Science.gov

Sample records for acid oxidation rates

  1. Reduction Rates for Higher Americium Oxidation States in Nitric Acid

    SciTech Connect

    Grimes, Travis Shane; Mincher, Bruce Jay; Schmitt, Nicholas C

    2015-09-30

    The stability of hexavalent americium was measured using multiple americium concentrations and nitric acid concentrations after contact with the strong oxidant sodium bismuthate. Contrary to our hypotheses Am(VI) was not reduced faster at higher americium concentrations, and the reduction was only zero-order at short time scales. Attempts to model the reduction kinetics using zero order kinetic models showed Am(VI) reduction in nitric acid is more complex than the autoreduction processes reported by others in perchloric acid. The classical zero-order reduction of Am(VI) was found here only for short times on the order of a few hours. We did show that the rate of Am(V) production was less than the rate of Am(VI) reduction, indicating that some Am(VI) undergoes two electron-reduction to Am(IV). We also monitored the Am(VI) reduction in contact with the organic diluent dodecane. A direct comparison of these results with those in the absence of the organic diluent showed the reduction rates for Am(VI) were not statistically different for both systems. Additional americium oxidations conducted in the presence of Ce(IV)/Ce(III) ions showed that Am(VI) is reduced without the typical growth of Am(V) observed in the systems sans Ce ion. This was an interesting result which suggests a potential new reduction/oxidation pathway for Am in the presence of Ce; however, these results were very preliminary, and will require additional experiments to understand the mechanism by which this occurs. Overall, these studies have shown that hexavalent americium is fundamentally stable enough in nitric acid to run a separations process. However, the complicated nature of the reduction pathways based on the system components is far from being rigorously understood.

  2. Measurement of the rates of oxindole-3-acetic acid turnover, and indole-3-acetic acid oxidation in Zea mays seedlings

    NASA Technical Reports Server (NTRS)

    Nonhebel, H. M.; Bandurski, R. S. (Principal Investigator)

    1986-01-01

    Oxindole-3-acetic acid is the principal catabolite of indole-3-acetic acid in Zea mays seedlings. In this paper measurements of the turnover of oxindole-3-acetic acid are presented and used to calculate the rate of indole-3-acetic acid oxidation. [3H]Oxindole-3-acetic acid was applied to the endosperm of Zea mays seedlings and allowed to equilibrate for 24 h before the start of the experiment. The subsequent decrease in its specific activity was used to calculate the turnover rate. The average half-life of oxindole-3-acetic acid in the shoots was found to be 30 h while that in the kernels had an average half-life of 35h. Using previously published values of the pool sizes of oxindole-3-acetic acid in shoots and kernels from seedlings of the same age and variety, and grown under the same conditions, the rate of indole-3-acetic acid oxidation was calculated to be 1.1 pmol plant-1 h-1 in the shoots and 7.1 pmol plant-1 h-1 in the kernels.

  3. Fatty Acid Oxidation Disorders

    MedlinePlus

    ... other health conditions > Fatty acid oxidation disorders Fatty acid oxidation disorders E-mail to a friend Please ... these disorders, go to genetests.org . What fatty acid oxidation disorders are tested for in newborn screening? ...

  4. Support Effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains

    SciTech Connect

    Macht, Josef; Baertsch, Chelsey D.; May-Lozano, Marcos; Soled, Stuart L.; Wang, Yong; Iglesia, Enrique

    2005-03-01

    Initial activity and acid site density of several WAl, WSi (MCM41) and one WSn sample were determined. Trans/cis 2-butene selectivity is dependent on the support. Presumably, these differences are due to subtle differences in base strengths. 2-Butanol dehydration rates (per W-atom) reached maximum values at intermediate WOx surface densities on WAl, as reported for 2-butanol dehydration reactions on WZr. Titration results indicate that Bronsted acid sites are required for 2-butanol dehydration on WAl, WSi and WSn. UV-visible studies suggest that WAl is much more difficult to reduce than WZr. The detection of reduced centers on WAl, the number of which correlates to Bronsted acid site density and catalyst activity, as well as the temperature dependence of Bronsted acid site density indicate the in-situ formation of these active sites. We infer that this mechanism is common among all supported WOx samples described in this study. Turnover rates are a function of Bronsted acid site density only. High acid site densities lead to high turnover rates. Higher active site densities may cause stronger conjugate bases, as a higher electron density has to be stabilized, and thus weaker acidity, enabling a faster rate of product desorption. The maximum achievable active site density is dependent on the support. WZr reaches a higher active site density than WAl.

  5. Kinetic dissolution of carbonates and Mn oxides in acidic water: Measurement of in situ field rates and reactive transport modeling

    USGS Publications Warehouse

    Brown, J.G.; Glynn, P.D.

    2003-01-01

    The kinetics of carbonate and Mn oxide dissolution under acidic conditions were examined through the in situ exposure of pure phase samples to acidic ground water in Pinal Creek Basin, Arizona. The average long-term calculated in situ dissolution rates for calcite and dolomite were 1.65??10-7 and 3.64??10-10 mmol/(cm2 s), respectively, which were about 3 orders of magnitude slower than rates derived in laboratory experiments by other investigators. Application of both in situ and lab-derived calcite and dolomite dissolution rates to equilibrium reactive transport simulations of a column experiment did not improve the fit to measured outflow chemistry: at the spatial and temporal scales of the column experiment, the use of an equilibrium model adequately simulated carbonate dissolution in the column. Pyrolusite (MnO2) exposed to acidic ground water for 595 days increased slightly in weight despite thermodynamic conditions that favored dissolution. This result might be related to a recent finding by another investigator that the reductive dissolution of pyrolusite is accompanied by the precipitation of a mixed Mn-Fe oxide species. In PHREEQC reactive transport simulations, the incorporation of Mn kinetics improved the fit between observed and simulated behavior at the column and field scales, although the column-fitted rate for Mn-oxide dissolution was about 4 orders of magnitude greater than the field-fitted rate. Remaining differences between observed and simulated contaminant transport trends at the Pinal Creek site were likely related to factors other than the Mn oxide dissolution rate, such as the concentration of Fe oxide surface sites available for adsorption, the effects of competition among dissolved species for available surface sites, or reactions not included in the model.

  6. High-intensity interval training increases intrinsic rates of mitochondrial fatty acid oxidation in rat red and white skeletal muscle.

    PubMed

    Hoshino, Daisuke; Yoshida, Yuko; Kitaoka, Yu; Hatta, Hideo; Bonen, Arend

    2013-03-01

    High-intensity interval training (HIIT) can increase mitochondrial volume in skeletal muscle. However, it is unclear whether HIIT alters the intrinsic capacity of mitochondrial fatty acid oxidation, or whether such changes are associated with changes in mitochondrial FAT/CD36, a regulator of fatty acid oxidation, or with reciprocal changes in the nuclear receptor coactivator (peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1α)) and the corepressor (receptor-interacting protein 140 (RIP140)). We examined whether HIIT alters fatty acid oxidation rates in the isolated subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria of red and white skeletal muscle and (or) induces changes in muscle PGC-1α and RIP140 proteins and mitochondrial FAT/CD36 protein content. Rats were divided into untrained or HIIT-trained groups. HIIT animals performed 10 bouts of 1-min high-intensity treadmill running (30-55 m·min(-1)), separated by 2 min of rest, for 5 days a week for 4 weeks. As expected, after the training period, HIIT increased mitochondrial enzymes (citrate synthase, COXIV, and β-hydroxyacyl CoA dehydrogenase) in red and white muscle, indicating that muscle mitochondrial volume had increased. HIIT also increased the rates of palmitate oxidation in mitochondria of red (37% for SS and 19% for IMF) and white (36% for SS and 12% for IMF) muscle. No changes occurred in SS and IMF mitochondrial FAT/CD36 proteins, despite increasing FAT/CD36 at the whole-muscle level (27% for red and 22% for white). Concurrently, muscle PGC-1α protein was increased in red (22%) and white (16%) muscle, but RIP140 was not altered. These results indicate that increases in SS and IMF mitochondrial fatty acid oxidation induced by HIIT are accompanied by an increase in PGC-1α, but not RIP140 or FAT/CD36.

  7. Effect of pH, substrate and free nitrous acid concentrations on ammonium oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Seco, A; Ferrer, J; Serralta, J

    2012-11-01

    Respirometric techniques have been used to determine the effect of pH, free nitrous acid (FNA) and substrate concentration on the activity of the ammonium oxidizing bacteria (AOB) present in an activated sludge reactor. With this aim, bacterial activity has been measured at different pH values (ranging from 6.2 to 9.7), total ammonium nitrogen concentrations (ranging from 0.1 to 10 mg TAN L(-1)) and total nitrite concentrations (ranging from 3 to 43 mg NO(2)-NL(-1)). According to the results obtained, the most appropriate kinetic expression for the growth of AOB in activated sludge reactors has been established. Substrate half saturation constant and FNA and pH inhibition constants have been obtained by adjusting model predictions to experimental results. Different kinetic parameter values and different Monod terms should be used to model the growth of AOB in activated sludge processes and SHARON reactors due to the different AOB species that predominate in both systems.

  8. Liver fatty acid binding protein is required for high rates of hepatic fatty acid oxidation but not for the action of PPARalpha in fasting mice.

    PubMed

    Erol, Erdal; Kumar, Leena S; Cline, Gary W; Shulman, Gerald I; Kelly, Daniel P; Binas, Bert

    2004-02-01

    Liver fatty acid binding protein (L-FABP) has been proposed to limit the availability of long-chain fatty acids (LCFA) for oxidation and for peroxisome proliferator-activated receptor alpha (PPAR-alpha), a fatty acid binding transcription factor that determines the capacity of hepatic fatty acid oxidation. Here, we used L-FABP null mice to test this hypothesis. Under fasting conditions, this mutation reduced beta-hydroxybutyrate (BHB) plasma levels as well as BHB release and palmitic acid oxidation by isolated hepatocytes. However, the capacity for ketogenesis was not reduced: BHB plasma levels were restored by octanoate injection; BHB production and palmitic acid oxidation were normal in liver homogenates; and hepatic expression of key PPAR-alpha target (MCAD, mitochondrial HMG CoA synthase, ACO, CYP4A3) and other (CPT1, LCAD) genes of mitochondrial and extramitochondrial LCFA oxidation and ketogenesis remained at wild-type levels. During standard diet, mitochondrial HMG CoA synthase mRNA was selectively reduced in L-FABP null liver. These results suggest that under fasting conditions, hepatic L-FABP contributes to hepatic LCFA oxidation and ketogenesis by a nontranscriptional mechanism, whereas L-FABP can activate ketogenic gene expression in fed mice. Thus, the mechanisms whereby L-FABP affects fatty acid oxidation may vary with physiological condition.

  9. Combination of best promoter and micellar catalyst for more than kilo-fold rate acceleration in favor of chromic acid oxidation of D-galactose to D-galactonic acid in aqueous media at room temperature

    NASA Astrophysics Data System (ADS)

    Saha, Rumpa; Ghosh, Aniruddha; Sar, Pintu; Saha, Indrajit; Ghosh, Sumanta K.; Mukherjee, Kakali; Saha, Bidyut

    2013-12-01

    Picolinic acid, 2,2‧-bipyridine and 1,10-phenanthroline promoted Cr(VI) oxidation of D-galactose to D-galactonic acid in three representative aqueous micellar media has been studied. The anionic surfactant (SDS) accelerated the rate of reaction while the cationic surfactant (CPC) and neutral surfactant (TX-100) retarded the reaction rate. Combination of bipy and SDS is the best choice for chromic acid oxidation of D-galactose to D-galactonic acid in aqueous media although 1,10-phenanthroline is best promoter in absence of micellar catalyst.

  10. Treatment of Fatty Acid Oxidation Disorders

    MedlinePlus

    ... of fatty acid oxidation disorders Treatment of fatty acid oxidation disorders E-mail to a friend Please ... page It's been added to your dashboard . Fatty acid oxidation disorders are rare health conditions that affect ...

  11. Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition

    NASA Astrophysics Data System (ADS)

    Long, Qunying; Ma, Guozheng; Xu, Qiqin; Ma, Cheng; Nan, Junmin; Li, Aiju; Chen, Hongyu

    2017-03-01

    A three-dimensional reduced graphene oxide (3D-RGO) material has been successfully prepared by a facile hydrothermal method and is employed as the negative additive to curb the sulfation of lead-acid battery. When added with 1.0 wt% 3D-RGO, the initial discharge capacity (0.05 C, 185.36 mAh g-1) delivered by the battery is 14.46% higher than that of the control cell (161.94 mAh g-1); and the cycle life under the high-rate partial-state-of-charge (HRPSoC) condition is significantly improved by more than 224% from 8142 to 26,425 cycles. In comparison to the conventional carbon additions like the activated carbon and acetylene black, the 3D-RGO also exhibits the highest initial discharge capacity, the best rate capabilities and the longest HRPSoC cycling life. Finally, we propose a possible mechanism for 3D-RGO to suppress lead-acid battery sulfation, where the abundant pore structure and excellent conductivity of 3D-RGO may have a synergistic effect on facilitating the charge and discharge process of negative plate.

  12. Ultrasound assisted reduction of graphene oxide to graphene in L-ascorbic acid aqueous solutions: kinetics and effects of various factors on the rate of graphene formation.

    PubMed

    Abulizi, Abulikemu; Okitsu, Kenji; Zhu, Jun-Jie

    2014-05-01

    The reduction of graphene oxide (GO) to graphene (rGO) was achieved by using 20 kHz ultrasound in L-ascorbic acid (L-AA, reducing agent) aqueous solutions under various experimental conditions. The effects of ultrasound power, ultrasound pulse mode, reaction temperature, pH value and L-AA amount on the rates of rGO formation from GO reduction were investigated. The rates of rGO formation were found to be enhanced under the following conditions: high ultrasound power, long pulse mode, high temperature, high pH value and large amount of L-AA. It was also found that the rGO formation under ultrasound treatment was accelerated in comparison with a conventional mechanical mixing treatment. The pseudo rate and pseudo activation energy (Ea) of rGO formation were determined to discuss the reaction kinetics under both treatment. The Ea value of rGO formation under ultrasound treatment was clearly lower than that obtained under mechanical mixing treatment at the same condition. We proposed that physical effects such as shear forces, microjets and shock waves during acoustic cavitation enhanced the mass transfer and reaction of L-AA with GO to form rGO as well as the change in the surface morphology of GO. In addition, the rates of rGO formation were suggested to be affected by local high temperatures of cavitation bubbles.

