters of oxidative stress, reducing tau hyperphosphorylation, suppressing neuroinflammation, and regulating inflammasome expression and activation in APP/PS1 mice. The findings suggested that AST-DHA attenuated cognitive disorders by reducing pathological features in APP/PS1 mice, suggesting that AST-DHA might be a potential therapeutic agent for AD.

  6. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation.

    PubMed

    Otto, D A; Chatzidakis, C; Kasziba, E; Cook, G A

    1985-10-01

    Under certain incubation conditions 5-(tetradecyloxy)-2-furoic acid (TOFA) stimulated the oxidation of palmitate by hepatocytes, as observed by others. A decrease in malonyl-CoA concentration accompanied the stimulation of oxidation. Under other conditions, however, TOFA inhibited fatty acid oxidation. The observed effects of TOFA depended on the TOFA and fatty acid concentrations, the cell concentration, the time of TOFA addition relative to the addition of fatty acid, and the nutritional state of the animal (fed or starved). The data indicate that only under limited incubation conditions may TOFA be used as an inhibitor of fatty acid synthesis without inhibition of fatty acid oxidation. When rat liver mitochondria were preincubated with TOFA, ketogenesis from palmitate was slightly inhibited (up to 20%) at TOFA concentrations that were less than that of CoA, but the inhibition became almost complete (up to 90%) when TOFA was greater than or equal to the CoA concentration. TOFA had only slight or no inhibitory effects on the oxidation of palmitoyl-CoA, palmitoyl(-)carnitine, or butyrate. Since TOFA can be converted to TOFyl-CoA, the data suggest that the inhibition of fatty acid oxidation from palmitate results from the decreased availability of CoA for extramitochondrial activation of fatty acids. These data, along with previous data of others, indicate that inhibition of fatty acid oxidation by CoA sequestration is a common mechanism of a group of carboxylic acid inhibitors. A general caution is appropriate with regard to the interpretation of results when using TOFA in studies of fatty acid oxidation.

  7. Monolayer-directed Assembly and Magnetic Properties of FePt Nanoparticles on Patterned Aluminum Oxide

    PubMed Central

    Yildirim, Oktay; Gang, Tian; Kinge, Sachin; Reinhoudt, David N.; Blank, Dave H.A.; van der Wiel, Wilfred G.; Rijnders, Guus; Huskens, Jurriaan

    2010-01-01

    FePt nanoparticles (NPs) were assembled on aluminum oxide substrates, and their ferromagnetic properties were studied before and after thermal annealing. For the first time, phosph(on)ates were used as an adsorbate to form self-assembled monolayers (SAMs) on alumina to direct the assembly of NPs onto the surface. The Al2O3 substrates were functionalized with aminobutylphosphonic acid (ABP) or phosphonoundecanoic acid (PNDA) SAMs or with poly(ethyleneimine) (PEI) as a reference. FePt NPs assembled on all of these monolayers, but much less on unmodified Al2O3, which shows that ligand exchange at the NPs is the most likely mechanism of attachment. Proper modification of the Al2O3 surface and controlling the immersion time of the modified Al2O3 substrates into the FePt NP solution resulted in FePt NPs assembly with controlled NP density. Alumina substrates were patterned by microcontact printing using aminobutylphosphonic acid as the ink, allowing local NP assembly. Thermal annealing under reducing conditions (96%N2/4%H2) led to a phase change of the FePt NPs from the disordered FCC phase to the ordered FCT phase. This resulted in ferromagnetic behavior at room temperature. Such a process can potentially be applied in the fabrication of spintronic devices. PMID:20480007

  8. Impact of lithium alone or in combination with haloperidol on oxidative stress parameters and cell viability in SH-SY5Y cell culture.

    PubMed

    Gawlik-Kotelnicka, Oliwia; Mielicki, Wojciech; Rabe-Jabłońska, Jolanta; Lazarek, Jerry; Strzelecki, Dominik

    2016-02-01

    It has been reported that lithium may inhibit lipid peroxidation and protein oxidation. Lithium salts also appear to stimulate cell proliferation, increase neurogenesis, and delay cell death. Oxidative stress and neurodegeneration may play an important role in the pathophysiology of bipolar disorder and the disease course thereof. The aim of this research is to estimate the influence of lithium (alone and in combination with haloperidol) on the parameters of oxidative stress and viability of SH-SY5Y cell lines in neutral and pro-oxidative conditions. The evaluated oxidative stress parameter was lipid peroxidation. The viability of the cell lines was measured utilising the MTT test. In neutral conditions, higher levels of thiobarbituric acid reactive substances were observed in those samples which contained both haloperidol and lithium than in other samples. However, these differences were not statistically significant. Cell viability was significantly higher in therapeutic lithium samples than in the controls; samples of haloperidol alone as well as those of haloperidol with lithium did not differ from controls. The results of our study may indicate that lithium possess neuroprotective properties that may be partly due to antioxidative effects. The combination of lithium and haloperidol may generate increased oxidative stress.

  9. Protective effects of dietary glycine and glutamic acid toward the toxic effects of oxidized mustard oil in rabbits.

    PubMed

    Zeb, Alam; Rahman, Saleem Ur

    2017-01-25

    The protective role of glycine and glutamic acid against the toxic effects of oxidized oil was studied for the first time. Mustard seed oil was thermally oxidized and characterized for quality characteristics and polyphenolic composition using reversed phase HPLC-DAD. Significant changes in the quality characteristics occurred with thermal oxidation. Fourteen polyphenolic compounds were identified and quantified in oils. Quercetin-3-glucoside, quercetin-3-feruloylsophoroside, catechin, quercetin-3-rutinoside, quercetin-3,7-diglucoside, sinapic acid and vanillic acid hexoside were the major compounds in the fresh and oxidized oil. Oxidized, un-oxidized mustard oils, glycine and glutamic acid were given to rabbits alone or in combination. The biochemical responses were studied in terms of haematological and biochemical parameters and histopathology. It has been observed that biochemical and haematological parameters were adversely affected by the oxidized oil, while supplementation of both amino acids was beneficial in normalizing these parameters. Both amino acids alone have no significant effects, however, oxidized oil affected the liver by enhancing fat accumulation, causing hepatitis, reactive Kupffer cells and necrosis. The co-administration of oxidized oils with glycine or glutamic acid revealed significant recovery of the liver structure and function. In conclusion, glycine or glutamic acid is beneficial and protective against food toxicity and can be considered as an ameliorative food supplement.

  10. [Studies on the oxidation reaction of octanol-2 with nitric acid by infrared spectroscopy].

    PubMed

    Zhang, G; Zhao, G; Wang, Y; Zhang, Q; Zhang, S; Lu, F

    1998-04-01

    In this paper, the reaction process of oxidation of octanol-2 with nitric acid has been studied by IR spectroscopy. It is found that the main components of non-sapoifiable matter are different in different oxidation degrees. The relation between oxidation products and the amount of nitric acid are investigated,the reaction mechanism has also been studied. Experimental results show that the oxidation process of octanol-2 is as follows: first, octanol-2 is oxidated to octanone-2, or to nitrate, nitrite and nitrile copmpounds, then these compounds are reoxidated to caproic acid in the meantime some by-products, such as valeric, enanthic acids are also found in oxidated products.

  11. Autism: Metabolism, Mitochondria, and the Microbiome

    PubMed Central

    2013-01-01

    New approaches are needed to examine the diverse symptoms and comorbidities of the growing family of neurodevelopmental disorders known as autism spectrum disorder (ASD). ASD originally was thought to be a static, inheritable neurodevelopmental disorder, and our understanding of it is undergoing a major shift. It is emerging as a dynamic system of metabolic and immune anomalies involving many organ systems, including the brain, and environmental exposure. The initial detailed observation and inquiry of patients with ASD and related conditions and the histories of their caregivers and families have been invaluable. How gastrointestinal (GI) factors are related to ASD is not yet clear. Nevertheless, many patients with ASD have a history of previous antibiotic exposure or hospitalization, GI symptoms, abnormal food cravings, and unique intestinal bacterial populations, which have been proposed to relate to variable symptom severity. In addition to traditional scientific inquiry, detailed clinical observation and recording of exacerbations, remissions, and comorbidities are needed. This article reviews the role that enteric short-chain fatty acids, particularly propionic (also called propanoic) acid, produced from ASD-associated GI bacteria, may play in the etiology of some forms of ASD. Human populations that are partial metabolizers of propionic acid are more common than previously thought. The results from pre-clinical laboratory studies show that propionic acid-treated rats display ASD-like repetitive, perseverative, and antisocial behaviors and seizure. Neurochemical changes, consistent and predictive with findings in ASD patients, including neuroinflammation, increased oxidative stress, mitochondrial dysfunction, glutathione depletion, and altered phospholipid/acylcarnitine profiles, have been observed. Propionic acid has bioactive effects on (1) neurotransmitter systems, (2) intracellular acidification and calcium release, (3) fatty acid metabolism, (4) gap junction gating, (5) immune function, and (6) alteration of gene expression that warrant further exploration. Traditional scientific experimentation is needed to verify the hypothesis that enteric short-chain fatty acids may be a potential environmental trigger in some forms of ASD. Novel collaborative developments in systems biology, particularly examining the role of the microbiome and its effects on host metabolism, immune and mitochondrial function, and gene expression, hold great promise in ASD. PMID:24416709

  12. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology.

    PubMed

    Schubert, Klaus Oliver; Föcking, Melanie; Cotter, David R

    2015-09-01

    Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis

    PubMed Central

    Chun, Sunwoo; Bamba, Takeshi; Suyama, Tatsuya; Ishijima, Tomoko; Fukusaki, Eiichiro; Abe, Keiko; Nakai, Yuji

    2016-01-01

    A high phosphorus (HP) diet causes disorders of renal function, bone metabolism, and vascular function. We previously demonstrated that DNA microarray analysis is an appropriate method to comprehensively evaluate the effects of a HP diet on kidney dysfunction such as calcification, fibrillization, and inflammation. We reported that type IIb sodium-dependent phosphate transporter is significantly up-regulated in this context. In the present study, we performed DNA microarray analysis to investigate the effects of a HP diet on the liver, which plays a pivotal role in energy metabolism. DNA microarray analysis was performed with total RNA isolated from the livers of rats fed a control diet (containing 0.3% phosphorus) or a HP diet (containing 1.2% phosphorus). Gene Ontology analysis of differentially expressed genes (DEGs) revealed that the HP diet induced down-regulation of genes involved in hepatic amino acid catabolism and lipogenesis, while genes related to fatty acid β-oxidation process were up-regulated. Although genes related to fatty acid biosynthesis were down-regulated in HP diet-fed rats, genes important for the elongation and desaturation reactions of omega-3 and -6 fatty acids were up-regulated. Concentrations of hepatic arachidonic acid and eicosapentaenoic acid were increased in HP diet-fed rats. These essential fatty acids activate peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor for fatty acid β-oxidation. Evaluation of the upstream regulators of DEGs using Ingenuity Pathway Analysis indicated that PPARα was activated in the livers of HP diet-fed rats. Furthermore, the serum concentration of fibroblast growth factor 21, a hormone secreted from the liver that promotes fatty acid utilization in adipose tissue as a PPARα target gene, was higher (p = 0.054) in HP diet-fed rats than in control diet-fed rats. These data suggest that a HP diet enhances energy expenditure through the utilization of free fatty acids released via lipolysis of white adipose tissue. PMID:27187182

  14. Fasting rapidly increases fatty acid oxidation in white adipose tissue of young broiler chickens.

    PubMed

    Torchon, Emmanuelle; Ray, Rodney; Hulver, Matthew W; McMillan, Ryan P; Voy, Brynn H

    2017-01-02

    Upregulating the fatty acid oxidation capacity of white adipose tissue in mice protects against diet-induced obesity, inflammation and insulin resistance. Part of this capacity results from induction of brown-like adipocytes within classical white depots, making it difficult to determine the oxidative contribution of the more abundant white adipocytes. Avian genomes lack a gene for uncoupling protein 1 and are devoid of brown adipose cells, making them a useful model in which to study white adipocyte metabolism in vivo. We recently reported that a brief (5 hour) period of fasting significantly upregulated many genes involved in mitochondrial and peroxisomal fatty acid oxidation pathways in white adipose tissue of young broiler chickens. The objective of this study was to determine if the effects on gene expression manifested in increased rates of fatty acid oxidation. Abdominal adipose tissue was collected from 21 day-old broiler chicks that were fasted for 3, 5 or 7 hours or fed ad libitum (controls). Fatty acid oxidation was determined by measuring and summing 14 CO 2 production and 14 C-labeled acid-soluble metabolites from the oxidation of [1- 14 C] palmitic acid. Fasting induced a progressive increase in complete fatty acid oxidation and citrate synthase activity relative to controls. These results confirm that fatty acid oxidation in white adipose tissue is dynamically controlled by nutritional status. Identifying the underlying mechanism may provide new therapeutic targets through which to increase fatty acid oxidation in situ and protect against the detrimental effects of excess free fatty acids on adipocyte insulin sensitivity.

  15. Polymeric peptide pigments with sequence-encoded properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah

    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties overmore » a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.« less

  16. Bile acids: regulation of apoptosis by ursodeoxycholic acid

    PubMed Central

    Amaral, Joana D.; Viana, Ricardo J. S.; Ramalho, Rita M.; Steer, Clifford J.; Rodrigues, Cecília M. P.

    2009-01-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases. PMID:19417220

  17. Bile acids: regulation of apoptosis by ursodeoxycholic acid.

    PubMed

    Amaral, Joana D; Viana, Ricardo J S; Ramalho, Rita M; Steer, Clifford J; Rodrigues, Cecília M P

    2009-09-01

    Bile acids are a group of molecular species of acidic steroids with peculiar physical-chemical and biological characteristics. At high concentrations they become toxic to mammalian cells, and their presence is pertinent in the pathogenesis of several liver diseases and colon cancer. Bile acid cytoxicity has been related to membrane damage, but also to nondetergent effects, such as oxidative stress and apoptosis. Strikingly, hydrophilic ursodeoxycholic acid (UDCA), and its taurine-conjugated form (TUDCA), show profound cytoprotective properties. Indeed, these molecules have been described as potent inhibitors of classic pathways of apoptosis, although their precise mode of action remains to be clarified. UDCA, originally used for cholesterol gallstone dissolution, is currently considered the first choice therapy for several forms of cholestatic syndromes. However, the beneficial effects of both UDCA and TUDCA have been tested in other experimental pathological conditions with deregulated levels of apoptosis, including neurological disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Here, we review the role of bile acids in modulating the apoptosis process, emphasizing the anti-apoptotic effects of UDCA and TUDCA, as well as their potential use as novel and alternate therapeutic agents for the treatment of apoptosis-related diseases.

  18. Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy

    PubMed Central

    Fillmore, N; Mori, J; Lopaschuk, G D

    2014-01-01

    Heart disease is a leading cause of death worldwide. In many forms of heart disease, including heart failure, ischaemic heart disease and diabetic cardiomyopathies, changes in cardiac mitochondrial energy metabolism contribute to contractile dysfunction and to a decrease in cardiac efficiency. Specific metabolic changes include a relative increase in cardiac fatty acid oxidation rates and an uncoupling of glycolysis from glucose oxidation. In heart failure, overall mitochondrial oxidative metabolism can be impaired while, in ischaemic heart disease, energy production is impaired due to a limitation of oxygen supply. In both of these conditions, residual mitochondrial fatty acid oxidation dominates over mitochondrial glucose oxidation. In diabetes, the ratio of cardiac fatty acid oxidation to glucose oxidation also increases, although primarily due to an increase in fatty acid oxidation and an inhibition of glucose oxidation. Recent evidence suggests that therapeutically regulating cardiac energy metabolism by reducing fatty acid oxidation and/or increasing glucose oxidation can improve cardiac function of the ischaemic heart, the failing heart and in diabetic cardiomyopathies. In this article, we review the cardiac mitochondrial energy metabolic changes that occur in these forms of heart disease, what role alterations in mitochondrial fatty acid oxidation have in contributing to cardiac dysfunction and the potential for targeting fatty acid oxidation to treat these forms of heart disease. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24147975

  19. Significant role of Mn(III) sites in e(g)(1) configuration in manganese oxide catalysts for efficient artificial water oxidation.

    PubMed

    Indra, Arindam; Menezes, Prashanth W; Schuster, Felix; Driess, Matthias

    2015-11-01

    Development of efficient bio-inspired water oxidation system with transition metal oxide catalyst has been considered as the one of the most challenging task in the recent years. As the oxygen evolving center of photosystem II consists of Mn4CaO5 cluster, most of the water oxidation study was converged to build up manganese oxide based catalysts. Here we report the synthesis of efficient artificial water oxidation catalysts by transferring the inactive manganese monooxide (MnO) under highly oxidizing conditions with ceric ammonium nitrate (CAN) and ozone (O3). MnO was partially oxidized to form mixed-valent manganese oxide (MnOx) with CAN whereas completely oxidized to mineral phase of ε-MnO2 (Akhtenskite) upon treatment of O3 in acidic solution, which we explore first time as a water oxidation catalyst. Chemical water oxidation, as well as the photochemical water oxidation in the presence of sacrificial electron acceptor and photosensitizer with the presented catalysts were carried out that followed the trends: MnOx>MnO2>MnO. Structural and activity correlation reveals that the presence of larger extent of Mn(III) in MnOx is the responsible factor for higher activity compared to MnO2. Mn(III) species in octahedral system with eg(1) configuration furnishes and facilitates the Mn-O and Mn-Mn bond enlargement with required structural flexibility and disorder in the manganese oxide structure which indeed facilitates water oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Delta-aminolevulinate dehydratase activity and oxidative stress markers in preeclampsia.

    PubMed

    de Lucca, Leidiane; Rodrigues, Fabiane; Jantsch, Letícia B; Kober, Helena; Neme, Walter S; Gallarreta, Francisco M P; Gonçalves, Thissiane L

    2016-12-01

    Preeclampsia is an important pregnancy-specific multisystem disorder characterized by the onset of hypertension and proteinuria. It is of unknown etiology and involves serious risks for the pregnant women and fetus. One of the main factors involved in the pathophysiology of preeclampsia is oxidative stress, where excess free radicals produce harmful effects, including damage to macromolecules such as lipids, proteins and DNA. In addition, the sulfhydryl delta-aminolevulinate dehydratase enzyme (δ-ALA-D) that is part of the heme biosynthetic pathway in pro-oxidant conditions can be inhibited, which may result in the accumulation of 5-aminolevulinic acid (ALA), associated with the overproduction of free radicals, suggesting it to be an indirect marker of oxidative stress. As hypertensive pregnancy complications are a major cause of morbidity and mortality maternal and fetal where oxidative stress appears to be an important factor involved in preeclampsia, the aim of this study was to evaluate the activity of δ-ALA-D and classic oxidative stress markers in the blood of pregnant women with mild and severe preeclampsia. The analysis and quantification of the following oxidative stress markers were performed: thiobarbituric acid-reactive species (TBARS); presence of protein and non-protein thiol group; quantification of vitamin C; Catalase and δ-ALA--D activities in samples of blood of pregnant women with mild preeclampsia (n=25), with severe preeclampsia (n=30) and in a control group of healthy pregnant women (n=30). TBARS was significantly higher in women with preeclampsia, while the presence of thiol groups, levels of vitamin C, catalase and δ-ALA-D activity were significantly lower in groups of pregnant women with preeclampsia compared with healthy women. In addition, the results showed no significant difference between groups of pregnant women with mild and severe preeclampsia. The data suggest a state of increased oxidative stress in pregnant women with preeclampsia compared to healthy pregnant women, which may be related to the complications of this disease. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  1. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  2. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO 2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C 2–C 4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO 2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO 2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au 2C=C=O, along the way to their full oxidation to form CO 2.more » Infrared measurements of Au 2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  3. Clovamide-rich extract from Trifolium pallidum reduces oxidative stress-induced damage to blood platelets and plasma.

    PubMed

    Kolodziejczyk, Joanna; Olas, Beata; Wachowicz, Barbara; Szajwaj, Barbara; Stochmal, Anna; Oleszek, Wieslaw

    2011-09-01

    Numerous plants (including clovers) have been widely used in folk medicine for the treatment of different disorders. This in vitro study was designed to examine the antioxidative effects of the clovamide-rich fraction, obtained from aerial parts of Trifolium pallidum, in the protection of blood platelets and plasma against the nitrative and oxidative damage, caused by peroxynitrite (ONOO(-)). Carbonyl groups and 3-nitrotyrosine in blood platelet and plasma proteins were determined by ELISA tests. Thiol groups level was estimated by using 5,5'-dithio-bis(2-nitro-benzoic acid, DTNB). Plasma lipid peroxidation was measured spectrophotometrically as the production of thiobarbituric acid reactive substances. The results from our work indicate that clovamide-rich T. pallidum extract may reveal the protective properties in the prevention against oxidative stress. The presence of clovamide-rich T. pallidum extract (12.5-100 μg/ml) partly inhibited ONOO(-)-mediated protein carbonylation and nitration. All the used concentrations of T. pallidum extract reduced lipid peroxidation in plasma. The antioxidative action of the tested extract in the protection of blood platelet lipids was less effective; the extract at the lowest final concentration (12.5 μg/ml) had no protective effect against lipid peroxidation. The present results indicate that the extract from T. pallidum is likely to be a source of compounds with the antioxidative properties, useful in the prevention against the oxidative stress-related diseases.

  4. Valeriana officinalis ameliorates vacuous chewing movements induced by reserpine in rats.

    PubMed

    Pereira, Romaiana Picada; Fachinetto, Roselei; de Souza Prestes, Alessandro; Wagner, Caroline; Sudati, Jéssie Haigert; Boligon, Aline Augusti; Athayde, Margareth Linde; Morsch, Vera Maria; Rocha, João Batista Teixeira

    2011-11-01

    Oral movements are associated with important neuropathologies as Parkinson's disease and tardive dyskinesia. However, until this time, there has been no known efficacious treatment, without side effects, for these disorders. Thus, the aim of the present study was to investigate the possible preventive effects of V. officinalis, a phytotherapic that has GABAergic and antioxidant properties, in vacuous chewing movements (VCMs) induced by reserpine in rats. Adult male rats were treated with reserpine (1 mg/kg, s.c.) and/or with V. officinalis (in the drinking water, starting 15 days before the administration of the reserpine). VCMs, locomotor activity and oxidative stress measurements were evaluated. Furthermore, we carried out the identification of valeric acid and gallic acid by HPLC in the V. officinalis tincture. Our findings demonstrated that reserpine caused a marked increase on VCMs and the co-treatment with V. officinalis was able to reduce the intensity of VCM. Reserpine did not induce oxidative stress in cerebral structures (cortex, hippocampus, striatum and substantia nigra). However, a significant positive correlation between DCF-oxidation (an estimation of oxidative stress) in the cortex and VCMs (p < 0.05) was observed. Moreover, a negative correlation between Na(+)K(+)-ATPase activity in substantia nigra and the number of VCMs was observed (p < 0.05). In conclusion, V. officinalis had behavioral protective effect against reserpine-induced VCMs in rats; however, the exact mechanisms that contributed to this effect have not been completely understood.

  5. Plasma Nervonic Acid Is a Potential Biomarker for Major Depressive Disorder: A Pilot Study.

    PubMed

    Kageyama, Yuki; Kasahara, Takaoki; Nakamura, Takemichi; Hattori, Kotaro; Deguchi, Yasuhiko; Tani, Munehide; Kuroda, Kenji; Yoshida, Sumiko; Goto, Yu-Ichi; Inoue, Koki; Kato, Tadafumi

    2018-03-01

    Diagnostic biomarkers of major depressive disorder, bipolar disorder, and schizophrenia are urgently needed, because none are currently available. We performed a comprehensive metabolome analysis of plasma samples from drug-free patients with major depressive disorder (n=9), bipolar disorder (n=6), schizophrenia (n=17), and matched healthy controls (n=19) (cohort 1) using liquid chromatography time-of-flight mass spectrometry. A significant effect of diagnosis was found for 2 metabolites: nervonic acid and cortisone, with nervonic acid being the most significantly altered. The reproducibility of the results and effects of psychotropic medication on nervonic acid were verified in cohort 2, an independent sample set of medicated patients [major depressive disorder (n=45), bipolar disorder (n=71), schizophrenia (n=115)], and controls (n=90) using gas chromatography time-of-flight mass spectrometry. The increased levels of nervonic acid in patients with major depressive disorder compared with controls and patients with bipolar disorder in cohort 1 were replicated in the independent sample set (cohort 2). In cohort 2, plasma nervonic acid levels were also increased in the patients with major depressive disorder compared with the patients with schizophrenia. In cohort 2, nervonic acid levels were increased in the depressive state in patients with major depressive disorder compared with the levels in the remission state in patients with major depressive disorder and the depressive state in patients with bipolar disorder. These results suggested that plasma nervonic acid is a good candidate biomarker for the depressive state of major depressive disorder. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  6. [Anaesthesia in patients with maple syrup urine disease. Case report and perioperative anaesthetic management].

    PubMed

    Haberstich, P; Kindler, C H; Schürch, M

    2010-10-01

    Maple syrup urine disease is a rare autosomal-recessive metabolic disorder caused by a deficit of oxidative decarboxylation of branched-chain amino acids. First symptoms appear in the neonatal period. Without treatment the disease is characterized by rapid progression of neurological symptoms. During stressful situations, such as infection or surgery, patients may experience severe ketoacidosis, rapid neurological deterioration and hypoglycemia. The perioperative management of a 26-year-old man with maple syrup urine disease is described, a review of the disease is given and anaesthesia-related implications are discussed.

  7. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  8. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442) is...

  9. Fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C.

    PubMed

    Lin, Zhaoyu; Liu, Fei; Shi, Peiliang; Song, Anying; Huang, Zan; Zou, Dayuan; Chen, Qin; Li, Jianxin; Gao, Xiang

    2018-02-26

    Changes in metabolic pathway preferences are key events in the reprogramming process of somatic cells to induced pluripotent stem cells (iPSCs). The optimization of metabolic conditions can enhance reprogramming; however, the detailed underlying mechanisms are largely unclear. By comparing the gene expression profiles of somatic cells, intermediate-phase cells, and iPSCs, we found that carnitine palmitoyltransferase (Cpt)1b, a rate-limiting enzyme in fatty acid oxidation, was significantly upregulated in the early stage of the reprogramming process. Mouse embryonic fibroblasts isolated from transgenic mice carrying doxycycline (Dox)-inducible Yamanaka factor constructs were used for reprogramming. Various fatty acid oxidation-related metabolites were added during the reprogramming process. Colony counting and fluorescence-activated cell sorting (FACS) were used to calculate reprogramming efficiency. Fatty acid oxidation-related metabolites were measured by liquid chromatography-mass spectrometry. Seahorse was used to measure the level of oxidative phosphorylation. We found that overexpression of cpt1b enhanced reprogramming efficiency. Furthermore, palmitoylcarnitine or acetyl-CoA, the primary and final products of Cpt1-mediated fatty acid oxidation, also promoted reprogramming. In the early reprogramming process, fatty acid oxidation upregulated oxidative phosphorylation and downregulated protein kinase C activity. Inhibition of protein kinase C also promoted reprogramming. We demonstrated that fatty acid oxidation promotes reprogramming by enhancing oxidative phosphorylation and inhibiting protein kinase C activity in the early stage of the reprogramming process. This study reveals that fatty acid oxidation is crucial for the reprogramming efficiency.

  10. Oxidation of Alkyl-substituted Cyclic Hydrocarbons by a Nocardia during Growth on n-Alkanes

    PubMed Central

    Davis, J. B.; Raymond, R. L.

    1961-01-01

    Nocardia 107-332, a soil isolate, oxidizes short-chain alkyl-substituted cyclic hydrocarbons to cyclic acids while growing on n-alkanes. Cyclic acids are produced also from relatively long-chain alkyl-substituted cyclics such as n-nonylbenzene or n-dodecylbenzene which alone support growth in a mineral-salts medium. ω-Oxidation of the alkyl substituents is followed by β-oxidation. It is of particular interest that cyclic acids such as cyclohexaneacetic and phenylacetic with C2 residual carboxylic acid substituents are resistant to further oxidation by the nocardia but cyclic acids with C1 or C3 substituents are readily oxidized and utilized for growth. The specificity of microbial oxidations is demonstrated by the conversion of p-isopropyltoluene (p-cymene) to p-isopropylbenzoic acid in n-alkane, growth-supported nocardia cultures. PMID:13720182

  11. Sleep disorders and the prevalence of asymptomatic nocturnal acid and non-acid reflux.

    PubMed

    Herdman, Christine; Marzio, Dina Halegoua-De; Shah, Paurush; Denuna-Rivera, Susie; Doghramji, Karl; Cohen, Sidney; Dimarino, Anthony J

    2013-01-01

    Nocturnal acid reflux is associated with symptomatic and asymptomatic sleep arousals, leading to fragmented sleep. The frequency and influence of acid reflux in patients with various forms of insomnia has not been reported. The aim of this study was to quantify nocturnal acid and nonacid reflux in patients with primary sleep disorders as previously diagnosed by polysomnography. THIRTY ONE SUBJECTS WERE STUDIED: (A) 9 subjects with a polysomnographically diagnosed sleep disorder (1 with restless legs syndrome, 4 with narcolepsy, 4 with periodic limb movement disorder); (B) 12 subjects with primary insomnia (PI) and unrevealing polysomnography; and (C) 10 controls without disturbed sleep. All subjects underwent a physical examination and 24 h transnasal pH and impedance monitoring to detect acid and non-acid reflux. The 21 subjects with fragmented sleep due to a primary sleep disorder had significantly more recumbent acid exposure (>1.2% of time) as compared with control subjects (33% versus 0%). When fragmented sleep subjects were divided into two groups, 17% of PI subjects and 55% of subjects with a diagnosed sleep disorder had significant recumbent acid exposure (P=0.009). Likewise, the median recumbent nonacid events were increased in the sleep disordered group (P=0.011). This study indicates that patients with primary sleep disorders have prominent nocturnal acid reflux without symptoms of daytime acid reflux. Acid reflux is most prominent in patients with polysomnographic findings of disturbed sleep as compared to patients with PI; while non acid reflux is increased minimally in these patients.

  12. Why does brain metabolism not favor burning of fatty acids to provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for brain

    PubMed Central

    Schönfeld, Peter; Reiser, Georg

    2013-01-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood–brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain. PMID:23921897

  13. Why does brain metabolism not favor burning of fatty acids to provide energy? Reflections on disadvantages of the use of free fatty acids as fuel for brain.

    PubMed

    Schönfeld, Peter; Reiser, Georg

    2013-10-01

    It is puzzling that hydrogen-rich fatty acids are used only poorly as fuel in the brain. The long-standing belief that a slow passage of fatty acids across the blood-brain barrier might be the reason. However, this has been corrected by experimental results. Otherwise, accumulated nonesterified fatty acids or their activated derivatives could exert detrimental activities on mitochondria, which might trigger the mitochondrial route of apoptosis. Here, we draw attention to three particular problems: (1) ATP generation linked to β-oxidation of fatty acids demands more oxygen than glucose, thereby enhancing the risk for neurons to become hypoxic; (2) β-oxidation of fatty acids generates superoxide, which, taken together with the poor anti-oxidative defense in neurons, causes severe oxidative stress; (3) the rate of ATP generation based on adipose tissue-derived fatty acids is slower than that using blood glucose as fuel. Thus, in periods of extended continuous and rapid neuronal firing, fatty acid oxidation cannot guarantee rapid ATP generation in neurons. We conjecture that the disadvantages connected with using fatty acids as fuel have created evolutionary pressure on lowering the expression of the β-oxidation enzyme equipment in brain mitochondria to avoid extensive fatty acid oxidation and to favor glucose oxidation in brain.

  14. Rapid cycling of reactive nitrogen in the marine boundary layer.

    PubMed

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  15. Nitrous Acid as an Oxidant in Acidic Media

    DTIC Science & Technology

    1979-09-25

    nitroso oxidations were run in sulfuric acid. The Hammett acidity function is used as the abscissa because it conveniently represents the acidity region...oxidation. 13 Consistent with the general mechanism, equations (1)-(3), and in contrast to nitration, phenol nitrosation displays a primary kinetic...oxidized 1(III) + Alc - 104O + C-O (4) with the only route now removing HNO being NO+ + H - H + + 2N0 (5) Apparently while alcohol remains, equation (5

  16. Oxidative stress in uremia: nature, mechanisms, and potential consequences.

    PubMed

    Vaziri, Nosratola D

    2004-09-01

    Oxidative stress has emerged as a constant feature of chronic renal failure (CRF). The presence of oxidative stress in CRF is evidenced by an overabundance of lipid, carbohydrate, and protein oxidation products in the plasma and tissues of uremic patients and animals. We recently have shown that oxidative stress in CRF animals is associated with and, in part, owing to up-regulation of superoxide-producing enzyme, nicotinamide-adenine dinucleotide phosphate (NAD(P)H) oxidase, and down-regulation of superoxide dismutase (SOD). The functional significance of these findings was confirmed by favorable response to administration of the cell-permeable SOD-mimetic agent, tempol, in CRF rats. Oxidative stress in CRF plays an important role in the pathogenesis of the associated hypertension (oxidation of NO and arachidonic acid and vascular remodeling), cardiovascular disease (oxidation of lipoproteins, atherogenesis), neurologic disorders (nitration of brain proteins, oxidation of myelin), anemia (reduction of erythrocyte lifespan), inflammation (nuclear factor kappa B activation), fibrosis, apoptosis, and accelerated aging. The CRF-induced oxidative stress is aggravated by diabetes, uncontrolled hypertension, and autoimmune diseases, which independently increase production of reactive oxygen intermediates, and frequently are associated with CRF. In addition, dialysis treatment (blood interaction with dialyzer membrane and dialysate impurities), acute and chronic infections (blood access infection, hepatitis, and so forth), and excessive parenteral iron administration intensify CRF-associated oxidative stress and its adverse consequences in patients with end-stage renal disease. The problem is compounded by limited intake of fresh fruits and vegetables (K(+) restriction), which contain numerous natural phytochemicals and antioxidant vitamins.

  17. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer's disease and some pro-oxidant induced oxidative stress in rats' brain-in vitro.

    PubMed

    Oboh, Ganiyu; Agunloye, Odunayo M; Akinyemi, Ayodele J; Ademiluyi, Adedayo O; Adefegha, Stephen A

    2013-02-01

    This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO(4), sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO(4), sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.

  18. Mitochondrion-specific antioxidants as drug treatments for Alzheimer disease.

    PubMed

    Palacios, Hector H; Yendluri, Bharat B; Parvathaneni, Kalpana; Shadlinski, Vagif B; Obrenovich, Mark E; Leszek, Jerzy; Gokhman, Dmitry; Gąsiorowski, Kazimierz; Bragin, Valentin; Aliev, Gjumrakch

    2011-03-01

    Age-related dementias such as Alzheimer disease (AD) have been linked to vascular disorders like hypertension, diabetes and atherosclerosis. These risk factors cause ischemia, inflammation, oxidative damage and consequently reperfusion, which is largely due to reactive oxygen species (ROS) that are believed to induce mitochondrial damage. At higher concentrations, ROS can cause cell injury and death which occurs during the aging process, where oxidative stress is incremented due to an accelerated generation of ROS and a gradual decline in cellular antioxidant defense mechanisms. Neuronal mitochondria are especially vulnerable to oxidative stress due to their role in energy supply and use, causing a cascade of debilitating factors such as the production of giant and/or vulnerable young mitochondrion who's DNA has been compromised. Therefore, mitochondria specific antioxidants such as acetyl-L-carnitine and R-alphalipoic acid seem to be potential treatments for AD. They target the factors that damage mitochondria and reverse its effect, thus eliminating the imbalance seen in energy production and amyloid beta oxidation and making these antioxidants very powerful alternate strategies for the treatment of AD.

