Science.gov

Sample records for acid oxidation enzymes

  1. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  2. Oxidase-peroxidase enzymes of Datura innoxia. Oxidation of formylphenylacetic acid ethyl ester.

    PubMed Central

    Kalyanaraman, V S; Mahadevan, S; Kumar, S A

    1975-01-01

    An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed. PMID:997

  3. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.

    PubMed

    Marinopoulou, Anna; Papastergiadis, Efthimios; Raphaelides, Stylianos N; Kontominas, Michael G

    2016-05-01

    Complexes of amylose with fatty acids varying in carbon chain length and degree of unsaturation were prepared at 30, 50 or 70°C by dissolving amylose in 0.1N KOH and mixing with fatty acid potassium soap solution. The complexes were obtained in solid form as precipitates after neutralization. SEM microscopy revealed that the morphology of the complexes was that of ordered lamellae separated from amorphous regions whereas confocal laser scanning microscopy showed images of the topography of the guest molecules in the complex matrix. FTIR spectroscopy revealed that the absorption peak attributed to carbonyl group of free fatty acid was shifted when the fatty acid was in the form of amylose complex. Thermo-gravimetry showed that the unsaturated fatty acids were effectively protected from oxidation when they were complexed with amylose whereas enzymic hydrolysis experiments showed that the guest molecules were quantitatively released from the amylose complexes. PMID:26877002

  4. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme.

    PubMed

    Lederer, Florence; Vignaud, Caroline; North, Paul; Bodevin, Sabrina

    2016-09-01

    A controversy exists with respect to the mechanism of l-2-hydroxy acid oxidation by members of a family of FMN-dependent enzymes. A so-called carbanion mechanism was initially proposed, in which the active site histidine abstracts the substrate α-hydrogen as a proton, followed by electron transfer from the carbanion to the flavin. But an alternative mechanism was not incompatible with some results, a mechanism in which the active site histidine instead picks up the substrate hydroxyl proton and a hydride transfer occurs. Even though more recent experiments ruling out such a mechanism were published (Rao & Lederer (1999) Protein Science 7, 1531-1537), a few authors have subsequently interpreted their results with variant enzymes in terms of a hydride transfer. In the present work, we analyse the reactivity of trifluorolactate, a substrate analogue, with the flavocytochrome b2 (Fcb2) flavodehydrogenase domain, compared to its reactivity with an NAD-dependent lactate dehydrogenase (LDH), for which this compound is known to be an inhibitor (Pogolotti & Rupley (1973) Biochem. Biophys. Res. Commun, 55, 1214-1219). Indeed, electron attraction by the three fluorine atoms should make difficult the removal of the α-H as a hydride. We also analyse the reactivity of trifluoropyruvate with the FMN- and NAD-dependent enzymes. The results substantiate a different effect of the fluorine substituents on the two enzymes compared to their normal substrates. In the discussion we analyse the conclusions of recent papers advocating a hydride transfer mechanism for the family of l-2-hydroxy acid oxidizing FMN-dependent enzymes. PMID:27155230

  5. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor.

    PubMed Central

    Zhao, J; Williams, C C; Last, R L

    1998-01-01

    The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated. PMID:9501110

  6. Sulfite oxidizing enzymes

    PubMed Central

    Feng, Changjian; Tollin, Gordon; Enemark, John H.

    2007-01-01

    Sulfite oxidizing enzymes are essential mononuclear molybdenum (Mo) proteins involved in sulfur metabolism of animals, plants and bacteria. There are three such enzymes presently known: (1) sulfite oxidase (SO) in animals, (2) SO in plants, and (3) sulfite dehydrogenase (SDH) in bacteria. X-ray crystal structures of enzymes from all three sources (chicken SO, Arabidopsis thaliana SO, and Starkeya novella SDH) show nearly identical square pyramidal coordination around the Mo atom, even though the overall structures of the proteins and the presence of additional cofactors vary. This structural information provides a molecular basis for studying the role of specific amino acids in catalysis. Animal SO catalyzes the final step in the degradation of sulfur-containing amino acids and is critical in detoxifying excess sulfite. Human SO deficiency is a fatal genetic disorder that leads to early death, and impaired SO activity is implicated in sulfite neurotoxicity. Animal SO and bacterial SDH contain both Mo and heme domains, whereas plant SO only has the Mo domain. Intraprotein electron transfer (IET) between the Mo and Fe centers in animal SO and bacterial SDH is a key step in the catalysis, which can be studied by laser flash photolysis in the presence of deazariboflavin. IET studies on animal SO and bacterial SDH clearly demonstrate the similarities and differences between these two types of sulfite oxidizing enzymes. Conformational change is involved in the IET of animal SO, in which electrostatic interactions may play a major role in guiding the docking of the heme domain to the Mo domain prior to electron transfer. In contrast, IET measurements for SDH demonstrate that IET occurs directly through the protein medium, which is distinctly different from that in animal SO. Point mutations in human SO can result in significantly impaired IET or no IET, thus rationalizing their fatal effects. The recent developments in our understanding of sulfite oxidizing enzyme

  7. Hepatic drug-oxidizing enzyme systems and urinary D-glucaric acid excretion in patients with congestive heart failure.

    PubMed Central

    Tokola, O; Pelkonen, O; Karki, N T; Luoma, P

    1975-01-01

    Drug-oxidizing enzyme systems in liver biopsy samples and the urinary excretion of D-glucaric acid were studied in two different groups of patients with cardiac insufficiency. 2. In one group of six patients, the activities of drug-metabolizing enzymes had decreased considerably as compared with the control values, but in four liver samples from patients treated with oral hypoglycaemic agents for their diabetes, activities were higher than in control samples from ten patients. 3. In the other group of seven patients, the urinary excretion of D-glucaric acid (isolated by ion-exchange chromatography) was 60% lower than in the control group of nine humans, whereas in four patients taking antiepileptic agents excretion rate was higher than control values. 4. Because the age distribution was markedly different between cardiac insufficiency and control groups, it is difficult to conclude, if the impairment of drug metabolism was a consequence of the old age or of the disease process. However, drug-oxidizing enzyme systems seem to be inducible also in old age. 5. The results support further the opinion that the urinary excretion of D-glucaric acid may be one useful index in assessing an individual's capacity to metabolize foreign compounds especially in the patients with lowered drug metabolizing capacity. PMID:786355

  8. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    PubMed

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training. PMID:15040848

  9. Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase.

    PubMed

    Lavrukhin, O V; Lloyd, R S

    2000-12-12

    Formamidopyrimidine glycosylase (Fpg) is an important bacterial base excision repair enzyme, which initiates removal of damaged purines such as the highly mutagenic 8-oxoguanine. Similar to other glycosylase/AP lyases, catalysis by Fpg is known to proceed by a nucleophilic attack by an amino group (the secondary amine of its N-terminal proline) on C1' of the deoxyribose sugar at a damaged base, which results in the departure of the base from the DNA and removal of the sugar ring by beta/delta-elimination. However, in contrast to other enzymes in this class, in which acidic amino acids have been shown to be essential for glycosyl and phosphodiester bond scission, the catalytically essential acidic residues have not been documented for Fpg. Multiple sequence alignments of conserved acidic residues in all known bacterial Fpg-like proteins revealed six conserved glutamic and aspartic acid residues. Site-directed mutagenesis was used to change glutamic and aspartic acid residues to glutamines and asparagines, respectively. While the Asp to Asn mutants had no effect on the incision activity on 8-oxoguanine-containing DNA, several of the substitutions at glutamates reduced Fpg activity on the 8-oxoguanosine DNA, with the E3Q and E174Q mutants being essentially devoid of activity. The AP lyase activity of all of the glutamic acid mutants was slightly reduced as compared to the wild-type enzyme. Sodium borohydride trapping of wild-type Fpg and its E3Q and E174Q mutants on 8-oxoguanosine or AP site containing DNA correlated with the relative activity of the mutants on either of these substrates. PMID:11106507

  10. Enzyme-substrate complementarity governs access to a cationic reaction manifold in the P450(BM3)-catalysed oxidation of cyclopropyl fatty acids.

    PubMed

    Cryle, Max J; Hayes, Patricia Y; De Voss, James J

    2012-12-01

    The products of cytochrome P450(BM3)-catalysed oxidation of cyclopropyl-containing dodecanoic acids are consistent with the presence of a cationic reaction intermediate, which results in efficient dehydrogenation of the rearranged probes by the enzyme. These results highlight the importance of enzyme-substrate complementarity, with a cationic intermediate occurring only when the probes used begin to diverge from ideal substrates for this enzyme. This also aids in reconciling literature reports supporting the presence of cationic intermediates with certain cytochrome P450 enzyme/substrate pairs. PMID:23109039

  11. Characterization of enzymes in the oxidation of 1,2-propanediol to D: -(-)-lactic acid by Gluconobacter oxydans DSM 2003.

    PubMed

    Wei, Liujing; Yang, Xuepeng; Gao, Keliang; Lin, Jinping; Yang, Shengli; Hua, Qiang; Wei, Dongzhi

    2010-09-01

    Although Gluconobacter oxydans can convert 1,2-propanediol to D: -(-)-lactic acid, the enzyme(s) responsible for the conversion has remain unknown. In this study, the membrane-bound alcohol dehydrogenase (ADH) of Gluconobacter oxydans DSM 2003 was purified and confirmed to be essential for the process of D: -(-)-lactic acid production by gene knockout and complementation studies. A 25 percent decrease in D: -(-)-lactic acid production was found for the aldehyde dehydrogenase (ALDH) deficient strain of G. oxydans DSM 2003, indicating that this enzyme is involved in the reaction but not necessary. It is the first report that reveals the function of ADH and ALDH in the biooxidation of 1,2-propanediol to D: -(-)-lactic acid by G. oxydans DSM 2003. PMID:20300886

  12. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1991-01-01

    This report focuses on the progress made in three areas of research concerned with enzymes involved in respiratory iron oxidation. The three areas are as follows: development of an improved procedure for the routine large scale culture of iron oxidizing chemolithotrophs based on the in-situ electrolysis of the soluble iron in the growth medium; to perform iron oxidation kinetic studies on whole cells using the oxygen electrode; and to identify, separate, purify, and characterize the individual cellular components.

  13. Prolonged fasting identifies heat shock protein 10 as a Sirtuin 3 substrate: elucidating a new mechanism linking mitochondrial protein acetylation to fatty acid oxidation enzyme folding and function.

    PubMed

    Lu, Zhongping; Chen, Yong; Aponte, Angel M; Battaglia, Valentina; Gucek, Marjan; Sack, Michael N

    2015-01-23

    Although Sirtuin 3 (SIRT3), a mitochondrially enriched deacetylase and activator of fat oxidation, is down-regulated in response to high fat feeding, the rate of fatty acid oxidation and mitochondrial protein acetylation are invariably enhanced in this dietary milieu. These paradoxical data implicate that additional acetylation modification-dependent levels of regulation may be operational under nutrient excess conditions. Because the heat shock protein (Hsp) Hsp10-Hsp60 chaperone complex mediates folding of the fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase, we tested whether acetylation-dependent mitochondrial protein folding contributes to this regulatory discrepancy. We demonstrate that Hsp10 is a functional SIRT3 substrate and that, in response to prolonged fasting, SIRT3 levels modulate mitochondrial protein folding. Acetyl mutagenesis of Hsp10 lysine 56 alters Hsp10-Hsp60 binding, conformation, and protein folding. Consistent with Hsp10-Hsp60 regulation of fatty acid oxidation enzyme integrity, medium-chain acyl-CoA dehydrogenase activity and fat oxidation are elevated by Hsp10 acetylation. These data identify acetyl modification of Hsp10 as a nutrient-sensing regulatory node controlling mitochondrial protein folding and metabolic function. PMID:25505263

  14. Gallic acid modulates cerebral oxidative stress conditions and activities of enzyme-dependent signaling systems in streptozotocin-treated rats.

    PubMed

    Kade, I J; Rocha, J B T

    2013-04-01

    Redox imbalances and altered signaling processes in the brain are characteristic features of diabetic complications. Hence, the present study therefore sought to evaluate the effect of gallic acid (GA) on disturbed redox systems and activity of neurotransmission signaling dependent enzymes such as sodium pump, purinergic enzymes and acetylcholinesterase in diabetic animal models. We observed that GA markedly improves the antioxidant status of diabetic animals. Furthermore, the diminution of the activity of Na(+)/K(+)-ATPase and increased activities of acetylcholinesterase and the purinergic enzymes associated with diabetes progression were reversed to normalcy with the administration of GA in diabetic animals. Hence, we conclude that GA is a potential candidate in the management of neuronal dysfunction that often accompanied complications associated with diabetic hyperglycemia. PMID:23381106

  15. Complex I assembly function and fatty acid oxidation enzyme activity of ACAD9 both contribute to disease severity in ACAD9 deficiency

    PubMed Central

    Schiff, Manuel; Haberberger, Birgit; Xia, Chuanwu; Mohsen, Al-Walid; Goetzman, Eric S.; Wang, Yudong; Uppala, Radha; Zhang, Yuxun; Karunanidhi, Anuradha; Prabhu, Dolly; Alharbi, Hana; Prochownik, Edward V.; Haack, Tobias; Häberle, Johannes; Munnich, Arnold; Rötig, Agnes; Taylor, Robert W.; Nicholls, Robert D.; Kim, Jung-Ja; Prokisch, Holger; Vockley, Jerry

    2015-01-01

    Acyl-CoA dehydrogenase 9 (ACAD9) is an assembly factor for mitochondrial respiratory chain Complex I (CI), and ACAD9 mutations are recognized as a frequent cause of CI deficiency. ACAD9 also retains enzyme ACAD activity for long-chain fatty acids in vitro, but the biological relevance of this function remains controversial partly because of the tissue specificity of ACAD9 expression: high in liver and neurons and minimal in skin fibroblasts. In this study, we hypothesized that this enzymatic ACAD activity is required for full fatty acid oxidation capacity in cells expressing high levels of ACAD9 and that loss of this function is important in determining phenotype in ACAD9-deficient patients. First, we confirmed that HEK293 cells express ACAD9 abundantly. Then, we showed that ACAD9 knockout in HEK293 cells affected long-chain fatty acid oxidation along with Cl, both of which were rescued by wild type ACAD9. Further, we evaluated whether the loss of ACAD9 enzymatic fatty acid oxidation affects clinical severity in patients with ACAD9 mutations. The effects on ACAD activity of 16 ACAD9 mutations identified in 24 patients were evaluated using a prokaryotic expression system. We showed that there was a significant inverse correlation between residual enzyme ACAD activity and phenotypic severity of ACAD9-deficient patients. These results provide evidence that in cells where it is strongly expressed, ACAD9 plays a physiological role in fatty acid oxidation, which contributes to the severity of the phenotype in ACAD9-deficient patients. Accordingly, treatment of ACAD9 patients should aim at counteracting both CI and fatty acid oxidation dysfunctions. PMID:25721401

  16. Nitro-Oleic Acid Reduces J774A.1 Macrophage Oxidative Status and Triglyceride Mass: Involvement of Paraoxonase2 and Triglyceride Metabolizing Enzymes.

    PubMed

    Rosenblat, Mira; Rom, Oren; Volkova, Nina; Aviram, Michael

    2016-08-01

    Nitro-fatty acids possess anti-atherogenic properties, but their effects on macrophage oxidative status and lipid metabolism that play important roles in atherosclerosis development are unclear. This study compared the effects of nitro-oleic acid (OLA-NO2) with those of native oleic acid (OLA) on intracellular reactive oxygen species (ROS) generation, anti-oxidants and metabolism of triglycerides and cholesterol in J774A.1 macrophages. Upon incubating the cells with physiological concentrations of OLA-NO2 (0-1 µM) or with equivalent levels of OLA, ROS levels measured by 2, 7-dichlorofluorescein diacetate, decreased dose-dependently, but the anti-oxidative effects of OLA-NO2 were significantly augmented. Copper ion addition increased ROS generation in OLA treated macrophages without affecting OLA-NO2 treated cells. These effects could be attributed to elevated glutathione levels and to increased activity and expression of paraoxonase2 that were observed in OLA-NO2 vs OLA treated cells. Beneficial effects on triglyceride metabolism were noted in OLA-NO2 vs OLA treated macrophages in which cellular triglycerides were reduced due to attenuated biosynthesis and accelerated hydrolysis of triglycerides. Accordingly, OLA-NO2 treated cells demonstrated down-regulation of diacylglycerol acyltransferase1, the key enzyme in triglyceride biosynthesis, and increased expression of hormone-sensitive lipase and adipose triglyceride lipase that regulate triglyceride hydrolysis. Finally, OLA-NO2 vs OLA treatment resulted in modest but significant beneficial effects on macrophage cholesterol metabolism, reducing cholesterol biosynthesis rate and low density lipoprotein influx into the cells, while increasing high density lipoprotein-mediated cholesterol efflux from the macrophages. Collectively, compared with OLA, OLA-NO2 modestly but significantly reduces macrophage oxidative status and cellular triglyceride content via modulation of cellular anti-oxidants and triglyceride

  17. Crystal structure of methane oxidation enzyme determined

    SciTech Connect

    Baum, R.

    1994-01-10

    A team of chemists has determined to 2.2-[angstrom] resolution the crystal structure of the hydroxylase protein of methane monooxygenase, the enzyme system responsible for the biological oxidation of methane. The hydroxylase, at a molecular weight of 251,000 daltons, if by far the largest component of methane monooxygenase. Although the crystal structure of the hydroxylase did not reveal any startling surprises about the enzyme-many features of the hydroxylase had been inferred previously from modeling and spectroscopic studies -- obtaining it is a significant achievement. For one thing, the crystal structure unambiguously confirms aspects of the enzyme structure that been at least somewhat speculative. The three-dimensional structure of the enzyme, the chemist say, also provides important insight into biological methane oxidation, including how methane, a relatively inert gas, might diffuse to and bind near the active site of the enzyme. The structure points to particular amino acid residues that are likely to participate in catalysis, and clarifies the structure of the dinuclear iron core of the enzyme.

  18. Cellulose degradation by oxidative enzymes.

    PubMed

    Dimarogona, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2012-01-01

    Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future. PMID:24688656

  19. Cellulose degradation by oxidative enzymes

    PubMed Central

    Dimarogona, Maria; Topakas, Evangelos; Christakopoulos, Paul

    2012-01-01

    Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs), cellobiose dehydrogenases (CDHs) and members of carbohydrate-binding module family 33 (CBM33). PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future. PMID:24688656

  20. Protective effect of marine mangrove Rhizophora apiculata on acetic acid induced experimental colitis by regulating anti-oxidant enzymes, inflammatory mediators and nuclear factor-kappa B subunits.

    PubMed

    V, Vinod Prabhu; C, Guruvayoorappan

    2014-01-01

    Ulcerative colitis is a disease that causes inflammation and ulcer in the lining of the large intestine. In this study we investigate the effect of Rhizophora apiculata (R. apiculata) on acetic acid induced colitis in mouse model. Experimental animals were randomized into four groups: normal untreated, colitis control, R. apiculata treated group and sulfasalazine treated group. R. apiculata significantly (p<0.01) decreased macroscopic score and wet weight of damaged colon compared to colitis control. This effect was confirmed biochemically by significant (p<0.01) reduction of colitis associated increase in myeloperoxidase activity. R. apiculata significantly (p<0.05) increased anti-oxidant enzymes such as superoxide dismutase (SOD) and glutathione (GSH) levels compared to colitis control. R. apiculata significantly (p<0.01) reduced lipid peroxides (LPO), nitric oxide (NO) and inflammatory mediators such as myeloperoxidase (MPO), lactate dehydrogenase (LDH), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and tumor necrosis factor-α (TNF-α) expressions compared to colitis control. R. apiculata treatment significantly (p<0.01) inhibits the translocation of NF-kB p65 and p50 subunits. Taken together these findings suggest that R. apiculata prevents acetic acid induced colitis in experimental mouse model and may serve as an excellent anti-oxidant and anti-inflammatory agent that could potentially be useful as a (natural) therapy for inflammatory bowel disease (IBD). PMID:24269623

  1. Nitric oxide (NO), citrulline-NO cycle enzymes, glutamine synthetase, and oxidative status in kainic acid-mediated excitotoxicity in rat brain.

    PubMed

    Swamy, Mummedy; Sirajudeen, Kuttulebbai N S; Chandran, Govindasamy

    2009-01-01

    Neuronal excitation, involving the excitatory glutamate receptors, is recognized as an important underlying mechanism in neurodegenerative disorders. To understand their role in excitotoxicity, the nitric oxide synthase (NOS), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), glutamine synthetase (GS), and arginase activities, along with the concentration of nitrate/nitrite, thiobarbituric acid-reactive substances (TBARS), and total antioxidant status (TAS), were estimated in the cerebral cortex, cerebellum, and brain stem of rats subjected to kainic acid-mediated excitotoxicity. The results of this study clearly demonstrated the increased production of NO by increased activity of NOS. The increased activities of AS and AL suggest the increased and effective recycling of citrulline to arginine in excitotoxicity, making NO production more effective and contributing to its toxic effects. The decreased activity of GS may favor the prolonged availability of glutamic acid, causing excitotoxicity, leading to neuronal damage. The increased formation of TBARS and decreased TAS indicate the presence of oxidative stress in excitotoxicity. PMID:19793024

  2. Investigation of Propolis’ Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin

    PubMed Central

    Köksal, Burcu; Emre, Memet Hanifi; Polat, Alaadin

    2015-01-01

    BACKGROUND: Propolis is an organic resinous viscous substance collected from flower bud and plant sprig by bees. Propolis has a potential treatment agent for oxidative damage caused by diabetes in hippocampus due to its flavonoid and phenolic content. AIM: In this study effect of propolis on thiobarbituric acid reactive substances and anti-oxidative enzyme levels of hippocampus in diabetic rats induced by streptozotocin was investigated. MATERIALS AND METHODS: The study involved measuring levels of SOD, CAT, GSH-Px and TBARs in hippocampus tissue of STZ-induced diabetic rats (Adult Male Sprague Dawley rats) after applying propolis for one month. The subjects of the study were composed of 51 rats randomly assigned to four groups (Control, STZ, P+STZ and STZ+P). For analysis of data, Kruskal Wallis Test was utilized. RESULTS: The findings of the study showed that there were no significant difference in the levels of TBARS, SOD, CAT and GSH-Px of hippocampus across the groups. CONCLUSION: Propolis application in four-week duration does not have effect on TBARS, SOD, CAT and GSH-Px levels of hippocampus of diabetic rats. These findings mean that more time for observing oxidative harms on hippocampus is needed. PMID:27275196

  3. BACTERIAL OXIDATION OF DIPICOLINIC ACID

    PubMed Central

    Kobayashi, Yasuo; Arima, Kei

    1962-01-01

    Kobayashi, Yasuo (University of Tokyo, Tokyo, Japan) and Kei Arima. Bacterial oxidation of dipicolinic acid. II. Identification of α-ketoglutaric acid and 3-hydroxydipicolinic acid and some properties of cell-free extracts. J. Bacteriol. 84:765–771. 1962—When a dipicolinic acid (DPA)-decomposing bacterium, Achromobacter strain 1–2, was incubated at 30 C with shaking in a DPA solution containing 10−3m arsenite, a keto acid was accumulated. The 2,4-dinitrophenylhydrazone of this acid was synthesized and identified as α-ketoglutaric acid by paper chromatography, visible absorption spectrum, infrared analysis, elemental analysis, and mixed melting point. During this incubation, oxalic acid equivalent to the consumed dipicolinic acid was produced. A fluorescent material was also isolated from culture fluid and identified as 3-hydroxydipicolinic acid by paper chromatography and the ultraviolet absorption spectrum. Further, cell-free extracts were prepared by sonic oscillation. Ferrous ion and a reduced di- or triphosphopyridine nucleotide-generating system were proven to be required for enzymic oxidation of DPA. And 3-hydroxydipicolinic acid was also oxidized by this preparation. From the results obtained, a possible metabolic pathway of dipicolinic acid was proposed. PMID:14033954

  4. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana

    PubMed Central

    Desikan, Radhika; Griffiths, Rachael; Hancock, John; Neill, Steven

    2002-01-01

    The plant hormone abscisic acid (ABA), synthesized in response to water-deficit stress, induces stomatal closure via activation of complex signaling cascades. Recent work has established that nitric oxide (NO) is a key signaling molecule mediating ABA-induced stomatal closure. However, the biosynthetic origin of NO in guard cells has not yet been resolved. Here, we provide pharmacological, physiological, and genetic evidence that NO synthesis in Arabidopsis guard cells is mediated by the enzyme nitrate reductase (NR). Guard cells of wild-type Arabidopsis generate NO in response to treatment with ABA and nitrite, a substrate for NR. Moreover, NR-mediated NO synthesis is required for ABA-induced stomatal closure. However, in the NR double mutant, nia1, nia2 that has diminished NR activity, guard cells do not synthesize NO nor do the stomata close in response to ABA or nitrite, although stomatal opening is still inhibited by ABA. Furthermore, by using the ABA-insensitive (ABI) abi1–1 and abi2–1 mutants, we show that the ABI1 and ABI2 protein phosphatases are downstream of NO in the ABA signal-transduction cascade. These data demonstrate a previously uncharacterized signaling role for NR, that of mediating ABA-induced NO synthesis in Arabidopsis guard cells. PMID:12446847

  5. Enzymes of respiratory iron oxidation

    SciTech Connect

    Blake, R. II.

    1992-01-01

    This report describes experimental progress in characterizing and identifying redox proteins in a number of iron-oxidizing bacteria. Sections of the paper are entitled (1) In Situ electrolysis was explored to achieve enhanced yields of iron-oxidizing bacteria, (2)Structure/function studies were performed on redox-active biomolecules from Thiobacillus ferrooxidans, (3) Novel redox-active biomolecules were demonstrated in other iron autotrophs, and (4) New probes of metalloprotein electron-transfer reactions were synthesized and characterized.

  6. Oxidative Reactions with Nonaqueous Enzymes

    SciTech Connect

    Jonathan S. Dordick; Douglas Clark; Brian H Davison; Alexander Klibanov

    2001-12-30

    The objective of this work is to demonstrate a proof-of-concept of enzymatic oxidative processing in nonaqueous media using alkene epoxidation and phenolic polymerization as relevant targets. This project will provide both the fundamental and applied investigations necessary to initiate the implementation of oxidative biocatalysts as commercially relevant alternatives to chemical processing in general, and to phenolic polymerizations and alkene epoxidation specifically. Thus, this work will address the Bioprocessing Solicitation Area to: (1) makes major improvements to phenolic polymerization and alkene epoxidation technologies; (2) is expected to be cost competitive with competing conventional processes; and (3) produces higher yields with less waste.

  7. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  8. Enzymic oxidation of monoclonal antibodies by soluble and immobilized bifunctional enzyme complexes.

    PubMed

    Solomon, B; Koppel, R; Schwartz, F; Fleminger, G

    1990-06-27

    Site-specific modification of monoclonal antibodies was achieved by oxidation of the carbohydrate moieties of antibodies which are located remote from the antigen binding sites. Sialic acid and galactose are terminal sugars of these carbohydrate chains. Concomitant treatment of the antibodies with neuraminidase and galactose oxidase generated aldehyde groups in the oligosaccharide moieties of immunoglobulins which reacted selectively with amino or hydrazide groups of the matrix. Subsequent immobilization of neuraminidase and galactose oxidase on Eupergit C-adipic dihydrazide proved to be an efficient and selective system for the enzymic oxidation of the monoclonal antibodies without impairing their immunological activity. Oriented immobilization of enzymically oxidized monoclonal antibodies on hydrazide or amino Eupergit C derivatives thus leads to the formation of antibody matrix conjugates which possess high antigen-binding activities. PMID:2119387

  9. Thermostable lipoxygenase, a key enzyme in bioconversion of linoleic acid to trihycroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases, enzymes that contain non-heme iron, catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene moiety leading to conjugated (Z,E)-hydroperoxydienoic acids. These enzymes are widely distributed in plants and animals, and a few microorganisms are reported as well. It ...

  10. Enzyme immunoassay for carminic acid in foods.

    PubMed

    Yoshida, A; Takagaki, Y; Nishimune, T

    1995-01-01

    A competitive enzyme immunoassay (EIA) for carminic acid was investigated. Monoclonal anticarminic acid antibody was obtained from A/J mice immunized with carminic acid-human immunoglobulin G (IgG) conjugate. Carminic acid was extracted with distilled water from beverage, jelly, candy, pasta sauce, yogurt, or ice cream samples. Ham or fish paste samples were digested with pronase, then carminic acid was extracted from samples with sodium hydroxide solution. The extract was diluted more than 10-fold with 1% gelatin in borate buffer solution. Microtiter plates were coated with carminic acid-bovine serum albumin (BSA) conjugate or just BSA. Goat anti-mouse IgG(H+L)-peroxidase complex was used as a second antibody, and 3,3',5,5'-tetramethylbenzidine was used as a substrate for the peroxidase. The working range for quantitative analysis was 0.3-10 ng/mL, and the detection limit was 0.2 micrograms/g original sample. Recoveries of carminic acid by this assay were > 95% for milk beverage and jelly, and > 85% for yogurt and fish paste. Carminic acid was detected in 7 of 26 red-colored commercial food products and ranged from 3.5 to 356 micrograms/g. This EIA system also responded to the structural analogue of carminic acid, laccaic acid. PMID:7756895

  11. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  12. Effect on morphology, oxidative stress and energy metabolism enzymes in the testes of mice after a 13-week oral administration of melamine and cyanuric acid combination.

    PubMed

    Lv, Yingjun; Liu, Zhijun; Tian, Yujie; Chen, Hongbo

    2013-03-01

    Cases of pet poisoning and infant renal calculus have attracted much attention to the toxicity of melamine and its derivatives, such as cyanuric acid. Although individually melamine and cyanuric acid have low toxicity, their simultaneous presence can cause severe damage. Little is known about their adverse effects on the reproductive system. In this study, mice were orally administrated 1, 5 or 25 mg/kg/d of both melamine and cyanuric acid for 13 weeks. Lethargy, rough hair, and reduction of food and water intake and of body and testis weight were found after exposure to the combination, and pathological changes were found in the morphology of the testes, such as disruption of the seminiferous tubule structure, decrease of the spermatogenic cell series and coagulation necrosis. Total antioxidant capacity and superoxide dismutase activities and glutathione concentration was lower and malondialdehyde concentration was higher than in control mice. The activities of malate dehydrogenase, lactate dehydrogenase and Na(+)/K(+)-ATPase were also lower in combination treated mice than in control mice. These results indicate that the combined exposure to both melamine and cyanuric acid damaged testes in mice by either a direct or indirect effect, which may be related to renal failure and secondary anorexia. Oxidative stress and lower energy production levels both contributed to the testicular damage. PMID:23220542

  13. Effects of pectin pentaoligosaccharide from Hawthorn ( Crataegus pinnatifida Bunge. var. Major) on the activity and mRNA levels of enzymes involved in fatty acid oxidation in the liver of mice fed a high-fat diet.

    PubMed

    Li, Tuo-Ping; Zhu, Ru-Gang; Dong, Yin-Ping; Liu, Yong-Hui; Li, Su-Hong; Chen, Gang

    2013-08-01

    The regulatory effects of haw pectin pentaoligosaccharide (HPPS) on fatty acid oxidation-related enzyme activities and mRNA levels were investigated in the liver of high fat diet induced hyperlipidemic mice. Results showed that HPPS (150 mg/kg for 10 weeks) significantly suppresses weight gain (32.3 ± 0.26 and 21.1 ± 0.14 g for high-fat diet and HPPS groups, respectively), decreases serum triacylglycerol levels (1.64 ± 0.09 and 0.91 ± 0.02 mmol/L, respectively), and increases lipid excretion in feces (55.7 ± 0.38 and 106.4 ± 0.57 mg/g for total lipid, respectively), compared to high-fat diet as control. HPPS significantly increased the hepatic fatty acid oxidation-related enzyme activities of acyl-CoA oxidase, carnitine palmitoyltransferase I, 3-ketoacyl-CoA thiolase, and 2,4-dienoyl-CoA reductase by 53.8, 74.2, 47.1, and 24.2%, respectively. Meanwhile, the corresponding mRNAs were up-regulated by 89.6, 85.8, 82.9, and 30.9%, respectively. Moreover, HPPS was able to up-regulate the gene and protein expressions of peroxisome proliferator-activated receptor α. Results suggest that continuous HPPS ingestion may be used as dietary therapy to prevent obesity and cardiovascular diseases. PMID:23855516

  14. FABP3 and brown adipocyte-characteristic mitochondrial fatty acid oxidation enzymes are induced in beige cells in a different pathway from UCP1.

    PubMed

    Nakamura, Yuki; Sato, Takahiro; Shiimura, Yuki; Miura, Yoshiki; Kojima, Masayasu

    2013-11-01

    Cold exposure and β3-adrenergic receptor agonist (CL316,243) treatment induce the production of beige cells, which express brown adipocytes(BA)-specific UCP1 protein, in white adipose tissue (WAT). It remains unclear whether the beige cells, which have different gene expression patterns from BA, express BA-characteristic fatty acid oxidation (FAO) proteins. Here we found that 5 day cold exposure and CL316,243 treatment of WAT, but not CL316,243 treatment of primary adipocytes of C57BL/6J mice, increased mRNA levels of BA-characteristic FAO proteins. These results suggest that BA-characteristic FAO proteins are induced in beige cells in a different pathway from UCP1. PMID:24129192

  15. Role of antioxidant enzymes in bacterial resistance to organic acids.

    PubMed

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  16. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  17. Lipoxygenase, a key enzyme in bioconversion of linoleic acid into trihydroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene structure leading to the formation of conjugated (Z,E)-hydroperoxydienoic acids, which in turn result in production of hydroxy lipid. These enzymes are widely distributed in plants, animals, and microorganisms...

  18. Lipid, Oxidative and Inflammatory Profile and Alterations in the Enzymes Paraoxonase and Butyrylcholinesterase in Plasma of Patients with Homocystinuria Due CBS Deficiency: The Vitamin B12 and Folic Acid Importance.

    PubMed

    Vanzin, Camila Simioni; Mescka, Caroline Paula; Donida, Bruna; Hammerschimidt, Tatiane Grazieli; Ribas, Graziela S; Kolling, Janaína; Scherer, Emilene B; Vilarinho, Laura; Nogueira, Célia; Coitinho, Adriana Simon; Wajner, Moacir; Wyse, Angela T S; Vargas, Carmen Regla

    2015-08-01

    Cystathionine-β-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations. PMID:25805165

  19. N-3 Polyunsaturated Fatty Acids Improve Liver Lipid Oxidation-Related Enzyme Levels and Increased the Peroxisome Proliferator-Activated Receptor α Expression Level in Mice Subjected to Hemorrhagic Shock/Resuscitation

    PubMed Central

    Zhang, Li; Tian, Feng; Gao, Xuejin; Wang, Xinying; Wu, Chao; Li, Ning; Li, Jieshou

    2016-01-01

    Appropriate metabolic interventions after hemorrhagic shock/resuscitation injury have not yet been identified. We aimed to examine the effects of fish oil on lipid metabolic intervention after hemorrhagic shock/resuscitation. Firstly, 48 C57BL/6 mice were assigned to six groups (n = 8 per group). The sham group did not undergo surgery, while mice in the remaining groups were sacrificed 1–5 days after hemorrhagic shock/resuscitation. In the second part, mice were treated with saline or fish oil (n = 8 per group) five days after injury. We determined serum triglyceride levels and liver tissues were collected and prepared for qRT-PCR or Western blot analysis. We found that triglyceride levels were increased five days after hemorrhagic shock/resuscitation, but decreased after addition of fish oil. After injury, the protein and gene expression of carnitine palmitoyltransferase 1A, fatty acid transport protein 1, and peroxisome proliferator-activated receptor-α decreased significantly in liver tissue. In contrast, after treatment with fish oil, the expression levels of these targets increased compared with those in the saline group. The present results suggest n-3 polyunsaturated fatty acids could improve lipid oxidation-related enzymes in liver subjected to hemorrhagic shock/resuscitation. This function is possibly accomplished through activating the peroxisome proliferator-activated receptor-α pathway. PMID:27110821

  20. N-3 Polyunsaturated Fatty Acids Improve Liver Lipid Oxidation-Related Enzyme Levels and Increased the Peroxisome Proliferator-Activated Receptor α Expression Level in Mice Subjected to Hemorrhagic Shock/Resuscitation.

    PubMed

    Zhang, Li; Tian, Feng; Gao, Xuejin; Wang, Xinying; Wu, Chao; Li, Ning; Li, Jieshou

    2016-01-01

    Appropriate metabolic interventions after hemorrhagic shock/resuscitation injury have not yet been identified. We aimed to examine the effects of fish oil on lipid metabolic intervention after hemorrhagic shock/resuscitation. Firstly, 48 C57BL/6 mice were assigned to six groups (n = 8 per group). The sham group did not undergo surgery, while mice in the remaining groups were sacrificed 1-5 days after hemorrhagic shock/resuscitation. In the second part, mice were treated with saline or fish oil (n = 8 per group) five days after injury. We determined serum triglyceride levels and liver tissues were collected and prepared for qRT-PCR or Western blot analysis. We found that triglyceride levels were increased five days after hemorrhagic shock/resuscitation, but decreased after addition of fish oil. After injury, the protein and gene expression of carnitine palmitoyltransferase 1A, fatty acid transport protein 1, and peroxisome proliferator-activated receptor-α decreased significantly in liver tissue. In contrast, after treatment with fish oil, the expression levels of these targets increased compared with those in the saline group. The present results suggest n-3 polyunsaturated fatty acids could improve lipid oxidation-related enzymes in liver subjected to hemorrhagic shock/resuscitation. This function is possibly accomplished through activating the peroxisome proliferator-activated receptor-α pathway. PMID:27110821

  1. Immobilization of enzymes on alginic acid-polyacrylamide copolymers

    SciTech Connect

    Kumaraswamy, M.D.K.; Panduranga R.K.; Thomas J.K.; Santappa, M.

    1981-08-01

    In this report, the authors present initial results and limitations of a polymeric system for the immobilization of enzymes. Enzymes attached to insoluble polymers of natural and synthetic origin are gaining importance in many industrial and biomedical applications. Graft copolymers are used as enzyme supports and in this study a novel polymeric system of alginic acid-polyacrylamide graft copolymer is described which was used for immobilizing enzymes. (Refs. 4).

  2. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa.

    PubMed

    Taura, Futoshi; Sirikantaramas, Supaart; Shoyama, Yoshinari; Yoshikai, Kazuyoshi; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-06-26

    Cannabidiolic-acid (CBDA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic-acid into CBDA, the dominant cannabinoid constituent of the fiber-type Cannabis sativa. We cloned a novel cDNA encoding CBDA synthase by reverse transcription and polymerase chain reactions with degenerate and gene-specific primers. Biochemical characterization of the recombinant enzyme demonstrated that CBDA synthase is a covalently flavinylated oxidase. The structural and functional properties of CBDA synthase are quite similar to those of tetrahydrocannabinolic-acid (THCA) synthase, which is responsible for the biosynthesis of THCA, the major cannabinoid in drug-type Cannabis plants. PMID:17544411

  3. Glycosylation of resveratrol protects it from enzymic oxidation.

    PubMed Central

    Regev-Shoshani, Gilly; Shoseyov, Oded; Bilkis, Itzhak; Kerem, Zohar

    2003-01-01

    Plant polyphenols, including dietary polyphenols such as resveratrol, are important components in the plant antioxidant and defence systems. They are also known to exert beneficial effects on human health through diet. As they are produced, these polyphenols may be subjected to deleterious enzymic oxidation by the plant polyphenol oxidases. They are generally synthesized as glycosides like 5,4'-dihydroxystilbene-3-O-beta-D-glucopyranoside, the 3-glucoside of resveratrol. The effects of the glycosylation and methylation of the parent resveratrol on its enzymic oxidation were studied. Methyl and glucosyl derivatives were synthesized using simple one-step methodologies. The kinetics of their enzymic oxidation by tyrosinases were defined. Substitution at the p-hydroxy group, by either glucose or methyl, abolished enzymic oxidation by both mushroom and grape tyrosinases. Substitution at the m-hydroxy group with methyl had a small effect, but substitution with glucose resulted in a much lower affinity of the enzymes for the glycoside. We suggest that glycosylation of polyphenols in nature helps to protect these vital molecules from enzymic oxidation, extending their half-life in the cell and maintaining their beneficial antioxidant capacity and biological properties. PMID:12697026

  4. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  5. Peroxisomal. beta. -oxidation enzyme proteins in adrenoleukodystrophy: distinction between x-linked adrenoleukodystrophy and neonatal adrenoleukodystrophy

    SciTech Connect

    Chen, W.W.; Watkins, P.A.; Osumi, T.; Hashimoto, T.; Moser, H.W.

    1987-03-01

    Very long chain fatty acids, which accumulate in plasma and tissues in x-linked adrenoleukodystrophy (ALD), neonatal ALD, and the Zellweger cerebrohepatorenal syndrome, are degraded by the peroxisomal ..beta..-oxidation pathway, consisting of acyl-CoA oxidase, the bifunctional enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase, and ..beta..-ketothiolase. A marked deficiency of all three enzyme proteins was reported in livers from patients with the Zellweger syndrome, a disorder in which peroxisomes are decreased or absent. Peroxisomes are not as markedly decreased in neonatal ALD and appear normal in x-linked ALD. Immunoblot analysis of the peroxisomal ..beta..-oxidation enzymes revealed an almost complete lack of the bifunctional enzymes in neonatal ALD liver, similar to the finding in Zellweger tissues. In contrast, acyl-CoA oxidase and ..beta..-ketothiolase were present in neonatal ALD liver, although the thiolase appeared to be in precursor form (2-3 kDa larger than the mature enzyme) in neonatal ALD. Unlike either neonatal ALD or Zellweger syndrome, all three peroxisomal ..beta..-oxidation enzymes were present in x-linked ALD liver. Despite the absence in neonatal ALD liver of bifunctional enzyme protein, its mRNA was detected by RNA blot analysis in fibroblasts from these patients. These observations suggest that lack of bifunctional enzyme protein in neonatal ALD results from either abnormal translation of the mRNA or degradation of the enzyme prior to its entry into peroxisomes.

  6. Products from enzyme-catalyzed oxidations of norcarenes.

    PubMed

    Newcomb, Martin; Lansakara-P, Dharmika S P; Kim, Hye-Yeong; Chandrasena, R Esala P; Lippard, Stephen J; Beauvais, Laurance G; Murray, Leslie J; Izzo, Viviana; Hollenberg, Paul F; Coon, Minor J

    2007-02-16

    Recent studies revealed that norcarane (bicyclo[4.1.0]heptane) is oxidized to 2-norcarene (bicyclo[4.1.0]-hept-2-ene) and 3-norcarene (bicyclo[4.1.0]hept-3-ene) by iron-containing enzymes and that secondary oxidation products from the norcarenes complicate mechanistic probe studies employing norcarane as the substrate (Newcomb, M.; Chandrasena, R. E. P.; Lansakara-P., D. S. P.; Kim, H.-Y.; Lippard, S. J.; Beauvais, L. G.; Murray, L. J.; Izzo, V.; Hollenberg, P. F.; Coon, M. J. J. Org. Chem. 2007, 72, 1121-1127). In the present work, the product profiles from the oxidations of 2-norcarene and 3-norcarene by several enzymes were determined. Most of the products were identified by GC and GC-mass spectral comparison to authentic samples produced independently; in some cases, stereochemical assignments were made or confirmed by 2D NMR analysis of the products. The enzymes studied in this work were four cytochrome P450 enzymes, CYP2B1, CYPDelta2E1, CYPDelta2E1 T303A, and CYPDelta2B4, and three diiron-containing enzymes, soluble methane monooxygenase (sMMO) from Methylococcus capsulatus (Bath), toluene monooxygenase (ToMO) from Pseudomonas stutzeri OX1, and phenol hydroxylase (PH) from Pseudomonas stutzeri OX1. The oxidation products from the norcarenes identified in this work are 2-norcaranone, 3-norcaranone, syn- and anti-2-norcarene oxide, syn- and anti-3-norcarene oxide, syn- and anti-4-hydroxy-2-norcarene, syn- and anti-2-hydroxy-3-norcarene, 2-oxo-3-norcarene, 4-oxo-2-norcarene, and cyclohepta-3,5-dienol. Two additional, unidentified oxidation products were observed in low yields in the oxidations. In matched oxidations, 3-norcarene was a better substrate than 2-norcarene in terms of turnover by factors of 1.5-15 for the enzymes studied here. The oxidation products found in enzyme-catalyzed oxidations of the norcarenes are useful for understanding the complex product mixtures obtained in norcarane oxidations. PMID:17288367

  7. Enzyme-catalyzed Oxidation Facilitates the Return of Fluorescence for Single-Walled Carbon Nanotubes

    PubMed Central

    Chiu, Cheuk Fai; Barth, Brian A.; Kotchey, Gregg P.; Zhao, Yong; Gogick, Kristy A.; Saidi, Wissam A.; Petoud, Stéphane; Star, Alexander

    2013-01-01

    In this work, we studied enzyme-catalyzed oxidation of single-walled carbon nanotubes (SWCNTs) produced by the high-pressure carbon monoxide (HiPco) method. While oxidation via strong acids introduced defects sites on SWCNTs and suppressed their near-infrared (NIR) fluorescence, our results indicated that the fluorescence of SWCNTs was restored upon enzymatic oxidation, which provided new evidence that the reaction catalyzed by horseradish peroxidase (HRP) in the presence of H2O2 is mainly a defect-consuming step. These results were further supported by both UV-vis-NIR and Raman spectroscopy. Therefore, employing acid oxidation followed by HRP-catalyzed enzyme oxidation, shortened (< 300 nm in length) and NIR-fluorescent SWCNTs were produced. In contrast, when treated with myeloperoxidase (MPO), H2O2, and NaCl, the oxidized HiPco SWCNTs underwent complete oxidation (i.e. degradation). The shortened, NIR-fluorescent SWCNTs resulting from HRP-catalyzed oxidation of acid cut HiPco SWCNTs may find applications in cellular NIR imaging and drug delivery systems. PMID:23672715

  8. Enzyme-catalyzed oxidation facilitates the return of fluorescence for single-walled carbon nanotubes.

    PubMed

    Chiu, Cheuk Fai; Barth, Brian A; Kotchey, Gregg P; Zhao, Yong; Gogick, Kristy A; Saidi, Wissam A; Petoud, Stéphane; Star, Alexander

    2013-09-11

    In this work, we studied enzyme-catalyzed oxidation of single-walled carbon nanotubes (SWCNTs) produced by the high-pressure carbon monoxide (HiPco) method. While oxidation via strong acids introduced defect sites on SWCNTs and suppressed their near-infrared (NIR) fluorescence, our results indicated that the fluorescence of SWCNTs was restored upon enzymatic oxidation, providing new evidence that the reaction catalyzed by horseradish peroxidase (HRP) in the presence of H2O2 is mainly a defect-consuming step. These results were further supported by both UV-vis-NIR and Raman spectroscopy. Therefore, when acid oxidation followed by HRP-catalyzed enzyme oxidation was employed, shortened (<300 nm in length) and NIR-fluorescent SWCNTs were produced. In contrast, upon treatment with myeloperoxidase, H2O2, and NaCl, the oxidized HiPco SWCNTs underwent complete oxidation (i.e., degradation). The shortened, NIR-fluorescent SWCNTs resulting from HRP-catalyzed oxidation of acid-cut HiPco SWCNTs may find applications in cellular NIR imaging and drug delivery systems. PMID:23672715

  9. Method for Enzyme Design with Genetically Encoded Unnatural Amino Acids.

    PubMed

    Hu, C; Wang, J

    2016-01-01

    We describe the methodologies for the design of artificial enzymes with genetically encoded unnatural amino acids. Genetically encoded unnatural amino acids offer great promise for constructing artificial enzymes with novel activities. In our studies, the designs of artificial enzyme were divided into two steps. First, we considered the unnatural amino acids and the protein scaffold separately. The scaffold is designed by traditional protein design methods. The unnatural amino acids are inspired by natural structure and organic chemistry methods, and synthesized by either organic chemistry methods or enzymatic conversion. With the increasing number of published unnatural amino acids with various functions, we described an unnatural amino acids toolkit containing metal chelators, redox mediators, and click chemistry reagents. These efforts enable a researcher to search the toolkit for appropriate unnatural amino acids for the study, rather than design and synthesize the unnatural amino acids from the beginning. After the first step, the model enzyme was optimized by computational methods and directed evolution. Lastly, we describe a general method for evolving aminoacyl-tRNA synthetase and expressing unnatural amino acids incorporated into a protein. PMID:27586330

  10. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  11. Graphene oxide immobilized enzymes show high thermal and solvent stability

    NASA Astrophysics Data System (ADS)

    Hermanová, Soňa; Zarevúcká, Marie; Bouša, Daniel; Pumera, Martin; Sofer, Zdeněk

    2015-03-01

    The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed lipase achieved over 100% of the initial activity in a series of organic solvents. These findings, showing enhanced thermal stability and solvent tolerance of graphene oxide immobilized enzyme, will have a profound impact on practical industrial scale uses of enzymes for the conversion of lipids into fuels.The thermal and solvent tolerance of enzymes is highly important for their industrial use. We show here that the enzyme lipase from Rhizopus oryzae exhibits exceptionally high thermal stability and high solvent tolerance and even increased activity in acetone when immobilized onto a graphene oxide (GO) nanosupport prepared by Staudenmaier and Brodie methods. We studied various forms of immobilization of the enzyme: by physical adsorption, covalent attachment, and additional crosslinking. The activity recovery was shown to be dependent on the support type, enzyme loading and immobilization procedure. Covalently immobilized lipase showed significantly better resistance to heat inactivation (the activity recovery was 65% at 70 °C) in comparison with the soluble counterpart (the activity recovery was 65% at 40 °C). Physically adsorbed

  12. CYP4 Enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities

    PubMed Central

    Edson, Katheryne Z.; Rettie, Allan E.

    2014-01-01

    The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20-hydroxyeicosatetraenoic acid or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases. PMID:23688133

  13. Thermostable Lipoxygenase, a Key Enzyme in the Conversion of Linoleic Acid into Thrihydroxy-octadecenoic Acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases (LOX) constitute a family of lipid-peroxidizing enzymes catalyzing the oxidation of unsaturated fatty acid with (1Z,4Z)-pentadiene structural unit, leading to formation of the conjugated (Z,E)-hydroperoxydienoic acid. LOXs have been known to be widely distributed in plants and animals...

  14. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration.

    PubMed

    Ohno, Yoko; Nakamori, Toshihiko; Zheng, Haitao; Suye, Shin-ichiro

    2008-05-01

    Malic enzyme [L-malate: NAD(P)(+) oxidoreductase (EC 1.1.1.39)] catalyzes the oxidative decarboxylation of L-malic acid to produce pyruvic acid using the oxidized form of NAD(P) (NAD(P)(+)). We used a reverse reaction of the malic enzyme of Pseudomonas diminuta IFO 13182 for HCO(3)(-) fixation into pyruvic acid to produce L-malic acid with coenzyme (NADH) generation. Glucose-6-phosphate dehydrogenase (EC1.1.1.49) of Leuconostoc mesenteroides was suitable for coenzyme regeneration. Optimum conditions for the carboxylation of pyruvic acid were examined, including pyruvic acid, NAD(+), and both malic enzyme and glucose-6-phosphate dehydrogenase concentrations. Under optimal conditions, the ratio of HCO(3)(-) and pyruvic acid to malic acid was about 38% after 24 h of incubation at 30 degrees C, and the concentration of the accumulated L-malic acid in the reaction mixture was 38 mM. The malic enzyme reverse reaction was also carried out by the conjugated redox enzyme reaction with water-soluble polymer-bound NAD(+). PMID:18460807

  15. Regulation of antioxidant enzymes in lung after oxidant injury.

    PubMed Central

    Quinlan, T; Spivack, S; Mossman, B T

    1994-01-01

    Studies have implicated active oxygen species (AOS) in the pathogenesis of various lung diseases. Many chemical and physical agents in the environment are potent generators of AOS, including ozone, hyperoxia, mineral dusts, paraquat, etc. These agents produce AOS by different mechanisms, but frequently the lung is the primary target of toxicity, and exposure results in damage to lung tissue to varying degrees. The lung has developed defenses to AOS-mediated damage, which include antioxidant enzymes, the superoxide dismutases [copper-zinc (CuZnSOD) and manganese-containing (MnSOD)], catalase, and glutathione peroxidase (GPX). In this review, antioxidant defenses to environmental stresses in the lung as well as in isolated pulmonary cells following exposure to a number of different oxidants, are summarized. Each oxidant appears to induce a different pattern of antioxidant enzyme response in the lung, although some common trends, i.e., induction of MnSOD following oxidants inducing inflammation or pulmonary fibrosis, in responses to oxidants occur. Responses may vary between the different cell types in the lung as a function of cell-cycle or other factors. Increases in MnSOD mRNA or immunoreactive protein in response to certain oxidants may serve as a biomarker of AOS-mediated damage in the lung. Images Figure 3. PMID:7523104

  16. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.

    PubMed

    Lee, Charles C; Kibblewhite, Rena E; Paavola, Chad D; Orts, William J; Wagschal, Kurt

    2016-07-01

    Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes. PMID:27198564

  17. Oxidized amino acids: culprits in human atherosclerosis and indicators of oxidative stress.

    PubMed

    Heinecke, Jay W

    2002-06-01

    Oxidized low-density lipoprotein (LDL) is implicated in atherogenesis, but the mechanisms that oxidize LDL in the human artery wall have proven difficult to identify. A powerful investigative approach is mass spectrometric quantification of the oxidized amino acids that are left in proteins by specific oxidation reactions. Comparison of these molecular fingerprints in biological samples with those produced in proteins by various in vitro oxidation systems can indicate which biochemical pathway has created damage in vivo. For example, the pattern of oxidized amino acids in proteins isolated from atherosclerotic lesions implicates reactive intermediates generated by myeloperoxidase, a major phagocyte enzyme. These intermediates include hypochlorous acid, tyrosyl radical, and reactive nitrogen species, each of which generates a different pattern of stable end products. Despite this strong evidence that myeloperoxidase promotes LDL oxidation in vivo, the antioxidant that has been tested most extensively in clinical trials, vitamin E, fails to inhibit myeloperoxidase pathways in vitro. Because the utility of an antioxidant depends critically on the nature of the pathway that inflicts tissue damage, interventions that specifically inhibit myeloperoxidase or other physiologically relevant pathways would be more logical candidates for the prevention of cardiovascular disease. Moreover, levels of oxidized amino acids in urine and plasma might reflect those in tissues and therefore identify individuals with high levels of oxidative stress. Trials with such subjects would seem more likely to uncover effective antioxidant therapies than trials involving the general population. PMID:12031894

  18. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress.

    PubMed

    Muhsain, Siti Nur Fadzilah; Lang, Matti A; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200mgpyrazole/kg/day for 3days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. PMID:25478736

  19. An Acidity Scale for Binary Oxides.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1987-01-01

    Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)

  20. Mitochondrial targeting of bilirubin regulatory enzymes: An adaptive response to oxidative stress

    SciTech Connect

    Muhsain, Siti Nur Fadzilah; Lang, Matti A.; Abu-Bakar, A'edah

    2015-01-01

    The intracellular level of bilirubin (BR), an endogenous antioxidant that is cytotoxic at high concentrations, is tightly controlled within the optimal therapeutic range. We have recently described a concerted intracellular BR regulation by two microsomal enzymes: heme oxygenase 1 (HMOX1), essential for BR production and cytochrome P450 2A5 (CYP2A5), a BR oxidase. Herein, we describe targeting of these enzymes to hepatic mitochondria during oxidative stress. The kinetics of microsomal and mitochondrial BR oxidation were compared. Treatment of DBA/2J mice with 200 mg pyrazole/kg/day for 3 days increased hepatic intracellular protein carbonyl content and induced nucleo-translocation of Nrf2. HMOX1 and CYP2A5 proteins and activities were elevated in microsomes and mitoplasts but not the UGT1A1, a catalyst of BR glucuronidation. A CYP2A5 antibody inhibited 75% of microsomal BR oxidation. The inhibition was absent in control mitoplasts but elevated to 50% after treatment. An adrenodoxin reductase antibody did not inhibit microsomal BR oxidation but inhibited 50% of mitochondrial BR oxidation. Ascorbic acid inhibited 5% and 22% of the reaction in control and treated microsomes, respectively. In control mitoplasts the inhibition was 100%, which was reduced to 50% after treatment. Bilirubin affinity to mitochondrial and microsomal CYP2A5 enzyme is equally high. Lastly, the treatment neither released cytochrome c into cytoplasm nor dissipated membrane potential, indicating the absence of mitochondrial membrane damage. Collectively, the observations suggest that BR regulatory enzymes are recruited to mitochondria during oxidative stress and BR oxidation by mitochondrial CYP2A5 is supported by mitochondrial mono-oxygenase system. The induced recruitment potentially confers membrane protection. - Highlights: • Pyrazole induces oxidative stress in the mouse liver. • Pyrazole-induced oxidative stress induces mitochondrial targeting of key bilirubin regulatory enzymes, HMOX1

  1. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  2. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  3. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity.