  13. Identification of a novel malonyl-CoA IC(50) for CPT-I: implications for predicting in vivo fatty acid oxidation rates.

    PubMed

    Smith, Brennan K; Perry, Christopher G R; Koves, Timothy R; Wright, David C; Smith, Jeffrey C; Neufer, P Darrell; Muoio, Deborah M; Holloway, Graham P

    2012-11-15

    Published values regarding the sensitivity (IC(50)) of CPT-I (carnitine palmitoyltransferase I) to M-CoA (malonyl-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore we have re-examined M-CoA inhibition kinetics under various P-CoA (palmitoyl-CoA) concentrations in both isolated mitochondria and PMFs (permeabilized muscle fibres). PMFs have an 18-fold higher IC(50) (0.61 compared with 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC(50) (6.3 compared with 0.49 μM) in the presence of 150 μM P-CoA compared with isolated mitochondria. M-CoA inhibition kinetics determined in PMFs predicts that CPT-I activity is inhibited by 33% in resting muscle compared with >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMFs appears to provide an M-CoA IC(50) that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate that the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and Type 2 diabetes.

  14. Identification of a novel malonyl-CoA IC50 for CPT-1: implications for predicting in vivo fatty acid oxidation rates

    PubMed Central

    Smith, Brennan K.; Perry, Christopher G.R.; Koves, Timothy R.; Wright, David C.; Smith, Jeffrey C.; Neufer, P. Darrell; Muoio, Deborah M.; Holloway, Graham P.

    2013-01-01

    Synopsis Published values regarding the sensitivity (IC50) of carnitine palmitoyl transferase I (CPT-I) to malonyl-CoA (M-CoA) inhibition in isolated mitochondria are inconsistent with predicted in vivo rates of fatty acid oxidation. Therefore, we have re-examined M-CoA inhibition kinetics under varying palmitoyl-CoA (P-CoA) concentrations in both isolated mitochondria and permeabilized muscle fibres (PMF). PMF have an 18-fold higher IC50 (0.61 vs 0.034 μM) in the presence of 25 μM P-CoA and a 13-fold higher IC50 (6.3 vs 0.49 μM) in the presence of 150 μM P-CoA compared to isolated mitochondria. M-CoA inhibition kinetics determined in PMF predicts that CPT-I activity is inhibited by 33% in resting muscle compared to >95% in isolated mitochondria. Additionally, the ability of M-CoA to inhibit CPT-I appears to be dependent on P-CoA concentration, as the relative inhibitory capacity of M-CoA is decreased with increasing P-CoA concentrations. Altogether, the use of PMF appears to provide a M-CoA IC50 that better reflects the predicted in vivo rates of fatty acid oxidation. These findings also demonstrate the ratio of [P-CoA]/[M-CoA] is critical for regulating CPT-I activity and may partially rectify the in vivo disconnect between M-CoA content and CPT-I flux within the context of exercise and type II diabetes. PMID:22928974

  15. Assessing Oxidative Stress in Tumors by Measuring the Rate of Hyperpolarized [1-13C]Dehydroascorbic Acid Reduction Using 13C Magnetic Resonance Spectroscopy*

    PubMed Central

    Timm, Kerstin N.; Hu, De-En; Williams, Michael; Wright, Alan J.; Kettunen, Mikko I.; Kennedy, Brett W. C.; Larkin, Timothy J.; Dzien, Piotr; Marco-Rius, Irene; Bohndiek, Sarah E.; Brindle, Kevin M.

    2017-01-01

    Rapid cancer cell proliferation promotes the production of reducing equivalents, which counteract the effects of relatively high levels of reactive oxygen species. Reactive oxygen species levels increase in response to chemotherapy and cell death, whereas an increase in antioxidant capacity can confer resistance to chemotherapy and is associated with an aggressive tumor phenotype. The pentose phosphate pathway is a major site of NADPH production in the cell, which is used to maintain the main intracellular antioxidant, glutathione, in its reduced state. Previous studies have shown that the rate of hyperpolarized [1-13C]dehydroascorbic acid (DHA) reduction, which can be measured in vivo using non-invasive 13C magnetic resonance spectroscopic imaging, is increased in tumors and that this is correlated with the levels of reduced glutathione. We show here that the rate of hyperpolarized [1-13C]DHA reduction is increased in tumors that have been oxidatively prestressed by depleting the glutathione pool by buthionine sulfoximine treatment. This increase was associated with a corresponding increase in pentose phosphate pathway flux, assessed using 13C-labeled glucose, and an increase in glutaredoxin activity, which catalyzes the glutathione-dependent reduction of DHA. These results show that the rate of DHA reduction depends not only on the level of reduced glutathione, but also on the rate of NADPH production, contradicting the conclusions of some previous studies. Hyperpolarized [1-13C]DHA can be used, therefore, to assess the capacity of tumor cells to resist oxidative stress in vivo. However, DHA administration resulted in transient respiratory arrest and cardiac depression, which may prevent translation to the clinic. PMID:27994059

  16. Wet oxidation of salicylic acid solutions.

    PubMed

    Collado, Sergio; Garrido, Laura; Laca, Adriana; Diaz, Mario

    2010-11-15

    Salicylic acid is a frequent pollutant in several industrial wastewaters. Uncatalyzed wet air oxidation, which is a promising technique for the treatment of phenolic effluents, has not been analyzed yet for the removal of salicylic acid. The effect of different conditions of pH (1.3-12.3), pressure (1.0-4.1 MPa), temperature (413-443 K), and initial concentrations (1.45-14.50 mM) on the wet oxidation of salicylate/salicylic acid solutions have here been investigated. The pH value of the reaction media was found to be a key parameter for the rate of the oxidation process with an optimum at pH 3.1, when the concentrations of salicylic acid and salicylate were similar. The oxidation reaction followed pseudofirst-order kinetics with respect to salicylic acid and 0.82 order with respect to dissolved oxygen. Additionally, the evolution of the color during the wet oxidation was analyzed and discussed in relation with the formation of intermediate compounds. Then, a reaction pathway for the noncatalytic wet oxidation of the salicylic acid was proposed.

  17. Effect of In Vitro Maturation Technique and Alpha Lipoic Acid Supplementation on Oocyte Maturation Rate: Focus on Oxidative Status of Oocytes

    PubMed Central

    Zavareh, Saeed; Karimi, Isaac; Salehnia, Mojdeh; Rahnama, Ali

    2016-01-01

    Background Therapeutic potential of in vitro maturation (IVM) in infertility is growing with great promise. Although significant progress is obtained in recent years, existing IVM protocols are far from favorable results. The first aim of this study was to investigate whether two step IVM manner change reactive oxygen species (ROS) and total anti- oxidant capacity (TAC) levels. The second aim was to find the effect of alpha lipoic acid (ALA) supplementation on oocyte maturation rate and on ROS/TAC levels during IVM. Materials and Methods In this experimental study, mouse germinal vesicle (GV) oocytes divided into cumulus denuded oocytes (DOs) and cumulus oocyte complexes (COCs) groups. GVs were matured in vitro in the presence or absence of ALA only for 18 hours (control) or with pre-culture of forskolin plus cilostamide for an additional 18 hours. Matured oocytes obtained following 18 and 36 hours based on experimental design. In parallel, the ROS and TAC levels were measured at different time (0, 18 and 36 hours) by 2',7'-dichlorodihydrofluorescein (DCFH) probe and ferric reducing/antioxidant power (FRAP) assay, respectively. Results Maturation rate of COCs was significantly higher than DOs in control group (P<0.05), while there was no significant difference between COCs and DOs when were pre-cultured with forskolin plus cilostamide. ROS and TAC levels was increased and decreased respectively in DOs after 18 hours while in COCs did not change at 18 hours and showed a significant increase and decrease respectively at 36 hours (P<0.05). ROS and TAC levels in the presence of ALA were significantly decreased and increased respectively after 36 hours (P<0.05) whereas, maturation rates of COCs and DOs were similar to their corresponding control groups. Conclusion ALA decreased ROS and increased TAC but could not affect maturation rate of both COCs and DOs in one or two step IVM manner. PMID:26985332

  18. Deposition rates of oxidized iron on Mars

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The reddened oxidized surface of Mars is indicative of temporal interactions between the Martian atmosphere and its surface. During the evolution of the Martian regolith, primary ferromagnesian silicate and sulfide minerals in basaltic rocks apparently have been oxidized to secondary ferric-bearing assemblages. To evaluate how and when such oxidized deposits were formed on Mars, information about the mechanisms and rates of chemical weathering of Fe(2+)-bearing minerals has been determined. In this paper, mechanisms and rates of deposition of ferric oxide phases on the Martian surface are discussed.

  19. Ascorbic acid oxidation of thiol groups from dithiotreitol is mediated by its conversion to dehydroascorbic acid

    PubMed Central

    Barbosa, Nilda B.V.; Lissner, Leandro A.; Klimaczewski, Cláudia V.; Colpo, Elisangela; Rocha, Joao B.T.

    2012-01-01

    The aim of the present study was to investigate whether the in vitro pro-oxidant effect of ascorbic acid towards thiol groups could be mediated by free radicals formed during its auto-oxidation and/or by a direct oxidation of -SH groups by its oxidized form (dehydroascorbic acid). This hypothesis was examined by measuring the rate of AA (ascorbic acid) oxidation in MOPS (3-morpholinepropanesulfonic acid buffer) and phosphate buffer (PB). Here we have used dithiothreitol (DTT) as model of vicinal thiol-containing enzymes, namely δ-aminolevulinate dehydratase. The rate of AA and DTT oxidation was more pronounced in the presence of PB than in the MOPS. AA oxidation induced by iron/EDTA complex was significantly reduced by addition of superoxide dismutase, catalase and DTT to the reaction medium. H2O2 alone did not stimulate the oxidation of AA; however, AA oxidation was enhanced significantly with the addition of crescent concentrations of iron. Conversely, in DTT oxidation assay (without AA) the addition of iron, EDTA and H2O2, did not promote the oxidation of -SH groups. Our findings suggest that in the presence of physiological concentrations of AA and thiols, the oxidation of -SH groups is mediated by AA conversion to dehydroascorbic acid with the participation of iron. Furthermore, free radical species formed during the auto-oxidation of AA apparently did not oxidize thiol groups to a significant extent. PMID:27847448

  20. Aspirin increases mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; Dudiak, Brianne; Beck, Megan E; Bharathi, Sivakama S; Zhang, Yuxun; Stolz, Donna B; Goetzman, Eric S

    2017-01-08

    The metabolic effects of salicylates are poorly understood. This study investigated the effects of aspirin on fatty acid oxidation. Aspirin increased mitochondrial long-chain fatty acid oxidation, but inhibited peroxisomal fatty acid oxidation, in two different cell lines. Aspirin increased mitochondrial protein acetylation and was found to be a stronger acetylating agent in vitro than acetyl-CoA. However, aspirin-induced acetylation did not alter the activity of fatty acid oxidation proteins, and knocking out the mitochondrial deacetylase SIRT3 did not affect the induction of long-chain fatty acid oxidation by aspirin. Aspirin did not change oxidation of medium-chain fatty acids, which can freely traverse the mitochondrial membrane. Together, these data indicate that aspirin does not directly alter mitochondrial matrix fatty acid oxidation enzymes, but most likely exerts its effects at the level of long-chain fatty acid transport into mitochondria. The drive on mitochondrial fatty acid oxidation may be a compensatory response to altered mitochondrial morphology and inhibited electron transport chain function, both of which were observed after 24 h incubation of cells with aspirin. These studies provide insight into the pathophysiology of Reye Syndrome, which is known to be triggered by aspirin ingestion in patients with fatty acid oxidation disorders.

  1. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  2. Control of bovine hepatic fatty acid oxidation

    SciTech Connect

    Jesse, B.W.; Emery, R.S.; Thomas, J.W.

    1986-09-01

    Fatty acid oxidation by bovine liver slices and mitochondria was examined to determine potential regulatory sites of fatty acid oxidation. Conversion of 1-(/sup 14/C)palmitate to /sup 14/CO/sub 2/ and total (/sup 14/C)acid-soluble metabolites was used to measure fatty acid oxidation. Oxidation of palmitate (1 mM) was linear in both liver slice weight and incubation time. Carnitine stimulated palmitate oxidation; 2 mM dl-carnitine produced maximal stimulation of palmitate oxidation to both CO/sup 2/ and acid-soluble metabolites. Propionate (10 mM) inhibited palmitate oxidation by bovine liver slices. Propionate (.5 to 10 mM) had no effect on palmitate oxidation by mitochondria, but malonyl Coenzyme A, the first committed intermediate of fatty acid synthesis, inhibited mitochondrial palmitate oxidation (inhibition constant = .3 ..mu..M). Liver mitochonndrial carnitine palmitoyltransferase exhibited Michaelis constants for palmitoyl Coenzyme A and l-carnitine of 11.5 ..mu..M and .59 mM, respectively. Long-chain fatty acid oxidation in bovine liver is regulated by mechanisms similar to those in rats but adapted to the unique digestive physiology of the bovine.

  3. Nickel inhibits mitochondrial fatty acid oxidation.

    PubMed

    Uppala, Radha; McKinney, Richard W; Brant, Kelly A; Fabisiak, James P; Goetzman, Eric S

    2015-08-07

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation-the pathway by which fatty acids are catabolized for energy-in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with l-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 h), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis.

  4. An Acidity Scale for Binary Oxides.

    ERIC Educational Resources Information Center

    Smith, Derek W.

    1987-01-01

    Discusses the classification of binary oxides as acidic, basic, or amphoteric. Demonstrates how a numerical scale for acidity/basicity of binary oxides can be constructed using thermochemical data for oxoacid salts. Presents the calculations derived from the data that provide the numeric scale values. (TW)

  5. Oxidation of dimethylselenide by δMnO2: oxidation product and factors affecting oxidation rate

    USGS Publications Warehouse

    Wang, Bronwen; Burau, Richard G.