  19. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid and methylglyoxal

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2012-01-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including pyruvate, oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid plays a central role in the aqueous oxidation of methylglyoxal and it is a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid (20 μM-10 mM) was oxidized by OH radicals, and pyruvic acid and methylglyoxal experimental samples were analyzed using new analytical methods, in order to better understand the formation of SOA from acetic acid and methylglyoxal. Glyoxylic, glycolic, and oxalic acids formed from acetic acid and OH radicals. In contrast to the aqueous OH radical oxidation of methylglyoxal, the aqueous OH radical oxidation of acetic acid did not produce succinic acid and oligomers. This suggests that the methylgloxal-derived oligomers do not form through the acid catalyzed esterification pathway proposed previously. Using results from these experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  20. D-Saccharic acid 1,4-lactone protects diabetic rat kidney by ameliorating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via NF-κB and PKC signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhattacharya, Semantee; Manna, Prasenjit; Gachhui, Ratan

    2013-02-15

    Increasing evidence suggests that oxidative stress is involved in the pathogenesis of diabetic nephropathy (DN) and this can be attenuated by antioxidants. D-Saccharic acid 1,4-lactone (DSL) is known for its detoxifying and antioxidant properties. Our early investigation showed that DSL can ameliorate alloxan (ALX) induced diabetes mellitus and oxidative stress in rats by inhibiting pancreatic β-cell apoptosis. In the present study we, therefore, investigated the protective role of DSL against renal injury in ALX induced diabetic rats. ALX exposure (at a dose of 120 mg/kg body weight, i. p., once) elevated the blood glucose level, serum markers related to renalmore » injury, the production of reactive oxygen species (ROS), and disturbed the intra-cellular antioxidant machineries. Oral administration of DSL (80 mg/kg body weight) restored all these alterations close to normal. In addition, DSL could also normalize the aldose reductase activity which was found to increase in the diabetic rats. Investigating the mechanism of its protective activity, we observed the activation of different isoforms of PKC along with the accumulation of matrix proteins like collagen and fibronectin. The diabetic rats also showed nuclear translocation of NF-κB and increase in the concentration of inflammatory cytokines in the renal tissue. The activation of mitochondria dependent apoptotic pathway was observed in the diabetic rat kidneys. However, treatment of diabetic rats with DSL counteracted all these changes. These findings, for the first time, demonstrated that DSL could ameliorate renal dysfunction in diabetic rats by suppressing the oxidative stress related signalling pathways. - Highlights: ► Sustained hyperglycemia and oxidative stress lead to diabetic renal injury. ► D-saccharic acid 1,4-lactone prevents renal damage in alloxan-induced diabetes. ► It restores intra-cellular antioxidant machineries and kidney apoptosis. ► DSL reduces hyperglycemia-mediated oxidative stress via NF-kB and PKC signaling. ► DSL may act as a beneficial agent in hyperglycemia induced renal disorder.« less

  1. Excitotoxicity in the pathogenesis of neurological and psychiatric disorders: Therapeutic implications.

    PubMed

    Olloquequi, Jordi; Cornejo-Córdova, Elizabeth; Verdaguer, Ester; Soriano, Francesc X; Binvignat, Octavio; Auladell, Carme; Camins, Antoni

    2018-03-01

    Neurological and psychiatric disorders are leading contributors to the global disease burden, having a serious impact on the quality of life of both patients and their relatives. Although the molecular events underlying these heterogeneous diseases remain poorly understood, some studies have raised the idea of common mechanisms involved. In excitotoxicity, there is an excessive activation of glutamate receptors by excitatory amino acids, leading to neuronal damage. Thus, the excessive release of glutamate can lead to a dysregulation of Ca 2+ homeostasis, triggering the production of free radicals and oxidative stress, mitochondrial dysfunction and eventually cell death. Although there is a consensus in considering excitotoxicity as a hallmark in most neurodegenerative diseases, increasing evidence points to the relevant role of this pathological mechanism in other illnesses affecting the central nervous system. Consequently, antagonists of glutamate receptors are used in current treatments or in clinical trials in both neurological and psychiatric disorders. However, drugs modulating other aspects of the excitotoxic mechanism could be more beneficial. This review discusses how excitotoxicity is involved in the pathogenesis of different neurological and psychiatric disorders and the promising strategies targeting the excitotoxic insult.

  2. Effects of hematopoietic stem cell transplantation on acyl-CoA oxidase deficiency: a sibling comparison study

    PubMed Central

    Monuki, Edwin S.; Powers, James; Schwartz, Phillip H.; Watkins, Paul A.; Shi, Yang; Moser, Ann; Shrier, David A.; Waterham, Hans R.; Nugent, Diane J.; Abdenur, Jose E.

    2015-01-01

    Objective Acyl-CoA oxidase (ACOX1) deficiency is a rare disorder of peroxisomal very-long chain fatty acid oxidation. No reports detailing attempted treatment, longitudinal imaging, or neuropathology exist. We describe the natural history of clinical symptoms and brain imaging in two siblings with ACOX1 deficiency, including the younger sibling's response to allogeneic unrelated donor hematopoietic stem cell transplantation (HSCT). Methods We conducted retrospective chart review to obtain clinical history, neuro-imaging, and neuropathology data. ACOX1 genotyping were performed to confirm the disease. In vitro fibroblast and neural stem cell fatty acid oxidation assays were also performed. Results Both patients experienced a fatal neurodegenerative course, with late-stage cerebellar and cerebral gray matter atrophy. Serial brain magnetic resonance imaging in the younger sibling indicated demyelination began in the medulla and progressed rostrally to include the white matter of the cerebellum, pons, midbrain, and eventually subcortical white matter. The successfully engrafted younger sibling had less brain inflammation, cortical atrophy, and neuronal loss on neuroimaging and neuropathology compared to the untreated older sister. Fibroblasts and stem cells demonstrated deficient very long chain fatty acid oxidation. Interpretation Although HSCT did not halt the course of ACOX1 deficiency, it reduced the extent of white matter inflammation in the brain. Demyelination continued because of ongoing neuronal loss, which may be due to inability of transplant to prevent progression of gray matter disease, adverse effects of chronic corticosteroid use to control graft-versus-host disease, or intervention occurring beyond a critical point for therapeutic efficacy. PMID:24619150

  3. Time-course changes in circulating branched-chain amino acid levels and metabolism in obese Yucatan minipig.

    PubMed

    Polakof, Sergio; Rémond, Didier; David, Jérémie; Dardevet, Dominique; Savary-Auzeloux, Isabelle

    2018-06-01

    High-fat high-sucrose diet (HFHS) overfeeding is one of the main factors responsible for the increased prevalence of metabolic disorders. Elevated levels of branched-chain amino acids (BCAAs) have been associated with metabolic dysfunctions, including insulin resistance (IR). The aim of this study was to elucidate whether elevated BCAA levels are the cause or the consequence of IR and to determine the mechanisms and tissues involved in such a phenotype. We performed a 2-mo follow-up on minipigs overfed an HFHS diet and focused on kinetics fasting and postprandial (PP) BCAA levels and BCAA catabolism in key tissues. The study of the fasting BCAA elevation reveals that BCAA accumulation in the plasma compartment is well correlated with IR markers and body weight. Furthermore, the PP excursion of BCAA levels after the last HFHS meal was exacerbated when compared with that of the first meal, suggesting a reduced amino acid oxidation potential. Although only minor changes in BCAA metabolism were observed in liver, muscle, and the visceral adipose tissue, the oxidative deamination potential of the subcutaneous adipose tissue was blunted after 60 d of HFHS feeding. To our knowledge, the present results demonstrated for the first time in a swine model of obesity and IR, the existence of a phenotype related to high-circulating BCAA levels and metabolic dysregulation. The oxidative BCAA capacity reduction specifically in the subcutaneous adipose tissue emerges, at least in the present swine model, as the more plausible metabolic explanation for the elevated blood BCAA phenotype. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cardiac metabolic pathways affected in the mouse model of barth syndrome.

    PubMed

    Huang, Yan; Powers, Corey; Madala, Satish K; Greis, Kenneth D; Haffey, Wendy D; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Javadov, Sabzali; Strauss, Arnold W; Khuchua, Zaza

    2015-01-01

    Cardiolipin (CL) is a mitochondrial phospholipid essential for electron transport chain (ETC) integrity. CL-deficiency in humans is caused by mutations in the tafazzin (Taz) gene and results in a multisystem pediatric disorder, Barth syndrome (BTHS). It has been reported that tafazzin deficiency destabilizes mitochondrial respiratory chain complexes and affects supercomplex assembly. The aim of this study was to investigate the impact of Taz-knockdown on the mitochondrial proteomic landscape and metabolic processes, such as stability of respiratory chain supercomplexes and their interactions with fatty acid oxidation enzymes in cardiac muscle. Proteomic analysis demonstrated reduction of several polypeptides of the mitochondrial respiratory chain, including Rieske and cytochrome c1 subunits of complex III, NADH dehydrogenase alpha subunit 5 of complex I and the catalytic core-forming subunit of F0F1-ATP synthase. Taz gene knockdown resulted in upregulation of enzymes of folate and amino acid metabolic pathways in heart mitochondria, demonstrating that Taz-deficiency causes substantive metabolic remodeling in cardiac muscle. Mitochondrial respiratory chain supercomplexes are destabilized in CL-depleted mitochondria from Taz knockdown hearts resulting in disruption of the interactions between ETC and the fatty acid oxidation enzymes, very long-chain acyl-CoA dehydrogenase and long-chain 3-hydroxyacyl-CoA dehydrogenase, potentially affecting the metabolic channeling of reducing equivalents between these two metabolic pathways. Mitochondria-bound myoglobin was significantly reduced in Taz-knockdown hearts, potentially disrupting intracellular oxygen delivery to the oxidative phosphorylation system. Our results identify the critical pathways affected by the Taz-deficiency in mitochondria and establish a future framework for development of therapeutic options for BTHS.

  5. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. Copyright © 2013 Mosby, Inc. All rights reserved.

  6. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Resveratrol Prevents Ammonia Toxicity in Astroglial Cells

    PubMed Central

    Guerra, Maria Cristina; Leite, Marina Concli; Souza, Diogo Onofre; Gonçalves, Carlos-Alberto; Gottfried, Carmem

    2012-01-01

    Ammonia is implicated as a neurotoxin in brain metabolic disorders associated with hyperammonemia. Acute ammonia toxicity can be mediated by an excitotoxic mechanism, oxidative stress and nitric oxide (NO) production. Astrocytes interact with neurons, providing metabolic support and protecting against oxidative stress and excitotoxicity. Astrocytes also convert excess ammonia and glutamate into glutamine via glutamine synthetase (GS). Resveratrol, a polyphenol found in grapes and red wines, exhibits antioxidant and anti-inflammatory properties and modulates glial functions, such as glutamate metabolism. We investigated the effect of resveratrol on the production of reactive oxygen species (ROS), GS activity, S100B secretion, TNF-α, IL-1β and IL-6 levels in astroglial cells exposed to ammonia. Ammonia induced oxidative stress, decreased GS activity and increased cytokines release, probably by a mechanism dependent on protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways. Resveratrol prevented ammonia toxicity by modulating oxidative stress, glial and inflammatory responses. The ERK and nuclear factor-κB (NF-κB) are involved in the protective effect of resveratrol on cytokines proinflammatory release. In contrast, other antioxidants (e.g., ascorbic acid and trolox) were not effective against hyperammonemia. Thus, resveratrol could be used to protect against ammonia-induced neurotoxicity. PMID:23284918

  8. Oxidative Post-Translational Modifications of an Amyloidogenic Immunoglobulin Light Chain Protein.

    PubMed

    Lu, Yanyan; Jiang, Yan; Prokaeva, Tatiana; Connors, Lawreen H; Costello, Catherine E

    2017-05-01

    Immunoglobulin light chain amyloidosis (AL) is a plasma cell disorder characterized by overproduction and deposition of monoclonal immunoglobulin (Ig) light chains (LC) or variable region fragments as amyloid fibrils in various organs and tissues. Much clinical evidence indicates that patients with AL amyloidosis sustain cardiomyocyte impairment and suffer from oxidative stress. We seek to understand the underlying biochemical pathways whose disruption or amplification during sporadic or sustained disease states leads to harmful physiological consequences and to determine the detailed structures of intermediates and products that serve as signposts for the biochemical changes and represent potential biomarkers. In this study, matrix-assisted laser desorption/ionization mass spectrometry provided extensive evidence for oxidative post-translational modifications (PTMs) of an amyloidogenic Ig LC protein from a patient with AL amyloidosis. Some of the tyrosine residues were heavily mono- or di-chlorinated. In addition, a novel oxidative conversion to a nitrile moiety was observed for many of the terminal aminomethyl groups on lysine side chains. In vitro experiments using model peptides, in-solution oxidation, and click chemistry demonstrated that hypochlorous acid produced by the myeloperoxidase - hydrogen peroxide - chloride system could be responsible for these and other, more commonly observed modifications.

  9. Role of Sirt1 during the ageing process: relevance to protection of synapses in the brain.

    PubMed

    Godoy, Juan A; Zolezzi, Juan M; Braidy, Nady; Inestrosa, Nibaldo C

    2014-12-01

    Ageing is a stochastic process associated with a progressive decline in physiological functions which predispose to the pathogenesis of several neurodegenerative diseases. The intrinsic complexity of ageing remains a significant challenge to understand the cause of this natural phenomenon. At the molecular level, ageing is thought to be characterized by the accumulation of chronic oxidative damage to lipids, proteins and nucleic acids caused by free radicals. Increased oxidative stress and misfolded protein formations, combined with impaired compensatory mechanisms, may promote neurodegenerative disorders with age. Nutritional modulation through calorie restriction has been shown to be effective as an anti-ageing factor, promoting longevity and protecting against neurodegenerative pathology in yeast, nematodes and murine models. Calorie restriction increases the intracellular levels of the essential pyridine nucleotide, nicotinamide adenine dinucleotide (NAD(+)), a co-substrate for the sirtuin 1 (Sirt1, silent mating-type information regulator 2 homolog 1) activity and a cofactor for oxidative phosphorylation and ATP synthesis. Promotion of intracellular NAD(+) anabolism is speculated to induce neuroprotective effects against amyloid-β-peptide (Aβ) toxicity in some models for Alzheimer's disease (AD). The NAD(+)-dependent histone deacetylase, Sirt1, has been implicated in the ageing process. Sirt1 serves as a deacetylase for numerous proteins involved in several cellular pathways, including stress response and apoptosis, and plays a protective role in neurodegenerative disorders, such as AD.

  10. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  11. Breast milk feeding in infants with inherited metabolic disorders other than phenylketonuria - a 10-year single-center experience.

    PubMed

    Pichler, Karin; Michel, Miriam; Zlamy, Manuela; Scholl-Buergi, Sabine; Ralser, Elisabeth; Jörg-Streller, Monika; Karall, Daniela

    2017-04-01

    Published data on breast milk feeding in infants suffering from inherited metabolic disorders (IMDs) other than phenylketonuria (PKU) are limited and described outcome is variable. We aimed to evaluate retrospectively whether breastfeeding and/or breast milk feeding are feasible in infants with IMDs including organic acidemias, fatty acid oxidation disorders, urea cycle disorders, aminoacidopathies or disorders of galactose metabolism. Data on breastfeeding and breast milk feeding as well as monitoring and neurological outcome were collected retrospectively from our database of patients with the mentioned IMD, who were followed in our metabolic center within the last 10 years. Twenty patients were included in the study, who were either breast fed on demand or received expressed breast milk. All the infants were evaluated clinically and biochemically at 2-4-week intervals, with weight gain as the leading parameter to determine metabolic control. Good metabolic control and adequate neurological development were achieved in all patients but one, who experienced the only metabolic crisis observed within the study period. Breast milk feeding with close clinical and biochemical monitoring is feasible in most IMD and should be considered as it offers nutritional and immunological benefits.

  12. Fatty acid-induced mitochondrial uncoupling in adipocytes is not a promising target for treatment of insulin resistance unless adipocyte oxidative capacity is increased.

    PubMed

    Frayn, K N; Langin, D; Karpe, F

    2008-03-01

    The release of fatty acids from white adipose tissue is regulated at several levels. We have examined the suggestion that fatty acid release might be diminished by upregulation of mitochondrial fatty acid oxidation in the adipocyte, through increasing mitochondrial uncoupling. The intrinsic oxidative capacity of white adipose tissue is low, and older studies suggest that there is little fatty acid oxidation in white adipocytes, human or rodent. We have examined data on fatty acid metabolism and O(2) consumption in human white adipose tissue in vivo, and conclude that increasing fatty acid oxidation within the oxidative capacity of the tissue would produce only small changes (a few percent) in fatty acid release. The major locus of control of fatty acid release beyond the stimulation of lipolysis is the pathway of fatty acid esterification, already probably targeted by the thiazolidinedione insulin-sensitising agents. An alternative approach would be to upregulate the mitochondrial capacity of the adipocyte. We review proof-of-concept studies in which the phenotype of the white adipocyte has been changed to resemble that of the brown adipocyte by expression of peroxisome proliferator-activated receptor coactivator-1alpha. This increases oxidative capacity and also leads to fatty acid retention through upregulation of glycerol-3-phosphate production, and hence increased fatty acid re-esterification. We conclude that prevention or treatment of insulin resistance through alteration of adipocyte fatty acid handling will require more than a simple alteration of the activity of mitochondrial beta-oxidation within normal limits.

  13. Oxidation of phenolic acid derivatives by soil and its relevance to allelopathic activity.

    PubMed

    Ohno, T

    2001-01-01

    Previous studies have suggested that phenolic acids from legume green manures may contribute to weed control through allelopathy. The objectives of this study were to investigate the oxidation reactions of phenolic acids in soil and to determine the subsequent effects of oxidation upon phytotoxicity. Soils were reacted for 18 h with 0.25 mmol L(-1) benzoic and cinnamic acid derivative solutions and Mn release from the suspension was used as a marker for phenolic acid oxidation. The extent of oxidation in soil suspensions was in the order of 3,4dihydroxy- > 4-hydroxy-3-methoxy- > 4-hydroxy-approximately 2-hydroxy-substituted benzoic and cinnamic acids. The same ranking was observed for cyclic voltammetry peak currents of the cinnamic acid derivatives. This suggests that the oxidation of phenolic acids is controlled by the electron transfer step from the sorbed phenolic acid to the metal oxide. A bioassay experiment showed that the 4-hydroxy-, 4-hydroxy-3-methoxy-, and 3,4-dihydroxy-substituted cinnamic acids were bioactive at 0.25 mmol L(-1) concentration. Reaction with soil for 18 h resulted in the elimination of bioactivity of these three cinnamic acids at the 5% significance level. The oxidative reactivity of phenolic acids may limit the potential of allelopathy as a component of an integrated weed management system. However, the initial phytotoxicity after soil incorporation may coincide with the early, critical stage of weed emergence and establishment, so that allelopathic phenolic acids may still play a role in weed management despite their reactivity in soil systems.

  14. PPARδ activation in human myotubes increases mitochondrial fatty acid oxidative capacity and reduces glucose utilization by a switch in substrate preference.

    PubMed

    Feng, Yuan Z; Nikolić, Nataša; Bakke, Siril S; Boekschoten, Mark V; Kersten, Sander; Kase, Eili T; Rustan, Arild C; Thoresen, G Hege

    2014-02-01

    The role of peroxisome proliferator-activated receptor δ (PPARδ) activation on global gene expression and mitochondrial fuel utilization were investigated in human myotubes. Only 21 genes were up-regulated and 3 genes were down-regulated after activation by the PPARδ agonist GW501516. Pathway analysis showed up-regulated mitochondrial fatty acid oxidation, TCA cycle and cholesterol biosynthesis. GW501516 increased oleic acid oxidation and mitochondrial oxidative capacity by 2-fold. Glucose uptake and oxidation were reduced, but total substrate oxidation was not affected, indicating a fuel switch from glucose to fatty acid. Cholesterol biosynthesis was increased, but lipid biosynthesis and mitochondrial content were not affected. This study confirmed that the principal effect of PPARδ activation was to increase mitochondrial fatty acid oxidative capacity. Our results further suggest that PPARδ activation reduced glucose utilization through a switch in mitochondrial substrate preference by up-regulating pyruvate dehydrogenase kinase isozyme 4 and genes involved in lipid metabolism and fatty acid oxidation.

  15. A new leptin-mediated mechanism for stimulating fatty acid oxidation: a pivotal role for sarcolemmal FAT/CD36.

    PubMed

    Momken, Iman; Chabowski, Adrian; Dirkx, Ellen; Nabben, Miranda; Jain, Swati S; McFarlan, Jay T; Glatz, Jan F C; Luiken, Joost J F P; Bonen, Arend

    2017-01-01

    Leptin stimulates fatty acid oxidation in muscle and heart; but, the mechanism by which these tissues provide additional intracellular fatty acids for their oxidation remains unknown. We examined, in isolated muscle and cardiac myocytes, whether leptin, via AMP-activated protein kinase (AMPK) activation, stimulated fatty acid translocase (FAT/CD36)-mediated fatty acid uptake to enhance fatty acid oxidation. In both mouse skeletal muscle and rat cardiomyocytes, leptin increased fatty acid oxidation, an effect that was blocked when AMPK phosphorylation was inhibited by adenine 9-β-d-arabinofuranoside or Compound C. In wild-type mice, leptin induced the translocation of FAT/CD36 to the plasma membrane and increased fatty acid uptake into giant sarcolemmal vesicles and into cardiomyocytes. In muscles of FAT/CD36-KO mice, and in cardiomyocytes in which cell surface FAT/CD36 action was blocked by sulfo-N-succinimidyl oleate, the leptin-stimulated influx of fatty acids was inhibited; concomitantly, the normal leptin-stimulated increase in fatty acid oxidation was also prevented, despite the normal leptin-induced increase in AMPK phosphorylation. Conversely, in muscle of AMPK kinase-dead mice, leptin failed to induce the translocation of FAT/CD36, along with a failure to stimulate fatty acid uptake and oxidation. Similarly, when siRNA was used to reduce AMPK in HL-1 cardiomyocytes, leptin failed to induce the translocation of FAT/CD36. Our studies have revealed a novel mechanism of leptin-induced fatty acid oxidation in muscle tissue; namely, this process is dependent on the activation of AMPK to induce the translocation of FAT/CD36 to the plasma membrane, thereby stimulating fatty acid uptake. Without increasing this leptin-stimulated, FAT/CD36-dependent fatty acid uptake process, leptin-stimulated AMPK phosphorylation does not enhance fatty acid oxidation. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Struck, W.A.; Elving, P.J.

    Alloxan is the dominant product of the chemical oxidation of uric acid under strongly acid conditions; allantoin is the corresponding product for less acidic to alkaline conditions; separate reaction paths have generally been postulated to account for this difference. A study of the electrolytic oxidation of uric acid indicates the presence of a common path which eventually diverges to produce both alloxan and allantoin in comparable amounts, Uric acid gives a well- defined anodic voltammetric wave at a graphite electrode. When uric acid is electrolytically oxidized in diIute acetic acid at large graphite electrodes, 2.2 Faradays are passed, and 0,25more » mole CO/sub 2/, 0.25 mole of a precursor of allantoin, 0.75 mole urea, 0,3 mole parabanic acid and 0.3 mole alloxan simultaneously appear per mole of uric acid oxidized. At any stage during electrolysis, the sum of the moles of allantoin precursor and urea equals the moles of uric acid oxidized. This material balance and the stability of the allantoin precursor indicate that the production of urea is associated with the pathway(s) that produce alloxan and parabanic acid. These and other facts indicate a mechanism whereby uric acid is oxidized in a 2e process to a primary short-lived intermediate, which undergoes three simultaneous transformations: (1) hydrolysis to the allantoin precursor, (2) hydrolysis to alloxan and urea, and (3) further oxidation and hydrolysis leading to parabanic acid and urea. The non- stoichiometric amount of CO/sub 2/ produced and the non-integral number of electrons involved are accounted for by the formation of parabanic acid. The primary oxidation intermediate ultimately produces both allantoin and alloxan, suggesting that this intermediate may be common to all uric acid oxidations and that the ultimate product heretofore considered to be typified by either allantoin or alloxan (but not both) is most likely controlled by experimental conditions. (auth)« less

  17. Uric acid disrupts hypochlorous acid production and the bactericidal activity of HL-60 cells.

    PubMed

    Carvalho, Larissa A C; Lopes, João P P B; Kaihami, Gilberto H; Silva, Railmara P; Bruni-Cardoso, Alexandre; Baldini, Regina L; Meotti, Flavia C

    2018-06-01

    Uric acid is the end product of purine metabolism in humans and is an alternative physiological substrate for myeloperoxidase. Oxidation of uric acid by this enzyme generates uric acid free radical and urate hydroperoxide, a strong oxidant and potentially bactericide agent. In this study, we investigated whether the oxidation of uric acid and production of urate hydroperoxide would affect the killing activity of HL-60 cells differentiated into neutrophil-like cells (dHL-60) against a highly virulent strain (PA14) of the opportunistic pathogen Pseudomonas aeruginosa. While bacterial cell counts decrease due to dHL-60 killing, incubation with uric acid inhibits this activity, also decreasing the release of the inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF- α). In a myeloperoxidase/Cl - /H 2 O 2 cell-free system, uric acid inhibited the production of HOCl and bacterial killing. Fluorescence microscopy showed that uric acid also decreased the levels of HOCl produced by dHL-60 cells, while significantly increased superoxide production. Uric acid did not alter the overall oxidative status of dHL-60 cells as measured by the ratio of reduced (GSH) and oxidized (GSSG) glutathione. Our data show that uric acid impairs the killing activity of dHL-60 cells likely by competing with chloride by myeloperoxidase catalysis, decreasing HOCl production. Despite diminishing HOCl, uric acid probably stimulates the formation of other oxidants, maintaining the overall oxidative status of the cells. Altogether, our results demonstrated that HOCl is, indeed, the main relevant oxidant against bacteria and deviation of myeloperoxidase activity to produce other oxidants hampers dHL-60 killing activity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Mesoporous metal oxides and processes for preparation thereof

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Poyraz, Altug Suleyman

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier,more » a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.« less

  19. Formation of Aldehydic Phosphatidylcholines during the Anaerobic Decomposition of a Phosphatidylcholine Bearing the 9-Hydroperoxide of Linoleic Acid

    PubMed Central

    2016-01-01

    Lipid oxidation-derived carbonyl compounds are associated with the development of various physiological disorders. Formation of most of these products has recently been suggested to require further reactions of oxygen with lipid hydroperoxides. However, in rat and human tissues, the formation of 4-hydroxy-2-nonenal is greatly elevated during hypoxic/ischemic conditions. Furthermore, a previous study found an unexpected result that the decomposition of a phosphatidylcholine (PC) bearing the 13-hydroperoxide of linoleic acid under a nitrogen atmosphere afforded 9-oxononanoyl-PC rather than 13-oxo-9,11-tridecadienoyl-PC as the main aldehydic PC. In the present study, products of the anaerobic decomposition of a PC bearing the 9-hydroperoxide of linoleic acid were analysed by electrospray ionization mass spectrometry. 9-Oxononanoyl-PC (ONA-PC) and several well-known bioactive aldehydes including 12-oxo-9-hydroperoxy-(or oxo or hydroxy)-10-dodecenoyl-PCs were detected. Hydrolysis of the oxidized PC products, methylation of the acids obtained thereby, and subsequent gas chromatography-mass spectroscopy with electron impact ionization further confirmed structures of some of the key aldehydic PCs. Novel, hydroxyl radical-dependent mechanisms of formation of ONA-PC and peroxyl-radical dependent mechanisms of formation of the rest of the aldehydes are proposed. The latter mechanisms will mainly be relevant to tissue injury under hypoxic/anoxic conditions, while the former are relevant under both normoxia and hypoxia/anoxia. PMID:27366754

  20. The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis.

    PubMed

    Morris, Gerwyn; Stubbs, Brendon; Köhler, Cristiano A; Walder, Ken; Slyepchenko, Anastasiya; Berk, Michael; Carvalho, André F

    2018-04-04

    Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Amelioration of oxidative stress-induced phenotype loss of parvalbumin interneurons might contribute to the beneficial effects of environmental enrichment in a rat model of post-traumatic stress disorder.

    PubMed

    Sun, Xiao R; Zhang, Hui; Zhao, Hong T; Ji, Mu H; Li, Hui H; Wu, Jing; Li, Kuan Y; Yang, Jian J

    2016-10-01

    Post-traumatic stress disorder (PTSD) is a common psychiatric disease following exposure to a severe traumatic event or physiological stress, which is characterized by anxiety- and depression-like behaviors and cognitive impairment. However, the underlying mechanisms remain elusive. Parvalbumin (PV) interneurons that are susceptible to oxidative stress are a subset of inhibitory GABAergic neurons regulating the excitability of pyramidal neurons, while dysfunction of PV interneurons is casually linked to many mental disorders including PTSD. We therefore hypothesized that environmental enrichment (EE), a method of enhanced cognitive, sensory and motor stimulation, can reverse the behavioral impairments by normalizing PV interneurons in a rat model of PTSD induced by inescapable foot shocks (IFS). Behavioral changes were determined by the open field, elevated plus maze, fear conditioning, and Morris water maze tests. The levels of nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase 2 (NOX2), NOX4, PV, glutamic acid decarboxylase 67 (GAD-67), and 8-hydroxy-2-deoxyguanosine (8-OH-dG) in the hippocampus and prefrontal cortex were determined. Our results showed that in this PTSD model, rats displayed the anxiety-like behavior, enhanced fear learning behavior, and hippocampus- dependent spatial memory deficit, which were accompanied by the up-regulation of NOX2, 8-OH-dG, and down-regulation of PV and GAD-67. Notably, EE reversed all these abnormalities. These results suggest that restoration of PV interneurons by inhibiting oxidative stress in the hippocampus and prefrontal cortex might represent a mechanism through which EE reverses the behavioral impairments in a rat model of PTSD induced by IFS. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders.

    PubMed

    Bhandari, Ranjana; Kuhad, Anurag

    2017-02-01

    Neuronal dysfunction caused by neuroinflammation triggered by the stimulation of matrix metalloproteinases and the subsequent release of pro-inflammatory cytokines, as a result of oxidative stress and mitochondrial dysfunction, is one of the probable mechanisms involved in the pathogenesis of autism spectrum disorders (ASD). The aim of the present study was to explore the ameliorative potential of resveratrol on neuroinflammation in the experimental paradigm of neuroinflammatory model of ASD in rats. 1M Propanoic acid (PPA) (4 μl) was infused over 10 min into the anterior portion of the lateral ventricle to induce ASD like symptoms in rats. Resveratrol (5, 10 and 15 mg/kg) was administered starting from the 2nd day of the surgery and continued upto 28th day. Rats were tested for various behavioural paradigms such as social interaction, stereotypy, locomotor activity, anxiety, novelty, depression, spatial learning, memory, repetitive and pervasive behaviour between the 7th day and 28th day. In addition, biochemical tests for oxidative stress, mitochondrial complexes, TNF-α and MMP-9 were also assessed. Treatment with resveratrol for four weeks restored, significantly and dose dependently, all the neurological, sensory, behavioural, biochemical and molecular deficits in PPA induced autistic phenotype in rats. The major finding of the study is that resveratrol restored the core and associated symptoms of autistic phenotype by suppressing oxidative-nitrosative stress, mitochondrial dysfunction, TNF-α and MMP-9 expression in PPA induced ASD in rats. Therefore, resveratrol might serve as an adjunct potential therapeutic agent for amelioration of neurobehavioural and biochemical deficits associated with autism spectrum disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Ruthenium-catalyzed aerobic oxidative decarboxylation of amino acids: a green, zero-waste route to biobased nitriles.

    PubMed

    Claes, Laurens; Verduyckt, Jasper; Stassen, Ivo; Lagrain, Bert; De Vos, Dirk E

    2015-04-18

    Oxidative decarboxylation of amino acids into nitriles was performed using molecular oxygen as terminal oxidant and a heterogeneous ruthenium hydroxide-based catalyst. A range of amino acids was oxidized in very good yield, using water as the solvent.

  4. Capillary electrophoretic study of dibasic acids of different structures: Relation to separation of oxidative intermediates in remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Cocke, D.L.

    Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less

  5. Generation of organic acids and monosaccharides by hydrolytic and oxidative transformation of food processing residues.

    PubMed

    Fischer, Klaus; Bipp, Hans-Peter

    2005-05-01

    Carbohydrate-rich biomass residues, i.e. sugar beet molasses, whey powder, wine yeast, potato peel sludge, spent hops, malt dust and apple marc, were tested as starting materials for the generation of marketable chemicals, e.g. aliphatic acids, sugar acids and mono-/disaccharides. Residues were oxidized or hydrolyzed under acidic or alkaline conditions applying conventional laboratory digestion methods and microwave assisted techniques. Yields and compositions of the oxidation products differed according to the oxidizing agent used. Main products of oxidation by 30% HNO(3) were acetic, glucaric, oxalic and glycolic acids. Applying H(2)O(2)/CuO in alkaline solution, the organic acid yields were remarkably lower with formic, acetic and threonic acids as main products. Gluconic acid was formed instead of glucaric acid throughout. Reaction of a 10% H(2)O(2) solution with sugar beet molasses generated formic and lactic acids mainly. Na(2)S(2)O(8) solutions were very inefficient at oxidizing the residues. Glucose, arabinose and galactose were formed during acidic hydrolysis of malt dust and apple marc. The glucose content reached 0.35 g per gram of residue. Important advantages of the microwave application were lower reaction times and reduced reagent demands.

  6. Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis.

    PubMed

    Horikawa, Yoshiki; Shimizu, Michiko; Saito, Tsuguyuki; Isogai, Akira; Imai, Tomoya; Sugiyama, Junji

    2018-04-01

    Chara is a genus of freshwater alga that is evolutionarily observed at the aquatic-terrestrial boundary, whose cellulose microfibrils are similar to those of terrestrial plants regarding the crystallinity and biosynthesis of cellulose. Oven-dried and never-dried celluloses samples were prepared from chara. Terrestrial plant cellulose samples were used as references. The lengths and length distributions of oven-dried and never-dried chara cellulose microfibrils after acid hydrolysis with or without pretreatment by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, which was used for efficient fibrillation of acid-hydrolyzed products, were observed by transmission electron microscopy. All terrestrial plant celluloses and oven-dried chara cellulose had short nanocrystal-like morphologies of 100-300 nm in length after acid hydrolysis. In contrast, the never-dried chara cellulose had much longer microfibrils of ∼970 nm in length after acid hydrolysis. These results indicated that disordered regions present periodically along the cellulose microfibrils, which cause the formation of cellulose nanocrystals after acid hydrolysis, are not present in inherent chara cellulose microfibrils in water, but are formed artificially under drying or dehydration conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Diabetic Neuropathy and Oxidative Stress: Therapeutic Perspectives

    PubMed Central

    Hosseini, Asieh; Abdollahi, Mohammad

    2013-01-01

    Diabetic neuropathy (DN) is a widespread disabling disorder comprising peripheral nerves' damage. DN develops on a background of hyperglycemia and an entangled metabolic imbalance, mainly oxidative stress. The majority of related pathways like polyol, advanced glycation end products, poly-ADP-ribose polymerase, hexosamine, and protein kinase c all originated from initial oxidative stress. To date, no absolute cure for DN has been defined; although some drugs are conventionally used, much more can be found if all pathophysiological links with oxidative stress would be taken into account. In this paper, although current therapies for DN have been reviewed, we have mainly focused on the links between DN and oxidative stress and therapies on the horizon, such as inhibitors of protein kinase C, aldose reductase, and advanced glycation. With reference to oxidative stress and the related pathways, the following new drugs are under study such as taurine, acetyl-L-carnitine, alpha lipoic acid, protein kinase C inhibitor (ruboxistaurin), aldose reductase inhibitors (fidarestat, epalrestat, ranirestat), advanced glycation end product inhibitors (benfotiamine, aspirin, aminoguanidine), the hexosamine pathway inhibitor (benfotiamine), inhibitor of poly ADP-ribose polymerase (nicotinamide), and angiotensin-converting enzyme inhibitor (trandolapril). The development of modern drugs to treat DN is a real challenge and needs intensive long-term comparative trials. PMID:23738033

  8. Selol, an organic selenium donor, prevents lipopolysaccharide-induced oxidative stress and inflammatory reaction in the rat brain.

    PubMed

    Dominiak, Agnieszka; Wilkaniec, Anna; Jęśko, Henryk; Czapski, Grzegorz A; Lenkiewicz, Anna M; Kurek, Eliza; Wroczyński, Piotr; Adamczyk, Agata

    2017-09-01

    Neuroinflammation and oxidative stress are key intertwined pathological factors in many neurological, particularly neurodegenerative diseases, such as Alzheimer's and Parkinson's disorders as well as autism. The present study was conducted to evaluate the protective effects of Selol, an organic selenium donor, against lipopolysaccharide (LPS)-mediated inflammation in rat brain. The results demonstrated that the peripheral administration of LPS in a dose of 100 μg/kg b.w. evoked typical pathological reaction known as systemic inflammatory response. Moreover, we observed elevated blood levels of thiobarbituric acid-reactive substances (TBARS), a marker of oxidative stress, as well as increased concentration of tumor necrosis factor-α (TNF-α) in LPS-treated animals. Selol significantly prevented these LPS-evoked changes. Subsequently, Selol protected against LPS-induced up-regulation of proinflammatory cytokines (Tnfa, Ifng, Il6) in rat brain cortex. The molecular mechanisms through which Selol prevented the neuroinflammation were associated with the inhibition of oxidized glutathione (GSSG) accumulation and with an increase of glutathione-associated enzymes: glutathione peroxidase (Se-GPx), glutathione reductase (GR) as well as thioredoxin reductase (TrxR) activity and expression. Finally, we observed that Selol administration effectively protected against LPS-induced changes in the expression of brain-derived neurotrophic factor (Bdnf). In conclusion, our studies indicated that Selol effectively protects against LPS-induced neuroinflammation by inhibiting pro-inflammatory cytokine release, by boosting antioxidant systems, and by augmenting BDNF level. Therefore, Selol could be a multi-potent and effective drug useful in the treatment and prevention of brain disorders associated with neuroinflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Aerosol Fragmentation Driven by Coupling of Acid-Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals.

    PubMed

    Liu, Matthew J; Wiegel, Aaron A; Wilson, Kevin R; Houle, Frances A

    2017-08-10

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps with physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.