    PubMed

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-03-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  4. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    PubMed Central

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  5. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    PubMed Central

    Miller, Erica F.

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg2+ at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium. PMID:24936052

  6. Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor.

    PubMed

    Ahuja, T; Tanwar, V K; Mishra, S K; Kumar, D; Biradar, A M; Rajesh

    2011-06-01

    An enzyme immobilization matrix is described by preparing a self-assembly of gold nanoparticles (GNPs) over a self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) on an indium-tin-oxide (ITO) coated glass plate. The surface of the GNPs was modified with a mixed (1:9) SAM of 11-mercaptoundecanoic acid (MUA) and 3-mercapto-propionic acid (MPA). The enzyme, uricase was covalently immobilized to the carboxyl groups of the mixed SAM of MUA/MPA through carbodiimide coupling reaction. The whole assembly was constructed on 1 cm2 area of ITO-glass plate and was tested as an amperometric biosensor for the detection of uric acid in aqueous solution. The biosensor assembly was characterized by atomic force microscopy (AFM) and electrochemical techniques. The AFM of the enzyme biosensor assembly reveals an asymmetrical sharp regular island-like structure with an average roughness parameter value of 2.81 nm. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4), which exhibits a linear response over a concentration range of 0.07 to 0.63 mM with a sensitivity of 19.27 microAmM(-1) and a response of 25 s with excellent reproducibility. These results are not influenced by the presence of interfering reagents such as ascorbic acid, urea and glucose. GNPs-biomolecule assemblies constructed using this method may facilitate development of new hybrid biosensing materials. PMID:21770094

  7. Nitroaromatic amino acids as inhibitors of neuronal nitric oxide synthase.

    PubMed

    Cowart, M; Kowaluk, E A; Daanen, J F; Kohlhaas, K L; Alexander, K M; Wagenaar, F L; Kerwin, J F

    1998-07-01

    Nitric oxide (NO.) is an important biomodulator of many physiological processes. The inhibition of inappropriate production of NO. by the isoforms of nitric oxide synthase (NOS) has been proposed as a therapeutic approach for the treatment of stroke, inflammation, and other processes. In this study, certain 2-nitroaryl-substituted amino acid analogues were discovered to inhibit NOS. Analogues bearing a 5-methyl substituent on the aromatic ring demonstrated maximal inhibitory potency. For two selected inhibitors, investigation of the kinetics of the enzyme showed the inhibition to be competitive with l-arginine. Additionally, functional NOS inhibition in tissue preparations was demonstrated. PMID:9651169

  8. A novel system combining biocatalytic dephosphorylation of L-ascorbic acid 2-phosphate and electrochemical oxidation of resulting ascorbic acid.

    PubMed

    Kuwahara, Takashi; Homma, Toshimasa; Kondo, Mizuki; Shimomura, Masato

    2011-03-15

    An enzyme electrode was prepared with acid phosphatase (ACP) for development of a new electric power generation system using ascorbic acid 2-phosphate (AA2P) as a fuel. The properties of the electrode were investigated with respect to biocatalytic dephosphorylation of AA2P and electrochemical oxidation of resulting ascorbic acid (AA). The enzyme electrode was fabricated by immobilization of ACP through amide linkage onto a self-assembled monolayer of 3-mercaptopropionic acid on a gold electrode. AA2P was not oxidized on a bare gold electrode in the potential sweep range from -0.1 to +0.5 V vs. Ag/AgCl. However, the enzyme electrode gave an oxidation current in citric buffer solution of pH 5 containing 10 mM of AA2P. The oxidation current began to increase at +0.2V, and reached to 5.0 μA cm(-2) at +0.5 V. The potential +0.2 V corresponded to the onset of oxidation of ascorbic acid (AA). These results suggest that the oxidation current observed with the enzyme electrode is due to AA resulting from dephosphorylation of AA2P. The oxidation current increased with increasing concentration of AA2P and almost leveled off at around the concentration of 5mM. Thus the enzyme electrode brought about biocatalytic conversion of AA2P to AA, followed by electrochemical oxidation of the AA. The oxidation current is likely to be controlled by the biocatalytic reaction. PMID:21247749

  9. Dual Enzyme-Responsive Capsules of Hyaluronic Acid-block-Poly(Lactic Acid) for Sensing Bacterial Enzymes.

    PubMed

    Tücking, Katrin-Stephanie; Grützner, Verena; Unger, Ronald E; Schönherr, Holger

    2015-07-01

    The synthesis of novel amphiphilic hyaluronic acid (HYA) and poly(lactic acid) (PLA) block copolymers is reported as the key element of a strategy to detect the presence of pathogenic bacterial enzymes. In addition to the formation of defined HYA-block-PLA assemblies, the encapsulation of fluorescent reporter dyes and the selective enzymatic degradation of the capsules by hyaluronidase and proteinase K are studied. The synthesis of the dual enzyme-responsive HYA-b-PLA is carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition. The resulting copolymers are assembled in water to form vesicular structures, which are characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering (DLS), and fluorescence lifetime imaging microscopy (FLIM). DLS measurements show that both enzymes cause a rapid decrease in the hydrodynamic diameter of the nanocapsules. Fluorescence spectroscopy data confirm the liberation of encapsulated dye, which indicates the disintegration of the capsules and validates the concept of enzymatically triggered payload release. Finally, cytotoxicity assays confirm that the HYA-b-PLA nanocapsules are biocompatible with primary human dermal microvascular endothelial cells. PMID:25940300

  10. Cloning, expression and characterization of a gene encoding nitroalkane-oxidizing enzyme from Streptomyces ansochromogenes.

    PubMed

    Zhang, Jihui; Tan, Huarong

    2002-12-01

    A nitroalkane-oxidizing enzyme gene (naoA) was cloned from a genomic DNA library of Streptomyces ansochromogenes 7100. The deduced protein (NaoA) of this gene contains 363 amino acids and has high similarity to several nitroalkane-oxidizing enzymes from various micro-organisms. The naoA gene was subcloned into an expression vector pET23b and overexpressed in Escherichia coli BL21(DE3). The protein was then purified, and its characteristics were studied. Experimental results showed that NaoA can convert 1-nitropropane, 2-nitropropane and nitroethane into the corresponding carbonyl compounds. The optimal pH and temperature for NaoA was found to be pH 7-8 and 48-56 degrees C, respectively. The Km of NaoA for nitroethane is approximately 26.8 mm. NADH and nitro blue tetrazolium are strong inhibitors of NaoA, and thiol compounds and superoxide dismutase partially inhibit the enzyme activity. Therefore, superoxide may be an essential intermediate in the oxidation of nitroalkane by NaoA. PMID:12473127

  11. Acid monolayer functionalized iron oxide nanoparticle catalysts

    NASA Astrophysics Data System (ADS)

    Ikenberry, Myles

    Superparamagnetic iron oxide nanoparticle functionalization is an area of intensely active research, with applications across disciplines such as biomedical science and heterogeneous catalysis. This work demonstrates the functionalization of iron oxide nanoparticles with a quasi-monolayer of 11-sulfoundecanoic acid, 10-phosphono-1-decanesulfonic acid, and 11-aminoundecanoic acid. The carboxylic and phosphonic moieties form bonds to the iron oxide particle core, while the sulfonic acid groups face outward where they are available for catalysis. The particles were characterized by thermogravimetric analysis (TGA), transmission electron microscopy (TEM), potentiometric titration, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray photoelectron spectrometry (XPS), and dynamic light scattering (DLS). The sulfonic acid functionalized particles were used to catalyze the hydrolysis of sucrose at 80° and starch at 130°, showing a higher activity per acid site than the traditional solid acid catalyst Amberlyst-15, and comparing well against results reported in the literature for sulfonic acid functionalized mesoporous silicas. In sucrose catalysis reactions, the phosphonic-sulfonic nanoparticles (PSNPs) were seen to be incompletely recovered by an external magnetic field, while the carboxylic-sulfonic nanoparticles (CSNPs) showed a trend of increasing activity over the first four recycle runs. Between the two sulfonic ligands, the phosphonates produced a more tightly packed monolayer, which corresponded to a higher sulfonic acid loading, lower agglomeration, lower recoverability through application of an external magnetic field, and higher activity per acid site for the hydrolysis of starch. Functionalizations with 11-aminoundecanoic acid resulted in some amine groups binding to the surfaces of iron oxide nanoparticles. This amine binding is commonly ignored in iron oxide

  12. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients

    PubMed Central

    TOORANG, Fatemeh; DJAZAYERY, Abolghassem; DJALALI, Mahmoud

    2016-01-01

    Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. PMID:27141496

  13. Indoleacetic Acid and the Synthesis of Glucanases and Pectic Enzymes

    PubMed Central

    Datko, Anne Harmon; Maclachlan, G. A.

    1968-01-01

    Indoleacetic acid (IAA) and/or inhibitors of DNA, RNA or protein synthesis were added to the apex of decapitated seedlings of Pisum sativum L. var. Alaska. At various times up to 4 days, enzymic protein was extracted from a segment of epicotyl immediately below the apex and assayed for its ability to hydrolyse polysaccharides or their derivatives. With the exception of amylase, the total amounts per segment of all of the tested enzymes increased due to IAA treatment. The development of β-1,4-glucanase (cellulase) activity per unit of protein or fresh weight proceeded according to a typical sigmoid induction curve. Pectinase was formed for about 2 days in control segments and IAA treatment resulted in continued synthesis for at least another 2 days provided cell division took place. β-1,3-glucanase and pectinesterase activities were only enhanced by IAA to the extent that total protein levels increased. Reaction mechanisms for these effects and functions for the enzymes during growth are discussed. PMID:16656834

  14. Tirandamycin biosynthesis is mediated by co-dependent oxidative enzymes

    NASA Astrophysics Data System (ADS)

    Carlson, Jacob C.; Li, Shengying; Gunatilleke, Shamila S.; Anzai, Yojiro; Burr, Douglas A.; Podust, Larissa M.; Sherman, David H.

    2011-08-01

    Elucidation of natural product biosynthetic pathways provides important insights into the assembly of potent bioactive molecules, and expands access to unique enzymes able to selectively modify complex substrates. Here, we show full reconstitution, in vitro, of an unusual multi-step oxidative cascade for post-assembly-line tailoring of tirandamycin antibiotics. This pathway involves a remarkably versatile and iterative cytochrome P450 monooxygenase (TamI) and a flavin adenine dinucleotide-dependent oxidase (TamL), which act co-dependently through the repeated exchange of substrates. TamI hydroxylates tirandamycin C (TirC) to generate tirandamycin E (TirE), a previously unidentified tirandamycin intermediate. TirE is subsequently oxidized by TamL, giving rise to the ketone of tirandamycin D (TirD), after which a unique exchange back to TamI enables successive epoxidation and hydroxylation to afford, respectively, the final products tirandamycin A (TirA) and tirandamycin B (TirB). Ligand-free, substrate- and product-bound crystal structures of bicovalently flavinylated TamL oxidase reveal a likely mechanism for the C10 oxidation of TirE.

  15. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  16. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.

    PubMed

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  17. Effects of nitric oxide treatment on the cell wall softening related enzymes and several hormones of papaya fruit during storage.

    PubMed

    Guo, Qin; Wu, Bin; Chen, Weixin; Zhang, Yuli; Wang, Jide; Li, Xueping

    2014-06-01

    Papaya fruits (Carica papaya L. cv 'Sui you 2') harvested with < 5% yellow surface at the blossom end were fumigated with 60 microL/L of nitric oxide for 3 h and then stored at 20 degrees C with 85% relative humility for 20 days. The effects of nitric oxide treatment on ethylene production rate, the activities of cell wall softening related enzymes including polygalacturonase, pectin methyl esterase, pectate lyase and cellulase and the levels of hormones including indole acetic acid, abscisic acid, gibberellin and zeatin riboside were examined. The results showed that papaya fruits treated with nitric oxide had a significantly lower rate of ethylene production and a lesser loss of firmness during storage. A decrease in polygalacturonase, pectin methyl esterase, pectate lyase and cellulase activities was observed in nitric oxide treated fruit. In addition, the contents of indole acetic acid, abscisic acid and zeatin riboside were reduced in nitric oxide treated fruit, but no significant reduction in the level of gibberellin was found. These results indicate that nitric oxide treatment can effectively delay the softening and ripening of papaya fruit, likely via the regulation of cell wall softening related enzymes and certain hormones. PMID:23744122

  18. Oxidative degradation of bisphenol a by crude enzyme prepared from potato.

    PubMed

    Xuan, Ying Ji; Endo, Yasushi; Fujimoto, Kenshiro

    2002-10-23

    When crude enzymes prepared from some vegetables and fruits were incubated with bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) at 37 degrees C, BPA was oxidized by crude enzymes from potato, eggplant, and lettuce. The crude enzyme prepared from potato (Solanum tuberosum) had the strongest oxidative activity for BPA. Its optimal temperature and pH were 40-45 degrees C and 8.0, respectively. More than 95% of BPA was oxidized after the incubation with potato enzyme for 60 min. BPA gave two oxidation products besides insoluble compounds during the oxidation by potato enzyme. The oxidation products were identified to be 4[1-(4-hydroxyphenyl)-1-methyl-ethyl]-benzene-1,2-diol and 4[1-(4-hydroxyphenyl)-1-methyl-ethyl]-benzene-1,3-diol. Enzymatically oxidized BPA lost the estrogen-like activity to enhance the growth of human breast cancer (MCF-7) cells. PMID:12381152

  19. Effect of sulfonylureas on hepatic fatty acid oxidation

    SciTech Connect

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into livers perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.

  20. Nickel oxide hollow microsphere for non-enzyme glucose detection.

    PubMed

    Ci, Suqin; Huang, Taizhong; Wen, Zhenhai; Cui, Shumao; Mao, Shun; Steeber, Douglas A; Chen, Junhong

    2014-04-15

    A facile strategy has been developed to fabricate nickel oxide hollow microspheres (NiO-HMSs) through a solvothermal method by using a mixed solvent of ethanol and water with the assistance of sodium dodecyl sulfate (SDS). Various techniques, including transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (XRD), were used to characterize the morphology and the structure of as-prepared samples. It was confirmed that the products possess a hollow microsphere structure that is constructed by interconnecting porous nanoplate framework. Electrochemical studies indicate that the NiO-HMS exhibits excellent stability and high catalytic activity for electrocatalytic oxidation of glucose in alkaline solutions, which enables the NiO-HMS to be used in enzyme-free amperometric sensors for glucose determination. It was demonstrated that the NiO-HMS-based glucose biosensor offers a variety of merits, such as a wide linear response window for glucose concentrations of 1.67 μM-6.87 mM, short response time (3 s), a lower detection limit of 0.53 μM (S/N=3), high sensitivity (~2.39 mA mM(-1) cm(-2)) as well as good stability and repeatability. PMID:24287412

  1. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO{sub 2}, highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO{sub 4}/2.5M H{sub 3}PO{sub 4} solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO{sub 2} (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  2. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO[sub 2], highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO[sub 4]/2.5M H[sub 3]PO[sub 4] solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO[sub 2] (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  3. Cysteine Oxidation Reactions Catalyzed by a Mononuclear Non-heme Iron Enzyme (OvoA) in Ovothiol Biosynthesis

    PubMed Central

    2015-01-01

    OvoA in ovothiol biosynthesis is a mononuclear non-heme iron enzyme catalyzing the oxidative coupling between histidine and cysteine. It can also catalyze the oxidative coupling between hercynine and cysteine, yet with a different regio-selectivity. Due to the potential application of this reaction for industrial ergothioneine production, in this study, we systematically characterized OvoA by a combination of three different assays. Our studies revealed that OvoA can also catalyze the oxidation of cysteine to either cysteine sulfinic acid or cystine. Remarkably, these OvoA-catalyzed reactions can be systematically modulated by a slight modification of one of its substrates, histidine. PMID:24684381

  4. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations

    PubMed Central

    Arnold, Samuel L.; Kent, Travis; Hogarth, Cathryn A.; Schlatt, Stefan; Prasad, Bhagwat; Haenisch, Michael; Walsh, Thomas; Muller, Charles H.; Griswold, Michael D.; Amory, John K.; Isoherranen, Nina

    2015-01-01

    Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types. PMID:25502770

  5. Vascular peroxidase 1: a novel enzyme in promoting oxidative stress in cardiovascular system.

    PubMed

    Ma, Qi-Lin; Zhang, Guo-Gang; Peng, Jun

    2013-07-01

    Vascular peroxidase 1 (VPO1) is a recently identified novel family member of peroxidases in cardiovascular system. As an enzyme that is downstream of NADPH oxidases (NOX), VPO1 functions to utilize NOX - derived hydrogen peroxide (H2O2) to produce hypochlorous acid (HOCl), a strong oxidant which is believed to greatly promote oxidative stress. Under multiple conditions, NOX is activated concomitantly with an increase in superoxide anion (O2(.-)) and H2O2 production. The latter is converted to HOCl by VPO1. In this process (O2(.-) → H2O2 → HOCl), the oxidant reactivities of reactive oxygen species (ROS) are significantly increased and therefore the oxidative stress is dramatically amplified. Several lines of evidence suggest that the NOX/VPO1 pathway - mediated oxidative stress plays an important role in myocardial ischemia-reperfusion injury, endothelial cell apoptosis and/or smooth muscle cell proliferation. In addition, VPO1 can be secreted into the extracellular space to participate in extracellular matrix formation, suggesting that VPO1 may also play a role in cardiovascular remodeling (such as fibrosis). This function is independent of the peroxidase activity of VPO1. PMID:23357484

  6. Hepatic alpha-oxidation of phytanic acid. A revised pathway.

    PubMed

    Van Veldhoven, P P; Mannaerts, G P; Casteels, M; Croes, K

    1999-01-01

    Synthetic 3-methyl-branched chain fatty acids were used to decipher the breakdown of phytanic acid. Based on results obtained in intact or permeabilized rat hepatocytes, rat liver homogenates or subcellular fractions, a revised alpha-oxidation pathway is proposed which appears to be functioning in man as well. In a first step, the 3-methyl-branched chain fatty acid is activated by an acyl-CoA synthetase. This reaction requires CoA, ATP and Mg2+. Subsequently, the acyl-CoA ester is hydroxylated at position 2 by a peroxisomal dioxygenase. This step is dependent on alpha-oxoglutarate, ascorbate (or glutathione), Fe2+ and O2. The 2-hydroxy-3-methylacyl-CoA intermediate is cleaved by a peroxisomal lyase to formyl-CoA and a 2-methyl-branched fatty aldehyde. Formyl-CoA is (partly enzymically) hydrolyzed to formate, which is then converted, most likely in the cytosol, to CO2. In the presence of NAD+, the aldehyde is dehydrogenated to a 2-methyl-branched fatty acid, presumably by a peroxisomal aldehyde dehydrogenase. This acid can--after activation--be degraded via a D-specific peroxisomal beta-oxidation system. PMID:10709654

  7. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases.

    PubMed Central

    Ullrich, M; Bender, C L

    1994-01-01

    Coronamic acid (CMA), an ethylcyclopropyl amino acid derived from isoleucine, functions as an intermediate in the biosynthesis of coronatine, a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. The DNA required for CMA biosynthesis (6.9 kb) was sequenced, revealing three distinct open reading frames (ORFs) which share a common orientation for transcription. The deduced amino acid sequence of a 2.7-kb ORF designated cmaA contained six core sequences and two conserved motifs which are present in a variety of amino acid-activating enzymes, including nonribosomal peptide synthetases. Furthermore, CmaA contained a spatial arrangement of histidine, aspartate, and arginine residues which are conserved in the ferrous active site of some nonheme iron(II) enzymes which catalyze oxidative cyclizations. The deduced amino acid sequence of a 1.2-kb ORF designated cmaT was related to thioesterases of both procaryotic and eucaryotic origins. These data suggest that CMA assembly is similar to the thiotemplate mechanism of nonribosomal peptide synthesis. No significant similarities between a 0.9-kb ORF designated cmaU and other database entries were found. The start sites of two transcripts required for CMA biosynthesis were identified in the present study. pRG960sd, a vector containing a promoterless glucuronidase gene, was used to localize and study the promoter regions upstream of the two transcripts. Data obtained in the present study indicate that CMA biosynthesis is regulated at the transcriptional level by temperature. Images PMID:8002582

  8. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  9. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  10. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina

    PubMed Central

    Hao, Guangfei; Du, Kai; Huang, Xiaoyun; Song, Yuanda; Gu, Zhennan; Wang, Lei; Zhang, Hao; Chen, Wei; Chen, Yong Q.

    2015-01-01

    Malic enzyme (ME) catalyses the oxidative decarboxylation of L-malate to pyruvate and provides NADPH for intracellular metabolism, such as fatty acid synthesis. Here, the mitochondrial ME (mME) gene from Mortierella alpina was homologously over-expressed. Compared with controls, fungal arachidonic acid (ARA; 20:4 n-6) content increased by 60 % without affecting the total fatty acid content. Our results suggest that enhancing mME activity may be an effective mean to increase industrial production of ARA in M. alpina. PMID:24863290

  11. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  12. Involvement of oxidants and oxidant-generating enzyme(s) in tumour-necrosis-factor-alpha-mediated apoptosis: role for lipoxygenase pathway but not mitochondrial respiratory chain.

    PubMed

    O'Donnell, V B; Spycher, S; Azzi, A

    1995-08-15

    Cellular signalling by the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) has been suggested to involve generation of low levels of reactive oxygen species (ROS). Certain antioxidants and metal chelators can inhibit cytotoxicity and gene expression in response to TNF alpha in numerous cell types. However, neither the source nor function of TNF alpha-induced oxidant generation is known. Using specific inhibitors, we ruled out involvement of several oxidant-generating enzymes [cyclo-oxygenase (indomethacin), cytochrome P-450 (metyrapone), nitric oxide synthase (NG-methyl-L-arginine), NADPH oxidase (iodonium diphenyl), xanthine oxidase (allopurinol), ribonucleotide reductase (hydroxyurea)] in TNF alpha-mediated apoptosis of the murine fibrosarcoma line, L929. We also demonstrated no role for mitochondrial-derived radicals/respiratory chain in the lytic pathway using specific inhibitors/uncouplers (rotenone, KCN, carboxin, fluoroacetate, antimycin, malonate, carbonyl cyanide p-trifluoromethoxyphenylhydrazone) and chloramphenicol-derived respiration-deficient cells. Significant ROS (H2O2, O2-.) generation was not observed in response to TNF alpha in L929 cells using four separate assays. Also, prevention of intracellular H2O2 removal by inhibition of catalase did not potentiate TNF alpha-mediated cell death. These data suggest that neither H2O2 nor O2-. plays a direct role in TNF alpha cytotoxicity. Finally, we suggest a central role for lipoxygenase in TNF alpha-mediated lysis. Three inhibitors of this radical-generating signalling pathway, including an arachidonate analogue (5,8,11,14-eicosatetraynoic acid), could protect cells against TNF alpha. The inhibitor nordihydroguaiaretic acid is also a radical scavenger, but it could not protect cells from ROS toxicity at concentrations that effectively prevented TNF alpha killing. Therefore protection by nordihydroguaiaretic acid cannot be due to scavenging of cytotoxic H2O or O2-.. The lipoxygenase product

  13. Active-site amino acid residues in γ-glutamyltransferase and the nature of the γ-glutamyl-enzyme bond

    PubMed Central

    Elce, John S.

    1980-01-01

    Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed. PMID:6104953

  14. Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids

    PubMed Central

    Houten, Sander M.; Denis, Simone; Argmann, Carmen A.; Jia, Yuzhi; Ferdinandusse, Sacha; Reddy, Janardan K.; Wanders, Ronald J. A.

    2012-01-01

    L-bifunctional enzyme (Ehhadh) is part of the classical peroxisomal fatty acid β-oxidation pathway. This pathway is highly inducible via peroxisome proliferator-activated receptor α (PPARα) activation. However, no specific substrates or functions for Ehhadh are known, and Ehhadh knockout (KO) mice display no appreciable changes in lipid metabolism. To investigate Ehhadh functions, we used a bioinformatics approach and found that Ehhadh expression covaries with genes involved in the tricarboxylic acid cycle and in mitochondrial and peroxisomal fatty acid oxidation. Based on these findings and the regulation of Ehhadh's expression by PPARα, we hypothesized that the phenotype of Ehhadh KO mice would become apparent after fasting. Ehhadh mice tolerated fasting well but displayed a marked deficiency in the fasting-induced production of the medium-chain dicarboxylic acids adipic and suberic acid and of the carnitine esters thereof. The decreased levels of adipic and suberic acid were not due to a deficient induction of ω-oxidation upon fasting, as Cyp4a10 protein levels increased in wild-type and Ehhadh KO mice.We conclude that Ehhadh is indispensable for the production of medium-chain dicarboxylic acids, providing an explanation for the coordinated induction of mitochondrial and peroxisomal oxidative pathways during fasting. PMID:22534643

  15. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products1[OPEN

    PubMed Central

    Yuen, Macaire M.S.; Bohlmann, Jörg

    2016-01-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I–IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  16. Modularity of Conifer Diterpene Resin Acid Biosynthesis: P450 Enzymes of Different CYP720B Clades Use Alternative Substrates and Converge on the Same Products.

    PubMed

    Geisler, Katrin; Jensen, Niels Berg; Yuen, Macaire M S; Madilao, Lina; Bohlmann, Jörg

    2016-05-01

    Cytochrome P450 enzymes of the CYP720B subfamily play a central role in the biosynthesis of diterpene resin acids (DRAs), which are a major component of the conifer oleoresin defense system. CYP720Bs exist in families of up to a dozen different members in conifer genomes and fall into four different clades (I-IV). Only two CYP720B members, loblolly pine (Pinus taeda) PtCYP720B1 and Sitka spruce (Picea sitchensis) PsCYP720B4, have been characterized previously. Both are multisubstrate and multifunctional clade III enzymes, which catalyze consecutive three-step oxidations in the conversion of diterpene olefins to DRAs. These reactions resemble the sequential diterpene oxidations affording ent-kaurenoic acid from ent-kaurene in gibberellin biosynthesis. Here, we functionally characterized the CYP720B clade I enzymes CYP720B2 and CYP720B12 in three different conifer species, Sitka spruce, lodgepole pine (Pinus contorta), and jack pine (Pinus banksiana), and compared their activities with those of the clade III enzymes CYP720B1 and CYP720B4 of the same species. Unlike the clade III enzymes, clade I enzymes were ultimately found not to be active with diterpene olefins but converted the recently discovered, unstable diterpene synthase product 13-hydroxy-8(14)-abietene. Through alternative routes, CYP720B enzymes of both clades produce some of the same profiles of conifer oleoresin DRAs (abietic acid, neoabietic acid, levopimaric acid, and palustric acid), while clade III enzymes also function in the formation of pimaric acid, isopimaric acid, and sandaracopimaric acid. These results highlight the modularity of the specialized (i.e. secondary) diterpene metabolism, which produces conifer defense metabolites through variable combinations of different diterpene synthase and CYP720B enzymes. PMID:26936895

  17. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  18. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    ... picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, ... oxide and anhydrous citric acid combine when the powder is mixed with water to form a medication ...

  19. Evidence for a complex of three beta-oxidation enzymes in Escherichia coli: induction and localization.

    PubMed Central

    O'Brien, W J; Frerman, F E

    1977-01-01

    The enzymes for beta-oxidation of fatty acids in inducible and constitutive strains of Escherichia coli were assayed in soluble and membrane fractions of disrupted cells by using fatty acid and acyl-coenzyme A (CoA) substrates containing either 4 or 16 carbon atoms in the acyl moieties. Cell fractionation was monitored, using succinic dehydrogenase as a membrane marker and glucose 6-phosphate dehydrogenase as a soluble marker. Acyl-CoA synthetase activity was detected exclusively in the membrane fraction, whereas acyl-CoA dehydrogenase, 3-hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities that utilized both C4 and C16 acyl-CoA substrates were isolated from the soluble fraction. 3-Hydroxyacyl-CoA dehydrogenase, enoyl-CoA hydratase, and 3-ketoacyl-CoA thiolase activities assayed with both C4 and C16 acyl-CoA substrates co-chromatographed on gel filtration and ion-exchange columns and cosedimented in glycerol gradients. The data show that these three enzyme activities of the fad regulon can be isolated as a multienzyme complex. This complex dissociates in very dilute preparations; however, in those preparations where the three activities are separated, the fractionated species retain activity with both C4 and C16 acyl-CoA substrates. PMID:334745

  20. Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans.

    PubMed

    Jungas, R L; Halperin, M L; Brosnan, J T

    1992-04-01

    Significant gaps remain in our knowledge of the pathways of amino acid catabolism in humans. Further quantitative data describing amino acid metabolism in the kidney are especially needed as are further details concerning the pathways utilized for certain amino acids in liver. Sufficient data do exist to allow a broad picture of the overall process of amino acid oxidation to be developed along with approximate quantitative assessments of the role played by liver, muscle, kidney, and small intestine. Our analysis indicates that amino acids are the major fuel of liver, i.e., their oxidative conversion to glucose accounts for about one-half of the daily oxygen consumption of the liver, and no other fuel contributes nearly so importantly. The daily supply of amino acids provided in the diet cannot be totally oxidized to CO2 in the liver because such a process would provide far more ATP than the liver could utilize. Instead, most amino acids are oxidatively converted to glucose. This results in an overall ATP production during amino acid oxidation very nearly equal to the ATP required to convert amino acid carbon to glucose. Thus gluconeogenesis occurs without either a need for ATP from other fuels or an excessive ATP production that could limit the maximal rate of the process. The net effect of the oxidation of amino acids to glucose in the liver is to make nearly two-thirds of the total energy available from the oxidation of amino acids accessible to peripheral tissues, without necessitating that peripheral tissues synthesize the complex array of enzymes needed to support direct amino acid oxidation. As a balanced mixture of amino acids is oxidized in the liver, nearly all carbon from glucogenic amino acids flows into the mitochondrial aspartate pool and is actively transported out of the mitochondria via the aspartate-glutamate antiport linked to proton entry. In the cytoplasm the aspartate is converted to fumarate utilizing urea cycle enzymes; the fumarate flows via

  1. Integrated engineering of β-oxidation reversal and ω-oxidation pathways for the synthesis of medium chain ω-functionalized carboxylic acids.

    PubMed

    Clomburg, James M; Blankschien, Matthew D; Vick, Jacob E; Chou, Alexander; Kim, Seohyoung; Gonzalez, Ramon

    2015-03-01

    An engineered reversal of the β-oxidation cycle was exploited to demonstrate its utility for the synthesis of medium chain (6-10-carbons) ω-hydroxyacids and dicarboxylic acids from glycerol as the only carbon source. A redesigned β-oxidation reversal facilitated the production of medium chain carboxylic acids, which were converted to ω-hydroxyacids and dicarboxylic acids by the action of an engineered ω-oxidation pathway. The selection of a key thiolase (bktB) and thioesterase (ydiI) in combination with previously established core β-oxidation reversal enzymes, as well as the development of chromosomal expression systems for the independent control of pathway enzymes, enabled the generation of C6-C10 carboxylic acids and provided a platform for vector based independent expression of ω-functionalization enzymes. Using this approach, the expression of the Pseudomonas putida alkane monooxygenase system, encoded by alkBGT, in combination with all β-oxidation reversal enzymes resulted in the production of 6-hydroxyhexanoic acid, 8-hydroxyoctanoic acid, and 10-hydroxydecanoic acid. Following identification and characterization of potential alcohol and aldehyde dehydrogenases, chnD and chnE from Acinetobacter sp. strain SE19 were expressed in conjunction with alkBGT to demonstrate the synthesis of the C6-C10 dicarboxylic acids, adipic acid, suberic acid, and sebacic acid. The potential of a β-oxidation cycle with ω-oxidation termination pathways was further demonstrated through the production of greater than 0.8 g/L C6-C10 ω-hydroxyacids or about 0.5 g/L dicarboxylic acids of the same chain lengths from glycerol (an unrelated carbon source) using minimal media. PMID:25638687

  2. An enzymic assay for uric acid in serum and urine compared with HPLC.

    PubMed

    Dubois, H; Delvoux, B; Ehrhardt, V; Greiling, H

    1989-03-01

    We evaluated a colorimetric method for the assay of uric acid in serum or urine, which utilises a Trinder chromogenic system modified by the inclusion of 2,4,6-tribromo-3-hydroxybenzoic acid for oxidative coupling to p-aminophenazone. Colour development (Amax: 512 nm) is complete within five minutes. Measurement of a sample blank is not needed. The procedure involves pre-incubation with ascorbic acid oxidase and detergent to eliminate interference by ascorbic acid and to abolish turbidity due to lipaemia; this pretreatment was effective up to 1.14 mmol/l ascorbate and up to at least 25 mmol/l triacylglycerol. Interference by icteric sera was insignificant up to about 170 mumol/l bilirubin. The method is linear up to at least 1428 mumol/l. In human serum and urine the procedure correlates well with HPLC and the uricase p-aminophenazone method on the SMAC analyser. Within-run and between-run imprecisions of the enzymic test were higher than for HPLC, but did not exceed 1.2% (CV) and 2.5% (CV), respectively. PMID:2708944

  3. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.

    PubMed

    Fukushima, Arata; Lopaschuk, Gary D

    2016-10-01

    Obesity and diabetes are major public health problems, and are linked to the development of heart failure. Emerging data highlight the importance of alterations in cardiac energy metabolism as a major contributor to cardiac dysfunction related to obesity and diabetes. Increased rates of fatty acid oxidation and decreased rates of glucose utilization are two prominent changes in cardiac energy metabolism that occur in obesity and diabetes. This metabolic profile is probably both a cause and consequence of a prominent cardiac insulin resistance, which is accompanied by a decrease in both cardiac function and efficiency, and by the accumulation of potentially toxic lipid metabolites in the heart that can further exaggerate insulin resistance and cardiac dysfunction. The high cardiac fatty acid oxidation rates seen in obesity and diabetes are attributable to several factors, including: 1) increased fatty acid supply and uptake into the cardiomyocyte, 2) increased transcription of fatty acid metabolic enzymes, 3) decreased allosteric control of mitochondrial fatty acid uptake and fatty acid oxidation, and 4) increased post-translational acetylation control of various fatty acid oxidative enzymes. Emerging evidence suggests that therapeutic approaches aimed at switching the balance of cardiac energy substrate preference from fatty acid oxidation to glucose use can prevent cardiac dysfunction associated with obesity and diabetes. Modulating acetylation control of fatty acid oxidative enzymes is also a potentially attractive strategy, although presently this is limited to precursors of nicotinamide adenine or nonspecific activators of deacetylation such as resveratrol. This review will focus on the metabolic alterations in the heart that occur in obesity and diabetes, as well as on the molecular mechanisms controlling these metabolic changes. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26996746

  4. Protective effects of gallic acid against spinal cord injury-induced oxidative stress.

    PubMed

    Yang, Yong Hong; Wang, Zao; Zheng, Jie; Wang, Ran

    2015-08-01

    The present study aimed to investigate the role of gallic acid in oxidative stress induced during spinal cord injury (SCI). In order to measure oxidative stress, the levels of lipid peroxide, protein carbonyl, reactive oxygen species and nitrates/nitrites were determined. In addition, the antioxidant status during SCI injury and the protective role of gallic acid were investigated by determining glutathione levels as well as the activities of catalase, superoxide dismutase, glutathione peroxidase and glutathione-S-transferase. Adenosine triphophatase (ATPase) enzyme activities were determined to evaluate the role of gallic acid in SCI-induced deregulation of the activity of enzymes involved in ion homeostasis. The levels of inflammatory markers such as nuclear factor (NF)-κB and cycloxygenase (COX)-2 were determined by western blot analysis. Treatment with gallic acid was observed to significantly mitigate SCI-induced oxidative stress and the inflammatory response by reducing the oxidative stress, decreasing the expression of NF-κB and COX-2 as well as increasing the antioxidant status of cells. In addition, gallic acid modulated the activity of ATPase enzymes. Thus the present study indicated that gallic acid may have a role as a potent antioxidant and anti-inflammatory agent against SCI. PMID:25955644

  5. Effect of deuterium oxide on neutrophil oxidative metabolism, phagocytosis, and lysosomal enzyme release

    SciTech Connect

    Tsan, M.F.; Turkall, R.M.

    1982-12-01

    We have previously shown that deuterium oxide (D/sub 2/O) enhances the oxidation of methionine, a myeloperoxidase (MPO) -mediated reaction, by human neutrophils during phagocytosis. However, D/sub 2/O has no effect on the oxidation of methionine by the purified MPO-H/sub 2/O/sub 2/-Cl- system. To explain this observation, we studied the effect of D/sub 2/O on the oxidative metabolism, phagocytosis, and lysosomal enzyme release by human neutrophils. D/sub 2/O stimulated the hexose monophosphate shunt (HMS) activity of resting neutrophils in a dose-response fashion. In the presence of latex particles or phorbol myristate acetate (PMA), D/sub 2/O brought about an exaggerated stimulation of the HMS activity. This enhancement of the HMS activity by D/sub 2/O was markedly reduced when neutrophils form two patients with X-linked chronic granulomatous disease (CGD) were used, either in the presence or absence of latex particles or PMA. Superoxide and H/sub 2/O/sub 2/ production by neutrophils in the presence of latex particles or PMA were also stimulated by D/sub 2/O. In contrast, D/sub 2/O inhibited the ingestion of latex particles. D/sub 2/O enhanced the extracellular release of MPO, but not lactate dehydrogenase, by neutrophils only in the simultaneous presence of cytochalasin B and latex particles. The enhancement of HMS activity and MPO release by D/sub 2/O was partially inhibited by colchicine. Our results suggest that enhancement of neutrophil oxidative metabolism by D/sub 2/O may in part explain the stimulation of methionine oxidation by phagocytosing neutrophils.

  6. Nitric Oxide Regulates Mitochondrial Fatty Acid Metabolism through Reversible Protein S-Nitrosylation **

    PubMed Central

    Doulias, Paschalis-Thomas; Tenopoulou, Margarita; Greene, Jennifer L.; Raju, Karthik; Ischiropoulos, Harry

    2014-01-01

    Cysteine S-nitrosylation is a posttranslational modification by which nitric oxide regulates protein function and signaling. Studies of individual proteins have elucidated specific functional roles for S-nitrosylation, but knowledge of the extent of endogenous S-nitrosylation, the sites that are nitrosylated, and the regulatory consequences of S-nitrosylation remains limited. We used mass spectrometry-based methodologies to identify 1011 S-nitrosocysteine residues in 647 proteins in various mouse tissues. We uncovered selective S-nitrosylation of enzymes participating in glycolysis, gluconeogenesis, tricarboxylic acid cycle, and oxidative phosphorylation, indicating that this posttranslational modification may regulate metabolism and mitochondrial bioenergetics. S-nitrosylation of the liver enzyme VLCAD (very long acyl-CoA dehydrogenase) at Cys238, which was absent in mice lacking endothelial nitric oxide synthase, improved its catalytic efficiency. These data implicate protein S-nitrosylation in the regulation of β-oxidation of fatty acids in mitochondria. PMID:23281369

  7. Enzyme-catalysed synthesis and reactions of benzene oxide/oxepine derivatives of methyl benzoates.

    PubMed

    Boyd, Derek R; Sharma, Narain D; Harrison, John S; Malone, John F; McRoberts, W Colin; Hamilton, John T G; Harper, David B

    2008-04-01

    A series of twelve benzoate esters was metabolised, by species of the Phellinus genus of wood-rotting fungi, to yield the corresponding benzyl alcohol derivatives and eight salicylates. The isolation of a stable oxepine metabolite, from methyl benzoate, allied to evidence of the migration and retention of a carbomethoxy group (the NIH Shift), during enzyme-catalysed ortho-hydroxylation of alkyl benzoates to form salicylates, is consistent with a mechanism involving an initial arene epoxidation step. This mechanism was confirmed by the isolation of a remarkably stable, optically active, substituted benzene oxide metabolite of methyl 2-(trifluoromethyl)benzoate, which slowly converted into the racemic form. The arene oxide was found to undergo a cycloaddition reaction with 4-phenyl-1,2,4-triazoline-3,5-dione to yield a crystalline cycloadduct whose structure and racemic nature was established by X-ray crystallography. The metabolite was also found to undergo some novel benzene oxide reactions, including epoxidation to give an anti-diepoxide, base-catalysed hydrolysis to form a trans-dihydrodiol and acid-catalysed aromatisation to yield a salicylate derivative via the NIH Shift of a carbomethoxy group. PMID:18362966

  8. Obesity-induced lysine acetylation increases cardiac fatty acid oxidation and impairs insulin signalling

    PubMed Central

    Alrob, Osama Abo; Sankaralingam, Sowndramalingam; Ma, Cary; Wagg, Cory S.; Fillmore, Natasha; Jaswal, Jagdip S.; Sack, Michael N.; Lehner, Richard; Gupta, Mahesh P.; Michelakis, Evangelos D.; Padwal, Raj S.; Johnstone, David E.; Sharma, Arya M.; Lopaschuk, Gary D.

    2014-01-01

    Aims Lysine acetylation is a novel post-translational pathway that regulates the activities of enzymes involved in both fatty acid and glucose metabolism. We examined whether lysine acetylation controls heart glucose and fatty acid oxidation in high-fat diet (HFD) obese and SIRT3 knockout (KO) mice. Methods and results C57BL/6 mice were placed on either a HFD (60% fat) or a low-fat diet (LFD; 4% fat) for 16 or 18 weeks. Cardiac fatty acid oxidation rates were significantly increased in HFD vs. LFD mice (845 ± 76 vs. 551 ± 87 nmol/g dry wt min, P < 0.05). Activities of the fatty acid oxidation enzymes, long-chain acyl-CoA dehydrogenase (LCAD), and β-hydroxyacyl-CoA dehydrogenase (β-HAD) were increased in hearts from HFD vs. LFD mice, and were associated with LCAD and β-HAD hyperacetylation. Cardiac protein hyperacetylation in HFD-fed mice was associated with a decrease in SIRT3 expression, while expression of the mitochondrial acetylase, general control of amino acid synthesis 5 (GCN5)-like 1 (GCN5L1), did not change. Interestingly, SIRT3 deletion in mice also led to an increase in cardiac fatty acid oxidation compared with wild-type (WT) mice (422 ± 29 vs. 291 ± 17 nmol/g dry wt min, P < 0.05). Cardiac lysine acetylation was increased in SIRT3 KO mice compared with WT mice, including increased acetylation and activity of LCAD and β-HAD. Although the HFD and SIRT3 deletion decreased glucose oxidation, pyruvate dehydrogenase acetylation was unaltered. However, the HFD did increase Akt acetylation, while decreasing its phosphorylation and activity. Conclusion We conclude that increased cardiac fatty acid oxidation in response to high-fat feeding is controlled, in part, via the down-regulation of SIRT3 and concomitant increased acetylation of mitochondrial β-oxidation enzymes. PMID:24966184

  9. Fatty acid oxidation: systems analysis and applications.

    PubMed

    Cintolesi, Angela; Rodríguez-Moyá, María; Gonzalez, Ramon

    2013-01-01

    Fatty acids (FAs) are essential components of cellular structure and energy-generating routes in living organisms. They exist in a variety of chemical configurations and functionalities and are catabolized by different oxidative routes, according to their structure. α- and ω-Oxidation are minor routes that occur only in eukaryotes, while β-oxidation is the major degradation route in eukaroytes and prokaryotes. These pathways have been characterized and engineered from different perspectives for industrial and biomedical applications. The severity of FA oxidation disorders in humans initially guided the study of FA metabolism at a molecular-level. On the other hand, recent advances in metabolic engineering and systems biology have powered the study of FA biosynthetic and catabolic routes in microorganisms at a systems-level. Several studies have proposed these pathways as platforms for the production of fuels and chemicals from biorenewable sources. The lower complexity of microbial systems has allowed a more comprehensive study of FA metabolism and has opened opportunities for a wider range of applications. Still, there is a need for techniques that facilitate the translation of high-throughput data from microorganisms to more complex eukaryotic systems in order to aid the development of diagnostic and treatment strategies for FA oxidation disorders. In addition, further systems biology analyses on human systems could also provide valuable insights on oxidation disorders. This article presents a comparison of the three main FA oxidative routes, systems biology analyses that have been used to study FA metabolism, and engineering efforts performed on microbial systems. PMID:23661533

  10. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by etiolated and green corn tissues

    SciTech Connect

    Reinecke, D. )

    1989-04-01

    Etiolated corn tissues oxidase indole-3-acetic acid (IAA) to oxindole-3-acetic acid (OxIAA). This oxidation results in loss of auxin activity and may plant a role in regulating IAA-stimulated growth. The enzyme has been partially purified and characterized and shown to require O{sub 2}, and a heat-stable lipid-soluble corn factor which can be replaced by linolenic or linoleic acids in the oxidation of IAA. Corn oil was tested as a cofactor in the IAA oxidation reaction. Corn oil stimulated enzyme activity by 30% while trilinolein was inactive. The capacity of green tissue to oxidize IAA was examined by incubating leaf sections from 2 week old light-grown corn seedlings with {sup 14}C-IAA. OxIAA and IAA were separated from other IAA metabolites on a 3 ml anion exchange column. Of the IAA taken up by the sections, 13% was oxidized to OxIAA. This is the first evidence that green tissue of corn may also regulate IAA levels by oxidizing IAA to OxIAA.

  11. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  12. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.

    PubMed

    Lawton, Thomas J; Rosenzweig, Amy C

    2016-08-01

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock. PMID:27366961

  13. Antioxidant enzyme activities are affected by salt content and temperature and influence muscle lipid oxidation during dry-salted bacon processing.

    PubMed

    Jin, Guofeng; He, Lichao; Yu, Xiang; Zhang, Jianhao; Ma, Meihu

    2013-12-01

    Fresh pork bacon belly was used as material and manufactured into dry-salted bacon through salting and drying-ripening. During processing both oxidative stability and antioxidant enzyme stability were evaluated by assessing peroxide value (PV), thiobarbituric acid reactive substances (TBARS) and activities of catalase, glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), and their correlations were also analysed. The results showed that all antioxidant enzyme activities decreased (p<0.05) until the end of process; GSH-Px was the most unstable one followed by catalase. Antioxidant enzyme activities were negatively correlated with TBARS (p<0.05), but the correlations were decreased with increasing process temperature. Salt showed inhibitory effect on all antioxidant enzyme activities and was concentration dependent. These results indicated that when process temperature and salt content were low at the same time during dry-salted bacon processing, antioxidant enzymes could effectively control lipid oxidation. PMID:23871020

  14. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode.

    PubMed

    Sethuraman, V; Muthuraja, P; Anandha Raj, J; Manisankar, P

    2016-10-15

    The fabrication, characterization and analytical performances were investigated for a catechol biosensor, based on the PEDOT-rGO-Fe2O3-PPO composite modified glassy carbon (GC) electrode. The graphene oxide (GO) doped conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) was prepared through electrochemical polymerization by potential cycling. Reduction of PEDOT-GO was carried out by amperometric method. Fe2O3 nanoparticles were synthesized in ethanol by hydrothermal method. The mixture of Fe2O3, PPO and glutaraldehyde was casted on the PEDOT-rGO electrode. The surface morphology of the modified electrodes was studied by FE-SEM and AFM. Cyclic voltammetric studies of catechol on the enzyme modified electrode revealed higher reduction peak current. Determination of catechol was carried out successfully by Differential Pulse Voltammetry (DPV) technique. The fabricated biosensor investigated shows a maximum current response at pH 6.5. The catechol biosensor exhibited wide sensing linear range from 4×10(-8) to 6.20×10(-5)M, lower detection limit of 7×10(-9)M, current maxima (Imax) of 92.55µA and Michaelis-Menten (Km) constant of 30.48µM. The activation energy (Ea) of enzyme electrode is 35.93KJmol(-1) at 50°C. There is no interference from d-glucose and l-glutamic acid, ascorbic acid and o-nitrophenol. The PEDOT-rGO-Fe2O3-PPO biosensor was stable for at least 75 days when stored in a buffer at about 4°C. PMID:26751827

  15. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid

    SciTech Connect

    Messing, Simon A.J.; Gabelli, Sandra B.; Echeverria, Ignacia; Vogel, Jonathan T.; Guan, Jiahn Chou; Tan, Bao Cai; Klee, Harry J.; McCarty, Donald R.; Amzel, L. Mario

    2011-09-06

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  16. Structural Insights into Maize Viviparous14, a Key Enzyme in the Biosynthesis of the Phytohormone Abscisic Acid W

    SciTech Connect

    Messing, S.; Gabelli, S; Echeverria, I; Vogel, J; Guan, J; Tan, B; Klee, H; McCarty, D; Amzela, M

    2010-01-01

    The key regulatory step in the biosynthesis of abscisic acid (ABA), a hormone central to the regulation of several important processes in plants, is the oxidative cleavage of the 11,12 double bond of a 9-cis-epoxycarotenoid. The enzyme viviparous14 (VP14) performs this cleavage in maize (Zea mays), making it a target for the rational design of novel chemical agents and genetic modifications that improve plant behavior through the modulation of ABA levels. The structure of VP14, determined to 3.2-{angstrom} resolution, provides both insight into the determinants of regio- and stereospecificity of this enzyme and suggests a possible mechanism for oxidative cleavage. Furthermore, mutagenesis of the distantly related CCD1 of maize shows how the VP14 structure represents a template for all plant carotenoid cleavage dioxygenases (CCDs). In addition, the structure suggests how VP14 associates with the membrane as a way of gaining access to its membrane soluble substrate.

  17. Enzyme-free glucose sensor based on Au nanobouquet fabricated indium tin oxide electrode.

    PubMed

    Lee, Jin-Ho; El-Said, Waleed Ahmed; Oh, Byung-Keun; Choi, Jeong-Woo

    2014-11-01

    In this study, we demonstrated a simple, rapid and inexpensive fabrication method to develop a novel gold nanobouquet structure fabricated indium tin oxide (GNB/ITO) electrode based on electrochemical deposition of gold ions onto ITO substrate. The morphology of the fabricated electrode surface was characterized by scanning electron microscopy (SEM) to confirm the GNB formation. Enzyme-free detection of glucose using a GNB/ITO electrode was described with high sensitivity and selectivity based on cyclic voltammetry assay. The results demonstrate a linear relation within wide concentration range (500 nM to 10 mM) of glucose, with a correlation coefficient of 0.988. The interference effect of uric acid was effectively avoided for the detection of glucose (1 μM to 10 mM). Moreover, the developed sensor was applied to determine the concentration of glucose in the presence of human serum to indicate the ability of GNB/ITO electrodes in real samples. Hence, newly developed GNB/ITO electrode has potential application in enzyme-free glucose sensor with highly sensitivity and selectivity. PMID:25958541

  18. Potential in vitro Protective Effect of Quercetin, Catechin, Caffeic Acid and Phytic Acid against Ethanol-Induced Oxidative Stress in SK-Hep-1 Cells

    PubMed Central

    Lee, Ki-Mo; Kang, Hyung-Sik; Yun, Chul-Ho; Kwak, Hahn-Shik

    2012-01-01

    Phytochemicals have been known to exhibit potent antioxidant activity. This study examined cytoprotective effects of phytochemicals including quercetin, catechin, caffeic acid, and phytic acid against oxidative damage in SK-Hep-1 cells induced by the oxidative and non-oxidative metabolism of ethanol. Exposure of the cells to excess ethanol resulted in a significant increase in cytotoxicity, reactive oxygen species (ROS) production, lipid hydroperoxide (LPO), and antioxidant enzyme activity. Excess ethanol also caused a reduction in mitochondrial membrane potential (MMP) and the quantity of reduced glutathione (GSH). Co-treatment of cells with ethanol and quercetin, catechin, caffeic acid and phytic acid significantly inhibited oxidative ethanol metabolism-induced cytotoxicity by blocking ROS production. When the cells were treated with ethanol after pretreatment of 4-methylpyrazole (4-MP), increased cytotoxicity, ROS production, antioxidant enzyme activity, and loss of MMP were observed. The addition of quercetin, catechin, caffeic acid and phytic acid to these cells showed suppression of non-oxidative ethanol metabolism-induced cytotoxicity, similar to oxidative ethanol metabolism. These results suggest that quercetin, catechin, caffeic acid and phytic acid have protective effects against ethanol metabolism-induced oxidative insult in SK-Hep-1 cells by blocking ROS production and elevating antioxidant potentials. PMID:24009840

  19. Changes in oxidative properties of Kalanchoe blossfeldiana leaf mitochondria during development of Crassulacean acid metabolism.

    PubMed

    Rustin, P; Queiroz-Claret, C

    1985-06-01

    Kalanchoe blossfeldiana plants grown under long days (16 h light) exhibit a C3-type photosynthetic metabolism. Switching to short days (9 h light) leads to a gradual development of Crassulacean acid metabolism (CAM). Under the latter conditions, dark CO2 fixation produces large amounts of malate. During the first hours of the day, malate is rapidly decarboxylated into pyruvate through the action of a cytosolic NADP(+)-or a mitochondrial NAD(+)-dependent malic enzyme. Mitochondria were isolated from leaves of plants grown under long days or after treatment by an increasing number of short days. Tricarboxylic acid cycle intermediates as well as exogenous NADH and NADPH were readily oxidized by mitochondria isolated from the two types of plants. Glycine, known to be oxidized by C3-plant mitochondria, was still oxidized after CAM establishment. The experiments showed a marked parallelism in the increase of CAM level and the increase in substrate-oxidation capacity of the isolated mitochondria, particularly the capacity to oxidize malate in the presence of cyanide. These simultaneous variations in CAM level and in mitochondrial properties indicate that the mitochondrial NAD(+)-malic enzyme could account at least for a part of the oxidation of malate. The studies of whole-leaf respiration establish that mitochondria are implicated in malate degradation in vivo. Moreover, an increase in cyanide resistance of the leaf respiration has been observed during the first daylight hours, when malate was oxidized to pyruvate by cytosolic and mitochondrial malic enzymes. PMID:24249613

  20. Uronic Acid products release from enzymically active cell wall from tomato fruit and its dependency on enzyme quantity and distribution.