    1995-01-01

    Volatile dimethylselenide (DMSe) was transformed to a nonvolatile Se compound in a ??-MnO2 suspension. The nonvolatile product was a single compound identified as dimethylselenoxide based on its mass spectra pattern. After 24 h, 100% of the DMSe added to a ??-MnO2 suspension was converted to nonpurgable Se as opposed to 20%, 18%, and 4% conversion for chromate, permanganate, and the filtrate from the suspension, respectively. Manganese was found in solution after reaction. These results imply that the reaction between manganese oxide and DMSe was a heterogeneous redox reaction involving solid phase ??-MnO2 and solution phase DMSe. Oxidation of DMSe to dimethylselenoxide [OSe(CH3)2] by a ??-MnO2 suspension appears to be first order with respect to ??-MnO2, to DMSe, and to hydrogen ion with an overall rate law of d[OSe(CH3)2 ]/dt = 95 M-2 min-1 [MnO2]1[DMSe]1[H+]1 for the MnO2 concentration range of 0.89 ?? 10-3 - 2.46 ?? 10-3 M, the DMSe concentration range of 3.9 ?? 10-7 - 15.5 ?? 10-7 M Se, and a hydrogen ion concentation range of 7.4 ?? 10-6 -9.5 ?? 10-8 M. A general surface site adsorption model is consistent with this rate equation if the uncharged |OMnOH is the surface adsorption site. DMSe acts as a Lewis base, and the manganese oxide surface acts as a Lewis acid. DMSe adsorption to |OMnOH can be viewed as a Lewis acid/ base complex between the largely p orbitals of the DMSe lone pair and the unoccupied eg orbitals on manganese oxide. For such a complex, frontier molecular orbital theory predicts electron transfer to occur via an inner-sphere complex between the DMSe and the manganese oxide. ?? 1995 American Chemical Society.

  6. Nickel Inhibits Mitochondrial Fatty Acid Oxidation

    PubMed Central

    Uppala, Radha; McKinney, Richard W.; Brant, Kelly A.; Fabisiak, James P.; Goetzman, Eric S.

    2015-01-01

    Nickel exposure is associated with changes in cellular energy metabolism which may contribute to its carcinogenic properties. Here, we demonstrate that nickel strongly represses mitochondrial fatty acid oxidation—the pathway by which fatty acids are catabolized for energy—in both primary human lung fibroblasts and mouse embryonic fibroblasts. At the concentrations used, nickel suppresses fatty acid oxidation without globally suppressing mitochondrial function as evidenced by increased glucose oxidation to CO2. Pre-treatment with L-carnitine, previously shown to prevent nickel-induced mitochondrial dysfunction in neuroblastoma cells, did not prevent the inhibition of fatty acid oxidation. The effect of nickel on fatty acid oxidation occurred only with prolonged exposure (>5 hr), suggesting that direct inhibition of the active sites of metabolic enzymes is not the mechanism of action. Nickel is a known hypoxia-mimetic that activates hypoxia inducible factor-1α (HIF1α). Nickel-induced inhibition of fatty acid oxidation was blunted in HIF1α knockout fibroblasts, implicating HIF1α as one contributor to the mechanism. Additionally, nickel down-regulated the protein levels of the key fatty acid oxidation enzyme very long-chain acyl-CoA dehydrogenase (VLCAD) in a dose-dependent fashion. In conclusion, inhibition of fatty acid oxidation by nickel, concurrent with increased glucose metabolism, represents a form of metabolic reprogramming that may contribute to nickel-induced carcinogenesis. PMID:26051273

  7. Sex differences in the effects of 12 weeks sprint interval training on body fat mass and the rates of fatty acid oxidation and VO2max during exercise

    PubMed Central

    Bagley, Liam; Slevin, Mark; Bradburn, Steven; Liu, Donghui; Murgatroyd, Chris; Morrissey, George; Carroll, Michael; Piasecki, Mathew; Gilmore, William S; McPhee, Jamie S

    2016-01-01

    Background The purpose of this study was to examine whether very short duration, very high intensity sprint interval training (SIT) leads to loss of body fat mass in association with improvements to VO2max and fatty acid oxidation, and to assess the extent of sex dimorphism in these physiological responses. Methods A total of 24 men and 17 women (mean (SEM) age: 39 (±2) years; body mass index 24.6 (0.6)) completed measurements of the maximal rate of oxygen uptake (VO2max) and fatty acid oxidation (FATmax). Body fat and lean mass were measured by dual emission x-ray absorptiometry, and fasting blood lipid, glucose and insulin profiles were assessed before and after training. SIT consisted of 4×20 s sprints on a cycle ergometer at approximately 175% VO2max, three times per week for 12 weeks. Results Fat mass decreased by 1.0 kg, although men lost statistically significantly more fat than women both when expressed in Kg and as % body fat. VO2max increased by around 9%, but women improved VO2max significantly more than men. FATmax improved by around 13%, but fasting plasma glucose, insulin, total triglyceride, total cholesterol and high-density lipoprotein (HDL) did not change after training, while low-density lipoprotein decreased by 8% (p=0.028) and the HDL:Total Cholesterol ratio improved by 6%. There were no sex differences in these metabolic responses to training. Conclusions These results show lower body fat %, and higher rates of fatty acid oxidation and VO2max after 12 weeks of training for just 4 min per week. Notably, women improved VO2max more than men, while men lost more fat than women. PMID:27900150

  8. Determining Oxidation Rates in Multi-component Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Sage, A. M.; Weitkamp, E. A.; Huff Hartz, K. E.; Robinson, A. L.; Donahue, N. M.

    2006-12-01

    Aerosol composition influences the kinetics of condensed-phase organic species, making extrapolation of rate constants from single-component systems to atmospherically-relevant mixtures difficult. Using a mixed-phase relative rate constants approach, we have overcome this difficulty, obtaining heterogeneous oxidation rate constants for each species in several multi-component organic mixtures. We have also derived a compound- specific uptake coefficient that relates these rate constants to previous uptake measurements. In the ozonolysis of model meat-cooking mixtures, we observe significant decay of saturated and unsaturated acids and sterols. By relating the observed decomposition of condensed-phase species to that of gas-phase standards, we track the evolution of effective rate constants for oleic acid and palmitoleic acid oxidation as the aerosol is chemically processed. Each decreases by nearly a factor of ten over the course of an experiment. Rate constants also depend strongly on aerosol composition, changing by more than an order of magnitude with increasing mixture complexity. To compare these results with previous results, we have derived a compound-specific uptake coefficient (γi' for condensed-phase species i), which describes the kinetics of reactive uptake in mixtures and can be meaningfully related to the traditional uptake coefficient. We express uptake in terms of the concentrations of condensed-phase species, and to do so accurately, we use alkanoic acids to correct the decay of reactive alkenoic acids for secondary chemistry. This correction is incorporated into the definition of γi', and in terms of γi', the standard uptake coefficient can be written as: γ=∑χiγi', where χi is the mass fraction of species i and the summation is over all oxidized species. By using condensed-phase decay to calculate the uptake, we have apportioned reactive uptake among responsible species. This provides information not only about the potential of a particle

  9. Oxidative phosphorylation accompanying oxidation of short-chain fatty acids by rat-liver mitochondria

    PubMed Central

    Hird, F. J. R.; Weidemann, M. J.

    1966-01-01

    1. The factors concerned in the estimation of P/O ratios when fatty acids are oxidized by rat-liver mitochondria have been assessed. 2. The oxidation of butyrate, hexanoate and octanoate is accompanied by ATP synthesis. At low concentrations of the fatty acids, P/O ratios approximately 2·5 are obtained. 3. Oxidative phosphorylation is uncoupled, respiratory control ratios are lowered and respiration is inhibited when the concentration of the fatty acid in the incubating medium is raised (to 5–10mm); octanoate is a more potent uncoupler than either hexanoate or butyrate. 4. Serum albumin and carnitine, either singly or in combination, protect the mitochondria from the effect exerted by the fatty acids. 5. The rate of oxidation of short-chain fatty acids in the presence of ADP is increased in the presence of carnitine. PMID:4223170

  10. The oxidation of linoleic acid in the Udenfriend's system.

    PubMed

    Wakizaka, A; Imai, Y

    1974-11-01

    The autocatalytic oxidation of linoleate was observed in the incubation mixture containing ferrous ion and ascorbic acid as the catalysts (Undenfriend's system). The rate of oxidation of linoleate was estimated wither by the TBA method, iodometry or by the measurement of the absorbance at 235 nm. Reaction products were analyzed by TLC, GLC and UV-, IR-, NMR- and mass spectrometries. The main oxidized products were assumed to have one oxygen atom at the position of carbon 9 or 13 of linoleate or two oxygen atoms at the both positions of the original acid. The conjugated double bond was formed at carbon 10 and 12 of the carbon chain of linoleate.

  11. Stimulation of fatty acid oxidation by a 3-thia fatty acid reduces triacylglycerol secretion in cultured rat hepatocytes.

    PubMed

    Skrede, S; Bremer, J; Berge, R K; Rustan, A C

    1994-08-01

    The present work shows that when mitochondrial beta-oxidation is stimulated by the hypolipemic, non-beta-oxidizable fatty acid analogue tetradecylthioacetic acid, there is a decrease in the secretion of triacylglycerol in cultured rat hepatocytes. In order to study the effects of tetradecylthioacetic acid in cells with different fatty acid oxidation rates, cells were grown without or with L-carnitine supplement or with addition of the beta-oxidation inhibitor L-aminocarnitine. In cells grown without and with L-carnitine in the medium, the oxidation of [1-14C]oleic acid was stimulated by tetradecylthioacetic acid, whereas it was not significantly changed by palmitic acid. In cells grown with L-aminocarnitine, oxidation of [1-14C]oleic acid was almost abolished both in the absence and in presence of tetradecylthioacetic acid. The effect of tetradecylthioacetic acid and palmitic acid on incorporation of [1-14C]oleic acid into triacylglycerol was similar under all conditions. In the presence of L-carnitine, secretion of oleic acid-labeled triacylglycerol was reduced significantly more by tetradecylthioacetic acid than by palmitic acid. The effects of tetradecylthioacetic acid and palmitic acid on secretion of oleic acid-labeled triacylglycerol were reversed in cells grown with L-aminocarnitine, where palmitic acid was the stronger inhibitor. These results were substantiated by determination of mass of triacylglycerol secreted. It is concluded that tetradecylthioacetic acid reduces secretion of triacylglycerol from rat hepatocytes mainly by acutely stimulating fatty acid oxidation.

  12. The Mechanism of High Pressure Oxidations of Aliphatic Acids.

    DTIC Science & Technology

    ACETIC ACID , *OXIDATION), (*CARBOXYLIC ACIDS, OXIDATION), CHROMIUM ALLOYS, REACTION KINETICS, COPPER ALLOYS, NICKEL ALLOYS, TEMPERATURE, HIGH PRESSURE, CATALYSTS, GAS CHROMATOGRAPHY, VOLUMETRIC ANALYSIS, THESES

  13. Rates of manganese oxidation in aqueous systems

    USGS Publications Warehouse

    Hem, J.D.

    1981-01-01

    The rate of crystal growth of Mn3O4 (hausmannite) and ??MnOOH (feitknechtite) in aerated aqueous manganous perchlorate systems, near 0.01 M in total manganese, was determined at pH levels ranging from 7.00 to 9.00 and at temperatures from 0.5 to 37.4??C. The process is autocatalytic, but becomes psuedo first-order in dissolved Mn2+ activity when the amount of precipitate surface is large compared to the amount of unreacted manganese. Reaction rates determined by titrations using an automated pH-stat were fitted to an equation for precipitate growth. The rates are proportional to surface area of oxide and degree of supersaturation with respect to Mn2+. The oxide obtained at the higher temperature was Mn3O4, but at 0.5?? C only ??MnOOH was formed. At intermediate temperatures, mixtures of these solids were formed. The rate of precipitation of hausmannite is strongly influenced by temperature, and that of feitknechtite much less so. The difference in activation energy may be related to differences in crystal structure of the oxides and the geometry of polymeric hydroxy ion precursors. ?? 1981.

  14. The kinetics of oxidation of bilirubin and ascorbic acid in solution

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Kochergin, B. A.; Antina, E. V.

    2012-07-01

    The results of a comparative study of the oxidation of bilirubin, ascorbic acid, and their mixture in aqueous solutions under the action of air oxygen and hydrogen peroxide are presented. The observed and true rate constants for the oxidation reactions were determined. It was shown that the oxidation of tetrapyrrole pigment occurred under these conditions bypassing the stage of biliverdin formation to monopyrrole products. Simultaneous oxidation of bilirubin and ascorbic acid was shown to be accompanied by the inhibition of ascorbic acid oxidation by bilirubin, whereas ascorbic acid itself activated the oxidation of bilirubin.

  15. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.; Fisher, Duncan S.

    1993-01-01

    A model of acid weathering is proposed for the iron-rich basalts on Mars. Aqueous oxidation of iron sulfides released SO4(2-) and H(+) ions that initiated the dissolution of basaltic ferromagnesian silicates and released Fe(2+) ions. The Fe(2+) ions eventually underwent ferrolysis reactions and produced insoluble hydrous ferric oxide phases. Measurements of the time-dependence of acid weathering reactions show that pyrrhotite is rapidly converted to pyrite plus dissolved ferrous iron, the rate of pyrite formation decreasing with rising pH and lower temperatures. On Mars, oxidation rates of dissolved Fe(2+) ions in equatorial melt-waters in contact with the atmosphere are estimated to lie in the range 0.3-3.0 ppb Fe/yr over the pH range 2 to 6. Oxidation of Fe(2+) ions is estimated to be extremely slow in brine eutectic solutions that might be present on Mars and to be negligible in the frozen regolith.

  16. Fatty acid oxidation and ketogenesis in astrocytes

    SciTech Connect

    Auestad, N.

    1988-01-01

    Astrocytes were derived from cortex of two-day-old rat brain and grown in primary culture to confluence. The metabolism of the fatty acids, octanoate and palmitate, to CO{sub 2} in oxidative respiration and to the formation of ketone bodies was examined by radiolabeled tracer methodology. The net production of acetoacetate was also determined by measurement of its mass. The enzymes in the ketogenic pathway were examined by measuring enzymic activity and/or by immunoblot analyses. Labeled CO{sub 2} and labeled ketone bodies were produced from the oxidation of fatty acids labeled at carboxy- and {omega}-terminal carbons, indicating that fatty acids were oxidized by {beta}-oxidation. The results from the radiolabeled tracer studies also indicated that a substantial proportion of the {omega}-terminal 4-carbon unit of the fatty acids bypassed the {beta}-ketothiolase step of the {beta}-oxidation pathway. The ({sup 14}C)acetoacetate formed from the (1-{sup 14}C)labeled fatty acids, obligated to pass through the acetyl-CoA pool, contained 50% of the label at carbon 3 and 50% at carbon 1. In contrast, the ({sup 14}C)acetoacetate formed from the ({omega}-1)labeled fatty acids contained 90% of the label at carbon 3 and 10% at carbon 1.