  10. Lowered quality of life in mood disorders is associated with increased neuro-oxidative stress and basal thyroid-stimulating hormone levels and use of anticonvulsant mood stabilizers.

    PubMed

    Nunes, Caroline Sampaio; Maes, Michael; Roomruangwong, Chutima; Moraes, Juliana Brum; Bonifacio, Kamila Landucci; Vargas, Heber Odebrecht; Barbosa, Decio Sabbatini; Anderson, George; de Melo, Luiz Gustavo Piccoli; Drozdstoj, Stoyanov; Moreira, Estefania; Carvalho, André F; Nunes, Sandra Odebrecht Vargas

    2018-04-17

    Major affective disorders including bipolar disorder (BD) and major depressive disorder (MDD) are associated with impaired health-related quality of life (HRQoL). Oxidative stress and subtle thyroid abnormalities may play a pathophysiological role in both disorders. Thus, the current study was performed to examine whether neuro-oxidative biomarkers and thyroid-stimulating hormone (TSH) levels could predict HRQoL in BD and MDD. This cross-sectional study enrolled 68 BD and 37 MDD patients and 66 healthy controls. The World Health Organization (WHO) QoL-BREF scale was used to assess 4 QoL subdomains. Peripheral blood malondialdehyde (MDA), advanced oxidation protein products, paraoxonaxe/CMPAase activity, a composite index of nitro-oxidative stress, and basal TSH were measured. In the total WHOQoL score, 17.3% of the variance was explained by increased advanced oxidation protein products and TSH levels and lowered CMPAase activity and male gender. Physical HRQoL (14.4%) was associated with increased MDA and TSH levels and lowered CMPAase activity. Social relations HRQoL (17.4%) was predicted by higher nitro-oxidative index and TSH values, while mental and environment HRQoL were independently predicted by CMPAase activity. Finally, 73.0% of the variance in total HRQoL was explained by severity of depressive symptoms, use of anticonvulsants, lower income, early lifetime emotional neglect, MDA levels, the presence of mood disorders, and suicidal ideation. These data show that lowered HRQoL in major affective disorders could at least in part result from the effects of lipid peroxidation, protein oxidation, lowered antioxidant enzyme activities, and higher levels of TSH. © 2018 John Wiley & Sons, Ltd.

  11. Systemic distribution and speciation of diphenylarsinic acid fed to rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naranmandura, Hua; Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3; Suzuki, Noriyuki

    Diphenylarsinic acid (DPAA) is an environmental degradation product of diphenylarsine chloride or diphenylarsine cyanide, which were chemical warfare agents produced by Japan during the World War II. DPAA is now considered a dangerous environmental pollutant in Kamisu, Japan, where it is suspected of inducing health effects that include articulation disorders (cerebellar ataxia of the extremities and trunk), involuntary movements (myoclonus and tremor), and sleep disorders. In order to elucidate the toxic mechanism of DPAA, we focused on the distribution and metabolism of DPAA in rats. Systemic distribution of DPAA was determined by administering DPAA orally to rats at a singlemore » dose of 5.0 mg As/kg body weight, followed by speciation analysis of selected organs and body fluids. Most of the total arsenic burden was recovered in the urine (23% of the dose) and feces (27%), with the distribution in most other organs/tissues being less than 1%. However, compared with the typical distribution of inorganic dietary arsenic, DPAA administration resulted in elevated levels in the brain, testes and pancreas. In contrast to urine, in which DPAA was found mostly in its unmodified form, the tissues and organs contained arsenic that was mostly bound to non-soluble and soluble high molecular weight proteins. These bound arsenic species could be converted back to DPAA after oxidation with H{sub 2}O{sub 2}, suggesting that the DPAA bound to proteins had been reduced within the body and was in a trivalent oxidation state. Furthermore, we also detected two unknown arsenic metabolites in rat urine, which were assumed to be hydroxylated arsenic metabolites.« less

  12. Resistin Regulates Fatty Acid Β Oxidation by Suppressing Expression of Peroxisome Proliferator Activator Receptor Gamma-Coactivator 1α (PGC-1α).

    PubMed

    He, Fang; Jin, Jie-Qiong; Qin, Qing-Qing; Zheng, Yong-Qin; Li, Ting-Ting; Zhang, Yun; He, Jun-Dong

    2018-01-01

    Abnormal fatty acid β oxidation has been associated with obesity and type 2 diabetes. Resistin is an adipokine that has been considered as a potential factor in obesity-mediated insulin resistance and type 2 diabetes. However, the effect of resistin on fatty acid β oxidation needs to be elucidated. We detected the effects of resistin on the expression of fatty acid oxidation (FAO) transcriptional regulatory genes, the fatty acid transport gene, and mitochondrial β-oxidation genes using real-time PCR. The rate of FAO was measured using 14C-palmitate. Immunofluorescence assay and western blot analysis were used to explore the underlying molecular mechanisms. Resistin leads to a reduction in expression of the FAO transcriptional regulatory genes ERRα and NOR1, the fatty acid transport gene CD36, and the mitochondrial β-oxidation genes CPT1, MCAD, and ACO. Importantly, treatment with resistin led to a reduction in the rate of cellular fatty acid oxidation. In addition, treatment with resistin reduced phosphorylation of acetyl CoA carboxylase (ACC) (inhibitory). Mechanistically, resistin inhibited the activation of CREB, resulting in suppression of PGC-1α. Importantly, overexpressing PGC-1α can rescue the inhibitory effects of resistin on fatty acid β oxidation. Activating the transcriptional activity of CREB using small molecular chemicals is a potential pharmacological strategy for preventing the inhibitory effects of resistin on fatty acid β oxidation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Phytochemical investigation of some traditional chinese medicines and endophyte cultures.

    PubMed

    Tan, R X; Meng, J C; Hostettmann, K

    2000-01-01

    For many social and environmental reasons, over the last few decades, there has been an increase in chronic and life-threatening diseases including mycoses, hyperuricemia-related disorders and some mental illnesses such as depression, anxiety and Parkinson's disease. In order to fight these diseases, compounds acting on various biological targets, including enzymes such as xanthine oxidase or monoamine oxidase, have to be screened. The enzyme xanthine oxidase catalyses the oxidation of hypoxanthine to xanthine and then to uric acid, which plays a crucial role in hyperuricemiarelated disorders such as gout and renal stones. One of the therapeutic approaches to treat these diseases is the use of xanthine oxidase inhibitors that block the production of uric acid. Monoamine oxidases (E.C.1.4.3.4) A and B catalyse the oxidative deamination of monoamines in the central nervous system and peripheral tissues. Inhibitors of MAO A are clinically useful to treat anxiety and depression since they are expected to increase both noradrenalin and serotonin levels in the brain. On the other hand, inhibition of MAO B appears to be an effective approach for the prevention and adjunct treatment of Parkinson's disease. In traditional Chinese medical practice, many medicinal herbs have been used to treat chronic diseases such as fungal infections, hyperuricemia-based disorders and mental illnesses. This usage is indicative for the presumable presence of antifungal phytochemicals and inhibitors of xanthine and monoamine oxidases. Plants do not represent the only source for interesting natural products; some endophytes ('special' microorganisms living inside the healthy host plant) are also known to produce secondary metabolites of promising pharmaceutical and/or agricultural potential. The above observations prompted us to search for natural antifungal compounds and inhibitors of xanthine and monoamine oxidases in different Chinese plants and endophyte cultures. The active constituents isolated were mainly mono-, sesqui-, di-, and triterpenes, sterols, coumarins, flavonoids, phenylethanoids, stilbenoids, alkaloids and alcohols.

  14. Dietary oxidized linoleic acid lowers triglycerides via APOA5/APOClll dependent mechanisms

    PubMed Central

    Garelnabi, Mahdi; Selvarajan, Krithika; Litvinov, Dmitry; Santanam, Nalini; Parthasarathy, Sampath

    2008-01-01

    Previously we have shown that intestinal cells efficiently take up oxidized fatty acids (OxFAs) and that atherosclerosis is increased when animals are fed a high cholesterol diet in the presence of oxidized linoleic acid. Interestingly, we found that in the absence of dietary cholesterol, the oxidized fatty acid fed low-density lipoprotein (LDL) receptor negative mice appeared to have lower plasma triglyceride (TG) levels as compared to animals fed oleic acid. In the present study, we fed C57BL6 mice a normal mice diet supplemented with oleic acid or oxidized linoleic acid (at 18 mg/animal/day) for 2 weeks. After the mice were sacrificed, we measured the plasma lipids and collected livers for the isolation of RNA. The results showed that while there were no significant changes in the levels of total cholesterol and high-density lipoprotein cholesterol (HDLc), there was a significant decrease (41.14%) in the levels of plasma TG in the mice that were fed oxidized fatty acids. The decreases in plasma TG levels were accompanied by significant increases (P < 0.001) in the expressions of APOA5 and acetyl-CoA oxidase genes as well as a significant (P < 0.04) decrease in APOClll gene expression. Oxidized lipids have been suggested to be ligands for peroxisome proliferator-activated receptor (PPARα). However, there were no increases in the mRNA or protein levels of PPARα in the oxidized linoleic acid fed animals. These results suggest that oxidized fatty acids may act through an APOA5/APOClll mechanism that contributes to lowering of TG levels other than PPARα induction. PMID:18243209

  15. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franz, A.; Burgstaller, W.; Schinner, F.

    1991-03-01

    In the presence of insoluble metal oxides (industrial filter dust, zinc oxide, synthetic mixture of metal oxides), Penicillium simplicissimum developed the ability to excrete considerable amounts of citric acid (>100 mM). Parallel with the increase of citric acid concentration in the culture broth, zinc was solubilized from zinc oxide. The adsorption of filter dust onto the mycelium (the pellets formed were less than 1 mm in diameter) was required for not only the citric acid excretion but also the leaching of zinc. When the filter dust was replaced with a synthetic mixture of metal oxides or with zinc oxide inmore » combination with trace elements, levels of adsorption and citric acid production were observed to be similar to those in experiments where industrial filter dust was used. The two most important properties of the filter dust were its heavy-metal content and its buffering capacity. These properties were simulated by adding heavy metals in soluble form (as chlorides, sulfates, or nitrates) or soluble buffers to the medium. Both heavy metals and buffers were not able to induce a citric acid efflux. As with citric acid production by Aspergillus niger, the addition of manganese lowered citric acid excretion (by 40% with metal oxide-induced citric acid efflux and by 100% with urea-induced citric acid efflux). Copper antagonized the effect of manganese. The mechanism for the bulk of citric acid excretion by P. simplicissimum, however, seemed to be different from that described for citric acid accumulation by A. niger. Because of the inefficiency of metals in solubilized form and of soluble buffers to induce a strong citric acid efflux, adsorption of an insoluble metal compound (zinc oxide) turned out to be essential.« less

  16. Work Function and Conductivity Change in Polyaniline.

    NASA Astrophysics Data System (ADS)

    Chinn, Douglas Alan

    1995-01-01

    The purpose of this study was to elucidate some basic material properties of the conducting polymer polyaniline. Because of the intractable nature of the polymer, methods to make thin films were developed. The polymer was dissolved in formic acid and cast onto silicon substrates that had four metal leads in a parallel configuration. It was discovered that a cast film could be used as a substrate for the subsequent growth of additional film by electrochemical techniques. The polymer will spontaneously change oxidation states both in air and in solution if oxidized or reduced electrochemically. The change in oxidation states is seen as a changing open cell potential in solution and a change in work function and resistance in air. UV-visible and infrared spectroscopy were used to characterize the polymer during relaxation. The work function decreases from both the oxidized and reduced states, but resistance increases from the reduced state and decreases from the oxidized state in air. A two-phase model which has ordered conducting regions and disordered insulating regions has been used to describe the relaxation phenomena. The relaxation is caused by rearrangement within the film of dopant acid and water, allowing the film to develop ordered regions. It has been determined that chemical polyaniline and electrochemical polyaniline are nearly identical chemically, with the main differences being morphological. The relaxation phenomena can be used to make chemical sensors. As the film relaxes, electrons become available. The electrons reduce metallic ions, which interact with a detectant gas in a gas stream above the film. In films containing Hg_2Cl_2 work function decreases and resistance decreases when in contact with hydrogen cyanide in a dry nitrogen stream.

  17. Protective activity of Hertia cheirifolia extracts against DNA damage, lipid peroxidation and protein oxidation.

    PubMed

    Kada, Seoussen; Bouriche, Hamama; Senator, Abderrahmane; Demirtaş, Ibrahim; Özen, Tevfik; Çeken Toptanci, Bircan; Kızıl, Göksel; Kızıl, Murat

    2017-12-01

    Hertia cheirifolia L. (Asteraceae), a perennial shrub widely distributed in Northern Africa, is traditionally used to treat inflammatory disorders. The protective effect of methanol (Met E) and aqueous (Aq E) extracts of Hertia cheirifolia against DNA, lipid and protein oxidation was investigated. Different concentrations (50-1000 μg/mL) of Hertia cheirifolia aerial part extracts were examined against DNA, lipid and protein oxidation induced by H 2 O 2  + UV, FeSO 4 , and Fe 3+ /H 2 O 2 -ascorbic acid, respectively. The DPPH • , metal ion chelating, reducing power and β-carotene bleaching tests were conducted. Both extracts were rich in polyphenols, flavonoids and tannins, and were able to scavenge DPPH • with IC 50 values of 138 and 197 μg/mL, respectively. At 300 μg/mL, Aq E exerted stronger chelating effect (99%) than Met E (69%). However, Met E reducing power (IC 50  =   61 μg/mL) was more than that of Aq E (IC 50  =   193 μg/mL). Both extracts protected from β-carotene bleaching by 74% and 94%, respectively, and inhibited linoleic acid peroxidation. The inhibitory activity of Aq E extract (64%) was twice more than that of Met E (32%). Interestingly, both extracts protected DNA against the cleavage by about 96-98%. At 1 mg/mL, Met E and Aq E restored protein band intensity by 94-99%. Hertia cheirifolia exhibits potent antioxidant activity and protects biomolecules against oxidative damage; hence, it may serve as potential source of natural antioxidant for pharmaceutical applications and food preservation. This is the first report on the protective activity of this plant against biomolecule oxidation.

  18. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.

    PubMed

    Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J

    1989-06-25

    The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.

  19. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data

    PubMed Central

    Bozzatello, Paola; Brignolo, Elena; De Grandi, Elisa; Bellino, Silvio

    2016-01-01

    A new application for omega-3 fatty acids has recently emerged, concerning the treatment of several mental disorders. This indication is supported by data of neurobiological research, as highly unsaturated fatty acids (HUFAs) are highly concentrated in neural phospholipids and are important components of the neuronal cell membrane. They modulate the mechanisms of brain cell signaling, including the dopaminergic and serotonergic pathways. The aim of this review is to provide a complete and updated account of the empirical evidence of the efficacy and safety that are currently available for omega-3 fatty acids in the treatment of psychiatric disorders. The main evidence for the effectiveness of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) has been obtained in mood disorders, in particular in the treatment of depressive symptoms in unipolar and bipolar depression. There is some evidence to support the use of omega-3 fatty acids in the treatment of conditions characterized by a high level of impulsivity and aggression and borderline personality disorders. In patients with attention deficit hyperactivity disorder, small-to-modest effects of omega-3 HUFAs have been found. The most promising results have been reported by studies using high doses of EPA or the association of omega-3 and omega-6 fatty acids. In schizophrenia, current data are not conclusive and do not allow us either to refuse or support the indication of omega-3 fatty acids. For the remaining psychiatric disturbances, including autism spectrum disorders, anxiety disorders, obsessive-compulsive disorder, eating disorders and substance use disorder, the data are too scarce to draw any conclusion. Concerning tolerability, several studies concluded that omega-3 can be considered safe and well tolerated at doses up to 5 g/day. PMID:27472373

  20. Oxidative stability of egg and soy lecithin as affected by transition metal ions and pH in emulsion.

    PubMed

    Wang, Guang; Wang, Tong

    2008-12-10

    Oxidative stability of egg and soy lecithin in emulsion was evaluated with two transition metal ions, cupric and ferric ion, at two concentration levels (50 and 500 microM). The effect of pH on lipid oxidation was also examined under these two concentrations for each ion. Egg lecithin (EL) had similar peroxide value (PV) development pattern as soy lecithin (SL) when treated with cupric ion under both acidic and neutral pH. Acidic pH of 3 accelerated oxidation of both EL and SL, especially under high concentration of copper. When treated with ferric ion, EL oxidized much faster than SL did. EL had higher value of thiobarbituric acid-reactive substances (TBARS) than SL, possibly because of its higher content of long-chain polyunsaturated fatty acids (PUFA). Acidic pH accelerated TBARS development for both EL and SL, but EL had more significantly increased values. Cupric ion was more powerful than ferric in catalyzing oxidation of both EL and SL under both acidic and neutral pH conditions as measured by PV and TBARS. Linoleic acid may contribute to higher PV production, however, arachidonic acid and docosahexaenoic acid may have contributed more to TBARS production. Overall, SL showed better oxidative stability than EL under the experimental conditions. This study also suggests that using multiple methods is necessary in properly evaluating lipid oxidative stability.

  1. Psychiatric comorbidities in a young man with subacute myelopathy induced by abusive nitrous oxide consumption: a case report

    PubMed Central

    Mancke, Falk; Kaklauskaitė, Gintarė; Kollmer, Jennifer; Weiler, Markus

    2016-01-01

    Nitrous oxide (N2O), a long-standing anesthetic, is known for its recreational use, and its consumption is on the rise. Several case studies have reported neurological and psychiatric complications of N2O use. To date, however, there has not been a study using standardized diagnostic procedures to assess psychiatric comorbidities in a patient consuming N2O. Here, we report about a 35-year-old male with magnetic resonance imaging confirmed subacute myelopathy induced by N2O consumption, who suffered from comorbid cannabinoid and nicotine dependence as well as abuse of amphetamines, cocaine, lysergic acid diethylamide, and ketamine. Additionally, there was evidence of a preceding transient psychotic and depressive episode induced by synthetic cannabinoid abuse. In summary, this case raises awareness of an important mechanism of neural toxicity, with which physicians working in the field of substance-related disorders should be familiar. In fact, excluding N2O toxicity in patients with recognized substance-related disorders and new neurological deficits is compulsory, as untreated for months the damage to the nervous system is at risk of becoming irreversible. PMID:27729826

  2. Psychiatric comorbidities in a young man with subacute myelopathy induced by abusive nitrous oxide consumption: a case report.

    PubMed

    Mancke, Falk; Kaklauskaitė, Gintarė; Kollmer, Jennifer; Weiler, Markus

    2016-01-01

    Nitrous oxide (N 2 O), a long-standing anesthetic, is known for its recreational use, and its consumption is on the rise. Several case studies have reported neurological and psychiatric complications of N 2 O use. To date, however, there has not been a study using standardized diagnostic procedures to assess psychiatric comorbidities in a patient consuming N 2 O. Here, we report about a 35-year-old male with magnetic resonance imaging confirmed subacute myelopathy induced by N 2 O consumption, who suffered from comorbid cannabinoid and nicotine dependence as well as abuse of amphetamines, cocaine, lysergic acid diethylamide, and ketamine. Additionally, there was evidence of a preceding transient psychotic and depressive episode induced by synthetic cannabinoid abuse. In summary, this case raises awareness of an important mechanism of neural toxicity, with which physicians working in the field of substance-related disorders should be familiar. In fact, excluding N 2 O toxicity in patients with recognized substance-related disorders and new neurological deficits is compulsory, as untreated for months the damage to the nervous system is at risk of becoming irreversible.

  3. Topical zinc oxide vs. salicylic acid-lactic acid combination in the treatment of warts.

    PubMed

    Khattar, Joe A; Musharrafieh, Umayya M; Tamim, Hala; Hamadeh, Ghassan N

    2007-04-01

    Warts are a common dermatologic problem. Treatment is painful, prolonged, and can cause scarring. To evaluate topical zinc oxide for the treatment of warts. This was a randomized, double-blind controlled trial of 44 patients. Twenty-two patients were given topical zinc oxide 20% ointment, and the other 22 received salicylic acid 15% + lactic acid 15% ointment twice daily. All patients were followed up for 3 months or until cure, whichever occurred first. All patients were observed for side-effects. Sixteen patients in the zinc group and 19 in the salicylic acid-lactic acid group completed the study. In the zinc oxide-treated group, 50% of the patients showed complete cure and 18.7% failed to respond, compared with 42% and 26%, respectively, in the salicylic acid-lactic acid-treated group. No patients developed serious side-effects. Topical zinc oxide is an efficacious, painless, and safe therapeutic option for wart treatment.

  4. α-Lipoic acid ameliorated oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective to cause marked deceases in serum lipid levels in rats.

    PubMed

    Ide, Takashi; Tanaka, Ai

    2017-12-01

    Dietary perilla oil rich in α-linolenic acid and α-lipoic acid lowers the serum lipid level through changes in hepatic fatty acid metabolism. We therefore hypothesized that the combination of these dietary factors may ameliorate lipid metabolism more than the factors individually. Moreover, α-lipoic acid exerts strong anti-oxidative activity. Hence, we also hypothesized that α-lipoic acid may attenuate perilla oil-mediated oxidative stress. We therefore studied the combined effects of perilla oil and α-lipoic acid on lipid metabolism and parameters of oxidative stress. Male rats were fed diets supplemented with 0 or 2.0 g/kg R-α-lipoic acid and containing 120 g/kg of palm (saturated fat), corn (linoleic acid), or perilla oil (α-linolenic acid) for 23 days. Perilla oil compared with other fats decreased serum lipid concentrations in rats fed α-lipoic acid-free diets; however, the combination of perilla oil with α-lipoic acid was ineffective for observing more marked decreases in serum lipid levels. Alterations in hepatic fatty acid synthesis and oxidation may account for the observed changes. Perilla oil, compared with palm and corn oils, strongly increased the malondialdehyde level in the serum and liver. α-Lipoic acid counteracted the increases in these parameters even though the effects were attenuated in the liver. α-Lipoic acid increased the parameters of the anti-oxidant system. The results suggested that α-lipoic acid can ameliorate oxidative stress induced by perilla oil, but the combination of these dietary factors was ineffective for additionally reducing serum lipid levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Fructose overfeeding in first-degree relatives of type 2 diabetic patients impacts energy metabolism and mitochondrial functions in skeletal muscle.

    PubMed

    Seyssel, Kevin; Meugnier, Emmanuelle; Lê, Kim-Anne; Durand, Christine; Disse, Emmanuel; Blond, Emilie; Pays, Laurent; Nataf, Serge; Brozek, John; Vidal, Hubert; Tappy, Luc; Laville, Martine

    2016-12-01

    The aim of the study was to assess the effects of a high-fructose diet (HFrD) on skeletal muscle transcriptomic response in healthy offspring of patients with type 2 diabetes, a subgroup of individuals prone to metabolic disorders. Ten healthy normal weight first-degree relatives of type 2 diabetic patients were submitted to a HFrD (+3.5 g fructose/kg fat-free mass per day) during 7 days. A global transcriptomic analysis was performed on skeletal muscle biopsies combined with in vitro experiments using primary myotubes. Transcriptomic analysis highlighted profound effects on fatty acid oxidation and mitochondrial pathways supporting the whole-body metabolic shift with the preferential use of carbohydrates instead of lipids. Bioinformatics tools pointed out possible transcription factors orchestrating this genomic regulation, such as PPARα and NR4A2. In vitro experiments in human myotubes suggested an indirect action of fructose in skeletal muscle, which seemed to be independent from lactate, uric acid, or nitric oxide. This study shows therefore that a large cluster of genes related to energy metabolism, mitochondrial function, and lipid oxidation was downregulated after 7 days of HFrD, thus supporting the concept that overconsumption of fructose-containing foods could contribute to metabolic deterioration in humans. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Terminal-group oxidation of retinol by mouse epidermis. Inhibition in vitro and in vivo.

    PubMed Central

    Connor, M J; Smit, M H

    1987-01-01

    Locally applied retinol is metabolized to retinoic acid in mouse epidermis in vivo. To characterize the oxidation system we investigated the ability of soluble extracts of hairless-mouse epidermis to convert retinol and retinal into retinoic acid. The extracts oxidized retinol to retinoic acid in two steps catalysed by two NAD+-dependent enzymes that were resolved on h.p.l.c. The first enzyme catalyses the reversible oxidation of retinol to retinal and is an alcohol dehydrogenase isoenzyme. The second enzyme oxidizes retinal to retinoic acid. Retinol oxidation by epidermal extracts was inhibited by the alcohol dehydrogenase inhibitor 4-methylpyrazole and by the polyene citral. The toxicity and relatively low potency at inhibiting the epidermal alcohol dehydrogenase isoenzyme curtailed the use of 4-methylpyrazole in vivo. However, citral significantly inhibited retinoic acid formation from retinol in the epidermis in vivo. The ability to inhibit the oxidation of retinol to retinoic acid in mouse epidermis provides a potential method to resolve the roles of retinol and retinoic acid in epithelial function. PMID:3663136

  7. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE PAGES

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.; ...

    2017-07-14

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less

  8. Aerosol Fragmentation Driven by Coupling of Acid–Base and Free-Radical Chemistry in the Heterogeneous Oxidation of Aqueous Citric Acid by OH Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Matthew J.; Wiegel, Aaron A.; Wilson, Kevin R.

    A key uncertainty in the heterogeneous oxidation of carboxylic acids by hydroxyl radicals (OH) in aqueous-phase aerosol is how the free-radical reaction pathways might be altered by acid-base chemistry. In particular, if acid-base reactions occur concurrently with acyloxy radical formation and unimolecular decomposition of alkoxy radicals, there is a possibility that differences in reaction pathways impact the partitioning of organic carbon between the gas and aqueous phases. To examine these questions, a kinetic model is developed for the OH-initiated oxidation of citric acid aerosol at high relative humidity. The reaction scheme, containing both free-radical and acid-base elementary reaction steps withmore » physically validated rate coefficients, accurately predicts the experimentally observed molecular composition, particle size, and average elemental composition of the aerosol upon oxidation. The difference between the two reaction channels centers on the reactivity of carboxylic acid groups. Free-radical reactions mainly add functional groups to the carbon skeleton of neutral citric acid, because carboxylic acid moieties deactivate the unimolecular fragmentation of alkoxy radicals. In contrast, the conjugate carboxylate groups originating from acid-base equilibria activate both acyloxy radical formation and carbon-carbon bond scission of alkoxy radicals, leading to the formation of low molecular weight, highly oxidized products such as oxalic and mesoxalic acid. Subsequent hydration of carbonyl groups in the oxidized products increases the aerosol hygroscopicity and accelerates the substantial water uptake and volume growth that accompany oxidation. These results frame the oxidative lifecycle of atmospheric aerosol: it is governed by feedbacks between reactions that first increase the particle oxidation state, then eventually promote water uptake and acid-base chemistry. When coupled to free-radical reactions, acid-base channels lead to formation of low molecular weight gas-phase reaction products and decreasing particle size.« less

  9. Lipid peroxidation and neurodegenerative disease.

    PubMed

    Reed, Tanea T

    2011-10-01

    Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Design and Synthesis of Novel Arctigenin Analogues for the Amelioration of Metabolic Disorders

    PubMed Central

    2015-01-01

    Analogues of the natural product (−)-arctigenin, an activator of adenosine monophosphate activated protein kinase, were prepared in order to evaluate their effects on 2-deoxyglucose uptake in L6 myotubes and possible use in ameliorating metabolic disorders. Racemic arctigenin 2a was found to display a similar uptake enhancement as does (−)-arctigenin. As a result, the SAR study was conducted utilizing racemic compounds. The structure–activity relationship study led to the discovery of key substitution patterns on the lactone motif that govern 2-deoxyglucose uptake activities. The results show that replacement of the para-hydroxyl group of the C-2 benzyl moiety of arctigenin by Cl has a pronounced effect on uptake activity. Specifically, analogue 2p, which contains the p-Cl substituent, stimulates glucose uptake and fatty acid oxidation in L6 myotubes. PMID:25941553

  11. Design and synthesis of novel arctigenin analogues for the amelioration of metabolic disorders.

    PubMed

    Duan, Shudong; Huang, Suling; Gong, Jian; Shen, Yu; Zeng, Limin; Feng, Ying; Ren, Wenming; Leng, Ying; Hu, Youhong

    2015-04-09

    Analogues of the natural product (-)-arctigenin, an activator of adenosine monophosphate activated protein kinase, were prepared in order to evaluate their effects on 2-deoxyglucose uptake in L6 myotubes and possible use in ameliorating metabolic disorders. Racemic arctigenin 2a was found to display a similar uptake enhancement as does (-)-arctigenin. As a result, the SAR study was conducted utilizing racemic compounds. The structure-activity relationship study led to the discovery of key substitution patterns on the lactone motif that govern 2-deoxyglucose uptake activities. The results show that replacement of the para-hydroxyl group of the C-2 benzyl moiety of arctigenin by Cl has a pronounced effect on uptake activity. Specifically, analogue 2p, which contains the p-Cl substituent, stimulates glucose uptake and fatty acid oxidation in L6 myotubes.

  12. Self-report of fruit and vegetable intake that meets the 5 a day recommendation is associated with reduced levels of oxidative stress biomarkers and increased levels of antioxidant defense in premenopausal women.

    PubMed

    Rink, Stephanie M; Mendola, Pauline; Mumford, Sunni L; Poudrier, Jill K; Browne, Richard W; Wactawski-Wende, Jean; Perkins, Neil J; Schisterman, Enrique F

    2013-06-01

    Oxidative stress has been associated with a variety of chronic diseases and reproductive disorders. Fruits and vegetables (F/V) may contribute to antioxidant vitamin and micronutrient levels and reduce oxidative stress. To investigate the effect of meeting the 5 A Day For Better Health Program recommendation for F/V consumption on biomarkers of oxidative damage and antioxidant defense. In this longitudinal study, healthy premenopausal women (n=258) were followed for ≤2 menstrual cycles with ≤16 oxidative stress measures timed to cycle phase. Plasma concentrations of F2-isoprostane, 9-hydroxyoctadecadieneoic acid, 13-hydroxyoctadecadieneoic acid, erythrocyte activity of superoxide dismutase, glutathione reductase, and glutathione peroxidase, as well as blood micronutrient concentrations were measured. Dietary intake was assessed by food frequency questionnaires (FFQs) (1 per cycle), and 24-hour recalls (≤4 per cycle). Fruit and vegetable servings were dichotomized based on the recommendation to consume five servings of F/V each day. Linear mixed models with repeated measures were used to analyze lipid peroxidation markers, antioxidant vitamins, and antioxidant enzymes by cycle phase and in association with usual F/V intake. For both 24-hour recall (timed to cycle phase) and cycle-specific FFQ, meeting the recommendation to consume five servings of F/V each day was associated with decreased F2-isoprostanes (24-hour recall β=-.10 [95% CI, -0.12 to -0.07]; FFQ β= -.14 [95% CI, -0.18 to -0.11]). Glutathione reductase was lower in association with typical consumption of five or more servings of F/V by FFQ but not in the phase-specific analysis. Higher levels of ascorbic acid, lutein, beta carotene, and beta cryptoxanthin were observed with both intake measures. Meeting the 5 A Day For Better Health Program recommendation was associated with lower oxidative stress and improved antioxidant status in analyses of typical diet (via FFQ) and in menstrual cycle phase-specific analyses using 24-hour recalls. Green salads were commonly eaten and increasing intake of salads may be a useful strategy to influence oxidation in reproductive aged women. Copyright © 2013 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  13. Sea buckthorn seed oil protects against the oxidative stress produced by thermally oxidized lipids.

    PubMed

    Zeb, Alam; Ullah, Sana

    2015-11-01

    Thermally oxidized vegetable ghee was fed to the rabbits for 14 days with specific doses of sea buckthorn seed oil (SO). The ghee and SO were characterized for quality parameters and fatty acid composition using GC-MS. Rabbits serum lipid profile, hematology and histology were investigated. Major fatty acids were palmitic acid (44%) and oleic acid (46%) in ghee, while SO contains oleic acid (56.4%) and linoleic acid (18.7%). Results showed that oxidized vegetable ghee increases the serum total cholesterol, LDL-cholesterols, triglycerides and decrease the serum glucose. Oxidized ghee produced toxic effects in the liver and hematological parameters. Sea buckthorn oil supplementation significantly lowered the serum LDL-cholesterols, triglycerides and increased serum glucose and body weight of the animals. Sea buckthorn oil was found to reduce the toxic effects and degenerative changes in the liver and thus provides protection against the thermally oxidized lipids induced oxidative stress. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Physiological activities of the combination of fish oil and α-lipoic acid affecting hepatic lipogenesis and parameters related to oxidative stress in rats.

    PubMed

    Ide, Takashi

    2018-06-01

    We studied the combined effect of fish oil and α-lipoic acid on hepatic lipogenesis and fatty acid oxidation and parameters of oxidative stress in rats fed lipogenic diets high in sucrose. A control diet contained a saturated fat (palm oil) that gives high rate of hepatic lipogenesis. Male Sprague-Dawley rats were fed diets supplemented with 0 or 2.5 g/kg α-lipoic acid and containing 0, 20, or 100 g/kg fish oil, for 21 days. α-Lipoic acid significantly reduced food intake during 0-8 days but not the later period of the experiment. Fish oil and α-lipoic acid decreased serum lipid concentrations and their combination further decreased the parameters in an additive fashion. The combination of fish oil and α-lipoic acid decreased the activity and mRNA levels of hepatic lipogenic enzymes in an additive fashion. Fish oil increased the parameters of hepatic fatty acid oxidation enzymes. α-Lipoic acid appeared to antagonize the stimulating effects of fish oil of fatty acid oxidation through reductions in the activity of some fatty acid oxidation enzymes. α-Lipoic acid attenuated fish oil-dependent increases in serum and liver malondialdehyde levels, and this compound also reduced the serum 8-hydroxy-2'-deoxyguanosine level. α-Lipoic acid affected various parameters related to the antioxidant system; fish oil also affected some of the parameters. The combination of fish oil and α-lipoic acid effectively reduced serum lipid levels through the additive down-regulation of hepatic lipogenesis. α-Lipoic acid was effective in attenuating fish oil-mediated oxidative stress.

  15. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation.

    PubMed

    Zuo, Yingfeng; Liu, Wenjie; Xiao, Junhua; Zhao, Xing; Zhu, Ying; Wu, Yiqiang

    2017-10-01

    Dialdehyde starch was prepared by one-step synthesis of acid hydrolysis and oxidation, using corn starch as the raw material, sodium periodate (NaIO 4 ) as the oxidant, and hydrochloric acid (HCl) as the acid solution. The prepared dialdehyde starch was characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and gel permeation chromatography (GPC). The results confirmed that oxidation occurred between the starch and NaIO 4 . The acid hydrolysis reaction reduced the molecular weight of starch and effectively improved the aldehyde group contents (92.7%). Scanning electron microscope (SEM) analysis indicated that the average particle size decreased after acid hydrolysis and oxidation reaction. X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA) analysis demonstrated that the crystallinity of the obtained dialdehyde starch showed a downward trend and a decelerated thermal decomposition rate. The starch after acid hydrolysis and oxidation exhibited lower hot paste viscosity and higher reactivity. Copyright © 2017. Published by Elsevier B.V.

  16. Biosynthesis of the Pharmaceutically Important Fungal Ergot Alkaloid Dihydrolysergic Acid Requires a Specialized Allele of cloA

    PubMed Central

    Arnold, Stephanie L.

    2017-01-01

    ABSTRACT Ergot alkaloids are specialized fungal metabolites that are important as the bases of several pharmaceuticals. Many ergot alkaloids are derivatives of lysergic acid (LA) and have vasoconstrictive activity, whereas several dihydrolysergic acid (DHLA) derivatives are vasorelaxant. The pathway to LA is established, with the P450 monooxygenase CloA playing a key role in oxidizing its substrate agroclavine to LA. We analyzed the activities of products of cloA alleles from different fungi relative to DHLA biosynthesis by expressing them in a mutant of the fungus Neosartorya fumigata that accumulates festuclavine, the precursor to DHLA. Transformants expressing CloA from Epichloë typhina × Epichloë festucae, which oxidizes agroclavine to LA, failed to oxidize festuclavine to DHLA. In substrate feeding experiments, these same transformants oxidized exogenously supplied agroclavine to LA, indicating that a functional CloA was produced. A genomic clone of cloA from Claviceps africana, a sorghum ergot fungus that produces a DHLA derivative, was cloned and expressed in the festuclavine-accumulating mutant of N. fumigata, but several introns in this genomic clone were not processed properly. Expression of a synthetic intron-free version of C. africana cloA resulted in the accumulation of DHLA as assessed by fluorescence high-pressure liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). In substrate feeding experiments, the C. africana CloA also accepted agroclavine as the substrate, oxidizing it to LA. The data indicate that a specialized allele of cloA is required for DHLA biosynthesis and that the pharmaceutically important compound DHLA can be produced in engineered N. fumigata. IMPORTANCE Ergot alkaloids are fungal metabolites that have impacted humankind historically as poisons and more recently as pharmaceuticals used to treat dementia, migraines, and other disorders. Much is known about the biosynthesis of ergot alkaloids that are derived from lysergic acid (LA), but important questions remain about a parallel pathway to ergot alkaloids derived from dihydrolysergic acid (DHLA). DHLA-derived alkaloids have minor structural differences compared to LA-derived alkaloids but can have very different activities. To understand how DHLA is made, we analyzed activities of a key enzyme in the DHLA pathway and found that it differed from its counterpart in the LA pathway. Our data indicate a critical difference between the two pathways and provide a strategy for producing DHLA by modifying a model fungus. The ability to produce DHLA in a model fungus may facilitate synthesis of DHLA-derived pharmaceuticals. PMID:28476772

  17. Biosynthesis of the Pharmaceutically Important Fungal Ergot Alkaloid Dihydrolysergic Acid Requires a Specialized Allele of cloA.