    PubMed

    Huber, D J; Lee, J H

    1988-07-01

    Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed. PMID:16666191

  1. Imaging of myocardial fatty acid oxidation.

    PubMed

    Mather, Kieren J; DeGrado, Timothy R

    2016-10-01

    Myocardial fuel selection is a key feature of the health and function of the heart, with clear links between myocardial function and fuel selection and important impacts of fuel selection on ischemia tolerance. Radiopharmaceuticals provide uniquely valuable tools for in vivo, non-invasive assessment of these aspects of cardiac function and metabolism. Here we review the landscape of imaging probes developed to provide non-invasive assessment of myocardial fatty acid oxidation (MFAO). Also, we review the state of current knowledge that myocardial fatty acid imaging has helped establish of static and dynamic fuel selection that characterizes cardiac and cardiometabolic disease and the interplay between fuel selection and various aspects of cardiac function. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26923433

  2. Genetic Examination of Initial Amino Acid Oxidation and Glutamate Catabolism in the Hyperthermophilic Archaeon Thermococcus kodakarensis

    PubMed Central

    Yokooji, Yuusuke; Sato, Takaaki; Fujiwara, Shinsuke; Imanaka, Tadayuki

    2013-01-01

    Amino acid catabolism in Thermococcales is presumed to proceed via three steps: oxidative deamination of amino acids by glutamate dehydrogenase (GDH) or aminotransferases, oxidative decarboxylation by 2-oxoacid:ferredoxin oxidoreductases (KOR), and hydrolysis of acyl-coenzyme A (CoA) by ADP-forming acyl-CoA synthetases (ACS). Here, we performed a genetic examination of enzymes involved in Glu catabolism in Thermococcus kodakarensis. Examination of amino acid dehydrogenase activities in cell extracts of T. kodakarensis KUW1 (ΔpyrF ΔtrpE) revealed high NADP-dependent GDH activity, along with lower levels of NAD-dependent activity. NADP-dependent activities toward Gln/Ala/Val/Cys and an NAD-dependent threonine dehydrogenase activity were also detected. In KGDH1, a gene disruption strain of T. kodakarensis GDH (Tk-GDH), only threonine dehydrogenase activity was detected, indicating that all other activities were dependent on Tk-GDH. KGDH1 could not grow in a medium in which growth was dependent on amino acid catabolism, implying that Tk-GDH is the only enzyme that can discharge the electrons (to NADP+/NAD+) released from amino acids in their oxidation to 2-oxoacids. In a medium containing excess pyruvate, KGDH1 displayed normal growth, but higher degrees of amino acid catabolism were observed compared to those for KUW1, suggesting that Tk-GDH functions to suppress amino acid oxidation and plays an anabolic role under this condition. We further constructed disruption strains of 2-oxoglutarate:ferredoxin oxidoreductase and succinyl-CoA synthetase. The two strains displayed growth defects in both media compared to KUW1. Succinate generation was not observed in these strains, indicating that the two enzymes are solely responsible for Glu catabolism among the multiple KOR and ACS enzymes in T. kodakarensis. PMID:23435976

  3. Oxidation of nonionic detergents by cytochrome P450 enzymes.

    PubMed

    Hosea, N A; Guengerich, F P

    1998-05-15

    Nonionic phenolic detergents are commonly used in the purification of membrane-associated proteins. Triton N-101 was shown to be oxidized by NADPH-fortified human liver microsomes and recombinant human cytochromes P450 (P450). Oxidation was monitored using HPLC and the fluorescence properties of Triton N-101 and other alkylphenol ethoxylate detergents, which are similar to those of anisole. Human liver microsomes and recombinantly expressed reconstituted P450 3A4-oxidized Triton N-101 in a concentration-dependent manner which could be inhibited by ketoconazole, a P450 3A4-selective inhibitor. Triton N-101 inhibition of testosterone oxidation by human liver microsomes was of a mixed nature but mainly non-competitive. Electrospray ionization mass spectrometry and tandem mass spectrometry indicated that the major product formed was hydroxylated on the alkyl moiety. Human liver microsomes also oxidized other Tritons (X-100 and X-114), Emulgens 911 and 913, and Tergitol NP-10 to a similar extent. P450s 1A1, 1A2, and 2C9 also oxidized Triton N-101 but to a lesser extent than P450 3A4. We conclude that Triton N-101 and similar nonionic detergents are oxidized by P450 3A4 and some other P450s. PMID:9606971

  4. Peroxisomal and mitochondrial fatty acid oxidation in human hepatoma cells (HEP-G2)

    SciTech Connect

    Watkins, P.A.; Blake, D.C. Jr.; Pedersen, J.I.

    1987-05-01

    Hep-G2 cells oxidize (1-/sup 14/C)palmitic acid (C16) and (1-/sup 14/C) lignoceric acid (C24) via beta-oxidation to /sup 14/CO/sub 2/ and water-soluble (WS) products. After perchloric acid precipitation and chloroform-methanol extraction, the WS fraction contained labelled oxidation products as well as fatty acyl CoA's, thus, measurement of WS radioactivity is an overestimate of Hep-G2 beta-oxidation. Alkaline hydrolysis of fatty acyl CoA's prior to measurement of WS radioactivity permits more accurate assessment of beta-oxidation. Using this method, the optimal pH for oxidation of each fatty acid to WS products by Hep-G2 cells was 9.0, while /sup 14/CO/sub 2/ production was maximal at pH 7.0. To determine the subcellular location of beta-oxidation, mitochondria (M) were partially separated from peroxisomes (P) on linear Nycodenz gradients. In Hep-G2 cells, oxidation of both C16 and C24 was observed mainly in fractions enriched in succinate dehydrogenase, an M marker enzyme. In contrast, both P and M of rat liver oxidized these fatty acids. However, when Hep-G2 cells were fractionated on discontinuous sucrose gradients, C16 and C24 were oxidized by both P and M fractions. They conclude that beta-oxidation of both long (C16) and very long (C24) chain fatty acids occurs in P as well as in M of Hep-G2 cells, and the present method reflects a more accurate and sensitive measurement of oxidation rates.

  5. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  6. Effects of Non-Natural Amino Acid Incorporation into the Enzyme Core Region on Enzyme Structure and Function

    PubMed Central

    Wong, H. Edward; Kwon, Inchan

    2015-01-01

    Techniques to incorporate non-natural amino acids (NNAAs) have enabled biosynthesis of proteins containing new building blocks with unique structures, chemistry, and reactivity that are not found in natural amino acids. It is crucial to understand how incorporation of NNAAs affects protein function because NNAA incorporation may perturb critical function of a target protein. This study investigates how the site-specific incorporation of NNAAs affects catalytic properties of an enzyme. A NNAA with a hydrophobic and bulky sidechain, 3-(2-naphthyl)-alanine (2Nal), was site-specifically incorporated at six different positions in the hydrophobic core of a model enzyme, murine dihydrofolate reductase (mDHFR). The mDHFR variants with a greater change in van der Waals volume upon 2Nal incorporation exhibited a greater reduction in the catalytic efficiency. Similarly, the steric incompatibility calculated using RosettaDesign, a protein stability calculation program, correlated with the changes in the catalytic efficiency. PMID:26402667

  7. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    SciTech Connect

    Huang, Li-shar; Sun, Gang; Cobessi, David; Wang, Andy C.; Shen,John T.; Tung, Eric Y.; Anderson, Vernon E.; Berry, Edward A.

    2005-12-01

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator of succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.

  8. Sialic acid attenuates puromycin aminonucleoside-induced desialylation and oxidative stress in human podocytes.

    PubMed

    Pawluczyk, Izabella Z A; Ghaderi Najafabadi, Maryam; Patel, Samita; Desai, Priyanka; Vashi, Dipti; Saleem, Moin A; Topham, Peter S

    2014-01-15

    Sialoglycoproteins make a significant contribution to the negative charge of the glomerular anionic glycocalyx-crucial for efficient functioning of the glomerular permselective barrier. Defects in sialylation have serious consequences on podocyte function leading to the development of proteinuria. The aim of the current study was to investigate potential mechanisms underlying puromycin aminonucleosisde (PAN)-induced desialylation and to ascertain whether they could be corrected by administration of free sialic acid. PAN treatment of podocytes resulted in a loss of sialic acid from podocyte proteins. This was accompanied by a reduction, in the expression of sialyltransferases and a decrease in the key enzyme of sialic acid biosynthesis N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). PAN treatment also attenuated expression of the antioxidant enzyme superoxide dismutase (mSOD) and concomitantly increased the generation of superoxide anions. Sialic acid supplementation rescued podocyte protein sialylation and partially restored expression of sialyltransferases. Sialic acid also restored mSOD mRNA expression and quenched the oxidative burst. These data suggest that PAN-induced aberrant sialylation occurs as a result of modulation of enzymes involved sialic acid metabolism some of which are affected by oxidative stress. These data suggest that sialic acid therapy not only reinstates functionally important negative charge but also acts a source of antioxidant activity. PMID:24200502

  9. The smoking-associated oxidant hypothiocyanous acid induces endothelial nitric oxide synthase dysfunction.

    PubMed

    Talib, Jihan; Kwan, Jair; Suryo Rahmanto, Aldwin; Witting, Paul K; Davies, Michael J

    2014-01-01

    Smokers have an elevated risk of cardiovascular disease but the origin(s) of this increased risk are incompletely defined. Considerable evidence supports an accumulation of the oxidant-generating enzyme MPO (myeloperoxidase) in the inflamed artery wall, and smokers have high levels of SCN(-), a preferred MPO substrate, with this resulting in HOSCN (hypothiocyanous acid) formation. We hypothesized that this thiol-specific oxidant may target the Zn(2+)-thiol cluster of eNOS (endothelial nitric oxide synthase), resulting in enzyme dysfunction and reduced formation of the critical signalling molecule NO•. Decreased NO• bioavailability is an early and critical event in atherogenesis, and HOSCN-mediated damage to eNOS may contribute to smoking-associated disease. In the present study it is shown that exposure of isolated eNOS to HOSCN or MPO/H2O2/SCN(-) decreased active dimeric eNOS levels, and increased inactive monomer and Zn(2+) release, compared with controls, HOCl (hypochlorous acid)- or MPO/H2O2/Cl(-)-treated samples. eNOS activity was increasingly compromised by MPO/H2O2/Cl(-) with increasing SCN(-) concentrations. Exposure of HCAEC (human coronary artery endothelial cell) lysates to pre-formed HOSCN, or MPO/H2O2/Cl(-) with increasing SCN(-), increased eNOS monomerization and Zn(2+) release, and decreased activity. Intact HCAECs exposed to HOCl and HOSCN had decreased eNOS activity and NO2(-)/NO3(-) formation (products of NO• decomposition), and increased free Zn(2+). Exposure of isolated rat aortic rings to HOSCN resulted in thiol loss, and decreased eNOS activity and cGMP levels. Overall these data indicate that high SCN(-) levels, as seen in smokers, can increase HOSCN formation and enhance eNOS dysfunction in human endothelial cells, with this potentially contributing to increased atherogenesis in smokers. PMID:24112082

  10. Oxidative bioelectrocatalysis: From natural metabolic pathways to synthetic metabolons and minimal enzyme cascades.

    PubMed

    Minteer, Shelley D

    2016-05-01

    Anodic bioelectrodes for biofuel cells are more complex than cathodic bioelectrodes for biofuel cells, because laccase and bilirubin oxidase can individually catalyze four electron reduction of oxygen to water, whereas most anodic enzymes only do a single two electron oxidation of a complex fuel (i.e. glucose oxidase oxidizing glucose to gluconolactone while generating 2 electrons of the total 24 electrons), so enzyme cascades are typically needed for complete oxidation of the fuel. This review article will discuss the lessons learned from natural metabolic pathways about multi-step oxidation and how those lessons have been applied to minimal or artificial enzyme cascades. This article is part of a Special Issue entitled Biodesign for Bioenergetics - the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26334845

  11. Nitric Oxide Measurement from Purified Enzymes and Estimation of Scavenging Activity by Gas Phase Chemiluminescence Method.

    PubMed

    Kumari, Aprajita; Gupta, Alok Kumar; Mishra, Sonal; Wany, Aakanksha; Gupta, Kapuganti Jagadis

    2016-01-01

    In plants, nitrate reductase (NR) is a key enzyme that produces nitric oxide (NO) using nitrite as a substrate. Lower plants such as algae are shown to have nitric oxide synthase enzyme and higher plants contain NOS activity but enzyme responsible for NO production in higher plants is subjected to debate. In plant nitric oxide research, it is very important to measure NO very precisely in order to determine its functional role. A significant amount of NO is being scavenged by various cell components. The net NO production depends in production minus scavenging. Here, we describe methods to measure NO from purified NR and inducible nitric oxide synthase from mouse (iNOS), we also describe a method of measure NO scavenging by tobacco cell suspensions and mitochondria from roots. PMID:27094408

  12. Interrelated effects of dihomo-γ-linolenic and arachidonic acids, and sesamin on hepatic fatty acid synthesis and oxidation in rats.

    PubMed

    Ide, Takashi; Ono, Yoshiko; Kawashima, Hiroshi; Kiso, Yoshinobu

    2012-12-14

    Interrelated effects of dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined in rats. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin), containing 100 g/kg of maize oil or fungal oil rich in DGLA or ARA for 16 d. Among the groups fed sesamin-free diets, oils rich in DGLA or ARA, especially the latter, compared with maize oil strongly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin, irrespective of the type of fat, reduced the parameters of lipogenic enzymes except for malic enzyme. The type of dietary fat was rather irrelevant in affecting hepatic fatty acid oxidation among rats fed the sesamin-free diets. Sesamin increased the activities of enzymes involved in fatty acid oxidation in all groups of rats given different fats. The extent of the increase depended on the dietary fat type, and the values became much higher with a diet containing sesamin and oil rich in ARA in combination than with a diet containing lignan and maize oil. Analyses of mRNA levels revealed that the combination of sesamin and oil rich in ARA compared with the combination of lignan and maize oil markedly increased the gene expression of various peroxisomal fatty acid oxidation enzymes but not mitochondrial enzymes. The enhancement of sesamin action on hepatic fatty acid oxidation was also confirmed with oil rich in DGLA but to a lesser extent. PMID:22370182

  13. Enzymes of respiratory iron oxidation. Progress report, March 1990--November 1991

    SciTech Connect

    Blake, R. II

    1991-12-31

    This report focuses on the progress made in three areas of research concerned with enzymes involved in respiratory iron oxidation. The three areas are as follows: development of an improved procedure for the routine large scale culture of iron oxidizing chemolithotrophs based on the in-situ electrolysis of the soluble iron in the growth medium; to perform iron oxidation kinetic studies on whole cells using the oxygen electrode; and to identify, separate, purify, and characterize the individual cellular components.

  14. Role of CoA and acetyl-CoA in regulating cardiac fatty acid and glucose oxidation.

    PubMed

    Abo Alrob, Osama; Lopaschuk, Gary D

    2014-08-01

    CoA (coenzyme A) and its derivatives have a critical role in regulating cardiac energy metabolism. This includes a key role as a substrate and product in the energy metabolic pathways, as well as serving as an allosteric regulator of cardiac energy metabolism. In addition, the CoA ester malonyl-CoA has an important role in regulating fatty acid oxidation, secondary to inhibiting CPT (carnitine palmitoyltransferase) 1, a key enzyme involved in mitochondrial fatty acid uptake. Alterations in malonyl-CoA synthesis by ACC (acetyl-CoA carboxylase) and degradation by MCD (malonyl-CoA decarboxylase) are important contributors to the high cardiac fatty acid oxidation rates seen in ischaemic heart disease, heart failure, obesity and diabetes. Additional control of fatty acid oxidation may also occur at the level of acetyl-CoA involvement in acetylation of mitochondrial fatty acid β-oxidative enzymes. We find that acetylation of the fatty acid β-oxidative enzymes, LCAD (long-chain acyl-CoA dehydrogenase) and β-HAD (β-hydroxyacyl-CoA dehydrogenase) is associated with an increase in activity and fatty acid oxidation in heart from obese mice with heart failure. This is associated with decreased SIRT3 (sirtuin 3) activity, an important mitochondrial deacetylase. In support of this, cardiac SIRT3 deletion increases acetylation of LCAD and β-HAD, and increases cardiac fatty acid oxidation. Acetylation of MCD is also associated with increased activity, decreases malonyl-CoA levels and an increase in fatty acid oxidation. Combined, these data suggest that malonyl-CoA and acetyl-CoA have an important role in mediating the alterations in fatty acid oxidation seen in heart failure. PMID:25110000

  15. Immobilization of Enzymes by Electrochemical and Chemical Oxidative Polymerization of L-DOPA to Fabricate Amperometric Biosensors and Biofuel Cells.

    PubMed

    Dai, Mengzhen; Sun, Lingen; Chao, Long; Tan, Yueming; Fu, Yingchun; Chen, Chao; Xie, Qingji

    2015-05-27

    Electrochemical/chemical oxidative synthesis and biosensing/biofuel cell applications of poly(L-DOPA) (PD) are studied versus polydopamine (PDA) as a recent hotspot biomaterial. The enzyme electrode developed by coelectrodeposition of PD and glucose oxidase (GOx), uricase, or tyrosinase shows biosensing performance superior to that of the corresponding PDA-based enzyme electrode. The chemical oxidative polymerization of L-DOPA (PDC) by NaAuCl4 in GOx-containing neutral aqueous solution is used to immobilize GOx and gold nanoparticles (AuNPs). The thus-prepared chitosan (CS)/GOx-PDC-AuNPs/Au(plate)/Au electrode working in the first-generation biosensing mode responds linearly to glucose concentration with a sensitivity of 152 μA mM(-1) cm(-2), which is larger than those of the CS/GOx-PDAC-AuNPs/Au(plate)/Au electrode, the CS/GOx-poly(3-anilineboronic acid) (PABA)-AuNPs/Au(plate)/Au electrode, and the most reported GOx-based enzyme electrodes. This PDC-based enzyme electrode also works well in the second-generation biosensing mode and as an excellent bioanode in biofuel cell construction, probably because PD as an amino acid polymer has the higher biocompatibility and the more favorable affinity to the enzyme than PDA. The PD material of great convenience in synthesis, outstanding biocompatibility for preparing high-performance bionanocomposites, and strong capability of multifunctional coatings on many surfaces may find wide applications in diversified fields including biotechnology and surface-coating. PMID:25938891

  16. Omega-3 fatty acids differentially modulate enzymatic anti-oxidant systems in skeletal muscle cells.

    PubMed

    da Silva, E P; Nachbar, R T; Levada-Pires, A C; Hirabara, S M; Lambertucci, R H

    2016-01-01

    During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual's performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells. PMID:26386577

  17. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.

    PubMed

    Marri, Lucia; Thieulin-Pardo, Gabriel; Lebrun, Régine; Puppo, Rémy; Zaffagnini, Mirko; Trost, Paolo; Gontero, Brigitte; Sparla, Francesca

    2014-02-01

    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) are two energy-consuming enzymes of the Calvin-Benson cycle, whose regulation is crucial for the global balance of the photosynthetic process under different environmental conditions. In oxygen phototrophs, GAPDH and PRK regulation involves the redox-sensitive protein CP12. In the dark, oxidized chloroplast thioredoxins trigger the formation of a GAPDH/CP12/PRK complex in which both enzyme activities are down-regulated. In this report, we show that free GAPDH (A4-isoform) and PRK are also inhibited by oxidants like H2O2, GSSG and GSNO. Both in the land plant Arabidopsis thaliana and in the green microalga Chlamydomonas reinhardtii, both enzymes can be glutathionylated as shown by biotinylated-GSSG assay and MALDI-ToF mass spectrometry. CP12 is not glutathionylated but homodisulfides are formed upon oxidant treatments. In Arabidopsis but not in Chlamydomonas, the interaction between oxidized CP12 and GAPDH provides full protection from oxidative damage. In both organisms, preformed GAPDH/CP12/PRK complexes are protected from GSSG or GSNO oxidation, and in Arabidopsis also from H2O2 treatment. Overall, the results suggest that the role of CP12 in oxygen phototrophs needs to be extended beyond light/dark regulation, and include protection of enzymes belonging to Calvin-Benson cycle from oxidative stress. PMID:24211189

  18. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  19. Lipidomics of oxidized polyunsaturated fatty acids

    PubMed Central

    Massey, Karen A.; Nicolaou, Anna

    2013-01-01

    Lipid mediators are produced from the oxidation of polyunsaturated fatty acids through enzymatic and free radical-mediated reactions. When subject to oxygenation via cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases, polyunsaturated fatty acids give rise to an array of metabolites including eicosanoids, docosanoids, and octadecanoids. These potent bioactive lipids are involved in many biochemical and signaling pathways, with inflammation being of particular importance. Moreover, because they are produced by more than one pathway and substrate, and are present in a variety of biological milieus, their analysis is not always possible with conventional assays. Liquid chromatography coupled to electrospray mass spectrometry offers a versatile and sensitive approach for the analysis of bioactive lipids, allowing specific and accurate quantitation of multiple species present in the same sample. Here we explain the principles of this approach to mediator lipidomics and present detailed protocols for the assay of enzymatically produced oxygenated metabolites of polyunsaturated fatty acids that can be tailored to answer biological questions or facilitate assessment of nutritional and pharmacological interventions. PMID:22940496

  20. Enzymic oxidation of unconjugated bilirubin by rat liver.

    PubMed Central

    Cardenas-Vazquez, R; Yokosuka, O; Billing, B H

    1986-01-01

    The presence of the enzyme bilirubin oxidase, which degrades bilirubin in vitro, was demonstrated in the liver. Subcellular-fractionation experiments indicate that bilirubin oxidase is located in both the inner and outer membranes of the mitochondria. The mean rate of the reaction is 1.57 +/- 0.38 (S.D.) nmol of bilirubin degraded/min per mg of mitochondrial protein (munits/mg of protein). With respect to the overall breakdown of bilirubin, the enzyme has a Km' of 136 microM-bilirubin and a Vmax.' of 9.13 munits/mg of protein. Its activity is influenced by the ionic strength of the media and is inhibited by KCN, thiol reagents, NADH and albumin. The enzyme is aerobic, and between 1 and 1.5 mol of O2 are consumed per mol of bilirubin degraded. The products of the reaction include propentdyopents. The hepatic bilirubin oxidase activity of the jaundiced Gunn-rat liver is not significantly different from that of the Sprague-Dawley rat, and it is not induced by beta-naphthoflavone. PMID:3790083

  1. Is Liver Enzyme Release Really Associated with Cell Necrosis Induced by Oxidant Stress?

    PubMed Central

    Contreras-Zentella, Martha Lucinda; Hernández-Muñoz, Rolando

    2016-01-01

    Hepatic diseases are a major concern worldwide. Increased specific plasma enzyme activities are considered diagnostic features for liver diseases, since enzymes are released into the blood compartment following the deterioration of the organ. Release of liver mitochondrial enzymes is considered strong evidence for hepatic necrosis, which is associated with an increased production of ROS, often leading to greater hepatic lipid peroxidation. Lipotoxic mediators and intracellular signals activated Kupffer cells, which provides evidence strongly suggesting the participation of oxidant stress in acute liver damage, inducing the progression of liver injury to chronic liver damage. Elevated transaminase activities are considered as an index marker of hepatotoxicity, linked to oxidant stress. However, a drastic increase of serum activities of liver enzyme markers ought not necessarily to reflect liver cell death. In fact, increased serum levels of cytoplasmic enzymes have readily been observed after partial hepatectomy (PH) in the regenerating liver of rats. In this regard, we are now showing that in vitro modifications of the oxidant status affect differentially the release of liver enzymes, indicating that this release is a strictly controlled event and not directly related to the onset of oxidant stress of the liver. PMID:26798419

  2. Detoxification of sulfur mustard by enzyme-catalyzed oxidation using chloroperoxidase.

    PubMed

    Popiel, S; Nawała, J

    2013-10-10

    One of the most interesting methods for the detoxification of sulfur mustard is enzyme-catalyzed oxidation. This study examined the oxidative destruction of a sulfur mustard by the enzyme chloroperoxidase (EC 1.11.1.10). Chloroperoxidase (CPO) belongs to a group of enzymes that catalyze the oxidation of various organic compounds by peroxide in the presence of a halide ion. The enzymatic oxidation reaction is affected by several factors: pH, presence or absence of chloride ion, temperature, the concentrations of hydrogen peroxide and enzyme and aqueous solubility of the substrate. The optimum reaction conditions were determined by analyzing the effects of all factors, and the following conditions were selected: solvent, Britton-Robinson buffer (pH=3) with tert-butanol (70:30 v/v); CPO concentration, 16U/mL; hydrogen peroxide concentration, 40mmol/L; sodium chloride concentration, 20mmol/L. Under these reaction conditions, the rate constant for the reaction is 0.006s(-1). The Michaelis constant, a measure of the affinity of an enzyme for a particular substrate, is 1.87×10(-3)M for this system. The Michaelis constant for enzymes with a high affinity for their substrate is in the range of 10(-5) to 10(-4)M, so this value indicates that CPO does not have a very high affinity for sulfur mustard. PMID:24034427

  3. Polyphenols rich fraction from Geoffroea decorticans fruits flour affects key enzymes involved in metabolic syndrome, oxidative stress and inflammatory process.

    PubMed

    Costamagna, M S; Zampini, I C; Alberto, M R; Cuello, S; Torres, S; Pérez, J; Quispe, C; Schmeda-Hirschmann, G; Isla, M I

    2016-01-01

    Geoffroea decorticans (chañar), is widely distributed throughout Northwestern Argentina. Its fruit is consumed as flour, arrope or hydroalcoholic beverage. The chañar fruits flour was obtained and 39 phenolic compounds were tentatively identified by HPLC-MS/MS(n). The compounds comprised caffeic acid glycosides, simple phenolics (protocatechuic acid and vanillic acid), a glycoside of vanillic acid, p-coumaric acid and its phenethyl ester as well as free and glycosylated flavonoids. The polyphenols enriched extract with and without gastroduodenal digestion inhibited enzymes associated with metabolic syndrome, including α-amylase, α-glucosidase, lipase and hydroxyl methyl glutaryl CoA reductase. The polyphenolic extract exhibited antioxidant activity by different mechanisms and inhibited the pro-inflammatory enzymes (ciclooxygenase, lipoxygenase and phospholipase A2). The polyphenolic extract did not showed mutagenic effect by Ames test against Salmonella typhimurium TA98 and TA100 strains. These findings add evidence that chañar fruit flour may be considered a functional food with preventive properties against diseases associated with oxidative stress, inflammatory mediators and metabolic syndrome. PMID:26212988

  4. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes.

    PubMed

    Silva Macedo, Rodrigo; Peres Leal, Mayara; Braga, Tarcio Teodoro; Barioni, Éric Diego; de Oliveira Duro, Stephanie; Ratto Tempestini Horliana, Anna Carolina; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Farsky, Sandra Helena Poliselli; Lino-Dos-Santos-Franco, Adriana

    2016-01-01

    Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT) has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days) and treated or not with PBMT (1 and 5 h after each FA exposure). Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment. PMID:27293324

  5. Photobiomodulation Therapy Decreases Oxidative Stress in the Lung Tissue after Formaldehyde Exposure: Role of Oxidant/Antioxidant Enzymes

    PubMed Central

    Braga, Tarcio Teodoro; Barioni, Éric Diego; de Oliveira Duro, Stephanie; Ratto Tempestini Horliana, Anna Carolina; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Farsky, Sandra Helena Poliselli; Lino-dos-Santos-Franco, Adriana

    2016-01-01

    Formaldehyde is ubiquitous pollutant that induces oxidative stress in the lung. Several lung diseases have been associated with oxidative stress and their control is necessary. Photobiomodulation therapy (PBMT) has been highlighted as a promissory treatment, but its mechanisms need to be better investigated. Our objective was to evaluate the effects of PBMT on the oxidative stress generated by FA exposure. Male Wistar rats were submitted to FA exposure of 1% or vehicle (3 days) and treated or not with PBMT (1 and 5 h after each FA exposure). Rats treated only with laser were used as control. Twenty-four hours after the last FA exposure, we analyzed the effects of PBMT on the generation of nitrites and hydrogen peroxide, oxidative burst, glutathione reductase, peroxidase, S-transferase enzyme activities, the gene expression of nitric oxide, cyclooxygenase, superoxide dismutase, the catalase enzyme, and heme oxygenase-1. PBMT reduced the generation of nitrites and hydrogen peroxide and increased oxidative burst in the lung cells. A decreased level of oxidant enzymes was observed which were concomitantly related to an increased level of antioxidants. This study provides new information about the antioxidant mechanisms of PBMT in the lung and might constitute an important tool for lung disease treatment. PMID:27293324

  6. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  7. Ketol-acid reductoisomerase enzymes and methods of use

    DOEpatents

    Govindarajan, Sridhar; Li, Yougen; Liao, Der-Ing; O'Keefe, Daniel P.; Minshull, Jeremy Stephen; Rothman, Steven Cary; Tobias, Alexander Vincent

    2016-07-12

    Provided herein are polypeptides having ketol-acid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.

  8. Reduced capacity for fatty acid oxidation in rats with inherited susceptibility to diet-induced obesity.

    PubMed

    Ji, Hong; Friedman, Mark I

    2007-08-01

    High-fat, energy-dense diets promote weight gain and obesity in humans and other animals, but the mechanisms underlying such diet-induced obesity remain elusive. To determine whether a reduced capacity to oxidize fat is involved in the etiology of diet-induced obesity, we examined different measures of fatty acid oxidation in rats selectively bred for susceptibility (DIO) or resistance (DR) to dietary obesity before and after they were fed a high-fat diet and became obese. DIO rats eating a low-fat diet oxidized less dietary fatty acid in vivo and had lower levels of plasma ketone bodies during fasting compared with DR rats. Lean DIO rats fed a low-fat diet showed reduced liver messenger RNA expression of CD36, which transports fatty acids across cell membranes, and long-chain acyl-coenzyme A dehydrogenase (ACADL), which catalyzes the first step in the mitochondrial beta-oxidation of fatty acids. The deficit in CD36 and ACADL messenger RNA expression was also seen in obese DIO rats that had been eating a high-fat diet and, in addition, was accompanied by reduced expression of liver carnitine palmitoyl transferase I, the enzyme that mediates transport of long-chain fatty acids into mitochondria. No differences were found in the expression of liver enzymes involved in fat synthesis; however, in muscle, DIO rats fed the low-fat, but not high-fat, diet showed greater expression of diacylglycerol O-acyltransferase 1 and lipoprotein lipase than did DR rats. Expression of muscle enzymes involved in fatty acid oxidation was similar in the 2 groups. These findings provide a metabolic mechanism for the development of diet-induced obesity and thus suggest potential targets for intervention strategies to treat or prevent it. PMID:17618960

  9. Structure of the PLP Degradative Enzyme 2-Methyl-3-hydroxypyridine-5-carboxylic Acid Oxygenase from Mesorhizobium loti MAFF303099 and Its Mechanistic Implications

    SciTech Connect

    McCulloch, Kathryn M.; Mukherjee, Tathagata; Begley, Tadhg P.; Ealick, Steven E.; Cornell

    2009-06-12

    A vitamin B{sub 6} degradative pathway has recently been identified and characterized in Mesorhizobium loti MAFF303099. One of the enzymes on this pathway, 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase (MHPCO), is a flavin-dependent enzyme and catalyzes the oxidative ring-opening of 2-methyl-3-hydroxypyridine-5-carboxylic acid to form E-2-(acetamino-methylene)succinate. The gene for this enzyme has been cloned, and the corresponding protein has been overexpressed in Escherichia coli and purified. The crystal structure of MHPCO has been solved to 2.1 {angstrom} using SAD phasing with and without the substrate MHPC bound. These crystal structures provide insight into the reaction mechanism and suggest roles for active site residues in the catalysis of a novel oxidative ring-opening reaction.

  10. Effects of nitrogen dioxide and its acid mist on reactive oxygen species production and antioxidant enzyme activity in Arabidopsis plants.

    PubMed

    Liu, Xiaofang; Hou, Fen; Li, Guangke; Sang, Nan

    2015-08-01

    Nitrogen dioxide (NO2) is one of the most common and harmful air pollutants. To analyze the response of plants to NO2 stress, we investigated the morphological change, reactive oxygen species (ROS) production and antioxidant enzyme activity in Arabidopsis thaliana (Col-0) exposed to 1.7, 4, 8.5, and 18.8 mg/m(3) NO2. The results indicate that NO2 exposure affected plant growth and chlorophyll (Chl) content, and increased oxygen free radical (O2(-)) production rate in Arabidopsis shoots. Furthermore, NO2 elevated the levels of lipid peroxidation and protein oxidation, accompanied by the induction of antioxidant enzyme activities and change of ascorbate (AsA) and glutathione (GSH) contents. Following this, we mimicked nitric acid mist under experimental conditions, and confirmed the antioxidant mechanism of the plant to the stress. Our results imply that NO2 and its acid mist caused pollution risk to plant systems. During the process, increased ROS acted as a signal to induce a defense response, and antioxidant status played an important role in plant protection against NO2/nitric acid mist-caused oxidative damage. PMID:26257351

  11. Metabolic Transformation of Mevalonic Acid by an Enzyme System from Peas 1

    PubMed Central

    Pollard, C. J.; Bonner, J.; Haagen-Smit, A. J.; Nimmo, C. C.

    1966-01-01

    En enzyme system has been found in peas which converts mevalonic acid to isoprenoid compounds. Among the intermediates in such conversion are mevalonic acid-5-phosphate and pyrophosphate, isopentenyl pyrophosphate and dimethylallylpyrophosphate. Among the products formed by the system are the pyrophosphates of geraniol, farnesol, nerolidol and higher isoprenoid alcohols. PMID:16656233

  12. Mutagenicity screening of reaction products from the enzyme-catalyzed oxidation of phenolic pollutants

    SciTech Connect

    Massey, I.J.; Aitken, M.D.; Ball, L.M.; Heck, P.E. . Dept. of Environmental Sciences and Engineering)

    1994-11-01

    Phenol-oxidizing enzymes such as peroxidases, laccases, and mushroom polyphenol oxidase are capable of catalyzing the oxidation of a wide range of phenolic pollutants. Although the use of these enzymes in waste-treatment applications has been proposed by a number of investigators, little information exists on the toxicological characteristics of the oxidation products. The enzymes chloroperoxidase, horseradish peroxidase, lignin peroxidase, and mushroom polyphenol oxidase were used in this study to catalyze the oxidation of phenol, several mono-substituted phenols, and pentachlorophenol. Seventeen reaction mixtures representing selected combinations of enzyme and parent phenol were subjected to mutagenicity screening using the Ames Salmonella typhimurium plate incorporation assay; five selected mixtures were also incubated with the S9 microsomal preparation to detect the possible presence of promutagens. The majority of reaction mixtures tested were not directly mutagenic, and none of those tested with S9 gave a positive response. Such lack of mutagenicity of enzymatic oxidation products provides encouragement for establishing the feasibility of enzyme-catalyzed oxidation as a waste-treatment process. The only positive responses were obtained with reaction products from the lignin peroxidase-catalyzed oxidation of 2-nitrophenol and 4-nitrophenol. Clear positive responses were observed when strain TA100 was incubated with 2-nitrophenol reaction-product mixtures, and when strain TA98 was incubated with the 4-nitrophenol reaction mixture. Additionally, 2,4-dinitrophenol was identified as a reaction product from 4-nitrophenol, and preliminary evidence indicates that both 2,4- and 2,6-dinitrophenol are produced from the oxidation of 2-nitrophenol. Possible mechanism by which these nitration reactions occur are discussed.

  13. Regio- and stereodivergent antibiotic oxidative carbocyclizations catalysed by Rieske oxygenase-like enzymes

    NASA Astrophysics Data System (ADS)

    Sydor, Paulina K.; Barry, Sarah M.; Odulate, Olanipekun M.; Barona-Gomez, Francisco; Haynes, Stuart W.; Corre, Christophe; Song, Lijiang; Challis, Gregory L.

    2011-05-01

    Oxidative cyclizations, exemplified by the biosynthetic assembly of the penicillin nucleus from a tripeptide precursor, are arguably the most synthetically powerful implementation of C-H activation reactions in nature. Here, we show that Rieske oxygenase-like enzymes mediate regio- and stereodivergent oxidative cyclizations to form 10- and 12-membered carbocyclic rings in the key steps of the biosynthesis of the antibiotics streptorubin B and metacycloprodigiosin, respectively. These reactions represent the first examples of oxidative carbocyclizations catalysed by non-haem iron-dependent oxidases and define a novel type of catalytic activity for Rieske enzymes. A better understanding of how these enzymes achieve such remarkable regio- and stereocontrol in the functionalization of unactivated hydrocarbon chains will greatly facilitate the development of selective man-made C-H activation catalysts.

  14. OXIDATIVE DEGRADATION OF ORGANIC ACIDS CONJUGATED WITH SULFITE OXIDATION IN FLUE GAS DESULFURIZATION

    EPA Science Inventory

    The report gives results of a study of organic acid degradation conjugated with sulfite oxidation under flue gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times th...

  15. Seasonal upregulation of catabolic enzymes and fatty acid transporters in the flight muscle of migrating hoary bats, Lasiurus cinereus.

    PubMed

    McGuire, Liam P; Fenton, M Brock; Guglielmo, Christopher G

    2013-06-01

    The high energy density of fat, and limited capacity for carbohydrate storage suggest that migrating bats should fuel endurance flights with fat, as observed in migrating birds. Yet, cursorial mammals are unable to support high intensity exercise with fat stores. We hypothesized that migratory bats and birds have converged on similar physiological mechanisms to fuel endurance flight with fat. We predicted bats would seasonally upregulate fatty acid transport and oxidation pathways when migration demands were high. We studied seasonal variation in mitochondrial oxidative enzyme activities and fatty acid transport protein expression in the flight muscle of hoary bats (Lasiurus cinereus). Carnitine palmitoyl transferase, 3-hydroxyacyl-CoA dehydrogenase and citrate synthase activity increased during migration. There were no changes in expression of fatty acid translocase or plasma membrane fatty acid binding protein. Heart-type fatty acid binding protein expression increased 5-fold in migrating females, but did not vary seasonally in males. An aerial insectivore lifestyle, and the coincidence of migration and pregnancy may explain differences in transporter expression compared to previously studied birds. Overall, our results are consistent with seasonal upregulation of lipid metabolism and aerobic capacity, and confirm that migration poses distinct physiological challenges for bats. PMID:23545469

  16. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer.

    PubMed

    Qu, Q; Zeng, F; Liu, X; Wang, Q J; Deng, F

    2016-01-01

    Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention. PMID:27195673

  17. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer

    PubMed Central

    Qu, Q; Zeng, F; Liu, X; Wang, Q J; Deng, F

    2016-01-01

    Tumor cells exhibit unique metabolic adaptations that are increasingly viewed as potential targets for novel and specific cancer therapies. Among these targets, the carnitine palmitoyltransferase system is responsible for delivering the long-chain fatty acid (FA) from cytoplasm into mitochondria for oxidation, where carnitine palmitoyltransferase I (CPTI) catalyzes the rate-limiting step of fatty acid oxidation (FAO). With increasing understanding of the crucial role had by fatty acid oxidation in cancer, CPTI has received renewed attention as a pivotal mediator in cancer metabolic mechanism. CPTI activates FAO and fuels cancer growth via ATP and NADPH production, constituting an essential part of cancer metabolism adaptation. Moreover, CPTI also functionally intertwines with other key pathways and factors to regulate gene expression and apoptosis of cancer cell. Here, we summarize recent findings and update the current understanding of FAO and CPTI in cancer and provide theoretical basis for this enzyme as an emerging potential molecular target in cancer therapeutic intervention. PMID:27195673

  18. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model.

    PubMed

    Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali

    2015-01-21

    Enzyme catalysis is one of the most essential and striking processes among of all the complex processes that have evolved in living organisms. Enzymes are biological catalysts, which play a significant role in industrial applications as well as in medical areas, due to profound specificity, selectivity and catalytic efficiency. Refining catalytic efficiency of enzymes has become the most challenging job of enzyme engineering, into acidic and alkaline. Discrimination of acidic and alkaline enzymes through experimental approaches is difficult, sometimes impossible due to lack of established structures. Therefore, it is highly desirable to develop a computational model for discriminating acidic and alkaline enzymes from primary sequences. In this study, we have developed a robust, accurate and high throughput computational model using two discrete sample representation methods Pseudo amino acid composition (PseAAC) and split amino acid composition. Various classification algorithms including probabilistic neural network (PNN), K-nearest neighbor, decision tree, multi-layer perceptron and support vector machine are applied to predict acidic and alkaline with high accuracy. 10-fold cross validation test and several statistical measures namely, accuracy, F-measure, and area under ROC are used to evaluate the performance of the proposed model. The performance of the model is examined using two benchmark datasets to demonstrate the effectiveness of the model. The empirical results show that the performance of PNN in conjunction with PseAAC is quite promising compared to existing approaches in the literature so for. It has achieved 96.3% accuracy on dataset1 and 99.2% on dataset2. It is ascertained that the proposed model might be useful for basic research and drug related application areas. PMID:25452135

  19. Reshaping an enzyme binding pocket for enhanced and inverted stereoselectivity: use of smallest amino acid alphabets in directed evolution.

    PubMed

    Sun, Zhoutong; Lonsdale, Richard; Kong, Xu-Dong; Xu, Jian-He; Zhou, Jiahai; Reetz, Manfred T

    2015-10-12

    Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95 % library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme. PMID:25891639

  20. Metal enzymes in "impossible" microorganisms catalyzing the anaerobic oxidation of ammonium and methane.

    PubMed

    Reimann, Joachim; Jetten, Mike S M; Keltjens, Jan T

    2015-01-01

    Ammonium and methane are inert molecules and dedicated enzymes are required to break up the N-H and C-H bonds. Until recently, only aerobic microorganisms were known to grow by the oxidation of ammonium or methane. Apart from respiration, oxygen was specifically utilized to activate the inert substrates. The presumed obligatory need for oxygen may have resisted the search for microorganisms that are capable of the anaerobic oxidation of ammonium and of methane. However extremely slowly growing, these "impossible" organisms exist and they found other means to tackle ammonium and methane. Anaerobic ammonium-oxidizing (anammox) bacteria use the oxidative power of nitric oxide (NO) by forging this molecule to ammonium, thereby making hydrazine (N2H4). Nitrite-dependent anaerobic methane oxidizers (N-DAMO) again take advantage of NO, but now apparently disproportionating the compound into dinitrogen and dioxygen gas. This intracellularly produced dioxygen enables N-DAMO bacteria to adopt an aerobic mechanism for methane oxidation.Although our understanding is only emerging how hydrazine synthase and the NO dismutase act, it seems clear that reactions fully rely on metal-based catalyses known from other enzymes. Metal-dependent conversions not only hold for these key enzymes, but for most other reactions in the central catabolic pathways, again supported by well-studied enzymes from model organisms, but adapted to own specific needs. Remarkably, those accessory catabolic enzymes are not unique for anammox bacteria and N-DAMO. Close homologs are found in protein databases where those homologs derive from (partly) known, but in most cases unknown species that together comprise an only poorly comprehended microbial world. PMID:25707470

  1. Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization

    PubMed Central

    2015-01-01

    A nanoporous membrane system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzyme complex system was demonstrated. Genetically modified glycosylation enzyme, OleD Loki variant, was immobilized onto nanometer-scale electrodes at the pore entrances/exits of anodic aluminum oxide membranes through His6-tag affinity binding. The enzyme activity was assessed in two reactions—a one-step “reverse” sugar nucleotide formation reaction (UDP-Glc) and a two-step sequential sugar nucleotide formation and sugar nucleotide-based glycosylation reaction. For the one-step reaction, enzyme specific activity of 6–20 min–1 on membrane supports was seen to be comparable to solution enzyme specific activity of 10 min–1. UDP-Glc production efficiencies as high as 98% were observed at a flow rate of 0.5 mL/min, at which the substrate residence time over the electrode length down pore entrances was matched to the enzyme activity rate. This flow geometry also prevented an unwanted secondary product hydrolysis reaction, as observed in the test homogeneous solution. Enzyme utilization increased by a factor of 280 compared to test homogeneous conditions due to the continuous flow of fresh substrate over the enzyme. To mimic enzyme complex systems, a two-step sequential reaction using OleD Loki enzyme was performed at membrane pore entrances then exits. After UDP-Glc formation at the entrance electrode, aglycon 4-methylumbelliferone was supplied at the exit face of the reactor, affording overall 80% glycosylation efficiency. The membrane platform showed the ability to be regenerated with purified enzyme as well as directly from expression crude, thus demonstrating a single-step immobilization and purification process. PMID:25025628

  2. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  3. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry.

    PubMed

    Muhlisin; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-05-01

    This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus) were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw and cooked samples. The activity of catalase (CAT) in the thigh meat was higher than that of the breast meat of three Korean native chickens and the broiler, respectively. The activity of glutathione peroxidase (GPx) in the uncooked thigh meat of three Korean native chickens was higher than that of the breasts. The breast meat of Woorimatdak and Pekin duck had higher superoxide dismutase (SOD) activity than the others, while only the thigh meat of Pekin duck had the highest activity. Cooking inactivated CAT and decreased the activity of GPx and SOD. The thigh meat of Woorimatdak, White Leghorn, Yeonsan ogye and Hyunin black contained more total iron than the breast meat of those breeds. The heme-iron lost during cooking ranged from 3.2% to 14.8%. It is noted that the thigh meat had higher thiobarbituric acid reactive substances values than the breast in all chicken breeds. Though Woorimatdak showed higher antioxidant enzyme activity and lower released-iron percentage among Korean native chickens, no differences were found on lipid oxidation. We confirm that the dark meat of poultry exhibited higher antioxidant enzyme activity and contained more iron than the white meat. PMID:26954148

  4. Antioxidant Enzyme Activity, Iron Content and Lipid Oxidation of Raw and Cooked Meat of Korean Native Chickens and Other Poultry

    PubMed Central

    Muhlisin; Utama, Dicky Tri; Lee, Jae Ho; Choi, Ji Hye; Lee, Sung Ki

    2016-01-01

    This study was conducted to observe antioxidant enzyme activity, iron content and lipid oxidation of Korean native chickens and other poultry. The breast and thigh meat of three Korean native chicken breeds including Woorimatdak, Hyunin black and Yeonsan ogye, and three commercial poultry breeds including the broiler, White Leghorn and Pekin duck (Anasplatyrhyncos domesticus) were studied. The analyses of the antioxidant enzymes activity, iron content and lipid oxidation were performed in raw and cooked samples. The activity of catalase (CAT) in the thigh meat was higher than that of the breast meat of three Korean native chickens and the broiler, respectively. The activity of glutathione peroxidase (GPx) in the uncooked thigh meat of three Korean native chickens was higher than that of the breasts. The breast meat of Woorimatdak and Pekin duck had higher superoxide dismutase (SOD) activity than the others, while only the thigh meat of Pekin duck had the highest activity. Cooking inactivated CAT and decreased the activity of GPx and SOD. The thigh meat of Woorimatdak, White Leghorn, Yeonsan ogye and Hyunin black contained more total iron than the breast meat of those breeds. The heme-iron lost during cooking ranged from 3.2% to 14.8%. It is noted that the thigh meat had higher thiobarbituric acid reactive substances values than the breast in all chicken breeds. Though Woorimatdak showed higher antioxidant enzyme activity and lower released-iron percentage among Korean native chickens, no differences were found on lipid oxidation. We confirm that the dark meat of poultry exhibited higher antioxidant enzyme activity and contained more iron than the white meat. PMID:26954148

  5. A Condensing Enzyme from the Seeds of Lesquerella fendleri That Specifically Elongates Hydroxy Fatty Acids1

    PubMed Central

    Moon, Hangsik; Smith, Mark A.; Kunst, Ljerka

    2001-01-01

    Lesquerella fendleri seed oil contains up to 60% hydroxy fatty acids, nearly all of which is the 20-carbon hydroxy fatty acid lesquerolic acid (d-14-hydroxyeicos-cis-11-enoic acid). Previous work suggested that lesquerolic acid in L. fendleri was formed by the elongation of the 18-carbon hydroxy fatty acid, ricinoleic acid. To identify a gene encoding the enzyme involved in hydroxy fatty acid elongation, an L. fendleri genomic DNA library was screened using the coding region of the Arabidopsis Fatty Acid Elongation1 gene as a probe. A gene, LfKCS3, with a high sequence similarity to known very long-chain fatty acid condensing enzymes, was isolated. LfKCS3 has a 2,062-bp open reading frame interrupted by two introns, which encodes a polypeptide of 496 amino acids. LfKCS3 transcripts accumulated only in the embryos of L. fendleri and first appeared in the early stages of development. Fusion of the LfKCS3 promoter to the uidA reporter gene and expression in transgenic Arabidopsis resulted in a high level of β-glucuronidase activity exclusively in developing embryos. Seeds of Arabidopsis plants transformed with LfKCS3 showed no change in their very long-chain fatty acid content. However, when these Arabidopsis plants were crossed with the transgenic plants expressing the castor oleate 12-hydroxylase, significant amounts of 20-carbon hydroxy fatty acids accumulated in the seed, indicating that the LfKCS3 condensing enzyme specifically catalyzes elongation of 18-carbon hydroxy fatty acids. PMID:11743108

  6. Redox and Chemical Activities of the Hemes in the Sulfur Oxidation Pathway Enzyme SoxAX*

    PubMed Central

    Bradley, Justin M.; Marritt, Sophie J.; Kihlken, Margaret A.; Haynes, Kate; Hemmings, Andrew M.; Berks, Ben C.; Cheesman, Myles R.; Butt, Julea N.

    2012-01-01

    SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (Em) at pH 7.0 of approximately +210, −340, and −400 mV for the His/Met, His/Cys−, and active site His/CysS−-ligated heme, respectively. Exposing SoxAX to S2O42−, a substrate analog with Em ∼−450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (Em ∼−1140 mV), allows cyanide to displace the cysteine persulfide (CysS−) ligand to the active site heme. This provides the first evidence for the dissociation of CysS− that has been proposed as a key event in SoxAX catalysis. PMID:23060437

  7. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    SciTech Connect

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2013-02-28

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate {beta}-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.

  8. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    PubMed Central

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  9. The catalytic machinery of a key enzyme in amino Acid biosynthesis.

    PubMed

    Viola, Ronald E; Faehnle, Christopher R; Blanco, Julio; Moore, Roger A; Liu, Xuying; Arachea, Buenafe T; Pavlovsky, Alexander G

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  10. An Adenosine Triphosphate-Phosphate Exchange Catalyzed by a Soluble Enzyme Couple Inhibited by Uncouplers of Oxidative Phosphorylation

    PubMed Central

    Allison, William S.; Benitez, Lita V.

    1972-01-01

    The sulfenic acid form of glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), which is an acyl phosphatase, will catalyze an acetyl phosphate-Pi exchange reaction. This exchange reaction is reversibly inhibited by the uncouplers of oxidative phosphorylation, 2,4-dinitrophenol, m-Cl carbonylcyanide-phenylhydrazone, pentachlorophenol, and 5-chloro-3-tert-butyl-2′-chloro-4′-nitrosalicylanalide, and is irreversibly inhibited by cyanide and dicumarol. An ATP-Pi exchange reaction similar to that catalyzed by mitochondria can be simulated by a system composed of oxidized glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase (EC 2.7.1.28), 3-phosphoglycerate, ATP, 32Pi, and appropriate cofactors. The ATP-Pi exchange is inhibited by uncouplers of oxidative phosphorylation. Higher concentrations of uncouplers will also inhibit the ATPase reaction catalyzed by the coupled enzyme system. The exchange reactions catalyzed by the sulfenic acid form of glyceraldehyde-3-phosphate are consistent with a sulfenyl carboxylate intermediate. On the basis of these observations, a reaction scheme has been postulated for covalent coupling in oxidative phosphorylation that includes a sulfenyl carboxylate as a nonphosphorylated, high energy intermediate and an acyl phosphate as a phosphorylated, high energy intermediate. PMID:4507619

  11. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna. PMID:24747829

  12. Molecular Basis for Enzymatic Sulfite Oxidation -- HOW THREE CONSERVED ACTIVE SITE RESIDUES SHAPE ENZYME ACTIVITY

    SciTech Connect

    Bailey, Susan; Rapson, Trevor; Johnson-Winters, Kayunta; Astashkin, Andrei; Enemark, John; Kappler, Ulrike

    2008-11-10

    Sulfite dehydrogenases (SDHs) catalyze the oxidation and detoxification of sulfite to sulfate, a reaction critical to all forms of life. Sulfite-oxidizing enzymes contain three conserved active site amino acids (Arg-55, His-57, and Tyr-236) that are crucial for catalytic competency. Here we have studied the kinetic and structural effects of two novel and one previously reported substitution (R55M, H57A, Y236F) in these residues on SDH catalysis. Both Arg-55 and His-57 were found to have key roles in substrate binding. An R55M substitution increased Km(sulfite)(app) by 2-3 orders of magnitude, whereas His-57 was required for maintaining a high substrate affinity at low pH when the imidazole ring is fully protonated. This effect may be mediated by interactions of His-57 with Arg-55 that stabilize the position of the Arg-55 side chain or, alternatively, may reflect changes in the protonation state of sulfite. Unlike what is seen for SDHWT and SDHY236F, the catalytic turnover rates of SDHR55M and SDHH57A are relatively insensitive to pH (~;;60 and 200 s-1, respectively). On the structural level, striking kinetic effects appeared to correlate with disorder (in SDHH57A and SDHY236F) or absence of Arg-55 (SDHR55M), suggesting that Arg-55 and the hydrogen bonding interactions it engages in are crucial for substrate binding and catalysis. The structure of SDHR55M has sulfate bound at the active site, a fact that coincides with a significant increase in the inhibitory effect of sulfate in SDHR55M. Thus, Arg-55 also appears to be involved in enabling discrimination between the substrate and product in SDH.

  13. Carnitine transport and fatty acid oxidation.

    PubMed

    Longo, Nicola; Frigeni, Marta; Pasquali, Marzia

    2016-10-01

    Carnitine is essential for the transfer of long-chain fatty acids across the inner mitochondrial membrane for subsequent β-oxidation. It can be synthesized by the body or assumed with the diet from meat and dairy products. Defects in carnitine biosynthesis do not routinely result in low plasma carnitine levels. Carnitine is accumulated by the cells and retained by kidneys using OCTN2, a high affinity organic cation transporter specific for carnitine. Defects in the OCTN2 carnitine transporter results in autosomal recessive primary carnitine deficiency characterized by decreased intracellular carnitine accumulation, increased losses of carnitine in the urine, and low serum carnitine levels. Patients can present early in life with hypoketotic hypoglycemia and hepatic encephalopathy, or later in life with skeletal and cardiac myopathy or sudden death from cardiac arrhythmia, usually triggered by fasting or catabolic state. This disease responds to oral carnitine that, in pharmacological doses, enters cells using the amino acid transporter B(0,+). Primary carnitine deficiency can be suspected from the clinical presentation or identified by low levels of free carnitine (C0) in the newborn screening. Some adult patients have been diagnosed following the birth of an unaffected child with very low carnitine levels in the newborn screening. The diagnosis is confirmed by measuring low carnitine uptake in the patients' fibroblasts or by DNA sequencing of the SLC22A5 gene encoding the OCTN2 carnitine transporter. Some mutations are specific for certain ethnic backgrounds, but the majority are private and identified only in individual families. Although the genotype usually does not correlate with metabolic or cardiac involvement in primary carnitine deficiency, patients presenting as adults tend to have at least one missense mutation retaining residual activity. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler

  14. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. PMID:24176356

  15. GFP Reporter Screens for the Engineering of Amino Acid Degrading Enzymes from Libraries Expressed in Bacteria

    PubMed Central

    Paley, Olga; Agnello, Giulia; Cantor, Jason; Yoo, Tae Hyun; Georgiou, George; Stone, Everett

    2014-01-01

    There is significant interest in engineering human amino acid degrading enzymes as non-immunogenic chemotherapeutic agents. We describe a high-throughput fluorescence activated cell sorting (FACS) assay for detecting the catalytic activity of amino acid degrading enzymes in bacteria, at the single cell level. This assay relies on coupling the synthesis of the GFP reporter to the catalytic activity of the desired amino acid degrading enzyme in an appropriate E. coli genetic background. The method described here allows facile screening of much larger libraries (106–107) than was previously possible. We demonstrate the application of this technique in the screening of libraries of bacterial and human asparaginases and also for the catalytic optimization of an engineered human methionine gamma lyase. PMID:23423887

  16. Enzyme-entrapped mesoporous silica for treatment of uric acid disorders.

    PubMed

    Muthukoori, Shanthini; Narayanan, Naagarajan; Chandra, Manuguri Sesha Sarath; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2013-05-01

    Gout is an abnormality in the body resulting in the accumulation of uric acid mainly in joints. Dissolution of uric acid crystals into soluble allantoin by the enzyme uricase might provide a better alternative for the treatment of gout. This work aims to investigate the feasibility of a transdermal patch loaded with uricase for better patient compliance. Mesoporous silica (SBA-15) was chosen as the matrix for immobilisation of uricase. Highly oriented mesoporous SBA-15 was synthesized, characterized and uricase was physisorbed in the mesoporous material. The percentage adsorption and release of enzyme in borate buffer was monitored. The release followed linear kinetics and greater than 80% enzyme activity was retained indicating the potential of this system as an effective enzyme immobilization matrix. The enzyme permeability was studied with Wistar rat skin and human cadaver skin. It was found that in case of untreated rat skin 10% of enzyme permeated through skin in 100 h. The permeation increased by adding permeation enhancer (combination of oleic acid in propylene glycol (OA in PG)). The permeation enhancement was studied under two concentrations of OA in PG (1%, 5%) in both rat and human cadaver skin and it was found that 1% OA in PG showed better result in rat skin and 5% OA in PG showed good results in human cadaver skin. PMID:23802423

  17. BACE1 activity impairs neuronal glucose oxidation: rescue by beta-hydroxybutyrate and lipoic acid

    PubMed Central

    Findlay, John A.; Hamilton, David L.; Ashford, Michael L. J.