  17. Tracking the oxidative kinetics of carbohydrates, amino acids and fatty acids in the house sparrow using exhaled 13CO2.

    PubMed

    McCue, M D; Sivan, O; McWilliams, S R; Pinshow, B

    2010-03-01

    Clinicians commonly measure the (13)CO(2) in exhaled breath samples following administration of a metabolic tracer (breath testing) to diagnose certain infections and metabolic disorders. We believe that breath testing can become a powerful tool to investigate novel questions about the influence of ecological and physiological factors on the oxidative fates of exogenous nutrients. Here we examined several predictions regarding the oxidative kinetics of specific carbohydrates, amino acids and fatty acids in a dietary generalist, the house sparrow (Passer domesticus). After administering postprandial birds with 20 mg of one of seven (13)C-labeled tracers, we measured rates of (13)CO(2) production every 15 min over 2 h. We found that sparrows oxidized exogenous amino acids far more rapidly than carbohydrates or fatty acids, and that different tracers belonging to the same class of physiological fuels had unique oxidative kinetics. Glycine had a mean maximum rate of oxidation (2021 nmol min(-1)) that was significantly higher than that of leucine (351 nmol min(-1)), supporting our prediction that nonessential amino acids are oxidized more rapidly than essential amino acids. Exogenous glucose and fructose were oxidized to a similar extent (5.9% of dose), but the time required to reach maximum rates of oxidation was longer for fructose. The maximum rates of oxidation were significantly higher when exogenous glucose was administered as an aqueous solution (122 nmol min(-1)), rather than as an oil suspension (93 nmol min(-1)), supporting our prediction that exogenous lipids negatively influence rates of exogenous glucose oxidation. Dietary fatty acids had the lowest maximum rates of oxidation (2-6 nmol min(-1)), and differed significantly in the extent to which each was oxidized, with 0.73%, 0.63% and 0.21% of palmitic, oleic and stearic acid tracers oxidized, respectively.

  18. Hysteresis-free high rate reactive sputtering of niobium oxide, tantalum oxide, and aluminum oxide

    SciTech Connect

    Särhammar, Erik Berg, Sören; Nyberg, Tomas

    2014-07-01

    This work reports on experimental studies of reactive sputtering from targets consisting of a metal and its oxide. The composition of the targets varied from pure metal to pure oxide of Al, Ta, and Nb. This combines features from both the metal target and oxide target in reactive sputtering. If a certain relation between the metal and oxide parts is chosen, it may be possible to obtain a high deposition rate, due to the metal part, and a hysteresis-free process, due to the oxide part. The aim of this work is to quantify the achievable boost in oxide deposition rate from a hysteresis-free process by using a target consisting of segments of a metal and its oxide. Such an increase has been previously demonstrated for Ti using a homogeneous substoichiometric target. The achievable gain in deposition rate depends on transformation mechanisms from oxide to suboxides due to preferential sputtering of oxygen. Such mechanisms are different for different materials and the achievable gain is therefore material dependent. For the investigated materials, the authors have demonstrated oxide deposition rates that are 1.5–10 times higher than what is possible from metal targets in compound mode. However, although the principle is demonstrated for oxides of Al, Ta, and Nb, a similar behavior is expected for most oxides.

  19. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO[sub 2], highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO[sub 4]/2.5M H[sub 3]PO[sub 4] solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO[sub 2] (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  20. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO{sub 2}, highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO{sub 4}/2.5M H{sub 3}PO{sub 4} solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO{sub 2} (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  1. Oxidation of cumene in an aprotic medium in the presence of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Smirnova, O. V.; Efimova, I. V.; Opeida, I. A.

    2015-06-01

    The process of the initiated oxidation of cumene (IPB) with oxygen under homophase conditions in the presence of ascorbic acid (AA) used over a wide range of concentrations is studied. It is shown that in this system, ascorbic acid is consumed in two ways: the auto-oxidation and the inhibition of the oxidation of cumene. The amount of ascorbic acid that participates in inhibiting the oxidation of cumene falls from 28.5 to 16.6% with a rise in the concentration of ascorbic acid in the range of 0.003-0.3 mol/L. The contribution from the rate of the oxidation of ascorbic acid to the total rate of the oxidation of the IPB-AA-DMSO-AIBN system grows from 67.2 to 92.5% with a rise in the concentration of ascorbic acid in the range of 0.01-0.3 mol/L. It is established that the most effective inhibition of the oxidation of cumene with ascorbic acid in aprotic media occurs at concentrations of ascorbic acid of up to 0.01 mol/L. A scheme for the initiated radical-chain oxidation of cumene with ascorbic acid in the aprotic medium that considers the inhibition of the oxidation of cumene with ascorbic acid and the auto-oxidation of ascorbic acid is proposed.

  2. Fatty acid oxidation and ketogenesis during development.

    PubMed

    Girard, J; Duée, P H; Ferré, P; Pégorier, J P; Escriva, F; Decaux, J F

    1985-01-01

    Fatty acids are the preferred oxidative substrates of the heart, skeletal muscles, kidney cortex and liver in adult mammals. They are supplied to these tissues either as nonesterified fatty acids (NEFA), or as triglycerides after hydrolysis by lipoprotein lipase. During fetal life, tissue capacity to oxidize NEFA is very low, even in species in which the placental transfer of NEFA and carnitine is high. At birth, the ability to oxidize NEFA from endogenous sources or from milk (a high-fat diet) develops rapidly in various tissues and remains very high throughout the suckling period. Ketogenesis appears in the liver by 6 to 12 hrs after birth, and the ketone bodies are used as oxidative fuels by various tissues during the suckling period. At the time of weaning, the transition from a high-fat to a high-carbohydrate diet is attended by a progressive decrease in the ketogenic capacity of the liver, whereas other tissues (skeletal muscle, heart, kidney) maintain a high capacity for NEFA oxidation. The nutritional and hormonal factors involved in changes in fatty acid oxidation during development are discussed.

  3. Pyrazinoic acid decreases peritoneal transfer rates.

    PubMed

    Grzegorzewska, A E; Czyzewska, K; Szary, B

    1995-01-01

    It was shown elsewhere that in a peritoneally dialyzed woman with pulmonary tuberculosis, oral treatment with rifampicin and pyrazinamide (11 and 25 mg/kg/day, respectively) caused a decrease in the peritoneal transport of sodium, potassium, urea, uric acid, protein, and ultrafiltration rate by 48% to 75% compared to the pretreatment values. Pyrazinoic acid (PA), a metabolite of pyrazinamide, may account for these changes, because rifampicin was also previously used in this patient without peritoneal function impairment. Thus in the present study the influence of PA on the human peritoneum is examined using the modified Ussing-type chamber. PA (1 mg/dL) was introduced into the medium on the interstitial side of the membrane. After the introduction of PA, uric acid transfer from the interstitial to the mesothelial side decreased by about 50%. There were no significant changes in the urea and albumin transfer rates. In conclusion, PA induces changes in uric acid transfer acting directly on mesothelial cells, whereas a decrease in the peritoneal transfer of other solutes may be caused by a decrease in convective transfer rates due to impaired ultrafiltration.

  4. Co-oxidation of the sulfur-containing amino acids in an autoxidizing lipid system

    USGS Publications Warehouse

    Wedemeyer, G.A.; Dollar, A.M.

    1963-01-01

    Oxidation of the sulfur amino acids by autoxidizing lipids was studied in a model system consisting of an amino acid dispersed in cold-pressed, molecularly distilled menhaden oil (20–80% w/w). Under all conditions investigated, cysteine was oxidized completely to cystine. Preliminary results suggest that at 110°C the oxidation follows first-order kinetics for at least the first 8 hr. A specific reaction rate constant of 0.25 per hour was calculated. When fatty acids were added to the system, cystine was oxidized to its thiosulfinate ester. When the fatty acid-cystine ratio was 1:2, oxidation of cystine was a maximum. No oxidation of cystine occurred unless either a fatty acid, volatile organic acid, or ethanol was added. Under the conditions investigated, methionine was not oxidized to either its sulfoxide or its sulfone.

  5. Reference electrode for strong oxidizing acid solutions

    DOEpatents

    Rigdon, Lester P.; Harrar, Jackson E.; Bullock, Sr., Jack C.; McGuire, Raymond R.

    1990-01-01

    A reference electrode for the measurement of the oxidation-reduction potentials of solutions is especially suitable for oxidizing solutions such as highly concentrated and fuming nitric acids, the solutions of nitrogen oxides, N.sub.2 O.sub.4 and N.sub.2 O.sub.5, in nitric acids. The reference electrode is fabricated of entirely inert materials, has a half cell of Pt/Ce(IV)/Ce(III)/70 wt. % HNO.sub.3, and includes a double-junction design with an intermediate solution of 70 wt. % HNO.sub.3. The liquid junctions are made from Corning No. 7930 glass for low resistance and negligible solution leakage.

  6. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization

    SciTech Connect

    Lee, Y.I.

    1986-01-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/ greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.

  7. Oxidation of nitrapyrin to 6-chloropicolinic acid by the ammonia-oxidizing bacterium nitrosomonas europaea

    SciTech Connect

    Vannelli, T.; Hooper, A.B.

    1992-07-01

    Suspensions of Nitrosomonas europaea catalyzed the oxidation of the commercial nitrification inhibitor nitrapyrin (2-chloro-6-(trichloromethyl)-pyridine). Rapid oxidation of nitrapyrin (at a concentration of 10 microM) required the concomitant oxidation of ammonia, hydroxylamine, or hydrazine. The turnover rate was highest in the presence of 10 mM ammonia (0.8 nmol of nitrapyrin per min/mg of protein). The product of the reaction was 6-chloropicolinic acid. By the use of (18)O2, it was shown that one of the oxygens in 6-chloropicolinic acid came from diatomic oxygen and that the other came from water. Approximately 13% of the radioactivity of (2,6-(14)C) nitrapyrin was shown to bind to cells. Most (94%) of the latter was bound indiscriminately to membrane proteins. The nitrapyrin bound to membrane proteins may account for the observed inactivation of ammonia oxidation. (Copyright (c) 1992, American Society for Microbiology.)

  8. Bond energies in polyunsaturated acids and kinetics of co-oxidation of protiated and deuterated acids

    NASA Astrophysics Data System (ADS)

    Andrianova, Z. S.; Breslavskaya, N. N.; Pliss, E. M.; Buchachenko, A. L.

    2016-10-01

    A computational program specially designed to analyze co-oxidation of substances in mixtures is suggested. The rigorous kinetic scheme of 32 reactions describing co-oxidation of isotope differing polyunsaturated fatty acids was computed to enlighten experimentally detected enormously large H/D isotope effects. The latter were shown to depend on the kinetic chain length and exhibit two extreme regimes of short and long chains which characterize isotope effects on the initiation and propagation chain reactions of hydrogen (deuterium) atom abstraction. No protective effect of deuterated polyunsaturated acids on the oxidation of protiated acids was detected. Protective effect of the deuterated compounds on the biologically important processes seems to be induced by the low yield of products formed in the chain termination reactions due to the low rate of initiation by deuterated compounds.

  9. Effect of sulfonylureas on hepatic fatty acid oxidation

    SciTech Connect

    Patel, T.B.

    1986-08-01

    In isolated rat livers perfused with oleic acid (0.1 mM), infusion of tolbutamide or glyburide decreased the rate of ketogenesis in a dose-dependent manner. The inhibition of fatty acid oxidation was maximal at 2.0 mM and 10 M concentrations of tolbutamide and glyburide, respectively. Neither tolbutamide nor glyburide inhibited ketogenesis in livers perfused with octanoate. The inhibition of hepatic ketogenesis by sulfonylureas was independent of perfusate oleic acid concentration. Additionally, in rat livers perfused with oleic acid in the presence of L-(-)-carnitine (10 mM), submaximal concentrations of tolbutamide and glyburide did not inhibit hepatic ketogenesis. Finally, glyburide infusion into livers perfused with (U- $C)oleic acid (0.1 mM) increased the rate of UC label incorporation into hepatic triglycerides by 2.5-fold. These data suggest that both tolbutamide and glyburide inhibit long-chain fatty acid oxidation by inhibition the key regulatory enzyme, carnitine palmitoyltransferase I, most probably by competing with L-(-)-carnitine.

  10. Process for the oxidation of materials in water at supercritical temperatures utilizing reaction rate enhancers

    SciTech Connect

    Swallow, K.C.; Killilea, W.R.; Hong, G.T.; Bourhis, A.L.

    1993-08-03

    A method is described for substantially completely oxidizing combustible materials in which an aqueous stream bearing the combustible materials is reacted in the presence of an oxidant comprising diatomic oxygen and at a temperature greater than the critical temperature of water and at a pressure greater than about 25 bar, within a reactor for a period of less than about 5 minutes to produce a reaction product stream, wherein the reaction is initiated in the presence of a rate enhancer comprising at least one oxidizing agent in addition to said oxidant selected from the group consisting of ozone, hydrogen peroxide, salts containing persulfate, salts containing permanganate, nitric acid, salts containing nitrate, oxyacids of chlorine and their corresponding salts, hypochlorous acid, salts containing hypochlorite, chlorous acid, salts containing chlorite, chloric acid, salts containing chlorate, perchloric acid, and salts containing perchlorate.

  11. Chloramines and hypochlorous acid oxidize erythrocyte peroxiredoxin 2.

    PubMed

    Stacey, Melissa M; Peskin, Alexander V; Vissers, Margreet C; Winterbourn, Christine C

    2009-11-15

    Peroxiredoxin 2 (Prx2) is an abundant thiol protein that is readily oxidized in erythrocytes exposed to hydrogen peroxide. We investigated its reactivity in human erythrocytes with hypochlorous acid (HOCl) and chloramines, relevant oxidants in inflammation. Prx2 was oxidized to a disulfide-linked dimer by HOCl, glycine chloramine (GlyCl), and monochloramine (NH(2)Cl) in a dose-dependent manner. In the absence of added glucose, Prx2 and GSH showed similar sensitivities. Second-order rate constants for the reactions of Prx2 with NH(2)Cl and GlyCl were 1.5 x 10(4) and 8 M(-1) s(-1), respectively. The NH(2)Cl value is approximately 10 times higher than that for GSH, whereas Prx2 is approximately 30 times less sensitive than GSH to GlyCl. Thus, the relative sensitivity of Prx2 to GlyCl is greater in the erythrocyte. Oxidation of erythrocyte Prx2 and GSH was less in the presence of glucose, probably because of recycling. High doses of NH(2)Cl resulted in incomplete regeneration of reduced Prx2, suggesting impairment of the recycling mechanism. Our results show that, although HOCl and chloramines are less selective than H(2)O(2), they nevertheless oxidize Prx2. Exposure to these inflammatory oxidants will result in Prx2 oxidation and could compromise the erythrocyte's ability to resist damaging oxidative insult.