    PubMed

    Arnold, Stephanie L; Panaccione, Daniel G

    2017-07-15

    Ergot alkaloids are specialized fungal metabolites that are important as the bases of several pharmaceuticals. Many ergot alkaloids are derivatives of lysergic acid (LA) and have vasoconstrictive activity, whereas several dihydrolysergic acid (DHLA) derivatives are vasorelaxant. The pathway to LA is established, with the P450 monooxygenase CloA playing a key role in oxidizing its substrate agroclavine to LA. We analyzed the activities of products of cloA alleles from different fungi relative to DHLA biosynthesis by expressing them in a mutant of the fungus Neosartorya fumigata that accumulates festuclavine, the precursor to DHLA. Transformants expressing CloA from Epichloë typhina × Epichloë festucae , which oxidizes agroclavine to LA, failed to oxidize festuclavine to DHLA. In substrate feeding experiments, these same transformants oxidized exogenously supplied agroclavine to LA, indicating that a functional CloA was produced. A genomic clone of cloA from Claviceps africana , a sorghum ergot fungus that produces a DHLA derivative, was cloned and expressed in the festuclavine-accumulating mutant of N. fumigata , but several introns in this genomic clone were not processed properly. Expression of a synthetic intron-free version of C. africana cloA resulted in the accumulation of DHLA as assessed by fluorescence high-pressure liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS). In substrate feeding experiments, the C. africana CloA also accepted agroclavine as the substrate, oxidizing it to LA. The data indicate that a specialized allele of cloA is required for DHLA biosynthesis and that the pharmaceutically important compound DHLA can be produced in engineered N. fumigata IMPORTANCE Ergot alkaloids are fungal metabolites that have impacted humankind historically as poisons and more recently as pharmaceuticals used to treat dementia, migraines, and other disorders. Much is known about the biosynthesis of ergot alkaloids that are derived from lysergic acid (LA), but important questions remain about a parallel pathway to ergot alkaloids derived from dihydrolysergic acid (DHLA). DHLA-derived alkaloids have minor structural differences compared to LA-derived alkaloids but can have very different activities. To understand how DHLA is made, we analyzed activities of a key enzyme in the DHLA pathway and found that it differed from its counterpart in the LA pathway. Our data indicate a critical difference between the two pathways and provide a strategy for producing DHLA by modifying a model fungus. The ability to produce DHLA in a model fungus may facilitate synthesis of DHLA-derived pharmaceuticals. Copyright © 2017 American Society for Microbiology.

  18. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis.

    PubMed

    Qin, Guozheng; Meng, Xianghong; Wang, Qing; Tian, Shiping

    2009-05-01

    Oxidative damage to mitochondria caused by reactive oxygen species (ROS) has been implicated in the process of senescence as well as a number of senescence-related disorders in a variety of organisms. Whereas mitochondrial DNA was shown to be oxidatively modified during cellular senescence, mitochondrial protein oxidation is not well-understood. With the use of high-resolution, two-dimensional gel electrophoresis coupled with immunoblotting, we show here that protein carbonylation, a widely used marker of protein oxidation, increased in mitochondria during the senescence of peach fruit. Specific mitochondrial proteins including outer membrane transporter (voltage-dependent anion-selective channel, VDAC), tricarboxylic acid cycle enzymes (malate dehydrogenase and aconitase), and antioxidant proteins (manganese superoxide dismutase, MnSOD) were found as the targets. The oxidative modification was concomitant with a change of VDAC function and loss of catalytic activity of malate dehydrogenase and MnSOD, which in turn facilitated the release of superoxide radicals in mitochondria. Reduction of ROS content by lowering the environmental temperature prevented the accumulation of protein carbonylation in mitochondria and retarded fruit senescence, whereas treatment of fruit with H2O2 had the opposite effect. Our data suggest that oxidative damage of specific mitochondrial proteins may be responsible for impairment of mitochondrial function, thus, leading to fruit senescence. Proteomics analysis of mitochondrial redox proteins provides considerable information on the molecular mechanisms involved in the progression of fruit senescence.

  19. Elevated Urinary Glyphosate and Clostridia Metabolites With Altered Dopamine Metabolism in Triplets With Autistic Spectrum Disorder or Suspected Seizure Disorder: A Case Study.

    PubMed

    Shaw, William

    2017-02-01

    Autism is a neurodevelopmental disorder for which a number of genetic, environmental, and nutritional causes have been proposed. Glyphosate is used widely as a crop desiccant and as an herbicide in fields of genetically modified foods that are glyphosate resistant. Several researchers have proposed that it may be a cause of autism, based on epidemiological data that correlates increased usage of glyphosate with an increased autism rate. The current study was intended to determine if excessive glyphosate was present in the triplets and their parents and to evaluate biochemical findings for the family to determine the potential effects of its presence. The author performed a case study with the cooperation of the parents and the attending physician. The study took place at The Great Plains Laboratory, Inc (Lenexa, KS, USA). Participants were triplets, 2 male children and 1 female, and their parents. The 2 male children had autism, whereas the female had a possible seizure disorder. All 3 had elevated urinary glyphosate, and all of the triplets and their mother had elevated values of succinic acid or tiglylglycine, which are indicators of mitochondrial dysfunction. The participants received a diet of organic food only. The study performed organic acids, glyphosate, toxic chemicals and tiglylglycine, and creatinine testing of the participants' urine. The 2 male triplets with autism had abnormalities on at least 1 organic acids test, including elevated phenolic compounds such as 4-cresol, 3-[3-hydroxyphenyl]-3-hydroxypropionic acid and 4-hydroxyphenylacetic acid, which have been previously associated with Clostridia bacteria and autism. The female, who was suspected of having a seizure disorder but not autism, did not have elevated phenolic compounds but did have a significantly elevated value of the metabolite tiglylglycine, a marker for mitochondrial dysfunction and/or mutations. One male triplet was retested postintervention and was found to have a markedly lower amount of glyphosate in his urine. The pattern of metabolites in the urine samples of the males with autism are consistent with a recent theory of autism that connects widespread glyphosate use with alteration of animal and human gastrointestinal flora. That theory is that the normally beneficial bacteria species that are sensitive to glyphosate are diminished and harmful bacteria species, such as Clostridia, that are insensitive to glyphosate, are increased following exposure to glyphosate. Excessive dopamine, caused by inhibition of dopamine-beta-hydroxylase by Clostridia metabolites, in turn, produces oxidative species that damage neuronal Krebs cycle enzymes, neuronal mitochondria, and neuronal structural elements such as the neurofibrils.

  20. Edaravone ameliorates the adverse effects of valproic acid toxicity in small intestine.

    PubMed

    Oktay, S; Alev, B; Tunali, S; Emekli-Alturfan, E; Tunali-Akbay, T; Koc-Ozturk, L; Yanardag, R; Yarat, A

    2015-06-01

    Valproic acid (VPA) is a drug used for the treatment of epilepsy, bipolar psychiatric disorders, and migraine. Previous studies have reported an increased generation of reactive oxygen species and oxidative stress in the toxic mechanism of VPA. Edaravone, a free radical scavenger for clinical use, can quench free radical reaction by trapping a variety of free radical species. In this study, effect of edaravone on some small intestine biochemical parameters in VPA-induced toxicity was investigated. Thirty seven Sprague Dawley female rats were randomly divided into four groups. The groups include control group, edaravone (30 mg(-1) kg(-1) day(-1)) given group, VPA (0.5 g(-1) kg(-1) day(-1)) given group, VPA + edaravone (in same dose) given group. Edaravone and VPA were given intraperitoneally for 7 days. Biochemical parameters such as malondialdehyde, as an index of lipid peroxidation(LPO), sialic acid (SA), glutathione levels and glutathione peroxidase, glutathione-S-transferase, superoxide dismutase, catalase, myeloperoxidase, alkaline phosphatase (ALP), and tissue factor (TF) activities were determined in small intestine samples by colorimetric methods. Decreased small intestine antioxidant enzyme activities, increased LPO and SA levels, and increased activities of ALP and TF were detected in the VPA group. Based on our results edaravone may be suggested to reverse the oxidative stress and inflammation due to VPA-induced small intestine toxicity. © The Author(s) 2014.

  1. Association between Serum Uric Acid and Non-Alcoholic Fatty Liver Disease: A Meta-Analysis.

    PubMed

    Darmawan, Guntur; Hamijoyo, Laniyati; Hasan, Irsan

    2017-04-01

    non-alcoholic fatty liver disease (NAFLD) is known to be associated with some metabolic disorders. Recent studies suggested the role of uric acid in NAFLD through oxidative stress and inflammatory process. This study is aimed to evaluate the association between serum uric acid and NAFLD. a systematic literature review was conducted using Pubmed and Cochrane library. The quality of all studies was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). All data were analyzed using REVIEW MANAGER 5.3. eleven studies from America and Asia involving 100,275 subjects were included. The pooled adjusted OR for NAFLD was 1.92 (95% CI: 1.66-2.23; p<0.00001). Subgroup analyses were done based on study design, gender, non-diabetic subjects, non-obese subjects. All subgroup analyses showed statistically significant adjusted OR and most of which having low to moderate heterogeneity. Two studies revealed relationship between increased serum uric acid levels and severity of NAFLD. No publication bias was observed. our study demonstrated association between serum uric acid level and NAFLD. This finding brings a new insight of uric acid in clinical practice. Increased in serum uric acid levels might serve as a trigger for physician to screen for NAFLD.

  2. Efficacy of Folic Acid Supplementation in Autistic Children Participating in Structured Teaching: An Open-Label Trial

    PubMed Central

    Sun, Caihong; Zou, Mingyang; Zhao, Dong; Xia, Wei; Wu, Lijie

    2016-01-01

    Autism spectrum disorders (ASD) are recognized as a major public health issue. Here, we evaluated the effects of folic acid intervention on methylation cycles and oxidative stress in autistic children enrolled in structured teaching. Sixty-six autistic children enrolled in this open-label trial and participated in three months of structured teaching. Forty-four children were treated with 400 μg folic acid (two times/daily) for a period of three months during their structured teaching (intervention group), while the remaining 22 children were not given any supplement for the duration of the study (control group). The Autism Treatment Evaluation Checklist (ATEC) and Psychoeducational Profile-third edition (PEP-3) were measured at the beginning and end of the treatment period. Folic acid, homocysteine, and glutathione metabolism in plasma were measured before and after treatment in 29 autistic children randomly selected from the intervention group and were compared with 29 age-matched unaffected children (typical developmental group). The results illustrated folic acid intervention improved autism symptoms towards sociability, cognitive verbal/preverbal, receptive language, and affective expression and communication. Furthermore, this treatment also improved the concentrations of folic acid, homocysteine, and normalized glutathione redox metabolism. Folic acid supplementation may have a certain role in the treatment of children with autism. PMID:27338456

  3. Efficacy of Folic Acid Supplementation in Autistic Children Participating in Structured Teaching: An Open-Label Trial.

    PubMed

    Sun, Caihong; Zou, Mingyang; Zhao, Dong; Xia, Wei; Wu, Lijie

    2016-06-07

    Autism spectrum disorders (ASD) are recognized as a major public health issue. Here, we evaluated the effects of folic acid intervention on methylation cycles and oxidative stress in autistic children enrolled in structured teaching. Sixty-six autistic children enrolled in this open-label trial and participated in three months of structured teaching. Forty-four children were treated with 400 μg folic acid (two times/daily) for a period of three months during their structured teaching (intervention group), while the remaining 22 children were not given any supplement for the duration of the study (control group). The Autism Treatment Evaluation Checklist (ATEC) and Psychoeducational Profile-third edition (PEP-3) were measured at the beginning and end of the treatment period. Folic acid, homocysteine, and glutathione metabolism in plasma were measured before and after treatment in 29 autistic children randomly selected from the intervention group and were compared with 29 age-matched unaffected children (typical developmental group). The results illustrated folic acid intervention improved autism symptoms towards sociability, cognitive verbal/preverbal, receptive language, and affective expression and communication. Furthermore, this treatment also improved the concentrations of folic acid, homocysteine, and normalized glutathione redox metabolism. Folic acid supplementation may have a certain role in the treatment of children with autism.

  4. Therapeutic Potential of Mood Stabilizers Lithium and Valproic Acid: Beyond Bipolar Disorder

    PubMed Central

    Chiu, Chi-Tso; Wang, Zhifei; Hunsberger, Joshua G.

    2013-01-01

    The mood stabilizers lithium and valproic acid (VPA) are traditionally used to treat bipolar disorder (BD), a severe mental illness arising from complex interactions between genes and environment that drive deficits in cellular plasticity and resiliency. The therapeutic potential of these drugs in other central nervous system diseases is also gaining support. This article reviews the various mechanisms of action of lithium and VPA gleaned from cellular and animal models of neurologic, neurodegenerative, and neuropsychiatric disorders. Clinical evidence is included when available to provide a comprehensive perspective of the field and to acknowledge some of the limitations of these treatments. First, the review describes how action at these drugs’ primary targets—glycogen synthase kinase-3 for lithium and histone deacetylases for VPA—induces the transcription and expression of neurotrophic, angiogenic, and neuroprotective proteins. Cell survival signaling cascades, oxidative stress pathways, and protein quality control mechanisms may further underlie lithium and VPA’s beneficial actions. The ability of cotreatment to augment neuroprotection and enhance stem cell homing and migration is also discussed, as are microRNAs as new therapeutic targets. Finally, preclinical findings have shown that the neuroprotective benefits of these agents facilitate anti-inflammation, angiogenesis, neurogenesis, blood-brain barrier integrity, and disease-specific neuroprotection. These mechanisms can be compared with dysregulated disease mechanisms to suggest core cellular and molecular disturbances identifiable by specific risk biomarkers. Future clinical endeavors are warranted to determine the therapeutic potential of lithium and VPA across the spectrum of central nervous system diseases, with particular emphasis on a personalized medicine approach toward treating these disorders. PMID:23300133

  5. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  6. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  7. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  8. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  9. Arginine mimetic structures in biologically active antagonists and inhibitors.

    PubMed

    Masic, Lucija Peterlin

    2006-01-01

    Peptidomimetics have found wide application as bioavailable, biostable, and potent mimetics of naturally occurring biologically active peptides. L-Arginine is a guanidino group-containing basic amino acid, which is positively charged at neutral pH and is involved in many important physiological and pathophysiological processes. Many enzymes display a preference for the arginine residue that is found in many natural substrates and in synthetic inhibitors of many trypsin-like serine proteases, e.g. thrombin, factor Xa, factor VIIa, trypsin, and in integrin receptor antagonists, used to treat many blood-coagulation disorders. Nitric oxide (NO), which is produced by oxidation of L-arginine in an NADPH- and O(2)-dependent process catalyzed by isoforms of nitric oxide synthase (NOS), exhibits diverse roles in both normal and pathological physiologies and has been postulated to be a contributor to the etiology of various diseases. Development of NOS inhibitors as well as analogs and mimetics of the natural substrate L-arginine, is desirable for potential therapeutic use and for a better understanding of their conformation when bound in the arginine binding site. The guanidino residue of arginine in many substrates, inhibitors, and antagonists forms strong ionic interactions with the carboxylate of an aspartic acid moiety, which provides specificity for the basic amino acid residue in the active side. However, a highly basic guanidino moiety incorporated in enzyme inhibitors or receptor antagonists is often associated with low selectivity and poor bioavailability after peroral application. Thus, significant effort is focused on the design and preparation of arginine mimetics that can confer selective inhibition for specific trypsin-like serine proteases and NOS inhibitors as well as integrin receptor antagonists and possess reduced basicity for enhanced oral bioavailability. This review will describe the survey of arginine mimetics designed to mimic the function of the arginine moiety in numerous peptidomimetic compounds (thrombin inhibitors, factor Xa inhibitors, factor VIIa inhibitors, integrin receptor antagonists, nitric oxide synthase inhibitors), with the aim of obtaining better activity, selectivity and oral bioavailability.

  10. Mechanisms leading to oligomers and SOA through aqueous photooxidation: insights from OH radical oxidation of acetic acid

    NASA Astrophysics Data System (ADS)

    Tan, Y.; Lim, Y. B.; Altieri, K. E.; Seitzinger, S. P.; Turpin, B. J.

    2011-06-01

    Previous experiments have demonstrated that the aqueous OH radical oxidation of methylglyoxal produces low volatility products including oxalate and oligomers. These products are found predominantly in the particle phase in the atmosphere, suggesting that methylglyoxal is a precursor of secondary organic aerosol (SOA). Acetic acid is an important intermediate in aqueous methylglyoxal oxidation and a ubiquitous product of gas phase photochemistry, making it a potential "aqueous" SOA precursor in its own right. Altieri et al. (2008) proposed that acetic acid was the precursor of oligoesters observed in methylglyoxal oxidation. However, the fate of acetic acid upon aqueous-phase oxidation is not well understood. In this research, acetic acid at concentrations relevant to atmospheric waters (20 μM-10 mM) was oxidized by OH radical. Products were analyzed by ion chromatography (IC), electrospray ionization mass spectrometry (ESI-MS), and IC-ESI-MS. The formation of glyoxylic, glycolic, and oxalic acids were observed. In contrast to methylglyoxal oxidation, succinic acid and oligomers were not detected. Using results from these and methylglyoxal + OH radical experiments, radical mechanisms responsible for oligomer formation from methylglyoxal oxidation in clouds and wet aerosols are proposed. The importance of acetic acid/acetate as an SOA precursor is also discussed. We hypothesize that this and similar chemistry is central to the daytime formation of oligomers in wet aerosols.

  11. Characterization of the Aluminum-Oxide - Interface in Organic-Based Photoconductors by Electron Tunneling Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Outzourhit, Abdelkader

    In this study both the structure of the native oxide of the aluminum substrate and its electrical properties were investigated using electron tunneling spectroscopy which uses aluminum/aluminum oxide/lead tunnel junctions. It is found that the structure of the oxide as well as the barrier heights vary as a function of the preparation conditions. Room temperature oxidation in air or in the presence of small amounts of water vapor results in a disordered oxide, while glow discharge oxidation in an oxygen plasma leads to a more ordered oxide as evidenced by a sharp Al-O band in the inelastic electron tunneling (IET) spectra of as-grown tunnel junctions. In addition, the thermally oxidized junctions show a large barrier asymmetry (6.1 eV), which decrease as the humidity level is increased. These observations can be correlated with a change in the concentration, charge, and environment of the chemically adsorbed hydroxyl on the surface of the aluminum oxide. Tunneling studies of Hydroxy Squarylium (OHSq)- and PNDMA-doped tunnel junctions reveal the lowering of the effective barrier for electron tunneling as well as the barrier asymmetry in accordance with the modification of the charged hydroxyl groups at the surface of the oxide. IET spectra of these junctions support the Lewis-acid/Lewis-base type of interaction between the oxide surface and the adsorbed molecules. The ionization energy of the OHSq aggregates was measured to be 5.0 eV using the valence band XPS. This parameter was also evaluated from a simple Huckel molecular orbital theory applied to the dye molecule after taking into account the polarization energy. High dark decay rates are associated with low barrier for hole injection into the OHSq aggregates. Schottky emission is the primary cause of the dark decay at low voltages, while the Frenkel -Poole mechanism dominates the dark decay at higher voltages. The Lewis-acid/Lewis-base mechanism for the dark decay is not ruled out. Structural studies reveal the existence of silicon- and sodium-rich protrusions in the samples which show unacceptable dark decay rates. The protrusions can enhance the electric field within the photoconductor and thus lead to higher dark decay rates. (Abstract shortened with permission of author.).

  12. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  13. Dietary intake in population-based adolescents: support for a relationship between eating disorder symptoms, low fatty acid intake and depressive symptoms.

    PubMed

    Allen, K L; Mori, T A; Beilin, L; Byrne, S M; Hickling, S; Oddy, W H

    2013-10-01

    Relatively little is known about the dietary intake and nutritional status of community-based individuals with eating disorders. This research aimed to: (i) describe the dietary intake of population-based adolescents with an eating disorder and (ii) examine associations between eating disorder symptoms, fatty acid intake and depressive symptoms in adolescents with and without an eating disorder. Data were drawn from the Western Australian Pregnancy Cohort (Raine) Study, a population-based cohort study that has followed participants from birth to young adulthood. This research utilised self-report data from the 17-year Raine Study assessment. Participants comprised 429 female adolescents who completed comprehensive questionnaire measures on dietary intake, eating disorder symptoms and depressive symptoms. Adolescents with an eating disorder (n = 66) reported a significantly lower intake of total fat, saturated fat, omega-6 fatty acid, starch, vitamin A and vitamin E compared to adolescents without an eating disorder (n = 363). Adolescents with an eating disorder and pronounced depressive symptoms (n = 23) also reported a significantly lower intake of polyunsaturated fat and omega-3 and omega-6 fatty acid than adolescents with an eating disorder but no marked depression (n = 43). In the eating disorder sample but not the control sample, omega-3 and omega-6 fatty acid correlated significantly and negatively with eating disorder symptoms and with depressive symptoms. Support is provided for a relationship between low omega-3 and omega-6 fatty acid intake and depressive symptoms in adolescents with eating disorders. Research is needed to examine the feasibility and effectiveness of fatty acid supplementation in this high-risk group. © 2012 The Authors Journal of Human Nutrition and Dietetics © 2012 The British Dietetic Association Ltd.

  14. Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress.

    PubMed

    Sautin, Yuri Y; Nakagawa, Takahiko; Zharikov, Sergey; Johnson, Richard J

    2007-08-01

    Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.

  15. Characterization of nitric oxide-releasing microparticles for the mucosal delivery.

    PubMed

    Yoo, Jin-Wook; Lee, Jae-Suk; Lee, Chi H

    2010-03-15

    For the treatment of female sexual arousal disorder (FSAD), we developed microparticles made of PLGA containing nitric oxide (NO) donor (DETA NONOate) to efficiently deliver NO to vaginal mucosa. The NO-releasing microparticles were prepared by various emulsion methods. SEM and DSC studies were performed to examine the microparticles. The release studies were conducted under various conditions to optimize the loading dose in the microparticles. NO diffusivity through vaginal epithelial cells was evaluated and pharmacological activity of NO-releasing microparticles was examined by assessment of intracellular cGMP level in vaginal cells. Through the modified double emulsion solvent evaporation method (w/o/w(a)), the acid labile DETA NONOate was stabilized during the fabrication process and homogenous morphology and high entrapment efficiency were achieved. DETA NONOate was protected under the acidic conditions of the vagina and NO was released from the microparticles in a controlled manner. A significant amount of NO produced from DETA NONOate penetrated through the vaginal epithelial cells. The intracellular cGMP level increased with the treatment of NO-releasing microparticles in vaginal cells. These findings suggest that NO-releasing microparticles could improve the vaginal blood perfusion and open up the possibilities of novel treatment of FSAD. (c) 2009 Wiley Periodicals, Inc.

  16. Implication of advanced glycation end products (Ages) and their receptor (Rage) on myocardial contractile and mitochondrial functions.

    PubMed

    Neviere, Remi; Yu, Yichi; Wang, Lei; Tessier, Frederic; Boulanger, Eric

    2016-08-01

    Advanced glycation end products (AGEs) play an important role for the development and/or progression of cardiovascular diseases, mainly through induction of oxidative stress and inflammation. AGEs are a heterogeneous group of molecules formed by non-enzymatic reaction of reducing sugars with amino acids of proteins, lipids and nucleic acids. AGEs are mainly formed endogenously, while recent studies suggest that diet constitutes an important exogenous source of AGEs. The presence and accumulation of AGEs in various cardiac cell types affect extracellular and intracellular structure and function. AGEs contribute to a variety of microvascular and macrovascular complications through the formation of cross-links between molecules in the basement membrane of the extracellular matrix and by engaging the receptor for advanced glycation end products (RAGE). Activation of RAGE by AGEs causes up regulation of the transcription factor nuclear factor-κB and its target genes. of the RAGE engagement stimulates oxidative stress, evokes inflammatory and fibrotic reactions, which all contribute to the development and progression of devastating cardiovascular disorders. This review discusses potential targets of glycation in cardiac cells, and underlying mechanisms that lead to heart failure with special interest on AGE-induced mitochondrial dysfunction in the myocardium.

  17. Non-alcoholic steatohepatitis: review of a growing medical problem.

    PubMed

    Te Sligte, K.; Bourass, I.; Sels, J.P.; Driessen, A.; Stockbrugger, R.W.; Koek, G.H.

    2004-02-01

    Non-alcoholic steatohepatitis (NASH) is a metabolic liver disorder that is seen in 2-6% of the general population. It manifests itself by elevated liver enzymes, frequently without symptoms. The histological findings include steatosis, inflammation, fibrosis, and cirrhosis. Three case reports are presented to illustrate features of NASH. A two-hit model has been proposed in the pathogenesis of NASH. The first hit is hepatic steatosis. A hypercaloric diet with high levels of carbohydrates and saturated fatty acids results in elevated plasma free fatty acids (FFA) and expands the adipose tissue. Insulin resistance develops and augments steatosis. Oxidation of FFA yields toxic free radicals, resulting in lipid peroxidation. They cause the second hits: increased oxidative stress on hepatocytes and induction of pro-inflammatory cytokines. When the antioxidant capacities of the liver are insufficient, mitochondrial dysfunction and tumor necrosis factor alpha (TNF-alpha) cause inflammation and fibrosis. Treatment consists of life style modifications, particularly weight loss and exercise. Many drugs have been tried in the treatment of NASH. The insulin-sensitizing drugs metformin, rosiglitazone, and pioglitazone, and the antioxidant vitamin E show promising results. Further investigation of therapeutic options is needed to direct the choice of therapy in the future.

  18. The unsolved puzzle of neuropathogenesis in glutaric aciduria type I.

    PubMed

    Jafari, Paris; Braissant, Olivier; Bonafé, Luisa; Ballhausen, Diana

    2011-12-01

    Glutaric aciduria type I (GA-I) is a cerebral organic aciduria caused by deficiency of glutaryl-Co-A dehydrogenase (GCDH). GCDH deficiency leads to accumulation of glutaric acid (GA) and 3-hydroxyglutaric acid (3-OHGA), two metabolites that are believed to be neurotoxic, in brain and body fluids. The disorder usually becomes clinically manifest during a catabolic state (e.g. intercurrent illness) with an acute encephalopathic crisis that results in striatal necrosis and in a permanent dystonic-dyskinetic movement disorder. The results of numerous in vitro and in vivo studies have pointed to three main mechanisms involved in the metabolite-mediated neuronal damage: excitotoxicity, impairment of energy metabolism and oxidative stress. There is evidence that during a metabolic crisis GA and its metabolites are produced endogenously in the CNS and accumulate because of limiting transport mechanisms across the blood-brain barrier. Despite extensive experimental work, the relative contribution of the proposed pathogenic mechanisms remains unclear and specific therapeutic approaches have yet to be developed. Here, we review the experimental evidence and try to delineate possible pathogenetic models and approaches for future studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Acylcarnitines--old actors auditioning for new roles in metabolic physiology.

    PubMed

    McCoin, Colin S; Knotts, Trina A; Adams, Sean H

    2015-10-01

    Perturbations in metabolic pathways can cause substantial increases in plasma and tissue concentrations of long-chain acylcarnitines (LCACs). For example, the levels of LCACs and other acylcarnitines rise in the blood and muscle during exercise, as changes in tissue pools of acyl-coenzyme A reflect accelerated fuel flux that is incompletely coupled to mitochondrial energy demand and capacity of the tricarboxylic acid cycle. This natural ebb and flow of acylcarnitine generation and accumulation contrasts with that of inherited fatty acid oxidation disorders (FAODs), cardiac ischaemia or type 2 diabetes mellitus. These conditions are characterized by very high (FAODs, ischaemia) or modestly increased (type 2 diabetes mellitus) tissue and blood levels of LCACs. Although specific plasma concentrations of LCACs and chain-lengths are widely used as diagnostic markers of FAODs, research into the potential effects of excessive LCAC accumulation or the roles of acylcarnitines as physiological modulators of cell metabolism is lacking. Nevertheless, a growing body of evidence has highlighted possible effects of LCACs on disparate aspects of pathophysiology, such as cardiac ischaemia outcomes, insulin sensitivity and inflammation. This Review, therefore, aims to provide a theoretical framework for the potential consequences of tissue build-up of LCACs among individuals with metabolic disorders.

  20. The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism.

    PubMed

    Yoon, Mee-Sup

    2016-07-01

    Insulin is required for maintenance of glucose homeostasis. Despite the importance of insulin sensitivity to metabolic health, the mechanisms that induce insulin resistance remain unclear. Branched-chain amino acids (BCAAs) belong to the essential amino acids, which are both direct and indirect nutrient signals. Even though BCAAs have been reported to improve metabolic health, an increased BCAA plasma level is associated with a high risk of metabolic disorder and future insulin resistance, or type 2 diabetes mellitus (T2DM). The activation of mammalian target of rapamycin complex 1 (mTORC1) by BCAAs has been suggested to cause insulin resistance. In addition, defective BCAA oxidative metabolism might occur in obesity, leading to a further accumulation of BCAAs and toxic intermediates. This review provides the current understanding of the mechanism of BCAA-induced mTORC1 activation, as well as the effect of mTOR activation on metabolic health in terms of insulin sensitivity. Furthermore, the effects of impaired BCAA metabolism will be discussed in detail.

  1. Parenteral nutrition in patients with inborn errors of metabolism - a therapeutic problem.

    PubMed

    Kaluzny, L; Szczepanik, M; Siwinska-Mrozek, Z; Borkowska-Klos, M; Cichy, W; Walkowiak, J

    2014-06-01

    Parenteral nutrition is now a standard part of supportive treatment in pediatric departments. We describe four cases in which parenteral nutrition was extremely difficult due to coincidence with inborn errors of metabolism. The first two cases was fatty acid beta-oxidation disorders associated with necrotizing enterocolitis and congenital heart disease. Thus, limitations of intravenous lipid intake made it difficult to maintain a good nutritional status. The third case was phenylketonuria associated with a facial region tumour (rhabdomyosarcoma), in which parenteral nutrition was complicated because of a high phenylalanine content in the amino acid formulas for parenteral nutrition. The fourth patient was a child with late-diagnosed tyrosinemia type 1, complicated with encephalopathy - during intensive care treatment the patient needed nutritional support, including parenteral nutrition - we observed amino acid formula problems similar to those in the phenylketonuria patient. Parenteral nutrition in children with inborn errors of metabolism is a rare, but very important therapeutic problem. Total parenteral nutrition formulas are not prepared for this group of diseases.

  2. Modulatory Effects of Dietary Amino Acids on Neurodegenerative Diseases.

    PubMed

    Rajagopal, Senthilkumar; Sangam, Supraj Raja; Singh, Shubham; Joginapally, Venkateswara Rao

    2016-01-01

    Proteins are playing a vital role in maintaining the cellular integrity and function, as well as for brain cells. Protein intake and supplementation of individual amino acids can affect the brain functioning and mental health, and many of the neurotransmitters in the brain are made from amino acids. The amino acid supplementation has been found to reduce symptoms, as they are converted into neurotransmitters which in turn extenuate the mental disorders. The biosynthesis of amino acids in the brain is regulated by the concentration of amino acids in plasma. The brain diseases such as depression, bipolar disorder, schizophrenia, obsessive-compulsive disorder (OCD), and Alzheimer's (AD), Parkinson's (PD), and Huntington's diseases (HD) are the most common mental disorders that are currently widespread in numerous countries. The intricate biochemical and molecular machinery contributing to the neurological disorders is still unknown, and in this chapter, we revealed the involvement of dietary amino acids on neurological diseases.

  3. Chinese patent medicine Xin-Ke-Shu inhibits Ca2+ overload and dysfunction of fatty acid β-oxidation in rats with myocardial infarction induced by LAD ligation.

    PubMed

    Yang, Yong; Jia, Hongmei; Yu, Meng; Zhou, Chao; Sun, Lili; Zhao, Yang; Zhang, Hongwu; Zou, Zhongmei

    2018-03-15

    Myocardial infarction (MI) occurs during a sustained insufficient blood supply to the heart, eventually leading to myocardial necrosis. Xin-Ke-Shu tablet (XKS) is a prescription herbal compound and a patented medicine extensively used in the clinical treatment of coronary heart disease (CHD). To understand the molecular mechanism of the XKS action against MI in detail, it is necessary to investigate the altered metabolome and related pathways coincident with clinical features. In this study, tissue-targeted metabonomics based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) were developed to explore the metabolic changes associated with XKS treatment in the heart tissue of rats with MI induced by a left anterior descending coronary artery ligation (LAD). The metabolic disorder induced by LAD was alleviated after low-dose XKS (LD) and intermediate-dose XKS (MD) treatment. XKS modulated six perturbed metabolic pathways. Among them, inhibition of Ca 2+ overload and dysfunction of fatty acid β-oxidation-related metabolic pathways likely underlie the therapeutic effects of XKS against MI. In agreement with its observed effect on metabolite perturbation, XKS reversed the over-expression of the four key proteins, long-chain acyl-CoA synthetase 1 (ACSL1), carnitine palmitoyl transferase-1 (CPT1B), calcium/calmodulin-dependent kinase II (CaMKII), and phospholipase A2IIA (PLA2IIA). Both metabolite and protein changes suggested that XKS exerts its therapeutic effect on metabolic perturbations in LAD-induced MI mainly by inhibiting the Ca 2+ overload and fatty acid β-oxidation dysfunction. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Lemon balm extract (Melissa officinalis, L.) promotes melanogenesis and prevents UVB-induced oxidative stress and DNA damage in a skin cell model.

    PubMed

    Pérez-Sánchez, Almudena; Barrajón-Catalán, Enrique; Herranz-López, María; Castillo, Julián; Micol, Vicente

    2016-11-01

    Solar ultraviolet (UV) radiation is one of the main causes of a variety of cutaneous disorders, including photoaging and skin cancer. Its UVB component (280-315nm) leads to oxidative stress and causes inflammation, DNA damage, p53 induction and lipid and protein oxidation. Recently, an increase in the use of plant polyphenols with antioxidant and anti-inflammatory properties has emerged to protect human skin against the deleterious effects of sunlight. This study evaluates the protective effects of lemon balm extract (LBE) (Melissa Officinalis, L) and its main phenolic compound rosmarinic acid (RA) against UVB-induced damage in human keratinocytes. The LBE composition was determined by HPLC analysis coupled to photodiode array detector and ion trap mass spectrometry with electrospray ionization (HPLC-DAD-ESI-IT-MS/MS). Cell survival, ROS generation and DNA damage were determined upon UVB irradiation in the presence of LBE. The melanogenic capacity of LBE was also determined. RA and salvianolic acid derivatives were the major compounds, but caffeic acid and luteolin glucuronide were also found in LBE. LBE and RA significantly increased the survival of human keratinocytes upon UVB radiation, but LBE showed a stronger effect. LBE significantly decreased UVB-induced intracellular ROS production. Moreover, LBE reduced UV-induced DNA damage and the DNA damage response (DDR), which were measured as DNA strand breaks in the comet assay and histone H2AX activation, respectively. Finally, LBE promoted melanogenesis in the cell model. These results suggest that LBE may be considered as a candidate for the development of oral/topical photoprotective ingredients against UVB-induced skin damage. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Metformin and ascorbic acid combination therapy ameliorates type 2 diabetes mellitus and comorbid depression in rats.

    PubMed

    Shivavedi, Naveen; Kumar, Mukesh; Tej, Gullanki Naga Venkata Charan; Nayak, Prasanta Kumar

    2017-11-01

    Diabetes mellitus and depression are the common comorbid disorders affecting humans worldwide. There is an unmet need to develop therapeutic strategies to treat both diabetes mellitus and comorbid depression. The present study evaluated the effectiveness of metformin and ascorbic acid against type 2 diabetes mellitus and comorbid depression in rats. Four groups of diabetic rats were orally administered with vehicle (1mL/kg), metformin (25mg/kg), ascorbic acid (25mg/kg), or combination of metformin (25mg/kg) and ascorbic acid (25mg/kg) for 11 consecutive days. Diabetes was induced by single-dose administration of streptozotocin (65mg/kg, i.p.) with nicotinamide (120mg/kg, i.p.). Comorbid depression was induced by five inescapable foot-shocks (2mA, 2ms duration) at 10s intervals on days 1, 5, 7, and 10. One group of healthy rats received only vehicles to serve as nondiabetic control group. On day 11, animals were sacrificed, and blood and brain samples were collected from each rat following forced swim test. Plasma glucose, insulin, and corticosterone levels were estimated in plasma. The levels of monoamines, proinflammatory cytokines, and oxidative stress were measured in prefrontal cortex. The combination therapy significantly reduced immobility period, glucose, and corticosterone levels relative to diabetes with comorbid depression group. Furthermore, the combination therapy increased the levels of insulin and monoamines, and caused a significant reductions in oxidative stress and proinflammatory cytokines. In conclusion, the present study revealed that metformin and ascorbic acid combination therapy could be a potential strategy to treat type 2 diabetes mellitus and comorbid depression. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Nine cases of Alkaptonuria in one family in southern Jordan.