    2015-01-01

    Glucose hypometabolism and impaired mitochondrial function in neurons have been suggested to play early and perhaps causative roles in Alzheimer's disease (AD) pathogenesis. Activity of the aspartic acid protease, beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1), responsible for beta amyloid peptide generation, has recently been demonstrated to modify glucose metabolism. We therefore examined, using a human neuroblastoma (SH-SY5Y) cell line, whether increased BACE1 activity is responsible for a reduction in cellular glucose metabolism. Overexpression of active BACE1, but not a protease-dead mutant BACE1, protein in SH-SY5Y cells reduced glucose oxidation and the basal oxygen consumption rate, which was associated with a compensatory increase in glycolysis. Increased BACE1 activity had no effect on the mitochondrial electron transfer process but was found to diminish substrate delivery to the mitochondria by inhibition of key mitochondrial decarboxylation reaction enzymes. This BACE1 activity-dependent deficit in glucose oxidation was alleviated by the presence of beta hydroxybutyrate or α-lipoic acid. Consequently our data indicate that raised cellular BACE1 activity drives reduced glucose oxidation in a human neuronal cell line through impairments in the activity of specific tricarboxylic acid cycle enzymes. Because this bioenergetic deficit is recoverable by neutraceutical compounds we suggest that such agents, perhaps in conjunction with BACE1 inhibitors, may be an effective therapeutic strategy in the early-stage management or treatment of AD. PMID:26483636

  18. Star block-copolymers: enzyme-inspired catalysts for oxidation of alcohols in water.

    PubMed

    Mugemana, Clément; Chen, Ba-Tian; Bukhryakov, Konstantin V; Rodionov, Valentin

    2014-07-25

    A number of fluorous amphiphilic star block-copolymers containing a tris(benzyltriazolylmethyl)amine motif have been prepared. These polymers assembled into well-defined nanostructures in water, and their mode of assembly could be controlled by changing the composition of the polymer. The polymers were used for enzyme-inspired catalysis of alcohol oxidation. PMID:24912078

  19. Enzyme Regulation in Crassulacean Acid Metabolism Photosynthesis : Studies on Thioredoxin-Linked Enzymes of KalanchoE daigremontiana.

    PubMed

    Hutcheson, S W; Buchanan, B B

    1983-07-01

    Fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) were identified and purified from the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana. FBPase and SBPase showed respective molecular weights of 180,000 and 76,000, and exhibited immunological cross-reactivity with their counterparts from chloroplasts of C(3) (spinach) and C(4) (corn) plants. Based on Western blot analysis, FBPase was composed of four identical 45,000-dalton subunits and SBPase of two identical 38,000-dalton subunits. Immunological evidence, together with physical properties, indicated that both enzymes were of chloroplast origin.Kalanchoë FBPase and SBPase could be activated by thioredoxin f reduced chemically by dithiothreitol or photochemically by a reconstituted Kalanchoë ferredoxin/thioredoxin system. Both enzymes were activated synergistically by reduced thioredoxin f and thier respective substrates.Kalanchoë FBPase could be partially activated by Mg(2+) at concentrations greater than 10 millimolar; however, such activation was considerably less than that observed in the presence of reduced thioredoxin and Ca(2+), especially in the pH range between 7.8 and 8.3. In contrast to FBPase, Kalanchoë SBPase exhibited an absolute requirement for a dithiol such as reduced thioredoxin irrespective of Mg(2+) concentration. However, like FBPase, increased Mg(2+) concentrations enhanced the thioredoxin-linked activation of this enzyme.In conjunction with these studies, an NADP-linked malate dehydrogenase (NADP-MDH) was identified in cell-free preparations of Kalanchoë leaves which required reduced thioredoxin m for activity.These results indicate that Kalanchoë FBPase, SBPase, and NADP-MDH share physical and regulatory properties with their equivalents in C(3) and C(4) plants. In contrast to previous evidence, all three enzymes appear to have the capacity to be photoregulated in chloroplasts of CAM plants, thereby providing a means for the

  20. Nucleotide sequencing and characterization of the genes encoding benzene oxidation enzymes of Pseudomonas putida

    SciTech Connect

    Irie, S.; Doi, S.; Yorifuji, T.; Takagi, M.; Yano, K.

    1987-11-01

    The nucleotide sequence of the genes from Pseudomonas putida encoding oxidation of benzene to catechol was determined. Five open reading frames were found in the sequence. Four corresponding protein molecules were detected by a DNA-directed in vitro translation system. Escherichia coli cells containing the fragment with the four open reading frames transformed benzene to cis-benzene glycol, which is an intermediate of the oxidation of benzene to catechol. The relation between the product of each cistron and the components of the benzene oxidation enzyme system is discussed.

  1. Production of Cell Wall Hydrolyzing Enzymes by Barley Aleurone Layers in Response to Gibberellic Acid 1

    PubMed Central

    Taiz, Lincoln; Honigman, William A.

    1976-01-01

    The cell walls of barley (Hordeum vulgare var. Himalaya) aleurone layers undergo extensive degradation during the tissue's response to gibberellic acid. Previous work had shown that these cell walls consist almost entirely of arabinoxylan. In this study we show that gibberellic acid stimulates endo-β-1,4-xylanase activity in isolated aleurone layers. In addition, gibberellic acid enhances the activity of two glycosidases: β-xylopyranosidase and α-arabinofuranosidase. No gibberellic acid-stimulated cellulase activity was detected. Germination studies showed a similar pattern of enzyme development in intact seeds. Images PMID:16659683

  2. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid.

    PubMed

    McGinn, S M; Beauchemin, K A; Coates, T; Colombatto, D

    2004-11-01

    Methane emitted from the livestock sector contributes to greenhouse gas (GHG) emissions. Understanding the effects of diet on enteric methane production can help refine GHG emission inventories and identify viable GHG reduction strategies. Our study focused on measuring methane and carbon dioxide emissions, total-tract digestibility, and ruminal fermentation in growing beef cattle fed a diet supplemented with various additives or ingredients. Two experiments, each designed as a 4 x 4 Latin square with 21-d periods, were conducted using 16 Holstein steers (initial BW 311.6 +/- 12.3 kg). In Exp. 1, treatments were control (no additive), monensin (Rumensin, Elanco Animal Health, Indianapolis, IN; 33 mg/kg DM), sunflower oil (400 g/d, approximately 5% of DMI), and proteolytic enzyme (Protex 6-L, Genencor Int., Inc., CA; 1 mL/kg DM). In Exp. 2, treatments were control (no additive), Procreatin-7 yeast (Prince Agri Products, Inc., Quincy, IL; 4 g/d), Levucell SC yeast (Lallemand, Inc., Rexdale, Ontario, Canada; 1 g/d), and fumaric acid (Bartek Ingredients Inc., Stoney Creek, Ontario, Canada; 80 g/d). The basal diet consisted of 75% barley silage, 19% steam-rolled barley grain, and 6% supplement (DM basis). Four large chambers (two animals per chamber) were equipped with lasers and infrared gas analyzers to measure methane and carbon dioxide, respectively, for 3 d each period. Total-tract digestibility was determined using chromic oxide. Approximately 6.5% of the GE consumed was lost in the form of methane emissions from animals fed the control diet. In Exp. 1, sunflower oil decreased methane emissions by 22% (P = 0.001) compared with the control, whereas monensin (P = 0.44) and enzyme had no effect (P = 0.82). However, oil decreased (P = 0.03) the total-tract digestibility of NDF by 20%. When CH(4) emissions were corrected for differences in energy intake, the loss of GE to methane was decreased by 21% (P = 0.002) using oil and by 9% (P = 0.09) using monensin. In Exp. 2

  3. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    PubMed

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. PMID:26580151

  4. Serum Antioxidative Enzymes Levels and Oxidative Stress Products in Age-Related Cataract Patients

    PubMed Central

    Chang, Dong; Zhang, Xuefei; Rong, Shengzhong; Sha, Qian; Liu, Peipei; Han, Tao; Pan, Hongzhi

    2013-01-01

    Purpose. To investigate the activity of antioxidative enzymes and the products of oxidative stress in patients with age-related cataracts and compare the findings with those in healthy control subjects. Method. Sixty patients with age-related cataract and sixty healthy controls of matched age and gender were included in this study. Serum samples were obtained to detect the antioxidative enzymes of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px), and oxidation degradation products of malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), conjugated diene (CD), advanced oxidation protein products (AOPP), protein carbonyl (PC), and 8-hydroxydeoxyguanosine (8-OHdG). Results. Serum SOD, GSH-Px, and CAT activities in cataract group were significantly decreased as compared to the control subjects (P < 0.05). The levels of MDA, 4-HNE, and CD in cataract patients were significantly higher than those in the control subjects (P < 0.05, P < 0.01). Cataract patients had higher levels of 8-OHdG, AOPP, and PC with respect to the comparative group of normal subjects (P < 0.01). And there was no statistical significance in concentration of antioxidative enzymes and oxidative stress products in patients with different subtype cataract. Conclusions. Oxidative stress is an important risk factor in the development of age-related cataract, and augmentation of the antioxidant defence systems may be of benefit to prevent or delay cataractogenesis. PMID:23781296

  5. Defective (U-14 C) palmitic acid oxidation in Duchenne muscular dystrophy

    SciTech Connect

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased (U-14 C) palmitic acid oxidation. (1-14 C) palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation.

  6. Role of Malic Enzyme during Fatty Acid Synthesis in the Oleaginous Fungus Mortierella alpina

    PubMed Central

    Hao, Guangfei; Chen, Haiqin; Wang, Lei; Gu, Zhennan; Song, Yuanda; Zhang, Hao

    2014-01-01

    The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi. PMID:24532075

  7. Evidence for Physical Association of Mitochondrial Fatty Acid Oxidation and Oxidative Phosphorylation Complexes

    PubMed Central

    Wang, Yudong; Mohsen, Al-Walid; Mihalik, Stephanie J.; Goetzman, Eric S.; Vockley, Jerry

    2010-01-01

    Fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are key pathways involved in cellular energetics. Reducing equivalents from FAO enter OXPHOS at the level of complexes I and III. Genetic disorders of FAO and OXPHOS are among the most frequent inborn errors of metabolism. Patients with deficiencies of either FAO or OXPHOS often show clinical and/or biochemical findings indicative of a disorder of the other pathway. In this study, the physical and functional interactions between these pathways were examined. Extracts of isolated rat liver mitochondria were subjected to blue native polyacrylamide gel electrophoresis (BNGE) to separate OXPHOS complexes and supercomplexes followed by Western blotting using antisera to various FAO enzymes. Extracts were also subjected to sucrose density centrifugation and fractions analyzed by BNGE or enzymatic assays. Several FAO enzymes co-migrated with OXPHOS supercomplexes in different patterns in the gels. When palmitoyl-CoA was added to the sucrose gradient fractions containing OXPHOS supercomplexes in the presence of potassium cyanide, cytochrome c was reduced. Cytochrome c reduction was completely blocked by myxothiazol (a complex III inhibitor) and 3-mercaptopropionate (an inhibitor of the first step of FAO), but was only partially inhibited by rotenone (a complex I inhibitor). Although palmitoyl-CoA and octanoyl-CoA provided reducing equivalents to OXPHOS-containing supercomplex fractions, no accumulation of their intermediates was detected. In contrast, short branched acyl-CoA substrates were not metabolized by OXPHOS-containing supercomplex fractions. These data provide evidence of a multifunctional FAO complex within mitochondria that is physically associated with OXPHOS supercomplexes and promotes metabolic channeling. PMID:20663895

  8. Structure and mechanism of ORF36, an Aminosugar Oxidizing Enzyme in Everninomicin Biosynthesis†

    PubMed Central

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T. M.

    2010-01-01

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitrosugar, l-evernitrose, analogs of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically-generated thymidine diphosphate (TDP)-l-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-l-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of 18O2 establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products, and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 Å resolution x-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-coA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36. PMID:20866105

  9. Structure and Mechanism of ORF36, an Amino Sugar Oxidizing Enzyme in Everninomicin Biosynthesis

    SciTech Connect

    Vey, Jessica L.; Al-Mestarihi, Ahmad; Hu, Yunfeng; Funk, Michael A.; Bachmann, Brian O.; Iverson, T.M.

    2010-12-07

    Everninomicin is a highly modified octasaccharide that belongs to the orthosomycin family of antibiotics and possesses potent Gram-positive antibiotic activity, including broad-spectrum efficacy against multidrug resistant enterococci and Staphylococcus aureus. Among its distinctive structural features is a nitro sugar, L-evernitrose, analogues of which decorate a variety of natural products. Recently, we identified a nitrososynthase enzyme encoded by orf36 from Micromonospora carbonacea var. africana that mediates the flavin-dependent double oxidation of synthetically generated thymidine diphosphate (TDP)-L-epi-vancosamine to the corresponding nitroso sugar. Herein, we utilize a five-enzyme in vitro pathway both to verify that ORF36 catalyzes oxidation of biogenic TDP-L-epi-vancosamine and to determine whether ORF36 exhibits catalytic competence for any of its biosynthetic progenitors, which are candidate substrates for nitrososynthases in vivo. Progenitors solely undergo single-oxidation reactions and terminate in the hydroxylamine oxidation state. Performing the in vitro reactions in the presence of {sup 18}O{sub 2} establishes that molecular oxygen, rather than oxygen from water, is incorporated into ORF36-generated intermediates and products and identifies an off-pathway product that correlates with the oxidation product of a progenitor substrate. The 3.15 {angstrom} resolution X-ray crystal structure of ORF36 reveals a tetrameric enzyme that shares a fold with acyl-CoA dehydrogenases and class D flavin-containing monooxygenases, including the nitrososynthase KijD3. However, ORF36 and KijD3 have unusually open active sites in comparison to these related enzymes. Taken together, these studies map substrate determinants and allow the proposal of a minimal monooxygenase mechanism for amino sugar oxidation by ORF36.

  10. Pathways for oxidation of low density lipoprotein by myeloperoxidase: tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine.

    PubMed

    Heinecke, J W

    1997-01-01

    Many lines of evidence implicate oxidation of low density lipoprotein (LDL) in the pathogenesis of atherosclerosis, a chronic inflammatory disease. The physiologically relevant mechanisms have not been identified, but phagocytic white cells may play an important role because macrophage-rich lesions characterize the disorder. Recent studies have shown that myeloperoxidase, a heme enzyme secreted only by phagocytes, is present in human atherosclerotic tissue. The enzyme is a potent catalyst of LDL oxidation in vitro, it co-localizes with macrophages in lesions, and it generates products that are detectable in atherosclerotic plaque. These findings suggest that myeloperoxidase may promote LDL oxidation in the artery wall. This article reviews the enzyme's ability to generate a range of oxidants, including tyrosyl radical, reactive aldehydes, hypochlorous acid and molecular chlorine. These products have the potential to damage host molecules as well as microbes, suggesting a mechanism that may contribute to atherosclerotic vascular disease. PMID:9259996

  11. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Carrère, Séverine; Nampoothiri, K Madhavan; Lesjean, Sarah; Brown, Alistair K; Brennan, Patrick J; Minnikin, David E; Locht, Camille; Besra, Gurdyal S

    2002-06-01

    Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensing assay using purified recombinant KasA, palmitoyl-AcpM and malonyl-AcpM, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys(171), His(311), Lys(340) and His(345) to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulenin, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA. PMID:12023885

  12. Non-P450 aldehyde oxidizing enzymes: the aldehyde dehydrogenase superfamily

    PubMed Central

    Marchitti, Satori A; Brocker, Chad; Stagos, Dimitrios; Vasiliou, Vasilis

    2009-01-01

    Background Aldehydes are highly reactive molecules. While several non-P450 enzyme systems participate in their metabolism, one of the most important is the aldehyde dehydrogenase (ALDH) superfamily, composed of NAD(P)+-dependent enzymes that catalyze aldehyde oxidation. Objective This article presents a review of what is currently known about each member of the human ALDH superfamily including the pathophysiological significance of these enzymes. Methods Relevant literature involving all members of the human ALDH family was extensively reviewed, with the primary focus on recent and novel findings. Conclusion To date, 19 ALDH genes have been identified in the human genome and mutations in these genes and subsequent inborn errors in aldehyde metabolism are the molecular basis of several diseases, including Sjögren-Larsson syndrome, type II hyperprolinemia, γ-hydroxybutyric aciduria and pyridoxine-dependent seizures. ALDH enzymes also play important roles in embryogenesis and development, neurotransmission, oxidative stress and cancer. Finally, ALDH enzymes display multiple catalytic and non-catalytic functions including ester hydrolysis, antioxidant properties, xenobiotic bioactivation and UV light absorption. PMID:18611112

  13. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria

    PubMed Central

    van Hijum, Sacha A. F. T.; Kralj, Slavko; Ozimek, Lukasz K.; Dijkhuizen, Lubbert; van Geel-Schutten, Ineke G. H.

    2006-01-01

    Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, biochemical, and structural information on sucrase genes and enzymes from various LAB and their fructan and α-glucan products is reviewed. The GS and FS enzymes are both glycoside hydrolase enzymes that act on the same substrate (sucrose) and catalyze (retaining) transglycosylation reactions that result in polysaccharide formation, but they possess completely different protein structures. GS enzymes (family GH70) are large multidomain proteins that occur exclusively in LAB. Their catalytic domain displays clear secondary-structure similarity with α-amylase enzymes (family GH13), with a predicted permuted (β/α)8 barrel structure for which detailed structural and mechanistic information is available. Emphasis now is on identification of residues and regions important for GS enzyme activity and product specificity (synthesis of α-glucans differing in glycosidic linkage type, degree and type of branching, glucan molecular mass, and solubility). FS enzymes (family GH68) occur in both gram-negative and gram-positive bacteria and synthesize β-fructan polymers with either β-(2→6) (inulin) or β-(2→1) (levan) glycosidic bonds. Recently, the first high-resolution three-dimensional structures have become available for FS (levansucrase) proteins, revealing a rare five-bladed β-propeller structure with a deep, negatively charged central pocket. Although these structures have provided detailed mechanistic insights, the structural features in FS enzymes dictating the synthesis of either β-(2→6) or β-(2→1) linkages, degree and type of branching, and fructan molecular mass remain to be identified. PMID:16524921

  14. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  15. Biological Monitoring of 3-Phenoxybenzoic Acid in Urine by an Enzyme -Linked Immunosorbent Assay

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was employed for determination of the pyrethroid biomarker, 3-phenoxybenzoic acid (3-PBA) in human urine samples. The optimized coating antigen concentration was 0.5 ng/mL with a dilution of 1:4000 for the 3-PBA antibody and 1:6...

  16. A Study of Krebs Citric Acid Cycle Enzymes in Rice Larvae (Corcyrace phalonica St) During Mycotoxicosis

    PubMed Central

    Hegde, Umashashi C.; Shanmugasundaram, E. R. B.

    1967-01-01

    Krebs citric acid cycle enzymes have been studied in rice moth larvae (Corcyra cephalonica St) reared in groundnut meal control and contaminated with A. flavus, wheat bran control and wheat bran contaminated with A. flavus and also wheat bran containing aflatoxin. It was observed that the activity of enzymes other than succinic oxidase, succinic dehydrogenase and isocitric dehydrogenase were reduced significantly in larvae reared in contaminated groundnut meal when compared with the control. In the case of larvae reared in contaminated wheat bran all the enzymes except succinic oxidase were inhibited when compared to the control larvae. It was also observed that the inhibition of these enzymes is greater in the case of larvae reared in contaminated wheat bran than in contaminated groundnut meal. The higher toxicity of wheat bran has been discussed. PMID:4229935

  17. Acid ceramidase and the treatment of ceramide diseases: The expanding role of enzyme replacement therapy.

    PubMed

    Schuchman, Edward H

    2016-09-01

    Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease. PMID:27155573

  18. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    PubMed Central

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to succinate and carbon dioxide. A variety of other phenoxyacetates and alpha-ketoacids can be used by the enzyme, but the greatest catalytic efficiencies were found using 2,4-D and alpha-ketoglutarate. The enzyme possesses multiple essential histidine residues, whereas catalytically essential cysteine and lysine groups do not appear to be present. PMID:8565907

  19. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria.

    PubMed

    Haas, Simon; Hain, Nicole; Raoufi, Mohammad; Handschuh-Wang, Stephan; Wang, Tao; Jiang, Xin; Schönherr, Holger

    2015-03-01

    We introduce a new hyaluronidase-responsive amphiphilic block copolymer system, based on hyaluronic acid (HYA) and polycaprolactone (PCL), that can be assembled into polymersomes by an inversed solvent shift method. By exploiting the triggered release of encapsulated dye molecules, these HYA-block-PCL polymersomes lend themselves as an autonomous sensing system for the detection of the presence of hyaluronidase, which is produced among others by the pathogenic bacterium Staphylococcus aureus. The synthesis of the enzyme-responsive HYA-block-PCL block copolymers was carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition of ω-azide-terminated PCL and ω-alkyne-functionalized HYA. The structure of the HYA-block-PCL assemblies and their enzyme-triggered degradation and concomitant cargo release were investigated by dynamic light scattering, fluorescence spectroscopy, confocal laser-scanning microscopy, scanning and transmission electron, and atomic force microscopy. As shown, a wide range of reporter dye molecules as well as antimicrobials can be encapsulated into the vesicles during formation and are released upon the addition of hyaluronidase. PMID:25654495

  20. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress.

    PubMed

    Reuland, Danielle J; Khademi, Shadi; Castle, Christopher J; Irwin, David C; McCord, Joe M; Miller, Benjamin F; Hamilton, Karyn L

    2013-03-01

    Increased production of reactive oxygen species has been implicated in the pathogenesis of cardiovascular disease (CVD), and enhanced endogenous antioxidants have been proposed as a mechanism for regulating redox balance. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a transcriptional regulator of phase II antioxidant enzymes, and activation of Nrf2 has been suggested to be an important step in attenuating oxidative stress associated with CVD. A well-defined combination of five widely studied medicinal plants derived from botanical sources (Bacopa monniera, Silybum marianum (milk thistle), Withania somnifera (Ashwagandha), Camellia sinensis (green tea), and Curcuma longa (turmeric)) has been shown to activate Nrf2 and induce phase II enzymes through the antioxidant response element. The purpose of these experiments was to determine if treatment of cardiomyocytes with this phytochemical composition, marketed as Protandim, activates Nrf2, induces phase II detoxification enzymes, and protects cardiomyocytes from oxidant-induced apoptosis in a Nrf2-dependent manner. In cultured HL-1 cardiomyocytes, phytochemical treatment was associated with nuclear accumulation of Nrf2, significant induction of phase II enzymes, and concomitant protection against hydrogen peroxide-induced apoptosis. The protection against oxidant stress was abolished when Nrf2 was silenced by shRNA, suggesting that our phytochemical treatment worked through the Nrf2 pathway. Interestingly, phytochemical treatment was found to be a more robust activator of Nrf2 than oxidant treatment, supporting the use of the phytochemicals as a potential treatment to increase antioxidant defenses and protect heart cells against an oxidative challenge. PMID:23201694

  1. Abasic and oxidized abasic site reactivity in DNA: enzyme inhibition, cross-linking, and nucleosome catalyzed reactions.

    PubMed

    Greenberg, Marc M

    2014-02-18

    , an enzyme that is irreversibly inactivated, is vitally important in base excision repair and is overproduced in some tumor cells. Nucleosome core particles, the monomeric components that make up chromatin, accentuate the chemical instability of abasic lesions. In experiments using synthetic nucleosome core particles containing abasic sites, the histone proteins catalyze strand cleavage at the sites that incorporate these lesions. Furthermore, in the presence of the C4-AP lesion, strand scission is accompanied by modification of the histone protein. The reactivity of (oxidized) abasic lesions illustrates how seemingly simple nucleic acid modifications can have significant biochemical effects and may provide a chemical basis for the cytotoxicity of the chemotherapeutic agents that produce them. PMID:24369694

  2. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large intestine, bowel) before a colonoscopy (examination of the inside of the colon to check ...

  3. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  4. Inhibition of DNA methyltransferase or histone deacetylase protects retinal pigment epithelial cells from DNA damage induced by oxidative stress by the stimulation of antioxidant enzymes.

    PubMed

    Tokarz, Paulina; Kaarniranta, Kai; Blasiak, Janusz

    2016-04-01

    Epigenetic modifications influence DNA damage response (DDR). In this study we explored the role of DNA methylation and histone acetylation in DDR in cells challenged with acute or chronic oxidative stress. We used retinal pigment epithelial cells (ARPE-19), which natively are exposed to oxidative stress due to permanent exposure to light and high blood flow. We employed a DNA methyltransferase inhibitor - RG108 (RG), or a histone deacetylase inhibitor - valproic acid (VA). ARPE-19 cells were exposed to tert-butyl hydroperoxide, an acute oxidative stress inducer, or glucose oxidase, which slowly liberates low-doses of hydrogen peroxide in the presence of glucose, creating chronic conditions. VA and RG reduced level of intracellular reactive oxygen species and DNA damage in ARPE-19 cells in normal condition and in oxidative stress. This protective effect of VA and RG was associated with the up-regulated expression of antioxidant enzyme genes: CAT, GPx1, GPx4, SOD1 and SOD2. RG decreased the number of cells in G2/M checkpoint in response to chronic oxidative stress. Neither RG nor VA changed the DNA repair or apoptosis induced by oxidative stress. Therefore, certain epigenetic manipulations may protect ARPE-19 cells from detrimental effects of oxidative stress by modulation of antioxidative enzyme gene expression, which may be further explored in pharmacological studies on oxidative stress-related eye diseases. PMID:26899469

  5. Screening of Enzyme Biomarker for Nanotoxicity of Zinc Oxide in OREOCHROMIS MOSSAMBICUS

    NASA Astrophysics Data System (ADS)

    Subramanian, Periasamy; Bupesh, Giridharan

    2011-06-01

    Experiments were conducted to determine the effects of Zinc oxide (ZnO) nanoparticles (NPs) on fish models. Oreochromis mossambicus was orally administered with ZnO NPs (50-100 nm) once and its effects at five different concentrations (60 ppm-100 ppm) were observed for 12 days. Enzymatic assays were performed at every three days interval in the vital tissues of liver, gill, muscle and kidney. The defense enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S transferase (GST) exerted a dose dependent elevation up to 6 days. This hike then declines in higher concentrations and extended duration. Whereas the tissue damaging enzymes, glutamate oxaloacetic transaminase (GOT), glutamate pyruvic transaminase (GPT) and alkaline phosphatase (ALP) as well as the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) exhibited a dose and duration dependent increase until the end of the experiment. Among these enzymes, the antioxidant enzymes response to ZnO NP toxicity on fish showed notable continuous induction. This study demonstrates that antioxidant enzymes responses in O. mossambicus could be used as a biomarker for the early detection of nanotoxicity.

  6. The anodic oxidation of p-benzoquinone and maleic acid

    SciTech Connect

    Bock, C.; MacDougall, B.

    1999-08-01

    The oxidation of organics, in particular of p-benzoquinone and maleic acid, at high anodic potentials has been studied using a range of anode materials such as noble-metal-based oxides and antimony-doped tin oxides. The influence of the current density was also investigated showing that the oxidation rate of p-benzoquinone increased only slightly with increasing current density. The efficiency of the p-benzoquinone oxidation was found to depend on several properties of the anode material, not just its chemical nature. Furthermore, efficiencies for the partial oxidation of p-benzoquinone using specially prepared noble-metal-oxide-based anodes were found to be only somewhat smaller or even as high as those observed for PbO{sub 2} or antimony-doped tin oxide anodes, respectively. The anodic electrolysis of maleic acid solutions was found to decrease the activity of IrO{sub 2} for the oxidation of organic compounds. This was not observed when PbO{sup 2} was employed for the oxidation of maleic acid.

  7. Protocatechuic acid induces antioxidant/detoxifying enzyme expression through JNK-mediated Nrf2 activation in murine macrophages.

    PubMed

    Varì, Rosaria; D'Archivio, Massimo; Filesi, Carmelina; Carotenuto, Simona; Scazzocchio, Beatrice; Santangelo, Carmela; Giovannini, Claudio; Masella, Roberta

    2011-05-01

    Protocatechuic acid (PCA) is a main metabolite of anthocyanins, whose daily intake is much higher than that of other polyphenols. PCA has biological effects, e.g., it induces the antioxidant/detoxifying enzyme gene expression. This study was aimed at defining the molecular mechanism responsible for PCA-induced over-expression of glutathione (GSH) peroxidase (GPx) and GSH reductase (GR) in J774 A.1 macrophages. New evidence is provided that PCA increases GPx and GR expression by inducing C-JUN NH(2)-terminal kinase (JNK)-mediated phosphorylation of Nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2). RNA and proteins were extracted from cells treated with PCA (25 μM) for different time points. Quantitative real-time polymerase chain reaction and immunoblotting analyses showed a rapid increase in mRNA (>60%) and protein (>50%) for both the enzymes. This was preceded by the up-regulation of Nrf2, in terms of mRNA and protein, and by its significant activation as assessed by increased Nrf2 phosphorylation and nuclear translocation (+60%). By using specific kinase inhibitors and detecting the activated form, we showed that JNK was the main upstream kinase responsible for Nrf2 activation. Convincing evidence is provided of a causal link between PCA-induced Nrf2 activation and increased enzyme expression. By silencing Nrf2 and using a JNK inhibitor, enzyme enhancement was counteracted. Finally, with the ChIP assay, we demonstrated that PCA-activated Nrf2 specifically bound ARE sequences in enzyme gene promoters. Our study demonstrates for the first time that PCA improves the macrophage endogenous antioxidant potential by a mechanism in which JNK-mediated Nrf2 activation plays an essential role. This knowledge could contribute to novel diet-based approaches aimed at counteracting oxidative injury by reinforcing endogenous defences. PMID:20621462

  8. The participation of soluble factors in the omega-oxidation of fatty acids in the liver of the sheep

    SciTech Connect

    Hare, W.R.; Wahle, K.W. )

    1991-02-01

    The removal of soluble components from an ovine hepatic microsomal preparation decreased the omega-hydroxylation of dodecanoic and hexadecanoic acids. The results suggest that one or more soluble components play a role in the microsomal omega-hydroxylation of fatty acids. The possible roles in the reaction of catalase (known to stimulate the microsomal desaturations of fatty acids and alkylglycerols) and superoxide dismutase were investigated. The addition of these enzymes to the complete (but not the washed) microsomal preparation stimulated both the initial omega-hydroxylation reaction and the subsequent dehydrogenation reactions of the omega-oxidation pathway. The similarity of the effects of catalase and superoxide dismutase and stimulation of two different steps of the omega-oxidation pathway suggest that these agents are acting indirectly by removing active oxygen species rather than directly on the enzymes of microsomal fatty acid omega-hydroxylation.

  9. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  10. Non-enzymic phosphorylation of polyphosphoinositides and phosphatidic acid is catalysed by bivalent metal ions.

    PubMed Central

    Gumber, S C; Lowenstein, J M

    1986-01-01

    Phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate and phosphatidic acid undergo non-enzymic phosphorylation by ATP in the presence of bivalent metal ions. The non-enzymic reaction is more rapid in a mixture of water, chloroform and methanol than in water alone. Chemical evidence indicates that the product formed from phosphatidylinositol 4-phosphate is the corresponding 4-pyrophosphate. This product shows an RF value very close to that of phosphatidylinositol 4,5-bisphosphate on t.l.c. with an acidic solvent commonly used to characterize and measure the latter; however, it can be separated readily with an alkaline solvent. Chemical evidence indicates that the products formed from phosphatidylinositol 4,5-bisphosphate and phosphatidic acid are also pyrophosphates. Images Fig. 1. Fig. 2. PMID:3017309

  11. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles.

    PubMed

    Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K

    2007-01-01

    It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress. PMID:16644199

  12. The acid and enzymic hydrolysis of O-acetylated sialic acid residues from rabbit Tamm–Horsfall glycoprotein

    PubMed Central

    Neuberger, A.; Ratcliffe, Wendy A.

    1972-01-01

    Rabbit Tamm–Horsfall glycoprotein and bovine submaxillary glycoprotein were both found to contain sialic acid residues which are released at a slow rate by the standard conditions of acid hydrolysis. These residues are also resistant to neuraminidases from Vibrio cholerae and Clostridium perfringens. This behaviour was attributed to the presence of O-acetylated sialic acid, since the removal of O-acetyl groups by mild alkaline treatment normalized the subsequent release of sialic acid from rabbit Tamm–Horsfall glycoprotein by acid and by enzymic hydrolysis. Determination of the O-acetyl residues in rabbit Tamm–Horsfall glycoprotein indicated that on average two hydroxyl groups of sialic acid are O-acetylated, and these were located on the polyhydroxy side-chain of sialic acid or on C-4 and C-8. These findings confirm the assumption that certain O-acetylated forms of sialic acid are not substrates for bacterial neuraminidases. Several explanations have been suggested to explain the effect of O-acetylation of the side-chain on the rate of acidcatalysed hydrolysis of sialic acid residues. PMID:4349114

  13. A method for measuring fatty acid oxidation in C. elegans.

    PubMed

    Elle, Ida Coordt; Rødkær, Steven Vestergaard; Fredens, Julius; Færgeman, Nils Joakim

    2012-01-01

    The nematode C. elegans has during the past decade proven to be a valuable model organism to identify and examine molecular mechanisms regulating lipid storage and metabolism. While the primary approach has been to identify genes and pathways conferring alterations in lipid accumulation, only a few recent studies have recognized the central role of fatty acid degradation in cellular lipid homeostasis. In the present study, we show how complete oxidation of fatty acids can be determined in live C. elegans by examining oxidation of tritium-labeled fatty acids to tritiated H2O that can be measured by scintillation counting. Treating animals with sodium azide, an inhibitor of the electron transport chain, reduced (3)H2O production to approximately 15%, while boiling of animals prior to assay completely blocked the production of labeled water. We demonstrate that worms fed different bacterial strains exhibit different fatty acid oxidation rates. We show that starvation results in increased fatty acid oxidation, which is independent of the transcription factor NHR-49. On the contrary, fatty acid oxidation is reduced to approximately 70% in animals lacking the worm homolog of the insulin receptor, DAF-2. Hence, the present methodology can be used to delineate the role of specific genes and pathways in the regulation of β-oxidation in C. elegans. PMID:24058820

  14. The Effects of Ferulic Acid Against Oxidative Stress and Inflammation in Formaldehyde-Induced Hepatotoxicity.

    PubMed

    Gerin, Fethullah; Erman, Hayriye; Erboga, Mustafa; Sener, Umit; Yilmaz, Ahsen; Seyhan, Hatice; Gurel, Ahmet

    2016-08-01

    This study was designed to elucidate the protective effects of ferulic acid (FA) on formaldehyde-induced hepatotoxicity by measuring some routine biochemical parameters, cytokine levels, and oxidative stress-related parameters in addition to YKL-40 in male Wistar albino rats. Tissue superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) activities, and tissue malondialdehyde (MDA) levels were measured. Also, serum YKL-40, TNF-α, IL-6, IL-1β, IL-8, total protein, albumin, total bilirubin concentrations, and AST, ALT, ALP, and LDH activities were measured. Histological specimens were examined in light microscopy. Formaldehyde significantly increased tissue MDA, and serum cytokine levels and also decreased activities of antioxidant enzymes. FA treatment decreased MDA and cytokine levels and increased activities of antioxidant enzymes. FA also alleviated degeneration due to formaldehyde toxicity. We suggested that FA can be used as a promising hepatoprotective agent against formaldehyde toxicity because of the obvious beneficial effects on oxidative stress parameters. PMID:27235018

  15. Alpha-Lipoic Acid Attenuates Oxidative Damage in Organs After Sepsis.

    PubMed

    Petronilho, Fabricia; Florentino, Drielly; Danielski, Lucinéia Gainski; Vieira, Luiz Carlos; Martins, Maryane Modolon; Vieira, Andriele; Bonfante, Sandra; Goldim, Mariana Pereira; Vuolo, Francieli

    2016-02-01

    Sepsis progression is linked with the imbalance between reactive oxygen species and antioxidant enzymes. Thus, the aim of this study was to evaluate the effect of alpha-lipoic acid (ALA), a powerful antioxidant, in organs of rats submitted to sepsis. Male Wistar rats were subjected to sepsis by cecal ligation puncture (CLP) and treated with ALA or vehicle. After CLP (12 and 24 h), the myeloperoxidase (MPO) activity, protein and lipid oxidative damage, and antioxidant enzymes in the liver, kidney, heart, and lung were evaluated. ALA was effective in reducing MPO activity, lipid peroxidation in the liver, and protein carbonylation only in the kidney in 12 h after CLP. In 12 h, SOD activity increased in the kidney and CAT activity in the liver and kidney with ALA treatment. Thus, ALA was able to reduce the inflammation and oxidative stress in the liver and kidney after sepsis in rats. PMID:26431839

  16. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    PubMed

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains. PMID:20701974

  17. Oxidation of oleic acid monolayers at air/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Voss, L. F.; Bazerbashi, M. F.; Beekman, C. P.; Hadad, C. M.; Allen, H. C.

    2006-12-01

    Field studies of marine and continental aerosols find that fatty acid films form on aqueous tropospheric aerosols. Oxidation of the acyl chains is thought to be key to aerosol growth. Oxidation of oleic acid monolayers by ozone was studied to understand the fate of fat-coated aerosols from both fresh and salt water sources. Using vibrational sum frequency generation spectroscopy and reflection absorption infrared spectroscopy, we present a molecular-level investigation of fatty acid monolayers at the air-water and air- sodium chloride solution interface and explore reactions with atmospheric oxidants by these model systems. Using sum frequency generation spectroscopy coupled with a Langmuir trough, concurrent spectroscopic and thermodynamic data were collected to obtain a molecular picture of the monolayers. No substantial difference was observed between oxidation of monolayers spread on water and on 0.6 molar sodium chloride solutions. Results indicate that depending on the size of the aerosol and the extent of oxidation, the subsequent oxidation products may not remain at the surface of these films, but instead be dissolved in the aqueous sub-phase of the aerosol particle. Results also indicate that oxidation of oleic acid could produce monolayers containing species that have no oxidized acyl chains.

  18. The Nitric Acid Oxidation of Selected Alcohols and Ketones.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1985-01-01

    Shows that nitric acid can be used as a rapid, versatile, and economical oxidant for selected organic substances. The experiments (with background information, procedures, and results provided) require one three-hour laboratory period but could serve as open-ended projects since substrates not described could be oxidized. (JN)

  19. Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats.

    PubMed

    Macedo, Levy W; Cararo, José H; Maravai, Soliany G; Gonçalves, Cinara L; Oliveira, Giovanna M T; Kist, Luiza W; Guerra Martinez, Camila; Kurtenbach, Eleonora; Bogo, Maurício R; Hipkiss, Alan R; Streck, Emilio L; Schuck, Patrícia F; Ferreira, Gustavo C

    2016-10-01

    Carnosine (β-alanyl-L-histidine) is an imidazole dipeptide synthesized in excitable tissues of many animals, whose biochemical properties include carbonyl scavenger, anti-oxidant, bivalent metal ion chelator, proton buffer, and immunomodulating agent, although its precise physiological role(s) in skeletal muscle and brain tissues in vivo remain unclear. The aim of the present study was to investigate the in vivo effects of acute carnosine administration on various aspects of brain bioenergetics of young Wistar rats. The activity of mitochondrial enzymes in cerebral cortex was assessed using a spectrophotometer, and it was found that there was an increase in the activities of complexes I-III and II-III and succinate dehydrogenase in carnosine-treated rats, as compared to vehicle-treated animals. However, quantitative real-time RT-PCR (RT-qPCR) data on mRNA levels of mitochondrial biogenesis-related proteins (nuclear respiratory factor 1 (Nrf1), peroxisome proliferator-activated receptor-γ coactivator 1-α (Ppargc1α), and mitochondrial transcription factor A (Tfam)) were not altered significantly and therefore suggest that short-term carnosine administration does not affect mitochondrial biogenesis. It was in agreement with the finding that immunocontent of respiratory chain complexes was not altered in animals receiving carnosine. These observations indicate that acute carnosine administration increases the respiratory chain and citric acid cycle enzyme activities in cerebral cortex of young rats, substantiating, at least in part, a neuroprotector effect assigned to carnosine against oxidative-driven disorders. PMID:26476839

  20. Acetic acid oxidation and hydrolysis in supercritical water

    SciTech Connect

    Meyer, J.C.; Marrone, P.A.; Tester, J.W.

    1995-09-01

    Acetic acid (CH{sub 3}COOH) hydrolysis and oxidation in supercritical water were examined from 425--600 C and 246 bar at reactor residence times of 4.4 to 9.8 s. Over the range of conditions studied, acetic acid oxidation was globally 0.72 {+-} 0.15 order in acetic acid and 0.27 {+-} 0.15 order in oxygen to a 95% confidence level, with an activation energy of 168 {+-} 21 kJ/mol, a preexponential factor of 10{sup 9.9{+-}1.7}, and an induction time of about 1.5 s at 525 C. Isothermal kinetic measurements at 550 C over the range 160 to 263 bar indicated that pressure or density did not affect the rate of acetic acid oxidation as much as was previously observed in the oxidation of hydrogen or carbon monoxide in supercritical water. Major products of acetic acid oxidation in supercritical water are carbon dioxide, carbon monoxide, methane, and hydrogen. Trace amounts of propenoic acid were occasionally detected. Hydrolysis or hydrothermolysis in the absence of oxygen resulted in approximately 35% conversion of acetic acid at 600 C, 246 bar, and 8-s reactor residence time. Regression of the limited hydrolysis runs assuming a reaction rate first-order in organic gave a global rate expression with a preexponential factor of 10{sup 4.4{+-}1.1} and an activation energy of 94 {+-} 17 kJ/mol.

  1. Ghrelin reduces hepatic mitochondrial fatty acid beta oxidation.

    PubMed

    Rigault, C; Le Borgne, F; Georges, B; Demarquoy, J

    2007-04-01

    Ghrelin is a 28-amino-acid peptide secreted during starvation by gastric cells. Ghrelin physiologically induces food intake and seems to alter lipid and glucid metabolism in several tissues such as adipose tissue and liver. Liver has a key position in lipid metabolism as it allows the metabolic orientation of fatty acids between oxidation and esterification. We investigated the effects of peripheral ghrelin administration on 2 crucial parameters of fatty acid oxidation: the levocarnitine (L-carnitine)-dependent entry of the fatty acids in the mitochondria and the mitochondrial fatty acid oxidation. Ghrelin was either given to rats prior to the hepatocyte preparation and culture or used to treat hepatocytes prepared from control animals. Direct incubation of ghrelin to raw hepatocytes did not induce any change in the studied parameters. In hepatocytes prepared from 3 nmol ghrelin-treated rats, a 44% reduction of the mitochondrial fatty acid oxidation while no alteration of the L-carnitine-related parameters were observed. These results suggested (a) that ghrelin has no direct effect on liver, and (b) that when administrated to a whole organism, ghrelin may alter the lipid metabolism and the energy balance through a marked decrease in liver fatty acid oxidation. PMID:17556859

  2. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid.

    PubMed

    Taura, F; Morimoto, S; Shoyama, Y

    1996-07-19

    We identified a unique enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid (CBDA) in Cannabis sativa L. (CBDA strain). The enzyme, named CBDA synthase, was purified to apparent homogeneity by a four-step procedure: ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite. The active enzyme consists of a single polypeptide with a molecular mass of 74 kDa and a pI of 6.1. The NH2-terminal amino acid sequence of CBDA synthase is similar to that of Delta1-tetrahydrocannabinolic-acid synthase. CBDA synthase does not require coenzymes, molecular oxygen, hydrogen peroxide, and metal ion cofactors for the oxidocyclization reaction. These results indicate that CBDA synthase is neither an oxygenase nor a peroxidase and that the enzymatic cyclization does not proceed via oxygenated intermediates. CBDA synthase catalyzes the formation of CBDA from cannabinerolic acid as well as cannabigerolic acid, although the kcat for the former (0.03 s-1) is lower than that for the latter (0.19 s-1). Therefore, we conclude that CBDA is predominantly biosynthesized from cannabigerolic acid rather than cannabinerolic acid. PMID:8663284

  3. Does single-amino-acid replacement work in favor of or against improvement of the thermostability of immobilized enzyme?

    PubMed Central

    Koizumi, J; Zhang, M; Imanaka, T; Aiba, S

    1990-01-01

    Thermostabilities of kanamycin nucleotidyltransferase and of its mutants that became thermostable, in the free state, because of single-amino-acid replacements were studied after immobilization of the enzymes on cyanogen bromide-activated Sephadex G-200 particles. Lys in place of Gln at position 102 decreased the thermostability of the immobilized enzyme, whereas replacement with other amino acids enhanced it. PMID:2176451

  4. Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron.

    PubMed Central

    McCarthy, R E; Kotarski, S F; Salyers, A A

    1985-01-01

    When Bacteroides thetaiotaomicron is grown in medium which contains polygalacturonic acid (PGA) as the sole carbon source, two different polygalacturonases are produced: a PGA lyase (EC 4.2.2.2) and a PGA hydrolase (EC 3.2.1.15). Both enzymes are cell associated. The PGA hydrolase appears to be an inner membrane protein. The PGA lyase is a soluble protein that associates with membranes under certain conditions. The PGA lyase was purified to apparent homogeneity. It has a molecular weight (from sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 74,000, a pH optimum of 8.7, a pI of 7.5, and a Km for PGA of 40 to 70 micrograms/ml. It requires calcium for maximal activity. The main product of this enzyme appears to be a disaccharide that contains a delta 4,5-unsaturated galacturonic acid residue. The PGA hydrolase can be solubilized from membranes with 2% Triton X-100 and has been partially purified. It has a pH optimum of 5.4 to 5.5, a pI of 4.7 to 4.9, and a Km for PGA of 350 to 400 micrograms/ml. The main product of this enzyme appears to be galacturonic acid. The specific activities of both PGA hydrolase and PGA lyase increase at the same rate when bacteria are exposed to PGA. The two enzymes therefore appear to be similarly regulated. Images PMID:3968032

  5. Glutathione peroxidase in yeast. Presence of the enzyme and induction by oxidative conditions.

    PubMed

    Galiazzo, F; Schiesser, A; Rotilio, G

    1987-09-30

    The presence of glutathione peroxidase activity is reported for the first time for a wild type strain of Saccharomyces cerevisiae. Both forms of enzyme, i.e. that specifically active toward H2O2 alone and that decomposing also organic peroxides, were found to be present. The H2O2 specific form disappeared when cells were grown in the absence of oxygen, while the other form was much increased under the same conditions. Addition of copper to the culture greatly increased both forms. The results show that glutathione peroxidase is to be included, as an important component that is also highly responsive to oxidative environments, in the enzyme defense system of yeast against oxidative damage. PMID:3311044

  6. The Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  7. Effect of n-3 and n-6 Polyunsaturated Fatty Acids on Microsomal P450 Steroidogenic Enzyme Activities and In Vitro Cortisol Production in Adrenal Tissue From Yorkshire Boars.

    PubMed

    Xie, Xuemei; Wang, Xudong; Mick, Gail J; Kabarowski, Janusz H; Wilson, Landon Shay; Barnes, Stephen; Walcott, Gregory P; Luo, Xiaoping; McCormick, Kenneth

    2016-04-01

    Dysregulation of adrenal glucocorticoid production is increasingly recognized to play a supportive role in the metabolic syndrome although the mechanism is ill defined. The adrenal cytochrome P450 (CYP) enzymes, CYP17 and CYP21, are essential for glucocorticoid synthesis. The omega-3 and omega-6 polyunsaturated fatty acids (PUFA) may ameliorate metabolic syndrome, but it is unknown whether they have direct actions on adrenal CYP steroidogenic enzymes. The aim of this study was to determine whether PUFA modify adrenal glucocorticoid synthesis using isolated porcine microsomes. The enzyme activities of CYP17, CYP21, 11β-hydroxysteroid dehydrogenase type 1, hexose-6-phosphate dehydrogenase (H6PDH), and CYP2E1 were measured in intact microsomes treated with fatty acids of disparate saturated bonds. Cortisol production was measured in a cell-free in vitro model. Microsomal lipid composition after arachidonic acid (AA) exposure was determined by sequential window acquisition of all theoretical spectra-mass spectrometry. Results showed that adrenal microsomal CYP21 activity was decreased by docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), eicosapentaenoic acid, α-linolenic acid, AA, and linoleic acid, and CYP17 activity was inhibited by DPA, DHA, eicosapentaenoic acid, and AA. Inhibition was associated with the number of the PUFA double bonds. Similarly, cortisol production in vitro was decreased by DPA, DHA, and AA. Endoplasmic enzymes with intraluminal activity were unaffected by PUFA. In microsomes exposed to AA, the level of AA or oxidative metabolites of AA in the membrane was not altered. In conclusion, these observations suggest that omega-3 and omega-6 PUFA, especially those with 2 or more double bonds (DPA, DHA, and AA), impede adrenal glucocorticoid production. PMID:26889941

  8. Biochemical properties of porcine white adipose tissue mitochondria and relevance to fatty acid oxidation.

    PubMed

    Koekemoer, T C; Oelofsen, W

    2001-07-01

    The capacity of white adipose tissue mitochondria to support a high beta-oxidative flux was investigated by comparison to liver mitochondria. Based on marker enzyme activities and electron microscopy, the relative purity of the isolated mitochondria was similar thus allowing a direct comparison on a protein basis. The results confirm the comparable capacity of adipose tissue and liver mitochondria for palmitoyl-carnitine oxidation. Relative to liver, both citrate synthase and alpha-ketoglutarate dehydrogenase were increased 7.87- and 10.38-fold, respectively. In contrast, adipose tissue NAD-isocitrate dehydrogenase was decreased (2.85-fold). Such modifications in the citric acid cycle are expected to severely restrict citrate oxidation in porcine adipose tissue. Except for cytochrome c oxidase, activities of the enzyme complexes comprising the electron transport chain were not significantly different. The decrease in adipose cytochrome c oxidase activity could partly be attributed to a decreased inner membrane as suggested by lipid and enzyme analysis. In addition, Western blotting indicated that adipose and liver mitochondria possess similar quantities of cytochrome c oxidase protein. Taken together these results indicate that not only is the white adipose tissue protoplasm relatively rich in mitochondria, but that these mitochondria contain comparable enzymatic machinery to support a relatively high beta-oxidative rate. PMID:11435134

  9. Effect of propionic acid on fatty acid oxidation and ureagenesis.

    PubMed

    Glasgow, A M; Chase, H P

    1976-07-01

    Propionic acid significantly inhibited 14CO2 production from [1-14C] palmitate at a concentration of 10 muM in control fibroblasts and 100 muM in methylmalonic fibroblasts. This inhibition was similar to that produced by 4-pentenoic acid. Methylmalonic acid also inhibited 14CO2 production from [1-14C] palmitate, but only at a concentration of 1 mM in control cells and 5 mM in methylmalonic cells. Propionic acid (5 mM) also inhibited ureagenesis in rat liver slices when ammonia was the substrate but not with aspartate and citrulline as substrates. Propionic acid had no direct effect on either carbamyl phosphate synthetase or ornithine transcarbamylase. These findings may explain the fatty degeneration of the liver and the hyperammonemia in propionic and methylmalonic acidemia. PMID:934734

  10. The Oxidative Fermentation of Ethanol in Gluconacetobacter diazotrophicus Is a Two-Step Pathway Catalyzed by a Single Enzyme: Alcohol-Aldehyde Dehydrogenase (ADHa)

    PubMed Central

    Gómez-Manzo, Saúl; Escamilla, José E.; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M. H.; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2–C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  11. The oxidative fermentation of ethanol in Gluconacetobacter diazotrophicus is a two-step pathway catalyzed by a single enzyme: alcohol-aldehyde Dehydrogenase (ADHa).

    PubMed

    Gómez-Manzo, Saúl; Escamilla, José E; González-Valdez, Abigail; López-Velázquez, Gabriel; Vanoye-Carlo, América; Marcial-Quino, Jaime; de la Mora-de la Mora, Ignacio; Garcia-Torres, Itzhel; Enríquez-Flores, Sergio; Contreras-Zentella, Martha Lucinda; Arreguín-Espinosa, Roberto; Kroneck, Peter M H; Sosa-Torres, Martha Elena

    2015-01-01

    Gluconacetobacter diazotrophicus is a N2-fixing bacterium endophyte from sugar cane. The oxidation of ethanol to acetic acid of this organism takes place in the periplasmic space, and this reaction is catalyzed by two membrane-bound enzymes complexes: the alcohol dehydrogenase (ADH) and the aldehyde dehydrogenase (ALDH). We present strong evidence showing that the well-known membrane-bound Alcohol dehydrogenase (ADHa) of Ga. diazotrophicus is indeed a double function enzyme, which is able to use primary alcohols (C2-C6) and its respective aldehydes as alternate substrates. Moreover, the enzyme utilizes ethanol as a substrate in a reaction mechanism where this is subjected to a two-step oxidation process to produce acetic acid without releasing the acetaldehyde intermediary to the media. Moreover, we propose a mechanism that, under physiological conditions, might permit a massive conversion of ethanol to acetic acid, as usually occurs in the acetic acid bacteria, but without the transient accumulation of the highly toxic acetaldehyde. PMID:25574602

  12. The Multifunctional β-Oxidation Enzyme Is Required for Full Symptom Development by the Biotrophic Maize Pathogen Ustilago maydis▿

    PubMed Central

    Klose, Jana; Kronstad, James W.

    2006-01-01

    The transition from yeast-like to filamentous growth in the biotrophic fungal phytopathogen Ustilago maydis is a crucial event for pathogenesis. Previously, we showed that fatty acids induce filamentation in U. maydis and that the resulting hyphal cells resemble the infectious filaments observed in planta. To explore the potential metabolic role of lipids in the morphological transition and in pathogenic development in host tissue, we deleted the mfe2 gene encoding the multifunctional enzyme that catalyzes the second and third reactions in β-oxidation of fatty acids in peroxisomes. The growth of the strains defective in mfe2 was attenuated on long-chain fatty acids and abolished on very-long-chain fatty acids. The mfe2 gene was not generally required for the production of filaments during mating in vitro, but loss of the gene blocked extensive proliferation of fungal filaments in planta. Consistent with this observation, mfe2 mutants exhibited significantly reduced virulence in that only 27% of infected seedlings produced tumors compared to 88% tumor production upon infection by wild-type strains. Similarly, a defect in virulence was observed in developing ears upon infection of mature maize plants. Specifically, the absence of the mfe2 gene delayed the development of teliospores within mature tumor tissue. Overall, these results indicate that the ability to utilize host lipids contributes to the pathogenic development of U. maydis. PMID:16998075

  13. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  14. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    NASA Astrophysics Data System (ADS)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  15. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  16. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  17. Biochemical assessment of oxidative status versus liver enzymes in patients with chronic fascioliasis.