  12. Methane activation and oxidation in sulfuric acid.

    PubMed

    Goeppert, Alain; Dinér, Peter; Ahlberg, Per; Sommer, Jean

    2002-07-15

    The H/D exchange observed when methane is contacted with D(2)SO(4) at 270-330 degrees C shows that the alkane behaves as a sigma base and undergoes rapid and reversible protonation at this temperature. DFT studies of the hydrogen exchange between a monomer and a dimer of sulfuric acid and methane show that the transition states involved in the exchange are bifunctional, that is one hydrogen atom is transferred from a hydroxy group in sulfuric acid to methane, while one hydrogen atom is abstracted from methane by a non-hydroxy oxygen atom in sulfuric acid. All the transition states include a CH(5) moiety, which shows similarities to the methanium ion CH(5) (+). The calculated potential activation energy of the hydrogen exchange for the monomer is 174 kJ mol(-1), which is close to the experimental value (176 kJ mol(-1)). Solvation of the monomer and the transition state of the monomer with an extra sulfuric acid molecule, decrease the potential activation energy by 6 kJ mol(-1). The acid-base process is in competition, however, with an oxidative process involving methane and sulfuric acid which leads to CO(2), SO(2), and water, and thus to a decrease of acidity and loss of reactivity of the medium.

  13. Production of dicarboxylic acids from novel unsaturated fatty acids by laccase-catalyzed oxidative cleavage.

    PubMed

    Takeuchi, Michiki; Kishino, Shigenobu; Park, Si-Bum; Kitamura, Nahoko; Watanabe, Hiroko; Saika, Azusa; Hibi, Makoto; Yokozeki, Kenzo; Ogawa, Jun

    2016-06-27

    The establishment of renewable biofuel and chemical production is desirable because of global warming and the exhaustion of petroleum reserves. Sebacic acid (decanedioic acid), the material of 6,10-nylon, is produced from ricinoleic acid, a carbon-neutral material, but the process is not eco-friendly because of its energy requirements. Laccase-catalyzing oxidative cleavage of fatty acid was applied to the production of dicarboxylic acids using hydroxy and oxo fatty acids involved in the saturation metabolism of unsaturated fatty acids in Lactobacillus plantarum as substrates. Hydroxy or oxo fatty acids with a functional group near the carbon-carbon double bond were cleaved at the carbon-carbon double bond, hydroxy group, or carbonyl group by laccase and transformed into dicarboxylic acids. After 8 h, 0.58 mM of sebacic acid was produced from 1.6 mM of 10-oxo-cis-12,cis-15-octadecadienoic acid (αKetoA) with a conversion rate of 35% (mol/mol). This laccase-catalyzed enzymatic process is a promising method to produce dicarboxylic acids from biomass-derived fatty acids.

  14. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    PubMed

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  15. Oxalic acid mineralization by electrochemical oxidation processes.

    PubMed

    Huang, Yao-Hui; Shih, Yu-Jen; Liu, Cheng-Hong

    2011-04-15

    In this study, two electrochemical oxidation processes were utilized to mineralize oxalic acid which was a major intermediate compound in the oxidation of phenols and other aromatic compounds. The anode rod and cathode net were made of a titanium coated with RuO(2)/IrO(2) (Ti-DSA) and stainless steel (S.S. net, SUS304), respectively. First, the Fered-Fenton process, which used H(2)O(2) and Fe(2+) as additive reagents, achieved 85% of TOC removal. It proceeded with ligand-to-metal charge-transfer (LMCT), which was evidenced by the accumulation of metallic foil on the selected cathode. However, in the absence of H(2)O(2)/Fe(2+), it showed a higher TOC removal efficiency while using Cl(-) only as an additive reagent due to the formation of hypochlorite on the anode. It was also found that the mineralization of oxalic acid by electrolysis generated hypochlorite better than the dosage of commercial hypochlorite without electricity. Also, pH value was a major factor that affected the mineralization efficiency of the oxalic acid due to the chlorine chemistry. 99% TOC removal could be obtained by Cl(-) electrolysis in an acidic environment.

  16. Oxidation of hypotaurine and cysteine sulphinic acid by peroxynitrite

    PubMed Central

    2005-01-01

    Peroxynitrite mediates the oxidation of the sulphinic group of both HTAU (hypotaurine) and CSA (cysteine sulphinic acid), producing the respective sulphonates, TAU (taurine) and CA (cysteic acid). The reaction is associated with extensive oxygen uptake, suggesting that HTAU and CSA are oxidized by the one-electron transfer mechanism to sulphonyl radicals, which may initiate an oxygen-dependent radical chain reaction with the sulphonates as final products. Besides the one-electron mechanism, HTAU and CSA can be oxidized by the two-electron pathway, leading directly to sulphonate formation without oxygen consumption. The apparent second-order rate constants for the direct reaction of peroxynitrite with HTAU and CSA at pH 7.4 and 25 °C are 77.4±5 and 76.4±9 M−1·s−1 respectively. For both sulphinates, the apparent second-order rate constants increase sharply with decrease in pH, and the sigmoidal curves obtained are consistent with peroxynitrous acid as the species responsible for sulphinate oxidation. The kinetic data, together with changes in oxygen uptake, sulphinate depletion, sulphonate production, and product distribution of nitrite and nitrate, suggest that oxidation of sulphinates by peroxynitrite may take place by the two reaction pathways whose relative importance depends on reagent concentrations and pH value. In the presence of bicarbonate, the direct reaction of sulphinates with peroxynitrite is inhibited and the oxidative reaction probably involves only the radicals •NO2 and CO3•−, generated by decomposition of the peroxynitrite-CO2 adduct. PMID:15740460

  17. ω-Alkynyl lipid surrogates for polyunsaturated fatty acids: free radical and enzymatic oxidations.

    PubMed

    Beavers, William N; Serwa, Remigiusz; Shimozu, Yuki; Tallman, Keri A; Vaught, Melissa; Dalvie, Esha D; Marnett, Lawrence J; Porter, Ned A

    2014-08-13

    Lipid and lipid metabolite profiling are important parameters in understanding the pathogenesis of many diseases. Alkynylated polyunsaturated fatty acids are potentially useful probes for tracking the fate of fatty acid metabolites. The nonenzymatic and enzymatic oxidations of ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were compared to that of linoleic and arachidonic acid. There was no detectable difference in the primary products of nonenzymatic oxidation, which comprised cis,trans-hydroxy fatty acids. Similar hydroxy fatty acid products were formed when ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid were reacted with lipoxygenase enzymes that introduce oxygen at different positions in the carbon chains. The rates of oxidation of ω-alkynylated fatty acids were reduced compared to those of the natural fatty acids. Cyclooxygenase-1 and -2 did not oxidize alkynyl linoleic but efficiently oxidized alkynyl arachidonic acid. The products were identified as alkynyl 11-hydroxy-eicosatetraenoic acid, alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid, and alkynyl prostaglandins. This deviation from the metabolic profile of arachidonic acid may limit the utility of alkynyl arachidonic acid in the tracking of cyclooxygenase-based lipid oxidation. The formation of alkynyl 11-hydroxy-8,9-epoxy-eicosatrienoic acid compared to alkynyl prostaglandins suggests that the ω-alkyne group causes a conformational change in the fatty acid bound to the enzyme, which reduces the efficiency of cyclization of dioxalanyl intermediates to endoperoxide intermediates. Overall, ω-alkynyl linoleic acid and ω-alkynyl arachidonic acid appear to be metabolically competent surrogates for tracking the fate of polyunsaturated fatty acids when looking at models involving autoxidation and oxidation by lipoxygenases.

  18. Comparison of the Oxidation Rates of Some New Copper Alloys

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. Thomas; Humphrey, Donald L.

    2002-01-01

    Copper alloys were studied for oxidation resistance and mechanisms between 550 and 700 C, in reduced-oxygen environments expected in rocket engines, and their oxidation behaviors compared to that of pure copper. They included two dispersion-strengthened alloys (precipitation-strengthened and oxide-dispersion strengthened, respectively) and one solution-strengthened alloy. In all cases the main reaction was oxidation of Cu into Cu2O and CuO. The dispersion-strengthened alloys were superior to both Cu and the solution-strengthened alloy in oxidation resistance. However, factors retarding oxidation rates seemed to be different for the two dispersion-strengthened alloys.

  19. Oxidative cleavage with hydrogen peroxide: preparation of polycarboxylic acids from cyclic olefins.

    PubMed

    Fujitani, Kango; Mizutani, Toshihiro; Oida, Tatsuo; Kawase, Tokuzo

    2009-01-01

    Oxidative cleavage of carbon-carbon double bonds of cyclic olefins with hydrogen peroxide in the presence of heteropolyacids has been investigated as a clean and environmentally friendly preparation of polycarboxylic acids. In the presence of 12-tungstophospholic acid (H(3)PW(12)O(40)), adipic acid was obtained in 95% yield from cyclohexene in lipophilic phase and hydrogen peroxide in aqueous phase. In addition, 1,2,3,4-butanetetracarboxylic acid was also obtained in 87% yield from 1,2,3,6-tetrahydrophtharic acid anhydride, while endic acid anhydride did not afford corresponding 2,3,6-cyclopentanetetracarboxylic acid but only lactone compound was obtained. In this oxidation process, oxidative cleavage of carbon-carbon double bonds would proceed as the sequential reactions in which the rate determining step is oxidative cleavage of vicinal-diol compounds.

  20. Ferrate(VI) oxidation of weak-acid dissociable cyanides

    SciTech Connect

    Ria A. Yngard; Virender K. Sharma; Jan Filip; Radek Zboril

    2008-04-15

    Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate, were studied as a function of pH (9.1-10.5) and temperature (15-45{sup o}C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, and the rate-laws for the oxidation may be -d(Fe(VI))/dt = k (Fe(VI))(M(CN){sub 4}{sup 2-}){sup n} where n = 0.5 and 1 for Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO{sub 4}{sup -}. The stoichiometries with Fe(VI) were determined to be: 4HFeO{sub 4}{sup -} + M(CN){sub 4}{sup 2-} + 6H{sub 2}O {yields} 4Fe(OH){sub 3} + M{sup 2+} + 4NCO{sup -} + O{sub 2} + 4OH{sup -}. Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. 27 refs., 3 figs., 2 tabs.

  1. Physiological effects of γ-linolenic acid and sesamin on hepatic fatty acid synthesis and oxidation.

    PubMed

    Ide, Takashi; Iwase, Haruka; Amano, Saaya; Sunahara, Saki; Tachihara, Ayuka; Yagi, Minako; Watanabe, Tsuyoshi

    2017-03-01

    Interrelated effects of γ-linolenic acid (GLA) and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin) and containing 100 g/kg of palm oil (saturated fat), safflower oil rich in linoleic acid, or oil of evening primrose origin containing 43% GLA (GLA oil) for 18 days. In rats fed sesamin-free diets, GLA oil, compared with other oils, increased the activity and mRNA levels of various enzymes involved in fatty acid oxidation, except for some instances. Sesamin greatly increased these parameters, and the enhancing effects of sesamin on peroxisomal fatty acid oxidation rate and acyl-CoA oxidase, enoyl-CoA hydratase and acyl-CoA thioesterase activities were more exaggerated in rats fed GLA oil than in the animals fed other oils. The combination of sesamin and GLA oil also synergistically increased the mRNA levels of some peroxisomal fatty acid oxidation enzymes and of several enzymes involved in fatty acid metabolism located in other cell organelles. In the groups fed sesamin-free diets, GLA oil, compared with other oils, markedly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin reduced all these parameters, except for malic enzyme, in rats fed palm and safflower oils, but the effects were attenuated in the animals fed GLA oil. These changes by sesamin and fat type accompanied profound alterations in serum lipid levels. This may be ascribable to the changes in apolipoprotein-B-containing lipoproteins.

  2. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor.

    PubMed

    Schopfer, Francisco J; Baker, Paul R S; Giles, Gregory; Chumley, Phil; Batthyany, Carlos; Crawford, Jack; Patel, Rakesh P; Hogg, Neil; Branchaud, Bruce P; Lancaster, Jack R; Freeman, Bruce A

    2005-05-13

    The aqueous decay and concomitant release of nitric oxide (*NO) by nitrolinoleic acid (10-nitro-9,12-octadecadienoic acid and 12-nitro-9,12-octadecadienoic acid; LNO2) are reported. Mass spectrometric analysis of reaction products supports a modified Nef reaction as the mechanism accounting for the generation of *NO by the aqueous reactions of fatty acid nitroalkene derivatives. Nitrolinoleic acid is stabilized by an aprotic milieu, with LNO2 decay and *NO release strongly inhibited by phosphatidylcholine/cholesterol liposome membranes and detergents when present at levels above their critical micellar concentrations. The release of *NO from LNO2 was induced by UV photolysis and triiodide-based ozone chemiluminescence reactions currently used to quantify putative protein nitrosothiol and N-nitrosamine derivatives. This reactivity of LNO2 complicates the qualitative and quantitative analysis of biological oxides of nitrogen when applying UV photolysis and triiodide-based analytical systems to biological preparations typically abundant in nitrated fatty acids. The results reveal that nitroalkene derivatives of linoleic acid are pluripotent signaling mediators that act not only via receptor-dependent mechanisms, but also by transducing the signaling actions of *NO via pathways subject to regulation by the relative distribution of LNO2 to hydrophobic versus aqueous microenvironments.

  3. Effects of Fe oxide on N transformations in subtropical acid soils

    PubMed Central

    Jiang, Xianjun; Xin, Xiaoping; Li, Shiwei; Zhou, Junchao; Zhu, Tongbin; Müller, Christopher; Cai, Zucong; Wright, Alan L.