    PubMed

    Al-Sbou, Mohammed; Mwafi, Nesrin

    2012-03-01

    Alkaptonuria is a rare autosomal recessive metabolic disorder characterized by a deficiency of homogentisate 1,2-dioxygenase (HGO) in the liver. This results in excretion of large quantities of homogentisic acid (HGA) (also called alkapton) in the urine and a slowly progressive deposition of homogentisic acid and its oxidative product in connective tissues. Clinical characteristic features of alkaptonuria are darkening of urine, bluish-dark pigmentation of connective tissues (ochronosis) and arthritis of large joints and spine. Cardiovascular and genitourinary systems may also be affected. In this report, we present the initial results of screening family members with history of alkaptonuria in southern region of Jordan. We present 9 cases of alkaptonuria (two males and seven females) in one Jordanian family. The history, signs and symptoms, diagnostic techniques and treatment options of alkaptonuria are reviewed in this article.

  7. Oxidation of metabolites highlights the microbial interactions and role of Acetobacter pasteurianus during cocoa bean fermentation.

    PubMed

    Moens, Frédéric; Lefeber, Timothy; De Vuyst, Luc

    2014-03-01

    Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848(T), Acetobacter fabarum LMG 24244(T), and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848(T) oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848(T) and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation.

  8. Oxidation of Metabolites Highlights the Microbial Interactions and Role of Acetobacter pasteurianus during Cocoa Bean Fermentation

    PubMed Central

    Moens, Frédéric; Lefeber, Timothy

    2014-01-01

    Four cocoa-specific acetic acid bacterium (AAB) strains, namely, Acetobacter pasteurianus 386B, Acetobacter ghanensis LMG 23848T, Acetobacter fabarum LMG 24244T, and Acetobacter senegalensis 108B, were analyzed kinetically and metabolically during monoculture laboratory fermentations. A cocoa pulp simulation medium (CPSM) for AAB, containing ethanol, lactic acid, and mannitol, was used. All AAB strains differed in their ethanol and lactic acid oxidation kinetics, whereby only A. pasteurianus 386B performed a fast oxidation of ethanol and lactic acid into acetic acid and acetoin, respectively. Only A. pasteurianus 386B and A. ghanensis LMG 23848T oxidized mannitol into fructose. Coculture fermentations with A. pasteurianus 386B or A. ghanensis LMG 23848T and Lactobacillus fermentum 222 in CPSM for lactic acid bacteria (LAB) containing glucose, fructose, and citric acid revealed oxidation of lactic acid produced by the LAB strain into acetic acid and acetoin that was faster in the case of A. pasteurianus 386B. A triculture fermentation with Saccharomyces cerevisiae H5S5K23, L. fermentum 222, and A. pasteurianus 386B, using CPSM for LAB, showed oxidation of ethanol and lactic acid produced by the yeast and LAB strain, respectively, into acetic acid and acetoin. Hence, acetic acid and acetoin are the major end metabolites of cocoa bean fermentation. All data highlight that A. pasteurianus 386B displayed beneficial functional roles to be used as a starter culture, namely, a fast oxidation of ethanol and lactic acid, and that these metabolites play a key role as substrates for A. pasteurianus in its indispensable cross-feeding interactions with yeast and LAB during cocoa bean fermentation. PMID:24413595

  9. The effect of 12-wk ω-3 fatty acid supplementation on in vivo thalamus glutathione concentration in patients "at risk" for major depression.

    PubMed

    Duffy, Shantel L; Lagopoulos, Jim; Cockayne, Nicole; Lewis, Simon J G; Hickie, Ian B; Hermens, Daniel F; Naismith, Sharon L

    2015-10-01

    As life expectancy increases, the need to prevent major health disorders is clear. Depressive symptoms are common in older adults and are associated with cognitive decline and greater risk for transitioning to major depression. Oxidative stress may be implicated in the pathophysiology of major depression and can be measured in vivo using proton magnetic resonance spectroscopy via the neurometabolite glutathione (GSH). Evidence suggests ω-3 fatty acid (FA) supplementation may prevent depression and directly affect GSH concentration. The aim of this study was to examine the effect of ω-3 FA supplementation on in vivo GSH concentration in older adults at risk for depression. Fifty-one older adults at risk for depression were randomized to receive either four 1000-mg ω-3 FA supplements daily (containing eicosapentaenoic acid 1200 mg plus docosahexaenoic acid 800 mg) or placebo (four 1000-mg paraffin oil placebo capsules daily) for 12 wk. Participants underwent magnetic resonance spectroscopy, as well as medical, neuropsychological, and self-report assessments at baseline and after 12 wk of supplementation. GSH was measured in the thalamus and calculated as a ratio to creatine. Depressive symptoms were measured using the Patient Health Questionnaire. Compared with the group given the ω-3 FA supplements, the placebo group had greater change in the GSH-to-creatine ratio in the thalamus (t = 2.00; P = 0.049) after the 12 wk intervention. This increase was in turn associated with a worsening of depressive symptoms (r = 0.43; P = 0.043). Depressive symptom severity in older adults appears to be associated with increased brain levels of GSH, a key marker of oxidative stress. Importantly, ω-3 FA supplementation may attenuate oxidative stress mechanisms, thereby offering benefits for depression prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Oxidative stress in major depressive and anxiety disorders, and the association with antidepressant use; results from a large adult cohort.

    PubMed

    Black, C N; Bot, M; Scheffer, P G; Penninx, B W J H

    2017-04-01

    Oxidative stress has been implicated in the pathophysiology of major depressive disorder (MDD) and anxiety disorders and may be influenced by antidepressant use. This study investigated the association of oxidative stress, measured by plasma levels of F2-isoprostanes and 8-hydroxy-2'-deoxyguanosine (8-OHdG) reflecting oxidative lipid and DNA damage respectively, with MDD, anxiety disorders and antidepressant use in a large cohort. Data was derived from the Netherlands Study of Depression and Anxiety including patients with current (N = 1619) or remitted (N = 610) MDD and/or anxiety disorder(s) (of which N = 704 antidepressant users) and 612 controls. Diagnoses were established with the Composite International Diagnostic Interview. Plasma 8-OHdG and F2-isoprostanes were measured using LC-MS/MS. ANCOVA was performed adjusted for sampling, sociodemographic, health and lifestyle variables. F2-isoprostanes did not differ between controls and patients, or by antidepressant use. Patients with current disorders had lower 8-OHdG (mean 42.1 pmol/l, 95% CI 40.4-43.8) compared to controls (45.0 pmol/l, 95% CI 42.9-47.2; p < 0.001) after adjustment for sampling, sociodemographics and lifestyle, but these differences disappeared after further adjustment for antidepressant use (p = 0.562). Antidepressant users had lower 8-OHdG levels (38.2 pmol/l, 95% CI 36.5-39.9) compared to controls (44.9 pmol/l, 95% CI 43.2-46.6; Cohen's d = 0.21, p < 0.001). Results for 8-OHdG were comparable across disorders (MDD and/or anxiety disorders), and all antidepressant types (SSRIs, TCAs, other antidepressants). Contrary to previous findings this large-scale study found no increased oxidative stress in MDD and anxiety disorders. Antidepressant use was associated with lower oxidative DNA damage, suggesting antidepressants may have antioxidant effects.

  11. Thiamine Deprivation Produces a Liver ATP Deficit and Metabolic and Genomic Effects in Mice: Findings Are Parallel to Those of Biotin Deficiency and Have Implications for Energy Disorders.

    PubMed

    Hernandez-Vazquez, Alain de J; Garcia-Sanchez, Josue Andres; Moreno-Arriola, Elizabeth; Salvador-Adriano, Ana; Ortega-Cuellar, Daniel; Velazquez-Arellano, Antonio

    2016-01-01

    Thiamine is one of several essential cofactors for ATP generation. Its deficiency, like in beriberi and in the Wernicke-Korsakoff syndrome, has been studied for many decades. However, its mechanism of action is still not completely understood at the cellular and molecular levels. Since it acts as a coenzyme for dehydrogenases of pyruvate, branched-chain keto acids, and ketoglutarate, its nutritional privation is partly a phenocopy of inborn errors of metabolism, among them maple syrup urine disease. In the present paper, we report metabolic and genomic findings in mice deprived of thiamine. They are similar to the ones we have previously found in biotin deficiency, another ATP generation cofactor. Here we show that thiamine deficiency substantially reduced the energy state in the liver and activated the energy sensor AMP-activated kinase. With this vitamin deficiency, several metabolic parameters changed: blood glucose was diminished and serum lactate was increased, but insulin, triglycerides, and cholesterol, as well as liver glycogen, were reduced. These results indicate a severe change in the energy status of the whole organism. Our findings were associated with modified hepatic levels of the mRNAs of several carbon metabolism genes: a reduction of transcripts for liver glucokinase and fatty acid synthase and augmentation of those for carnitine palmitoyl transferase 1 and phosphoenolpyruvate carboxykinase as markers for glycolysis, fatty acid synthesis, beta-oxidation, and gluconeogenesis, respectively. Glucose tolerance was initially increased, suggesting augmented insulin sensitivity, as we had found in biotin deficiency; however, in the case of thiamine, it was diminished from the 3rd week on, when the deficient animals became undernourished, and paralleled the changes in AKT and mTOR, 2 main proteins in the insulin signaling pathway. Since many of the metabolic and gene expression effects on mice deprived of thiamine are similar to those in biotin deficiency, it may be that they result from a more general impairment of oxidative phosphorylation due to a shortage of ATP generation cofactors. These findings may be relevant to energy-related disorders, among them several inborn errors of metabolism, as well as common energy disorders like obesity, diabetes, and neurodegenerative illnesses. © 2017 S. Karger AG, Basel.

  12. Egg white hydrolysate inhibits oxidation in mayonnaise and a model system.

    PubMed

    Kobayashi, Hideaki; Sasahara, Ryou; Yoda, Shoichi; Kotake-Nara, Eiichi

    2017-06-01

    The flavor deterioration of mayonnaise is induced by iron, which is released from egg yolk phosvitin under acidic conditions and promotes lipid oxidation. To prevent oxidative deterioration, natural components, rather than synthetic chemicals such as ethylenediaminetetraacetic acid have been required by consumers. In the present study, we evaluated the inhibitory effects of three egg white components with the same amino acid composition, namely egg white protein, hydrolysate, and the amino acid mixture, on lipid oxidation in mayonnaise and an acidic egg yolk solution as a model system. We found that the hydrolysate had the strongest inhibitory effect on lipid oxidation among the three components. The mechanism underlying the antioxidant effect was associated with Fe 2+ -chelating activity. Thus, egg white hydrolysate may have the potential as natural inhibitors of lipid oxidation in mayonnaise.

  13. Sustainable synthesis of aldehydes, ketones or acids from neat alcohols using nitrogen dioxide gas, and related reactions.

    PubMed

    Naimi-Jamal, M Reza; Hamzeali, Hamideh; Mokhtari, Javad; Boy, Jürgen; Kaupp, Gerd

    2009-01-01

    Benzylic alcohols are quantitatively oxidized by gaseous nitrogen dioxide to give pure aromatic aldehydes. The reaction gas mixtures are transformed to nitric acid, which renders the processes free of waste. The exothermic gas-liquid or gas-solid reactions profit from the solubility of nitrogen dioxide in the neat benzylic alcohols. The acid formed impedes further oxidation of the benzaldehydes. The neat isolated benzaldehydes and nitrogen dioxide quantitatively give the benzoic acids. Solid long-chain primary alcohols are directly and quantitatively oxidized with nitrogen dioxide gas to give the fatty acids in the solid state. The oxidations with ubiquitous nitrogen dioxide are extended to solid heterocyclic thioamides, which gives disulfides, and to diphenylamine, which gives tetraphenylhydrazine. These sustainable (green) specific oxidation procedures produce no dangerous residues from the oxidizing agent or from auxiliaries.

  14. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  15. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  16. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  17. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  18. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D. Kirk; Taylor, Howard E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  19. Role of Bacopa monnieri in the temporal regulation of oxidative stress in clock mutant (cryb) of Drosophila melanogaster.

    PubMed

    Subramanian, Perumal; Prasanna, Vinoth; Jayapalan, Jaime Jacqueline; Abdul Rahman, Puteri Shafinaz; Hashim, Onn Haji

    2014-06-01

    Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cry(b)) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cry(b) flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Oxidative acylation using thioacids

    NASA Technical Reports Server (NTRS)

    Liu, R.; Orgel, L. E.

    1997-01-01

    Several important prebiotic reactions, including the coupling of amino acids into polypeptides by the formation of amide linkages, involve acylation. Theae reactions present a challenge to the understanding of prebiotic synthesis. Condensation reactions relying on dehydrating agents are either inefficient in aqueous solution or require strongly acidic conditions and high temperatures. Activated amino acids such as thioester derivatives have therefore been suggested as likely substrates for prebiotic peptide synthesis. Here we propose a closely related route to amide bond formation involving oxidative acylation by thioacids. We find that phenylalanine, leucine and phenylphosphate are acylated efficiently in aqueous solution by thioacetic acid and an oxidizing agent. From a prebiotic point of view, oxidative acylation has the advantage of proceeding efficiently in solution and under mild conditions. We anticipate that oxidative acylation should prove to be a general method for activating carboxylic acids, including amino acids.

  1. Process for making a noble metal on tin oxide catalyst

    NASA Technical Reports Server (NTRS)

    Upchurch, Billy T. (Inventor); Davis, Patricia (Inventor); Miller, Irvin M. (Inventor)

    1989-01-01

    A quantity of reagent grade tin metal or compound, chloride-free, and high-surface-area silica spheres are placed in deionized water, followed by deaerating the mixture by boiling and adding an oxidizing agent, such as nitric acid. The nitric acid oxidizes the tin to metastannic acid which coats the spheres because the acid is absorbed on the substrate. The metastannic acid becomes tin oxide upon drying and calcining. The tin-oxide coated silica spheres are then placed in water and boiled. A chloride-free precious metal compound in aqueous solution is then added to the mixture containing the spheres, and the precious metal compound is reduced to a precious metal by use of a suitable reducing agent such as formic acid. Very beneficial results were obtained using the precious metal compound tetraammine platinum(II) hydroxide.

  2. Nitroxyl-mediated oxidation of lignin and polycarboxylated products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, Shannon S.; Rafiee, Mohammad

    Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers ormore » oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.« less

  3. Adsorption of phthalic acid and salicylic acid and their effect on exchangeable Al capacity of variable-charge soils.

    PubMed

    Li, Jiuyu; Xu, Renkou

    2007-02-01

    Low-molecular-weight (LMW) organic acids may be adsorbed by soils and the adsorption could affect their biodegradation and efficiency in many soil processes. In the present study, the adsorption of phthalic acid and salicylic acid and their effect on the exchangeable Al capacity of variable-charge soils were investigated. The results indicated that phthalic acid and salicylic acid were adsorbed by four variable-charge soils to some extent, oxisols showed a greater adsorption capacity for organic acids than ultisols, and the ability of the four variable-charge soils to adsorb the organic acids at different pH generally followed the order Kunming oxisol > Xuwen oxisol > Jinxian ultisol > Lechang ultisol, which was closely related to their content of free iron oxides and amorphous iron and aluminum oxides. The adsorption of organic acids induced a decrease in the zeta potentials of soils and oxides. Goethite has greater adsorption capacity for organic acid than Xuwen oxisol and the adsorption of organic acids resulted in a bigger decrease in the zeta potential of goethite suspensions. After free iron oxides were removed, less organic acid was adsorbed by Xuwen oxisol and no change was observed in zeta potential for the soil suspension after organic acid was added. The presence of phthalic acid increased the capacity of exchangeable Al and the increment in the four variable-charge soils also followed the order Kunming oxisol > Xuwen oxisol > Lechang ultisol and Jinxian ultisol. The presence of salicylic acid increased the capacity of exchangeable Al in Kunming oxisol, Xuwen oxisol, and Jinxian ultisol, but decreased it in Lechang ultisol due to less adsorption of the acid and formation of soluble Al-salicylate complexes in solution. After free iron oxides were removed, less effect of organic acid on exchangeable Al was observed for Xuwen oxisol, which further confirmed that the iron oxides played a significant role in organic acid adsorption and had a consequent effect on the capacity of exchangeable Al in variable-charge soils. Therefore, the higher the content of iron oxides, the greater the adsorption of organic acids by soils and the greater the increase in soil exchangeable Al induced by the organic acids.

  4. Method to simultaneously determine the sphingosine 1-phosphate breakdown product (2E)-hexadecenal and its fatty acid derivatives using isotope-dilution HPLC-electrospray ionization-quadrupole/time-of-flight mass spectrometry.

    PubMed

    Neuber, Corinna; Schumacher, Fabian; Gulbins, Erich; Kleuser, Burkhard

    2014-09-16

    Sphingosine 1-phosphate (S1P), a bioactive lipid involved in various physiological processes, can be irreversibly degraded by the membrane-bound S1P lyase (S1PL) yielding (2E)-hexadecenal and phosphoethanolamine. It is discussed that (2E)-hexadecenal is further oxidized to (2E)-hexadecenoic acid by the long-chain fatty aldehyde dehydrogenase ALDH3A2 (also known as FALDH) prior to activation via coupling to coenzyme A (CoA). Inhibition or defects in these enzymes, S1PL or FALDH, result in severe immunological disorders or the Sjögren-Larsson syndrome, respectively. Hence, it is of enormous importance to simultaneously determine the S1P breakdown product (2E)-hexadecenal and its fatty acid metabolites in biological samples. However, no method is available so far. Here, we present a sensitive and selective isotope-dilution high performance liquid chromatography-electrospray ionization-quadrupole/time-of-flight mass spectrometry method for simultaneous quantification of (2E)-hexadecenal and its fatty acid metabolites following derivatization with 2-diphenylacetyl-1,3-indandione-1-hydrazone and 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide. Optimized conditions for sample derivatization, chromatographic separation, and MS/MS detection are presented as well as an extensive method validation. Finally, our method was successfully applied to biological samples. We found that (2E)-hexadecenal is almost quantitatively oxidized to (2E)-hexadecenoic acid, that is further activated as verified by cotreatment of HepG2 cell lysates with (2E)-hexadecenal and the acyl-CoA synthetase inhibitor triacsin C. Moreover, incubations of cell lysates with deuterated (2E)-hexadecenal revealed that no hexadecanoic acid is formed from the aldehyde. Thus, our method provides new insights into the sphingolipid metabolism and will be useful to investigate diseases known for abnormalities in long-chain fatty acid metabolism, e.g., the Sjögren-Larsson syndrome, in more detail.

  5. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a.

    PubMed

    Chen, Zhen; Wen, Liang; Martin, Marcy; Hsu, Chien-Yi; Fang, Longhou; Lin, Feng-Mao; Lin, Ting-Yang; Geary, McKenna J; Geary, Greg G; Zhao, Yongli; Johnson, David A; Chen, Jaw-Wen; Lin, Shing-Jong; Chien, Shu; Huang, Hsien-Da; Miller, Yury I; Huang, Po-Hsun; Shyy, John Y-J

    2015-03-03

    Oxidative stress activates endothelial innate immunity and disrupts endothelial functions, including endothelial nitric oxide synthase-derived nitric oxide bioavailability. Here, we postulated that oxidative stress induces sterol regulatory element-binding protein 2 (SREBP2) and microRNA-92a (miR-92a), which in turn activate endothelial innate immune response, leading to dysfunctional endothelium. Using cultured endothelial cells challenged by diverse oxidative stresses, hypercholesterolemic zebrafish, and angiotensin II-infused or aged mice, we demonstrated that SREBP2 transactivation of microRNA-92a (miR-92a) is oxidative stress inducible. The SREBP2-induced miR-92a targets key molecules in endothelial homeostasis, including sirtuin 1, Krüppel-like factor 2, and Krüppel-like factor 4, leading to NOD-like receptor family pyrin domain-containing 3 inflammasome activation and endothelial nitric oxide synthase inhibition. In endothelial cell-specific SREBP2 transgenic mice, locked nucleic acid-modified antisense miR-92a attenuates inflammasome, improves vasodilation, and ameliorates angiotensin II-induced and aging-related atherogenesis. In patients with coronary artery disease, the level of circulating miR-92a is inversely correlated with endothelial cell-dependent, flow-mediated vasodilation and is positively correlated with serum level of interleukin-1β. Our findings suggest that SREBP2-miR-92a-inflammasome exacerbates endothelial dysfunction during oxidative stress. Identification of this mechanism may help in the diagnosis or treatment of disorders associated with oxidative stress, innate immune activation, and endothelial dysfunction. © 2014 American Heart Association, Inc.

  6. ω-Oxidation of α-Chlorinated Fatty Acids

    PubMed Central

    Brahmbhatt, Viral V.; Albert, Carolyn J.; Anbukumar, Dhanalakshmi S.; Cunningham, Bryce A.; Neumann, William L.; Ford, David A.

    2010-01-01

    Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine. PMID:20956542

  7. Polyunsaturated fatty acids balance affects platelet NOX2 activity in patients with liver cirrhosis.

    PubMed

    Basili, Stefania; Raparelli, Valeria; Napoleone, Laura; Del Ben, Maria; Merli, Manuela; Riggio, Oliviero; Nocella, Cristina; Carnevale, Roberto; Pignatelli, Pasquale; Violi, Francesco

    2014-07-01

    NADPH-oxidase-2 up-regulation has been suggested in liver damage perpetuation via an oxidative stress-mediated mechanism. n-6/n-3 polyunsaturated fatty acids ratio derangement has been reported in liver disease. To explore polyunsaturated fatty acids balance and its interplay with platelet oxidative stress in liver cirrhosis. A cross-sectional study in 51 cirrhotic patients and sex- and age-matched controls was performed. Serum polyunsaturated fatty acids and oxidative stress markers (urinary isoprostanes and serum soluble NADPH-oxidase-2-derived peptide) were measured. The effect on platelet oxidative stress of n-6/n-3 polyunsaturated fatty acids ratio in vitro and in vivo (1-week supplementation with 3g/daily n-3-polyunsaturated fatty acids) was tested. Compared to controls, cirrhotic patients had significantly higher n-6/n-3 polyunsaturated fatty acids ratio. n-6/n-3 polyunsaturated fatty acids ratio correlated significantly with disease severity and oxidative stress markers. In vitro experiments showed that in Child-Pugh C patients' platelets incubation with low n-6/n-3 polyunsaturated fatty acids ratio resulted in dose-dependent decrease of radical oxigen species (-39%), isoprostanes (-25%) and NADPH-oxidase-2 regulation (-51%). n-3 polyunsaturated fatty acids supplemented patients showed significant oxidative stress indexes reduction. In cirrhosis, n-6/n-3 polyunsaturated fatty acids imbalance up-regulates platelet NADPH-oxidase-2 with ensuing oxidative stress. Further study to evaluate if n-3 supplementation may reduce disease progression is warranted. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  8. DNAPL remediation with in situ chemical oxidation using potassium permanganate - Part I. Mineralogy of Mn oxide and its dissolution in organic acids

    NASA Astrophysics Data System (ADS)

    Li, X. David; Schwartz, Franklin W.

    2004-01-01

    Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.

  9. Mangifera indica L. extract attenuates glutamate-induced neurotoxicity on rat cortical neurons.

    PubMed

    Lemus-Molina, Yeny; Sánchez-Gómez, Maria Victoria; Delgado-Hernández, René; Matute, Carlos

    2009-11-01

    Overstimulation of ionotropic glutamate receptors causes excitotoxic neuronal death contributing to neurodegenerative disorders. Massive influx of calcium in excitotoxicity provokes alterations in the membrane potential of mitochondria and increases the production of reactive oxygen species. Here we report that Mangifera indica L. extracts (MiE) prevent glutamate-induced excitotoxicity in primary cultured neurons of the rat cerebral cortex. To evaluate the effects of MiE on excitotoxicity, cells were stimulated with L-glutamic acid (50 microM; 10 min) alone or in the presence of MiE. Maximal protection (56%) was obtained with 2.5 microg/mL of MiE. In turn, we measured the effects of MiE on excitotoxic-induced oxidative stress and mitochondrial depolarization by fluorimetry using 5,6-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate and tetramethylrhodamine, respectively. Both parameters were effectively reduced by MiE at concentrations which showed neuroprotection. Mangiferin, an antioxidant polyphenol which is a major component of MiE, was also effective in preventing neuronal death, oxidative stress and mitochondrial depolarization. Maximal protection (64%) was obtained at 12.5 microg/mL of mangiferin which also attenuated oxidative stress and mitochondrial depolarization at the neuroprotective concentrations. Together, these results indicate that MiE is an efficient neuroprotector of excitotoxic neuronal death, indicates that mangiferin carries a substantial part of the antioxidant and neuroprotective activity of MiE, and that this natural extract has therapeutic potential to treat neurodegenerative disorders.

  10. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid β-oxidation.

    PubMed

    Tucci, Sara; Herebian, Diran; Sturm, Marga; Seibt, Annette; Spiekerkoetter, Ute

    2012-01-01

    Very long-chain acyl-CoA dehydrogenase (VLCAD)-deficiency is the most common long-chain fatty acid oxidation disorder presenting with heterogeneous phenotypes. Similar to many patients with VLCADD, VLCAD-deficient mice (VLCAD(-/-)) remain asymptomatic over a long period of time. In order to identify the involved compensatory mechanisms, wild-type and VLCAD(-/-) mice were fed one year either with a normal diet or with a diet in which medium-chain triglycerides (MCT) replaced long-chain triglycerides, as approved intervention in VLCADD. The expression of the mitochondrial long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) was quantified at mRNA and protein level in heart, liver and skeletal muscle. The oxidation capacity of the different tissues was measured by LC-MS/MS using acyl-CoA substrates with a chain length of 8 to 20 carbons. Moreover, in white skeletal muscle the role of glycolysis and concomitant muscle fibre adaptation was investigated. In one year old VLCAD(-/-) mice MCAD and LCAD play an important role in order to compensate deficiency of VLCAD especially in the heart and in the liver. However, the white gastrocnemius muscle develops alternative compensatory mechanism based on a different substrate selection and increased glucose oxidation. Finally, the application of an MCT diet over one year has no effects on LCAD or MCAD expression. MCT results in the VLCAD(-/-) mice only in a very modest improvement of medium-chain acyl-CoA oxidation capacity restricted to cardiac tissue. In conclusion, VLCAD(-/-) mice develop tissue-specific strategies to compensate deficiency of VLCAD either by induction of other mitochondrial acyl-CoA dehydrogenases or by enhancement of glucose oxidation. In the muscle, there is evidence of a muscle fibre type adaptation with a predominance of glycolytic muscle fibres. Dietary modification as represented by an MCT-diet does not improve these strategies long-term.

  11. Explosive Ordnance Disposal Proficiency Range and Multi-Purpose Contingency Training Area

    DTIC Science & Technology

    2007-04-01

    1,3,5-trimethylene-2,4,6-trinitramine (RDX), cyclo-1,3,5,7- tetramethylene-2,4,6,8-tetra-nitramine [HMX], tetryl, and picric acid ; inorganic compounds...nitrogen oxides, which cause acid rain. Ir. addition, nitrogen oxide emissions contribute to the problem of global warming and also r;ombine with...of sUlfur oxide and nitrogen oxides, which cause acid ram. Ji:, addition, nitrogen oxide emis~ions contribute to the probl!llll of global warming

  12. Polyhydroxyalkanoate synthesis in transgenic plants as a new tool to study carbon flow through beta-oxidation.

    PubMed

    Mittendorf, V; Bongcam, V; Allenbach, L; Coullerez, G; Martini, N; Poirier, Y

    1999-10-01

    Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.

  13. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    PubMed

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  14. The effect of differentiation agents on inflammatory and oxidative responses of the human neuroblastoma cell line SK-N-SH.

    PubMed

    Niewiarowska-Sendo, Anna; Patrzalek, Katarzyna; Kozik, Andrzej; Guevara-Lora, Ibeth

    2015-01-01

    Obtaining a suitable experimental cellular model is a major problem for neuroscience studies. Neuroblastoma cell lines have been often applied in studies related to pathological disorders of nervous system. However, in the search for an ideal model, these cells must be differentiated to cancel their tumor character. The subsequent reactions that are caused by differentiation are not always indifferent to the same model. We evaluated the effect of two well known substances, used for SH-N-SK cell line differentiation, retinoic acid (RA) and phorbol-12-myristate-13-acetate (PMA), on the induction of pro-inflammatory and pro-oxidative reactions in these cells. Cells differentiated with PMA were able to produce significantly higher amounts of pro-inflammatory cytokines whereas the release of nitric oxide radicals was similar to that in undifferentiated cells. On the contrary, in RA-differentiated cells no significant changes in cytokine production were observed and the nitric oxide release was decreased. Additionally, the RA-differentiated neuronal model was more sensible to lipopolysaccharide stimulation, producing pro-inflammatory cytokines abundantly. These results suggest that RA-differentiated SH-N-SK cells provide a more suitable experimental model for the study of molecular and cellular mechanisms of the inflammation and oxidative stress in neuronal cells.

  15. Apocynin alleviated hepatic oxidative burden and reduced liver injury in hypercholesterolaemia.

    PubMed

    Lu, Long-Sheng; Wu, Chau-Chung; Hung, Li-Man; Chiang, Meng-Tsan; Lin, Ching-Ting; Lin, Chii-Wann; Su, Ming-Jai

    2007-05-01

    This study addressed the effects of apocynin, a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, on hepatic oxidative burden and liver injury during diet-induced hypercholesterolaemia. Male Wistar rats were fed a 4% cholesterol-enriched diet for 3 weeks. Apocynin was administered in drinking water concurrently. The high-cholesterol diet (HC) significantly increased the serum level of cholesterol and hepatic cholesterol ester deposition, and these parameters were similar between the HC and high-cholesterol diet plus apocynin (HCA) groups. The HC group showed abnormal liver function tests [alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (Alk-P)] as well as increased Evans blue extravasation and macrophages infiltration. Apocynin treatment could suppress these inflammation-related parameters. In vivo measurement of NADPH-derived cellular autofluorescence suggested that HC increased oxidative stress in hepatocytes. Biochemical analysis of redox status including thiobarbituric acid reactive substances, reduced glutathione, and oxidized glutathione also confirmed the phenomenon. Apocynin treatment was able to alleviate these indices of oxidative burden owing to HC. Furthermore, apocynin-abrogated HC induced gp91(phox) expression, suggesting the involvement of NADPH oxidase in the pathogenesis. We concluded that apocynin suppressed NADPH oxidase activation and subsequent liver injuries owing to high-cholesterol intake in rats. The impacts of cholesterol metabolism disorders on pathogenesis and progression of steatohepatitis warrant further clinical investigation.

  16. Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress.

    PubMed

    Jami, Mohammad-Saeid; Salehi-Najafabadi, Zahra; Ahmadinejad, Fereshteh; Hoedt, Esthelle; Chaleshtori, Morteza Hashemzadeh; Ghatrehsamani, Mahdi; Neubert, Thomas A; Larsen, Jan Petter; Møller, Simon Geir

    2015-11-01

    Neuronal cell death, in neurodegenerative disorders, is mediated through a spectrum of biological processes. Excessive amounts of free radicals, such as reactive oxygen species (ROS), has detrimental effects on neurons leading to cell damage via peroxidation of unsaturated fatty acids in the cell membrane. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used for neurological recovery in several countries, including Japan and China, and it has been suggested that Edaravone may have cytoprotective effects in neurodegeneration. Edaravone protects nerve cells in the brain by reducing ROS and inhibiting apoptosis. To gain further insight into the cytoprotective effects of Edaravone against oxidative stress condition we have performed comparative two-dimensional gel electrophoresis (2DE)-based proteomic analyses on SH-SY5Y neuroblastoma cells exposed to oxidative stress and in combination with Edaravone. We showed that Edaravone can reverse the cytotoxic effects of H2O2 through its specific mechanism. We observed that oxidative stress changes metabolic pathways and cytoskeletal integrity. Edaravone seems to reverse the H2O2-mediated effects at both the cellular and protein level via induction of Peroxiredoxin-2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Edaravone leads to proteome changes indicative of neuronal cell protection in response to oxidative stress

    PubMed Central

    Jami, Mohammad-Saeid; Salehi-Najafabadi, Zahra; Ahmadinejad, Fereshteh; Hoedt, Esthelle; Chaleshtori, Morteza Hashemzadeh; Neubert, Thomas A.; Larsen, Jan Petter; Møller, Simon Geir

    2015-01-01

    Neuronal cell death, in neurodegenerative disorders, is mediated through a spectrum of biological processes. Excessive amounts of free radicals, such as reactive oxygen species (ROS), has detrimental effects on neurons leading to cell damage via peroxidation of unsaturated fatty acids in the cell membrane. Edaravone (3-methyl-1-phenyl-2-pyrazolin-5-one) has been used for neurological recovery in several countries, including Japan and China, and it has been suggested that Edaravone may have cytoprotective effects in neurodegeneration. Edaravone protects nerve cells in the brain by reducing ROS and inhibiting apoptosis. To gain further insight into the cytoprotective effects of Edaravone against oxidative stress condition we have performed comparative two-dimensional gel electrophoresis (2DE)-based proteomic analyses on SH-SY5Y neuroblastoma cells exposed to oxidative stress and in combination with Edaravone. We showed that Edaravone can reverse the cytotoxic effects of H2O2 through its specific mechanism. We observed that oxidative stress changes metabolic pathways and cytoskeletal integrity. Edaravone seems to reverse the H2O2-mediated effects at both the cellular and protein level via induction of Peroxiredoxin-2. PMID:26232623

  18. Oxidative stress and decreased thiol level in patients with migraine: cross-sectional study.

    PubMed

    Eren, Yasemin; Dirik, Ebru; Neşelioğlu, Salim; Erel, Özcan

    2015-12-01

    Although migraine is a neurological disorder known since long, its physiopathology remains unclear. Recent studies suggest that migraine is associated with oxidative stress; however, they report divergent results. The aim of the present study was to evaluate total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), and serum thiol level in migraine patients with or without aura. The study group consisted of 141 migraine patients. The control group included 70 healthy subjects. TAS, TOS, OSI were evaluated using a method developed by Erel. Serum thiol level was measured using the Hu method. No difference was found in TAS, TOS, OSI between the patients and controls. The level of thiol was significantly lower in patients than in controls. Negative correlations were detected between thiol level and Migraine Disability Assessment score in patients. Although TAS, TOS, and OSI were similar to those of the control group, serum thiol level, an important marker of antioxidant capacity, was significantly lower in migraines compared with controls, and caused more serious disability. Novel treatment approaches may be developed based on these data, and compounds containing thiol, such as alpha lipoic acid and N-acetyl cysteine, may be used in prophylaxis.

  19. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinicmore » and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.« less

  20. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  1. Myostatin deficiency is associated with lipidomic abnormalities in skeletal muscles.

    PubMed

    Baati, Narjes; Feillet-Coudray, Christine; Fouret, Gilles; Vernus, Barbara; Goustard, Bénédicte; Coudray, Charles; Lecomte, Jérome; Blanquet, Véronique; Magnol, Laetitia; Bonnieu, Anne; Koechlin-Ramonatxo, Christelle

    2017-10-01

    Myostatin (Mstn) deficiency leads to skeletal muscle overgrowth and Mstn inhibition is considered as a promising treatment for muscle-wasting disorders. Mstn gene deletion in mice also causes metabolic changes with decreased mitochondria content, disturbance in mitochondrial respiratory function and increased muscle fatigability. However the impact of MSTN deficiency on these metabolic changes is not fully elucidated. Here, we hypothesized that lack of MSTN will alter skeletal muscle membrane lipid composition in relation with pronounced alterations in muscle function and metabolism. Indeed, phospholipids and in particular cardiolipin mostly present in the inner mitochondrial membrane, play a crucial role in mitochondria function and oxidative phosphorylation process. We observed that Mstn KO muscle had reduced fat membrane transporter levels (FAT/CD36, FABP3, FATP1 and FATP4) associated with decreased lipid oxidative pathway (citrate synthase and β-HAD activities) and impaired lipogenesis (decreased triglyceride and free fatty acid content), indicating a role of mstn in muscle lipid metabolism. We further analyzed phospholipid classes and fatty acid composition by chromatographic methods in muscle and mitochondrial membranes. Mstn KO mice showed increased levels of saturated and polyunsaturated fatty acids at the expense of monounsaturated fatty acids. We also demonstrated, in this phenotype, a reduction in cardiolipin proportion in mitochondrial membrane versus the proportion of others phospholipids, in relation with a decrease in the expression of phosphatidylglycerolphosphate synthase and cardiolipin synthase, enzymes involved in cardiolipin synthesis. These data illustrate the importance of lipids as a link by which MSTN deficiency can impact mitochondrial bioenergetics in skeletal muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. [Procedural analysis of acid-base balance disorder: case serials in 4 patents].