    PubMed

    Kamel, Hanan H; Sarhan, Rania M; Saad, Ghada A

    2015-12-01

    The aim of this study was to examine the oxidative status in Egyptian patients suffering chronic fascioliasis. The relationship between serum malondialdehyde (MDA) levels, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities was investigated in relation to the level of liver enzymes; ALT and AST compared to healthy controls. Twenty patients versus ten controls were included in the study. Among cases the MDA, CAT, AST and ALT were higher than controls, while SOD and GPX higher values were present among controls. There was a highly significant difference between cases and controls as regard MDA, CAT, SOD, GPX, and AST, and a significant difference regarding ALT. The findings of increased serum lipid peroxidation and decreased antioxidant enzymes in erythrocytes of chronic fascioliasis patients indicated the presence of persistent inflammation and oxidative stress which confirms the underlying pathogenesis and reflected the stage of infection providing a baseline data for comparison between normal and infected patients guided by the level of liver enzymes in relation to oxidative status. PMID:26688624

  18. Biochemical Competition Makes Fatty-Acid β-Oxidation Vulnerable to Substrate Overload

    PubMed Central

    van Eunen, Karen; Simons, Sereh M. J.; Gerding, Albert; Bleeker, Aycha; den Besten, Gijs; Touw, Catharina M. L.; Houten, Sander M.; Groen, Bert K.; Krab, Klaas; Reijngoud, Dirk-Jan; Bakker, Barbara M.

    2013-01-01

    Fatty-acid metabolism plays a key role in acquired and inborn metabolic diseases. To obtain insight into the network dynamics of fatty-acid β-oxidation, we constructed a detailed computational model of the pathway and subjected it to a fat overload condition. The model contains reversible and saturable enzyme-kinetic equations and experimentally determined parameters for rat-liver enzymes. It was validated by adding palmitoyl CoA or palmitoyl carnitine to isolated rat-liver mitochondria: without refitting of measured parameters, the model correctly predicted the β-oxidation flux as well as the time profiles of most acyl-carnitine concentrations. Subsequently, we simulated the condition of obesity by increasing the palmitoyl-CoA concentration. At a high concentration of palmitoyl CoA the β-oxidation became overloaded: the flux dropped and metabolites accumulated. This behavior originated from the competition between acyl CoAs of different chain lengths for a set of acyl-CoA dehydrogenases with overlapping substrate specificity. This effectively induced competitive feedforward inhibition and thereby led to accumulation of CoA-ester intermediates and depletion of free CoA (CoASH). The mitochondrial [NAD+]/[NADH] ratio modulated the sensitivity to substrate overload, revealing a tight interplay between regulation of β-oxidation and mitochondrial respiration. PMID:23966849

  19. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    PubMed Central

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  20. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    PubMed

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  1. Cytochemical localisation of lysosomal enzymes and acidic mucopolysaccharides in the salivary glands of Aplysia depilans (Opisthobranchia).

    PubMed

    Lobo-da-Cunha, A

    2002-04-01

    Three types of secretory cells were reported in the salivary glands of Aplysia depilans: granular cells, vacuolated cells and mucocytes. To improve the characterisation of these cells, cytochemical methods for the detection of lysosomal enzymes and acidic mucopolysaccharides were applied. In granular cells, acid phosphatase and arylsulphatase were present in small lysosomes and in some secretory granules. The secretory granules could have received these enzymes after fusion with the small lysosomes that were frequently found very close to them. These cells were not stained with colloidal iron because they do not contain acidic mucopolysaccharides. In vacuolated cells, acid phosphatase and arylsulphatase were detected in lysosomes but not in the secretory vacuoles. Colloidal iron staining revealed the presence of acidic mucopolysaccharides in the vacuoles and in the Golgi apparatus of these cells. In mucocytes, lysosomes were very rare, but the secretion of these cells was very rich in acidic mucopolysaccharides. The filamentous network within the secretory vesicles was completely covered with iron particles, but practically no particles were observed over the granular masses attached to the membrane of the vesicles. Iron particles were also found in the trans-face cisternae of the U-shaped Golgi stacks, but were not seen in the cis-face cisternae or in the rough endoplasmic reticulum. PMID:12117284

  2. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria.

    PubMed

    Long, Jonathan Z; Svensson, Katrin J; Bateman, Leslie A; Lin, Hua; Kamenecka, Theodore; Lokurkar, Isha A; Lou, Jesse; Rao, Rajesh R; Chang, Mi Ra; Jedrychowski, Mark P; Paulo, Joao A; Gygi, Steven P; Griffin, Patrick R; Nomura, Daniel K; Spiegelman, Bruce M

    2016-07-14

    Brown and beige adipocytes are specialized cells that express uncoupling protein 1 (UCP1) and dissipate chemical energy as heat. These cells likely possess alternative UCP1-independent thermogenic mechanisms. Here, we identify a secreted enzyme, peptidase M20 domain containing 1 (PM20D1), that is enriched in UCP1(+) versus UCP1(-) adipocytes. We demonstrate that PM20D1 is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction. N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice with increased circulating PM20D1 have augmented respiration and increased N-acyl amino acids in blood. Lastly, administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure. These data identify an enzymatic node and a family of metabolites that regulate energy homeostasis. This pathway might be useful for treating obesity and associated disorders. PMID:27374330

  3. Treatment recommendations in long-chain fatty acid oxidation defects: consensus from a workshop.

    PubMed

    Spiekerkoetter, U; Lindner, M; Santer, R; Grotzke, M; Baumgartner, M R; Boehles, H; Das, A; Haase, C; Hennermann, J B; Karall, D; de Klerk, H; Knerr, I; Koch, H G; Plecko, B; Röschinger, W; Schwab, K O; Scheible, D; Wijburg, F A; Zschocke, J; Mayatepek, E; Wendel, U

    2009-08-01

    Published data on treatment of fatty acid oxidation defects are scarce. Treatment recommendations have been developed on the basis of observations in 75 patients with long-chain fatty acid oxidation defects from 18 metabolic centres in Central Europe. Recommendations are based on expert practice and are suggested to be the basis for further multicentre prospective studies and the development of approved treatment guidelines. Considering that disease complications and prognosis differ between different disorders of long-chain fatty acid oxidation and also depend on the severity of the underlying enzyme deficiency, treatment recommendations have to be disease-specific and depend on individual disease severity. Disorders of the mitochondrial trifunctional protein are associated with the most severe clinical picture and require a strict fat-reduced and fat-modified (medium-chain triglyceride-supplemented) diet. Many patients still suffer acute life-threatening events or long-term neuropathic symptoms despite adequate treatment, and newborn screening has not significantly changed the prognosis for these severe phenotypes. Very long-chain acyl-CoA dehydrogenase deficiency recognized in neonatal screening, in contrast, frequently has a less severe disease course and dietary restrictions in many patients may be loosened. On the basis of the collected data, recommendations are given with regard to the fat and carbohydrate content of the diet, the maximal length of fasting periods and the use of l-carnitine in long-chain fatty acid oxidation defects. PMID:19452263

  4. Evidence of short-range electron transfer of a redox enzyme on graphene oxide electrodes.

    PubMed

    Martins, Marccus V A; Pereira, Andressa R; Luz, Roberto A S; Iost, Rodrigo M; Crespilho, Frank N

    2014-09-01

    Direct electron transfer (DET) between redox enzymes and electrode surfaces is of growing interest and an important strategy in the development of biofuel cells and biosensors. Among the nanomaterials utilized at electrode/enzyme interfaces to enhance the electronic communication, graphene oxide (GO) has been identified as a highly promising candidate. It is postulated that GO layers decrease the distance between the flavin cofactor (FAD/FADH2) of the glucose oxidase enzyme (GOx) and the electrode surface, though experimental evidence concerning the distance dependence of the rate constant for heterogeneous electron-transfer (k(het)) has not yet been observed. In this work, we report the experimentally observed DET of the GOx enzyme adsorbed on flexible carbon fiber (FCF) electrodes modified with GO (FCF-GO), where the k(het) between GO and electroactive GOx has been measured at a structurally well-defined interface. The curves obtained from the Marcus theory were used to obtain k(het), by using the model proposed by Chidsey. In agreement with experimental data, this model proved to be useful to systematically probe the dependence of electron transfer rates on distance, in order to provide an empirical basis to understand the origin of interfacial DET between GO and GOx. We also demonstrate that the presence of GO at the enzyme/electrode interface diminishes the activation energy by decreasing the distance between the electrode surface and FAD/FADH2. PMID:24676540

  5. Oxidation of oleic acid monolayers at air/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Voss, Laura

    2008-03-01

    Field studies of marine and continental aerosols find that fatty acid films form on aqueous tropospheric aerosols. Oxidation of oleic acid monolayers by ozone was studied to understand the fate of fat-coated aerosols from both fresh and salt water sources. Using vibrational sum frequency generation spectroscopy and reflection absorption infrared spectroscopy, we present a molecular-level investigation of fatty acid monolayers at the air-water and air-sodium chloride solution interface and explore reactions with atmospheric oxidants by these model systems. Coupling sum frequency generation spectroscopy with a Langmuir trough, concurrent spectroscopic and thermodynamic data were collected to obtain a molecular picture of the monolayers. No substantial difference was observed between oxidation of monolayers spread on water and on 0.6 molar sodium chloride solutions. Results indicate that depending on the size of the aerosol and the extent of oxidation, the subsequent oxidation products may not remain at the surface of these films, but instead be dissolved in the aqueous sub-phase of the aerosol particle. Results also indicate that oxidation of oleic acid could produce monolayers containing species that have no oxidized acyl chains.

  6. Enhancing the efficiency and regioselectivity of P450 oxidation catalysts by unnatural amino acid mutagenesis.

    PubMed

    Kolev, Joshua N; Zaengle, Jacqueline M; Ravikumar, Rajesh; Fasan, Rudi

    2014-05-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. We have investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. Four unnatural amino acids with diverse aromatic side chains were incorporated at 11 active-site positions of a substrate-promiscuous CYP102A1 variant. The resulting "uP450s" were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates: a small-molecule drug and a natural product. Large shifts in regioselectivity resulted from these single mutations, and in particular, for para-acetyl-Phe substitutions at positions close to the heme cofactor. Screening this mini library of uP450s enabled us to identify P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp(3))-H site not oxidized by the parent enzyme. Furthermore, we discovered a general activity-enhancing effect of active-site substitutions involving the unnatural amino acid para-amino-Phe, which resulted in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650). The functional changes induced by the unnatural amino acids could not be reproduced by any of the 20 natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  7. Enhancing the Efficiency and Regioselectivity of P450 Oxidation Catalysts via Unnatural Amino Acid Mutagenesis

    PubMed Central

    Kolev, Joshua N.; Zaengle, Jacqueline M.; Ravikumar, Rajesh

    2014-01-01

    The development of effective strategies for modulating the reactivity and selectivity of cytochrome P450 enzymes represents a key step toward expediting the use of these biocatalysts for synthetic applications. In this work, we investigated the potential of unnatural amino acid mutagenesis to aid efforts in this direction. To this end, four unnatural amino acids comprising a diverse set of aromatic side-chain groups were incorporated into eleven active site positions of a substrate-promiscuous CYP102A1 variant. The resulting ‘uP450s’ were then tested for their catalytic activity and regioselectivity in the oxidation of two representative substrates consisting of a small-molecule drug and a natural product. Large shifts in regioselectivity were obtained as a result of these single mutations and, in particular, via para-acetyl-Phe substitutions at positions in close proximity to the heme cofactor. Notably, screening of this mini library of uP450s enabled the rapid identification of P450 catalysts for the selective hydroxylation of four aliphatic positions in the target substrates, including a C(sp3)—H site not oxidized by the parent enzyme. Furthermore, our studies led to the discovery of a general activity-enhancing effect of active site substitutions involving the unnatural amino acid para-amino-Phe, resulting in P450 catalysts capable of supporting the highest total turnover number reported to date on a complex molecule (34,650 turnovers). The functional changes induced by the unnatural amino acids could not be recapitulated by any of the twenty natural amino acids. This study thus demonstrates that unnatural amino acid mutagenesis constitutes a promising, new strategy for improving the catalytic activity and regioselectivity of P450 oxidation catalysts. PMID:24692265

  8. Pistagremic acid, a novel β-secretase enzyme (BACE1) inhibitor from Pistacia integerrima Stewart.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Khan, Ajmal; Siddiqui, Bina S; Arfan, Mohammad; Dalvandi, Kourosh; Ben Hadda, Taibi

    2015-01-01

    A new triterpenic compound named pistagremic acid (PA) was once again isolated from Pistaciaintegerrima. The β-secretase inhibition study was carried out. Compound PA was found significantly active against β-secretase enzyme (BACE1) with IC50 value of 350 ± 2 nM in comparison to the standard inhibitors [Asn670, Sta671, Val672]-amyloid-β/A4 precursor protein 770 fragment 662-675 (IC50 = 290.71 ± 1 nM). The selectivity of this compound was also evaluated against the acetylcholinesterase and butyrylcholinesterase enzymes. Interestingly compound PA was found to be inactive against them and showed selectivity towards β-secretase enzyme (BACE1). PMID:25588845

  9. Proteomics-Based Metabolic Modeling Reveals That Fatty Acid Oxidation (FAO) Controls Endothelial Cell (EC) Permeability*

    PubMed Central

    Patella, Francesca; Schug, Zachary T.; Persi, Erez; Neilson, Lisa J.; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R.; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-01-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  10. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    PubMed

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability. PMID:25573745

  11. Extra virgin olive oil modulates brain docosahexaenoic acid level and oxidative damage caused by 2,4-Dichlorophenoxyacetic acid in rats.

    PubMed

    Amel, Nakbi; Wafa, Tayeb; Samia, Dabbou; Yousra, Belaid; Issam, Chargui; Cheraif, Imed; Attia, Nebil; Mohamed, Hammami

    2016-03-01

    Oxidative stress is an important pathomechanism of neurological disorders such as Alzheimer disease and Parkinson disease, cardiovascular disorders and many others. This study sought to verify whether extra-virgin olive oil (EVOO), lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) exerted a brain protective effect against the oxidative stress caused by 2,4-dichlorophenoxyacetic acid (2,4-D) pesticide at a dose of 5 mg/kg body weight. 2,4-D, EVOO and its fractions were administered to rats by gavages for four consecutive weeks. Oxidative stress was assessed by measuring brain lipid peroxide level, acetylcholinesterase (AChE), antioxidant enzyme activities and fatty acid composition. 2,4-D induced a decrease in both plasma and brain acetylcholinesterase activity and a rise in Brain TBARS (Thiobarbituric acid reactive substances) level and antioxidant enzyme activities compared with the control group. These changes were partly reversed by either EVOO or its fractions oral administration to 2,4-D treated rats. EVOO enhanced a neuroprotective effect evaluated by the restoration of brain fatty acid composition especially the level of docosahexaenoic acid (DHA). Our results indicate that EVOO exerts a neuroprotective activity against oxidative damage in brain induced by 2,4-D, which could be attributed to its antioxidative property. PMID:27570270

  12. Selective oxidation of enzyme extracts for improved quantification of peroxidase activity.

    PubMed

    Jiang, Shu; Penner, Michael H

    2015-05-01

    Natural components endogenous to plant material extracts often interfere with traditional peroxidase assays by reducing the oxidized product generated as a result of the peroxidase-catalyzed reaction. This leads to an underestimation of peroxidase activity when the oxidized product provides the signal for enzyme activity quantification. This article describes a relatively simple way to alleviate complications arising due to the presence of such confounding compounds. The method is based on using 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) as the reducing substrate. The oxidized product of the reaction is ABTS(+), the accumulation of which can be followed spectrophotometrically. It is shown here that one can selectively inactivate the endogenous compounds that confound the peroxidase assay by treating the enzyme preparation with the oxidized product itself, ABTS(+), prior to initiating the quantification assay. This approach is selective for those compounds likely to interfere with peroxidase quantification. The presented method is shown to alleviate the complications associated with lag phases typical of plant extract peroxidase assays and, thus, to more accurately reflect total peroxidase activity. The presented assay is expected to be applicable to the wide range of biological systems for which the determination of peroxidase activity is desired. PMID:25640588

  13. Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway.

    PubMed

    Cronan, John E

    2016-06-01

    Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism. PMID:27074917

  14. Effect of the Antihypertensive Drug Enalapril on Oxidative Stress Markers and Antioxidant Enzymes in Kidney of Spontaneously Hypertensive Rat

    PubMed Central

    Chandran, G.; Sirajudeen, K. N. S.; Swamy, M.; Samarendra, Mutum S.

    2014-01-01

    Oxidative stress has been suggested to play a role in hypertension and hypertension induced organ damage. This study examined the effect of enalapril, an antihypertensive drug, on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat (SHR) and Nω -nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups (SHR, SHR+enalapril, SHR+L-NAME, and SHR+enalapril+L-NAME). Enalapril (30 mg kg−1 day−1) was administered from week 4 to week 28 and L-NAME (25 mg kg−1 day−1) was administered from week 16 to week 28 in drinking water. Systolic blood pressure (SBP) was measured during the experimental period. At the end of experimental periods, rats were sacrificed; urine, blood, and kidneys were collected for the assessment of creatinine clearance, total protein, total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and catalase (CAT), as well as histopathological examination. Enalapril treatment significantly enhanced the renal TAS level (P < 0.001) and SOD activity (P < 0.001), reduced the TBARS levels (P < 0.001), and also prevented the renal dysfunction and histopathological changes. The results indicate that, besides its hypotensive and renoprotective effects, enalapril treatment also diminishes oxidative stress in the kidneys of both the SHR and SHR+L-NAME groups. PMID:25254079

  15. Catalyzed enzyme electrodes

    DOEpatents

    Zawodzinski, Thomas A.; Wilson, Mahlon S.; Rishpon, Judith; Gottesfeld, Shimshon

    1993-01-01

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  16. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1992-12-31

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid, polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  17. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1993-07-13

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  18. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  19. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production. PMID:27012885

  20. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes

    PubMed Central

    Reyes-Prieto, Adrian; Moustafa, Ahmed

    2012-01-01

    Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of >100 Arabidopsis nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a shared phylogenetic origin in the three Plantae lineages. We hypothesize that during the evolution of plastids some enzymes encoded in the host nuclear genome were mistargeted into the plastid. Then, the activity of those foreign enzymes was sustained by both the plastid metabolites and interactions with the native cyanobacterial enzymes. Some of the novel enzymatic activities were favored by selective compartmentation of additional complementary enzymes. The mosaic phylogenetic composition of the plastid amino acid biosynthetic pathways and the reduced number of plastid-encoded proteins of non-cyanobacterial origin suggest that enzyme recruitment underlies the recompartmentation of metabolic routes during the evolution of plastids. PMID:23233874

  1. Possible role of Epoxyeicosatrienoic acid in prevention of oxidative stress mediated neuroinflammation in Parkinson disorders.

    PubMed

    Lakkappa, Navya; Krishnamurthy, Praveen T; Hammock, Bruce D; Velmurugan, D; Bharath, M M Srinivas

    2016-08-01

    Parkinson's disease (PD) is a multifactorial neurodegenerative disease involving oxidative stress, neuroinflammation and apoptosis. Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites and they play a role in cytoprotection by modulating various cell signaling pathways. This cytoprotective role of EETs are well established in cerebral stroke, cardiac failure, and hypertension, and it is due to their ability to attenuate oxidative stress, endoplasmic reticulum stress, inflammation, caspase activation and apoptosis. The actions of EETs in brain closely parallel the effects which is observed in the peripheral tissues. Since many of these effects could potentially contribute to neuroprotection, EETs are, therefore, one of the potential therapeutic candidates in PD. Therefore, by increasing the half life of endogenous EETs in vivo via inhibition of sEH, its metabolizing enzyme can, therefore, constitutes an important therapeutic strategy in PD. PMID:27372879

  2. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  3. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria

    PubMed Central

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  4. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria.

    PubMed

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  5. Catalytic nucleic acid enzymes for the study and development of therapies in the central nervous system

    PubMed Central

    Tritz, Richard; Habita, Cellia; Robbins, Joan M.; Gomez, German G.; Kruse, Carol A.

    2005-01-01

    Summary Nucleic acid enzymes have been used with great success for studying natural processes in the central nervous system (CNS). We first provide information on the structural and enzymatic differences of various ribozymes and DNAzymes. We then discuss how they have been used to explore new therapeutic approaches for treating diseases of the CNS. They have been tested in various systems modeling retinitis pigmentosum, proliferative vitreoretinopathy, Alzheimer's disease, and malignant brain tumors. For these models, effective targets for nucleic acid enzymes have been readily identified and the rules for selecting cleavage sites have been well established. The bulk of studies, including those from our laboratory, have emphasized their use for gliomas. With the availability of multiple excellent animal models to test glioma treatments, good progress has been made in the initial testing of nucleic acid enzymes for brain tumor therapy. However, opportunities still exist to significantly improve the delivery and efficacy of ribozymes to achieve effective treatment. The future holds significant potential for the molecular targeting and therapy of eye diseases, neurodegenerative disorders, and brain tumors with these unique treatment agents. PMID:16467915

  6. Nitric oxide and salicylic acid signaling in plant defense

    PubMed Central

    Klessig, Daniel F.; Durner, Jörg; Noad, Robert; Navarre, Duroy A.; Wendehenne, David; Kumar, Dhirendra; Zhou, Jun Ma; Shah, Jyoti; Zhang, Shuqun; Kachroo, Pradeep; Trifa, Youssef; Pontier, Dominique; Lam, Eric; Silva, Herman

    2000-01-01

    Salicylic acid (SA) plays a critical signaling role in the activation of plant defense responses after pathogen attack. We have identified several potential components of the SA signaling pathway, including (i) the H2O2-scavenging enzymes catalase and ascorbate peroxidase, (ii) a high affinity SA-binding protein (SABP2), (iii) a SA-inducible protein kinase (SIPK), (iv) NPR1, an ankyrin repeat-containing protein that exhibits limited homology to IκBα and is required for SA signaling, and (v) members of the TGA/OBF family of bZIP transcription factors. These bZIP factors physically interact with NPR1 and bind the SA-responsive element in promoters of several defense genes, such as the pathogenesis-related 1 gene (PR-1). Recent studies have demonstrated that nitric oxide (NO) is another signal that activates defense responses after pathogen attack. NO has been shown to play a critical role in the activation of innate immune and inflammatory responses in animals. Increases in NO synthase (NOS)-like activity occurred in resistant but not susceptible tobacco after infection with tobacco mosaic virus. Here we demonstrate that this increase in activity participates in PR-1 gene induction. Two signaling molecules, cGMP and cyclic ADP ribose (cADPR), which function downstream of NO in animals, also appear to mediate plant defense gene activation (e.g., PR-1). Additionally, NO may activate PR-1 expression via an NO-dependent, cADPR-independent pathway. Several targets of NO in animals, including guanylate cyclase, aconitase, and mitogen-activated protein kinases (e.g., SIPK), are also modulated by NO in plants. Thus, at least portions of NO signaling pathways appear to be shared between plants and animals. PMID:10922045

  7. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  8. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities

    PubMed Central

    Akhtar, M. Kalim; Turner, Nicholas J.; Jones, Patrik R.

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C6–C18) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C8–C16) or fatty alkanes (C7–C15) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L−1 was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C8–C18). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  9. Oxidation of oleic acid at air/liquid interfaces

    NASA Astrophysics Data System (ADS)

    Voss, Laura F.; Bazerbashi, Mohamad F.; Beekman, Christopher P.; Hadad, Christopher M.; Allen, Heather C.

    2007-03-01

    Oxidation of oleic acid monolayers by ozone was studied to understand the fate of fat-coated aerosols from both freshwater and saltwater sources. Oleic acid monolayers at the air/water interface and at the air/sodium chloride solution interface were investigated using surface-specific, broad-bandwidth, sum frequency generation spectroscopy. Complementary techniques of infrared reflection adsorption spectroscopy and surface pressure measurements taken during monolayer oxidation confirmed the sum frequency results. Using this nonlinear optical technique coupled with a Langmuir trough, concurrent spectroscopic and thermodynamic data were collected to obtain a molecular picture of the monolayers. No substantial difference was observed between oxidation of monolayers spread on water and on 0.6 M sodium chloride solutions. Results indicate that depending on the size of the aerosol and the extent of oxidation, the subsequent oxidation products may not remain at the surface of these films, but instead be dissolved in the aqueous subphase of the aerosol particle. Results also indicate that oxidation of oleic acid could produce monolayers containing species that have no oxidized acyl chains.

  10. Constitutively Elevated Levels of Putrescine and Putrescine-Generating Enzymes Correlated with Oxidant Stress Resistance in Conyza bonariensis and Wheat.

    PubMed

    Ye, B.; Muller, H. H.; Zhang, J.; Gressel, J.

    1997-12-01

    Oxidant stress resistance in Conyza bonariensis and wheat (Triticum aestivum) has been correlated with high levels of antioxidant enzyme activities. Additionally, external oxidant stresses can increase a plant's levels of the enzymes of polyamine biosynthesis and polyamines, especially putrescine. We investigated the constitutive relationships between putrescine, putrescine-generating enzymes, and oxidant stress resistance in wheat and C. bonariensis. Putrescine was Constitutively elevated (2.5- to 5.7-fold) in 2-week-old-resistant wheat and C. bonariensis biotypes, which correlated with a 10- to 15-fold increase in paraquat oxidant resistance. Arginine and ornithine decarboxylase activities doubled, along with higher putrescine levels in resistant C. bonariensis. The variations in levels of putrescine and arginine and ornithine decarboxylase activities paralleled the constitutive variation of antioxidant enzymes, as well as oxidant resistance. Higher levels of both putrescine and antioxidant enzyme activities occurred during a peak of oxidant resistance at 10 weeks, when paraquat resistance in C. bonariensis plants is >50-fold greater than in the sensitive biotype. Application of 100 [mu]M putrescine can double oxidant-stress resistance in the resistant C. bonariensis. Putrescine may play an important role in contributing to the base level of oxidant resistance found at the nonpeak period. PMID:12223875

  11. Constitutively Elevated Levels of Putrescine and Putrescine-Generating Enzymes Correlated with Oxidant Stress Resistance in Conyza bonariensis and Wheat.

    PubMed Central

    Ye, B.; Muller, H. H.; Zhang, J.; Gressel, J.

    1997-01-01

    Oxidant stress resistance in Conyza bonariensis and wheat (Triticum aestivum) has been correlated with high levels of antioxidant enzyme activities. Additionally, external oxidant stresses can increase a plant's levels of the enzymes of polyamine biosynthesis and polyamines, especially putrescine. We investigated the constitutive relationships between putrescine, putrescine-generating enzymes, and oxidant stress resistance in wheat and C. bonariensis. Putrescine was Constitutively elevated (2.5- to 5.7-fold) in 2-week-old-resistant wheat and C. bonariensis biotypes, which correlated with a 10- to 15-fold increase in paraquat oxidant resistance. Arginine and ornithine decarboxylase activities doubled, along with higher putrescine levels in resistant C. bonariensis. The variations in levels of putrescine and arginine and ornithine decarboxylase activities paralleled the constitutive variation of antioxidant enzymes, as well as oxidant resistance. Higher levels of both putrescine and antioxidant enzyme activities occurred during a peak of oxidant resistance at 10 weeks, when paraquat resistance in C. bonariensis plants is >50-fold greater than in the sensitive biotype. Application of 100 [mu]M putrescine can double oxidant-stress resistance in the resistant C. bonariensis. Putrescine may play an important role in contributing to the base level of oxidant resistance found at the nonpeak period. PMID:12223875

  12. The enzymology of mitochondrial fatty acid beta-oxidation and its application to follow-up analysis of positive neonatal screening results

    PubMed Central

    Ruiter, Jos P. N.; IJlst, Lodewijk; Waterham, Hans R.; Houten, Sander M.

    2010-01-01

    Oxidation of fatty acids in mitochondria is a key physiological process in higher eukaryotes including humans. The importance of the mitochondrial beta-oxidation system in humans is exemplified by the existence of a group of genetic diseases in man caused by an impairment in the mitochondrial oxidation of fatty acids. Identification of patients with a defect in mitochondrial beta-oxidation has long remained notoriously difficult, but the introduction of tandem-mass spectrometry in laboratories for genetic metabolic diseases has revolutionalized the field by allowing the rapid and sensitive analysis of acylcarnitines. Equally important is that much progress has been made with respect to the development of specific enzyme assays to identify the enzyme defect in patients subsequently followed by genetic analysis. In this review, we will describe the current state of knowledge in the field of fatty acid oxidation enzymology and its application to the follow-up analysis of positive neonatal screening results. PMID:20490924

  13. DEVELOPMENT OF ENZYME-LINKED IMMUNOSORBENT ASSAYS FOR ISOCUPRESSIC ACID AND SERUM METABOLITES OF ISOCUPRESSIC ACID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), common juniper (Juniperus communis) and Monterey cypress (Cupressus macrocarpa) causes abortions in pregnant cattle. Recent studies have identified isocupressic acid as the primary abortifacient compound in these ...

  14. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    PubMed Central

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  15. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    PubMed

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  16. Δ9-Tetrahydrocannabinolic acid synthase: The application of a plant secondary metabolite enzyme in biocatalytic chemical synthesis.

    PubMed

    Lange, Kerstin; Schmid, Andreas; Julsing, Mattijs K

    2016-09-10

    Δ(9)-Tetrahydrocannabinolic acid synthase (THCAS) from the secondary metabolism of Cannabis sativa L. catalyzes the oxidative formation of an intramolecular CC bond in cannabigerolic acid (CBGA) to synthesize Δ(9)-tetrahydrocannabinolic acid (THCA), which is the direct precursor of Δ(9)-tetrahydrocannabinol (Δ(9)-THC). Aiming on a biotechnological production of cannabinoids, we investigated the potential of the heterologously produced plant oxidase in a cell-free system on preparative scale. THCAS was characterized in an aqueous/organic two-liquid phase setup in order to solubilize the hydrophobic substrate and to allow in situ product removal. Compared to the single phase aqueous setup the specific activity decreased by a factor of approximately 2 pointing to a substrate limitation of CBGA in the two-liquid phase system. However, the specific activity remained stable for at least 3h illustrating the benefit of the two-liquid phase setup. In a repeated-batch setup, THCAS showed only a minor loss of specific activity in the third batch pointing to a high intrinsic stability and high solvent tolerance of the enzyme. Maximal space-time-yields of 0.121gL(-1)h(-1) were reached proving the two-liquid phase concept suitable for biotechnological production of cannabinoids. PMID:27369551

  17. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter; van de Vondervoort, Peter; Culley, David E.; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy; Braus, Gerhard; Braus-Stromeyer, Susanna A.; Corrochano, Luis; Dai, Ziyu; van Dijck, Piet; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert; Pel, Herman J.; Poulsen, Lars; Samson, Rob; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; ATkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noel; Roubos, Johannes A.; Nielsen, Jens B.; Baker, Scott E.

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.

  18. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation

    PubMed Central

    Hood, Elizabeth D.; Chorny, Michael; Greineder, Colin F.; Alferiev, Ivan; Levy, Robert J.; Muzykantov, Vladimir R.

    2015-01-01

    Endothelial-targeted delivery of antioxidant enzymes, catalase and superoxide dismutase (SOD), is promising strategy for protecting organs and tissues from inflammation and oxidative stress. Here we describe Protective Antioxidant Carriers for Endothelial Targeting (PACkET), the first carriers capable of targeted endothelial delivery of both catalase and SOD. PACkET formed through controlled precipitation loaded ~30% enzyme and protected it from proteolytic degradation, whereas attachment of PECAM monoclonal antibodies to surface of the enzyme-loaded carriers, achieved without adversely affecting their stability and functionality, provided targeting. Isotope tracing and microscopy showed that PACkET exhibited specific endothelial binding and internalization in vitro. Endothelial targeting of PACkET was validated in vivo by specific (vs IgG-control) accumulation in the pulmonary vasculature after intravenous injection achieving 33% of injected dose at 30 min. Catalase loaded PACkET protects endothelial cells from killing by H2O2 and alleviated the pulmonary edema and leukocyte infiltration in mouse model of endotoxin-induced lung injury, whereas SOD-loaded PACkET mitigated cytokine-induced endothelial pro-inflammatory activation and endotoxin-induced lung inflammation. These studies indicate that PACkET offers a modular approach for vascular targeting of therapeutic enzymes. PMID:24480537

  19. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    SciTech Connect

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  20. Study and comparison of two enzyme membrane reactors for fatty acids and glycerol production

    SciTech Connect

    Molinari, R.; Santoro, M.E.; Drioli, E. . Dept. of Chemical Engineering and Materials Inst. on Membranes and Chemical Reactors-CNR, Arcavacata di Rende )

    1994-11-01

    Two enzyme membrane reactors (EMR), (1) with one substrate (olive oil) in an oil-in-water emulsion (E-EMR) and (2) with two separated liquid phases (oil and water) (TSLP-EMR), have been studied for the conversion of the triglycerides to fatty acids and glycerol. The enzyme was Candida cylindracea lipase confined on the pressurized face or entrapped in the sponge side of capillary ultrafiltration membranes. Two methods for immobilizing the enzyme in the TSLP-EMR were used: ultrafiltration on a virgin membrane and ultrafiltration on glutaraldehyde pretreated membranes. A multiple use of the reactor was obtained immobilizing the enzyme on the membrane preactivated with glutaraldehyde. The TSLP-EMR showed a specific activity of 0.529 mmol/(mg[center dot]h) versus a specific activity of 0.170 mmol/(mg[center dot]h) of the E-EMR. The rate of fatty acid production in the TSLP-EMR was linear with time showing no enzyme deactivation in an operating time of 80 h. The kinetics observed in the two reactors was different: an equilibrium reaction product-inhibited for the E-EMR and an apparent irreversible reaction of zero order for the TSLP-EMR. Taking into account that in the TSLP-EMR, compared to the E-EMR, (1) the specific activity was higher, (2) the specific rate was constant with the time, and (3) the two products were already separated after the reaction, the TSLP-EMR configuration seems the more convenient.

  1. 3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Yang; Chen, Yong; Zhou, Yang; Huang, Qingyou

    2015-12-01

    3-D periodic mesoporous nickel oxide (NiO) particles with crystalline walls have been synthesized through the microwave-assisted hard template route toward the KIT-6 silica. It was investigated as a nonenzymatic amperometric sensor for the detection of uric acid. 3-D periodic nickel oxide matrix has been obtained by the hard template route from the KIT-6 silica template. The crystalline nickel oxide belonged to the Ia3d space group, and its structure was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, and transmission electron microscopy (TEM). The analysis results showed that the microwave-assisted mesoporous NiO materials were more appropriate to be electrochemical sensors than the traditional mesoporous NiO. Cyclic voltammetry (CV) revealed that 3-D periodic NiO exhibited a direct electrocatalytic activity for the oxidation of uric acid in sodium hydroxide solution. The enzyme-less amperometric sensor used in the detection of uric acid with detection limit of 0.005 μM (S/N = 3) over wide linear detection ranges up to 0.374 mM and with a high sensitivity of 756.26 μA mM-1 cm-2, and a possible mechanism was also given in the paper.

  2. Effect of spaceflight on oxidative and antioxidant enzyme activity in rat diaphragm and intercostal muscles

    NASA Technical Reports Server (NTRS)

    Lee, Mona D.; Tuttle, Ronald; Girten, Beverly

    1995-01-01

    There are limited data regarding changes in oxidative and antioxidant enzymes induced by simulated or actual weightlessness, and any additional information would provide insight into potential mechanisms involving other changes observed in muscles from animals previously flown in space. Thus, the NASA Biospecimen Sharing Program was an opportunity to collect valuable information. Oxidative and antioxidant enzyme levels, as well as lipid peroxidation, were measured in respiratory muscles from rates flown on board Space Shuttle mission STS-54. The results indicated that there was an increasing trend in citrate synthase activity in the flight diaphragm when compared to ground based controls, and there were no significant changes observed in the intercostal muscles for any of the parameters. However, the lipid peroxidation was significantly (p less than 0.05) decreased in the flight diaphragm. These results indicate that 6 day exposure to microgravity may have a different effect on oxidative and antioxidant activity in rat respiratory muscles when compared to data from previous 14 day hindlimb suspension studies.

  3. Inhibition effect of graphene oxide on the catalytic activity of acetylcholinesterase enzyme.

    PubMed

    Wang, Yong; Gu, Yao; Ni, Yongnian; Kokot, Serge

    2015-11-01

    Variations in the enzyme activity of acetylcholinesterase (AChE) in the presence of the nano-material, graphene oxide (GO), were investigated with the use of molecular spectroscopy UV-visible and fluorescence methods. From these studies, important kinetic parameters of the enzyme were extracted; these were the maximum reaction rate, Vm , and the Michaelis constant, Km . A comparison of these parameters indicated that GO inhibited the catalytic activity of the AChE because of the presence of the AChE-GO complex. The formation of this complex was confirmed with the use of fluorescence data, which was resolved with the use of the MCR-ALS chemometrics method. Furthermore, it was found that the resonance light-scattering (RLS) intensity of AChE changed in the presence of GO. On this basis, it was demonstrated that the relationship between AChE and GO was linear and such models were used for quantitative analyses of GO. PMID:25620714

  4. Model analysis for enhancement of enzyme-catalyzed alcohol oxidation by solvent extraction of product

    SciTech Connect

    Hidaka, Nobuyuki; Matsumoto, Toshitatsu; Morooka, Shigeharu

    1995-07-01

    Enzymatic oxidation of ethanol and butanol was conducted with alcohol oxidase in a one-phase system of water and a two-phase system of water and toluene. The conversion of the reaction in the two-phase system was higher than that in the one-phase system. The inhibition of the enzyme was relieved in the two-phase system by extracting the aldehyde product into the organic phase. The dissolved oxygen concentration in the water phase also affected the reaction rate. A kinetic model of the reaction was developed by considering both the inhibition of enzyme activity and the dissolved oxygen concentration. Parameters used in the model were evaluated experimentally. The reaction rate calculated using the model was in good agreement with the data.

  5. Novel triterpene oxidizing activity of Arabidopsis thaliana CYP716A subfamily enzymes.

    PubMed

    Yasumoto, Shuhei; Fukushima, Ery O; Seki, Hikaru; Muranaka, Toshiya

    2016-02-01

    Triterpenoids have diverse chemical structures and bioactivities. Cytochrome P450 monooxygenases play a key role in their structural diversification. In higher plants, CYP716A subfamily enzymes are triterpene oxidases. In this study, Arabidopsis thaliana CYP716A1 and CYP716A2 were characterized by heterologously expressing them in simple triterpene-producing yeast strains. In contrast to the C-28 oxidative activity of CYP716A1 shown in several CYP716A subfamily enzymes, remarkably, CYP716A2 displayed 22α-hydroxylation activity against α-amyrin that has not been previously reported, which produces the cytotoxic triterpenoid, 22α-hydroxy-α-amyrin. Our results contribute to the enrichment of the molecular toolbox that allows for the combinatorial biosynthesis of diverse triterpenoids. PMID:26801524

  6. Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids.

    PubMed

    Wu, Yufan; Fried, Stephen D; Boxer, Steven G

    2015-12-01

    Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression to substitute each tyrosine residue with 3-chlorotyrosine to test the delocalization model and the proton affinity balance in the triad. X-ray crystal structures of each variant demonstrated that the structure, notably the O-O distances within the triad, was unaffected by 3-chlorotyrosine substitutions. The changes in the cluster's acidity and the acidity's isotope dependence in these variants were assessed via UV-vis spectroscopy and the proton sharing pattern among individual residues with (13)C nuclear magnetic resonance. Our data show pKa detuning at each triad residue alters the proton delocalization behavior in the H-bond network. The extra stabilization energy necessary for the unusual acidity mainly comes from the strong interactions between Y(57) and Y(16). This is further enabled by Y(32), which maintains the right geometry and matched proton affinity in the triad. This study provides a rich picture of the energetics of the hydrogen bond network in enzymes for further model refinement. PMID:26571340

  7. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme.

    PubMed

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C K

    2010-11-01

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site. PMID:21045284

  8. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    SciTech Connect

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K.

    2012-04-30

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

  9. Effect of exogenous amylolytic enzymes on the accumulation of chlorogenic acid isomers in wounded potato tubers.

    PubMed

    Torres-Contreras, Ana Mariel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2014-08-01

    Potato tubers under wounding stress synthesize chlorogenic acid isomers, which are phenolic compounds that prevent chronic diseases. The biosynthesis of phenolic compounds in plants requires aromatic amino acids that are produced from sugars. Therefore, in this study, we hypothesized that the wound-induced accumulation of chlorogenic acid isomers in potatoes could be enhanced if the availability of sugars is increased by exogenous amylolytic enzymes applied to the surface of the site of wounding. To test this hypothesis, wounded potatoes stored at 20 °C were treated with amylolytic enzymes (pullulanase and amyloglucosidase, 282 units/mL, 10 mL/kg) after being stored for 0 (E0h), 48 (E48h), or 96 h (E96h). The highest level of accumulation of total chlorogenic acid isomers (∼210% higher than that of time 0 h samples) was observed after storage for 120 h for the E96h treatment. The results suggest that increasing the availability of carbon sources needed for the biosynthesis of phenolic compounds would trigger their accumulation in wounded plants. PMID:25032895

  10. Ensemble Methods for Monitoring Enzyme Translocation along Single Stranded Nucleic Acids

    PubMed Central

    Tomko, Eric J.; Fischer, Christopher J.; Lohman, Timothy M.

    2010-01-01

    We review transient kinetic methods developed to study the mechanism of translocation of nucleic acid motor proteins. One useful stopped-flow fluorescence method monitors arrival of the translocase at the end of a fluorescently labeled nucleic acid. When conducted under single-round conditions the time courses can be analyzed quantitatively using n-step sequential models to determine the kinetic parameters for translocation (rate, kinetic step size and processivity). The assay and analysis discussed here can be used to study enzyme translocation along a linear lattice such as ssDNA or ssRNA. We outline the methods for experimental design and two approaches, along with their limitations, that can be used to analyze the time courses. Analysis of the full time courses using n-step sequential models always yields an accurate estimate of the translocation rate. An alternative semi-quantitative “time to peak” analysis yields accurate estimates of translocation rates only if the enzyme initiates translocation from a unique site on the nucleic acid. However, if initiation occurs at random sites along the nucleic acid, then the “time to peak” analysis can yield inaccurate estimates of even the rates of translocation depending on the values of other kinetic parameters, especially the rate of dissociation of the translocase. Thus, in those cases analysis of the full time course is needed to obtain accurate estimates of translocation rates. PMID:20371288

  11. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 2; The Distribution of Selected Enzymes and Amino Acids in the Hippocampal Formation

    NASA Technical Reports Server (NTRS)

    Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.

    1994-01-01

    Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  12. Electrochemical detection of uric acid via uricase-immobilized graphene oxide.

    PubMed

    Omar, Muhamad Nadzmi; Salleh, Abu Bakar; Lim, Hong Ngee; Ahmad Tajudin, Asilah

    2016-09-15

    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility. PMID:27402177

  13. The Biochemistry and Physiology of Mitochondrial Fatty Acid β-Oxidation and Its Genetic Disorders.

    PubMed

    Houten, Sander M; Violante, Sara; Ventura, Fatima V; Wanders, Ronald J A

    2016-01-01

    Mitochondrial fatty acid β-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders. PMID:26474213

  14. Protective effects of zinc on oxidative stress enzymes in liver of protein-deficient rats.

    PubMed

    Sidhu, Pardeep; Garg, M L; Dhawan, D K

    2005-01-01

    Persons afflicted with protein malnutrition are generally deficient in a variety of essential micronutrients like zinc, copper, iron, and selenium, which in turn affects number of metabolic processes in the body. To evaluate the protective effects of zinc on the enzymes involved in oxidative stress induced in liver of protein-deficient rats, the current study was designed. Zinc sulfate at a dose level of 227 mg/L zinc in drinking water was administered to female Sprague-Dawley normal control as well as protein-deficient rats for a total duration of 8 weeks. The effects of zinc treatment in conditions of protein deficiency were studied on rat liver antioxidant enzymes, which included catalase, glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), glutathione reduced (GSH), and glutathione-S-transferase (GST). Protein deficiency in normal rats resulted in a significant increase in hepatic activities of catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase and the levels of lipid peroxidation. A significant inhibition in the levels of reduced glutathione and the enzyme activity of superoxide dismutase has been observed after protein deficiency in normal rats. Interestingly, Zn treatment to protein-deficient animals lowered already raised activity catalase, glutathione peroxidase, and glutathione-S-transferase and levels of lipid peroxidation to significant levels when compared to protein-deficient animals. Also, Zn treatment to the protein-deficient animals resulted in a significant elevation in the levels of GSH and SOD activity as compared to their respective controls, thereby indicating its effectiveness in regulating their levels in adverse conditions. It has also been observed that concentrations of zinc, copper, iron, and selenium were found to be decreased significantly in protein-deficient animals. However, the levels of these elements came back to within normal limits when zinc was administrated

  15. [Investigation on mechanism of pyrite oxidation in acidic solutions].

    PubMed

    Wang, Nan; Yi, Xiao-Yun; Dang, Zhi; Liu, Yun

    2012-11-01

    The mechanism of pyrite oxidation in acidic solutions was investigated by electrochemical analysis methods, such as open-circuit potential, cyclic voltammetry, Tafel polarization curve and anodic polarization curve, using a pyrite-carbon paste electrode as working electrode. The results showed that the oxidation process of pyrite in acidic solutions was via a two-step reaction: the first step was the dissolution of iron moiety and formation of a passivation film composed of elemental sulphur, metal-deficient sulfide and polysulfide; the second step was the further oxidation of these intermediate products to SO4(2-). The final reaction products of pyrite oxidation were Fe3+ and SO4(2-) in acidic solutions. In addition, the open-circuit potential and corrosion potential were positively shifted, the peak current and the corrosion current were increased with the increase in concentration of H2SO4 solutions. This indicated that increased acidity of the system was advantageous to the oxidation of pyrite. PMID:23323425

  16. Fatty Acid Beta-Oxidation Disorders: A Brief Review

    PubMed Central

    Vishwanath, Vijay A.

    2016-01-01

    Background Mitochondrial fatty acid β-oxidation disorders (FAODs) are a heterogeneous group of defects in fatty acid transport and mitochondrial β-oxidation. They are inherited as autosomal recessive disorders and have a wide range of clinical presentations. Summary The background information and case report provide important insight into mitochondrial FAODs. The article provides a wealth of information describing the scope of these disorders. Key Messages This article presents a typical case of medium chain acyl-CoA dehydrogenase deficiency and summarizes the pathophysiology, clinical presentation, diagnosis and treatment of mitochondrial FAODs.

  17. A comparative genomic analysis of the oxidative enzymes potentially involved in lignin degradation by Agaricus bisporus.

    PubMed

    Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Fu, Bolei; Cullen, Dan

    2013-06-01

    The oxidative enzymatic machinery for degradation of organic substrates in Agaricus bisporus (Ab) is at the core of the carbon recycling mechanisms in this fungus. To date, 156 genes have been tentatively identified as part of this oxidative enzymatic machinery, which includes 26 peroxidase encoding genes, nine copper radical oxidase [including three putative glyoxal oxidase-encoding genes (GLXs)], 12 laccases sensu stricto and 109 cytochrome P450 monooxygenases. Comparative analyses of these enzymes in Ab with those of the white-rot fungus, Phanerochaete chrysosporium, the brown-rot fungus, Postia placenta, the coprophilic litter fungus, Coprinopsis cinerea and the ectomychorizal fungus, Laccaria bicolor, revealed enzyme diversity consistent with adaptation to substrates rich in humic substances and partially degraded plant material. For instance, relative to wood decay fungi, Ab cytochrome P450 genes were less numerous (109 gene models), distributed among distinctive families, and lacked extensive duplication and clustering. Viewed together with P450 transcript accumulation patterns in three tested growth conditions, these observations were consistent with the unique Ab lifestyle. Based on tandem gene arrangements, a certain degree of gene duplication seems to have occurred in this fungus in the copper radical oxidase (CRO) and the laccase gene families. In Ab, high transcript levels and regulation of the heme-thiolate peroxidases, two manganese peroxidases and the three GLX-like genes are likely in response to complex natural substrates, including lignocellulose and its derivatives, thereby suggesting an important role in lignin degradation. On the other hand, the expression patterns of the related CROs suggest a developmental role in this fungus. Based on these observations, a brief comparative genomic overview of the Ab oxidative enzyme machinery is presented. PMID:23583597

  18. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit.

    PubMed

    Cao, Shifeng; Yang, Zhenfeng; Cai, Yuting; Zheng, Yonghua

    2014-11-15

    Two cultivars of loquat fruit were stored at 20°C for 10days to investigate the relationship between disease resistance, and fatty acid composition and activities of endogenous antioxidant enzymes. The results showed that decay incidence increased with storage time in both cultivars. A significantly lower disease incidence was observed in 'Qingzhong' fruit than in 'Fuyang', suggesting 'Qingzhong' had increased disease resistance. Meanwhile, 'Qingzhong' fruit also had lower levels of superoxide radical and hydrogen peroxide, and lower lipoxygenase activity, but higher levels of linolenic and linoleic acids and higher activities of catalase (CAT) and ascorbate peroxidase (APX) compared with 'Fuyang'. These results suggest that the higher levels of linolenic and linoleic acids and the higher activity of CAT and APX have a role in disease resistance of postharvest loquat fruit. PMID:24912701

  19. DJ-1 upregulates anti-oxidant enzymes and attenuates hypoxia/re-oxygenation-induced oxidative stress by activation of the nuclear factor erythroid 2-like 2 signaling pathway.

    PubMed

    Yan, Yu-Feng; Yang, Wen-Jie; Xu, Qiang; Chen, He-Ping; Huang, Xiao-Shan; Qiu, Ling-Yu; Liao, Zhang-Ping; Huang, Qi-Ren

    2015-09-01

    DJ-1 protein, as a multifunctional intracellular protein, has an important role in transcriptional regulation and anti-oxidant stress. A recent study by our group showed that DJ-1 can regulate the expression of certain anti‑oxidant enzymes and attenuate hypoxia/re‑oxygenation (H/R)‑induced oxidative stress in the cardiomyocyte cell line H9c2; however, the detailed molecular mechanisms have remained to be elucidated. Nuclear factor erythroid 2‑like 2 (Nrf2) is an essential transcription factor that regulates the expression of several anti‑oxidant genes via binding to the anti‑oxidant response element (ARE). The present study investigated whether activation of the Nrf2 pathway is responsible for the induction of anti‑oxidative enzymes by DJ‑1 and contributes to the protective functions of DJ‑1 against H/R‑induced oxidative stress in H9c2 cells. The results demonstrated that DJ‑1‑overexpressing H9c2 cells exhibited anti‑oxidant enzymes, including manganese superoxide dismutase, catalase and glutathione peroxidase, to a greater extent and were more resistant to H/R‑induced oxidative stress compared with native cells, whereas DJ‑1 knockdown suppressed the induction of these enzymes and further augmented the oxidative stress injury. Determination of the importance of Nrf2 in DJ‑1‑mediated anti‑oxidant enzymes induction and cytoprotection against oxidative stress induced by H/R showed that overexpression of DJ‑1 promoted the dissociation of Nrf2 from its cytoplasmic inhibitor Keap1, resulting in enhanced levels of nuclear translocation, ARE‑binding and transcriptional activity of Nrf2. Of note, Nrf2 knockdown abolished the DJ‑1‑mediated induction of anti‑oxidant enzymes and cytoprotection against oxidative stress induced by H/R. In conclusion, these findings indicated that activation of the Nrf2 pathway is a critical mechanism by which DJ-1 upregulates anti-oxidative enzymes and attenuates H/R-induced oxidative stress in H9c2

  20. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  1. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  2. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  3. Immunohistochemical Localization of Key Arachidonic Acid Metabolism Enzymes during Fracture Healing in Mice

    PubMed Central

    Lin, Hsuan-Ni; O’Connor, J. Patrick

    2014-01-01

    This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1), cyclooxygenase -2 (COX-2), 5-lipoxygenase (5-LO), and leukotriene A4 hydrolase (LTA4H) was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture). In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing. PMID:24516658

  4. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    SciTech Connect

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  5. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  6. Lipid peroxidation, proteins modifications, anti-oxidant enzymes activities and selenium deficiency in the plasma of hashitoxicosis patients

    PubMed Central

    Mseddi, Malek; Ben Mansour, Riadh; Mnif, Fatma; Gargouri, Bochra; Abid, Mohamed; Guermazi, Fadhel; Attia, Hamadi; Lassoued, Saloua

    2015-01-01

    Objectives: The aim of this study was to explore the oxidative stress profile in hashitoxicosis (HTX) and to compare it with that of healthy subjects. Patients and methods: Spectrophotometric methods were used to evaluate the oxidative stress markers. The selenium level was investigated by atomic absorption. Results: High levels of thiobarbituric acid reactive species (TBARS) and conjugated dienes were found in HTX patients (p = 0.034 and p = 0.043, respectively) compared with healthy controls. For antioxidant enzymes, superoxide dismutase (SOD) and catalase activities increased, whereas that of glutathione peroxidase (GPx) decreased (p = 0.000, p = 0.014, p = 0.000, respectively) compared with controls. A reduction in the level of selenium (p = 0.029) and thiol groups (p = 0.008) were shown in patients; however, levels of carbonyl group and malondialdehyde (MDA) protein adducts decreased (p = 0.000) compared with controls. Positive correlation was shown between levels of free thyroxine (FT4) and TBARS (r = 0.711, p = 0.048) and between FT4 level and SOD activity (r = 0.713, p = 0.047). Conversely, GPx activity presented a negative correlation with FT4 and free triiodothyronine (FT3) levels (r = –0.934, p = 0.001; r = –0.993, p = 0.000, respectively). In addition, GPx activity showed positive correlation with selenium level (r = 0.981, p = 0.019) and the FT3 level correlated negatively with the level of thiol groups (r = –0.892, p = 0.017). Conclusions: This study shows the presence of an oxidative stress and selenium deficiency in HTX patients and suggests that the hyperthyroid state is strongly implicated in the establishment of this disturbed oxidative profile. PMID:26445640

  7. Are Phragmites australis enzymes involved in the degradation of the textile azo dye acid orange 7?

    PubMed

    Carias, Cátia C; Novais, Júlio M; Martins-Dias, Susete

    2008-01-01

    The role of antioxidant and detoxification enzymes of Phragmites australis, in the degradation of an azo dye, acid orange 7 (AO7), was studied. Activities of several enzymes involved in plant protection against stress were assayed through the activity characterization of superoxide dismutase (SOD), peroxidases (POD), catalase (CAT), ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST), obtained from P. australis crude extracts of leaves, stems and roots. A sub-surface vertical flow constructed wetland, planted with P. australis was used to test the plants response to the AO7 exposure at two different concentrations (130 and 700 mg l(-1)). An activity increase was detected for an AO7 concentration of 130 mg l(-1) for most enzymes studied (SOD, CAT and APOX), especially in leaves, suggesting a response of the reactive oxygen species scavenging enzymes to the chemical stress imposed. GST activity increase in this situation can also be interpreted as an activation of the detoxification pathway and subsequent AO7 conjugation. A totally different behaviour was observed for AO7 at 700 mg l(-1). An evident decrease in activity was observed for SOD, CAT, APOX and GST, probably due to enzymatic inhibition by AO7. Contrarily, DHAR activity augmented drastically in this situation. POD activity was not greatly affected during trial. Altogether these results suggest that P. australis effectively uses the ascorbate-glutathione pathway for the detoxification of AO7. PMID:17336060

  8. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress.

    PubMed

    Martinez, Vicente; Mestre, Teresa C; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A; Mittler, Ron; Rivero, Rosa M

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  9. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress

    PubMed Central

    Martinez, Vicente; Mestre, Teresa C.; Rubio, Francisco; Girones-Vilaplana, Amadeo; Moreno, Diego A.; Mittler, Ron; Rivero, Rosa M.