    2015-01-01

    Subtropical ecosystems are often characterized by high N cycling rates, but net nitrification rates are often low in subtropical acid soils. NO3−-N immobilization into organic N may be a contributing factor to understand the observed low net nitrification rates in these acid soils. The effects of Fe oxide and organic matter on soil N transformations were evaluated using a 15N tracing study. Soil net nitrification was low for highly acidic yellow soil (Ferralsols), but gross ammonia oxidation was 7 times higher than net nitrification. In weakly acidic purple soil (Cambisols), net nitrification was 8 times higher than in Ferralsols. The addition of 5% Fe oxide to Cambisols, reduced the net nitrification rate to a negative rate, while NO3−-N immobilization rate increased 8 fold. NO3−-N immobilization was also observed in Ferralsols which contained high Fe oxides levels. A possible mechanism for these reactions could be stimulation of NO3−-N immobilization by Fe oxide which promoted the abiotic formation of nitrogenous polymers, suggesting that the absence of net nitrification in some highly acid soils may be due to high rates of NO3−-N immobilization caused by high Fe oxide content rather than a low pH. PMID:25722059

  4. The Iron-Catalyzed Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-17

    To assess the importance of iron to hydrazine stability, the study of hydrazine oxidation by nitric acid has been extended to investigate the iron-catalyzed oxidation. This report describes those results.

  5. Dissolution of plutonium oxide in nitric acid at high hydrofluoric acid concentrations

    SciTech Connect

    Kazanjian, A.R.; Stevens, J.R.

    1984-06-15

    The dissolution of plutonium dioxide in nitirc acid (HNO/sub 3/) at high hydrofluoric acid (HF) concentrations has been investigated. Dissolution rate curves were obtained using 12M HNO/sub 3/ and HF at concentrations varying from 0.05 to 1.0 molar. The dissolution rate increased with HF concentration up to 0.2M and then decreased at higher concentrations. There was very little plutonium dissolved at 0.7 and 1.0M HF because of the formation of insoluble PuF/sub 4/. Various oxidizing agents were added to 12M HNO/sub 3/-1M HF dissolvent to oxidize Pu(IV) to Pu(VI) and prevent the formation of PuF/sub 4/. Ceric (Ce(IV)) and silver (Ag(II)) ions were the most effective in dissolving PuO/sub 2/. Although these two oxidants greatly increased the dissolution rate, the rates were not as rapid as those obtained with 12M HNO/sub 3/-0.2M HF.

  6. Oxidative degradation of organic acids conjugated with sulfite oxidation in flue-gas desulfurization. Final report, June 1984-June 1986

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1988-02-01

    This report gives results of a study of organic acid-degradation conjugated with sulfite oxidation under flue-gas desulfurization (FGD) conditions. The oxidative degradation constant, k12, is defined as the ratio of organic-acid degradation rate and sulfite oxidation-rate times the ratio of the concentrations of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of Mn or Fe. However, k12 is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free-radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide (the major product), smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons.

  7. Oxidative degradation of organic acid conjugated with sulfite oxidation in flue gas desulfurization: products, kinetics and mechanism

    SciTech Connect

    Lee, Y.J.; Rochelle, G.T.

    1987-03-01

    Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (FGD) conditions. The oxidative degradation constant k/sub 12/ is defined as the ratio of organic acid degradation rate and sulfite oxidation rate times the ratio of the concentration of dissolved S(IV) and organic acid. It is not significantly affected by pH or dissolved oxygen in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Fe, Co, and Ni and is decreased by Mn and halides. Lower dissolved S(IV) magnifies these effects. A free radical mechanism was proposed to describe the kinetics. Hydroxy and sulfonated carboxylic acids degrade approximately 3 times slower than saturated dicarboxylic acids, while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude factor. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product - smaller dicarboxylic acids, monocarboxylic acids, other carbonyl compounds, and hydrocarbons. 30 references, 7 figures, 7 tables.

  8. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  9. Fine steps of electrocatalytic oxidation and sensitive detection of some amino acids on copper nanoparticles.

    PubMed

    Heli, H; Hajjizadeh, M; Jabbari, A; Moosavi-Movahedi, A A

    2009-05-01

    The electrocatalytic oxidation of five amino acids-glycine, aspartic acid, cysteine, glutamic acid, and tyrosine-on two copper-based electrodes comprising copper microparticle-modified carbon paste electrode (m-CPE) and copper nanoparticle-modified CPE (n-CPE) was investigated. In the voltammograms recorded using m-CPE, a single anodic peak related to the oxidation of amino acids appeared and was related to the electrocatalytic oxidation of the amino acids via the electrogenerated Cu(III) species. Using n-CPE, however, two overlapped anodic peaks in the voltammograms appeared and were related to two fine tunable steps of the oxidation process. The currents of the two peaks were controlled by diffusion and were confirmed by chronoamperometric measurements. The amino acids were oxidized on n-CPE at higher rates and at lower potentials compared with m-CPE. This was attributed to the nanosize of copper nanoparticles. Some primary linear-chain amines and primary branched-chain amines were oxidized on the copper-based electrodes as markers. The catalytic rate constants, the transfer coefficients, and the diffusion coefficients for the amino acids are reported. Simple, sensitive, and time-saving sensing procedures in both batch and flow systems were developed for the analysis of the amino acids, and the corresponding analytical parameters are reported.

  10. Mitochondrial free fatty acid β-oxidation supports oxidative phosphorylation and proliferation in cancer cells.

    PubMed

    Rodríguez-Enríquez, Sara; Hernández-Esquivel, Luz; Marín-Hernández, Alvaro; El Hafidi, Mohammed; Gallardo-Pérez, Juan Carlos; Hernández-Reséndiz, Ileana; Rodríguez-Zavala, José S; Pacheco-Velázquez, Silvia C; Moreno-Sánchez, Rafael

    2015-08-01

    Oxidative phosphorylation (OxPhos) is functional and sustains tumor proliferation in several cancer cell types. To establish whether mitochondrial β-oxidation of free fatty acids (FFAs) contributes to cancer OxPhos functioning, its protein contents and enzyme activities, as well as respiratory rates and electrical membrane potential (ΔΨm) driven by FFA oxidation were assessed in rat AS-30D hepatoma and liver (RLM) mitochondria. Higher protein contents (1.4-3 times) of β-oxidation (CPT1, SCAD) as well as proteins and enzyme activities (1.7-13-times) of Krebs cycle (KC: ICD, 2OGDH, PDH, ME, GA), and respiratory chain (RC: COX) were determined in hepatoma mitochondria vs. RLM. Although increased cholesterol content (9-times vs. RLM) was determined in the hepatoma mitochondrial membranes, FFAs and other NAD-linked substrates were oxidized faster (1.6-6.6 times) by hepatoma mitochondria than RLM, maintaining similar ΔΨm values. The contents of β-oxidation, KC and RC enzymes were also assessed in cells. The mitochondrial enzyme levels in human cervix cancer HeLa and AS-30D cells were higher than those observed in rat hepatocytes whereas in human breast cancer biopsies, CPT1 and SCAD contents were lower than in human breast normal tissue. The presence of CPT1 and SCAD in AS-30D mitochondria and HeLa cells correlated with an active FFA utilization in HeLa cells. Furthermore, the β-oxidation inhibitor perhexiline blocked FFA utilization, OxPhos and proliferation in HeLa and other cancer cells. In conclusion, functional mitochondria supported by FFA β-oxidation are essential for the accelerated cancer cell proliferation and hence anti-β-oxidation therapeutics appears as an alternative promising approach to deter malignant tumor growth.

  11. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  12. Influence of Fluorine on the Conductivity and Oxidation of Silicon Nanomembranes after Hydrofluoric Acid Treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Xiang-Fu; Han, Ping; Zhang, Rong; Zheng, You-Dou

    2011-08-01

    After immersion in hydrofluoric acid, the sheet resistance of a 220-nm-thick silicon nanomembrane, measured in dry air by van der Pauw method, drops around two orders of magnitude initially, then increases and reaches the level of a sample with a native oxide surface in about one month. The surface component and oxidation rate are also characterized by x-ray photo electronic spectroscopy measurement. Fluorine is found to play a significant role in improving conductivity and has no apparent influence on the oxidation rate after hydrofluoric acid treatment.

  13. Photo- and thermal-oxidation studies on methyl and phenyl linoleate: anti-oxidant behaviour and rates of reaction.

    PubMed

    Chacón, J N; Gaggini, P; Sinclair, R S; Smith, F J

    2000-09-01

    Photo-peroxidation of methyl and phenyl linoleate in methanol solutions at 25 degrees C, in the presence of methylene blue or 5,10,15,20-tetra(4-pyridyl)-porphyrin (TPP) as sensitisers of singlet oxygen, was found to proceed at more than 30 times the rate of the same polyunsaturated fatty acid (PUFA) ester species undergoing thermal-peroxidation in the bulk phase at 50 degrees C. The addition of anti-oxidants such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) quench the thermal-oxidation effectively but appear to only partially inhibit the photosensitized peroxidation reactions. The kinetics of the overall peroxidation reactions were followed by ultraviolet spectroscopy, measurements of hydroperoxide concentration and by high performance liquid chromatography (HPLC). The photo-peroxidation reaction proceeds more rapidly in chloroform solution as the lifetime of singlet oxygen is shown to be over ten times longer in chloroform than methanol. The initial fast reaction kinetics of the photo-peroxidation reactions were evaluated using a pulsed laser technique to show that singlet oxygen reacts competitively with both the anti-oxidants and the polyunsaturated fatty acid ester. Second order kinetic rate constants (in the range 10(5)-10(7) dm(3) mol(-1) s(-1)) were evaluated for the reactivity of singlet oxygen with a range of anti-oxidants and a singlet oxygen quencher, and the results used to explain the effect of anti-oxidants at different concentrations on the rate of the linoleate photo-peroxidation reaction.

  14. Oxidation rates of niobium and tantalum alloys at low pressures

    SciTech Connect

    DiStefano, J.R.; Hendricks, J.W. )

    1994-06-01

    Niobium and tantalum alloys have excellent properties for use in high-temperature, space-power applications, but must be protected from oxidation that would result from exposure to air in ground-evaluation tests. The oxygen-uptake/oxidation rates of three alloys, Nb-1Zr, PWC-11, and ASTAR-811C were measured at oxygen partial pressure of 10[sup [minus]6] and 10[sup [minus]7] torr at temperatures up to 1350 K. No visible oxide film was observed, and the oxidation rate was found to be linearly proportional to pressure and exponentially proportional to temperature. A thin molybdenum coating on Nb-1Zr was a barrier to low-pressure oxidation at 773 K. 13 refs., 6 figs., 7 tabs.

  15. Ferrous iron oxidation by molecular oxygen under acidic conditions: The effect of citrate, EDTA and fulvic acid

    NASA Astrophysics Data System (ADS)

    Jones, Adele M.; Griffin, Philippa J.; Waite, T. David

    2015-07-01

    In this study, the rates of Fe(II) oxidation by molecular oxygen in the presence of citrate, ethylenediaminetetraacetic acid (EDTA) and Suwannee River fulvic acid (SRFA) were determined over the pH range 4.0-5.5 and, for all of the ligands investigated, found to be substantially faster than oxidation rates in the absence of any ligand. EDTA was found to be particularly effective in enhancing the rate of Fe(II) oxidation when sufficient EDTA was available to complex all Fe(II) present in solution, with a kinetic model of the process found to adequately describe all results obtained. When Fe(II) was only partially complexed by EDTA, reactions with reactive oxygen species (ROS) and heterogeneous Fe(II) oxidation were found to contribute significantly to the removal rate of iron from solution at different stages of oxidation. This was possible due to the rapid rate at which EDTA enhanced Fe(II) oxidation and formed ROS and Fe(III). The rapid rate of Fe(III) generation facilitated the formation of free ferric ion activities in excess of those required for ferric oxyhydroxide precipitation following Fe(III)-EDTA dissociation. In comparison, the rate of Fe(II) oxidation was slower in the presence of citrate, and therefore the concentrations of free Fe(III) able to form in the initial stages of Fe(II) oxidation were much lower than those formed in the presence of EDTA, despite the resultant Fe(III)-citrate complex being less stable than that of Fe(III)-EDTA. The slower rate of citrate enhanced oxidation also resulted in slower rates of ROS generation, and, as such, oxidation of the remaining inorganic Fe(II) species by ROS was negligible. Overall, this study demonstrates that organic ligands may substantially enhance the rate of Fe(II) oxidation. Even under circumstances where the ligand is not present at sufficient concentrations to complex all of the Fe(II) in solution, ensuing oxidative processes may sustain an enhanced rate of Fe(II) oxidation relative to that of

  16. Acid-base properties of titanium-antimony oxides catalysts

    SciTech Connect

    Zenkovets, G.A.; Paukshtis, E.A.; Tarasova, D.V.; Yurchenko, E.N.

    1982-06-01

    The acid-base properties of titanium-antimony oxide catalysts were studied by the methods of back titration and ir spectroscopy. The interrelationship between the acid-base and catalytic properties in the oxidative ammonolysis of propylene was discussed. 3 figures, 1 table.

  17. Effect of trace metals and sulfite oxidation of adipic acid degradation in FGD systems. Final report Dec 81-May 82

    SciTech Connect

    Jarvis, J.B.; Terry, J.C.; Schubert, S.A.; Utley, B.L.

    1982-12-01

    The report gives results of the measurement of the adipic acid degradation rate in a bench-scale flue gas desulfurization (FGD) system, designed to simulate many of the important aspects of full-scale FGD systems. Results show that the adipic acid degradation rate depends on the sulfite oxidation rate, the adipic acid concentration, the presence of manganese in solution, and temperature. The degradation rate is also affected by pH, but only when manganese is present. Adipic acid degradation products identified in the liquid phase include valeric, butyric, propionic, succinic, and glutaric acids. When manganese was present, the predominant degradation products were succinic and glutaric acids. Analysis of solids from the bench scale tests shows large concentrations of coprecipitated adipic acid in low oxidation sulfite solids. By contrast, low quantities of coprecipitated adipic acid were found in high oxidation gypsum solids.

  18. Oxidation of nonplasma fatty acids during exercise is increased in women with abdominal obesity.

    PubMed

    Horowitz, J F; Klein, S

    2000-12-01

    We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.