    PubMed

    Ma, Chunyuan; Wang, Guijie

    2017-05-01

    To establish the standardization process of acid-base balance analysis, analyze cases of acid-base balance disorder with the aid of acid-base balance coordinate graph. The acid-base balance theory were reviewed systematically on recent research progress, and the important concepts, definitions, formulas, parameters, regularity and inference in the analysis of acid-base balance were studied. The analysis of acid-base balance disordered processes and steps were figured. The application of acid-base balance coordinate graph in the cases was introduced. The method of "four parameters-four steps" analysis was put forward to analyze the acid-base balance disorders completely. "Four parameters" included pH, arterial partial pressure of carbon dioxide (PaCO 2 ), HCO 3 - and anion gap (AG). "Four steps" were outlined by following aspects: (1) according to the pH, PaCO 2 and HCO 3 - , the primary or main types of acid-base balance disorder was determined; (2) primary or main types of acid-base disorder were used to choose the appropriate compensation formula and to determine the presence of double mixed acid-base balance disorder; (3) the primary acid-base balance disorders were divided into two parts: respiratory acidosis or respiratory alkalosis, at the same time, the potential HCO 3 - should be calculated, the measured HCO 3 - should be replaced with potential HCO 3 - , to determine whether there were three mixed acid-base disorders; (4) based on the above analysis the data judged as the simple AG increased-metabolic acidosis was needed to be further analyzed. The ratio of ΔAG↑/ΔHCO 3 - ↓ was also needed to be calculated, to determine whether there was normal AG metabolic acidosis or metabolic alkalosis. In the clinical practice, PaCO 2 (as the abscissa) and HCO 3 - (as the ordinate) were used to establish a rectangular coordinate system, through origin (0, 0) and coordinate point (40, 24) could be a straight line, and all points on the straight line pH were equal to 7.40. The acid-base balance coordinate graph could be divided into seven areas by three straight lines [namely pH = 7.40 isoline, PaCO 2 = 40 mmHg (1 mmHg = 0.133 kPa) line and HCO 3 - = 24 mmol/L line]: main respiratory alkalosis area, main metabolic alkalosis area, respiratory + metabolic alkalosis area, main respiratory acidosis area, main metabolic acidosis area, respiratory + metabolic acidosis area and normal area. It was easier to determine the type of acid-base balance disorders by identifying the location of the (PaCO 2 , HCO 3 - ) or (PaCO 2 , potential HCO 3 - ) point on the acid-base balance coordinate graph. "Four parameters-four steps" method is systematic and comprehensive. At the same time, by using the acid-base balance coordinate graph, it is simpler to estimate the types of acid-base balance disorders. It is worthy of popularizing and generalizing.

  3. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  4. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  5. Investigation of DBS electro-oxidation reaction in the aqueous-organic solution of LiClO4.

    PubMed

    Darlewski, Witold; Popiel, Stanisław; Nalepa, Tomasz; Gromotowicz, Waldemar; Szewczyk, Rafał; Stankiewicz, Romuald

    2010-03-15

    A process of dibutyl sulphide (DBS) electro-oxidation using electrolysis and cyclic voltamperometry was investigated in water-methanol solution using different electrodes (platinum, boron doped diamond, graphite and glassy carbon). Obtained results indicate that the DBS electro-oxidation process is irreversible in voltamperometric conditions. It was shown that during DBS electrolytic oxidation on Pt, at the low anode potential (1.8 V), DBS was oxidized to sulphoxide and sulphone. Electrolysis at higher potential (up to 3.0 V) resulted in complete DBS oxidation and formation of various products, including: butyric acid, sulphuric acid, butanesulphinic acid, butanesulphonic acid, identified using gas chromatography (GC-AED) and mass spectrometry (GC-MS) methods. (c) 2009 Elsevier B.V. All rights reserved.

  6. Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.).

    PubMed

    Cisneros, Fausto H; Paredes, Daniel; Arana, Adrian; Cisneros-Zevallos, Luis

    2014-06-04

    The effect of roasting of Sacha-inchi (Plukenetia volubilis L.) seeds on the oxidative stability and composition of its oil was investigated. The seeds were subjected to light, medium and high roasting intensities. Oil samples were subjected to high-temperature storage at 60 °C for 30 days and evaluated for oxidation (peroxide value and p-anisidine), antioxidant activity (total phenols and DPPH assay), and composition (tocopherol content and fatty acid profile). Results showed that roasting partially increased oil oxidation and its antioxidant capacity, slightly decreased tocopherol content, and did not affect the fatty acid profile. During storage, oxidation increased for all oil samples, but at a slower rate for oils from roasted seeds, likely due to its higher antioxidant capacity. Also, tocopherol content decreased significantly, and a slight modification of the fatty acid profile suggested that α-linolenic acid oxidized more readily than other fatty acids present.

  7. Meta-analysis of erythrocyte polyunsaturated fatty acid biostatus in bipolar disorder.

    PubMed

    McNamara, Robert K; Welge, Jeffrey A

    2016-05-01

    Dietary deficiency in polyunsaturated fatty acids (PUFAs), including the omega-3 fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), and excesses in omega-6 fatty acids, including linoleic acid (LA; 18:2n-6) and arachidonic acid (AA; 20:4n-6), may be associated with the pathophysiology of bipolar disorder. In an effort to provide clarification regarding the relationship between PUFA biostatus and bipolar disorder, this meta-analysis investigated studies comparing erythrocyte (red blood cell) membrane PUFA composition in patients with bipolar disorder and healthy controls. A meta-analysis was performed on case-control studies comparing erythrocyte PUFA (EPA, DHA, LA and AA) levels in patients with bipolar I disorder and healthy controls. Standardized effect sizes were calculated and combined using a random effects model. Six eligible case-control studies comprising n = 118 bipolar I patients and n = 147 healthy controls were included in the analysis. Compared with healthy controls, patients with bipolar I disorder exhibited robust erythrocyte DHA deficits (p = 0.0008) and there was a trend for lower EPA (p = 0.086). There were no significant differences in LA (p = 0.42) or AA (p = 0.64). Bipolar I disorder is associated with robust erythrocyte DHA deficits. These findings add to a growing body of evidence implicating omega-3 PUFA deficiency in the pathophysiology of bipolar disorder. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis.

    PubMed

    Dai, Jianye; Liang, Kai; Zhao, Shan; Jia, Wentong; Liu, Yuan; Wu, Hongkun; Lv, Jia; Cao, Chen; Chen, Tao; Zhuang, Shentian; Hou, Xiaomeng; Zhou, Shijie; Zhang, Xiannian; Chen, Xiao-Wei; Huang, Yanyi; Xiao, Rui-Ping; Wang, Yan-Ling; Luo, Tuoping; Xiao, Junyu; Wang, Chu

    2018-06-11

    Obesity and related metabolic diseases are becoming worldwide epidemics that lead to increased death rates and heavy health care costs. Effective treatment options have not been found yet. Here, based on the observation that baicalin, a flavonoid from the herbal medicine Scutellaria baicalensis , has unique antisteatosis activity, we performed quantitative chemoproteomic profiling and identified carnitine palmitoyltransferase 1 (CPT1), the controlling enzyme for fatty acid oxidation, as the key target of baicalin. The flavonoid directly activated hepatic CPT1 with isoform selectivity to accelerate the lipid influx into mitochondria for oxidation. Chronic treatment of baicalin ameliorated diet-induced obesity (DIO) and hepatic steatosis and led to systemic improvement of other metabolic disorders. Disruption of the predicted binding site of baicalin on CPT1 completely abolished the beneficial effect of the flavonoid. Our discovery of baicalin as an allosteric CPT1 activator opens new opportunities for pharmacological treatment of DIO and associated sequelae.

  9. Diagnostic Evaluation of Rhabdomyolysis

    PubMed Central

    Nance, Jessica R.; Mammen, Andrew L.

    2015-01-01

    Rhabdomyolysis is characterized by severe acute muscle injury resulting in muscle pain, weakness, and/or swelling with release of myofiber contents into the bloodstream. Symptoms develop over hours to days following an inciting factor and may be associated with dark pigmentation of the urine. Serum creatine kinase and urine myoglobin levels are markedly elevated. The clinical examination, history, laboratory studies, muscle biopsy, and genetic testing are useful tools for diagnosis of rhabdomyolysis, and they can help differentiate acquired from inherited causes of rhabdomyolysis. Acquired causes include substance abuse, medication or toxic exposures, electrolyte abnormalities, endocrine disturbance, and autoimmune myopathies. Inherited predisposition to rhabdomyolysis can occur with disorders of glycogen metabolism, fatty acid beta-oxidation, and mitochondrial oxidative phosphorylation. Less common inherited causes of rhabdomyolysis include structural myopathies, channelopathies, and sickle cell disease. This review focuses on the differentiation of acquired and inherited causes of rhabdomyolysis and proposes a practical diagnostic algorithm. PMID:25678154

  10. Diagnostic evaluation of rhabdomyolysis.

    PubMed

    Nance, Jessica R; Mammen, Andrew L

    2015-06-01

    Rhabdomyolysis is characterized by severe acute muscle injury resulting in muscle pain, weakness, and/or swelling with release of myofiber contents into the bloodstream. Symptoms develop over hours to days after an inciting factor and may be associated with dark pigmentation of the urine. Serum creatine kinase and urine myoglobin levels are markedly elevated. Clinical examination, history, laboratory studies, muscle biopsy, and genetic testing are useful tools for diagnosis of rhabdomyolysis, and they can help differentiate acquired from inherited causes of rhabdomyolysis. Acquired causes include substance abuse, medication or toxic exposures, electrolyte abnormalities, endocrine disturbances, and autoimmune myopathies. Inherited predisposition to rhabdomyolysis can occur with disorders of glycogen metabolism, fatty acid β-oxidation, and mitochondrial oxidative phosphorylation. Less common inherited causes of rhabdomyolysis include structural myopathies, channelopathies, and sickle-cell disease. This review focuses on the differentiation of acquired and inherited causes of rhabdomyolysis and proposes a practical diagnostic algorithm. Muscle Nerve 51: 793-810, 2015. © 2015 Wiley Periodicals, Inc.

  11. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    PubMed

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources ofmore » EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.« less

  13. The effect of β-N-methylamino-L-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum.

    PubMed

    Esterhuizen-Londt, M; Pflugmacher, S; Downing, T G

    2011-04-01

    Cyanobacteria are known to produce bioactive secondary metabolites such as hepatotoxins, cytotoxins and neurotoxins. The newly recognized neurotoxin β-N-methylamino-L-alanine (BMAA) is a naturally occurring non-protein amino acid found in the majority of cyanobacterial genera tested. Evidence that exists for implication of BMAA in neurodegenerative disorders relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. Uptake and accumulation of free BMAA by various non-symbiotic organisms, including aquatic macrophytes, has been documented but to date limited evidence of ecotoxicology exists. We therefore investigated the effect of BMAA on the oxidative stress responses of the macrophyte, Ceratophyllum demersum. Markers for oxidative stress in this study are the antioxidative enzymes superoxide dismutase, catalase, guaiacol peroxidase, glutathione peroxidase and glutathione reductase. We found that BMAA had an inhibitory effect on all the oxidative stress response enzymes tested in plants exposed to BMAA. However enzymes not related to oxidative stress response were not affected by BMAA in in vitro experiments. Binding studies in the presence of BMAA showed reduced enzyme specific activity over time compared to the control. This study shows that BMAA causes oxidative stress indirectly as it inhibits antioxidant enzymes required to combat reactive oxygen species that cause damage to cells. Further investigations are required to fully understand the inhibitory effect of BMAA on these enzymes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    PubMed

    Kim, Hyun-Bum; Lee, Seok; Hwang, Eun-Sang; Maeng, Sungho; Park, Ji-Ho

    2017-10-21

    Due to the improvement of medical level, life expectancy increased. But the increased incidence of cognitive disorders is an emerging social problem. Current drugs for dementia treatment can only delay the progress rather than cure. p-Coumaric acid is a phenylpropanoic acid derived from aromatic amino acids and known as a precursor for flavonoids such as resveratrol and naringenin. It was shown to reduce oxidative stress, inhibit genotoxicity and exert neuroprotection. Based on these findings, we evaluated whether p-coumaric acid can protect scopolamine induced learning and memory impairment by measuring LTP in organotypic hippocampal slice and cognitive behaviors in rats. p-Coumaric acid dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In addition, while scopolamine shortened the step-through latency in the passive avoidance test and prolonged the latency as well as reduced the latency in the target quadrant in the Morris water maze test, co-treatment of p-coumaric acid improved avoidance memory and long-term retention of spatial memory in behavioral tests. Since p-coumaric acid improved electrophysiological and cognitive functional deterioration by scopolamine, it may have regulatory effects on central cholinergic synapses and is expected to improve cognitive problems caused by abnormality of the cholinergic nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. [Prevention and regeneration of barrier disturbances in occupational dermatology].

    PubMed

    Schürer, Nanna Y; Schwanitz, Hans J

    2004-11-01

    Over the past 10 years primary, secondary and tertiary prevention of occupational skin disorders has been shown to be successful, documented with appropriate statistical methods. Interventional strategies are the main features of secondary and tertiary prevention, now well-established in occupational dermatology. Primary prevention is best accomplished by health education measures, both in the form on individual counseling and seminars. This overview reviews the scientific background of hand eczema with respect to barrier damage and repair and then considers the options for individualized and focused prevention. Special anatomical features of the interdigital space and palms, as well as functional disorders, such as palmar hyperhidrosis, are discussed. The importance of barrier regeneration is considered in light of the role of an acid pH, the epidermal calcium gradient and aspects of percutaneous absorption. The effects of anti-oxidants are considered, and new bioengineering methods which rely on physiologic measuring techniques are reviewed.

  16. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films. Copyright © 2016. Published by Elsevier Ltd.

  17. Effect of acid on the aggregation of poly(ethylene xide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers.

    PubMed

    Yang, Bin; Guo, Chen; Chen, Shu; Ma, Junhe; Wang, Jing; Liang, Xiangfeng; Zheng, Lily; Liu, Huizhou

    2006-11-23

    The acid effect on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers EO(20)PO(70)EO(20) has been investigated by transmission electron microscopy (TEM), particle size analyzer (PSA), Fourier transformed infrared, and fluorescence spectroscopy. The critical micellization temperature for Pluronic P123 in different HCl aqueous solutions increases with the increase of acid concentration. Additionally, the hydrolysis degradation of PEO blocks is observed in strong acid concentrations at higher temperatures. When the acid concentration is low, TEM and PSA show the increase of the micelle mean diameter and the decrease of the micelle polydispersity at room temperature, which demonstrate the extension of EO corona and tendency of uniform micelle size because of the charge repulsion. When under strong acid conditions, the aggregation of micelles through the protonated water bridges was observed.

  18. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  19. The Roles of β-Oxidation and Cofactor Homeostasis in Peroxisome Distribution and Function in Arabidopsis thaliana

    PubMed Central

    Rinaldi, Mauro A.; Patel, Ashish B.; Park, Jaeseok; Lee, Koeun; Strader, Lucia C.; Bartel, Bonnie

    2016-01-01

    Key steps of essential metabolic pathways are housed in plant peroxisomes. We conducted a microscopy-based screen for anomalous distribution of peroxisomally targeted fluorescence in Arabidopsis thaliana. This screen uncovered 34 novel alleles in 15 genes affecting oil body mobilization, fatty acid β-oxidation, the glyoxylate cycle, peroxisome fission, and pexophagy. Partial loss-of-function of lipid-mobilization enzymes conferred peroxisomes clustered around retained oil bodies without other notable defects, suggesting that this microscopy-based approach was sensitive to minor perturbations, and that fatty acid β-oxidation rates in wild type are higher than required for normal growth. We recovered three mutants defective in PECTIN METHYLESTERASE31, revealing an unanticipated role in lipid mobilization for this cytosolic enzyme. Whereas mutations reducing fatty acid import had peroxisomes of wild-type size, mutations impairing fatty acid β-oxidation displayed enlarged peroxisomes, possibly caused by excess fatty acid β-oxidation intermediates in the peroxisome. Several fatty acid β-oxidation mutants also displayed defects in peroxisomal matrix protein import. Impairing fatty acid import reduced the large size of peroxisomes in a mutant defective in the PEROXISOMAL NAD+ TRANSPORTER (PXN), supporting the hypothesis that fatty acid accumulation causes pxn peroxisome enlargement. The diverse mutants isolated in this screen will aid future investigations of the roles of β-oxidation and peroxisomal cofactor homeostasis in plant development. PMID:27605050

  20. Novel Hybrid Catalyst for the Oxidation of Organic Acids: Pd Nanoparticles Supported on Mn-N-3D-Graphene Nanosheets

    DOE PAGES

    Perry, Albert; Kabir, Sadia; Matanovic, Ivana; ...

    2017-06-16

    This paper reports the fabrication and electrochemical performance of a hybrid catalyst composed of Pd nanoparticles and atomically dispersed Mn active centers integrated into the nitrogen-doped three-dimensional graphene nanosheets (Pd/Mn-N-3D-GNS). Our results show that the synergistic integration of both Pd nanoparticles and atomically dispersed Mn can be used to enhance the activity toward the electrochemical oxidation of organic acids at biologically relevant pH values. The hybrid catalyst (Pd/Mn-N-3D-GNS) showed increased maximum currents toward the oxidation of oxalic acid when compared to its individual catalysts, namely, Pd/3D-GNS and Mn N-3D-GNS catalysts. The hybrid also showed a decreased onset potential for oxidationmore » of mesoxalic acid as compared to Mn-N-3D-GNS and decreased onset potentials for the oxidation of glyoxalic acid when compared to both of its constituent catalysts. Oxidation of formic acid was also tested and the hybrid was shown to catalyze both dehydration and dehydrogenation mechanisms of formic acid electro-oxidation. Using density functional theory calculations, it was elucidated that a two-site catalysis most likely promotes dehydrogenation reaction for formic acid oxidation, which can explain the selectivity of Pd nanoparticles and atomically dispersed Mn towards the dehydrogenation/ dehydration pathway.« less

  1. Regulation of Fatty Acid Oxidation in Mouse Cumulus-Oocyte Complexes during Maturation and Modulation by PPAR Agonists

    PubMed Central

    Dunning, Kylie R.; Anastasi, Marie R.; Zhang, Voueleng J.; Russell, Darryl L.; Robker, Rebecca L.

    2014-01-01

    Fatty acid oxidation is an important energy source for the oocyte; however, little is known about how this metabolic pathway is regulated in cumulus-oocyte complexes. Analysis of genes involved in fatty acid oxidation showed that many are regulated by the luteinizing hormone surge during in vivo maturation, including acyl-CoA synthetases, carnitine transporters, acyl-CoA dehydrogenases and acetyl-CoA transferase, but that many are dysregulated when cumulus-oocyte complexes are matured under in vitro maturation conditions using follicle stimulating hormone and epidermal growth factor. Fatty acid oxidation, measured as production of 3H2O from [3H]palmitic acid, occurs in mouse cumulus-oocyte complexes in response to the luteinizing hormone surge but is significantly reduced in cumulus-oocyte complexes matured in vitro. Thus we sought to determine whether fatty acid oxidation in cumulus-oocyte complexes could be modulated during in vitro maturation by lipid metabolism regulators, namely peroxisome proliferator activated receptor (PPAR) agonists bezafibrate and rosiglitazone. Bezafibrate showed no effect with increasing dose, while rosiglitazone dose dependently inhibited fatty acid oxidation in cumulus-oocyte complexes during in vitro maturation. To determine the impact of rosiglitazone on oocyte developmental competence, cumulus-oocyte complexes were treated with rosiglitazone during in vitro maturation and gene expression, oocyte mitochondrial activity and embryo development following in vitro fertilization were assessed. Rosiglitazone restored Acsl1, Cpt1b and Acaa2 levels in cumulus-oocyte complexes and increased oocyte mitochondrial membrane potential yet resulted in significantly fewer embryos reaching the morula and hatching blastocyst stages. Thus fatty acid oxidation is increased in cumulus-oocyte complexes matured in vivo and deficient during in vitro maturation, a known model of poor oocyte quality. That rosiglitazone further decreased fatty acid oxidation during in vitro maturation and resulted in poor embryo development points to the developmental importance of fatty acid oxidation and the need for it to be optimized during in vitro maturation to improve this reproductive technology. PMID:24505284

  2. Effect of Thermal Processing towards Lipid Oxidation and Non-enzymatic Browning Reactions of Antartic Krill (Euphausia superba) Meal.

    PubMed

    Liu, Yanzi; Cong, Peixu; Li, Beijia; Song, Yu; Liu, Yanjun; Xu, Jie; Xue, Changhu

    2018-04-13

    Antarctic krill is a huge source of biomass and prospective high-quality lipid source. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), nutritionally important lipid components with poor oxidative stability, were used as markers of oxidation during thermal processing of Antarctic krill (Euphausia superba) meal by evaluating the lipolysis, lipid oxidation, and non-enzymatic browning reactions. Liquid chromatography-mass spectrometry of the phospholipids (PLs) and the main oxidation products of free fatty acids (FFAs) and phosphatidylcholine (PC) was effective for evaluating the oxidation of EPA and DHA. During boiling, oxidation of EPA and DHA in the FFA and PC fractions and hydrolysis of the fatty acids at the sn-2 position of the PLs were predominant. The changes in PC during drying were mainly attributed to the oxidation of EPA and DHA. Heat treatment increased the oxidation products and concentration of hydrophobic pyrrole owing to pyrrolization between phosphatidylethanolamine (PE) and the lipid oxidation products. The lipid oxidation level of Antarctic krill increased after drying, owing to prolonged heating under the severe conditions. This article is protected by copyright. All rights reserved.

  3. Identification of the anti-oxidant components in a two-step solvent extract of bovine bile lipid: Application of reverse phase HPLC, mass spectrometry and fluorimetric assays.

    PubMed

    Singh, Namrata; Bhattacharyya, Debasish

    2016-04-15

    An ether extract of nine different bacterial metabolites in combination with two solvent extract (ether followed by ethanol) of bile lipids from ox gall bladder is used as an immune stimulator drug. Over the years bile acids are discussed regarding their anti-oxidant and lipid peroxidation properties. Since some of the bile acids are known to be potent antioxidants, presence of similar activity in the solvent extract of ox bile lipid was investigated using TLC and reverse phase HPLC systems. Fractions from HPLC were analyzed with mass spectrometry using electrospray ionization. The presence of twelve different bile acids along with other substances in small proportions including fatty acids, sulfate conjugates and bile pigments were confirmed. The twelve separated peaks had similar retention times as those of tauroursodeoxycholic acid, glycoursodeoxycholic acid, taurocholic acid, glycocholic acid, glycochenodeoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, cholic acid, ursodeoxycholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid. Subsequently, all fractions were tested for their anti-oxidative property on HepG2 cells exposed to H2O2 that served as an oxidative injury model. Four fluorescent dyes H2DCF DA, MitoSOX red, Amplex red and DAF-2 DA were used for estimation of reactive radicals in the HepG2 cells. Among the separated bile acids, tauroursodeoxycholic acid, glycoursodeoxycholic acid and ursodeoxycholic acid prevented the HepG2 cells from H2O2-induced oxidative stress. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements.

    PubMed

    Holeček, Milan

    2018-01-01

    Branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids with protein anabolic properties, which have been studied in a number of muscle wasting disorders for more than 50 years. However, until today, there is no consensus regarding their therapeutic effectiveness. In the article is demonstrated that the crucial roles in BCAA metabolism play: (i) skeletal muscle as the initial site of BCAA catabolism accompanied with the release of alanine and glutamine to the blood; (ii) activity of branched-chain keto acid dehydrogenase (BCKD); and (iii) amination of branched-chain keto acids (BCKAs) to BCAAs. Enhanced consumption of BCAA for ammonia detoxification to glutamine in muscles is the cause of decreased BCAA levels in liver cirrhosis and urea cycle disorders. Increased BCKD activity is responsible for enhanced oxidation of BCAA in chronic renal failure, trauma, burn, sepsis, cancer, phenylbutyrate-treated subjects, and during exercise. Decreased BCKD activity is the main cause of increased BCAA levels and BCKAs in maple syrup urine disease, and plays a role in increased BCAA levels in diabetes type 2 and obesity. Increased BCAA concentrations during brief starvation and type 1 diabetes are explained by amination of BCKAs in visceral tissues and decreased uptake of BCAA by muscles. The studies indicate beneficial effects of BCAAs and BCKAs in therapy of chronic renal failure. New therapeutic strategies should be developed to enhance effectiveness and avoid adverse effects of BCAA on ammonia production in subjects with liver cirrhosis and urea cycle disorders. Further studies are needed to elucidate the effects of BCAA supplementation in burn, trauma, sepsis, cancer and exercise. Whether increased BCAA levels only markers are or also contribute to insulin resistance should be known before the decision is taken regarding their suitability in obese subjects and patients with type 2 diabetes. It is concluded that alterations in BCAA metabolism have been found common in a number of disease states and careful studies are needed to elucidate their therapeutic effectiveness in most indications.

  5. Microbial Hydrocarbon Co-oxidation

    PubMed Central

    Raymond, R. L.; Jamison, V. W.; Hudson, J. O.

    1967-01-01

    Nocardia cultures, isolated from soil by use of n-paraffins as the sole carbon source, have been shown to bring about significant oxidation of several methyl-substituted mono- and dicyclic aromatic hydrocarbons. Oxygen uptake by washed cell suspensions was not a reliable indicator of oxidation. Under co-oxidation conditions in shaken flasks, o- and p-xylenes were oxidized to their respective mono-aromatic acids, o-toluic and p-toluic acids. In addition, a new fermentation product, 2, 3-dihydroxy-p-toluic acid, was found in the p-xylene oxidation system. Of 10 methyl-substituted naphthalenes tested (1-methyl, 2-methyl, 1, 3-dimethyl, 1, 4-dimethyl, 1, 5-dimethyl, 1, 8-dimethyl, 1, 6-dimethyl, 2, 3-dimethyl, 2, 6-dimethyl, 2, 7-dimethyl), only those containing a methyl group in the β position were oxidized at this position to the mono acid. PMID:6049305

  6. Mitochondrial fatty acid synthesis, fatty acids and mitochondrial physiology.

    PubMed

    Kastaniotis, Alexander J; Autio, Kaija J; Kerätär, Juha M; Monteuuis, Geoffray; Mäkelä, Anne M; Nair, Remya R; Pietikäinen, Laura P; Shvetsova, Antonina; Chen, Zhijun; Hiltunen, J Kalervo

    2017-01-01

    Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both β-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Molecularly imprinted polymer-matrix nanocomposite for enantioselective electrochemical sensing of D- and L-aspartic acid.

    PubMed

    Prasad, Bhim Bali; Srivastava, Amrita; Tiwari, Mahavir Prasad

    2013-10-01

    A new molecularly imprinted polymer-matrix (titanium dioxide nanoparticle/multiwalled carbon nanotubes) nanocomposite was developed for the modification of pencil graphite electrode as an enantioselective sensing probe for aspartic acid isomers, prevalent at ultra trace level in aqueous and real samples. The nanocomposite having many shape complementary cavities was synthesized adopting surface initiated-activators regenerated by electron transfer for atom transfer radical polymerization. The proposed sensor has high stability, nanocomposite uniformity, good reproducibility, and enhanced electrocatalytic activity to respond oxidative peak current of L-aspartic acid quantitatively by differential pulse anodic stripping voltammetry, without any cross-reactivity in real samples. Under the optimized operating conditions, the L-aspartic acid imprinted modified electrode showed a wide linear response for L-aspartic acid within the concentration range 9.98-532.72 ng mL(-1), with the minimum detection limit of 1.73-1.79 ng mL(-1) (S/N=3) in aqueous and real samples. Almost similar stringent limit (1.79 ng mL(-1)) was obtained with cerebrospinal fluid which is typical for the primitive diagnosis of neurological disorders, caused by an acute depletion of L-aspartic acid biomarker, in clinical settings. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Eicosapentaenoic and Docosahexaenoic Acid-Enriched High Fat Diet Delays Skeletal Muscle Degradation in Mice.

    PubMed

    Soni, Nikul K; Ross, Alastair B; Scheers, Nathalie; Savolainen, Otto I; Nookaew, Intawat; Gabrielsson, Britt G; Sandberg, Ann-Sofie

    2016-09-03

    Low-grade chronic inflammatory conditions such as ageing, obesity and related metabolic disorders are associated with deterioration of skeletal muscle (SkM). Human studies have shown that marine fatty acids influence SkM function, though the underlying mechanisms of action are unknown. As a model of diet-induced obesity, we fed C57BL/6J mice either a high fat diet (HFD) with purified marine fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (HFD-ED), a HFD with corn oil, or normal mouse chow for 8 weeks; and used transcriptomics to identify the molecular effects of EPA and DHA on SkM. Consumption of ED-enriched HFD modulated SkM metabolism through increased gene expression of mitochondrial β-oxidation and slow-fiber type genes compared with HFD-corn oil fed mice. Furthermore, HFD-ED intake increased nuclear localization of nuclear factor of activated T-cells (Nfatc4) protein, which controls fiber-type composition. This data suggests a role for EPA and DHA in mitigating some of the molecular responses due to a HFD in SkM. Overall, the results suggest that increased consumption of the marine fatty acids EPA and DHA may aid in the prevention of molecular processes that lead to muscle deterioration commonly associated with obesity-induced low-grade inflammation.

  9. Cutin-derived CuO reaction products from purified cuticles and tree leaves

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Hedges, John I.

    1990-11-01

    Long chain (C 16-C 18) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple ( Malus pumila) cuticle include 16-hydroxy-hexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly ( Ilex aquifolium) leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.

  10. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    PubMed

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goni, M.A.; Hedges, J.I.

    Long chain (C{sub 16}-C{sub 18}) hydroxy fatty acids are obtained among the nonlignin-derived reaction products from the CuO oxidation of a variety of geochemical samples. In order to investigate the origin of these acids, the CuO reaction products of isolated cuticles and whole leaves were investigated. The reaction products from the CuO oxidation of purified apple (Malus pumila) cuticle include 16-hydroxyhexadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadec-12-enoic acid, and 9,10,18-trihydroxyoctadecanoic acid as major components. The distribution of these cutin-derived CuO reaction products is similar to the monomer compositions deduced from traditional methods of cutin analysis. Oxidation of whole English Holly (Ilex aquifolium)more » leaves yields cutin-derived acidic reaction products (in addition to lignin-derived phenols) similar to those obtained from oxidation of the corresponding isolated cuticles, indicating that CuO oxidation of bulk plant tissue is a viable procedure of cutin analysis in geochemical applications.« less

  12. Fatty Acid Composition as a Predictor for the Oxidation Stability of Korean Vegetable Oils with or without Induced Oxidative Stress

    PubMed Central

    Yun, Jung-Mi; Surh, Jeonghee

    2012-01-01

    This study was designed to investigate whether the fatty acid composition could make a significant contribution to the oxidation stability of vegetable oils marketed in Korea. Ten kinds, 97 items of vegetable oils that were produced in either an industrialized or a traditional way were collected and analyzed for their fatty acid compositions and lipid oxidation products, in the absence or presence of oxidative stress. Peroxidability index (PI) calculations based on the fatty acid composition ranged from 7.10 to 111.87 with the lowest value found in olive oils and the highest in perilla oils. In the absence of induced oxidative stress, malondialdehyde (MDA), the secondary lipid oxidation product, was generated more in the oils with higher PI (r=0.890), while the tendency was not observed when the oils were subjected to an oxidation-accelerating system. In the presence of the oxidative stress, the perilla oils produced in an industrialized manner generated appreciably higher amounts of MDA than those produced in a traditional way, although both types of oils presented similar PIs. The results implicate that the fatty acid compositions could be a predictor for the oxidation stability of the vegetable oils at the early stage of oil oxidation, but not for those at a later stage of oxidation. PMID:24471078

  13. Effect of oxygen on volatile and sensory characteristics of Cabernet Sauvignon during secondary shelf life.

    PubMed

    Lee, Dong-Hyun; Kang, Bo-Sik; Park, Hyun-Jin

    2011-11-09

    The oxidation of Cabernet Sauvignon wines during secondary shelf life was studied by headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-quadrupole mass spectrometry (GC-qMS) and sensory tests, with the support of multivariate statistical analyses such as OPLS-DA loading plot and PCA score plot. Four different oxidation conditions were established during a 1-week secondary shelf life. Samples collected on a regular basis were analyzed to determine the changes of volatile chemicals, with sensory characteristics evaluated through pattern recognition models. During secondary shelf life the separation among collected samples depended on the degree of oxidation in wine. Isoamyl acetate, ethyl decanoate, nonanoic acid, n-decanoic acid, undecanoic acid, 2-furancarboxylic acid, dodecanoic acid, and phenylacetaldehyde were determined to be associated with the oxidation of the wine. PCA sensory evaluation revealed that least oxidized wine and fresh wine was well-separated from more oxidized wines, demonstrating that sensory characteristics of less oxidized wines tend toward "fruity", "citrous", and "sweetness", while those of more oxidized wines are positively correlated with "animal", "bitterness", and "dairy". The study also demonstrates that OPLS-DA and PCA are very useful statistical tools for the understanding of wine oxidation.

  14. The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Clemons, Anthony E.

    2008-01-01

    A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…

  15. Fatty acid composition of the postmortem prefrontal cortex of patients with schizophrenia, bipolar disorder, and major depressive disorder.

    PubMed

    Hamazaki, Kei; Maekawa, Motoko; Toyota, Tomoko; Dean, Brian; Hamazaki, Tomohito; Yoshikawa, Takeo

    2015-06-30

    Postmortem brain studies have shown abnormal levels of n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, in the frontal cortex (particularly the orbitofrontal cortex) of patients with depression, schizophrenia, or bipolar disorder. However, the results from regions in the frontal cortex other than the orbitofrontal cortex are inconsistent. In this study we investigated whether patients with schizophrenia, bipolar disorder, or major depressive disorder have abnormalities in PUFA levels in the prefrontal cortex [Brodmann area (BA) 8]. In postmortem studies, fatty acids in the phospholipids of the prefrontal cortex (BA8) were evaluated by thin layer chromatography and gas chromatography. Specimens were evaluated for patients with schizophrenia (n=15), bipolar disorder (n=15), or major depressive disorder (n=15) and compared with unaffected controls (n=15). In contrast to previous studies, we found no significant differences in the levels of PUFAs or other fatty acids in the prefrontal cortex (BA8) between patients and controls. Subanalysis by sex also showed no significant differences. No significant differences were found in any individual fatty acids between suicide and non-suicide cases. These psychiatric disorders might be characterized by very specific fatty acid compositions in certain areas of the brain, and BA8 might not be involved in abnormalities of PUFA metabolism. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. The rationale for preventing cancer cachexia: targeting excessive fatty acid oxidation.

    PubMed

    Qian, Chao-Nan

    2016-07-21

    Cachexia commonly occurs at the terminal stage of cancer and has largely unclear molecular mechanisms. A recent study published in Nature Medicine, entitled "Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia," reveals that cachectic cancer cells can secrete multiple cytokines that induce excessive fatty acid oxidation, which is responsible for muscle loss in cancer cachexia. Inhibition of fatty acid oxidation using etomoxir can increase muscle mass and body weight in cancer cachexia animal models. The usage of stable cachexia animal models is also discussed in this research highlight.

  17. Apparatus and method for two-stage oxidation of wastes

    DOEpatents

    Fleischman, Scott D.

    1995-01-01

    An apparatus and method for oxidizing wastes in a two-stage process. The apparatus includes an oxidation device, a gas-liquid contacting column and an electrocell. In the first stage of the process, wastes are heated in the presence of air to partially oxidize the wastes. The heated wastes produce an off-gas stream containing oxidizable materials. In the second stage, the off-gas stream is cooled and flowed through the contacting column, where the off-gas stream is contacted with an aqueous acid stream containing an oxidizing agent having at least two positive valence states. At least a portion of the oxidizable materials are transferred to the acid stream and destroyed by the oxidizing agent. During oxidation, the valence of the oxidizing agent is decreased from its higher state to its lower state. The acid stream is flowed to the electrocell, where an electric current is applied to the stream to restore the oxidizing agent to its higher valence state. The regenerated acid stream is recycled to the contacting column.

  18. Oxidative stability of dark chicken meat through frozen storage: influence of dietary fat and alpha-tocopherol and ascorbic acid supplementation.