    2016-01-01

    Efficient detoxification of reactive oxygen species (ROS) is thought to play a key role in enhancing the tolerance of plants to abiotic stresses. Although multiple pathways, enzymes, and antioxidants are present in plants, their exact roles during different stress responses remain unclear. Here, we report on the characterization of the different antioxidant mechanisms of tomato plants subjected to heat stress, salinity stress, or a combination of both stresses. All the treatments applied induced an increase of oxidative stress, with the salinity treatment being the most aggressive, resulting in plants with the lowest biomass, and the highest levels of H2O2 accumulation, lipid peroxidation, and protein oxidation. However, the results obtained from the transcript expression study and enzymatic activities related to the ascorbate-glutathione pathway did not fully explain the differences in the oxidative damage observed between salinity and the combination of salinity and heat. An exhaustive metabolomics study revealed the differential accumulation of phenolic compounds depending on the type of abiotic stress applied. An analysis at gene and enzyme levels of the phenylpropanoid metabolism concluded that under conditions where flavonols accumulated to a greater degree as compared to hydroxycinnamic acids, the oxidative damage was lower, highlighting the importance of flavonols as powerful antioxidants, and their role in abiotic stress tolerance. PMID:27379130

  10. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis.

    PubMed Central

    Elkins, Jonathan M; Clifton, Ian J; Hernández, Helena; Doan, Linh X; Robinson, Carol V; Schofield, Christopher J; Hewitson, Kirsty S

    2002-01-01

    During biosynthesis of the clinically used beta-lactamase inhibitor clavulanic acid, one of the three steps catalysed by clavaminic acid synthase is separated from the other two by a step catalysed by proclavaminic acid amidino hydrolase (PAH), in which the guanidino group of an intermediate is hydrolysed to give proclavaminic acid and urea. PAH shows considerable sequence homology with the primary metabolic arginases, which hydrolyse arginine to ornithine and urea, but does not accept arginine as a substrate. Like other members of the bacterial sub-family of arginases, PAH is hexameric in solution and requires Mn2+ ions for activity. Other metal ions, including Co2+, can substitute for Mn2+. Two new substrates for PAH were identified, N-acetyl-(L)-arginine and (3R)-hydroxy-N-acetyl-(L)-arginine. Crystal structures of PAH from Streptomyces clavuligerus (at 1.75 A and 2.45 A resolution, where 1 A=0.1 nm) imply how it binds beta-lactams rather than the amino acid substrate of the arginases from which it evolved. The structures also suggest how PAH selects for a particular alcohol intermediate in the clavam biosynthesis pathway. As observed for the arginases, each PAH monomer consists of a core of beta-strands surrounded by alpha-helices, and its active site contains a di-Mn2+ centre with a bridging water molecule responsible for hydrolytic attack on to the guanidino group of the substrate. Comparison of structures obtained under different conditions reveals different conformations of a flexible loop, which must move to allow substrate binding. PMID:12020346

  11. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  12. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2014-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification by various microorganisms. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathways. To determine representative SP values for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for the NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  13. Isotopomeric characterization of nitrous oxide produced by reaction of enzymes extracted from nitrifying and denitrifying bacteria

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Hozuki, T.; Arai, K.; Toyoda, S.; Koba, K.; Fujiwara, T.; Yoshida, N.

    2013-10-01

    Nitrous oxide (N2O) is a potent greenhouse gas and produced in denitrification and nitrification in environmental nitrogen cycle by various microorganism. Site preference (SP) of 15N in N2O, which is defined as the difference in the natural abundance of isotopomers 14N15NO and 15N14NO relative to 14N14NO, has been reported to be a useful tool to quantitatively distinguish N2O production pathway. To determine representative SP value for each microbial process, we firstly measured SP of N2O produced in the enzyme reaction of hydroxylamine oxidoreductase (HAO) purified from two species of ammonia oxidizing bacteria (AOB), Nitrosomonas europaea and Nitrosococcus oceani, and that of nitric oxide reductase (NOR) from Paracoccus denitrificans, respectively. The SP value for NOR reaction (-5.9 ± 2.1‰) showed nearly the same value as that reported for N2O produced by P. denitrificans in pure culture. In contrast, SP value for HAO reaction (36.3 ± 2.3‰) was a little higher than the values reported for N2O produced by AOB in aerobic pure culture. Using the SP values obtained by HAO and NOR reactions, we calculated relative contribution of the nitrite (NO2-) reduction (which is followed by NO reduction) to N2O production by N. oceani incubated under different O2 availability. Our calculations revealed that previous in vivo studies might have underestimated the SP value for NH2OH oxidation pathway possibly due to a small contribution of NO2- reduction pathway. Further evaluation of isotopomer signatures of N2O using common enzymes of other processes related to N2O would improve the isotopomer analysis of N2O in various environments.

  14. Hypochlorite-induced oxidation of amino acids, peptides and proteins.

    PubMed

    Hawkins, C L; Pattison, D I; Davies, M J

    2003-12-01

    Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reaction with HOCl within a cell due to their abundance and high reactivity with HOCl. This review summarizes information on the rate of reaction of HOCl with proteins, the nature of the intermediates formed, the mechanisms involved in protein oxidation and the products of these reactions. The predicted targets for reaction with HOCl from kinetic modeling studies and the consequences of HOCl-induced protein oxidation are also discussed. PMID:14661089

  15. ENZYME-MEDIATED CROSSLINKING OF WOOL PART I: TRANSGLUTAMINASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Felting shrinkage of wool fabric can be controlled by oxidation and protease treatment but strength loss usually results. The ARS process provides bleaching, biopolishing, and shrinkage control after applying peroxycarboximidic acid oxidation and selective enzyme digestion. Fabric strength loss of...

  16. Relationship of lipogenic enzyme activities to the rate of rat liver fatty acid synthesis

    SciTech Connect

    Nelson, G.; Kelley, D.; Schmidt, P.; Virk, S.; Serrato, C.

    1986-05-01

    The mechanism by which diet regulates liver lipogenesis is unclear. Here the authors report how dietary alterations effect the activities of key enzymes of fatty acid (FA) synthesis. Male Sprague-Dawley rats, 400-500 g, were fasted for 48h and then refed a fat-free, high carbohydrate (HC) diet (75% cal. from sucrose) for 0,3,9,24 and 48h, or refed a HC diet for 48h, then fed a high-fat (HF) diet (44% cal. from corn oil) for 3,9,24 and 48h. The FA synthesis rate and the activities of acetyl CoA carboxylase (AC), fatty acid synthase (FAS), ATP citrate lyase (CL), and glucose 6-phosphate dehydrogenase (G6PDH) were determined in the livers. FA synthesis was assayed with /sup 3/H/sub 2/O, enzyme activities were measured spectrophotometrically except for AC which was assayed with /sup 14/C-bicarbonate. There was no change in the activity of AC during fasting or on the HC diet. Fasting decreased the rate of FA synthesis by 25% and the activities of FAS and CL by 50%; refeeding the HC diet induced parallel changes in FA synthesis and the activities of FAS, CL, and G6PDH. After 9h on the HF diet, FA synthesis had decreased sharply, AC activity increased significantly while no changes were detected in the other activities. Subsequently FA synthesis did not change while the activities of the enzymes decreased slowly. These enzymes did not appear to regulate FA synthesis during inhibition of lipogenesis, but FAS, CL or G6PDH may be rate limiting in the induction phase. Other key factors may regulate FA synthesis during dietary alterations.

  17. Increased Flow of Fatty Acids toward β-Oxidation in Developing Seeds of Arabidopsis Deficient in Diacylglycerol Acyltransferase Activity or Synthesizing Medium-Chain-Length Fatty Acids1

    PubMed Central

    Poirier, Yves; Ventre, Giovanni; Caldelari, Daniela

    1999-01-01

    Synthesis of polyhydroxyalkanoates (PHAs) from intermediates of fatty acid β-oxidation was used as a tool to study fatty acid degradation in developing seeds of Arabidopsis. Transgenic plants expressing a peroxisomal PHA synthase under the control of a napin promoter accumulated PHA in developing seeds to a final level of 0.06 mg g−1 dry weight. In plants co-expressing a plastidial acyl-acyl carrier protein thioesterase from Cuphea lanceolata and a peroxisomal PHA synthase, approximately 18-fold more PHA accumulated in developing seeds. The proportion of 3-hydroxydecanoic acid monomer in the PHA was strongly increased, indicating a large flow of capric acid toward β-oxidation. Furthermore, expression of the peroxisomal PHA synthase in an Arabidopsis mutant deficient in the enzyme diacylglycerol acyltransferase resulted in a 10-fold increase in PHA accumulation in developing seeds. These data indicate that plants can respond to the inadequate incorporation of fatty acids into triacylglycerides by recycling the fatty acids via β-oxidation and that a considerable flow toward β-oxidation can occur even in a plant tissue primarily devoted to the accumulation of storage lipids. PMID:10594123

  18. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut

    PubMed Central

    Chen, Hui; Wilkerson, Curtis G.; Kuchar, Jason A.; Phinney, Brett S.; Howe, Gregg A.

    2005-01-01

    The plant hormone jasmonic acid (JA) activates host defense responses against a broad spectrum of herbivores. Although it is well established that JA controls the expression of a large set of target genes in response to tissue damage, very few gene products have been shown to play a direct role in reducing herbivore performance. To test the hypothesis that JA-inducible proteins (JIPs) thwart attack by disrupting digestive processes in the insect gut, we used a MS-based approach to identify host proteins that accumulate in the midgut of Manduca sexta larvae reared on tomato (Solanum lycopersicum) plants. We show that two JIPs, arginase and threonine deaminase (TD), act in the M. sexta midgut to catabolize the essential amino acids Arg and Thr, respectively. Transgenic plants that overexpress arginase were more resistant to M. sexta larvae, and this effect was correlated with reduced levels of midgut Arg. We present evidence indicating that the ability of TD to degrade Thr in the midgut is enhanced by herbivore-induced proteolytic removal of the enzyme's C-terminal regulatory domain, which confers negative feedback regulation by isoleucine in planta. Our results demonstrate that the JA signaling pathway strongly influences the midgut protein content of phytophagous insects and support the hypothesis that catabolism of amino acids in the insect digestive tract by host enzymes plays a role in plant protection against herbivores. PMID:16357201

  19. Enhanced Phospholipase A2 Group 3 Expression by Oxidative Stress Decreases the Insulin-Degrading Enzyme

    PubMed Central

    Yui, Daishi; Nishida, Yoichiro; Nishina, Tomoko; Mogushi, Kaoru; Tajiri, Mio; Ishibashi, Satoru; Ajioka, Itsuki; Ishikawa, Kinya; Mizusawa, Hidehiro; Murayama, Shigeo; Yokota, Takanori

    2015-01-01

    Oxidative stress has a ubiquitous role in neurodegenerative diseases and oxidative damage in specific regions of the brain is associated with selective neurodegeneration. We previously reported that Alzheimer disease (AD) model mice showed decreased insulin-degrading enzyme (IDE) levels in the cerebrum and accelerated phenotypic features of AD when crossbred with alpha-tocopherol transfer protein knockout (Ttpa-/-) mice. To further investigate the role of chronic oxidative stress in AD pathophysiology, we performed DNA microarray analysis using young and aged wild-type mice and aged Ttpa-/- mice. Among the genes whose expression changed dramatically was Phospholipase A2 group 3 (Pla2g3); Pla2g3 was identified because of its expression profile of cerebral specific up-regulation by chronic oxidative stress in silico and in aged Ttpa-/- mice. Immunohistochemical studies also demonstrated that human astrocytic Pla2g3 expression was significantly increased in human AD brains compared with control brains. Moreover, transfection of HEK293 cells with human Pla2g3 decreased endogenous IDE expression in a dose-dependent manner. Our findings show a key role of Pla2g3 on the reduction of IDE, and suggest that cerebrum specific increase of Pla2g3 is involved in the initiation and/or progression of AD. PMID:26637123

  20. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    PubMed

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia. PMID:27135739

  1. Determination of oxidative stress and activities of antioxidant enzymes in guinea pigs treated with haloperidol

    PubMed Central

    GUMULEC, JAROMIR; RAUDENSKA, MARTINA; HLAVNA, MARIAN; STRACINA, TIBOR; SZTALMACHOVA, MARKETA; TANHAUSEROVA, VERONIKA; PACAL, LUKAS; RUTTKAY-NEDECKY, BRANISLAV; SOCHOR, JIRI; ZITKA, ONDREJ; BABULA, PETR; ADAM, VOJTECH; KIZEK, RENE; NOVAKOVA, MARIE; MASARIK, MICHAL

    2013-01-01

    Guinea pigs (Cavia porcellus) were treated with haloperidol (HP), and free radical (FR) and ferric reducing antioxidant power (FRAP) assays were used to determine oxidative stress levels. Furthermore, the superoxide dismutase (SOD), glutathione reductase (GR) and glutathione-S-transferase (GST) activity levels were detected and glucose levels and the reduced and oxidized glutathione (GSH/GSSG) ratio were measured in HP-treated and untreated guinea pigs. The present study demonstrated that the administration of HP causes significant oxidative stress in guinea pigs (P=0.022). In animals treated with HP, the activity of GST was significantly increased compared with a placebo (P= 0.007). The elevation of SOD and GR activity levels and increase in the levels of glutathione (GSH) in HP-treated animals were not statistically significant. In the HP-untreated animals, a significant positive correlation was observed between oxidative stress detected by the FR method and GST (r=0.88, P=0.008) and SOD (r=0.86, P= 0.01) activity levels, respectively. A significant negative correlation between the levels of plasma glucose and oxidative stress detected by the FRAP method was observed (r=−0.78, P=0.04). Notably, no significant correlations were observed in the treated animals. In the HP-treated group, two subgroups of animals were identified according to their responses to oxidative stress. The group with higher levels of plasma HP had higher enzyme activity and reactive oxygen species production compared with the group with lower plasma levels of HP. The greatest difference in activity (U/μl) between the two groups of animals was for GR. PMID:23403848

  2. Phenolic Extract from Moringa oleifera Leaves Inhibits Key Enzymes Linked to Erectile Dysfunction and Oxidative Stress in Rats' Penile Tissues

    PubMed Central

    Oboh, Ganiyu; Ademiluyi, Adedayo O.; Ademosun, Ayokunle O.; Olasehinde, Tosin A.; Oyeleye, Sunday I.; Boligon, Aline A.; Athayde, Margareth L.

    2015-01-01

    This study was designed to determine the antioxidant properties and inhibitory effects of extract from Moringa oleifera leaves on angiotensin-I-converting enzyme (ACE) and arginase activities in vitro. The extract was prepared and phenolic (total phenols and flavonoid) contents, radical (nitric oxide (NO), hydroxyl (OH)) scavenging abilities, and Fe2+-chelating ability were assessed. Characterization of the phenolic constituents was done via high performance liquid chromatography-diode array detection (HPLC-DAD) analysis. Furthermore, the effects of the extract on Fe2+-induced MDA production in rats' penile tissue homogenate as well as its action on ACE and arginase activities were also determined. The extract scavenged NO∗, OH∗, chelated Fe2+, and inhibited MDA production in a dose-dependent pattern with IC50 values of 1.36, 0.52, and 0.38 mg/mL and 194.23 µg/mL, respectively. Gallic acid, chlorogenic acid, quercetin, and kaempferol were the most abundant phenolic compounds identified in the leaf extract. The extract also inhibited ACE and arginase activities in a dose-dependent pattern and their IC50 values were 303.03 and 159.59 µg/mL, respectively. The phenolic contents, inhibition of ACE, arginase, and Fe2+-induced MDA production, and radical (OH∗, NO∗) scavenging and Fe2+-chelating abilities could be some of the possible mechanisms by which M. oleifera leaves could be used in the treatment and/or management of erectile dysfunction. PMID:26557995

  3. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle

    PubMed Central

    Schenk, Gerhard; Elliott, Tristan W; Leung, Eleanor; Carrington, Lyle E; Mitić, Nataša; Gahan, Lawrence R; Guddat, Luke W

    2008-01-01

    Background Purple acid phosphatases belong to the family of binuclear metallohydrolases and are involved in a multitude of biological functions, ranging from bacterial killing and bone metabolism in animals to phosphate uptake in plants. Due to its role in bone resorption purple acid phosphatase has evolved into a promising target for the development of anti-osteoporotic chemotherapeutics. The design of specific and potent inhibitors for this enzyme is aided by detailed knowledge of its reaction mechanism. However, despite considerable effort in the last 10 years various aspects of the basic molecular mechanism of action are still not fully understood. Results Red kidney bean purple acid phosphatase is a heterovalent enzyme with an Fe(III)Zn(II) center in the active site. Two new structures with bound sulfate (2.4 Å) and fluoride (2.2 Å) provide insight into the pre-catalytic phase of its reaction cycle and phosphorolysis. The sulfate-bound structure illustrates the significance of an extensive hydrogen bonding network in the second coordination sphere in initial substrate binding and orientation prior to hydrolysis. Importantly, both metal ions are five-coordinate in this structure, with only one nucleophilic μ-hydroxide present in the metal-bridging position. The fluoride-bound structure provides visual support for an activation mechanism for this μ-hydroxide whereby substrate binding induces a shift of this bridging ligand towards the divalent metal ion, thus increasing its nucleophilicity. Conclusion In combination with kinetic, crystallographic and spectroscopic data these structures of red kidney bean purple acid phosphatase facilitate the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general. PMID:18234116

  4. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    PubMed Central

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation. PMID:23840666

  5. Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating

    PubMed Central

    2011-01-01

    Background Immobilization of lipase on appropriate solid supports is one way to improve their stability and activity, and can be reused for large scale applications. A sample, cost- effective and high loading capacity method is still challenging. Results A facile method of lipase immobilization was developed in this study, by the use of polydopamine coated magnetic nanoparticles (PD-MNPs). Under optimal conditions, 73.9% of the available lipase was immobilized on PD-MNPs, yielding a lipase loading capacity as high as 429 mg/g. Enzyme assays revealed that lipase immobilized on PD-MNPs displayed enhanced pH and thermal stability compared to free lipase. Furthermore, lipase immobilized on PD-MNPs was easily isolated from the reaction medium by magnetic separation and retained more than 70% of initial activity after 21 repeated cycles of enzyme reaction followed by magnetic separation. Conclusions Immobilization of enzyme onto magnetic iron oxide nanoparticles via poly-dopamine film is economical, facile and efficient. PMID:21649934

  6. [Glucose-fatty acids cycle in cobalt chloride-induced oxidative stress in rats].

    PubMed

    Kaliman, P A; Okhrimenko, S M

    2005-01-01

    It was found that the glucose-fatty acids cycle functioned under the oxidative stress, caused by injection of cobalt chloride solution in albino rats. This cycle promoted the adaptation of metabolism and rehabilitated the homeostasis under extreme conditions. Its functioning was regulated by prolonged (during 2-24 hours) rise in activity of amino acids catabolism enzymes (e.g. tyrosine aminotransferase, arginase) and activation of glyconeogenesis after the mobilisation of liver glycogen. This contributed to increase in glucose and free fatty acids contents in blood. The latter is additionally provided by lipid mobilisation under stress. Tyrosine aminotransferase activation occurred both on the transcription level and by enabling of other mechanisms, which probably concerned the stabilisation of this enzyme. Preliminary injection of alpha-tocopherol in vivo significantly decreased the rise in tyrosine aminotransferase and arginase activities and the rate of erythrocyte hemolysis but did not disable them in full. This made evident that in regulation of the glucose-fatty acids cycle not only active metabolites of oxygen but also Co ions were directly enabled. PMID:16335249

  7. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose.

    PubMed

    Westereng, Bjørge; Ishida, Takuya; Vaaje-Kolstad, Gustav; Wu, Miao; Eijsink, Vincent G H; Igarashi, Kiyohiko; Samejima, Masahiro; Ståhlberg, Jerry; Horn, Svein J; Sandgren, Mats

    2011-01-01

    Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61), some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a metal-dependent oxidative mechanism that leads to generation of aldonic acids. The activity of this enzyme and its beneficial effect on the efficiency of classical cellulases are stimulated by the presence of electron donors. Experiments with reduced cellulose confirmed the oxidative nature of the reaction catalyzed by PcGH61D and indicated that the enzyme may be capable of penetrating into the substrate. Considering the abundance of GH61-encoding genes in fungi and genes encoding their functional bacterial homologues currently classified as carbohydrate binding modules family 33 (CBM33), this enzyme activity is likely to turn out as a major determinant of microbial biomass-degrading efficiency. PMID:22132148

  8. The Putative Endoglucanase PcGH61D from Phanerochaete chrysosporium Is a Metal-Dependent Oxidative Enzyme that Cleaves Cellulose

    PubMed Central

    Westereng, Bjørge; Ishida, Takuya; Vaaje-Kolstad, Gustav; Wu, Miao; Eijsink, Vincent G. H.; Igarashi, Kiyohiko; Samejima, Masahiro; Ståhlberg, Jerry; Horn, Svein J.; Sandgren, Mats

    2011-01-01

    Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61), some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a metal-dependent oxidative mechanism that leads to generation of aldonic acids. The activity of this enzyme and its beneficial effect on the efficiency of classical cellulases are stimulated by the presence of electron donors. Experiments with reduced cellulose confirmed the oxidative nature of the reaction catalyzed by PcGH61D and indicated that the enzyme may be capable of penetrating into the substrate. Considering the abundance of GH61-encoding genes in fungi and genes encoding their functional bacterial homologues currently classified as carbohydrate binding modules family 33 (CBM33), this enzyme activity is likely to turn out as a major determinant of microbial biomass-degrading efficiency. PMID:22132148

  9. Identification and characterization of the two-enzyme system catalyzing oxidation of EDTA in the EDTA-degrading bacterial strain DSM 9103.

    PubMed Central

    Witschel, M; Nagel, S; Egli, T

    1997-01-01

    In a gram-negative isolate (DSM 9103) able to grow with EDTA as the sole source of carbon, nitrogen, and energy, the first two steps of the catabolic pathway for EDTA were elucidated. They consisted of the sequential oxidative removal of two acetyl groups, resulting in the formation of glyoxylate. An enzyme complex that catalyzes the removal of two acetyl groups was purified and characterized. In the reaction, ethylenediaminetriacetate (ED3A) was formed as an intermediate and N,N'-ethylenediaminediacetate was the end product. The enzyme complex consisted of two components: component A' (cA'), most likely a monooxygenase, which catalyzes the cleavage of EDTA and ED3A while consuming oxygen and reduced flavin mononucleotide (FMN)-H2, and component B' (cB'), an NADH2:FMN oxidoreductase that provides FMNH2 for cA'. cB' could be replaced by other NADH2:FMN oxidoreductases such as component B of the nitrilotriacetate monooxygenase or the NADH2:FMN oxidoreductase from Photobacterium fischeri. The EDTA-oxidizing enzyme complex accepted EDTA as a substrate only when it was complexed with Mg2+, Zn2+, Mn2+, Co2+, or Cu2+. Moreover, the enzyme complex catalyzed the removal of acetyl groups from several other aminopolycarboxylic acids that possess three or more acetyl groups. PMID:9371437

  10. Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique.

    PubMed

    Ansari, S G; Fouad, H; Shin, Hyung-Shik; Ansari, Z A

    2015-12-01

    Nano-Tin oxide was synthesized using hydrothermal method at 150 °C for 6 h and then thin films were deposited by electrophoretic method at an optimized voltage of 100 V for 5 min on electropolished aluminum substrate. Spherical particles of about 30-50 nm diameters are observed with partial agglomeration when observed under electron microscope, which are tetragonal rutile structure. XPS results showed peaks related to Sn 4d, Sn 3d, O 1s & C 1s with spin-orbit splitting of 8.4 eV for Sn 3d. Feasibility studies of enzyme less urea sensing characteristics of nano-tin oxide thin films are exhibited herein. The deposited films have been used for enzyme less urea sensing from 1 to 20 mM concentration in buffer solution. The sensors were characterized electrochemically to obtain cyclic voltammogram as a function of urea concentration and scan rate. The sensitivity is estimated as 18.9 μA/mM below 5 mM and 2.31 μA/mM above 5 mM with a limit of detection of 0.6 mM. PMID:26381425

  11. Oxidation of aliphatic olefins by toluene dioxygenase: enzyme rates and product identification.

    PubMed Central

    Lange, C C; Wackett, L P

    1997-01-01

    Toluene dioxygenase from Pseudomonas putida F1 has been studied extensively with aromatic substrates. The present work examined the toluene dioxygenase-catalyzed oxidation of various halogenated ethenes, propenes, butenes and nonhalogenated cis-2-pentene, an isomeric mix of 2-hexenes, cis-2-heptene, and cis-2-octene as substrates for toluene dioxygenase. Enzyme specific activities were determined for the more water-soluble C2 to C5 compounds and ranged from <4 to 52 nmol per min per mg of protein. Trichloroethene was oxidized at a rate of 33 nmol per min per mg of protein. Products from enzyme reactions were identified by gas chromatography-mass spectrometry. Proton and carbon nuclear magnetic resonance spectroscopy of compounds from whole-cell incubation confirmed the identity of products. Substrates lacking a halogen substituent on sp2 carbon atoms were dioxygenated, while those with halogen and one or more unsubstituted allylic methyl groups were monooxygenated to yield allylic alcohols. 2,3-Dichloro-1-propene, containing both a halogenated double bond and a halogenated allylic methyl group, underwent monooxygenation with allylic rearrangement to yield an isomeric mixture of cis- and trans-2,3-dichloro-2-propene-1-ol. PMID:9190800

  12. Regulation of adipose branched-chain amino acid catabolism enzyme expression and cross-adipose amino acid flux in human obesity

    PubMed Central

    Lackey, Denise E.; Lynch, Christopher J.; Olson, Kristine C.; Mostaedi, Rouzbeh; Ali, Mohamed; Smith, William H.; Karpe, Fredrik; Humphreys, Sandy; Bedinger, Daniel H.; Dunn, Tamara N.; Thomas, Anthony P.; Oort, Pieter J.; Kieffer, Dorothy A.; Amin, Rajesh; Bettaieb, Ahmed; Haj, Fawaz G.; Permana, Paska; Anthony, Tracy G.

    2013-01-01

    Elevated blood branched-chain amino acids (BCAA) are often associated with insulin resistance and type 2 diabetes, which might result from a reduced cellular utilization and/or incomplete BCAA oxidation. White adipose tissue (WAT) has become appreciated as a potential player in whole body BCAA metabolism. We tested if expression of the mitochondrial BCAA oxidation checkpoint, branched-chain α-ketoacid dehydrogenase (BCKD) complex, is reduced in obese WAT and regulated by metabolic signals. WAT BCKD protein (E1α subunit) was significantly reduced by 35–50% in various obesity models (fa/fa rats, db/db mice, diet-induced obese mice), and BCKD component transcripts significantly lower in subcutaneous (SC) adipocytes from obese vs. lean Pima Indians. Treatment of 3T3-L1 adipocytes or mice with peroxisome proliferator-activated receptor-γ agonists increased WAT BCAA catabolism enzyme mRNAs, whereas the nonmetabolizable glucose analog 2-deoxy-d-glucose had the opposite effect. The results support the hypothesis that suboptimal insulin action and/or perturbed metabolic signals in WAT, as would be seen with insulin resistance/type 2 diabetes, could impair WAT BCAA utilization. However, cross-tissue flux studies comparing lean vs. insulin-sensitive or insulin-resistant obese subjects revealed an unexpected negligible uptake of BCAA from human abdominal SC WAT. This suggests that SC WAT may not be an important contributor to blood BCAA phenotypes associated with insulin resistance in the overnight-fasted state. mRNA abundances for BCAA catabolic enzymes were markedly reduced in omental (but not SC) WAT of obese persons with metabolic syndrome compared with weight-matched healthy obese subjects, raising the possibility that visceral WAT contributes to the BCAA metabolic phenotype of metabolically compromised individuals. PMID:23512805

  13. Amino Acid Degradations Produced by Lipid Oxidation Products.

    PubMed

    Hidalgo, Francisco J; Zamora, Rosario

    2016-06-10

    Differently to amino acid degradations produced by carbohydrate-derived reactive carbonyls, amino acid degradations produced by lipid oxidation products are lesser known in spite of being lipid oxidation a major source of reactive carbonyls in food. This article analyzes the conversion of amino acids into Strecker aldehydes, α-keto acids, and amines produced by lipid-derived free radicals and carbonyl compounds, as well as the role of lipid oxidation products on the reactions suffered by these compounds: the formation of Strecker aldehydes and other aldehydes from α-keto acids; the formation of Strecker aldehydes and olefins from amines; the formation of shorter aldehydes from Strecker aldehydes; and the addition reactions suffered by the olefins produced from the amines. The relationships among all these reactions and the effect of reaction conditions on them are discussed. This knowledge should contribute to better control food processing in order to favor the formation of desirable beneficial compounds and to inhibit the production of compounds with deleterious properties. PMID:25748518

  14. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea.

    PubMed

    Ahmad, Parvaiz; Abdel Latef, Arafat A; Hashem, Abeer; Abd Allah, Elsayed F; Gucel, Salih; Tran, Lam-Son P

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  15. Nitric Oxide Mitigates Salt Stress by Regulating Levels of Osmolytes and Antioxidant Enzymes in Chickpea

    PubMed Central

    Ahmad, Parvaiz; Abdel Latef, Arafat A.; Hashem, Abeer; Abd_Allah, Elsayed F.; Gucel, Salih; Tran, Lam-Son P.

    2016-01-01

    This work was designed to evaluate whether external application of nitric oxide (NO) in the form of its donor S-nitroso-N-acetylpenicillamine (SNAP) could mitigate the deleterious effects of NaCl stress on chickpea (Cicer arietinum L.) plants. SNAP (50 μM) was applied to chickpea plants grown under non-saline and saline conditions (50 and 100 mM NaCl). Salt stress inhibited growth and biomass yield, leaf relative water content (LRWC) and chlorophyll content of chickpea plants. High salinity increased electrolyte leakage, carotenoid content and the levels of osmolytes (proline, glycine betaine, soluble proteins and soluble sugars), hydrogen peroxide (H2O2) and malondialdehyde (MDA), as well as the activities of antioxidant enzymes, such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase in chickpea plants. Expression of the representative SOD, CAT and APX genes examined was also up-regulated in chickpea plants by salt stress. On the other hand, exogenous application of NO to salinized plants enhanced the growth parameters, LRWC, photosynthetic pigment production and levels of osmolytes, as well as the activities of examined antioxidant enzymes which is correlated with up-regulation of the examined SOD, CAT and APX genes, in comparison with plants treated with NaCl only. Furthermore, electrolyte leakage, H2O2 and MDA contents showed decline in salt-stressed plants supplemented with NO as compared with those in NaCl-treated plants alone. Thus, the exogenous application of NO protected chickpea plants against salt stress-induced oxidative damage by enhancing the biosyntheses of antioxidant enzymes, thereby improving plant growth under saline stress. Taken together, our results demonstrate that NO has capability to mitigate the adverse effects of high salinity on chickpea plants by improving LRWC, photosynthetic pigment biosyntheses, osmolyte accumulation and antioxidative defense system. PMID:27066020

  16. Formaldehyde induces lung inflammation by an oxidant and antioxidant enzymes mediated mechanism in the lung tissue.

    PubMed

    Lino-dos-Santos-Franco, Adriana; Correa-Costa, Matheus; Durão, Ana Carolina Cardoso dos Santos; de Oliveira, Ana Paula Ligeiro; Breithaupt-Faloppa, Ana Cristina; Bertoni, Jônatas de Almeida; Oliveira-Filho, Ricardo Martins; Câmara, Niels Olsen Saraiva; Marcourakis, Tânia; Tavares-de-Lima, Wothan

    2011-12-15

    Formaldehyde (FA) is an indoor and outdoor pollutant widely used by many industries, and its exposure is associated with inflammation and oxidative stress in the airways. Our previous studies have demonstrated the role of reactive oxygen species (ROS) in lung inflammation induced by FA inhalation but did not identify source of the ROS. In the present study, we investigate the effects of FA on the activities and gene expression of glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), superoxide dismutase (SOD) 1 and 2, catalase (CAT), nitric oxide synthase (iNOS and cNOS) and cyclooxygenase (COX) 1 and 2. The hypothesized link between NADPH-oxidase, nitric oxide synthase and cyclooxygenase, the lung inflammation after FA inhalation was also investigated. For experiments, male Wistar rats were submitted to FA inhalation (1%, 90 min daily) for 3 consecutive days. The treatments with apocynin and indomethacin before the FA exposure reduced the number of neutrophils recruited into the lung. Moreover, the treatments with apocynin and indomethacin blunted the effect of FA on the generation of IL-1β, while the treatments with L-NAME and apocynin reduced the generation of IL-6 by lung explants when compared to the untreated group. FA inhalation increased the levels of NO and hydrogen peroxide by BAL cells cultured and the treatments with apocynin and l-NAME reduced these generations. FA inhalation did not modify the activities of GPX, GR, GST and CAT but reduced the activity of SOD when compared to the naïve group. Significant increases in SOD-1 and -2, CAT, iNOS, cNOS and COX-1 expression were observed in the FA group compared to the naïve group. The treatments with apocynin, indomethacin and L-NAME reduced the gene expression of antioxidant and oxidant enzymes. In conclusion, our results indicate that FA causes a disruption of the physiological balance between oxidant and antioxidant enzymes in lung tissue, most likely favoring the

  17. Acidic Ultrafine Tungsten Oxide Molecular Wires for Cellulosic Biomass Conversion.

    PubMed

    Zhang, Zhenxin; Sadakane, Masahiro; Hiyoshi, Norihito; Yoshida, Akihiro; Hara, Michikazu; Ueda, Wataru

    2016-08-22

    The application of nanocatalysis based on metal oxides for biomass conversion is of considerable interest in fundamental research and practical applications. New acidic transition-metal oxide molecular wires were synthesized for the conversion of cellulosic biomass. The ultrafine molecular wires were constructed by repeating (NH4 )2 [XW6 O21 ] (X=Te or Se) along the length, exhibiting diameters of only 1.2 nm. The nanowires dispersed in water and were observed using high-angle annular dark-field scanning transmission electron microscopy. Acid sites were created by calcination without collapse of the molecular wire structure. The acidic molecular wire exhibited high activity and stability and promoted the hydrolysis of the glycosidic bond. Various biomasses including cellulose were able to be converted to hexoses as main products. PMID:27482857

  18. Cytochrome bo from Escherichia coli: reaction of the oxidized enzyme with hydrogen peroxide.

    PubMed Central

    Watmough, N J; Cheesman, M R; Greenwood, C; Thomson, A J

    1994-01-01

    Oxidized cytochrome bo reacts rapidly with micromolar concentrations of H2O2 to form a single derivative. The electronic absorption spectrum of this compound differs from that of the oxidized form of the enzyme reported by this laboratory [Watmough, Cheesman, Gennis, Greenwood and Thomson (1993) FEBS Lett. 319, 151-154]. It is characterized by a Soret maximum at 411 nm, increased absorbance at 555 nm, and reduced intensity at 624 nm. The apparent dissociation constant for this process is of the order of 4 x 10(-6) M, and the bimolecular rate constant for the formation of the new compound is (1.25-1.7) x 10(3) M-1.s-1. Electronic absorption difference spectroscopy shows this product to be identical with the compound formed from the reaction of the mixed-valence form of the enzyme with dioxygen. Investigation of this compound by room-temperature magnetic c.d. spectroscopy shows haem o to be neither high-spin nor low-spin ferric, but to have a spectrum characteristic of an oxyferryl species. There is no evidence for oxidation of the porphyrin ring. Therefore the binuclear centre of this species must consist of an oxyferryl haem (S = 1) coupled to a Cu(II) ion (S = 1/2) to form a new paramagnetic centre. The reaction was also followed by X-band e.p.r. spectroscopy, and this showed the disappearance in parallel with the formation of the oxyferryl species, of the broad g = 3.7, signal which arises from the weakly coupled binuclear centre in the oxidized enzyme. Since no new e.p.r.-detectable paramagnetic species were observed, the Cu(II) ion is presumed to be coupled to another paramagnet, possibly an organic radical. There is no evidence in the electronic absorption spectrum to indicate further reaction of cytochrome bo with H2O2 to form a second species. We argue that the circumstances of formation of this oxyferryl species are the same as those for the P form of cytochrome c oxidase, a species often regarded as containing a bound peroxide ion. The implications of

  19. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  20. Effects of Microgravity On Oxidative and Antioxidant Enzymes In Mouse Hindlimb Muscle

    NASA Technical Reports Server (NTRS)

    Girten, B.; Hoopes, R.; Steele, M.; Morony, S.; Bateman, T. A.; Sun, S. (Technical Monitor)

    2002-01-01

    Gastrocnemius muscle of mice were analyzed in order to examine the effects of 12 days of microgravity on the oxidative enzyme climate synthase (CS) and the antioxidant enzyme superoxide dismutase (SOD). The female C57BL/6J mice utilized for this study were part of the Commercial Biomedical Testing Module (CBTM) payload that flew aboard STS-108. Mice were housed in Animal Enclosure Modules (AEMs) provided by NASA Ames. The flight (FLT) group and the ground control (CON) group each had 12 mice per group. The AEMs that held the CON group operated on a 48-hour delay from the FLT group and were located inside the Orbital Environmental Simulator (OES) at Kennedy Space Center. The temperature, CO2 and relative humidity inside the OES was regulated based on downlinked information from the shuttle middeck. Student T tests were used to compare groups and a p < 0.05 was used to determine statistical significance. Results indicated that CS levels for the FLT group were significantly lower than the CON group while the SOD levels were significantly higher. The CS FLT mean was 19% lower and the SOD FLT mean was 17% higher than the respective CON group means. Although these findings are among the first muscle enzyme values reported for mice from a shuttle mission, these results are similar to some results previously reported for rats exposed to microgravity or hindlimb suspension. The changes seen during the CBTM payload are reflective of the deconditioning that takes place with disuse of the hindlimbs and indicate that muscle enzyme changes induced by disuse deconditioning are similar in both rodent species.

  1. Transgenic Production of Epoxy Fatty Acids by Expression of a Cytochrome P450 Enzyme from Euphorbia lagascae Seed

    PubMed Central

    Cahoon, Edgar B.; Ripp, Kevin G.; Hall, Sarah E.; McGonigle, Brian

    2002-01-01

    Seed oils of a number of Asteraceae and Euphorbiaceae species are enriched in 12-epoxyoctadeca-cis-9-enoic acid (vernolic acid), an unusual 18-carbon Δ12-epoxy fatty acid with potential industrial value. It has been previously demonstrated that the epoxy group of vernolic acid is synthesized by the activity of a Δ12-oleic acid desaturase-like enzyme in seeds of the Asteraceae Crepis palaestina and Vernonia galamensis. In contrast, results from metabolic studies have suggested the involvement of a cytochrome P450 enzyme in vernolic acid synthesis in seeds of the Euphorbiaceae species Euphorbia lagascae. To clarify the biosynthetic origin of vernolic acid in E. lagascae seed, an expressed sequence tag analysis was conducted. Among 1,006 randomly sequenced cDNAs from developing E. lagascae seeds, two identical expressed sequence tags were identified that encode a cytochrome P450 enzyme classified as CYP726A1. Consistent with the seed-specific occurrence of vernolic acid in E. lagascae, mRNA corresponding to the CYP726A1 gene was abundant in developing seeds, but was not detected in leaves. In addition, expression of the E. lagascae CYP726A1 cDNA in Saccharomyces cerevisiae was accompanied by production of vernolic acid in cultures supplied with linoleic acid and an epoxy fatty acid tentatively identified as 12-epoxyoctadeca-9,15-dienoic acid (12-epoxy-18:2Δ9,15) in cultures supplied with α-linolenic acid. Consistent with this, expression of CYP726A1 in transgenic tobacco (Nicotiana tabacum) callus or somatic soybean (Glycine max) embryos resulted in the accumulation of vernolic acid and 12-epoxy-18:2Δ9,15. Overall, these results conclusively demonstrate that Asteraceae species and the Euphorbiaceae E. lagascae have evolved structurally unrelated enzymes to generate the Δ12-epoxy group of vernolic acid. PMID:11842164

  2. Energetics of proton release on the first oxidation step in the water-oxidizing enzyme

    PubMed Central

    Saito, Keisuke; William Rutherford, A.; Ishikita, Hiroshi

    2015-01-01

    In photosystem II (PSII), the Mn4CaO5 cluster catalyses the water splitting reaction. The crystal structure of PSII shows the presence of a hydrogen-bonded water molecule directly linked to O4. Here we show the detailed properties of the H-bonds associated with the Mn4CaO5 cluster using a quantum mechanical/molecular mechanical approach. When O4 is taken as a μ-hydroxo bridge acting as a hydrogen-bond donor to water539 (W539), the S0 redox state best describes the unusually short O4–OW539 distance (2.5 Å) seen in the crystal structure. We find that in S1, O4 easily releases the proton into a chain of eight strongly hydrogen-bonded water molecules. The corresponding hydrogen-bond network is absent for O5 in S1. The present study suggests that the O4-water chain could facilitate the initial deprotonation event in PSII. This unexpected insight is likely to be of real relevance to mechanistic models for water oxidation. PMID:26442814

  3. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis

    PubMed Central

    Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; de Castro-Faria-Neto, Hugo Caire

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  4. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA). PMID:27078880

  5. Green tea diet decreases PCB 126-induced oxidative stress in mice by upregulating antioxidant enzymes

    PubMed Central

    Newsome, Bradley J; Petriello, Michael C; Han, Sung Gu; Murphy, Margaret O; Eske, Katryn E; Sunkara, Manjula; Morris, Andrew J; Hennig, Bernhard

    2013-01-01

    Superfund chemicals such as polychlorinated biphenyls pose a serious human health risk due to their environmental persistence and link to multiple diseases. Selective bioactive food components such as flavonoids have been shown to ameliorate PCB toxicity, but primarily in an in vitro setting. Here, we show that mice fed a green tea-enriched diet and subsequently exposed to environmentally relevant doses of coplanar PCB exhibit decreased overall oxidative stress primarily due to the upregulation of a battery of antioxidant enzymes. C57BL/6 mice were fed a low fat diet supplemented with green tea extract (GTE) for 12 weeks and exposed to 5 μmol PCB 126/kg mouse weight (1.63 mg/kg-day) on weeks 10, 11 and 12 (total body burden: 4.9 mg/kg). F2-Isoprostane and its metabolites, established markers of in vivo oxidative stress, measured in plasma via HPLC-MS/MS exhibited five-fold decreased levels in mice supplemented with GTE and subsequently exposed to PCB compared to animals on a control diet exposed to PCB. Livers were collected and harvested for both mRNA and protein analyses, and it was determined that many genes transcriptionally controlled by AhR and Nrf2 proteins were upregulated in PCB-exposed mice fed the green tea supplemented diet. An increased induction of genes such as SOD1, GSR, NQO1 and GST, key antioxidant enzymes, in these mice (green tea plus PCB) may explain the observed decrease in overall oxidative stress. A diet supplemented with green tea allows for an efficient antioxidant response in the presence of PCB 126 which supports the emerging paradigm that healthful nutrition may be able to bolster and buffer a physiological system against the toxicities of environmental pollutants. PMID:24378064

  6. Increased muscle fatty acid oxidation in dairy cows with intensive body fat mobilization during early lactation.

    PubMed

    Schäff, C; Börner, S; Hacke, S; Kautzsch, U; Sauerwein, H; Spachmann, S K; Schweigel-Röntgen, M; Hammon, H M; Kuhla, B

    2013-10-01

    The beginning of lactation requires huge metabolic adaptations to meet increased energy demands for milk production of dairy cows. One of the adaptations is the mobilization of body reserves mainly from adipose tissue as reflected by increased plasma nonesterified fatty acid (NEFA) concentrations. The capacity of the liver for complete oxidation of NEFA is limited, leading to an increased formation of ketone bodies, reesterification, and accumulation of triglycerides in the liver. As the skeletal muscle also may oxidize fatty acids, it may help to decrease the fatty acid load on the liver. To test this hypothesis, 19 German Holstein cows were weekly blood sampled from 7 wk before until 5 wk after parturition to analyze plasma NEFA concentrations. Liver biopsies were obtained at d 3, 18, and 30 after parturition and, based on the mean liver fat content, cows were grouped to the 10 highest (HI) and 9 lowest (LO). In addition, muscle biopsies were obtained at d -17, 3, and 30 relative to parturition and used to quantify mRNA abundance of genes involved in fatty acid degradation. Plasma NEFA concentrations peaked after parturition and were 1.5-fold higher in HI than LO cows. Muscle carnitine palmitoyltransferase 1α and β mRNA was upregulated in early lactation. The mRNA abundance of muscle peroxisome proliferator-activated receptor γ (PPARG) increased in early lactation and was higher in HI than in LO cows, whereas the abundance of PPARA continuously decreased after parturition. The mRNA abundance of muscle PPARD, uncoupling protein 3, and the β-oxidative enzymes 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, very long-chain acyl-CoA dehydrogenase, and 3-ketoacyl-CoA was greatest at d 3 after parturition, whereas the abundance of PPARγ coactivator 1α decreased after parturition. Our results indicate that around parturition, oxidation of fatty acids in skeletal muscle is highly activated, which may contribute to diminish the fatty acid load on the liver. The

  7. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform. PMID:26649493

  8. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery.

    PubMed

    Yang, Chenchen; Wang, Xin; Yao, Xikuang; Zhang, Yajun; Wu, Wei; Jiang, Xiqun

    2015-05-10

    A methacrylation strategy was employed to functionalize hyaluronic acid and prepare hyaluronic acid (HA) nanogels. Dynamic light scattering, zeta potential analyzer and electron microscopy were utilized to characterize the nanogels and their enzyme-degradability in vitro. It was found that these nanogels had a spherical morphology with the diameter of about 70nm, and negative surface potential. When doxorubicin (DOX) was loaded into the nanogels, the diameter decreased to approximately 50nm with a drug loading content of 16% and encapsulation efficiency of 62%. Cellular uptake examinations showed that HA nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs) which both overexpress CD44 receptor. Near-infrared fluorescence imaging, biodistribution and penetration examinations in tumor tissue indicated that the HA nanogels could efficiently accumulate and penetrate the tumor matrix. In vivo antitumor evaluation found that DOX-loaded HA nanogels exhibited a significantly superior antitumor effect. PMID:25665867

  9. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids.

    PubMed

    Lim, Sung In; Kwon, Inchan

    2016-10-01

    The last decade has witnessed striking progress in the development of bioorthogonal reactions that are strictly directed towards intended sites in biomolecules while avoiding interference by a number of physical and chemical factors in biological environment. Efforts to exploit bioorthogonal reactions in protein conjugation have led to the evolution of protein translational machineries and the expansion of genetic codes that systematically incorporate a range of non-natural amino acids containing bioorthogonal groups into recombinant proteins in a site-specific manner. Chemoselective conjugation of proteins has begun to find valuable applications to previously inaccessible problems. In this review, we describe bioorthogonal reactions useful for protein conjugation, and biosynthetic methods that produce proteins amenable to those reactions through an expanded genetic code. We then provide key examples in which novel protein conjugates, generated by the genetic incorporation of a non-natural amino acid and the chemoselective reactions, address unmet needs in protein therapeutics and enzyme engineering. PMID:26036278

  10. Chlorogenic acid ameliorates endotoxin-induced liver injury by promoting mitochondrial oxidative phosphorylation.

    PubMed

    Zhou, Yan; Ruan, Zheng; Zhou, Lili; Shu, Xugang; Sun, Xiaohong; Mi, Shumei; Yang, Yuhui; Yin, Yulong

    2016-01-22

    Acute or chronic hepatic injury is a common pathology worldwide. Mitochondrial dysfunction and the depletion of adenosine triphosphate (ATP) play important roles in liver injury. Chlorogenic acids (CGA) are some of the most abundant phenolic acids in human diet. This study was designed to test the hypothesis that CGA may protect against chronic lipopolysaccharide (LPS)-induced liver injury by modulating mitochondrial energy generation. CGA decreased the activities of serum alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase. The contents of ATP and adenosine monophosphate (AMP), as well as the ratio of AMP/ATP, were increased after CGA supplementation. The activities of enzymes that are involved in glycolysis were reduced, while those of enzymes involved in oxidative phosphorylation were increased. Moreover, phosphorylated AMP-activated protein kinase (AMPK), and mRNA levels of AMPK-α, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1, and mitochondrial DNA transcription factor A were increased after CGA supplementation. Collectively, these findings suggest that the hepatoprotective effect of CGA might be associated with enhanced ATP production, the stimulation of mitochondrial oxidative phosphorylation and the inhibition of glycolysis. PMID:26740181

  11. Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat).

    PubMed

    Dao, Thai Ha; Zhang, Jian; Bao, Jie

    2013-11-01

    A high inulinase activity was found in three commercially available glucoamylase enzymes. Its origin was investigated and two proteins in the commercial glucoamylases were identified as the potential enzymes showing inulinase activity. One of the commercial glucoamylases, GA-L New from Genencor, was used for Jerusalem artichoke tubers (Jat) hydrolysis and a high hydrolysis yield of fructose was obtained. The simultaneous saccharification and lactic acid fermentation (SSF) of Jat was carried out using GA-L New as the inulinase and Pediococcus acidilactici DQ2 as the fermenting strain. A high lactic acid titer, yield, and productivity of 111.5 g/L, 0.46 g/g DM, and 1.55 g/L/h, respectively, were obtained within 72 h. The enzyme cost using the commercial glucoamylase as inulinase was compared to that using the typical inulinase and a large profit margin was identified. The results provided a practical way of Jat application for lactic acid production using cheap commercial glucoamylase enzyme. PMID:24050923

  12. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-01-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  13. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-09-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  14. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    PubMed Central

    2012-01-01

    Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316

  15. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid.

    PubMed

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-28

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (E(p), 1.10 ≤ E(p) ≤ 1.50 V), polarization time (t(p), 10(0) ≤ t(p) ≤ 10(4) s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (d(ox)). Because X1 > d(ox) for the entire range of E(p), t(p), and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Pt(δ+)-O(δ-) surface dipole (μ(PtO)), and the potential drop (V(ox)) and electric field (E(ox)) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide. PMID:25362330

  16. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  17. Peroxidase-active cell free extract from onion solid wastes: biocatalytic properties and putative pathway of ferulic acid oxidation.

    PubMed

    El Agha, Ayman; Makris, Dimitris P; Kefalas, Panagiotis

    2008-09-01

    The exploitation of food residuals can be a major contribution in reducing the polluting load of food industry waste and in developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bioorganic molecules, and thus they may have potential uses in several biocatalytic processes, including green organic synthesis, modification of food physicochemical properties, bioremediation, etc. Although the use of bacterial and fungal enzymes has gained attention in studies pertaining to biocatalytic applications, plant enzymes have been given less consideration or even disregarded. Therefore, we investigated the use of a crude peroxidase preparation from solid onion by-products for oxidizing ferulic acid, a widespread phenolic acid, various derivatives of which may occur in food wastes. The highest enzyme activity was observed at a pH value of 4, but considerable activity was retained up to a pH value of 6. Favorable temperatures for increased activity varied between 20-40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated ferulic acid solution showed the formation of a dimer as a major oxidation product. PMID:18930006

  18. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    PubMed Central

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-01-01

    Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation. PMID:19515264

  19. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system.

    PubMed

    Mafra, Agnes Cristina Oliveira; Furlan, Felipe Fernando; Badino, Alberto Colli; Tardioli, Paulo Waldir

    2015-04-01

    Sucrose from sugarcane is produced in abundance in Brazil, which provides an opportunity to manufacture other high-value products. Gluconic acid (GA) can be produced by multi-enzyme conversion of sucrose using the enzymes invertase, glucose oxidase, and catalase. In this process, one of the byproducts is fructose, which has many commercial applications. This work concerns the batch mode production of GA in an airlift reactor fed with sucrose as substrate. Evaluation was made of the influence of temperature and pH, as well as the thermal stability of the enzymes. Operational conditions of 40 °C and pH 6.0 were selected, based on the enzymatic activity profiles and the thermal stabilities. Under these conditions, the experimental data could be accurately described by kinetic models. The maximum yield of GA was achieved within 3.8 h, with total conversion of sucrose and glucose and a volumetric productivity of around 7.0 g L(-1) h(-1). PMID:25326720

  20. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme.

    PubMed

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS-PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS-PKS hybrid enzyme. PMID:26503170

  1. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme

    PubMed Central

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. PMID:26503170

  2. Hepatic Fatty Acid Oxidation Restrains Systemic Catabolism during Starvation.

    PubMed

    Lee, Jieun; Choi, Joseph; Scafidi, Susanna; Wolfgang, Michael J

    2016-06-28

    The liver is critical for maintaining systemic energy balance during starvation. To understand the role of hepatic fatty acid β-oxidation on this process, we generated mice with a liver-specific knockout of carnitine palmitoyltransferase 2 (Cpt2(L-/-)), an obligate step in mitochondrial long-chain fatty acid β-oxidation. Fasting induced hepatic steatosis and serum dyslipidemia with an absence of circulating ketones, while blood glucose remained normal. Systemic energy homeostasis was largely maintained in fasting Cpt2(L-/-) mice by adaptations in hepatic and systemic oxidative gene expression mediated in part by Pparα target genes including procatabolic hepatokines Fgf21, Gdf15, and Igfbp1. Feeding a ketogenic diet to Cpt2(L-/-) mice resulted in severe hepatomegaly, liver damage, and death with a complete absence of adipose triglyceride stores. These data show that hepatic fatty acid oxidation is not required for survival during acute food deprivation but essential for constraining adipocyte lipolysis and regulating systemic catabolism when glucose is limiting. PMID:27320917

  3. Rapid Online Non-Enzymatic Protein Digestion Combining Microwave Heating Acid Hydrolysis and Electrochemical Oxidation

    PubMed Central

    Basile, Franco; Hauser, Nicolas

    2010-01-01

    We report an online non-enzymatic method for site-specific digestion of proteins to yield peptides that are well suited for collision induced dissociation (CID) tandem mass spectrometry (MS/MS). The method combines online microwave heating acid hydrolysis at aspartic acid and online electrochemical oxidation at tryptophan and tyrosine. The combined microwave/electrochemical (microwave/echem) digestion is reproducible and produces peptides with an average sequence length of 10 amino acids. This peptide length is similar to the average peptide length of 9 amino acids obtained by digestion of proteins with the enzyme trypsin. As a result, the peptides produced by this novel non-enzymatic digestion method, when analyzed by ESI-MS, produce protonated molecules with mostly +1 and +2 charge states. The combination of these two non-enzymatic methods overcomes shortcomings with each individual method in that: i) peptides generated by the microwave-hydrolysis method have an average amino acid length of 16 amino acids, and ii) the inability of the electrochemical-cleavage method to reproducibly digest proteins with molecular masses above 4 kDa. Preliminary results are presented on the application and utility of this rapid online digestion (total of 6 min digestion time) on a series of standard peptides and proteins as well as an E. coli protein extract. PMID:21138252

  4. The Protein Oxidation Repair Enzyme Methionine Sulfoxide Reductase A Modulates Aβ Aggregation and Toxicity In Vivo

    PubMed Central

    Minniti, Alicia N.; Arrazola, Macarena S.; Bravo-Zehnder, Marcela; Ramos, Francisca; Inestrosa, Nibaldo C.

    2015-01-01

    Abstract Aims: To examine the role of the enzyme methionine sulfoxide reductase A-1 (MSRA-1) in amyloid-β peptide (Aβ)-peptide aggregation and toxicity in vivo, using a Caenorhabditis elegans model of the human amyloidogenic disease inclusion body myositis. Results: MSRA-1 specifically reduces oxidized methionines in proteins. Therefore, a deletion of the msra-1 gene was introduced into transgenic C. elegans worms that express the Aβ-peptide in muscle cells to prevent the reduction of oxidized methionines in proteins. In a constitutive transgenic Aβ strain that lacks MSRA-1, the number of amyloid aggregates decreases while the number of oligomeric Aβ species increases. These results correlate with enhanced synaptic dysfunction and mislocalization of the nicotinic acetylcholine receptor ACR-16 at the neuromuscular junction (NMJ). Innovation: This approach aims at modulating the oxidation of Aβ in vivo indirectly by dismantling the methionine sulfoxide repair system. The evidence presented here shows that the absence of MSRA-1 influences Aβ aggregation and aggravates locomotor behavior and NMJ dysfunction. The results suggest that therapies which boost the activity of the Msr system could have a beneficial effect in managing amyloidogenic pathologies. Conclusion: The absence of MSRA-1 modulates Aβ-peptide aggregation and increments its deleterious effects in vivo. Antioxid. Redox Signal. 22, 48–62. PMID:24988428

  5. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  6. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  7. Minerals Masquerading As Enzymes: Abiotic Oxidation Of Soil Organic Matter In An Iron-Rich Humid Tropical Forest Soil

    NASA Astrophysics Data System (ADS)

    Hall, S. J.; Silver, W. L.