  19. Rate of oxidative modification of cytochrome c by hydrogen peroxide is modulated by Hofmeister anions.

    PubMed

    Tomášková, Nataša; Varinská, Lenka; Sedlák, Erik

    2010-09-01

    Cytochrome c (cyt c) and other heme proteins are oxidatively modified in the presence of hydrogen peroxide in a concentration- and time-dependent manner. Cyt c modification has been monitored by several spectral probes by absorption spectroscopy (at wavelengths 410 nm, 530 nm), and circular dichroism (222, 268, 288 and 417 nm). Kinetics monitored with these spectral probes indicates that the oxidative modification of cyt c: i) proceeds in the order: heme --> aromatic amino acids --> secondary structure, and ii) the rate of the oxidative modification is proportional to the protein flexibility. The flexibility of cyt c was modulated by anions of Hofmeister series (sulfate, chloride, perchlorate) (Varhac et al. 2009). A minimalist scheme of the interaction of cyt c with hydrogen peroxide can be described by two steps: 1) interaction of hydrogen peroxide with heme iron forming the postulated ferryl intermediate, 2a) oxidation of another molecule of hydrogen peroxide and 2b) parallel oxidation of close amino acid residue(s) and/or heme. The catalase activity of cyt c is independent from the presence of Hofmeister anions, which indicates that both steps (1 and 2a) in the catalase reaction are independent from the flexibility of the heme region of the protein matrix. On the other hand, the flexibility of the polypeptide chain of the protein modulates the rate of parallel oxidative modification of the heme and amino acid residues.

  20. Liquid-Phase Heat-Release Rates of the Systems Hydrazine-Nitric Acid and Unsymmetrical Dimethylhydrazine-Nitric Acid

    NASA Technical Reports Server (NTRS)

    Somogyi, Dezso; Feiler, Charles E.

    1960-01-01

    The initial rates of heat release produced by the reactions of hydrazine and unsymmetrical dimethylhydrazine with nitric acid were determined in a bomb calorimeter under conditions of forced mixing. Fuel-oxidant weight ratio and injection velocity were varied. The rate of heat release apparently depended on the interfacial area between the propellants. Above a narrow range of injection velocities representing a critical amount of interfacial area, the rates reached a maximum and were almost constant with injection velocity. The maximum rate for hydrazine was about 70 percent greater than that for unsymmetrical dimethylhydrazine. The total heat released did not vary with mixture ratio over the range studied.

  1. Analysis of peroxytrifluoroacetic acid oxidation products from Victorian brown coal

    SciTech Connect

    Verheyen, T.V.; Johns, R.B.

    1983-08-01

    A method is described for the detailed quantitative structural identification of the components present in the oxidation product mixtures of a highly aliphatic brown coal. The results showed them to be predominantly long chain diols, hydroxy acids, dicarboxylic acids and short chain polycarboxylic acids.

  2. Ammonia oxidation rates and nitrification in the Arabian Sea

    NASA Astrophysics Data System (ADS)

    Newell, Silvia E.; Babbin, Andrew R.; Jayakumar, Amal; Ward, Bess B.

    2011-12-01

    Nitrification rates, as well as the relationships between rates and ammonia oxidizer abundance (both archaeal and bacterial), were investigated in the Arabian Sea. Ammonia oxidation rates were measured directly using 15N-NH4+stable isotope additions in gas-impermeable, trace metal clean trilaminate bags (500 mL) at in situ temperature. Tracer incubations were performed at three stations at depths above, below, and within the oxycline of the open-ocean oxygen minimum zone (OMZ). Ammonia oxidation rates were similar to previous open-ocean measurements, ranging from undetectable to 21.6 ± 0.1 nmol L-1 d-1. The highest rates at each station occurred at the primary nitrite maximum (above the OMZ), and rates were very low at depths greater than 900 m. The abundances of both ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) were estimated using theamoA gene by quantitative polymerase chain reaction (qPCR). Both AOA and AOB amoA were detected above, within, and below the OMZ, although the AOA were always more abundant than the AOB, by a factor of 35-216. Nitrification rates were not directly correlated to AOA or AOB amoA abundance. These rates offer new insight into the role of nitrification in the mesopelagic zone. The abundance of AOA amoA genes at 1000 m suggests that ˜50% of the microbial biomass could be autotrophic. Additionally, the integrated nitrification rate at depth implies that nitrification could consume most of the ammonium produced by the flux of organic carbon in the mesopelagic zone.

  3. Rates of oxidative weathering on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1992-01-01

    Implicit in the mnemonic 'MSATT' (Mars surface and atmosphere through time) is that rates of surface processes on Mars through time should be investigated, including studies of the kinetics and mechanism of oxidative weathering reactions occurring in the Martian regolith. Such measurements are described. Two major elements analyzed in the Viking Lander XRF experiment that are most vulnerable to atmospheric oxidation are iron and sulfur. Originally, they occurred as Fe(2+)-bearing silicate and sulfide minerals in basaltic rocks on the surface of Mars. However, chemical weathering reactions through time have produced ferric- and sulfate-bearing assemblages now visible in the Martian regolith. Such observations raise several question about: (1) when the oxidative weathering reactions took place on Mars; (2) whether or not the oxidized regolith is a fossilized remnant of past weathering processes; (3) deducting chemical interactions of the ancient Martian atmosphere with its surface from surviving phases; (4) possible weathering reactions still occurring in the frozen regolith; and (5) the kinetics and mechanism of past and present-day oxidative reactions on Mars. These questions may be addressed experimentally by studying reaction rates of dissolution and oxidation of basaltic minerals, and by identifying reaction products forming on the mineral surfaces. Results for the oxidation of pyrrhotite and dissolved ferrous iron are reported.

  4. Quantifying Rates of Complete Microbial Iron Redox Cycling in Acidic Hot Springs

    NASA Astrophysics Data System (ADS)

    St Clair, B.; Pottenger, J. W.; Shock, E.

    2013-12-01

    Large accumulations of iron oxide commonly occur in shallow outflows of acidic hot springs, and culturing, molecular techniques, and microscopy by others indicate that this iron oxide (often ferrihydrite) is largely biogenic in Yellowstone National Park. The hot springs that support iron mats have several consistent geochemical features including combinations of pH, temperature, sulfide, dissolved oxygen, depth and ferrous iron concentration appropriate to support iron oxidation. These springs nearly always have a point source leading to a large shallow outflow apron. Microbial zones often, but not always, include a small clear zone near the source, followed by a sulfide oxidation zone, iron mat, and finally photosynthesis. The yellow sulfide oxidation zone is separated from the red iron mat by a sharp transition resulting from increasing dissolved oxygen from atmospheric contact and microbial depletion of sulfide. The iron mat is typically the largest microbial zone in the feature by area. Further down the outflow, iron oxidation appears to be outcompeted by phototrophs as the temperature cools. Occasionally there is overlap in these zones, but one metabolism always appears dominant. Our experiments at diverse hot springs indicate that microbial reduction is less geochemically restricted than oxidation, requiring only organic carbon, ferric minerals and an anoxic environment. With iron oxidizers fixing carbon and producing layers of ferric minerals that become rapidly anoxic with depth, iron reduction is invariably proximal to where biogenic iron oxides are forming. To characterize the interplay of oxidation and reduction rates that permit oxide accumulation, we conducted rate experiments at geochemically diverse Yellowstone hot springs featuring visible iron oxides in thermal areas throughout the park. These experiments were performed during two summer field seasons to determine in situ and maximum rates of iron oxidation and reduction by measuring changing

  5. Defective (U-14 C) palmitic acid oxidation in Duchenne muscular dystrophy

    SciTech Connect

    Carroll, J.E.; Norris, B.J.; Brooke, M.H.

    1985-01-01

    Compared with normal skeletal muscle, muscle from patients with Duchenne dystrophy had decreased (U-14 C) palmitic acid oxidation. (1-14 C) palmitic acid oxidation was normal. These results may indicate a defect in intramitochondrial fatty acid oxidation.

  6. Oxidation of cyclohexanediol derivatives with 12-tungstophosphoric acid-hydrogen peroxide system.

    PubMed

    Fujitani, Kango; Mizutani, Toshihiro; Oida, Tatsuo; Kawase, Tokuzo

    2009-01-01

    Oxidation of cyclohexanediol derivatives with 12-tungstophospholic acid-hydrogen peroxide system was investigated focusing on a reaction mechanism in the preparation of dicarboxylic acids from olefin because oxidative cleavage of vicinal diols would be a rate-determining step in oxidative cleavage of carbon-carbon double bonds. trans-1,2-Cyclohexanediol (DHC) was converted to adipic acid almost quantatively, while 1-hydroxy-2-methoxycyclohexane (HMC) gave a mixture of adipic acid, glutaric acid and monomethyl adipate. In the case of 1,4-cyclohexanediol, 4-hydroxy-cyclohexanone and many hyperoxidated products were obtained. Based on results for HMC, it is concluded that following route would be also reasonable in oxidative cleavage of vicinal diol with 12-tungstophospholic acid-hydrogen peroxide system: (1) first oxidation of vicinal diol to alpha-hydroxyketone, (2) nucleophilic attack of hydrogen peroxide attacks to carbonyl carbon, (3) Baiyer-Villiger rearrangement of dihydroxy-hydroperoxide to a cyclic ester, (4) hydrolysis and final oxidation to dicarboxylic acid.

  7. Novel role of FATP1 in mitochondrial fatty acid oxidation in skeletal muscle cells

    PubMed Central

    Sebastián, David; Guitart, Maria; García-Martínez, Celia; Mauvezin, Caroline; Orellana-Gavaldà, Josep M.; Serra, Dolors; Gómez-Foix, Anna M.; Hegardt, Fausto G.; Asins, Guillermina

    2009-01-01

    Carnitine palmitoyltransferase 1 (CPT1) catalyzes the first step in long-chain fatty acid import into mitochondria, and it is believed to be rate limiting for β-oxidation of fatty acids. However, in muscle, other proteins may collaborate with CPT1. Fatty acid translocase/CD36 (FAT/CD36) may interact with CPT1 and contribute to fatty acid import into mitochondria in muscle. Here, we demonstrate that another membrane-bound fatty acid binding protein, fatty acid transport protein 1 (FATP1), collaborates with CPT1 for fatty acid import into mitochondria. Overexpression of FATP1 using adenovirus in L6E9 myotubes increased both fatty acid oxidation and palmitate esterification into triacylglycerides. Moreover, immunocytochemistry assays in transfected L6E9 myotubes showed that FATP1 was present in mitochondria and coimmunoprecipitated with CPT1 in L6E9 myotubes and rat skeletal muscle in vivo. The cooverexpression of FATP1 and CPT1 also enhanced mitochondrial fatty acid oxidation, similar to the cooverexpression of FAT/CD36 and CPT1. However, etomoxir, an irreversible inhibitor of CPT1, blocked all these effects. These data reveal that FATP1, like FAT/CD36, is associated with mitochondria and has a role in mitochondrial oxidation of fatty acids. PMID:19429947

  8. Rate law analysis of water oxidation on a hematite surface.

    PubMed

    Le Formal, Florian; Pastor, Ernest; Tilley, S David; Mesa, Camilo A; Pendlebury, Stephanie R; Grätzel, Michael; Durrant, James R

    2015-05-27

    Water oxidation is a key chemical reaction, central to both biological photosynthesis and artificial solar fuel synthesis strategies. Despite recent progress on the structure of the natural catalytic site, and on inorganic catalyst function, determining the mechanistic details of this multiredox reaction remains a significant challenge. We report herein a rate law analysis of the order of water oxidation as a function of surface hole density on a hematite photoanode employing photoinduced absorption spectroscopy. Our study reveals a transition from a slow, first order reaction at low accumulated hole density to a faster, third order mechanism once the surface hole density is sufficient to enable the oxidation of nearest neighbor metal atoms. This study thus provides direct evidence for the multihole catalysis of water oxidation by hematite, and demonstrates the hole accumulation level required to achieve this, leading to key insights both for reaction mechanism and strategies to enhance function.

  9. Rate Law Analysis of Water Oxidation on a Hematite Surface

    PubMed Central

    2015-01-01

    Water oxidation is a key chemical reaction, central to both biological photosynthesis and artificial solar fuel synthesis strategies. Despite recent progress on the structure of the natural catalytic site, and on inorganic catalyst function, determining the mechanistic details of this multiredox reaction remains a significant challenge. We report herein a rate law analysis of the order of water oxidation as a function of surface hole density on a hematite photoanode employing photoinduced absorption spectroscopy. Our study reveals a transition from a slow, first order reaction at low accumulated hole density to a faster, third order mechanism once the surface hole density is sufficient to enable the oxidation of nearest neighbor metal atoms. This study thus provides direct evidence for the multihole catalysis of water oxidation by hematite, and demonstrates the hole accumulation level required to achieve this, leading to key insights both for reaction mechanism and strategies to enhance function. PMID:25936408

  10. Sodium Picosulfate, Magnesium Oxide, and Anhydrous Citric Acid

    MedlinePlus

    Sodium picosulfate, magnesium oxide, and anhydrous citric acid combination powder is used to empty the colon (large ... clear view of the walls of the colon. Sodium picosulfate is in a class of medications called ...

  11. Reaction kinetics of waste sulfuric acid using H2O2 catalytic oxidation.

    PubMed

    Wang, Jiade; Hong, Binxun; Tong, Xinyang; Qiu, Shufeng

    2016-12-01

    The process of recovering waste sulfuric acids using H2O2 catalytic oxidation is studied in this paper. Activated carbon was used as catalyst. Main operating parameters, such as temperature, feed rate of H2O2, and catalyst dosage, have effects on the removal of impurities from waste sulfuric acids. The reaction kinetics of H2O2 catalytic oxidation on impurities are discussed. At a temperature of 90°C, H2O2 feeding rate of 50 g (kg waste acid)(-1) per hour, and catalyst dosage of 0.2 wt% (waste acid weight), the removal efficiencies of COD and chrominance were both more than 99%, the recovery ratio of sulfuric acid was more than 95%, and the utilization ratio of H2O2 was 88.57%.

  12. Oleic acid stimulates complete oxidation of fatty acids through protein kinase A-dependent activation of SIRT1-PGC1α complex.