    PubMed

    Grau, A; Guardiola, F; Grimpa, S; Barroeta, A C; Codony, R

    2001-11-01

    We used factorial design to ascertain the influence of dietary fat source (linseed, sunflower and oxidized sunflower oils, and beef tallow) and the dietary supplementation with alpha-tocopheryl acetate (alpha-TA) (225 mg/kg of feed) and ascorbic acid (AA) (110 mg/kg) on dark chicken meat oxidation (lipid hydroperoxide and TBA values and cholesterol oxidation product content). alpha-TA greatly protected ground and vacuum-packaged raw or cooked meat from fatty acid and cholesterol oxidation after 0, 3.5, or 7 mo of storage at -20 C. In contrast, AA provided no protection, and no synergism between alpha-TA and AA was observed. Polyunsaturated fatty acid-enriched diets (those containing linseed, sunflower, or oxidized sunflower oils) increased meat susceptibility to oxidation. Cooking always involved more oxidation, especially in samples from linseed oil diets. The values of all the oxidative parameters showed a highly significant negative correlation with the alpha-tocopherol content of meat.

  19. Growth behavior of anodic oxide formed by aluminum anodizing in glutaric and its derivative acid electrolytes

    NASA Astrophysics Data System (ADS)

    Nakajima, Daiki; Kikuchi, Tatsuya; Natsui, Shungo; Suzuki, Ryosuke O.

    2014-12-01

    The growth behavior of anodic oxide films formed via anodizing in glutaric and its derivative acid solutions was investigated based on the acid dissociation constants of electrolytes. High-purity aluminum foils were anodized in glutaric, ketoglutaric, and acetonedicarboxylic acid solutions under various electrochemical conditions. A thin barrier anodic oxide film grew uniformly on the aluminum substrate by glutaric acid anodizing, and further anodizing caused the film to breakdown due to a high electric field. In contrast, an anodic porous alumina film with a submicrometer-scale cell diameter was successfully formed by ketoglutaric acid anodizing at 293 K. However, the increase and decrease in the temperature of the ketoglutaric acid resulted in non-uniform oxide growth and localized pitting corrosion of the aluminum substrate. An anodic porous alumina film could also be fabricated by acetonedicarboxylic acid anodizing due to the relatively low dissociation constants associated with the acid. Acid dissociation constants are an important factor for the fabrication of anodic porous alumina films.

  20. Phytoagents for Cancer Management: Regulation of Nucleic Acid Oxidation, ROS, and Related Mechanisms

    PubMed Central

    Shyur, Lie-Fen

    2013-01-01

    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The “double-edged sword” role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review. PMID:24454991

  1. Ceramic oxide reactions with V2O5 and SO3

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Williams, C. E.

    1985-01-01

    Ceramic oxides are not inert in combustion environments, but can react with, inter alia, SO3, and Na2SO4 to yield low melting mixed sulfate eutectics, and with vanadium compounds to produce vanadates. Assuming ceramic degradation to become severe only when molten phases are generated in the surface salt (as found for metallic hot corrosion), the reactivity of ceramic oxides can be quantified by determining the SO3 partial pressure necessary for molten mixed sulfate formation with Na2SO3. Vanadium pentoxide is an acidic oxide that reacts with Na2O, SO3, and the different ceramic oxides in a series of Lux-Flood type of acid-base displacement reactions. To elucidate the various possible vanadium compound-ceramic oxide interactions, a study was made of the reactions of a matrix involving, on the one axis, ceramix oxides of increasing acidity, and on the other axis, vanadium compounds of increasing acidity. Resistance to vanadium compound reaction increased as the oxide acidity increased. Oxides more acidic than ZrO2 displaced V2O5. Examination of Y2O3- and CeO2-stabilized ZrO2 sintered ceramics which were degraded in 700 C NaVO3 has shown good agreement with the reactions predicted above, except that the CeO2-ZrO2 ceramic appears to be inexplicably degraded by NaVO3.

  2. The alphabet of intrinsic disorder

    PubMed Central

    Uversky, Vladimir N

    2013-01-01

    The ability of a protein to fold into unique functional state or to stay intrinsically disordered is encoded in its amino acid sequence. Both ordered and intrinsically disordered proteins (IDPs) are natural polypeptides that use the same arsenal of 20 proteinogenic amino acid residues as their major building blocks. The exceptional structural plasticity of IDPs, their capability to exist as heterogeneous structural ensembles and their wide array of important disorder-based biological functions that complements functional repertoire of ordered proteins are all rooted within the peculiar differential usage of these building blocks by ordered proteins and IDPs. In fact, some residues (so-called disorder-promoting residues) are noticeably more common in IDPs than in sequences of ordered proteins, which, in their turn, are enriched in several order-promoting residues. Furthermore, residues can be arranged according to their “disorder promoting potencies,” which are evaluated based on the relative abundances of various amino acids in ordered and disordered proteins. This review continues a series of publications on the roles of different amino acids in defining the phenomenon of protein intrinsic disorder and concerns glutamic acid, which is the second most disorder-promoting residue. PMID:28516010

  3. Preparation of sulfonic acid-containing rubbers from natural rubber vulcanizates

    NASA Astrophysics Data System (ADS)

    Poonsawat, Worapong; Poompradub, Sirilux; Ngamcharussrivichai, Chawalit

    2014-06-01

    In this work, a series of sulfonic acid-containing rubbers were prepared by aqueous phase oxidation of natural rubber vulcanizates in the presence of hydrogen peroxide (H2O2) and formic acid (HCOOH). The starting vulcanizates were neatly prepared via an efficient vulcanization (EV) system by varying mass ratio of N-cyclohexyl-2-benzothiazole sulfonamide (CBS), as an accelerator, to sulfur. The oxidation conditions were controlled at the molar ratio of H2O2: HCOOH = 1:1, the concentration of H2O2 = 15 wt.%, the temperature = 50 °C, and the reaction time = 3 h. The rubber materials before and after the oxidation were characterized for their physicochemical properties by using Fourier transform infrared spectroscopy, bomb calorimetry, acid-base titration and swelling measurements. The results indicated the presence of sulfonic acid group in the oxidized rubbers, generated by the oxidative cleaves of sulfide crosslinks in the rubber vulcanizates. The oxidation decreased the sulfur content of the rubber in which the level of sulfur loss was determined by the CBS/sulfur ratio. Moreover, the acidity of the oxidized products was correlated with the amount of sulfur remaining.

  4. Inhibitory effects of indole α-lipoic acid derivatives on nitric oxide production in LPS/IFNγ activated RAW 264.7 macrophages.

    PubMed

    Karabay, Arzu Zeynep; Koc, Aslı; Gurkan-Alp, A Selen; Buyukbingol, Zeliha; Buyukbingol, Erdem

    2015-04-01

    Alpha-lipoic acid (α-lipoic acid) is a potent antioxidant compound that has been shown to possess anti-inflammatory effects. RAW 264.7 macrophages produce various inflammatory mediators such as nitric oxide, IL-1β, IL-6 and TNF-alpha upon activation with LPS (Lipopolysaccharide) and IFNγ (interferon gamma). In this study, the effect of 12 synthetic indole α-lipoic acid derivatives on nitric oxide production and iNOS (inducible nitric oxide synthase) protein expression in LPS/IFNγ activated RAW 264.7 macrophages was determined. Cell proliferation, nitric oxide levels and iNOS protein expression were examined with thiazolyl blue tetrazolium blue test, griess assay and western blot, respectively. Our results showed that all of the indole α-lipoic acid derivatives showed significant inhibitory effects on nitric oxide production and iNOS protein levels (p < 0.05). The most active compounds were identified as compound I-4b, I-4e and II-3b. In conclusion, these indole α-lipoic acid derivatives may have the potential for treatment of inflammatory conditions related with high nitric oxide production. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Hyperhomocysteinemia impairs regional blood flow: involvements of endothelial and neuronal nitric oxide.

    PubMed

    Toda, Noboru; Okamura, Tomio

    2016-09-01

    Increasing evidence support the idea that hyperhomocysteinemia (HHcy) is responsible for pathogenesis underlying cerebral, coronary, renal, and other vascular circulatory disorders and for hypertension. Impaired synthesis of nitric oxide (NO) in the endothelium or increased production of asymmetric dimethylarginine and activated oxygen species are involved in the impairment of vasodilator effects of NO. Impaired circulation in the brain derived from reduced synthesis and actions of NO would be an important triggering factor to dementia and Alzheimer's disease. Reduced actions of NO and brain hypoperfusion trigger increased production of amyloid-β that inhibits endothelial function, thus establishing a vicious cycle for impairing brain circulation. HHcy is involved in the genesis of anginal attack and coronary myocardial infarction. HHcy is also involved in renal circulatory diseases. The homocysteine (Hcy)-induced circulatory failure is promoted by methionine and is prevented by increased folic acid and vitamin B6/B12. Eliminating poor life styles, such as smoking and being sedentary; keeping favorable dietary habits; and early treatment maintaining constitutive NOS functions healthy, reducing oxidative stresses would be beneficial in protecting HHcy-induced circulatory failures.

  6. Oxidation of phenolic acids by soil iron and manganese oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, R.G.; Cheng, H.H.; Harsh, J.B.

    Phenolic acids are intermediary metabolites of many aromatic chemicals and may be involved in humus formation, allelopathy, and nutrient availability. Depending on their structures, six phenolic acids were shown to react at different rates with oxidized forms of Fe and Mn in a Palouse soil (fine-silty, mixed, mesic Pachic Ultic Haploxeroll). Increasing methoxy substitution on the aromatic ring of phenolic acids increased the reaction rate. Reaction rate was also increased for longer carboxyl-containing side chains. After 4 h reaction, little of the applied (10 mg kg/sup -1/ soil) p-hydroxybenzoic or p-coumaric acids had reacted, while 0 to 5, 70, 90,more » and 100% of the vanillic, ferulic, syringic, and sinapic acids, respectively, had reacted. After 72 h under conditions limiting microbial growth, none of the p-hydroxybenzoic, 30% of the p-coumaric, and 50% of the vanillic acids had reacted. The reaction was shown to be predominantly chemical, and not biological, since phenolic acid extractabilities were similar for Palouse soil and for Palouse soil pretreated with LiOBr to remove organic matter. When the Palouse soil was pretreated with a sodium dithionite-citrate solution to remove Fe and Mn oxides, none of the phenolic acids reacted after 1 h. The reaction of sinapic acid with Palouse soil was shown to produce Fe(II) and soluble Mn as reaction products. The reaction of phenolic acids with soil was thus shown to be an oxidation of the phenolic acids, coupled with a reduction of soil Fe and Mn oxides.« less

  7. Aromatic Hydroxylation of Salicylic Acid and Aspirin by Human Cytochromes P450

    PubMed Central

    Bojić, Mirza; Sedgeman, Carl A.; Nagy, Leslie D.; Guengerich, F. Peter

    2015-01-01

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids—salicyluric acid and gentisuric acid—and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1. PMID:25840124

  8. Ferrous Iron Oxidation under Varying pO2 Levels: The Effect of Fe(III)/Al(III) Oxide Minerals and Organic Matter.

    PubMed

    Chen, Chunmei; Thompson, Aaron

    2018-01-16

    Abiotic Fe(II) oxidation by O 2 commonly occurs in the presence of mineral sorbents and organic matter (OM) in soils and sediments; however, this tertiary system has rarely been studied. Therefore, we examined the impacts of mineral surfaces (goethite and γ-Al 2 O 3 ) and organic matter [Suwannee River fulvic acid (SRFA)] on Fe(II) oxidation rates and the resulting Fe(III) (oxyhydr)oxides under 21 and 1% pO 2 at pH 6. We tracked Fe dynamics by adding 57 Fe(II) to 56 Fe-labeled goethite and γ-Al 2 O 3 and characterized the resulting solids using 57 Fe Mössbauer spectroscopy. We found Fe(II) oxidation was slower at low pO 2 and resulted in higher-crystallinity Fe(III) phases. Relative to oxidation of Fe(II) (aq) alone, both goethite and γ-Al 2 O 3 surfaces increased Fe(II) oxidation rates regardless of pO 2 levels, with goethite being the stronger catalyst. Goethite surfaces promoted the formation of crystalline goethite, while γ-Al 2 O 3 favored nano/small particle or disordered goethite and some lepidocrocite; oxidation of Fe(II) aq alone favored lepidocrocite. SRFA reduced oxidation rates in all treatments except the mineral-free systems at 21% pO 2 , and SRFA decreased Fe(III) phase crystallinity, facilitating low-crystalline ferrihydrite in the absence of mineral sorbents, low-crystalline lepidocrocite in the presence of γ-Al 2 O 3 , but either crystalline goethite or ferrihydrite when goethite was present. This work highlights that the oxidation rate, the types of mineral surfaces, and OM control Fe(III) precipitate composition.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.

    Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less

  10. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  11. Aliphatic peptidyl hydroperoxides as a source of secondary oxidation in hydroxyl radical protein footprinting

    PubMed Central

    Saladino, Jessica; Liu, Mian; Live, David; Sharp, Joshua S.

    2009-01-01

    Hydroxyl radical footprinting is a technique for studying protein structure and binding that entails oxidizing a protein system of interest with diffusing hydroxyl radicals, and then measuring the amount of oxidation of each amino acid. One important issue in hydroxyl radical footprinting is limiting amino acid oxidation by secondary oxidants to prevent uncontrolled oxidation which can cause amino acids to appear more solvent accessible than they really are. Previous work suggested that hydrogen peroxide was the major secondary oxidant of concern in hydroxyl radical footprinting experiments; however, even after elimination of all hydrogen peroxide, some secondary oxidation was still detected. Evidence is presented for the formation of peptidyl hydroperoxides as the most abundant product upon oxidation of aliphatic amino acids. Both reverse phase liquid chromatography and catalase treatment were shown to be ineffective at eliminating peptidyl hydroperoxides. The ability of these peptidyl hydroperoxides to directly oxidize methionine is demonstrated, suggesting the value of methionine amide as an in situ protectant. Hydroxyl radical footprinting protocols require the use of an organic sulfide or similar peroxide scavenger in addition to removal of hydrogen peroxide in order to successfully eradicate all secondary oxidizing species and prevent uncontrolled oxidation of sulfur-containing residues. PMID:19278868

  12. Genes encoding intrinsic disorder in Eukaryota have high GC content

    PubMed Central

    Peng, Zhenling; Uversky, Vladimir N.

    2016-01-01

    ABSTRACT We analyze a correlation between the GC content in genes of 12 eukaryotic species and the level of intrinsic disorder in their corresponding proteins. Comprehensive computational analysis has revealed that the disordered regions in eukaryotes are encoded by the GC-enriched gene regions and that this enrichment is correlated with the amount of disorder and is present across proteins and species characterized by varying amounts of disorder. The GC enrichment is a result of higher rate of amino acid coded by GC-rich codons in the disordered regions. Individual amino acids have the same GC-content profile between different species. Eukaryotic proteins with the disordered regions encoded by the GC-enriched gene segments carry out important biological functions including interactions with RNAs, DNAs, nucleotides, binding of calcium and metal ions, are involved in transcription, transport, cell division and certain signaling pathways, and are localized primarily in nucleus, cytosol and cytoplasm. We also investigate a possible relationship between GC content, intrinsic disorder and protein evolution. Analysis of a devised “age” of amino acids, their disorder-promoting capacity and the GC-enrichment of their codons suggests that the early amino acids are mostly disorder-promoting and their codons are GC-rich while most of late amino acids are mostly order-promoting. PMID:28232902

  13. Lysinuric protein intolerance (LPI): a multi organ disease by far more complex than a classic urea cycle disorder.

    PubMed

    Ogier de Baulny, Hélène; Schiff, Manuel; Dionisi-Vici, Carlo

    2012-05-01

    Lysinuric protein intolerance (LPI) is an inherited defect of cationic amino acid (lysine, arginine and ornithine) transport at the basolateral membrane of intestinal and renal tubular cells caused by mutations in SLC7A7 encoding the y(+)LAT1 protein. LPI has long been considered a relatively benign urea cycle disease, when appropriately treated with low-protein diet and l-citrulline supplementation. However, the severe clinical course of this disorder suggests that LPI should be regarded as a severe multisystem disease with uncertain outcome. Specifically, immune dysfunction potentially attributable to nitric oxide (NO) overproduction secondary to arginine intracellular trapping (due to defective efflux from the cell) might be a crucial pathophysiological route explaining many of LPI complications. The latter comprise severe lung disease with pulmonary alveolar proteinosis, renal disease, hemophagocytic lymphohistiocytosis with subsequent activation of macrophages, various auto-immune disorders and an incompletely characterized immune deficiency. These results have several therapeutic implications, among which lowering the l-citrulline dosage may be crucial, as excessive citrulline may worsen intracellular arginine accumulation. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Mitochondrial iron-sulfur cluster biogenesis from molecular understanding to clinical disease

    PubMed Central

    Alfadhel, Majid; Nashabat, Marwan; Ali, Qais Abu; Hundallah, Khalid

    2017-01-01

    Iron–sulfur clusters (ISCs) are known to play a major role in various protein functions. Located in the mitochondria, cytosol, endoplasmic reticulum and nucleus, they contribute to various core cellular functions. Until recently, only a few human diseases related to mitochondrial ISC biogenesis defects have been described. Such diseases include Friedreich ataxia, combined oxidative phosphorylation deficiency 19, infantile complex II/III deficiency defect, hereditary myopathy with lactic acidosis and mitochondrial muscle myopathy, lipoic acid biosynthesis defects, multiple mitochondrial dysfunctions syndromes and non ketotic hyperglycinemia due to glutaredoxin 5 gene defect. Disorders of mitochondrial import, export and translation, including sideroblastic anemia with ataxia, EVEN-PLUS syndrome and mitochondrial complex I deficiency due to nucleotide-binding protein-like protein gene defect, have also been implicated in ISC biogenesis defects. With advances in next generation sequencing technologies, more disorders related to ISC biogenesis defects are expected to be elucidated. In this article, we aim to shed the light on mitochondrial ISC biogenesis, related proteins and their function, pathophysiology, clinical phenotypes of related disorders, diagnostic approach, and future implications. PMID:28064324

  15. Genome-Edited, TH-expressing Neuroblastoma Cells as a Disease Model for Dopamine-Related Disorders: A Proof-of-Concept Study on DJ-1-deficient Parkinsonism

    PubMed Central

    Prasuhn, Jannik; Mårtensson, Christoph U.; Krajka, Victor; Klein, Christine; Rakovic, Aleksandar

    2018-01-01

    Impairment of the dopaminergic (DA) system is a common cause of several movement disorders including Parkinson’s disease (PD), however, little is known about the underlying disease mechanisms. The recent development of stem-cell-based protocols for the generation of DA neurons partially solved this issue, however, this technology is costly and time-consuming. Commonly used cell lines, i.e., neuroblastoma (SHSY5Y) and PC12 cells are still widely used to investigate PD and significantly contributed to our understanding of mechanisms involved in development of the disease. However, they either do not express DA at all or require additional, only partially efficient differentiations in order to produce DA. Here we generated and characterized transgenic SH-SY5Y cells, ectopically expressing tyrosine hydroxylase (SHTH+), that can be used as a homogenous, DA-producing model to study alterations in DA metabolism and oxidative stress. We demonstrated that SHTH+ produce high levels of DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) making this model suitable to investigate not only alterations in DA synthesis but also its turnover. We also provide evidence for the presence of other enzymes involved in DA synthesis and its turnover in these cells. Finally, we showed that these cells can easily be genetically modified using CRISPR/Cas9 technology in order to study genetically defined forms of movement disorders using DJ1-linked PD as a model. PMID:29379417

  16. Efficient oxidation of alcohols to carbonyl compounds with molecular oxygen catalyzed by N-hydroxyphthalimide combined with a Co species

    PubMed

    Iwahama; Yoshino; Keitoku; Sakaguchi; Ishii

    2000-10-06

    Highly efficient catalytic oxidation of alcohols with molecular oxygen by N-hydroxyphthalimide (NHPI) combined with a Co species was developed. The oxidation of 2-octanol in the presence of catalytic amounts of NHPI and Co(OAc)2 under atmospheric dioxygen in AcOEt at 70 degrees C gave 2-octanone in 93% yield. The oxidation was significantly enhanced by adding a small amount of benzoic acid to proceed smoothly even at room temperature. Primary alcohols were oxidized by NHPI in the absence of any metal catalyst to form the corresponding carboxylic acids in good yields. In the oxidation of terminal vic-diols such as 1,2-butanediol, carbon-carbon bond cleavage was induced to give one carbon less carboxylic acids such as propionic acid, while internal vic-diols were selectively oxidized to 1,2-diketones.

  17. Breastfeeding, infant formula supplementation, and Autistic Disorder: the results of a parent survey

    PubMed Central

    Schultz, Stephen T; Klonoff-Cohen, Hillary S; Wingard, Deborah L; Akshoomoff, Natacha A; Macera, Caroline A; Ji, Ming; Bacher, Christopher

    2006-01-01

    Background Although Autistic Disorder is associated with several congenital conditions, the cause for most cases is unknown. The present study was undertaken to determine whether breastfeeding or the use of infant formula supplemented with docosahexaenoic acid and arachidonic acid is associated with Autistic Disorder. The hypothesis is that breastfeeding and use of infant formula supplemented with docosahexaenoic acid/arachidonic acid are protective for Autistic Disorder. Methods This is a case-control study using data from the Autism Internet Research Survey, an online parental survey conducted from February to April 2005 with results for 861 children with Autistic Disorder and 123 control children. The analyses were performed using logistic regression. Results Absence of breastfeeding when compared to breastfeeding for more than six months was significantly associated with an increase in the odds of having autistic disorder when all cases were considered (OR 2.48, 95% CI 1.42, 4.35) and after limiting cases to children with regression in development (OR 1.95, 95% CI 1.01, 3.78). Use of infant formula without docosahexaenoic acid and arachidonic acid supplementation versus exclusive breastfeeding was associated with a significant increase in the odds of autistic disorder when all cases were considered (OR 4.41, 95% CI 1.24, 15.7) and after limiting cases to children with regression in development (OR 12.96, 95% CI 1.27, 132). Conclusion The results of this preliminary study indicate that children who were not breastfed or were fed infant formula without docosahexaenoic acid/arachidonic acid supplementation were significantly more likely to have autistic disorder. PMID:16978397

  18. Association between oxidative status and the composition of intestinal microbiota along the gastrointestinal tract.

    PubMed

    Gyuraszova, Marianna; Kovalcikova, Alexandra; Gardlik, Roman

    2017-06-01

    Studies have shown that the microbiota along the gastrointestinal tract (GIT) plays an important role when it comes to the maintenance of its proper functions. Many studies exist that have analyzed the composition of the bacterial community in the different regions of the GIT of humans and model animals. Microbial imbalance leads to several systemic disorders, including cardiovascular and renal disease. The imbalance between the production of reactive oxygen species (ROS) and their elimination by antioxidants leads to oxidative stress. Oxidative stress plays an important role in a variety of physiological processes, as well as disease. The continuous formation of ROS in the GIT is the result of the interaction between intestinal mucosa, symbiotic bacteria and dietary factors. It has also been proven that ROS play a role in the pathogenesis of several GI disorders, including IBD. We hypothesized that the levels of advanced glycation end products (AGEs) would be the highest in the ileum, caecum or colon, where the microbiota mostly consist of butyrate producing bacteria, Bacterioides, Clostridium, Ruminococcus or Bifidobacterium, which derive energy through carbohydrate fermentation. We also assumed that advanced oxidation protein products (AOPP) mostly act in the segments, where bacteria reside and which are responsible for the amino acid fermentation, such as caecum or colon. Lipid hydroxyperoxides are generated during digestion in the stomach, which contains absorbed oxygen and has a low pH. According to this we hypothesized that the highest concentration of thiobarbituric acid reacting substances (TBARS) could be in the stomach, which, however, has not been confirmed. Because Lactobacilli are able to produce catalase, an endogenous antioxidant, and are abundant in the small intestine, we hypothesized that antioxidant capacity (measured by ferric reducing ability) would be the highest here. The highest levels of AGEs were found in the caecum. The highest level of TBARS was found in the jejunum of the rats. The assessment of our hypothesis also revealed high levels of AOPP in the caecum. It has been shown that AOPP contributes to the progression of IBD. The ferric reducing ability of tissue was the lowest in the colon of the experimental animals, which is in accordance with previous studies that show that rat colon has a lower total antioxidant capacity than the small bowel. In summary, we offer some insight into the differences between the oxidative status along the GIT of rats and some advice concerning supportive antioxidant therapy of gastrointestinal diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Evidence for percolation diffusion of cations and reordering in disordered pyrochlore from accelerated molecular dynamics

    DOE PAGES

    Perriot, Romain; Uberuaga, Blas P.; Zamora, Richard J.; ...

    2017-09-20

    Diffusion in complex oxides is critical to ionic transport, radiation damage evolution, sintering, and aging. In complex oxides such as pyrochlores, anionic diffusion is dramatically affected by cation disorder. However, little is known about how disorder influences cation transport. Here, we report results from classical and accelerated molecular dynamics simulations of vacancy-mediated cation diffusion in Gd 2Ti 2O 7 pyrochlore, on the microsecond timescale. We find that diffusion is slow at low levels of disorder, while higher disorder allows for fast diffusion, which is then accompanied by antisite annihilation and reordering, and thus a slowing of cation transport. Cation diffusivitymore » is therefore not constant, but decreases as the material reorders. We also show that fast cation diffusion is triggered by the formation of a percolation network of antisites. This is in contrast with observations from other complex oxides and disordered media models, suggesting a fundamentally different relation between disorder and mass transport.« less

  20. Activation of PPARα by Oral Clofibrate Increases Renal Fatty Acid Oxidation in Developing Pigs.

    PubMed

    He, Yonghui; Khan, Imad; Bai, Xiumei; Odle, Jack; Xi, Lin

    2017-12-08

    The objective of this study was to evaluate the effects of peroxisome proliferator-activated receptor α (PPARα) activation by clofibrate on both mitochondrial and peroxisomal fatty acid oxidation in the developing kidney. Ten newborn pigs from 5 litters were randomly assigned to two groups and fed either 5 mL of a control vehicle (2% Tween 80) or a vehicle containing clofibrate (75 mg/kg body weight, treatment). The pigs received oral gavage daily for three days. In vitro fatty acid oxidation was then measured in kidneys with and without mitochondria inhibitors (antimycin A and rotenone) using [1- 14 C]-labeled oleic acid (C18:1) and erucic acid (C22:1) as substrates. Clofibrate significantly stimulated C18:1 and C22:1 oxidation in mitochondria ( p < 0.001) but not in peroxisomes. In addition, the oxidation rate of C18:1 was greater in mitochondria than peroxisomes, while the oxidation of C22:1 was higher in peroxisomes than mitochondria ( p < 0.001). Consistent with the increase in fatty acid oxidation, the mRNA abundance and enzyme activity of carnitine palmitoyltransferase I (CPT I) in mitochondria were increased. Although mRNA of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (mHMGCS) was increased, the β-hydroxybutyrate concentration measured in kidneys did not increase in pigs treated with clofibrate. These findings indicate that PPARα activation stimulates renal fatty acid oxidation but not ketogenesis.

  1. Transformation of Unsaturated Fatty Acids/Esters to Corresponding Keto Fatty Acids/Esters by Aerobic Oxidation with Pd(II)/Lewis Acid Catalyst.

    PubMed

    Senan, Ahmed M; Zhang, Sicheng; Zeng, Miao; Chen, Zhuqi; Yin, Guochuan

    2017-08-16

    Utilization of renewable biomass to partly replace the fossil resources in industrial applications has attracted attention due to the limited fossil feedstock with the increased environmental concerns. This work introduced a modified Wacker-type oxidation for transformation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, in which Cu 2+ cation was replaced with common nonredox metal ions, that is, a novel Pd(II)/Lewis acid (LA) catalyst. It was found that adding nonredox metal ions can effectively promote Pd(II)-catalyzed oxidation of unsaturated fatty acids/esters to the corresponding keto fatty acids/esters, even much better than Cu 2+ , and the promotional effect is highly dependent on the Lewis acidity of added nonredox metal ions. The improved catalytic efficiency is attributed to the formation of heterobimetallic Pd(II)/LA species, and the oxidation mechanism of this Pd(II)/LA catalyst is also briefly discussed.

  2. Active site and loop 4 movements within human glycolate oxidase: implications for substrate specificity and drug design.

    PubMed

    Murray, Michael S; Holmes, Ross P; Lowther, W Todd

    2008-02-26

    Human glycolate oxidase (GO) catalyzes the FMN-dependent oxidation of glycolate to glyoxylate and glyoxylate to oxalate, a key metabolite in kidney stone formation. We report herein the structures of recombinant GO complexed with sulfate, glyoxylate, and an inhibitor, 4-carboxy-5-dodecylsulfanyl-1,2,3-triazole (CDST), determined by X-ray crystallography. In contrast to most alpha-hydroxy acid oxidases including spinach glycolate oxidase, a loop region, known as loop 4, is completely visible when the GO active site contains a small ligand. The lack of electron density for this loop in the GO-CDST complex, which mimics a large substrate, suggests that a disordered to ordered transition may occur with the binding of substrates. The conformational flexibility of Trp110 appears to be responsible for enabling GO to react with alpha-hydroxy acids of various chain lengths. Moreover, the movement of Trp110 disrupts a hydrogen-bonding network between Trp110, Leu191, Tyr134, and Tyr208. This loss of interactions is the first indication that active site movements are directly linked to changes in the conformation of loop 4. The kinetic parameters for the oxidation of glycolate, glyoxylate, and 2-hydroxy octanoate indicate that the oxidation of glycolate to glyoxylate is the primary reaction catalyzed by GO, while the oxidation of glyoxylate to oxalate is most likely not relevant under normal conditions. However, drugs that exploit the unique structural features of GO may ultimately prove to be useful for decreasing glycolate and glyoxylate levels in primary hyperoxaluria type 1 patients who have the inability to convert peroxisomal glyoxylate to glycine.

  3. Molecular Analysis of the Processes of Surface Brown Spot (SBS) Formation in Pear Fruit (Pyrus bretschneideri Rehd. cv. Dangshansuli) by De Novo Transcriptome Assembly

    PubMed Central

    Liu, Pu; Xue, Cheng; Wu, Ting-ting; Heng, Wei; Jia, Bing; Ye, Zhenfeng; Liu, Li; Zhu, Liwu

    2013-01-01

    Browning disorder, which usually occurs post-harvest in pears subjected to long-term storage, can cause browning of the pear flesh and/or core. In 2011, investigators in China found a novel type of brown spot (designated as surface brown spot, SBS) in pre-harvest ‘Dangshansuli’ pears (Pyrus bretschneideri Rehd.). SBS has a large impact on the exterior quality of the pears. Interestingly, the brown coloration was only found on the peel and not the flesh or the core. In this paper, de novo transcriptome analysis of the exocarp of pears with SBS using Illumina sequencing showed that SBS up-regulated the expression of genes related to oxidative phosphorylation, phenolic compound synthesis and polyphenoloxidase (PPO), and SBS was associated with inhibition of primary and secondary metabolism genes. Ca2+-sensor proteins might be involved in the signal transduction that occurs during the process of SBS formation, and this signaling is likely to be regulated by H2O2, abscisic acid (ABA) and gibberellic acid (GA3). Phytohormone and mineral element analyses confirmed that GA3, ABA, H2O2 and Ca2+ contribute to SBS formation. In addition to the seasonal characteristics, low levels of O2 and Ca2+ in the fruit are potential causes of the browning response due to exposure to oxidative stress, oxidative-reductive imbalance and the accumulation of reactive oxygen species (ROS), which affected the membrane integrity. Disruption of the membranes allows for PPO and phenolic compounds to come into contact, and the phenolic compounds are oxidized to form the browning pigments. PMID:24058529

  4. Compartmentalized acyl-CoA metabolism in skeletal muscle regulates systemic glucose homeostasis.

    PubMed

    Li, Lei O; Grevengoed, Trisha J; Paul, David S; Ilkayeva, Olga; Koves, Timothy R; Pascual, Florencia; Newgard, Christopher B; Muoio, Deborah M; Coleman, Rosalind A

    2015-01-01

    The impaired capacity of skeletal muscle to switch between the oxidation of fatty acid (FA) and glucose is linked to disordered metabolic homeostasis. To understand how muscle FA oxidation affects systemic glucose, we studied mice with a skeletal muscle-specific deficiency of long-chain acyl-CoA synthetase (ACSL)1. ACSL1 deficiency caused a 91% loss of ACSL-specific activity and a 60-85% decrease in muscle FA oxidation. Acsl1(M-/-) mice were more insulin sensitive, and, during an overnight fast, their respiratory exchange ratio was higher, indicating greater glucose use. During endurance exercise, Acsl1(M-/-) mice ran only 48% as far as controls. At the time that Acsl1(M-/-) mice were exhausted but control mice continued to run, liver and muscle glycogen and triacylglycerol stores were similar in both genotypes; however, plasma glucose concentrations in Acsl1(M-/-) mice were ∼40 mg/dL, whereas glucose concentrations in controls were ∼90 mg/dL. Excess use of glucose and the likely use of amino acids for fuel within muscle depleted glucose reserves and diminished substrate availability for hepatic gluconeogenesis. Surprisingly, the content of muscle acyl-CoA at exhaustion was markedly elevated, indicating that acyl-CoAs synthesized by other ACSL isoforms were not available for β-oxidation. This compartmentalization of acyl-CoAs resulted in both an excessive glucose requirement and severely compromised systemic glucose homeostasis. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  5. Molecular analysis of the processes of surface brown spot (SBS) formation in pear fruit (Pyrus bretschneideri Rehd. cv. Dangshansuli) by de novo transcriptome assembly.

    PubMed

    Liu, Pu; Xue, Cheng; Wu, Ting-ting; Heng, Wei; Jia, Bing; Ye, Zhenfeng; Liu, Li; Zhu, Liwu

    2013-01-01

    Browning disorder, which usually occurs post-harvest in pears subjected to long-term storage, can cause browning of the pear flesh and/or core. In 2011, investigators in China found a novel type of brown spot (designated as surface brown spot, SBS) in pre-harvest 'Dangshansuli' pears (Pyrus bretschneideri Rehd.). SBS has a large impact on the exterior quality of the pears. Interestingly, the brown coloration was only found on the peel and not the flesh or the core. In this paper, de novo transcriptome analysis of the exocarp of pears with SBS using Illumina sequencing showed that SBS up-regulated the expression of genes related to oxidative phosphorylation, phenolic compound synthesis and polyphenoloxidase (PPO), and SBS was associated with inhibition of primary and secondary metabolism genes. Ca(2+)-sensor proteins might be involved in the signal transduction that occurs during the process of SBS formation, and this signaling is likely to be regulated by H2O2, abscisic acid (ABA) and gibberellic acid (GA3). Phytohormone and mineral element analyses confirmed that GA3, ABA, H2O2 and Ca(2+) contribute to SBS formation. In addition to the seasonal characteristics, low levels of O2 and Ca(2+) in the fruit are potential causes of the browning response due to exposure to oxidative stress, oxidative-reductive imbalance and the accumulation of reactive oxygen species (ROS), which affected the membrane integrity. Disruption of the membranes allows for PPO and phenolic compounds to come into contact, and the phenolic compounds are oxidized to form the browning pigments.

  6. Taraxacum officinale Weber extracts inhibit LPS-induced oxidative stress and nitric oxide production via the NF-κB modulation in RAW 264.7 cells.

    PubMed

    Park, Chung Mu; Park, Ji Young; Noh, Kyung Hee; Shin, Jin Hyuk; Song, Young Sun

    2011-01-27

    The common dandelion (Taraxacum officinale G.H. Weber ex Wiggers, Asteraceae) has been widely used in folklore medicine to treat dyspepsia, heartburn, and spleen and liver disorders. To compare the antioxidative and anti-inflammatory activities of Taraxacum officinale methanol extract (TOME) and water extract (TOWE) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and assess their constitutional differences, including luteolin, chicoric acid, and total phenol content. Antioxidative enzyme activities, nitric oxide (NO) production, and inducible NO synthase (iNOS) and nuclear factor (NF)-κB expression were estimated by biochemical analysis, the Griess reaction, reverse transcription-polymerase chain reaction, western hybridization, and electrophoretic mobility shift assay. High-performance liquid chromatography and the Folin-Ciocalteau method were used to analyze functional phytochemicals and total phenol content. TOME and TOWE significantly reduced NO production with an IC(50) of 79.9 and 157.5 μg/mL, respectively, without cytotoxicity. Depleted glutathione (GSH) and antioxidative enzyme activities, including superoxide dismutase, catalase, GSH-peroxidase, and GSH-reductase, were restored by dandelion extracts. Both extracts inhibited LPS-stimulated iNOS gene expression and that of its transcription factor, NF-κB, in parallel with nitrite reduction. TOME showed more potent antioxidative and anti-inflammatory capacities than TOWE, which was attributable to its high total phenol, luteolin, and chicoric acid content. These results indicate that TOME and TOWE inhibit oxidative stress and inflammatory responses through elevated de novo synthesis of antioxidative enzymes and suppression of iNOS expression by NF-κB inactivation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Factors influencing insulin resistance in relation to atherogenicity in mood disorders, the metabolic syndrome and tobacco use disorder.