    2010-12-01

    Oxidative reactions play an important role in decomposing soil organic matter fractions that resist hydrolytic degradation, and fundamentally affect the cycling of recalcitrant soil carbon across ecosystems. Microbial extracellular oxidative enzymes (e.g. lignin peroxidases and laccases) have been assumed to provide a dominant role in catalyzing soil organic matter oxidation, while other potential oxidative mechanisms remain poorly explored. Here, we show that abiotic reactions mediated by the oxidation of ferrous iron (Fe(II)) could explain high potential oxidation rates in humid tropical forest soils, which often contain high concentrations of Fe(II) and experience rapid redox fluctuations between anaerobic and aerobic conditions. These abiotic reactions could provide an additional mechanism to explain high rates of decomposition in these ecosystems, despite frequent oxygen deficits. We sampled humid tropical forest soils in Puerto Rico, USA from various topographic positions, ranging from well-drained ridges to riparian valleys that experience broad fluctuations in redox potential. We measured oxidative activity by adding the model humic compound L-DOPA to soil slurries, followed by colorimetric measurements of the supernatant solution over time. Dilute hydrogen peroxide was added to a subset of slurries to measure peroxidative activity. We found that oxidative and peroxidative activity correlated positively with soil Fe(II) concentrations, counter to prevailing theory that low redox potential should suppress oxidative enzymes. Boiling or autoclaving sub-samples of soil slurries to denature any enzymes present typically increased peroxidative activity and did not eliminate oxidative activity, further suggesting the importance of an abiotic mechanism. We found substantial differences in the oxidation products of the L-DOPA substrate generated by our soil slurries in comparison with oxidation products generated by a purified enzyme (mushroom tyrosinase

  8. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    PubMed

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed. PMID:18066140

  9. Adding an appropriate amino acid during crosslinking results in more stable crosslinked enzyme aggregates.

    PubMed

    Mukherjee, Joyeeta; Majumder, Abir Baran; Gupta, Munishwar Nath

    2016-08-15

    Carrier free immobilization, especially crosslinked enzyme aggregates (CLEAs), has become an important design for biocatalysis in several areas. Adding amino acids during formation of CLEAs was found to give biocatalysts more stable at 55 °C and in the presence of 60% acetonitrile. The half-lives of CLEAs prepared with and without Arg addition were 21 and 15 h (subtilisin) and 4 and 1.6 h (α-chymotrypsin) at 55 °C, respectively. The corresponding half-lives during acetonitrile presence were 4.1 and 3.0 h (subtilisin) and 39 and 22 min (α-chymotrypsin), respectively. CLEAs made with Arg had higher percentages of alpha helix. CLEAs made by adding Lys, Ala, or Asp also were more stable. In the case of Thermomyces lanuginosus lipase (TLL), CLEA with Ala was even more stable than CLEA with Arg. The addition of a suitable amino acid, thus, enhances CLEA stabilities. The results are discussed in the light of earlier results on chemical modification of proteins and the observation that the Arg/Lys ratio is invariably high in the case of enzymes from thermophiles. PMID:27237371

  10. Detection and characterization of oxidizing acids in the Atacama Desert using the Mars Oxidation Instrument

    NASA Astrophysics Data System (ADS)

    Quinn, R. C.; Zent, A. P.; Grunthaner, F. J.; Ehrenfreund, P.; Taylor, C. L.; Garry, J. R. C.

    2005-11-01

    We have performed field experiments to further develop and validate the Mars Oxidation Instrument (MOI) as well as measurement strategies for the in situ characterization of oxidation mechanisms, kinetics, and carbon cycling on Mars. Using the Atacama Desert as a test site for the current dry conditions on Mars, we characterized the chemical reactivity of surface and near-surface atmosphere in the dry core of the Atacama. MOI is a chemiresistor-based sensor array that measures the reaction rates of chemical films that are sensitive to particular types of oxidants or that mimic chemical characteristics of pre-biotic and biotic materials. With these sensors, the chemical reactivity of a planetary environment is characterized by monitoring the resistance of the film as a function of time. Our instrumental approach correlates reaction rates with dust abundance, UV flux, humidity, and temperature, allowing discrimination between competing hypotheses of oxidant formation and organic decomposition. The sensor responses in the Atacama are consistent with an oxidative attack by strong acids triggered by dust accumulation, followed by transient wetting due to an increase in relative humidity during the night. We conclude that in the Atacama Desert, and perhaps on Mars, low pH resulting from acid accumulation, combined with limited water availability and high oxidation potential, can result in oxidizing acid reactions on dust and soil surfaces during low-moisture transient wetting events (i.e. thin films of water). These soil acids are expected to play a significant role in the oxidizing nature of the soils, the formation of mineral surface coatings, and the chemical modification of organics in the surface material.

  11. Correlation between Antioxidant Enzyme Activity, Free Iron Content and Lipid Oxidation in Four Lines of Korean Native Chicken Meat

    PubMed Central

    Kim, Hye-Kyung; Cho, Chang-Yeon; Lee, Cheol-Koo

    2016-01-01

    This study was conducted to observe the association between antioxidant enzyme activity, free iron content and lipid oxidation of Korean native chicken (KNC) meat during refrigerated storage. Four lines of KNC (Yeonsan ogye, Hyunin black, Hoengseong yakdak and Hwangbong) were raised under similar conditions. A total of 16 roosters were randomly sampled and slaughtered at the age of 12 mon. The breast and thigh meats were stored aerobically for 10 d at 4℃. Although thigh meat had higher antioxidant enzyme activity, it was more susceptible to lipid oxidation and released more iron during storage than breast meat. Aerobic refrigerated storage for 10 d significantly decreased the activity of antioxidant enzymes and increased the amount of free iron and malondialdehyde. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were negatively correlated with lipid oxidation, whereas that of catalase was not. The amount of free iron was positively associated with lipid oxidation. We concluded that chicken line did not affect strongly on antioxidant enzyme activity and lipid oxidation in breast meat of KNC. However, the thigh meat of Hwangbong and Hyunin black had higher SOD and GSH-Px activity, respectively, and lower malondialdehyde contents than that of other chickens. SOD, GSH-Px and free iron play significant roles in meat lipid oxidation during refrigerated storage. PMID:27499663

  12. Correlation between Antioxidant Enzyme Activity, Free Iron Content and Lipid Oxidation in Four Lines of Korean Native Chicken Meat.

    PubMed

    Utama, Dicky Tri; Lee, Seung Gyu; Baek, Ki Ho; Kim, Hye-Kyung; Cho, Chang-Yeon; Lee, Cheol-Koo; Lee, Sung Ki

    2016-01-01

    This study was conducted to observe the association between antioxidant enzyme activity, free iron content and lipid oxidation of Korean native chicken (KNC) meat during refrigerated storage. Four lines of KNC (Yeonsan ogye, Hyunin black, Hoengseong yakdak and Hwangbong) were raised under similar conditions. A total of 16 roosters were randomly sampled and slaughtered at the age of 12 mon. The breast and thigh meats were stored aerobically for 10 d at 4℃. Although thigh meat had higher antioxidant enzyme activity, it was more susceptible to lipid oxidation and released more iron during storage than breast meat. Aerobic refrigerated storage for 10 d significantly decreased the activity of antioxidant enzymes and increased the amount of free iron and malondialdehyde. The activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were negatively correlated with lipid oxidation, whereas that of catalase was not. The amount of free iron was positively associated with lipid oxidation. We concluded that chicken line did not affect strongly on antioxidant enzyme activity and lipid oxidation in breast meat of KNC. However, the thigh meat of Hwangbong and Hyunin black had higher SOD and GSH-Px activity, respectively, and lower malondialdehyde contents than that of other chickens. SOD, GSH-Px and free iron play significant roles in meat lipid oxidation during refrigerated storage. PMID:27499663

  13. Oxidation of hypotaurine and cysteine sulphinic acid by peroxynitrite

    PubMed Central

    2005-01-01

    Peroxynitrite mediates the oxidation of the sulphinic group of both HTAU (hypotaurine) and CSA (cysteine sulphinic acid), producing the respective sulphonates, TAU (taurine) and CA (cysteic acid). The reaction is associated with extensive oxygen uptake, suggesting that HTAU and CSA are oxidized by the one-electron transfer mechanism to sulphonyl radicals, which may initiate an oxygen-dependent radical chain reaction with the sulphonates as final products. Besides the one-electron mechanism, HTAU and CSA can be oxidized by the two-electron pathway, leading directly to sulphonate formation without oxygen consumption. The apparent second-order rate constants for the direct reaction of peroxynitrite with HTAU and CSA at pH 7.4 and 25 °C are 77.4±5 and 76.4±9 M−1·s−1 respectively. For both sulphinates, the apparent second-order rate constants increase sharply with decrease in pH, and the sigmoidal curves obtained are consistent with peroxynitrous acid as the species responsible for sulphinate oxidation. The kinetic data, together with changes in oxygen uptake, sulphinate depletion, sulphonate production, and product distribution of nitrite and nitrate, suggest that oxidation of sulphinates by peroxynitrite may take place by the two reaction pathways whose relative importance depends on reagent concentrations and pH value. In the presence of bicarbonate, the direct reaction of sulphinates with peroxynitrite is inhibited and the oxidative reaction probably involves only the radicals •NO2 and CO3•−, generated by decomposition of the peroxynitrite-CO2 adduct. PMID:15740460

  14. Rapid and enzyme-free nucleic acid detection based on exponential hairpin assembly in complex biological fluids.

    PubMed

    Ma, Cuiping; Zhang, Menghua; Chen, Shan; Liang, Chao; Shi, Chao

    2016-05-10

    Herein, we have developed a rapid and enzyme-free nucleic acid amplification detection method that combined the exponential self-assembly of four DNA hairpins and the FRET pair Cy3 and Cy5. This strategy was very ingenious and rapid, and could detect nucleic acids at concentrations as low as 10 pM in 15 min in biological fluids. PMID:27138054

  15. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.

    PubMed

    Bhatt, Apoorva; Molle, Virginie; Besra, Gurdyal S; Jacobs, William R; Kremer, Laurent

    2007-06-01

    Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development. PMID:17555433

  16. Inhibitory action of Epilobium hirsutum extract and its constituent ellagic acid on drug-metabolizing enzymes.

    PubMed

    Celik, Gurbet; Semiz, Aslı; Karakurt, Serdar; Gencler-Ozkan, Ayse Mine; Arslan, Sevki; Adali, Orhan; Sen, Alaattin

    2016-04-01

    Epilobium hirsutum (EH) is a medicinal plant for treating various diseases. Despite its wide usage, there is no available information about its potential influences on drug metabolism. The present study was undertaken to determine the in vivo effects of EH on hepatic CYP2B, CYP2C, CYP2D, and CYP3A enzymes that are primarily involved in drug metabolism. Male Wistar rats were injected intraperitoneally with EH water extract (EHWE) and ellagic acid (EA) at a daily dose of 37.5 and 20 mg/kg, respectively, for 9 days and hepatic drug-metabolizing enzymes were assessed at activity, protein and mRNA levels. Erythromycin N-demethylase activity was inhibited by 53 and 21 % in EHWE- and EA-treated rats, respectively. Benzphetamine N-demethylase and 7-benzyloxyresorufin-O-debenzylase activities were decreased by 53 and 43 %, and 57 and 57 % in EHWE-and EA-treated rats, respectively. Moreover, protein levels of CYP2B1, CYP2C6, CYP2D2, and CYP3A1 also decreased by 55, 15, 33, and 82 % as a result of EHWE treatment of rats, respectively. Similarly, CYP2B1, CYP2C6, CYP2D2, and CYP3A1 protein levels decreased by 62, 63, 49, and 37 % with EA treatment, respectively. qRT-PCR analyses also showed that mRNA levels of these enzymes were significantly inhibited with bothEHWE and EA treatments. In conclusion, inhibition of drug clearances leading to drug toxicity because of the lowered activity and expression of drug-metabolizing enzymes might be observed in the people who used EH as complementary herbal remedy that might be contributed by its EA content. PMID:25425117

  17. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids

    PubMed Central

    Kristensen, David M; Ward, R Matthew; Lisewski, Andreas Martin; Erdin, Serkan; Chen, Brian Y; Fofanov, Viacheslav Y; Kimmel, Marek; Kavraki, Lydia E; Lichtarge, Olivier

    2008-01-01

    Background Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates. Results Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA) pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first three Enzyme Commission digits as the template's enzyme of origin. In many cases (61%) a single most likely function could be predicted as the annotation with the most matches, and in these cases such a plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary to sequence homology-based annotations. When matches are required to both geometrically match the 3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is greater than either method alone, especially in the region of lower sequence identity where homology-based annotations are least reliable. Conclusion These data suggest that knowledge of evolutionarily important residues improves functional annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large scale, and general adjunct to combine with other methods to decipher protein function in the structural proteome. PMID:18190718

  18. Surface acidity of silica-titania mixed oxides

    SciTech Connect

    Odenbrand, C.U.I.; Brandin, J.G.M. ); Busca, G. )

    1992-06-01

    A study of the acidity of coprecipitated SiO[sub 2]-TiO[sub 2] oxides is presented. The amount of acidity has been determined by ammonia adsorption at 150 C. The acidity was also characterized by TPD of adsorbed ammonia and by infrared spectroscopy of various adsorbed probes, such as pivalonitrile, pyridine, ammonia, and n-butylamine. From the quantitative measurements of adsorption of ammonia and from TPD it was concluded that the SiO[sub 2]-TiO[sub 2] mixture can be regarded as a mechanical mixture of silica and titania. However, the IR investigation showed that Ti enters in small amounts into the silica framework. This results in formation of very strong Lewis acid sites, caused by incomplete tetrahedral coordination of Ti[sup 4[minus

  19. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA. PMID:26662863

  20. Fish oil rich in eicosapentaenoic acid protects against oxidative stress-related renal dysfunction induced by TCDD in Wistar rats.

    PubMed

    Palaniswamy, Kalai Selvi; Vishwanadha, Vijaya Padma; Ramalingam Singaravelu, Saranya

    2014-05-01

    Humans are systemically exposed to persistent organic pollutants, of which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has become a major environmental concern. Exposure to TCDD results in a wide variety of adverse health effects which is mediated by oxidative stress through CYP1A1 activation and arachidonic acid metabolites. Eicosapentaenoic acid (EPA) exhibits antioxidant property and competes with arachidonic acid in membrane phospholipids and produces anti-inflammatory EPA derivatives. Since both EPA and its derivatives have been reported to enhance the antioxidant mechanism, the present study aimed at studying whether EPA could offer protection against TCDD-induced oxidative stress and nephrotoxicity in Wistar rats. Estimation of kidney markers (serum urea and creatinine) and histopathological studies revealed that EPA treatment significantly reduced TCDD-induced renal damage. TCDD-induced oxidative damage was reflected in a significant increase in CYP1A1 activity and lipid peroxide levels with a concomitant decline in non-enzymic antioxidant (GSH) and various enzymic antioxidants such catalase (CAT), superoxide dismutase (SOD), glutathione-S-transferase (GST), and glutathione peroxidase (GPx). In addition, TCDD-induced oxidative stress also resulted in decline in Na(+)-K(+) and Mg(2+)ATPases activities with increase in Ca(2+) ATPases activity. Oral treatment with EPA showed a significant cytoprotection against TCDD-induced renal oxidative stress by decreased CYP1A1 activity and enhanced antioxidant status. TCDD-induced alterations in ATPase enzyme activities were also prevented by EPA treatment. Our results show clear evidence that EPA ameliorates TCDD-induced oxidative stress and kidney damage; thus suggest the potential of EPA as an effective therapeutic agent against toxic effects mediated through redox imbalance. PMID:24114387

  1. Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme.

    PubMed

    Herring, Christopher D; Thorne, Philip G; Lynd, Lee R

    2016-03-01

    Clostridium thermocellum is an anaerobic thermophile with the ability to digest lignocellulosic biomass that has not been pretreated with high temperatures. Thermophilic anaerobes have previously been shown to more readily degrade grasses than wood. Part of the explanation for this may be the presence of relatively large amounts of coumaric acid in grasses, with linkages to both hemicellulose and lignin. We found that C. thermocellum and cell-free cellulase preparations both release coumaric acid from bagasse and switchgrass. Cellulase preparations from a mutant strain lacking the scaffoldin cipA still showed activity, though diminished. Deletion of all three proteins in C. thermocellum with ferulic acid esterase domains, either singly or in combination, did not eliminate the activity. Further work will be needed to identify the novel enzyme(s) responsible for the release of coumaric acid from grasses and to determine whether these enzymes are important factors of microbial biomass degradation. PMID:26762388

  2. Interactions of humic acid with nanosized inorganic oxides.

    PubMed

    Yang, Kun; Lin, Daohui; Xing, Baoshan

    2009-04-01

    Adsorption of natural organic matter (NOM) on nanoparticles (NPs) is important for evaluating their transport, transfer, and fate in the environment, which will also affect sorption of hydrophobic organic compounds (HOCs) by NPs and thereby potentially alter the toxicity of NPs and the fate, transport, and bioavailability of HOCs in the environment. Therefore, the adsorption behavior of humic acids (HA) by four types of nano-oxides (i.e., TiO2, SiO2, Al2O3, and ZnO) was examined in this study to explore their interaction mechanisms using techniques including Fourier transform infrared (FTIR) spectroscopy and elemental, zeta potential, and surface area analyses. Adsorption of HA was observed on nanosized TiO2, Al2O3, and ZnO but not on nano-SiO2. Furthermore, HA adsorption was pH-dependent. HA adsorption by nano-oxides was mainly induced by electrostatic attraction and ligand exchange between HA and nano-oxide surfaces. Surface hydrophilicity and negative charges of nano-oxides affected their adsorption of HA. However, the maxima of HA adsorption on nano-oxides were limited by the surface area of nano-oxides. HA phenolic OH and COOH groups were responsible for its ligand exchange with nano-TiO2 and nano-ZnO, respectively, while either HA COOH or HA phenolic/aliphatic OH was responsible for its ligand exchange with nano-Al2O3. HA adsorption decreased the micropore surface area of nano-oxides but not the external surface area because of the micropore blockage. HA adsorption also decreased the zeta potential of nano-oxides, indicating that HA-coated nano-oxides could be more easily dispersed and suspended and more stable in solution than uncoated ones because of their enhanced electrostatic repulsion. PMID:19708146

  3. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  4. Free radical oxidation of (E)-retinoic acid by prostaglandin H synthase.

    PubMed

    Samokyszyn, V M; Chen, T; Maddipati, K R; Franz, T J; Lehman, P A; Lloyd, R V

    1995-01-01

    Cooxidative metabolism of all-trans (E)-retinoic acid (RA) by prostaglandin H synthase was investigated employing ram seminal vesicle microsomes (RSVM) or purified, RSVM-derived enzyme. RA was shown to undergo hydroperoxide [H2O2 or 5-phenyl-4-penten-1-yl hydroperoxide (PPHP)]- or arachidonic acid-dependent cooxidation by microsomal prostaglandin H (PGH) synthase as evidenced by UV spectroscopic analysis of reaction mixtures. Cooxidation of RA by microsomal or purified PGH synthase, using PPHP as substrate, was characterized by uptake of dioxygen which was first order with respect to enzyme concentration. Dioxygen uptake was inhibited by the peroxidase reducing substrate 2-methoxyphenol. In addition, O2 uptake was inhibited by the spin trap nitrosobenzene. ESR spin trapping studies, using alpha-phenyl-N-tert-butylnitrone (PBN) as the spin trap, demonstrated the formation of RA-PBN adducts, characterized by hyperfine coupling constants of alpha H = 3.2 G and alpha N = 15.8 G. Reverse phase HPLC analysis of reaction mixtures demonstrated the formation of 4-hydroxy-RA, 5,6-epoxy-RA, 4-oxo-RA, (13Z)-retinoic acid, and other geometric isomers which were identified on the basis of cochromatography with synthetic standards, UV spectroscopy, and/or mass spectrometry. Mechanisms are proposed for the hydroperoxide-dependent, PGH synthase-catalyzed oxidation of RA that are consistent with these results. PMID:7548765

  5. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  6. Photosynthetic Characteristics of Portulaca grandiflora, a Succulent C(4) Dicot : CELLULAR COMPARTMENTATION OF ENZYMES AND ACID METABOLISM.

    PubMed

    Ku, S B; Shieh, Y J; Reger, B J; Black, C C

    1981-11-01

    on enzyme localization, a scheme of C(4) photosynthesis in P. grandiflora is proposed.Well-watered plants of P. grandiflora exhibit a diurnal fluctuation of total titratable acidity, with an amplitude of 61 and 54 microequivalent per gram fresh weight for the leaves and stems, respectively. These changes were in parallel with changes in malic acid concentration in these tissues. Under severe drought conditions, diurnal changes in both titratable acidity and malic acid concentration in both leaves and stems were much reduced. However, another C(4) dicot Amaranthus graecizans (nonsucculent) did not show any diurnal acid fluctuation under the same conditions. These results confirm the suggestion made by Koch and Kennedy (Plant Physiol. 65: 193-197, 1980) that succulent C(4) dicots can exhibit an acid metabolism similar to Crassulacean acid metabolism plants in certain environments. PMID:16662054

  7. Roles of urea production, ammonium excretion, and amino acid oxidation in acid-base balance.

    PubMed

    Mackenzie, W

    1986-02-01

    Atkinson and colleagues recently proposed several concepts that contrast with traditional views: first, that acid-base balance is regulated chiefly by the reactions leading to urea production in the liver; second, that ammonium excretion by the kidney plays no role in acid-base homeostasis; and third, that ammonium does not stimulate ureagenesis (except indirectly). To examine these concepts, plasma ions other than bicarbonate are categorized as 1) fixed cations (Na+, K+, Ca2+, and Mg2+, symbolized M+) and anions (Cl-), 2) buffer anions (A-), 3) other anions (X-), and 4) ammonium plus charged amino groups (N+). Since electroneutrality dictates that M+ + N+ = Cl- + HCO3- + A- + X-, it follows that delta HCO3- = delta(M+ - Cl-) - delta A- - delta X- + delta N+. Therefore acid-base disturbances (changes in HCO3-) can be categorized as to how they affect bodily content and hence plasma concentration of each of these four types of ions. The stoichiometry of ureagenesis, glutamine hydrolysis, ammonium and titratable acid excretion, oxidation of neutral, acidic, and basic amino acids, and oxidation of methionine, phosphoserine, and protein are examined to see how they alter these quantities. It is concluded that 1) although ureagenesis is pH dependent and also counteracts a tendency of amino acid oxidation to cause alkalosis, this tendency is inherently limited by the hyperammonemia (delta N+) that necessarily accompanies it, 2) ammonium excretion is equivalent to hydrogen excretion in its effects on acid-base balance if, and only if, it occurs in exchange for sodium or is accompanied by chloride excretion and only when the glutamate generated by glutamine hydrolysis is oxidized.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3511732

  8. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application.

    PubMed

    Singh, Jay; Roychoudhury, Appan; Srivastava, Manish; Solanki, Pratima R; Lee, Dong Won; Lee, Seung Hee; Malhotra, B D

    2014-01-21

    In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL(-1), detection limit of 19.78 mg (dL cm(-2))(-1), and high sensitivity of 0.9245 μA (mg per dL cm(-2))(-1) with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices. PMID:24301799

  9. Effects of nanomaterials on luciferase with significant protection and increased enzyme activity observed for zinc oxide nanomaterials.

    PubMed

    Barber, S; Abdelhakiem, M; Ghosh, K; Mitchell, L; Spidle, R; Jacobs, B; Washington, L; Li, J; Wanekaya, A; Glaspell, G; DeLong, R K

    2011-12-01

    This principle goal of this research was to examine the effects of various nanomaterials on the activity and behavior of the firefly enzyme luciferase. Nanomaterials have been found to stabilize, and in some instances, shown to increase the activity of enzymes. In this study gold, manganese oxide (MnO), and zinc oxide (ZnO) nanomaterials were utilized in order to test their effects on enzyme activity. Luciferase was used because its activity is easy to analyze, as it typically produces a large amount of bioluminescence easily detected by a Microtiter plate reader. Following incubation with the various nanomaterials, luciferase was subjected to degradation by several protein denaturing agents, such as heat, SDS, urea, ethanol, protease, hydrogen peroxide, and pH changes. Results indicated that luciferase activity is indeed affected when combined with nanomaterials, accompanied by both increases and decreases in enzyme activity depending on the type of nanomaterial and denaturing agent used. In most of the experiments, when incubated with ZnO nanomaterials, luciferase depicted significant increases in activity and bioluminescence. Additional experiments, in which human A375 cells were treated with luciferase-nanomaterial mixtures, also depicted increased enzyme activity and bioluminescence for luciferase incubated with ZnO nanomaterials. Ultimately, our findings indicated that when luciferase was subjected to multiple types of denaturation, zinc oxide nanomaterials dramatically preserved and increased enzyme activity and bioluminescence. PMID:22408903

  10. Unravelling the Interactions between Hydrolytic and Oxidative Enzymes in Degradation of Lignocellulosic Biomass by Sporothrix carnis under Various Fermentation Conditions

    PubMed Central

    Ogunyewo, Olusola A.; Olajuyigbe, Folasade M.

    2016-01-01

    The mechanism underlying the action of lignocellulolytic enzymes in biodegradation of lignocellulosic biomass remains unclear; hence, it is crucial to investigate enzymatic interactions involved in the process. In this study, degradation of corn cob by Sporothrix carnis and involvement of lignocellulolytic enzymes in biodegradation were investigated over 240 h cultivation period. About 60% degradation of corn cob was achieved by S. carnis at the end of fermentation. The yields of hydrolytic enzymes, cellulase and xylanase, were higher than oxidative enzymes, laccase and peroxidase, over 144 h fermentation period. Maximum yields of cellulase (854.4 U/mg) and xylanase (789.6 U/mg) were at 96 and 144 h, respectively. Laccase and peroxidase were produced cooperatively with maximum yields of 489.06 U/mg and 585.39 U/mg at 144 h. Drastic decline in production of cellulase at 144 h (242.01 U/mg) and xylanase at 192 h (192.2 U/mg) indicates that they play initial roles in biodegradation of lignocellulosic biomass while laccase and peroxidase play later roles. Optimal degradation of corn cob (76.6%) and production of hydrolytic and oxidative enzymes were achieved with 2.5% inoculum at pH 6.0. Results suggest synergy in interactions between the hydrolytic and oxidative enzymes which can be optimized for improved biodegradation. PMID:26881077

  11. Oxidative stress enzyme and histopathological lesions in Colossoma macropomum (pisces, ariidae) for environmental impact assessment

    NASA Astrophysics Data System (ADS)

    Andrade, Ticianne de Sousa de Oliveira Mota; Sousa, Debora Batista Pinheiro; Dantas, Janaina Gomes; Castro, Jonatas da Silva; Neta, Raimunda Nonata Fortes Carvalho

    2015-12-01

    This study used oxidative stress enzyme (Glutathione S-Transferase and Catalase), histopathological lesions (Branchial lesions) and biometric data in the freshwater fish tambaqui, Colossoma macropomum, to assess environmental impacts in an Environmental Protection Area at São Luis, Brazil. Fish were sampled from two locations (A1 = contaminated area and A2 = reference site) within the protected area on four occasions. The activity of catalase (CAT) and glutathione S-transferase (GST) in C. macropomum was compared with biometric data and histopathological lesions. Results have shown that biometric data decreased significantly in fish (p<0.05) at the contaminated site. The activity of CAT was higher in fish specifically caught in A1. A significant difference was observed in the GST activity in the liver of C. macropomum when comparing fish from the contaminated site and those from the reference site (p<0.05).

  12. Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism*

    PubMed Central

    Daniel, Bastian; Pavkov-Keller, Tea; Steiner, Barbara; Dordic, Andela; Gutmann, Alexander; Nidetzky, Bernd; Sensen, Christoph W.; van der Graaff, Eric; Wallner, Silvia; Gruber, Karl; Macheroux, Peter

    2015-01-01

    Plant genomes contain a large number of genes encoding for berberine bridge enzyme (BBE)-like enzymes. Despite the widespread occurrence and abundance of this protein family in the plant kingdom, the biochemical function remains largely unexplored. In this study, we have expressed two members of the BBE-like enzyme family from Arabidopsis thaliana in the host organism Komagataella pastoris. The two proteins, termed AtBBE-like 13 and AtBBE-like 15, were purified, and their catalytic properties were determined. In addition, AtBBE-like 15 was crystallized and structurally characterized by x-ray crystallography. Here, we show that the enzymes catalyze the oxidation of aromatic allylic alcohols, such as coumaryl, sinapyl, and coniferyl alcohol, to the corresponding aldehydes and that AtBBE-like 15 adopts the same fold as vanillyl alcohol oxidase as reported previously for berberine bridge enzyme and other FAD-dependent oxidoreductases. Further analysis of the substrate range identified coniferin, the glycosylated storage form of coniferyl alcohol, as a substrate of the enzymes, whereas other glycosylated monolignols were rather poor substrates. A detailed analysis of the motifs present in the active sites of the BBE-like enzymes in A. thaliana suggested that 14 out of 28 members of the family might catalyze similar reactions. Based on these findings, we propose a novel role of BBE-like enzymes in monolignol metabolism that was previously not recognized for this enzyme family. PMID:26037923

  13. Oxidation of Monolignols by Members of the Berberine Bridge Enzyme Family Suggests a Role in Plant Cell Wall Metabolism.

    PubMed

    Daniel, Bastian; Pavkov-Keller, Tea; Steiner, Barbara; Dordic, Andela; Gutmann, Alexander; Nidetzky, Bernd; Sensen, Christoph W; van der Graaff, Eric; Wallner, Silvia; Gruber, Karl; Macheroux, Peter

    2015-07-24

    Plant genomes contain a large number of genes encoding for berberine bridge enzyme (BBE)-like enzymes. Despite the widespread occurrence and abundance of this protein family in the plant kingdom, the biochemical function remains largely unexplored. In this study, we have expressed two members of the BBE-like enzyme family from Arabidopsis thaliana in the host organism Komagataella pastoris. The two proteins, termed AtBBE-like 13 and AtBBE-like 15, were purified, and their catalytic properties were determined. In addition, AtBBE-like 15 was crystallized and structurally characterized by x-ray crystallography. Here, we show that the enzymes catalyze the oxidation of aromatic allylic alcohols, such as coumaryl, sinapyl, and coniferyl alcohol, to the corresponding aldehydes and that AtBBE-like 15 adopts the same fold as vanillyl alcohol oxidase as reported previously for berberine bridge enzyme and other FAD-dependent oxidoreductases. Further analysis of the substrate range identified coniferin, the glycosylated storage form of coniferyl alcohol, as a substrate of the enzymes, whereas other glycosylated monolignols were rather poor substrates. A detailed analysis of the motifs present in the active sites of the BBE-like enzymes in A. thaliana suggested that 14 out of 28 members of the family might catalyze similar reactions. Based on these findings, we propose a novel role of BBE-like enzymes in monolignol metabolism that was previously not recognized for this enzyme family. PMID:26037923

  14. A dual enzyme functionalized nanostructured thulium oxide based interface for biomedical application

    NASA Astrophysics Data System (ADS)

    Singh, Jay; Roychoudhury, Appan; Srivastava, Manish; Solanki, Pratima R.; Lee, Dong Won; Lee, Seung Hee; Malhotra, B. D.

    2013-12-01

    In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared nanorods has been electrophoretically deposited (EPD) onto an indium-tin-oxide (ITO) glass substrate. The n-Tm2O3 nanorods are found to provide improved sensing characteristics to the electrode interface in terms of electroactive surface area, diffusion coefficient, charge transfer rate constant and electron transfer kinetics. The structural and morphological studies of n-Tm2O3 nanorods have been carried out by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopic techniques. This interfacial platform has been used for fabrication of a total cholesterol biosensor by immobilizing cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) onto a Tm2O3 nanostructured surface. The results of response studies of the fabricated ChEt-ChOx/n-Tm2O3/ITO bioelectrode show a broad linear range of 8-400 mg dL-1, detection limit of 19.78 mg (dL cm-2)-1, and high sensitivity of 0.9245 μA (mg per dL cm-2)-1 with a response time of 40 s. Further, this bioelectrode has been utilized for estimation of total cholesterol with negligible interference (3%) from analytes present in human serum samples. The utilization of this n-Tm2O3 modified electrode for enzyme-based biosensor analysis offers an efficient strategy and a novel interface for application of the rare earth metal oxide materials in the field of electrochemical sensors and bioelectronic devices.In this paper, we present results of the studies related to fabrication of a rare earth metal oxide based efficient biosensor using an interface based on hydrothermally prepared nanostructured thulium oxide (n-Tm2O3). A colloidal solution of prepared

  15. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    PubMed Central

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  16. The Relationship between Coenzyme Q10, Oxidative Stress, and Antioxidant Enzymes Activities and Coronary Artery Disease

    PubMed Central

    Lee, Bor-Jen; Lin, Yi-Chin; Huang, Yi-Chia; Ko, Ya-Wen; Hsia, Simon; Lin, Ping-Ting

    2012-01-01

    A higher oxidative stress may contribute to the pathogenesis of coronary artery disease (CAD). The purpose of this study was to investigate the relationship between coenzyme Q10 concentration and lipid peroxidation, antioxidant enzymes activities and the risk of CAD. Patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n = 51). The control group (n = 102) comprised healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, malondialdehyde (MDA) and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx)) were measured. Subjects with CAD had significant lower plasma coenzyme Q10, CAT and GPx activities and higher MDA and SOD levels compared to those of the control group. The plasma coenzyme Q10 was positively correlated with CAT and GPx activities and negatively correlated with MDA and SOD. However, the correlations were not significant after adjusting for the potential confounders of CAD with the exception of SOD. A higher level of plasma coenzyme Q10 (≥0.52 μmol/L) was significantly associated with reducing the risk of CAD. Our results support the potential cardioprotective impact of coenzyme Q10. PMID:22645453

  17. A graphene oxide-based enzyme-free signal amplification platform for homogeneous DNA detection.

    PubMed

    Zhang, Zhen; Liu, Yufei; Ji, Xinghu; Xiang, Xia; He, Zhike

    2014-10-01

    A graphene oxide (GO) based enzyme-free signal amplification platform for homogeneous DNA sensing is developed with simplicity and high sensitivity. In the absence of the target DNA, labeled hairpin probe 1 (H1) and probe 2 (H2) were adsorbed on the surface of GO, resulting in the fluorescence quenching of the dyes and minimizing the background fluorescence. The addition of the target DNA facilitated the formation of double-stranded DNA (dsDNA) between H1 and H2, causing the probes to separate from GO and release the target DNA through a strand displacement reaction. Meanwhile, the whole reaction started anew. This is an excellent isothermal signal amplification technique without the involvement of enzymes. By monitoring the change of the fluorescence intensity, the target DNA not only can be determined in buffer solution, but also can be detected in 1% serum solution spiked with a series of concentrations of the target DNA. In addition, the consumption amount of the probes in this method is lower than that in traditional molecular beacon methods. PMID:25058563

  18. Antioxidant enzymes activities of Burkholderia spp. strains-oxidative responses to Ni toxicity.

    PubMed

    Dourado, M N; Franco, M R; Peters, L P; Martins, P F; Souza, L A; Piotto, F A; Azevedo, R A

    2015-12-01

    Increased agriculture production associated with intense application of herbicides, pesticides, and fungicides leads to soil contamination worldwide. Nickel (Ni), due to its high mobility in soils and groundwater, constitutes one of the greatest problems in terms of environmental pollution. Metals, including Ni, in high concentrations are toxic to cells by imposing a condition of oxidative stress due to the induction of reactive oxygen species (ROS), which damage lipids, proteins, and DNA. This study aimed to characterize the Ni antioxidant response of two tolerant Burkholderia strains (one isolated from noncontaminated soil, SNMS32, and the other from contaminated soil, SCMS54), by measuring superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), and glutathione S-transferase (GST) activities. Ni accumulation and bacterial growth in the presence of the metal were also analyzed. The results showed that both strains exhibited different trends of Ni accumulation and distinct antioxidant enzymes responses. The strain from contaminated soil (SCMS54) exhibited a higher Ni biosorption and exhibited an increase in SOD and GST activities after 5 and 12 h of Ni exposure. The analysis of SOD, CAT, and GR by nondenaturing PAGE revealed the appearance of an extra isoenzyme in strain SCMS54 for each enzyme. The results suggest that the strain SCMS54 isolated from contaminated soil present more plasticity with potential to be used in soil and water bioremediation. PMID:26289332

  19. Biological reactivity and biomarkers of the neutrophil oxidant, hypochlorous acid.

    PubMed

    Winterbourn, Christine C

    2002-12-27

    Free radicals or reactive oxygen species are thought to contribute to the pathology of many diseases. These include inflammatory conditions, where neutrophils accumulate in large numbers and are stimulated to produce superoxide and other reactive oxidants. Hypochlorous acid (HOCl), produced by myeloperoxidase-catalysed oxidation of chloride by hydrogen peroxide, is the major strong oxidant generated by these cells. Neutrophil-mediated injury may also be important in toxicology when an initial insult is followed by an inflammatory response. It is important to characterize the inflammatory component of such injury and the extent to which it involves reactive oxidants. On the one hand, this requires an understanding of how neutrophil oxidants react with cells and tissue constituents. On the other, specific biomarkers are needed so that oxidative damage can be quantified in clinical material and related to disease severity. This presentation considers biologically relevant reactions of HOCl and the biomarker assays that can be applied to probing the pathological role of myeloperoxidase and its products. PMID:12505315

  20. Oxide for valve-regulated lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Lim, O. V.; Haigh, N. P.; Rand, D. A. J.; Manders, J. E.; Rice, D. M.

    In order to meet the increasing demand for valve-regulated lead-acid (VRLA) batteries, a new soft lead has been produced by Pasminco Metals. In this material, bismuth is increased to a level that produces a significant improvement in battery cycle life. By contrast, other common impurities, such as arsenic, cobalt, chromium, nickel, antimony and tellurium, that are known to be harmful to VRLA batteries are controlled to very low levels. A bismuth (Bi)-bearing oxide has been manufactured (Barton-pot method) from this soft lead and is characterized in terms of phase composition, particle size distribution, BET surface area, and reactivity. An investigation is also made of the rates of oxygen and hydrogen evolution on pasted electrodes prepared from the Bi-bearing oxide. For comparison, the characteristics and performance of a Bi-free (Barton-pot) oxide, which is manufactured in the USA, are also examined. Increasing the level of bismuth and lowering those of the other impurities in soft lead produces no unusual changes in either the physical or the chemical properties of the resulting Bi-bearing oxide compared with Bi-free oxide. This is very important because there is no need for battery manufacturers to change their paste formulae and paste-mixing procedures on switching to the new Bi-bearing oxide. There is little difference in the rates of oxygen and hydrogen evolution on pasted electrodes prepared from Bi-bearing or Bi-free oxides. On the other hand, these rates increase on the former electrodes when the levels of all the other impurities are made to exceed (by deliberately adding the impurities as oxide powders) the corresponding, specified values for the Bi-bearing oxide. The latter behaviour is particularly noticeable for hydrogen evolution, which is enhanced even further when a negative electrode prepared from Bi-bearing oxide is contaminated through the deposition of impurities added to the sulfuric acid solution. The effects of impurities in the positive

  1. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth

    SciTech Connect

    Tasayco, M.L.; Prestwich, G.D. )

    1990-02-25

    Aldehyde dehydrogenase (ALDH) and oxidase (AO) enzymes from the tissue extracts of male and female tobacco budworm moth (Heliothis virescens) were identified after electrophoretic protein separation. AO activity was visualized using formazan- or horseradish peroxidase-mediated staining coupled to the AO-catalyzed oxidation of benzaldehyde. A set of six soluble AO enzymes with isoelectric points from pI 4.6 to 5.3 were detected primarily in the antennal extracts. Partially purified antennal AO enzymes also oxidized both (Z)-9-tetradecenal and (Z)-11-hexadecenal, the two major pheromone components of this moth. ALDH activity was detected using a tritium-labeled affinity reagent based on a known irreversible inhibitor of this enzyme. This labeled vinyl ketone, (3H)(Z)-1,11-hexadecadien-3-one, was synthesized and used to covalently modify the soluble ALDH enzymes from tissue extracts. Molecular subunits of potential ALDH enzymes were visualized in the fluorescence autoradiograms of sodium dodecyl sulfate-polyacrylamide gel electrophoresis-separated proteins of the antenna, head, and leg tissues. Covalent modification of these protein subunits decreased specifically in the presence of excess pheromone aldehyde or benzaldehyde. Labeled vinyl ketones are thus novel tools for the identification of molecular subunits of ALDH enzymes.

  2. Transient, oxidant-induced antioxidant transcript and enzyme levels correlate with greater oxidant-resistance in paraquat-resistant Conyza bonariensis.

    PubMed

    Ye, B; Gressel, J

    2000-06-01

    The elucidation of mechanisms plants use to overcome oxidative stress is facilitated where there is intra-specific genetic variability. The differential induction of higher levels of mRNAs, cytosol and chloroplast antioxidant enzyme activities, and proteins occurred after sub-lethal paraquat treatment of the oxidant-resistant biotype of Conyza bonariensis (L.) Cronq. By 6 h after sub-lethal paraquat treatment the activities of superoxide dismutase (EC 1.15.1.1), ascorbate peroxidase (EC 1.11.1.11), dehydroascorbate reductase (EC 1.8.5), monodehydroascorbate reductase (EC 1.6.5.4), and glutathione peroxidase (EC 1.11.19) had increased, peaking at 24 h and then slowly reverting back to the basal level. Similarly, the levels of mRNAs encoding these enzymes were enhanced by 12 h and peaked at 18-24 h after sub-lethal paraquat treatment. The time courses of the transient elevation of both transcript and antioxidant enzyme levels correlated with a further transient 2.5- to 3.0-fold increase of paraquat resistance, which occurred only in the constitutively resistant biotype. The individual enzymes seem to be part of a coordinately controlled oxidant tolerance in the resistant biotype, utilizing oxidant-induced, increasingly abundant transcript levels, upon which more antioxidant enzymes were synthesized. PMID:10923703

  3. Formation of phenol under conditions of the reaction of oxidative carbonylation of benzene to benzoic acid

    SciTech Connect

    Kalinovsky, I.O.; Leshcheva, A.N.; Pogorelov, V.V.; Gelbshtein, A.I.

    1993-12-31

    This paper describes conditions for the oxidation of benzene to phenol. It is shown that a reaction mixture of water, carbon monoxide, and oxygen are essential to the oxidation. The oxidation is a side reaction found to occur during the oxidative carbonylation of benzene to benzoic acid in a medium of trifluoroacetic acid.

  4. Optimization of the enzyme-catalyzed synthesis of amino acid-based surfactants from palm oil fractions.

    PubMed

    Soo, Ee Lin; Salleh, Abu Bakar; Basri, Mahiran; Zaliha Raja Abdul Rahman, Raja Noor; Kamaruddin, Kamarulzaman

    2003-01-01

    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications. PMID:16233420

  5. Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation

    NASA Astrophysics Data System (ADS)

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-01

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  6. Sulfuric Acid Intercalated Graphite Oxide for Graphene Preparation

    PubMed Central

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-01-01

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable. PMID:24310650

  7. Influence of oxidation on fulvic acids composition and biodegradability.

    PubMed

    Kozyatnyk, Ivan; Świetlik, Joanna; Raczyk-Stanisławiak, Ursula; Dąbrowska, Agata; Klymenko, Nataliya; Nawrocki, Jacek

    2013-08-01

    Oxidation is well-known process of transforming natural organic matter during the treatment of drinking water. Chlorine, ozone, and chlorine dioxide are common oxidants used in water treatment technologies for this purpose. We studied the influence of different doses of these oxidants on by-products formation and changes in biodegradable dissolved organic carbon (BDOC) and molecular weight distribution (MWD) of fulvic acids (FA) with different BDOC content. Chlorination did not significantly change the MWD of FA and disinfection by-products formation. However, higher molecular weight compounds, than those in the initial FA, were formed. It could be a result of chlorine substitution into the FA structure. Chlorine dioxide oxidized FA stronger than chlorine. During ozonation of FA, we found the highest increase of BDOD due to the formation of a high amount of organic acids and aldehydes. FA molecules were transformed into a more biodegradable form. Ozonation is the most preferable process among those observed for pre-treatment of FA before biofiltration. PMID:23746389

  8. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction.

    PubMed

    Hallows, William C; Yu, Wei; Smith, Brian C; Devries, Mark K; Devires, Mark K; Ellinger, James J; Someya, Shinichi; Shortreed, Michael R; Prolla, Tomas; Markley, John L; Smith, Lloyd M; Zhao, Shimin; Guan, Kun-Liang; Denu, John M

    2011-01-21

    Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3(-/-)) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3(-/-) mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino acid catabolism and β-oxidation. PMID:21255725

  9. Sirt3 promotes the urea cycle and fatty acid oxidation during dietary restriction

    PubMed Central

    Hallows, William C.; Yu, Wei; Smith, Brian C.; Devries, Mark K.; Ellinger, James J.; Someya, Shinichi; Shortreed, Michael R.; Prolla, Tomas; Markley, John L.; Smith, Lloyd M.; Zhao, Shimin; Guan, Kun-Liang; Denu, John M.

    2011-01-01

    Summary Emerging evidence suggests that protein acetylation is a broad-ranging regulatory mechanism. Here we utilize acetyl-peptide arrays and metabolomic analyses to identify substrates of mitochondrial deacetylase Sirt3. We identified ornithine transcarbamoylase (OTC) from the urea cycle, and enzymes involved in β-oxidation. Metabolomic analyses of fasted mice lacking Sirt3 (sirt3−/−) revealed alterations in β-oxidation and the urea cycle. Biochemical analysis demonstrated that Sirt3 directly deacetylates OTC and stimulates its activity. Mice under caloric restriction (CR) increased Sirt3 protein levels, leading to deacetylation and stimulation of OTC activity. In contrast, sirt3−/− mice failed to deacetylate OTC in response to CR. Inability to stimulate OTC under CR led to a failure to reduce orotic acid levels, a known outcome of OTC deficiency. Thus, Sirt3 directly regulates OTC activity and promotes the urea cycle during CR, and the results suggest that under low energy input, Sirt3 modulates mitochondria by promoting amino-acid catabolism and β-oxidation. PMID:21255725

  10. [Reconstitution of polyunsaturated fatty acid synthesis enzymes in mammalian cells to convert LA to DHA].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Qiu, Lihong; Sun, Jie; Shang, Yu; Jiang, Xudong; Ge, Tangdong; Zhang, Tao

    2015-02-01

    DHA (22:6n-3) is a Ω-3 polyunsaturated fatty acid with 22 carbon atoms and 6 double bonds, which has important biological functions in human body. Human and other mammals synthesize only limited amounts of DHA, more requirements must be satisfied from food resources. However, the natural resources of DHA (Mainly deep-sea fish and other marine products) are prone to depletion. New resources development is still insufficient to satisfy the growing market demand. Previous studies have revealed that the mammals can increase the synthesis of DHA and other long-chain polyunsaturated fatty acids after transgenic procedures. In this study, mammalian cells were transfected with Δ6, Δ5 desaturase, Δ6, Δ5 elongase, Δ15 desaturase (Isolated from nematode Caenorhabditis elegans) and Δ4 desaturase (Isolated from Euglena gracilis), simultaneously. Results show that the expression or overexpression of these 6 enzymes is capable of conversion of the o-6 linoleic acid (LA, 18:2n-6) in DHA (22:6n-3). DHA content has increased from 16.74% in the control group to 25.3% in the experimental group. The strategy and related technology in our research provided important data for future production the valuable DHA (22:6n-3) by using genetically modified animals. PMID:26062349

  11. Single-Cell Measurements of Enzyme Levels as a Predictive Tool for Cellular Fates during Organic Acid Production

    PubMed Central

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna

    2013-01-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  12. Single-cell measurements of enzyme levels as a predictive tool for cellular fates during organic acid production.

    PubMed

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna; Pesce, C Gustavo

    2013-12-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as "acidified"). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This "switch-like" relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  13. Secretion of three enzymes for fatty acid synthesis into mouse milk in association with fat globules, and rapid decrease of the secreted enzymes by treatment with rapamycin.

    PubMed

    Moriya, Hitomi; Uchida, Kana; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2011-04-01

    The mammary epithelium produces numerous lipid droplets during lactation and secretes them in plasma membrane-enclosed vesicles known as milk fat globules. The biogenesis of such fat globules is considered to provide a model for clarifying the mechanisms of lipogenesis in mammals. In the present study, we identified acetyl coenzyme A carboxylase, ATP citrate lyase, and fatty acid synthase in mouse milk. Fractionation of milk showed that these three enzymes were located predominantly in milk fat globules. The three enzymes were resistant to trypsin digestion without Triton X-100, indicating that they were not located on the outer surface of the globules and thus associated with the precursors of the globules before secretion. When a low dose of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), was injected into lactating mice, the levels of the three enzymes in milk were decreased within 3h after injection. Since the protein levels of the three enzymes in tissues were not obviously altered by this short-term treatment, known transcriptional control by mTOR signaling was unlikely to account for this decrease in their levels in milk. Our findings suggest a new, putatively mTOR-dependent localization of the three enzymes for de novo lipogenesis. PMID:21281598

  14. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    SciTech Connect

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. Western Michigan Univ., Kalamazoo )

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  15. Immobilization of leachable toxic soil pollutants by using oxidative enzymes. [Geotrichum candidum

    SciTech Connect

    Shannon, M.J.R.; Bartha, R.

    1988-07-01

    Screening of leachable toxic chemicals in a horseradish peroxidase-H/sub 2/O/sub 2/ immobilization system established that immobilization was promising for most phenolic pollutants but not for benzoic acid, 2,6-dinitrocresol, or dibutyl phthalate. The treatment did not mobilize inherently nonmobile pollutants such as anilines and benzo(a)pyrene. In a separate study, an extracellular laccase in the culture filtrate of Geotrichum candidum was selected from five fungal enzymes evaluated as a cost-effective substitute for horseradish peroxidase. This enzyme was used in demonstrating the immobilization and subsequent fate of /sup 14/C-labeled 4-methylphenol and 2,4-dichlorophenol in soil columns. When applied to Lakewood sand, 98.1% of 4-methylpheno was leached through with distilled water. Two days after immobilization treatment with the G. candidum culture filtrate, only 9.1% of the added 4-methylphenol was leached with the same volume of water. Of the more refractory test pollutant 2,4-dichlorophenol, 91.6% had leached at time zero and 48.5% had leached 1 day after the immobilization treatment. However, 2 weeks after immobilization, only 12.0% of the 2,4-dichlorophenol was leached compared with 61.7% from the control column that received no immobilization treatment. No remobilization of the bound pollutants was detected during 3- and 4-week incubation periods.

  16. Applications of pulsed EPR spectroscopy to structural studies of sulfite oxidizing enzymes

    SciTech Connect

    Klein, Eric L.; Astashkin, Andrei V.; Raitsimring, Arnold M.; Enemark, John H.

    2013-01-01

    Sulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO32-) to sulfate (SO42-). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor. The identity of the remaining equatorial ligand, which is solvent-exposed, varies during the catalytic cycle. Numerous in vitro studies, particularly those involving electron paramagnetic resonance (EPR) spectroscopy of the Mo(V) states of SOEs, have shown that the identity and orientation of this exchangeable equatorial ligand depends on the buffer pH, the presence and concentration of certain anions in the buffer, as well as specific point mutations in the protein. Until very recently, however, EPR has not been a practical technique for directly probing specific structures in which the solvent-exposed, exchangeable ligand is an O, OH-, H2O, SO32-, or SO42- group, because the primary O and S isotopes (16O and 32S) are magnetically silent (I = 0). This review focuses on the recent advances in the use of isotopic labeling, variable-frequency high resolution pulsed EPR spectroscopy, synthetic model compounds, and DFT calculations to elucidate the roles of various anions, point mutations, and steric factors in the formation, stabilization, and transformation of SOE active site structures.

  17. Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity.

    PubMed

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Liu, Kun; Li, Mu; Yin, Daqiang

    2014-12-01

    Over the past few decades, human activities have accelerated the rates and extents of water eutrophication and global warming through increasing delivery of biologically available nitrogen such as nitrate and large emissions of anthropogenic greenhouse gases. In particular, nitrous oxide (N2O) is one of the most important greenhouse gases, because it has a 300-fold higher global warming potential than carbon dioxide. Microbial denitrification is a major pathway responsible for nitrate removal, and also a dominant source of N2O emissions from terrestrial or aquatic environments. However, whether the release of zinc oxide nanoparticles (ZnO NPs) into the environment affects microbial denitrification is largely unknown. Here we show that the presence of ZnO NPs lead to great increases in nitrate delivery (9.8-fold higher) and N2O emissions (350- and 174-fold higher in the gas and liquid phases, respectively). Our data further reveal that ZnO NPs significantly change the transcriptional regulations of glycolysis and polyhydroxybutyrate synthesis, which causes the decrease in reducing powers available for the reduction of nitrate and N2O. Moreover, ZnO NPs substantially inhibit the gene expressions and catalytic activities of key denitrifying enzymes. These negative effects of ZnO NPs on microbial denitrification finally cause lower nitrate removal and higher N2O emissions, which is likely to exacerbate water eutrophication and global warming. PMID:25384038

  18. Insulin, catecholamines, glucose and antioxidant enzymes in oxidative damage during different loads in healthy humans.

    PubMed

    Koska, J; Blazícek, P; Marko, M; Grna, J D; Kvetnanský, R; Vigas, M

    2000-01-01

    Exercise, insulin-induced hypoglycemia and oral glucose loads (50 g and 100 g) were used to compare the production of malondialdehyde and the activity of antioxidant enzymes in healthy subjects. Twenty male volunteers participated in the study. Exercise consisted of three consecutive work loads on a bicycle ergometer of graded intensity (1.5, 2.0, and 2.5 W/kg, 6 min each). Hypoglycemia was induced by insulin (Actrapid MC Novo, 0.1 IU/kg, i.v.). Oral administration of 50 g and 100 g of glucose was given to elevate plasma glucose. The activity of superoxide dismutase (SOD) was determined in red blood cells, whereas glutathione peroxidase (GSH-Px) activity was measured in whole blood. The concentration of malondialdehyde (MDA) was determined by HPLC, catecholamines were assessed radioenzymatically and glucose was measured by the glucose-oxidase method. Exercise increased MDA concentrations, GSH-Px and SOD activities as well as plasma noradrenaline and adrenaline levels. Insulin hypoglycemia increased plasma adrenaline levels, but the concentrations of MDA and the activities of GSH-Px and SOD were decreased. Hyperglycemia increased plasma MDA concentrations, but the activities of GSH-Px and SOD were significantly higher after a larger dose of glucose only. Plasma catecholamines were unchanged. These results indicate that the transient increase of plasma catecholamine and insulin concentrations did not induce oxidative damage, while glucose already in the low dose was an important triggering factor for oxidative stress. PMID:10984077

  19. Efficacy of trans-2-hydroxycinnamic Acid against trichlorfon-induced oxidative stress in wistar rats.

    PubMed

    Sharma, Poonam; Singh, Rambir

    2012-09-01

    Trichlorfon is an organophosphate insecticide used to control cockroaches, crickets, silverfish, bedbugs, fleas, cattle grubs, flies, ticks, leaf miners, and leaf-hoppers. It is also used to treat domestic animals for control of internal parasites. Trans-2-hydroxycinnamic acid (T2HCA) is a hydroxyl derivative of cinnamic acid. The present study highlights trichlorofon-induced toxicity and the protective role of T2HCA in the liver, kidney, and brain of female Wistar rats. The rats were given a single dose of trichlorofon (150 mg / kg bw) and pre- and post-treatment T2HCA (50 mg / kg bw) for seven days. Trichlorofon enhanced oxidative stress in liver, kidney, and brain of the rats, which was evident from the elevation of lipid peroxidation (LPO). The reduced level of non-enzymatic antioxidant glutathione (GSH) also indicated the presence of an oxidative insult. The activity of enzymatic antioxidants like superoxide dismutase (SOD), catalase (CAT), glutathione-s-transferase (GST), glutathione reductase (GR), and glutathione peroxidase (GPx) was significantly decreased on trichlorfon administration. Pre and post treatment with T2HCA decreased the LPO level and increased SOD, CAT, GST, GR, GPx, and GSH in the brain, liver, and kidney. Trichlorfon-induced reduction in acelylcholinestrase was also ameliorated with T2HCA treatment. In conclusion, trichlorfon-mediated induction in the reactive oxygen species and disturbance in the antioxidant enzymes' defense system was moderately ameliorated by antioxidant trans-2-hydroxycinnamic acid. PMID:23293469

  20. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  1. Traumatic Acid Reduces Oxidative Stress and Enhances Collagen Biosynthesis in Cultured Human Skin Fibroblasts.

    PubMed

    Jabłońska-Trypuć, Agata; Pankiewicz, Walentyn; Czerpak, Romuald

    2016-09-01

    Traumatic acid (TA) is a plant hormone (cytokinin) that in terms of chemical structure belongs to the group of fatty acids derivatives. It was isolated from Phaseolus vulgaris. TA activity and its influence on human cells and organism has not previously been the subject of research. The aim of this study was to examine the effects of TA on collagen content and basic oxidative stress parameters, such as antioxidative enzyme activity, reduced glutathione, thiol group content, and lipid peroxidation in physiological conditions. The results show a stimulatory effect of TA on tested parameters. TA caused a decrease in membrane phospholipid peroxidation and exhibited protective properties against ROS production. It also increases protein and collagen biosynthesis and its secretion into the culture medium. The present findings reveal that TA exhibits multiple and complex activity in fibroblast cells in vitro. TA, with its activity similar to unsaturated fatty acids, shows antioxidant and stimulatory effects on collagen biosynthesis. It is a potentially powerful agent with applications in the treatment of many skin diseases connected with oxidative stress and collagen biosynthesis disorders. PMID:27423205

  2. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    DOEpatents

    Lu, Yi; Liu, Juewen

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  3. Lysosomal Acid Phosphatase Biosynthesis and Dysfunction: A Mini Review Focused on Lysosomal Enzyme Dysfunction in Brain.

    PubMed

    Ashtari, N; Jiao, X; Rahimi-Balaei, M; Amiri, S; Mehr, S E; Yeganeh, B; Marzban, H

    2016-01-01

    Lysosomes are membrane-bound organelles that are responsible for degrading and recycling macromolecules. Lysosomal dysfunction occurs in enzymatic and non-enzymatic deficiencies, which result in abnormal accumulation of materials. Although lysosomal storage disorders affect different organs, the central nervous system is the most vulnerable. Evidence shows the role of lysosomal dysfunction in different neurodegenerative diseases, such as Niemann-Pick Type C disease, juvenile neuronal ceroid lipofuscinosis, Alzheimer's disease and Parkinson's disease. Lysosomal enzymes such as lysosomal acid phosphatase 2 (Acp2) play a critical role in mannose-6-phosphate removal and Acp2 controls molecular and cellular functions in the brain during development and adulthood. Acp2 is essential in cerebellar development, and mutations in this gene cause severe cerebellar neurodevelopmental and neurodegenerative disorders. In this mini-review, we highlight lysosomal dysfunctions in the pathogenesis of neurodevelopmental and/or neurodegenerative diseases with special attention to Acp2 dysfunction. PMID:27132795

  4. The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis.

    PubMed

    Pennimpede, Tracie; Cameron, Don A; MacLean, Glenn A; Li, Hui; Abu-Abed, Suzan; Petkovich, Martin

    2010-10-01

    Retinoic acid (RA) is a pleiotropic derivative of vitamin A, or retinol, which is responsible for all of the bioactivity associated with this vitamin. The teratogenic influences of vitamin A deficiency and excess RA in rodents were first observed more than 50 years ago. Efforts over the last 15-20 years have refined these observations by defining the molecular mechanisms that control RA availability and signaling during murine embryonic development. This review will discuss our current understanding of the role of RA in teratogenesis, with specific emphasis on the essential function of the RA catabolic CYP26 enzymes in preventing teratogenic consequences caused by uncontrolled distribution of RA. Particular focus will be paid to the RA-sensitive tissues of the caudal and cranial regions, the limb, and the testis, and how genetic mutation of factors controlling RA distribution have revealed important roles for RA during embryogenesis. PMID:20842651

  5. Physical interactions between tricarboxylic acid cycle enzymes in Bacillus subtilis: evidence for a metabolon.

    PubMed

    Meyer, Frederik M; Gerwig, Jan; Hammer, Elke; Herzberg, Christina; Commichau, Fabian M; Völker, Uwe; Stülke, Jörg

    2011-01-01

    The majority of all proteins of a living cell is active in complexes rather than in an isolated way. These protein-protein interactions are of high relevance for many biological functions. In addition to many well established protein complexes an increasing number of protein-protein interactions, which form rather transient complexes has recently been discovered. The formation of such complexes seems to be a common feature especially for metabolic pathways. In the Gram-positive model organism Bacillus subtilis, we identified a protein complex of three citric acid cycle enzymes. This complex consists of the citrate synthase, the isocitrate dehydrogenase, and the malate dehydrogenase. Moreover, fumarase and aconitase interact with malate dehydrogenase and with each other. These five enzymes catalyze sequential reaction of the TCA cycle. Thus, this interaction might be important for a direct transfer of intermediates of the TCA cycle and thus for elevated metabolic fluxes via substrate channeling. In addition, we discovered a link between the TCA cycle and gluconeogenesis through a flexible interaction of two proteins: the association between the malate dehydrogenase and phosphoenolpyruvate carboxykinase is directly controlled by the metabolic flux. The phosphoenolpyruvate carboxykinase links the TCA cycle with gluconeogenesis and is essential for B. subtilis growing on gluconeogenic carbon sources. Only under gluconeogenic growth conditions an interaction of these two proteins is detectable and disappears under glycolytic growth conditions. PMID:20933603

  6. Enzyme-free detection and quantification of double-stranded nucleic acids.

    PubMed

    Feuillie, Cécile; Merheb, Maxime Mohamad; Gillet, Benjamin; Montagnac, Gilles; Hänni, Catherine; Daniel, Isabelle

    2012-08-01

    We have developed a fully enzyme-free SERRS hybridization assay for specific detection of double-stranded DNA sequences. Although all DNA detection methods ranging from PCR to high-throughput sequencing rely on enzymes, this method is unique for being totally non-enzymatic. The efficiency of enzymatic processes is affected by alterations, modifications, and/or quality of DNA. For instance, a limitation of most DNA polymerases is their inability to process DNA damaged by blocking lesions. As a result, enzymatic amplification and sequencing of degraded DNA often fail. In this study we succeeded in detecting and quantifying, within a mixture, relative amounts of closely related double-stranded DNA sequences from Rupicapra rupicapra (chamois) and Capra hircus (goat). The non-enzymatic SERRS assay presented here is the corner stone of a promising approach to overcome the failure of DNA polymerase when DNA is too degraded or when the concentration of polymerase inhibitors is too high. It is the first time double-stranded DNA has been detected with a truly non-enzymatic SERRS-based method. This non-enzymatic, inexpensive, rapid assay is therefore a breakthrough in nucleic acid detection. PMID:22695500

  7. Boronic Acid-Appended Molecular Glues for ATP-Responsive Activity Modulation of Enzymes.

    PubMed

    Okuro, Kou; Sasaki, Mizuki; Aida, Takuzo

    2016-05-01

    Water-soluble linear polymers GumBAn (m/n = 18/6, 12/12, and 6/18) with multiple guanidinium ion (Gu(+)) and boronic acid (BA) pendants in their side chains were synthesized as ATP-responsive modulators for enzyme activity. GumBAn polymers strongly bind to the phosphate ion (PO4(-)) and 1,2-diol units of ATP via the Gu(+) and BA pendants, respectively. As only the Gu(+) pendants can be used for proteins, GumBAn is able to modulate the activity of enzymes in response to ATP. As a proof-of-concept study, we demonstrated that trypsin (Trp) can be deactivated by hybridization with GumBAn. However, upon addition of ATP, Trp was liberated to retrieve its hydrolytic activity due to a higher preference of GumBAn toward ATP than Trp. This event occurred in a much lower range of [ATP] than reported examples. Under cellular conditions, the hydrolytic activity of Trp was likewise modulated. PMID:27087468

  8. Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae.

    PubMed

    Leber, Christopher; Choi, Jin Wook; Polson, Brian; Da Silva, Nancy A

    2016-04-01

    Biologically derived fatty acids have gained tremendous interest as an alternative to petroleum-derived fuels and chemical precursors. We previously demonstrated the synthesis of short chain fatty acids in Saccharomyces cerevisiae by introduction of the Homo sapiens fatty acid synthase (hFAS) with heterologous phosphopantetheine transferases and heterologous thioesterases. In this study, short chain fatty acid production was improved by combining a variety of novel enzyme and metabolic engineering strategies. The use of a H. sapiens-derived thioesterase and phosphopantetheine transferase were evaluated. In addition, strains were engineered to disrupt either the full β-oxidation (by deleting FAA2, PXA1, and POX1) or short chain-specific β-oxidation (by deleting FAA2, ANT1, and PEX11) pathways. Prohibiting full β-oxidation increased hexanoic and octanoic acid levels by 8- and 79-fold relative to the parent strain expressing hFAS. However, by targeting only short chain β-oxidation, hexanoic and octanoic acid levels increased further to 31- and 140-fold over the parent. In addition, an optimized hFAS gene increased hexanoic, octanoic, decanoic and total short chain fatty acid levels by 2.9-, 2.0-, 2.3-, and 2.2-fold, respectively, relative to the non-optimized counterpart. By combining these unique enzyme and metabolic engineering strategies, octanoic acid was increased more than 181-fold over the parent strain expressing hFAS. PMID:26388428

  9. Effect of inhibitors of arachidonic acid metabolism on efflux of intracellular enzymes from skeletal muscle following experimental damage.

    PubMed Central

    Jackson, M J; Wagenmakers, A J; Edwards, R H

    1987-01-01

    The role of arachidonic acid metabolism in the efflux of intracellular enzymes from damaged skeletal muscle has been examined in vitro using inhibitors of cyclo-oxygenase and lipoxygenase enzymes. Damage to skeletal muscle induced by either calcium ionophore A23187 (25 microM) or dinitrophenol (1 mM) caused an increase in the efflux of prostaglandins E2 and F2 alpha together with a large efflux of intracellular creatine kinase. Use of a cyclo-oxygenase inhibitor completely prevented the efflux of prostaglandins, but had no effect on creatine kinase efflux. However, several agents having the ability to inhibit lipoxygenase enzymes dramatically reduced creatine kinase efflux following damage. These data suggest that a product or products of lipoxygenase enzymes may be mediators of the changes in plasma membrane integrity which permit efflux of intracellular enzymes as a consequence of skeletal muscle damage. PMID:3109374

  10. Pro-oxidant actions of alpha-lipoic acid and dihydrolipoic acid.

    PubMed

    Cakatay, Ufuk

    2006-01-01

    There is strong accumulating evidence that a alpha-lipoic acid (LA) supplement is good insurance, and would markedly improve human health. LA is readily absorbed from the diet, transported to cells and reduced to dihydrolipoic acid (DHLA). Of the two compounds, DHLA evidently has greater antioxidant activity. Much research has focused on the antioxidant properties of these compounds. Aside from its antioxidant role, in vitro and in vivo studies suggest that LA and its reduced form DHLA also act as a pro-oxidant properties. Limited number of studies concerning the pro-oxidant potential of LA and DHLA were performed only in recent years. The ability of LA and/or DHLA to function as either anti- or pro-oxidants, at least in part, is determined by the type of oxidant stress and the physiological circumstances. These pro-oxidant actions suggest that LA and DHLA act by multiple mechanisms, many of which are only now being explored. LA has been reported to have a number of potentially beneficial effects in both prevention and treatment of oxygen-related diseases. Selection of appropriate pharmacological doses of LA for use in oxygen-related diseases is critical. On the other hand, much of the discussion in clinical studies has been devoted to the pro-oxidant role of LA. This aspect remains to be elucidated. In further studies, careful evaluation will be necessary for the decision in the biological system whether LA administration is beneficial or harmful. PMID:16165311

  11. [Effect of trace metals on cell morphology, enzyme activation, and production of citric acid in a strain of Aspergillus wentii].

    PubMed

    Majolli, M V; Aguirre, S N

    1999-01-01

    Data concerning the effect of very low concentrations of metals on citric acid production by microorganisms, as well as on the activity of enzymes presumptively involved in the process, are confuse. The bulk of information was obtained mainly studying selected strains of Aspergillus niger. Information concerning other citric acid producer filamentous fungi, such as A. wentii, is scanty. In the present article we report the effect of different cations on the growth pattern of A. wentii P1 as well as on the related citric acid production and the activity of several enzymes. It was found that without any addition to the culture medium the fungus developed a pelleted form of growth, pellets being about 1.5 mm in diameter. The citric acid yield was about 90%. The addition of Cu2+ impaired the sugar uptake, as well as the production of citric acid and biomass. The uptake of sugar increased in the presence of Zn2+, and there was a marked increase of the biomass production, which could account for the low citric acid production. The addition of Fe2+ impaired the citric acid production and, as sulfate, the sugar uptake. The presence of Fe3+ markedly impaired the citric acid production and increased the sugar uptake. There is no agreement about the enzymes involved in the accumulation of citric acid by microorganisms. In spite of this, aconitase (Ac), isocitrate lyase (IL), isocitrate dehydrogenase NAD(+)-dependent (ICDH- NAD+) and isocitrate dehydrogenase NADP(+)-dependent (ICDH-NADP+) are often postulated as key enzymes. In our case, these enzymes were active during the standard fermentation, although with variations, particularly concerning Ac and IL. The behavior of enzymes might be different when tested in vivo or in vitro, mainly from the quantitative point of view. Nevertheless, the activity determined in vitro might give some indication concerning the effect on fermentation of substances present in the medium. It was found that all the enzymes tested increased their

  12. Preparation of crosslinked enzyme aggregates (CLEAs) of acid urease with urethanase activity and their application.

    PubMed

    Zhang, Qian; Zha, Xiaohong; Zhou, Nandi; Tian, Yaping

    2016-04-01

    An acid urease from Providencia rettgeri JN-B815 was purified via ultrasonication, ethanol precipitation, and DEAE ion-exchange column chromatography. It was found that the enzyme exhibits not only urease activity, but also urethanase activity, which made it possible to reduce EC already existed or would produce and its precursor urea at the same time. Then, crosslinked enzyme aggregates of P. rettgeri urease (PRU-CLEAs) were prepared using genipin as crosslinking agent. The purification process of acid urease, the effects of genipin concentration, and crosslinking time on PRU-CLEAs activity were investigated. The crosslinking was performed at pH 4.5 for 2.5 h, using 0.3% genipin as crosslinking agent, and 0.3 g · L(-1) bovine serum albumin as protein feeder. Using the obtained PRU-CLEAs, the removal rate of urea was up to 9.31 mg · L(-1) · h(-1). The removal rate of urea was still up to 7.56 mg · L(-1) · h(-1) after PRU-CLEAs was re-used for 6 times. When PRU-CLEAs were applied in a batch stirred and membrane reactor, the removal rate of urea in rice wine reached 5.16 mg · L(-1) · h(-1) and the removal rate of EC was 9.21 μg · L(-1) · h(-1). Furthermore, the treatment with PRU-CLEAs revealed no significant change of volatile flavor substances in Chinese rice wine. Thus PRU-CLEAs have great potential in the elimination of EC in Chinese rice wine. PMID:26627914

  13. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  14. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production. PMID:27474618

  15. Production of succinic acid through overexpression of NAD(+)-dependent malic enzyme in an Escherichia coli mutant.

    PubMed Central

    Stols, L; Donnelly, M I

    1997-01-01

    NAD(+)-dependent malic enzyme was cloned from the Escherichia coli genome by PCR based on the published partial sequence of the gene. The enzyme was overexpressed and purified to near homogeneity in two chromatographic steps and was analyzed kinetically in the forward and reverse directions. The Km values determined in the presence of saturating cofactor and manganese ion were 0.26 mM for malate (physiological direction) and 16 mM for pyruvate (reverse direction). When malic enzyme was induced under appropriate culture conditions in a strain of E. coli that was unable to ferment glucose and accumulated pyruvate, fermentative metabolism of glucose was restored. Succinic acid was the major fermentation product formed. When this fermentation was performed in the presence of hydrogen, the yield of succinic acid increased. The constructed pathway represents an alternative metabolic route for the fermentative production of dicarboxylic acids from renewable feedstocks. PMID:9212416

  16. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    PubMed

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect. PMID:24380343

  17. Enzyme-linked immunosorbent assay (ELISA) for the anthropogenic marker isolithocholic acid in water.

    PubMed

    Baldofski, Stefanie; Hoffmann, Holger; Lehmann, Andreas; Breitfeld, Stefan; Garbe, Leif-Alexander; Schneider, Rudolf J

    2016-11-01

    Bile acids are promising chemical markers to assess the pollution of water samples with fecal material. This study describes the optimization and validation of a direct competitive enzyme-linked immunosorbent assay for the bile acid isolithocholic acid (ILA). The quantification range of the optimized assay was between 0.09 and 15 μg/L. The assay was applied to environmental water samples. Most studies until now were focused on bile acid fractions in the particulate phase of water samples. In order to avoid tedious sample preparation, we undertook to evaluate the dynamics and significance of ILA levels in the aqueous phase. Very low concentrations in tap and surface water samples made a pre-concentration step necessary for this matrix as well as for wastewater treatment plant (WWTP) effluent. Mean recoveries for spiked water samples were between 97% and 109% for tap water and WWTP influent samples and between 102% and 136% for WWTP effluent samples. 90th percentiles of intra-plate and inter-plate coefficients of variation were below 10% for influents and below 20% for effluents and surface water. ILA concentrations were quantified in the range of 33-72 μg/L in influent, 21-49 ng/L in effluent and 18-48 ng/L in surface water samples. During wastewater treatment the ILA levels were reduced by more than 99%. ILA concentrations of influents determined by ELISA and LC-MS/MS were in good agreement. However, findings in LC-ELISA experiments suggest that the true ILA levels in concentrated samples are lower due to interfering effects of matrix compounds and/or cross-reactants. Yet, the ELISA will be a valuable tool for the performance check and comparison of WWTPs and the localization of fecal matter input into surface waters. PMID:27544648

  18. Characterization of the branched-chain amino acid aminotransferase enzyme family in tomato.

    PubMed

    Maloney, Gregory S; Kochevenko, Andrej; Tieman, Denise M; Tohge, Takayuki; Krieger, Uri; Zamir, Dani; Taylor, Mark G; Fernie, Alisdair R; Klee, Harry J

    2010-07-01

    Branched-chain amino acids (BCAAs) are synthesized in plants from branched-chain keto acids, but their metabolism is not completely understood. The interface of BCAA metabolism lies with branched-chain aminotransferases (BCAT) that catalyze both the last anabolic step and the first catabolic step. In this study, six BCAT genes from the cultivated tomato (Solanum lycopersicum) were identified and characterized. SlBCAT1, -2, -3, and -4 are expressed in multiple plant tissues, while SlBCAT5 and -6 were undetectable. SlBCAT1 and -2 are located in the mitochondria, SlBCAT3 and -4 are located in chloroplasts, while SlBCAT5 and -6 are located in the cytosol and vacuole, respectively. SlBCAT1, -2, -3, and -4 were able to restore growth of Escherichia coli BCAA auxotrophic cells, but SlBCAT1 and -2 were less effective than SlBCAT3 and -4 in growth restoration. All enzymes were active in the forward (BCAA synthesis) and reverse (branched-chain keto acid synthesis) reactions. SlBCAT3 and -4 exhibited a preference for the forward reaction, while SlBCAT1 and -2 were more active in the reverse reaction. While overexpression of SlBCAT1 or -3 in tomato fruit did not significantly alter amino acid levels, an expression quantitative trait locus on chromosome 3, associated with substantially higher expression of Solanum pennellii BCAT4, did significantly increase BCAA levels. Conversely, antisense-mediated reduction of SlBCAT1 resulted in higher levels of BCAAs. Together, these results support a model in which the mitochondrial SlBCAT1 and -2 function in BCAA catabolism while the chloroplastic SlBCAT3 and -4 function in BCAA synthesis. PMID:20435740

  19. Production of organic acids by periplasmic enzymes present in free and immobilized cells of Zymomonas mobilis.

    PubMed

    Malvessi, Eloane; Carra, Sabrina; Pasquali, Flávia Cristina; Kern, Denise Bizarro; da Silveira, Mauricio Moura; Ayub, Marco Antônio Záchia

    2013-01-01

    In this work the periplasmic enzymatic complex glucose-fructose oxidoreductase (GFOR)/glucono-δ-lactonase (GL) of permeabilized free or immobilized cells of Zymomonas mobilis was evaluated for the bioconversion of mixtures of fructose and different aldoses into organic acids. For all tested pairs of substrates with permeabilized free-cells, the best enzymatic activities were obtained in reactions with pH around 6.4 and temperatures ranging from 39 to 45 °C. Decreasing enzyme/substrate affinities were observed when fructose was in the mixture with glucose, maltose, galactose, and lactose, in this order. In bioconversion runs with 0.7 mol l(-1) of fructose and with aldose, with permeabilized free-cells of Z. mobilis, maximal concentrations of the respective aldonic acids of 0.64, 0.57, 0.51, and 0.51 mol l(-1) were achieved, with conversion yields of 95, 88, 78, and 78 %, respectively. Due to the important applications of lactobionic acid, the formation of this substance by the enzymatic GFOR/GL complex in Ca-alginate-immobilized cells was assessed. The highest GFOR/GL activities were found at pH 7.0-8.0 and temperatures of 47-50 °C. However, when a 24 h bioconversion run was carried out, it was observed that a combination of pH 6.4 and temperature of 47 °C led to the best results. In this case, despite the fact that Ca-alginate acts as a barrier for the diffusion of substrates and products, maximal lactobionic acid concentration, conversion yields and specific productivity similar to those obtained with permeabilized free-cells were achieved. PMID:23053345

  20. Ferrate(VI) oxidation of weak-acid dissociable cyanides.

    PubMed

    Yngard, Ria A; Sharma, Virender K; Filip, Jan; Zboril, Radek

    2008-04-15

    Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate(VI) (Fe(VI)O4(2-), Fe(VI)), were studied as a function of pH (9.1-10.5) and temperature (15-45 degrees C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN)4(2-) and Ni(CN)4(2-), and the rate-laws for the oxidation may be -d[Fe(VI)]/dt = k[Fe(VI)][M(CN)4(2-)]n where n = 0.5 and 1 for Cd(CN)4(2-) and Ni(CN)4(2-), respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO4(-). The stoichiometries with Fe(VI) were determined to be: 4HFeO4(-) + M(CN)4(2-) + 6H2O --> 4Fe(OH)3 + M(2+) + 4NCO(-) + O2 + 4OH(-). Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. PMID:18497158

  1. Ferrate(VI) oxidation of weak-acid dissociable cyanides

    SciTech Connect

    Ria A. Yngard; Virender K. Sharma; Jan Filip; Radek Zboril

    2008-04-15

    Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate, were studied as a function of pH (9.1-10.5) and temperature (15-45{sup o}C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, and the rate-laws for the oxidation may be -d(Fe(VI))/dt = k (Fe(VI))(M(CN){sub 4}{sup 2-}){sup n} where n = 0.5 and 1 for Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO{sub 4}{sup -}. The stoichiometries with Fe(VI) were determined to be: 4HFeO{sub 4}{sup -} + M(CN){sub 4}{sup 2-} + 6H{sub 2}O {yields} 4Fe(OH){sub 3} + M{sup 2+} + 4NCO{sup -} + O{sub 2} + 4OH{sup -}. Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. 27 refs., 3 figs., 2 tabs.

  2. Phenolic Extract from Moringa oleifera Leaves Inhibits Key Enzymes Linked to Erectile Dysfunction and Oxidative Stress in Rats' Penile Tissues.

    PubMed

    Oboh, Ganiyu; Ademiluyi, Adedayo O; Ademosun, Ayokunle O; Olasehinde, Tosin A; Oyeleye, Sunday I; Boligon, Aline A; Athayde, Margareth L

    2015-01-01

    This study was designed to determine the antioxidant properties and inhibitory effects of extract from Moringa oleifera leaves on angiotensin-I-converting enzyme (ACE) and arginase activities in vitro. The extract was prepared and phenolic (total phenols and flavonoid) contents, radical (nitric oxide (NO), hydroxyl (OH)) scavenging abilities, and Fe(2+)-chelating ability were assessed. Characterization of the phenolic constituents was done via high performance liquid chromatography-diode array detection (HPLC-DAD) analysis. Furthermore, the effects of the extract on Fe(2+)-induced MDA production in rats' penile tissue homogenate as well as its action on ACE and arginase activities were also determined. The extract scavenged NO (∗) , OH (∗) , chelated Fe(2+), and inhibited MDA production in a dose-dependent pattern with IC50 values of 1.36, 0.52, and 0.38 mg/mL and 194.23 µg/mL, respectively. Gallic acid, chlorogenic acid, quercetin, and kaempferol were the most abundant phenolic compounds identified in the leaf extract. The extract also inhibited ACE and arginase activities in a dose-dependent pattern and their IC50 values were 303.03 and 159.59 µg/mL, respectively. The phenolic contents, inhibition of ACE, arginase, and Fe(2+)-induced MDA production, and radical (OH (∗) , NO (∗) ) scavenging and Fe(2+)-chelating abilities could be some of the possible mechanisms by which M. oleifera leaves could be used in the treatment and/or management of erectile dysfunction. PMID:26557995

  3. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  4. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  5. The Expression and Prognostic Significance of Retinoic Acid Metabolising Enzymes in Colorectal Cancer

    PubMed Central

    Brown, Gordon T.; Cash, Beatriz Gimenez; Blihoghe, Daniela; Johansson, Petronella; Alnabulsi, Ayham; Murray, Graeme I.

    2014-01-01

    Colorectal cancer is one of the most common types of cancer with over fifty percent of patients presenting at an advanced stage. Retinoic acid is a metabolite of vitamin A and is essential for normal cell growth and aberrant retinoic acid metabolism is implicated in tumourigenesis. This study has profiled the expression of retinoic acid metabolising enzymes using a well characterised colorectal cancer tissue microarray containing 650 primary colorectal cancers, 285 lymph node metastasis and 50 normal colonic mucosal samples. Immunohistochemistry was performed on the tissue microarray using monoclonal antibodies which we have developed to the retinoic acid metabolising enzymes CYP26A1, CYP26B1, CYP26C1 and lecithin retinol acyl transferase (LRAT) using a semi-quantitative scoring scheme to assess expression. Moderate or strong expression of CYP26A1was observed in 32.5% of cancers compared to 10% of normal colonic epithelium samples (p<0.001). CYP26B1 was moderately or strongly expressed in 25.2% of tumours and was significantly less expressed in normal colonic epithelium (p<0.001). CYP26C1 was not expressed in any sample. LRAT also showed significantly increased expression in primary colorectal cancers compared with normal colonic epithelium (p<0.001). Strong CYP26B1 expression was significantly associated with poor prognosis (HR = 1.239, 95%CI = 1.104–1.390, χ2 = 15.063, p = 0.002). Strong LRAT was also associated with poorer outcome (HR = 1.321, 95%CI = 1.034–1.688, χ2 = 5.039, p = 0.025). In mismatch repair proficient tumours strong CYP26B1 (HR = 1.330, 95%CI = 1.173–1.509, χ2 = 21.493, p<0.001) and strong LRAT (HR = 1.464, 95%CI = 1.110–1.930, χ2 = 7.425, p = 0.006) were also associated with poorer prognosis. This study has shown that the retinoic acid metabolising enzymes CYP26A1, CYP26B1 and LRAT are significantly overexpressed in colorectal cancer and that CYP26B1 and LRAT are

  6. Angiotensin-converting enzyme inhibitor prevents oxidative stress, inflammation, and fibrosis in carbon tetrachloride-treated rat liver.

    PubMed

    Reza, Hasan Mahmud; Tabassum, Nabila; Sagor, Md Abu Taher; Chowdhury, Mohammed Riaz Hasan; Rahman, Mahbubur; Jain, Preeti; Alam, Md Ashraful

    2016-01-01

    Hepatic fibrosis is a common feature of chronic liver injury, and the involvement of angiotensin II in such process has been studied earlier. We hypothesized that anti-angiotensin II agents may be effective in preventing hepatic fibrosis. In this study, Long Evans female rats were used and divided into four groups such as Group-I, Control; Group-II, Control + ramipril; Group-III, CCl4; and Group-IV, CCl4 + ramipril. Group II and IV are treated with ramipril for 14 d. At the end of treatment, the livers were removed, and the level of hepatic marker enzymes (aspartate aminotransferase, Alanine aminotransferase, and alkaline phosphatase), nitric oxide, advanced protein oxidation product , catalase activity, and lipid peroxidation were determined. The degree of fibrosis was evaluated through histopathological staining with Sirius red and trichrome milligan staining. Carbon-tetrachloride (CCl4) administration in rats developed hepatic dysfunction and raised the hepatic marker enzymes activities significantly. CCl4 administration in rats also produced oxidative stress, inflammation, and fibrosis in liver. Furthermore, angiotensinogen-inhibitor ramipril normalized the hepatic enzymes activities and improved the antioxidant enzyme catalase activity. Moreover, ramipril treatment ameliorated lipid peroxidation and hepatic inflammation in CCl4-treated rats. Ramipril treatment also significantly reduced hepatic fibrosis in CCl4-administered rats. In conclusion, our investigation suggests that the antifibrotic effect of ramipril may be attributed to inhibition of angiotensin-II mediated oxidative stress and inflammation in liver CCl4-administered rats. PMID:26862777

  7. Experiment K-6-21. Effect of microgravity on 1) metabolic enzymes of type 1 and type 2 muscle fibers and on 2) metabolic enzymes, neutransmitter amino acids, and neurotransmitter associated enzymes in motor and somatosensory cerebral cortex. Part 1: Metabolic enzymes of individual muscle fibers; part 2: metabolic enzymes of hippocampus and spinal cord

    NASA Technical Reports Server (NTRS)

    Lowry, O.; Mcdougal, D., Jr.; Nemeth, Patti M.; Maggie, M.-Y. Chi; Pusateri, M.; Carter, J.; Manchester, J.; Norris, Beverly; Krasnov, I.

    1990-01-01

    The individual fibers of any individual muscle vary greatly in enzyme composition, a fact which is obscured when enzyme levels of a whole muscle are measured. The purpose of this study was therefore to assess the changes due to weightless on the enzyme patterns composed by the individual fibers within the flight muscles. In spite of the limitation in numbers of muscles examined, it is apparent that: (1) that the size of individual fibers (i.e., their dry weight) was reduced about a third, (2) that this loss in dry mass was accompanied by changes in the eight enzymes studied, and (3) that these changes were different for the two muscles, and different for the two enzyme groups. In the soleus muscle the absolute amounts of the three enzymes of oxidative metabolism decreased about in proportion to the dry weight loss, so that their concentration in the atrophic fibers was almost unchanged. In contrast, there was little loss among the four enzymes of glycogenolysis - glycolysis so that their concentrations were substantially increased in the atrophic fibers. In the TA muscle, these seven enzymes were affected in just the opposite direction. There appeared to be no absolute loss among the oxidative enzymes, whereas the glycogenolytic enzymes were reduced by nearly half, so that the concentrations of the first metabolic group were increased within the atrophic fibers and the concentrations of the second group were only marginally decreased. The behavior of hexokinase was exceptional in that it did not decrease in absolute terms in either type of muscle and probably increased as much as 50 percent in soleus. Thus, their was a large increase in concentration of this enzyme in the atrophied fibers of both muscles. Another clear-cut finding was the large increase in the range of activities of the glycolytic enzymes among individual fibers of TA muscles. This was due to the emergence of TA fibers with activities for enzymes of this group extending down to levels as low as

  8. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    SciTech Connect

    Grigoriev, Igor V.; Baker, Scott E.; Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; Vondervoot, Peter J.I. van de; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristen F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; Dijck, Piet W.M. van; Hofmann, Gerald; Lasure, Linda L.; Magnusson, Jon K.; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; Ooyen, Albert J.J. van; Panther, Kathyrn S.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hen; Tsang, Adrian; Brink, Johannes M. van den; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Kubicek, Christian P.; Martinez, Diego; Peij, Noel N.M.E. van; Roubos, Johannes A.; Nielsen, Jens

    2011-04-28

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up-regulation of genes relevant to glucoamylase A production, such as tRNA-synthases and protein transporters. Our results and datasets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.[Supplemental materials (10 figures, three text documents and 16 tables) have been made available

  9. [Development of direct competitive enzyme-linked immunosorbent assay for the determination of domoic acid].

    PubMed

    Wang, Qian; Cheng, Jin-Ping; Gao, Li-Li; Dong, Yu; Xi, Lei

    2012-02-01

    To develop a direct competitive enzyme-linked immunosorbent assay (ELISA) for rapid detection of domoic acid concentrations, HRP (horse radish peroxidase) was successfully linked to DA using EDC. The concentration of DA was quantitatively analyzed on the basic of the specific immune responses between the DA- HRP and the monoclonal antibodies made in advance. Calibration curve were established after the optimization of reaction conditions such as the type of blocking solution, the blocking time and the incubation temperature. The results show that, the best reaction condition of the direct competitive ELISA is 1% gelatin, blocking 1 h at 37 degrees C, incubating 1 h at 37 degrees C after the monoclonal antibodies added. The detect limit is 3.58 ng x mL(-1), the coefficient of variation between the holes is below 15%, and the recovery is 80% - 120%. The whole analysis process could be completed within 1.5 h. It meets the requirements of rapid and batch detection of domoic acid. The method will have broad development prospects. PMID:22509610

  10. Nicotinamide Adenine Dinucleotide-specific "Malic" Enzyme in Kalanchoë daigremontiana and Other Plants Exhibiting Crassulacean Acid Metabolism.

    PubMed

    Dittrich, P

    1976-02-01

    NAD-specific "malic" enzyme (EC 1.1.1.39) has been isolated and purified 1200-fold from leaves of Kalanchoë daigremontiana. Kinetic studies of this enzyme, which is activated 14-fold by CoA, acetyl-CoA, and SO(4) (2-), suggest allosteric properties. Cofactor requirements show an absolute specificity for NAD and for Mn(2+), which cannot be replaced by NADP or Mg(2+). For maintaining enzyme activity in crude leaf extracts a thiol reagent, Mn(2+), and PVP-40 were required. The latter could be omitted from purified preparations. By sucrose density gradient centrifugation NAD-malic enzyme could be localized in mitochondria. A survey of plants with crassulacean acid metabolism revealed the presence of NAD-malic enzyme in all 31 plants tested. Substantial levels of this enzyme (121-186 mumole/hr.mg of Chl) were detected in all members tested of the family Crassulaceae. It is proposed that NAD-malic enzyme in general supplements activity of NADP-malic enzyme present in these plants and may be specifically employed to increase internal concentrations of CO(2) for recycling during cessation of gas exchange in periods of severe drought. PMID:16659473

  11. Effects of different fatty acid chain lengths on fatty acid oxidation-related protein expression levels in rat skeletal muscles.

    PubMed

    Ishizawa, Rie; Masuda, Kazumi; Sakata, Susumu; Nakatani, Akira

    2015-01-01

    Skeletal muscles can adapt to dietary interventions that affect energy metabolism. Dietary intake of medium-chain fatty acids (MCFAs) enhances mitochondrial oxidation of fatty acids (FAO) in type IIa skeletal muscle fibers. However, the effect of MCFAs diet on mitochondrial or cytoplasmic FAO-related protein expression levels in different types of muscle fibers remains unclear. This study aims to examine the effects of a high-fat diet, containing MCFAs, on mitochondrial enzyme activities and heart-type fatty acid-binding protein (H-FABP) levels in different types of skeletal muscle fibers. Five-week-old male Wistar rats were assigned to one of the following three dietary conditions: standard chow (SC, 12% of calories from fat), high-fat MCFA, or high-fat long-chain fatty acids (LCFAs) diet (60% of calories from fat for both). The animals were provided food and water ad libitum for 4 weeks, following which citrate synthase (CS) activity and H-FABP concentration were analyzed. The epididymal fat pads (EFP) were significantly smaller in the MCFA group than in the LCFA group (p < 0.05). MCFA-fed group displayed an increase in CS activity compared with that observed in SC-fed controls in all types of skeletal muscle fibers (triceps, surface portion of gastrocnemius (gasS), deep portion of gastrocnemius (gasD), and soleus; p < 0.05,). H-FABP concentration was significantly higher in the LCFA group than in both the SC-fed and MCFA-fed groups (triceps, gasS, gasD, and soleus; p < 0.05,). However, no significant difference was observed in the H-FABP concentrations between the SC-fed and MCFA-fed groups. The results of this study showed that the MCFA diet can increase the expression of the mitochondrial enzyme CS, but not that of H-FABP, in both fast- and slow-twitch muscle fibers, suggesting that H-FABP expression is dependent on the chain length of fatty acids in the cytoplasm of skeletal muscles cells. PMID:25766930

  12. Nitro-linolenic acid is a nitric oxide donor.

    PubMed

    Mata-Pérez, Capilla; Sánchez-Calvo, Beatriz; Begara-Morales, Juan C; Carreras, Alfonso; Padilla, María N; Melguizo, Manuel; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2016-07-01

    Nitro-fatty acids (NO2-FAs), which are the result of the interaction between reactive nitrogen species (RNS) and non-saturated fatty acids, constitute a new research area in plant systems, and their study has significantly increased. Very recently, the endogenous presence of nitro-linolenic acid (NO2-Ln) has been reported in the model plant Arabidopsis thaliana. In this regard, the signaling role of this molecule has been shown to be key in setting up a defense mechanism by inducing the chaperone network in plants. Here, we report on the ability of NO2-Ln to release nitric oxide (NO) in an aqueous medium with several approaches, such as by a spectrofluorometric probe with DAF-2, the oxyhemoglobin oxidation method, ozone chemiluminescence, and also by confocal laser scanning microscopy in Arabidopsis cell cultures. Jointly, this ability gives NO2-Ln the potential to act as a signaling molecule by the direct release of NO, due to its capacity to induce different changes mediated by NO or NO-related molecules such as nitration and S-nitrosylation or by the electrophilic capacity of these molecules through a nitroalkylation mechanism. PMID:27164295

  13. Oxidative stability of omega-3 polyunsaturated fatty acids enriched eggs.

    PubMed

    Ren, Yuan; Perez, Tulia I; Zuidhof, Martin J; Renema, Robert A; Wu, Jianping

    2013-11-27

    Omega-3 polyunsaturated fatty acids (n-3 PUFA) enriched eggs have a growing market share in the egg industry. This study examined the stability of n-3 PUFA enriched eggs fortified with antioxidants (vitamin E or organic Selenium [Sel-Plex] or both) following cooking and storage. The total fat content was not affected by cooking or simulated retail storage conditions, whereas, n-3 fatty acids were reduced. The content of n-3 fatty acids in boiled eggs was higher than in fried eggs. Lipid oxidation was significantly affected by the different cooking methods. Fried eggs contained higher levels of malondialdehyde (MDA, 2.02 μg/kg) and cholesterol oxidation products (COPs, 13.58 μg/g) compared to boiled (1.44 and 10.15 μg/kg) and raw eggs (0.95 and 9.03 μg/kg, respectively, for MDA and COPs). Supplementation of antioxidants reduced the formation of MDA by 40% and COPs by 12% in fried eggs. Although the content of MDA was significantly increased after 28 days of storage, COPs were not affected by storage. Our study indicated that the n-3 PUFA in enriched eggs was relatively stable during storage and home cooking in the presence of antioxidants. PMID:24164329

  14. Biocatalytic properties of a peroxidase-active cell-free extract from onion solid wastes: caffeic acid oxidation.

    PubMed

    El Agha, Ayman; Abbeddou, Souheila; Makris, Dimitris P; Kefalas, Panagiotis

    2009-04-01

    The exploitation of food residual sources consists of a major factor in reducing the polluting load of food industry wastes and developing novel added-value products. Plant food residues including trimmings and peels might contain a range of enzymes capable of transforming bio-organic molecules with potential phytotoxicity, including hydrolases, peroxidases and polyphenoloxidases. Although the use of bacterial and fungal enzymes has gained interest in studies pertaining to bioremediation applications, plant enzymes have been given less attention or even disregarded. In this view, this study aimed at the investigating the use of a crude peroxidase preparation from onion solid by-products for oxidising caffeic acid, a widespread o-diphenol, whose various derivatives may occur in food industry wastes, such as olive mill waste waters. Increased enzyme activity was observed at a pH value of 5, but considerable activity was also retained for pH up to 7. Favourable temperatures for increased activity varied between 20 degrees C and 40 degrees C, 30 degrees C being the optimal. Liquid chromatography-mass spectrometry analysis of a homogenate/H(2)O(2)-treated caffeic acid solution revealed the existence of a tetramer as major oxidation product. Based on the data generated, a putative pathway for the formation of the peroxidase-mediated caffeic acid tetramer was proposed. PMID:18670892

  15. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  16. Anaerobic Toluene Catabolism of Thauera aromatica: the bbs Operon Codes for Enzymes of β Oxidation of the Intermediate Benzylsuccinate

    PubMed Central

    Leuthner, Birgitta; Heider, Johann

    2000-01-01

    The pathway of anaerobic toluene oxidation to benzoyl coenzyme A (benzoyl-CoA) consists of an initial reaction catalyzed by benzylsuccinate synthase, a glycyl radical enzyme adding the methyl group of toluene to the double bond of a fumarate cosubstrate, and a subsequent β-oxidation pathway of benzylsuccinate. Benzylsuccinate synthase has been studied in some detail, whereas the enzymes participating in β oxidation of benzylsuccinate are unknown. We have investigated these enzymes by analyzing substrate-induced proteins in toluene-grown cells. Toluene-induced proteins were identified and N-terminally sequenced. Nine of these proteins are encoded by an 8.5-kb operon consisting of bbs (beta-oxidation of benzylsuccinate) genes whose products are apparently involved in the β-oxidation pathway of benzylsuccinate. Two of the genes, bbsE and bbsF, code for the subunits of a succinyl-CoA:benzylsuccinate CoA-transferase whose activity was previously detected in toluene-grown Thauera aromatica. The bbsG gene codes for a specific benzylsuccinyl-CoA dehydrogenase, as confirmed by overexpression of the gene in Escherichia coli and detection of enzyme activity. The further enzymes of the pathway are probably encoded by bbsH (enoyl-CoA hydratase), bbsCD (3-hydroxyacyl-CoA dehydrogenase), and bbsB (3-oxoacyl-CoA thiolase). The operon contains two additional genes, bbsA and bbsI, for which no obvious function could be derived. The bbs operon is expressed only in toluene-grown cells and is regulated at the transcriptional level. Promoter mapping revealed a transcription start site upstream of the bbsA gene. This represents the first known promoter site in Thauera spp. PMID:10629170

  17. Removal of arsenious acid from sulfuric acidic solution using ultrasound oxidation and goethite

    NASA Astrophysics Data System (ADS)

    Okawa, Hirokazu; Yoshikawa, Tomohiro; Hosokawa, Ryota; Hangui, Shinji; Kawamura, Youhei; Sugawara, Katsuyasu

    2015-07-01

    We investigated the properties of synthetic goethite for the adsorption of As from strongly acidic solutions in ambient atmosphere under ultrasound irradiation. The goethite was successfully synthesized from iron-containing sulfuric acidic solution (1271 ppm) using an autoclave apparatus for 1 h at 0.12 MPa and 121 °C. The ratio of the iron eluted from the synthetic goethite to the acidic solution was only 0.58% at pH 2.1. Ultrasound irradiation (200 kHz, 200 W) was applied to oxidize 10 ppm of As(III) to As(V) at pH 2.2 for 60 min under various atmospheric conditions. Remarkably, the oxidation ratio of As(III) to As(V) is quite high (89.7%) at pH 2.2 in ambient atmosphere and is close to those obtained for Ar (95.3%) and O2 (95.9%) atmospheres. The As(III) removal ratio reached 94.5% after 60 min of irradiation. Therefore, goethite is a promising material for As adsorption using ultrasound oxidation in the acidic region in ambient atmosphere.

  18. Black tea polyphenols modulate xenobiotic-metabolizing enzymes, oxidative stress and adduct formation in a rat hepatocarcinogenesis model.

    PubMed

    Murugan, Ramalingam Senthil; Uchida, Koji; Hara, Yukihiko; Nagini, Siddavaram

    2008-10-01

    The present study was designed to investigate the modulatory effects of black tea polyphenols (Polyphenon-B) on phase I and phase II xenobiotic-metabolizing enzymes and oxidative stress in a rat model of hepatocellular carcinoma (HCC). Liver tumours induced in male Sprague-Dawley rats by dietary administration of rho-dimethylaminoazobenzene (DAB) increased cytochrome P450 (total and CYP1A1, 1A2 and 2B isoforms), cytochrome b(5), cytochrome b(5) reductase, glutathione S-transferase (GST total and GST-P isoform) and gamma-glutamyltranspeptidase (GGT) with decrease in quinone reductase (QR). This was accompanied by enhanced lipid and protein oxidation and compromised antioxidant defences associated with increased expression of the oxidative stress markers 4-hydroxynonenal (4-HNE), anti-hexanoyl lysine (HEL), dibromotyrosine (DiBrY) and 8-hydroxy 2-deoxyguanosine (8-OHdG). Dietary administration of Polyphenon-B effectively suppressed DAB-induced hepatocarcinogenesis, as evidenced by reduced preneoplastic and neoplastic lesions, modulation of xenobiotic-metabolizing enzymes and amelioration of oxidative stress. Thus, it can be concluded that Polyphenon-B acts as an effective chemopreventive agent by modulating xenobiotic-metabolizing enzymes and mitigating oxidative stress in an in vivo model of hepatocarcinogenesis. PMID:18985486

  19. Markers of oxidative stress and erythrocyte antioxidant enzyme activity in older men and women with differing physical activity.

    PubMed

    Rowiński, Rafał; Kozakiewicz, Mariusz; Kędziora-Kornatowska, Kornelia; Hübner-Woźniak, Elżbieta; Kędziora, Józef

    2013-11-01

    The aim of the present study was to examine the relationship between markers of oxidative stress and erythrocyte antioxidant enzyme activity and physical activity in older men and women. The present study included 481 participants (233 men and 248 women) in the age group 65-69 years (127 men and 125 women) and in the age group 90 years and over (106 men and 123 women). The classification of respondents by physical activity was based on answers to the question if, in the past 12 months, they engaged in any pastimes which require physical activity. The systemic oxidative stress status was assessed by measuring plasma iso-PGF2α and protein carbonyl concentration as well as erythrocyte antioxidant enzymes activity, i.e., superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR). The concentration of plasma iso-PGF2α and protein carbonyls (CP) was lower in groups of younger men and women compared to the respective older groups. In all examined groups, physical activity resulted in decrease of these oxidative stress markers and simultaneously caused adaptive increase in the erythrocyte SOD activity. Additionally, in active younger men CAT, GPx, and GR activities were higher than in sedentary ones. In conclusion, oxidative stress increase is age-related, but physical activity can reduce oxidative stress markers and induce adaptive increase in the erythrocyte antioxidant enzyme activity, especially SOD, even in old and very old men and women. PMID:23911531

  20. Protective effect of ellagic acid against TCDD-induced renal oxidative stress: modulation of CYP1A1 activity and antioxidant defense mechanisms.

    PubMed

    Vijaya Padma, Viswanadha; Kalai Selvi, Palaniswamy; Sravani, Samadi

    2014-07-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) belongs to toxicologically important class of poly halogenated aromatic hydrocarbons and produce wide variety of adverse effects in humans. The present study investigated the protective effect of ellagic acid, a natural polyphenolic compound against TCDD-induced nephrotoxicity in Wistar rats. TCDD-induced nephrotoxicity was reflected in marked changes in the histology of kidney, increase in levels of kidney markers (serum urea, serum creatinine) and lipid peroxides. A significant increase in activity of phase I enzyme CYP1A1 with concomitant decline in the activities of phase II enzymes [non-enzymic antioxidant and various enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-s-transferase] was also observed. In addition, TCDD treated rats showed alterations in ATPase enzyme activities such as Na(+) K(+)-ATPase, Mg(2+) ATPase and Ca(2+) ATPase. Oral pre-treatment with ellagic acid prevented TCDD-induced alterations in levels of kidney markers. Ellagic acid pre-treatment significantly counteracted TCDD-induced oxidative stress by decreasing CYP1A1 activity and enhancing the antioxidant status. Furthermore, ellagic acid restored TCDD-induced histopathological changes and alterations in ATPase enzyme activities. The results of the present study show that significant protective effect rendered by ellagic acid against TCDD-induced nephrotoxicity might be attributed to its antioxidant potential. PMID:24566691

  1. Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides.

    PubMed

    Paniagua, Sergio A; Giordano, Anthony J; Smith, O'Neil L; Barlow, Stephen; Li, Hong; Armstrong, Neal R; Pemberton, Jeanne E; Brédas, Jean-Luc; Ginger, David; Marder, Seth R

    2016-06-22

    Transparent conducting oxides (TCOs), such as indium tin oxide and zinc oxide, play an important role as electrode materials in organic-semiconductor devices. The properties of the inorganic-organic interface-the offset between the TCO Fermi level and the relevant transport level, the extent to which the organic semiconductor can wet the oxide surface, and the influence of the surface on semiconductor morphology-significantly affect device performance. This review surveys the literature on TCO modification with phosphonic acids (PAs), which has increasingly been used to engineer these interfacial properties. The first part outlines the relevance of TCO surface modification to organic electronics, surveys methods for the synthesis of PAs, discusses the modes by which they can bind to TCO surfaces, and compares PAs to alternative organic surface modifiers. The next section discusses methods of PA monolayer deposition, the kinetics of monolayer formation, and structural evidence regarding molecular orientation on TCOs. The next sections discuss TCO work-function modification using PAs, tuning of TCO surface energy using PAs, and initiation of polymerizations from TCO-tethered PAs. Finally, studies that examine the use of PA-modified TCOs in organic light-emitting diodes and organic photovoltaics are compared. PMID:27227316

  2. Reactivation of a commercial diesel oxidation catalyst by acid washing.

    PubMed

    Galisteo, Francisco Cabello; Mariscal, Rafael; Granados, Manuel López; Fierro, José Luis García; Brettes, Pilar; Salas, Oscar

    2005-05-15

    The catalytic activity of samples taken from an oxidation catalyst mounted on diesel-driven automobiles and aged under road conditions was recovered to a significant extent by washing with a dilute solution of citric acid. The characterization of samples arising from a fresh, a vehicle-aged, and a regenerated catalyst was carried out by scanning electron microscopy (SEM-EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Relatively high levels of S and P, in the form of aluminum sulfate and phosphate, respectively, together with contaminant Si were detected in the used catalyst. Washing of the vehicle-aged catalytic oxidation converter revealed high efficiency in the extraction of the main contaminants detected (S and P) by this nondestructive methodology. The results of the experiments reported here should encourage the development of a technology based on this reactivation procedure for the rejuvenation of the catalytic device mounted on diesel exhaust pipes. PMID:15952394

  3. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2013-07-23

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  4. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N; Apel, William A; Thompson, Vicki S; Ward, Thomas E

    2014-04-08

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  5. Methods of combined bioprocessing and related microorganisms, thermophilic and/or acidophilic enzymes, and nucleic acids encoding said enzymes

    DOEpatents

    Thompson, David N.; Apel, William A.; Thompson, Vicki S.; Ward, Thomas E.

    2016-03-22

    A genetically modified organism comprising: at least one nucleic acid sequence and/or at least one recombinant nucleic acid isolated from Alicyclobacillus acidocaldarius and encoding a polypeptide involved in at least partially degrading, cleaving, transporting, metabolizing, or removing polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, xylan-, glucan-, galactan-, or mannan-decorating groups; and at least one nucleic acid sequence and/or at least one recombinant nucleic acid encoding a polypeptide involved in fermenting sugar molecules to a product. Additionally, enzymatic and/or proteinaceous extracts may be isolated from one or more genetically modified organisms. The extracts are utilized to convert biomass into a product. Further provided are methods of converting biomass into products comprising: placing the genetically modified organism and/or enzymatic extracts thereof in fluid contact with polysaccharides, cellulose, lignocellulose, hemicellulose, lignin, starch, sugars, sugar oligomers, carbohydrates, complex carbohydrates, chitin, heteroxylans, glycosides, and/or xylan-, glucan-, galactan-, or mannan-decorating groups.

  6. Modulation of oxidative DNA damage by repair enzymes XRCC1 and hOGG1.

    PubMed

    Rihs, Hans-Peter; Marczynski, Boleslaw; Lotz, Anne; Raulf-Heimsoth, Monika; Brüning, Thomas

    2012-01-01

    The influence of DNA repair gene polymorphisms (XRCC1: Arg194Trp, Arg280His, Arg399Gln; APE1: Asp148Glu; hOGG1: Ser326Cys) on oxidative DNA damage is controversial and was investigated in 214 German workers with occupational exposure to vapors and aerosols of bitumen,compared to 87 German construction workers without exposure, who were part of the Human Bitumen Study. Genotypes were determined by real-time polymerase chain reaction (PCR), and actual smoking habits by a questionnaire and cotinine analysis. Oxidative DNA damage in white blood cells (WBC) collected pre- and postshift was measured as 8-oxodGuo adducts/10(6) dGuo by a hjigh-performance liquid chromatography electron capture detection (HPLC-ECD) method, followed by calculation of the difference between post- and preshift values (Δ8-oxodGuo/10(6) dGuo). The 214 bitumen exposed workers showed higher median Δ8-oxodGuo values than the 87 references. In the whole study group (n=301) there was a trend for increasing adduct values for XRCC1 Arg(GG)399Gln(AA) during a shift, especially in nonsmokers (n=108. Referents (n=87) displayed a similar trend for hOGG1 Ser(CC)326Cys(GG). In contrast, XRCC1 Arg(GG)280His(AA) showed a decrease of median Δ8-oxodGuo/10(6) dGuo values in workers with exposure to vapors and aerosols of bitumen (n=214), especially in smokers (n=145). XRCC1 Arg194Trp and APE1 Asp148Glu displayed no marked association with Δ8-oxodGuo levels. Data indicate that the combination of different variants in DNA damage repair enzymes may modulate the production of 8-oxoguanine adducts in WBC produced by xenobiotics during a shift. PMID:22686320

  7. Should South Africa Be Performing Nucleic Acid Testing on HIV Enzyme-Linked Immunosorbent Assay-Negative Samples?▿

    PubMed Central

    Gous, Natasha; Scott, Lesley; Perovic, Olga; Venter, Francios; Stevens, Wendy

    2010-01-01

    The frequency of acute HIV infection (AHI) among HIV-1 enzyme-linked immunosorbent assay (ELISA)-negative samples received from general hospital patient admissions was assessed. Of 3,005 samples pooled for nucleic acid testing, a prevalence of 0.13% was found. Pooled nucleic acid testing may be feasible for low-cost identification of AHI in high-prevalence settings. PMID:20610671

  8. Crystal Structure and Substrate Recognition of Cellobionic Acid Phosphorylase, Which Plays a Key Role in Oxidative Cellulose Degradation by Microbes*

    PubMed Central

    Nam, Young-Woo; Nihira, Takanori; Arakawa, Takatoshi; Saito, Yuka; Kitaoka, Motomitsu; Nakai, Hiroyuki; Fushinobu, Shinya

    2015-01-01

    The microbial oxidative cellulose degradation system is attracting significant research attention after the recent discovery of lytic polysaccharide mono-oxygenases. A primary product of the oxidative and hydrolytic cellulose degradation system is cellobionic