    PubMed

    Bortolasci, Chiara Cristina; Vargas, Heber Odebrecht; Vargas Nunes, Sandra Odebrecht; de Melo, Luiz Gustavo Piccoli; de Castro, Márcia Regina Pizzo; Moreira, Estefania Gastaldello; Dodd, Seetal; Barbosa, Décio Sabbatini; Berk, Michael; Maes, Michael

    2015-07-01

    This study examines the effects of malondialdehyde (MDA) and uric acid on insulin resistance and atherogenicity in subjects with and without mood disorders, the metabolic syndrome (MetS) and tobacco use disorder (TUD). We included 314 subjects with depression and bipolar depression, with and without the MetS and TUD and computed insulin resistance using the updated homeostasis model assessment (HOMA2IR) and atherogenicity using the atherogenic index of plasma (AIP), that is log10 (triglycerides/high density lipoprotein (HDL) cholesterol. HOMA2IR is correlated with body mass index (BMI) and uric acid levels, but not with mood disorders and TUD, while the AIP is positively associated with BMI, mood disorders, TUD, uric acid, MDA and male sex. Uric acid is positively associated with insulin and triglycerides and negatively with HDL cholesterol. MDA is positively associated with triglyceride levels. Comorbid mood disorders and TUD further increase AIP but not insulin resistance. Glucose is positively associated with increasing age, male gender and BMI. The results show that mood disorders, TUD and BMI together with elevated levels of uric acid and MDA independently contribute to increased atherogenic potential, while BMI and uric acid are risk factors for insulin resistance. The findings show that mood disorders and TUD are closely related to an increased atherogenic potential but not to insulin resistance or the MetS. Increased uric acid is a highly significant risk factor for insulin resistance and increased atherogenic potential. MDA, a marker of lipid peroxidation, further contributes to different aspects of the atherogenic potential. Mood disorders and TUD increase triglyceride levels, lower HDL cholesterol and are strongly associated with the atherogenic, but not insulin resistance, component of the MetS. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H 2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallicmore » form and thereby activates hydrogen.« less

  9. The alphabet of intrinsic disorder

    PubMed Central

    Theillet, Francois-Xavier; Kalmar, Lajos; Tompa, Peter; Han, Kyou-Hoon; Selenko, Philipp; Dunker, A. Keith; Daughdrill, Gary W.; Uversky, Vladimir N

    2013-01-01

    A significant fraction of every proteome is occupied by biologically active proteins that do not form unique three-dimensional structures. These intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) have essential biological functions and are characterized by extensive structural plasticity. Such structural and functional behavior is encoded in the amino acid sequences of IDPs/IDPRs, which are enriched in disorder-promoting residues and depleted in order-promoting residues. In fact, amino acid residues can be arranged according to their disorder-promoting tendency to form an alphabet of intrinsic disorder that defines the structural complexity and diversity of IDPs/IDPRs. This review is the first in a series of publications dedicated to the roles that different amino acid residues play in defining the phenomenon of protein intrinsic disorder. We start with proline because data suggests that of the 20 common amino acid residues, this one is the most disorder-promoting. PMID:28516008

  10. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach

    PubMed Central

    Gong, Amy G. W.; Huang, Vincent Y.; Wang, Huai Y.; Lin, Huang Q.; Dong, Tina T. X.; Tsim, Karl W. K.

    2016-01-01

    Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR), was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT), a herbal decoction composing of Astragali Radix (AR) and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i) decreasing the reactive oxygen species (ROS) formation, detected by laser confocal; (ii) increasing of the activation of Akt; (iii) increasing the transcriptional activity of anti-oxidant response element (ARE); and (iv) increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions. PMID:27824860

  11. Ferulic Acid Orchestrates Anti-Oxidative Properties of Danggui Buxue Tang, an Ancient Herbal Decoction: Elucidation by Chemical Knock-Out Approach.

    PubMed

    Gong, Amy G W; Huang, Vincent Y; Wang, Huai Y; Lin, Huang Q; Dong, Tina T X; Tsim, Karl W K

    2016-01-01

    Ferulic acid, a phenolic acid derived mainly from a Chinese herb Angelica Sinensis Radix (ASR), was reported to reduce the formation of free radicals. Danggui Buxue Tang (DBT), a herbal decoction composing of Astragali Radix (AR) and ASR, has been utilized for more than 800 years in China having known anti-oxidative property. Ferulic acid is a major active ingredient in DBT; however, the role of ferulic acid within the herbal mixture has not been resolved. In order to elucidate the function of ferulic acid within this herbal decoction, a ferulic acid-depleted herbal decoction was created and named as DBTΔfa. The anti-oxidative properties of chemically modified DBT decoction were systemically compared in cultured H9C2 rat cardiomyoblast cell line. The application of DBT and DBTΔfa into the cultures showed functions in (i) decreasing the reactive oxygen species (ROS) formation, detected by laser confocal; (ii) increasing of the activation of Akt; (iii) increasing the transcriptional activity of anti-oxidant response element (ARE); and (iv) increasing the expressions of anti-oxidant enzymes, i.e. NQO1 and GCLM. In all scenario, the aforementioned anti-oxidative properties of DBTΔfa in H9C2 cells were significantly reduced, as compared to authentic DBT. Thus, ferulic acid could be an indispensable chemical in DBT to orchestrate multi-components of DBT as to achieve maximal anti-oxidative functions.

  12. Influence of Catalyst Acid/Base Properties in Acrolein Production by Oxidative Coupling of Ethanol and Methanol.

    PubMed

    Lilić, Aleksandra; Bennici, Simona; Devaux, Jean-François; Dubois, Jean-Luc; Auroux, Aline

    2017-05-09

    Oxidative coupling of methanol and ethanol represents a new route to produce acrolein. In this work, the overall reaction was decoupled in two steps, the oxidation and the aldolization, by using two consecutive reactors to investigate the role of the acid/base properties of silica-supported oxide catalysts. The oxidation of a mixture of methanol and ethanol to formaldehyde and acetaldehyde was performed over a FeMoO x catalyst, and then the product mixture was transferred without intermediate separation to a second reactor, in which the aldol condensation and dehydration to acrolein were performed over the supported oxides. The impact of the acid/base properties on the selectivity towards acrolein was investigated under oxidizing conditions for the first time. The acid/base properties of the catalysts were investigated by NH 3 -, SO 2 -, and methanol-adsorption microcalorimetry. A MgO/SiO 2 catalyst was the most active in acrolein production owing to an appropriate ratio of basic to acidic sites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Mammalian lipoxygenases and their biological relevance

    PubMed Central

    Kuhn, Hartmut; Banthiya, Swathi; van Leyen, Klaus

    2015-01-01

    Lipoxygenases (LOXs) form a heterogeneous class of lipid peroxidizing enzymes, which have been implicated in cell proliferation and differentiation but also in the pathogenesis of various diseases with major public health relevance. As other fatty acid dioxygenases LOX oxidize polyunsaturated fatty acids to their corresponding hydroperoxy derivatives, which are further transformed to bioactive lipid mediators (eicosanoids and related substances). On the other hand, lipoxygenases are key players in regulation of the cellular redox homeostasis, which is an important element in gene expression regulation. Although the first mammalian lipoxygenases were discovered 40 years ago and although the enzymes have been well characterized with respect to their structural and functional properties the biological roles of the different lipoxygenase isoforms are not completely understood. This review is aimed at summarizing the current knowledge on the physiological roles of different mammalian LOX-isoforms and their patho-physiological function in inflammatory, metabolic, hyperproliferative, neurodegenerative and infectious disorders. PMID:25316652

  14. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle.

    PubMed

    Barrientos, Tomasa; Laothamatas, Indira; Koves, Timothy R; Soderblom, Erik J; Bryan, Miles; Moseley, M Arthur; Muoio, Deborah M; Andrews, Nancy C

    2015-11-01

    Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid β oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders.

  15. Metabolic Catastrophe in Mice Lacking Transferrin Receptor in Muscle

    PubMed Central

    Barrientos, Tomasa; Laothamatas, Indira; Koves, Timothy R.; Soderblom, Erik J.; Bryan, Miles; Moseley, M. Arthur; Muoio, Deborah M.; Andrews, Nancy C.

    2015-01-01

    Transferrin receptor (Tfr1) is ubiquitously expressed, but its roles in non-hematopoietic cells are incompletely understood. We used a tissue-specific conditional knockout strategy to ask whether skeletal muscle required Tfr1 for iron uptake. We found that iron assimilation via Tfr1 was critical for skeletal muscle metabolism, and that iron deficiency in muscle led to dramatic changes, not only in muscle, but also in adipose tissue and liver. Inactivation of Tfr1 incapacitated normal energy production in muscle, leading to growth arrest and a muted attempt to switch to fatty acid β oxidation, using up fat stores. Starvation signals stimulated gluconeogenesis in the liver, but amino acid substrates became limiting and hypoglycemia ensued. Surprisingly, the liver was also iron deficient, and production of the iron regulatory hormone hepcidin was depressed. Our observations reveal a complex interaction between iron homeostasis and metabolism that has implications for metabolic and iron disorders. PMID:26870796

  16. 1H-Nuclear Magnetic Resonance-Based Plasma Metabolic Profiling of Dairy Cows with Fatty Liver

    PubMed Central

    Xu, Chuang; Sun, Ling-wei; Xia, Cheng; Zhang, Hong-you; Zheng, Jia-san; Wang, Jun-song

    2016-01-01

    Fatty liver is a common metabolic disorder of dairy cows during the transition period. Historically, the diagnosis of fatty liver has involved liver biopsy, biochemical or histological examination of liver specimens, and ultrasonographic imaging of the liver. However, more convenient and noninvasive methods would be beneficial for the diagnosis of fatty liver in dairy cows. The plasma metabolic profiles of dairy cows with fatty liver and normal (control) cows were investigated to identify new biomarkers using 1H nuclear magnetic resonance. Compared with the control group, the primary differences in the fatty liver group included increases in β-hydroxybutyric acid, acetone, glycine, valine, trimethylamine-N-oxide, citrulline, and isobutyrate, and decreases in alanine, asparagine, glucose, γ-aminobutyric acid glycerol, and creatinine. This analysis revealed a global profile of endogenous metabolites, which may present potential biomarkers for the diagnosis of fatty liver in dairy cows. PMID:26732447

  17. Effects of operational conditions on sludge degradation and organic acids formation in low-critical wet air oxidation.

    PubMed

    Chung, Jinwook; Lee, Mikyung; Ahn, Jaehwan; Bae, Wookeun; Lee, Yong-Woo; Shim, Hojae

    2009-02-15

    Wet air oxidation processes are to treat highly concentrated organic compounds including refractory materials, sludge, and night soil, and usually operated at supercritical water conditions of high temperature and pressure. In this study, the effects of operational conditions including temperature, pressure, and oxidant dose on sludge degradation and conversion into subsequent intermediates such as organic acids were investigated at low critical wet oxidation conditions. The reaction time and temperature in the wet air oxidation process was shown an important factor affecting the liquefaction of volatile solids, with more significant effect on the thermal hydrolysis reaction rather than the oxidation reaction. The degradation efficiency of sludge and the formation of organic acids were improved with longer reaction time and higher reaction temperature. For the sludge reduction and the organic acids formation under the wet air oxidation, the optimal conditions for reaction temperature, time, pressure, and oxidant dose were shown approximately 240 degrees C, 30min, 60atm, and 2.0L/min, respectively.

  18. Ferrous Iron Oxidation by Thiobacillus ferrooxidans: Inhibition with Benzoic Acid, Sorbic Acid, and Sodium Lauryl Sulfate

    PubMed Central

    Onysko, Steven J.; Kleinmann, Robert L. P.; Erickson, Patricia M.

    1984-01-01

    Benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds. PMID:16346592

  19. Demonstration of the lack of cytotoxicity of unmodified and folic acid modified graphene oxide quantum dots, and their application to fluorescence lifetime imaging of HaCaT cells.

    PubMed

    Goreham, Renee V; Schroeder, Kathryn L; Holmes, Amy; Bradley, Siobhan J; Nann, Thomas

    2018-01-24

    The authors describe the synthesis of water-soluble and fluorescent graphene oxide quantum dots via acid exfoliation of graphite nanoparticles. The resultant graphene oxide quantum dots (GoQDs) were then modified with folic acid. Folic acid receptors are overexpressed in cancer cells and hence can bind to functionalized graphene oxide quantum dots. On excitation at 305 nm, the GoQDs display green fluorescence with a peak wavelength at ~520 nm. The modified GoQDs are non-toxic to macrophage cells even after prolonged exposure and high concentrations. Fluorescence lifetime imaging and multiphoton microscopy was used (in combination) to image HeCaT cells exposed to GoQDs, resulting in a superior method for bioimaging. Graphical abstract Schematic representation of graphene oxide quantum dots, folic acid modified graphene oxide quantum dots (red), and the use of fluorescence lifetime to discriminate against green auto-fluorescence of HeCaT cells.

  20. Surface Characterization of Mesoporous CoOx/SBA-15 Catalyst upon 1,2-Dichloropropane Oxidation.

    PubMed

    Finocchio, Elisabetta; Gonzalez-Prior, Jonatan; Gutierrez-Ortiz, Jose Ignacio; Lopez-Fonseca, Ruben; Busca, Guido; de Rivas, Beatriz

    2018-05-29

    The active combustion catalyst that is based on 30 wt % cobalt oxide on mesoporous SBA-15 has been tested in 1,2-dichloropropane oxidation and is characterized by means of FT-IR (Fourier transform infrared spectroscopy) and ammonia-TPD (temperature-programmed desorption). In this work, we report the spectroscopic evidence for the role of surface acidity in chloroalkane conversion. Both Lewis acidity and weakly acidic silanol groups from SBA support are involved in the adsorption and initial conversion steps. Moreover, total oxidation reaction results in the formation of new Bronsted acidic sites, which are likely associated with the generation of HCl at high temperature and its adsorption at the catalyst surface. Highly dispersed Co oxide on the mesoporous support and Co-chloride or oxychloride particles, together with the presence of several families of acidic sites originated from the conditioning effect of reaction products may explain the good activity of this catalyst in the oxidation of Chlorinated Volatile Organic Compounds.

  1. Role of tartaric and malic acids in wine oxidation.

    PubMed

    Danilewicz, John C

    2014-06-04

    Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.

  2. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  3. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    PubMed

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Neurovascular unit dysfunction with blood-brain barrier hyperpermeability contributes to major depressive disorder: a review of clinical and experimental evidence

    PubMed Central

    2013-01-01

    About one-third of people with major depressive disorder (MDD) fail at least two antidepressant drug trials at 1 year. Together with clinical and experimental evidence indicating that the pathophysiology of MDD is multifactorial, this observation underscores the importance of elucidating mechanisms beyond monoaminergic dysregulation that can contribute to the genesis and persistence of MDD. Oxidative stress and neuroinflammation are mechanistically linked to the presence of neurovascular dysfunction with blood-brain barrier (BBB) hyperpermeability in selected neurological disorders, such as stroke, epilepsy, multiple sclerosis, traumatic brain injury, and Alzheimer’s disease. In contrast to other major psychiatric disorders, MDD is frequently comorbid with such neurological disorders and constitutes an independent risk factor for morbidity and mortality in disorders characterized by vascular endothelial dysfunction (cardiovascular disease and diabetes mellitus). Oxidative stress and neuroinflammation are implicated in the neurobiology of MDD. More recent evidence links neurovascular dysfunction with BBB hyperpermeability to MDD without neurological comorbidity. We review this emerging literature and present a theoretical integration between these abnormalities to those involving oxidative stress and neuroinflammation in MDD. We discuss our hypothesis that alterations in endothelial nitric oxide levels and endothelial nitric oxide synthase uncoupling are central mechanistic links in this regard. Understanding the contribution of neurovascular dysfunction with BBB hyperpermeability to the pathophysiology of MDD may help to identify novel therapeutic and preventative approaches. PMID:24289502

  5. Molecular-level Design of Heterogeneous Chiral Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilfred T. Tysoe

    2007-04-25

    It has been shown previously that the adsorption of a chiral 2-butanol template on Pd(111) leads to enantioselective adsorption of chiral propylene oxide probe molecules. Enantioselectivity is expressed over a narrow coverage range where the maximum value of enantioselectivity ratio (ER defined as Θ(R-propylene oxide)/Θ(S-propylene oxide), where Θ is the coverage) reaches ~2. Probe coverages in this case were measured using either reflection-absorption infrared spectroscopy (RAIRS) or temperature-programmed desorption (TPD) [1,2]. The enantioselectivity disappears when the 2-butanol-covered surface was heated to ~200 K since the adsorbed butoxy species decomposes by a β-hydride elimination reaction to yield a non-chiral ketone. Montemore » Carlo calculations of the effect of chiral modifiers have yielded results that are consistent with these experimental observations [3,4]. Similar experiments using 2-methyl butanoic acid as a template, where the chiral center is identical to that in 2-butanol but is now anchored by a carboxylate group rather than by an alkoxide, shows no enantioselectivity. In this case, propylene oxide coverages were measured using the King and Wells method. RAIRS experiments and density functional calculations suggest that the 2-butyl group of the 2-butoxy species is oriented parallel to the surface. A possible origin for the lack of enantioselectivity of a 2-methyl butanoic acid-covered surface may be that the 2-butyl group is farther from the surface, allowing it to rotate more freely, averaging out any asymmetry, resulting in a loss of chirality. In order to test this idea, the alkyl group on the carboxylic acid was functionalized with an amine to anchor the chiral center to the surface. Using the amino-acids alanine and 2-amino butanoic acid as templates restored the enantioselectivity and yielded ER values of 2.0 ± 0.2 and 1.75 ± 0.15 respectively. These results suggest that a two-point attachment of the chiral template is required, one for surface adsorption and the other to allow the enantioselectivity to be expressed. Low-energy electron diffraction (LEED) intensity versus energy (I/E) measurements are used to measure the structure of templates and probes on the Pd(111) surface, where these results will be compared with calculations carried out by the Sholl group. Since the aminoacids are relatively large, initial experiments were carried out to determine the structure of carboxylates on the surface to determine the carboxylate group anchoring site. Since carboxylates do not form ordered structures on Pd(111), we have exploited a method recently developed in collaboration with Professor Saldin to measure structures of disordered overlayers [5]. Results show that the formate OCO plane is oriented perpendicular to the surface with the oxygen atoms located across a short bridge on the (111) surface. The effect of the size of the functional group on the amino acid template (RCH(NH2)COOH) was also investigated where the maximum ER values obtained using propylene oxide were 2.0 ± 0.2 (R=CH3), 1.75 ± 0.15 (R=C2H5), 1.65 ± 0.15 (R=C3H6) and 1.30 ± 0.15 (R=CH2CH(CH3)2) thus showing a decreasing trend with increasing size of the side chain. The enantioselectivity of S-(1-naphthyl) ethylamine-covered surfaces have been explored using propylene oxide as a probe, but these systems showed no enantioselectivity. However, using 2-butanol as a probe lead to enantioselective chemisorption implying that one-to-one modification requires a direct hydrogen-bonding interaction between the probe and modifier. 1. Enantioselective Chemisorption on a Chirally Patterned Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxy-Covered Pd(111), D. Stacchiola, L. Burkholder and W.T. Tysoe, J. Am. Chem. Soc., 124, 8984 (2002) 2. Enantioselective Chemisorption on a Chirally Modified Surface in Ultrahigh Vacuum: Adsorption of Propylene Oxide on 2-butoxide-Covered Pd(111), Darío Stacchiola, Luke Burkholder and Wilfred T. Tysoe, J. Mol. Catal A: Chemical, 216, 215 (2004) 3. Theoretical Analysis of the Coverage Dependence of Enantioselective Chemisorption on a Chirally Patterned Surface, F. Roma, D. Stacchiola, G. Zgrablich and W. T. Tysoe, Journal of Chemical Physics, 118, 6030 (2003) 4. Lattice-gas Modeling of Enantioselective Adsorption by Template Chiral Substrates, F. Romá, D. Stacchiola, W.T. Tysoe and G. Zgrablich, Physica A., 338, 493 (2004) 5. Structure Determination of Disordered Organic Molecules on Surfaces from the Bragg Spots of Low Energy Electron Diffraction and Total Energy Calculations, H. C. Poon, M. Weinert, D. K. Saldin, D. Stacchiola, T. Zheng and W. T. Tysoe, Phys. Rev. B., 69, 35401 (2004)« less

  6. Glutamate Excitotoxicity Linked to Spermine Oxidase Overexpression.

    PubMed

    Pietropaoli, Stefano; Leonetti, Alessia; Cervetto, Chiara; Venturini, Arianna; Mastrantonio, Roberta; Baroli, Giulia; Persichini, Tiziana; Colasanti, Marco; Maura, Guido; Marcoli, Manuela; Mariottini, Paolo; Cervelli, Manuela

    2018-02-03

    Excitotoxic stress has been associated with several different neurological disorders, and it is one of the main causes of neuronal degeneration and death. To identify new potential proteins that could represent key factors in excitotoxic stress and to study the relationship between polyamine catabolism and excitotoxic damage, a novel transgenic mouse line overexpressing spermine oxidase enzyme in the neocortex (Dach-SMOX) has been engineered. These transgenic mice are more susceptible to excitotoxic injury and display a higher oxidative stress, highlighted by 8-Oxo-2'-deoxyguanosine increase and activation of defense mechanisms, as demonstrated by the increase of nuclear factor erythroid 2-related factor 2 (Nrf-2) in the nucleus. In Dach-SMOX astrocytes and neurons, an alteration of the phosphorylated and non-phosphorylated subunits of glutamate receptors increases the kainic acid response in these mice. Moreover, a decrease in excitatory amino acid transporters and an increase in the system x c - transporter, a Nrf-2 target, was observed. Sulfasalazine, a system x c - transporter inhibitor, was shown to revert the increased susceptibility of Dach-SMOX mice treated with kainic acid. We demonstrated that astrocytes play a crucial role in this process: neuronal spermine oxidase overexpression resulted in an alteration of glutamate excitability, in glutamate uptake and efflux in astrocytes involved in the synapse. Considering the involvement of oxidative stress in many neurodegenerative diseases, Dach-SMOX transgenic mouse can be considered as a suitable in vivo genetic model to study the involvement of spermine oxidase in excitotoxicity, which can be considered as a possible therapeutic target.

  7. Sol-gel thin-film based mesoporous silica and carbon nanotubes for the determination of dopamine, uric acid and paracetamol in urine.

    PubMed

    Canevari, Thiago C; Raymundo-Pereira, Paulo A; Landers, Richard; Benvenutti, Edilson V; Machado, Sérgio A S

    2013-11-15

    This work describes the preparation, characterization and application of a hybrid material composed of disordered mesoporous silica (SiO2) modified with multiwalled carbon nanotubes (MWCNTs), obtained by the sol-gel process using HF as the catalyst. This hybrid material was characterized by N2 adsorption-desorption isotherms, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission microscopy (HR-TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). This new hybrid material was used for the construction of a thin film on a glassy carbon electrode. The modified electrode using this material was designated SiO2/MWCNT/GCE. The electrocatalytic properties of the electrode toward dopamine, uric acid and paracetamol oxidation were studied by differential pulse voltammetry. Well-defined and separated oxidation peaks were observed in phosphate buffer solution at pH 7.0, in contrast with the ill-defined peaks observed with unmodified glassy carbon electrodes. The electrode had high sensitivity for the determination of dopamine, uric acid and paracetamol, with the limits of detection obtained using statistical methods, at 0.014, 0.068 and 0.098 µmol L(-1), respectively. The electrode presented some important advantages, including enhanced physical rigidity, surface renewability by polishing and high sensitivity, allowing the simultaneous determination of these three analytes in a human urine sample. Crown Copyright © 2013 Published by Elsevier B.V. All rights reserved.

  8. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-08-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner.more » Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases.« less

  9. n-3 fatty acids: role in neurogenesis and neuroplasticity.

    PubMed

    Crupi, R; Marino, A; Cuzzocrea, S

    2013-01-01

    Omega-3 polyunsaturated fatty acids (PUFA) are essential unsaturated fatty acids with a double bond (C=C) starting after the third carbon atom from the end of the carbon chain. They are important nutrients but, unfortunately, mammals cannot synthesize them, whereby they must be obtained from food sources or from supplements. Amongst nutritionally important polyunsaturated n-3 fatty acids, α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are highly concentrated in the brain and have anti-oxidative stress, anti-inflammatory and antiapoptotic effects. They are involved in many bodily processes and may reportedly lead to neuron protection in neurological diseases. aged or damaged neurons and in Alzheimer's disease. Their effect in cognitive and behavioral functions and in several neurological and psychiatric disorders has been also proven. The dentate gyrus (DG), a sub-region of hippocampus, is implicated in cognition and mood regulation. The hippocampus represents one of the two areas in the mammalian brain in which adult neurogenesis occurs. This process is associated with beneficial effects on cognition, mood and chronic pharmacological treatment. The exposure to n-3 fatty acids enhances adult hippocampal neurogenesis associated with cognitive and behavioral processes, promotes synaptic plasticity by increasing long-term potentiation and modulates synaptic protein expression to stimulate the dendritic arborization and new spines formation. On this basis we review the effect of n-3 fatty acids on adult hippocampal neurogenesis and neuroplasticity. Moreover their possible use as a new therapeutic approach for neurodegenerative diseases is pointed out.

  10. Modulation of fatty acid metabolism is involved in the alleviation of isoproterenol-induced rat heart failure by fenofibrate

    PubMed Central

    LI, PING; LUO, SHIKE; PAN, CHUNJI; CHENG, XIAOSHU

    2015-01-01

    Heart failure is a disease predominantly caused by an energy metabolic disorder in cardiomyocytes. The present study investigated the inhibitory effects of fenofibrate (FF) on isoproterenol (ISO)-induced hear failure in rats, and examined the underlying mechanisms. The rats were divided into CON, ISO (HF model), FF and FF+ISO (HF animals pretreated with FF) groups. The cardiac structure and function of the rats were assessed, and contents of free fatty acids and glucose metabolic products were determined. In addition, myocardial cells were isolated from neonatal rats and used in vitro to investigate the mechanisms by which FF relieves heart failure. Western blot analysis was performed to quantify the expression levels of peroxisome proliferator-activated receptor (PPAR)α and uncoupling protein 2 (UCP2). FF effectively alleviated the ISO-induced cardiac structural damage, functional decline, and fatty acid and carbohydrate metabolic abnormalities. Compared with the ISO group, the serum levels of brain natriuretic peptide (BNP), free fatty acids, lactic acid and pyruvic acid were decreased in the FF animals. In the cultured myocardial cells, lactic acid and pyruvic acid contents were lower in the supernatants obtained from the FF animals, with lower levels of mitochondrial ROS production and cell necrosis, compared with the ISO group, whereas PPARα upregulation and UCP2 downregulation occurred in the FF+ISO group. The results demonstrated that FF efficiently alleviated heart failure in the ISO-induced rat model, possibly via promoting fatty acid oxidation. PMID:26497978

  11. Advances in diabetes for the millennium: vitamins and oxidant stress in diabetes and its complications.

    PubMed

    Chertow, Bruce

    2004-11-01

    Hyperinduced oxidant stress may have a role in the pathogenesis of diabetes and its micro- and macrovascular complications. Attaining euglycemia and the use of antioxidant vitamins could reduce oxidant stress and complications. In general, evidence does not support the use of supplements, and supplements are not recommended unless patients are deficient. Use of vitamins in excess may have adverse effects. Vitamin supplements are indicated in patients deficient in vitamins due to inadequate dietary intake or intestinal disease. Treatment with proper amounts of vitamins and antioxidants is best accomplished with a balanced diet including 3 servings of vegetables and 2 servings of fruits. Regarding supplementation of specific vitamins: carotene cannot be recommended in view of the possible harm and lack of benefit in clinical studies. Vitamin A (retinol) and Vitamin D should be repleted if deficient by laboratory assay. Excesses should be avoided. Vitamin A supplements, particularly in pregnancy, should not exceed 10,000 IU daily or a supplement should not exceed 25,000 units weekly. Vitamin E (alpha-tocopherol) alone in doses of 400 units is of questionable value, and larger doses may cause intracranial hemorrhage or interact negatively with lipid-lowering drugs. Vitamin E should not be used in patients who have bleeding disorders or patients on anticoagulants or acetylsalicylic acid (ASA). Vitamin C (ascorbic acid) losses in urine may be excessive in diabetic patients and may require repletion to 200 mg in nonsmokers and 250 mg in smokers. Further studies are needed testing: (1) vitamin supplementation in subgroups of patients at high risk for specific complications using tissue-specific indicators of oxidative stress; (2) the role of oxidative stress in nephropathy, diabetic myocardiopathy, dermopathy, joint limitation syndromes, peripheral edema, metabolic bone disease, and pregnancy; (3) the impact of renal failure on oxidative stress; and (4) the effects of diabetes and dietary vitamins on the relative amounts of retinoids, carotenoids, and vitamin E in the chylomicron and lipoproteins, and how this affects assimilation, oxidation of lipids, and atherosclerotic plaque formation.

  12. Advances in Diabetes for the Millennium: Vitamins and Oxidant Stress in Diabetes and Its Complications

    PubMed Central

    Chertow, Bruce

    2004-01-01

    Hyperinduced oxidant stress may have a role in the pathogenesis of diabetes and its micro- and macrovascular complications. Attaining euglycemia and the use of antioxidant vitamins could reduce oxidant stress and complications. In general, evidence does not support the use of supplements, and supplements are not recommended unless patients are deficient. Use of vitamins in excess may have adverse effects. Vitamin supplements are indicated in patients deficient in vitamins due to inadequate dietary intake or intestinal disease. Treatment with proper amounts of vitamins and antioxidants is best accomplished with a balanced diet including 3 servings of vegetables and 2 servings of fruits. Regarding supplementation of specific vitamins: carotene cannot be recommended in view of the possible harm and lack of benefit in clinical studies. Vitamin A (retinol) and Vitamin D should be repleted if deficient by laboratory assay. Excesses should be avoided. Vitamin A supplements, particularly in pregnancy, should not exceed 10,000 IU daily or a supplement should not exceed 25,000 units weekly. Vitamin E (alpha-tocopherol) alone in doses of 400 units is of questionable value, and larger doses may cause intracranial hemorrhage or interact negatively with lipid-lowering drugs. Vitamin E should not be used in patients who have bleeding disorders or patients on anticoagulants or acetylsalicylic acid (ASA). Vitamin C (ascorbic acid) losses in urine may be excessive in diabetic patients and may require repletion to 200 mg in nonsmokers and 250 mg in smokers. Further studies are needed testing: (1) vitamin supplementation in subgroups of patients at high risk for specific complications using tissue-specific indicators of oxidative stress; (2) the role of oxidative stress in nephropathy, diabetic myocardiopathy, dermopathy, joint limitation syndromes, peripheral edema, metabolic bone disease, and pregnancy; (3) the impact of renal failure on oxidative stress; and (4) the effects of diabetes and dietary vitamins on the relative amounts of retinoids, carotenoids, and vitamin E in the chylomicron and lipoproteins, and how this affects assimilation, oxidation of lipids, and atherosclerotic plaque formation. PMID:15647709

  13. Feline Hepatic Lipidosis.

    PubMed

    Valtolina, Chiara; Favier, Robert P

    2017-05-01

    Feline hepatic lipidosis (FHL) is a common and potentially fatal liver disorder. Although the pathophysiologic mechanisms of FHL remain elusive, there is an imbalance between the influx of fatty acids from peripheral fat stores into the liver, de novo liposynthesis, and the rate of hepatic oxidation and dispersal of hepatic TAG via excretion of very-low density lipoproteins. The diagnosis of FHL is based on anamnestic, clinical, and clinicopathologic findings, associated with diagnostic imaging of the liver, and cytology, or histological examination of liver biopsies. Fluid therapy, electrolyte correction and adequate early nutrition are essential components of the therapy for FHL. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and 2,5-diformylfuran

    DOEpatents

    Choi, Kyoung-Shin; Cha, Hyun Gil

    2017-03-21

    Electrochemical and photoelectrochemical cells for the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran are provided. Also provided are methods of using the cells to carry out the electrochemical and photoelectrochemical oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid and/or 2,5-diformylfuran.

  15. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  16. Electrolytes for Hydrocarbon Air Fuel Cells.

    DTIC Science & Technology

    1981-01-01

    finding an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially...and stability to replace phosphoric acid in direct oxidation fuel cells. Commercially available materials received prime consideration. However, ECO’s...was to obtain an electrolyte with sufficient electrochemical activity and stability to replace phosphoric acid in direct oxidation fuel cells. This

  17. Elevated Urinary Glyphosate and Clostridia Metabolites With Altered Dopamine Metabolism in Triplets With Autistic Spectrum Disorder or Suspected Seizure Disorder: A Case Study

    PubMed Central

    Shaw, William

    2017-01-01

    Context Autism is a neurodevelopmental disorder for which a number of genetic, environmental, and nutritional causes have been proposed. Glyphosate is used widely as a crop desiccant and as an herbicide in fields of genetically modified foods that are glyphosate resistant. Several researchers have proposed that it may be a cause of autism, based on epidemiological data that correlates increased usage of glyphosate with an increased autism rate. Objective The current study was intended to determine if excessive glyphosate was present in the triplets and their parents and to evaluate biochemical findings for the family to determine the potential effects of its presence. Design The author performed a case study with the cooperation of the parents and the attending physician. Setting The study took place at The Great Plains Laboratory, Inc (Lenexa, KS, USA). Participants Participants were triplets, 2 male children and 1 female, and their parents. The 2 male children had autism, whereas the female had a possible seizure disorder. All 3 had elevated urinary glyphosate, and all of the triplets and their mother had elevated values of succinic acid or tiglylglycine, which are indicators of mitochondrial dysfunction. Intervention The participants received a diet of organic food only. Outcome Measures The study performed organic acids, glyphosate, toxic chemicals and tiglylglycine, and creatinine testing of the participants’ urine. Results The 2 male triplets with autism had abnormalities on at least 1 organic acids test, including elevated phenolic compounds such as 4-cresol, 3-[3-hydroxyphenyl]-3-hydroxypropionic acid and 4-hydroxyphenylacetic acid, which have been previously associated with Clostridia bacteria and autism. The female, who was suspected of having a seizure disorder but not autism, did not have elevated phenolic compounds but did have a significantly elevated value of the metabolite tiglylglycine, a marker for mitochondrial dysfunction and/or mutations. One male triplet was retested postintervention and was found to have a markedly lower amount of glyphosate in his urine. Conclusions The pattern of metabolites in the urine samples of the males with autism are consistent with a recent theory of autism that connects widespread glyphosate use with alteration of animal and human gastrointestinal flora. That theory is that the normally beneficial bacteria species that are sensitive to glyphosate are diminished and harmful bacteria species, such as Clostridia, that are insensitive to glyphosate, are increased following exposure to glyphosate. Excessive dopamine, caused by inhibition of dopamine-beta-hydroxylase by Clostridia metabolites, in turn, produces oxidative species that damage neuronal Krebs cycle enzymes, neuronal mitochondria, and neuronal structural elements such as the neurofibrils. PMID:28223908

  18. Lipolysis and lipid oxidation in fermented sausages depending on different processing conditions and different antioxidants.

    PubMed

    Zanardi, Emanuela; Ghidini, Sergio; Battaglia, Alessandra; Chizzolini, Roberto

    2004-02-01

    Lipolysis and lipid oxidation in Mediterranean and North Europe type sausages were studied in relation to raw material, processing conditions and additives. In particular the effect of ascorbic acid, nitrites and spices was evaluated. Lipolysis was measured by the determination of total and free fatty acids of fresh minces and matured products and lipid oxidation was evaluated by thiobarbituric acid reactive substances and cholesterol oxidation products. The increase of free fatty acids during maturation appears to be independent from processing conditions and the differences in polyunsaturated fatty acids increment found among the formulations appear to be due to inherent variations of raw materials. The presence of ascorbic acid and/or nitrite seems important for cholesterol protection and, as a consequence, for the safety of fermented meat products while spices at doses up to 0.1% do not seem to have a remarkable effect. The effect on fatty acid oxidation of the same additives and of the different processing technologies is not significantly different and the variations linked to raw material may play the greatest role.

  19. Evaluation of fatty acid oxidation by reactive oxygen species induced in liquids using atmospheric-pressure nonthermal plasma jets

    NASA Astrophysics Data System (ADS)

    Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa

    2015-10-01

    We investigated fatty acid oxidation by atmospheric-pressure nonthermal helium plasma using linoleic acid, an unsaturated fatty acid, together with evaluating active species induced in liquids. If the ambient gas contains oxygen, direct plasma such as plasma jets coming into contact with the liquid surface supplies various active species, such as singlet oxygen, ozone, and superoxide anion radicals, to the liquid. The direct plasma easily oxidizes linoleic acid, indicating that fatty acid oxidation will occur in the direct plasma. In contrast, afterglow flow, where the plasma is terminated in a glass tube and does not touch the surface of the liquid sample, supplies mainly superoxide anion radicals. The fact that there was no clear observation of linoleic acid oxidation using the afterglow reveals that it may not affect lipids, even in an atmosphere containing oxygen. The afterglow flow can potentially be used for the sterilization of aqueous solutions using the reduced pH method, in medical and dental applications, because it provides bactericidal activity in the aqueous solution despite containing a smaller amount of active species.

  20. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene oxide...

Top