    PubMed

    Lim, Ji-Hong; Gerhart-Hines, Zachary; Dominy, John E; Lee, Yoonjin; Kim, Sungjin; Tabata, Mitsuhisa; Xiang, Yang K; Puigserver, Pere

    2013-03-08

    Fatty acids are essential components of the dynamic lipid metabolism in cells. Fatty acids can also signal to intracellular pathways to trigger a broad range of cellular responses. Oleic acid is an abundant monounsaturated omega-9 fatty acid that impinges on different biological processes, but the mechanisms of action are not completely understood. Here, we report that oleic acid stimulates the cAMP/protein kinase A pathway and activates the SIRT1-PGC1α transcriptional complex to modulate rates of fatty acid oxidation. In skeletal muscle cells, oleic acid treatment increased intracellular levels of cyclic adenosine monophosphate (cAMP) that turned on protein kinase A activity. This resulted in SIRT1 phosphorylation at Ser-434 and elevation of its catalytic deacetylase activity. A direct SIRT1 substrate is the transcriptional coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), which became deacetylated and hyperactive after oleic acid treatment. Importantly, oleic acid, but not other long chain fatty acids such as palmitate, increased the expression of genes linked to fatty acid oxidation pathway in a SIRT1-PGC1α-dependent mechanism. As a result, oleic acid potently accelerated rates of complete fatty acid oxidation in skeletal muscle cells. These results illustrate how a single long chain fatty acid specifically controls lipid oxidation through a signaling/transcriptional pathway. Pharmacological manipulation of this lipid signaling pathway might provide therapeutic possibilities to treat metabolic diseases associated with lipid dysregulation.

  13. Carbon monoxide oxidation rates computed for automobile thermal reactor conditions

    NASA Technical Reports Server (NTRS)

    Brokaw, R. S.; Bittker, D. A.

    1972-01-01

    Carbon monoxide oxidation rates in thermal reactors for exhaust manifolds are computed by integrating differential equations for system of twenty-nine reversible chemical reactions. Reactors are noncatalytic replacements for conventional exhaust manifolds and are a system for reducing carbon monoxide and hydrocarbons in automobile exhausts.

  14. Inverse relationship of leucine flux and oxidation to free fatty acid availability in vivo.

    PubMed Central

    Tessari, P; Nissen, S L; Miles, J M; Haymond, M W

    1986-01-01

    To determine the effect of fatty acid availability on leucine metabolism, 14-h fasted dogs were infused with either glycerol or triglyceride plus heparin, and 46-h fasted dogs were infused with either nicotinic acid or nicotinic acid plus triglyceride and heparin. Leucine metabolism was assessed using a simultaneous infusion of L-[4,5-3H]leucine and alpha-[1-14C]ketoisocaproate. Leucine, alpha-ketoisocaproate (KIC), and totalleucine carbon (leucine plus KIC) flux and oxidation rates were calculated at steady state. In 14-h fasted animals, infusion of triglyceride and heparin increased plasma free fatty acids (FFA) by 0.7 mM (P less than 0.01) and decreased leucine (P less than 0.01), total leucine carbon flux (P less than 0.02), and oxidation (P less than 0.05). The estimated rate of leucine utilization not accounted for by oxidation and KIC flux decreased, but the changes were not significant. During glycerol infusion, leucine and KIC flux and oxidation did not change. In 46-h fasted dogs, nicotinic acid decreased FFA by 1.0 mM (P less than 0.01) and increased (P less than 0.05) the rate of leucine and total leucine carbon flux, but did not affect KIC flux. Leucine oxidation increased (P less than 0.01) by nearly threefold, whereas nonoxidized leucine utilization decreased. Infusion of triglyceride plus heparin together with nicotinic acid blunted some of the responses observed with nicotinic acid alone. In that changes in oxidation under steady state condition reflect changes in net leucine balance, these data suggest that FFA availability may positively affect the sparing of at least one essential amino acid and may influence whole body protein metabolism. PMID:3080479

  15. Heart Rate Response and Lactic Acid Concentration in Squash Players.

    ERIC Educational Resources Information Center

    Beaudin, Paula; And Others

    1978-01-01

    It was concluded that playing squash is an activity that results in heart rate responses of sufficient intensity to elicit aerobic training effects without producing high lactic acid concentration in the blood. (MM)

  16. ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS

    EPA Science Inventory

    SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...

  17. Oxidation of Indole-3-Acetic Acid-Amino Acid Conjugates by Horseradish Peroxidase

    PubMed Central

    Park, Ro Dong; Park, Chang Kyu

    1987-01-01

    The stability of 21 amino acid conjugates of indole-3-acetic acid (IAA) toward horseradish peroxidase (HRP) was studied. The IAA conjugates of Arg, Ile, Leu, Tyr, and Val were oxidized readily by peroxidase. Those of Ala, β-Ala, Asp, Cys, Gln, Glu, Gly, and Lys were not degraded and their recovery was above 92% after 1 hour incubation with HRP. A correlation between the stability of IAA conjugates toward peroxidase-catalyzed oxidation and the hydrophobicity of the amino acid moiety conjugated to IAA was demonstrated. Polar amino acid conjugates of IAA are more resistant to HRP-catalyzed oxidation. PMID:16665529

  18. Photo-oxidation of gaseous ethanol on photocatalyst prepared by acid leaching of titanium oxide/hydroxyapatite composite

    SciTech Connect

    Ono, Y.; Rachi, T.; Yokouchi, M.; Kamimoto, Y.; Nakajima, A.; Okada, K.

    2013-06-01

    Highlights: ► Photocatalyst powder was prepared by acid leaching of TiO{sub 2}/apatite composite. ► The photocatalytic activity was evaluated from in situ FT-IR study using ethanol. ► Apatite in the composite had positive effect for the photo-oxidation of ethanol. ► The enhanced oxidation rate was explained by the difference in deactivation rate. - Abstract: Highly active photocatalysts were synthesized by leaching of heat-treated titanium dioxide (TiO{sub 2})/hydroxyapatite (HAp) powder with hydrochloric acid at 0.25, 0.50, 0.75 mol/l, and their photocatalytic activities were evaluated from in situ Fourier transform infrared (FT-IR) study of photo-oxidation of gaseous ethanol. By changing the acid concentration, the TiO{sub 2}/HAp composite had different atomic ratios of Ca/Ti (0.0–2.8) and P/Ti (0.3–2.1). It was found that phosphate group remained on the surface of TiO{sub 2} particle even in the sample treated with concentrated acid (0.75 mol/l). These acid-treated samples showed higher rates for ethanol photo-oxidation than the commercial TiO{sub 2} powder, Degussa P25. The highest rate was obtained in the TiO{sub 2}/HAp composite treated with the dilute (0.25 mol/l) acid in spite of its low content of TiO{sub 2} photocatalyst. This enhanced photocatalytic activity was attributed to the result that the deactivation with repeated injections of ethanol gas was suppressed in the TiO{sub 2}/HAp composites compared with the TiO{sub 2} powders.

  19. The Oxidation of Hydrazine by Nitric Acid

    SciTech Connect

    Karraker, D.G.

    2001-07-02

    Hydrazine nitrate-nitric acid solutions are used in the ion exchange process for separating Pu-238 and Np-237 and have been found to dissolve plutonium metal in a manner advantageous to SRP metal recovery operations. Laboratory tests on the stability of hydrazine in nitric acid solutions were performed to obtain accurate data, and the results of these tests are reported here. These tests provide sufficient information to specify temperature control for hydrazine-nitric acid solutions in plant processes.

  20. Organic acids as indicators of VOC oxidation: Measurements of formic acid and other gas-phase acids during SOAS

    NASA Astrophysics Data System (ADS)

    Farmer, D.; Brophy, P.; Murschell, T.

    2013-12-01

    Oxidation of volatile organic compounds (VOCs) in the atmosphere affects not only the oxidative capacity of the atmosphere, but also the formation of secondary organic aerosol. Organic acids are produced during VOC oxidation, although additional sources include biomass burning and primary emissions. While some organic acids are semi-volatile and dominantly present in the aerosol phase, formic acid and other small organic acids are dominantly present in the gas phase. The concentrations of these gas-phase organic acids can provide insight into oxidation chemistry. Here, we present measurements made during the Southern Oxidant and Aerosol Study (SOAS) in Centerville, Alabama during the summer of 2013 by a high resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) operated in a novel switching reagent ion mode to measure gas phase organic acids with both acetate (CH3COO-) and iodide (I-) reagent ions. Formic acid was quantified using for both ionization schemes using multiple calibration techniques. In this study, we will focus on the impact of anthropogenic pollutants, including nitrogen and sulfur oxides, on oxidation chemistry, and discuss the potential use of organic acids as tracers for atmospheric oxidation chemistry.

  1. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids

    NASA Astrophysics Data System (ADS)

    Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz

    2014-11-01

    Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.

  2. Photocatalytic Oxidation of Sulfurous Acid in an Aqueous Medium

    ERIC Educational Resources Information Center

    Romero, Alicia; Hernandez, Willie; Suarez, Marco F.

    2005-01-01

    The effect of some parameters on sulfurous acid and sulfur oxidation kinetics such as initial concentration of sulfurous acid, oxygen, TiO[2] crystalline concentration, the power of black light, and quantity of TiO[2] is investigated. The experiments can be performed in an undergraduate physical chemistry laboratory with an inexpensive…

  3. The Oxidation of Cysteine, Cysteinesulfinic Acid and Cysteic Acid on a Polycrystalline Gold Electrode

    DTIC Science & Technology

    1993-04-15

    The mechanism of cysteine, cysteinesulfinic acid and cysteic acid electrooxidation in perchloric acid solutions has been studied using cyclic ... voltammetry . All compounds investigated have been found to be chemisorbed on a polycrystalline gold electrode and oxidized with four, two or one electron

  4. Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation.

    PubMed

    Gaut, Joseph P; Belaaouaj, Abderrazzaq; Byun, Jaeman; Roberts, L Jackson; Maeda, Nobuyo; Frei, Balz; Heinecke, Jay W

    2006-05-01

    The observation that antioxidant vitamins fail to confer protective benefits in large, well-designed randomized clinical trials has led many to question the role of oxidative stress in the pathogenesis of disease. However, there is little evidence that proposed antioxidants actually scavenge reactive intermediates in vivo. Ascorbate reacts rapidly with oxidants produced by activated neutrophils in vitro, and neutrophils markedly increase their oxidant production when mice are infected intraperitoneally with the gram-negative bacterium Klebsiella pneumoniae. To explore the antioxidant properties of ascorbate in vivo, we therefore used K. pneumoniae infection as a model of oxidative stress. When mice deficient in L-gulono-gamma-lactone oxidase (Gulo(-/-)), the rate-limiting enzyme in ascorbate synthesis, were depleted of ascorbate and infected with K. pneumoniae, they were three times as likely as ascorbate-replete Gulo(-/-)mice to die from infection. Mass spectrometric analysis of peritoneal lavage fluid revealed a marked increase in the levels of oxidized amino acids and of F2-isoprostanes (sensitive and specific markers of lipid oxidation) in infected animals. Surprisingly, there were no significant differences in the levels of the oxidation products in the ascorbate-deficient and -replete Gulo(-/-)mice. Our observations suggest that ascorbate plays a previously unappreciated role in host defense mechanisms against invading pathogens but that the vitamin does not protect amino acids and lipids from oxidative damage during acute inflammation. To examine the oxidation hypothesis of disease, optimal antioxidant regimens that block oxidative reactions in animals and humans need to be identified.

  5. Influence of polycarboxylic acid chelating agents on the kinetics of the dissolution of metal oxides

    SciTech Connect

    Dyatlova, N.M.; Gorichev, I.G.; Dukhanin, V.S.; Malov, L.V.

    1986-11-01

    The factors influencing the rate of dissolution of metal oxides in aqueous solutions of acids in the presence of polycarboxylic acid chelating agents and other complexing agents have been quantitatively compared in this review, and the decisive role of the gradient of protons and electrons in the realization of this process has been revealed. The main hypotheses of the proposed conceptions of the electron-proton theory for the dissolution of metal oxides have been stated: 1) The rate-limiting step is charge transfer (first hypothesis); 2) The rate limiting step is the desorption of the dissolution products (second hypothesis). The applicability of the proposed electron-proton theory to the theoretical substantiation of all the experimentally observed kinetic features of the influence of various factors has been demonstrated. Practical recommendations for the effective utilization of the chelating agents considered for removing iron oxide surface deposits have been given.

  6. Measurements of in situ chemical ozone (oxidant) production rates

    NASA Astrophysics Data System (ADS)

    Huang, Hao; Faloon, Kate; Najera, Juan; Bloss, William

    2013-04-01

    Tropospheric ozone is a major air pollutant, harmful to human health, agricultural crops and vegetation, the main precursor to the atmospheric oxidants which initiate the degradation of most reactive gases emitted to the atmosphere, and an important greenhouse gas in its own right. The capacity to understand and predict tropospheric ozone levels is a key goal for atmospheric science - but one which is challenging, as ozone is formed in the atmosphere from the complex oxidation of VOCs in the presence of NOx and sunlight, on a timescale such that in situ chemical processes, deposition and transport all affect ozone levels. Known uncertainties in emissions, chemistry, dynamics and deposition affect the accuracy of predictions of current and future ozone levels, and hinder development of optimal air quality policies to mitigate against ozone exposure. Recently new approaches to directly measure the local chemical ozone production rate, bypassing the many uncertainties in emissions and chemical schemes, have been developed (Cazorla & Brune, AMT 2010). Here, we describe the development of an analogous Ozone Production Rate (OPR) approach: Air is sampled into parallel reactors, within which ozone formation either occurs as in the ambient atmosphere, or is suppressed. Comparisons of ozone levels exiting a pair of such reactors determines the net chemical oxidant production rate, after correction for perturbation of the NOx-O3 photochemical steady state, and when operated under conditions such that wall effects are minimised. We report preliminary measurements of local chemical ozone production made during the UK NERC ClearfLo (Clean Air for London) campaign at an urban background location in London in January and July 2012. The OPR system was used to measure the local chemical oxidant formation rate, which is compared with observed trends in O3 and NOx and the prevailing meteorology, and with the predictions of a detailed zero-dimensional atmospheric chemistry model

  7. Oxidation-resistant acidic resins prepared by partial carbonization as cocatalysts in synthesis of adipic acid.

    PubMed

    Wei, Huijuan; Li, Hongbian; Liu, Yangqing; Jin, Peng; Wang, Xiangyu; Li, Baojun

    2012-08-01

    The oxidation-resistant acidic resins are of great importance for the catalytic oxidation systems. In this paper, the oxidatively stable acidic resins are obtained from the cation ion exchange resins (CIERs) through the thermal treatment in N(2) atmosphere. The structure and properties of the thermally treated CIERs were characterized by chemical analysis, Fourier transform infrared (FT-IR) spectra, acid capacity measurement and scanning electron microscope (SEM). The thermally treated CIERs possess high acid capacity up to 4.09 mmol g(-1). A partial carbonization is observed in the thermal treatment process of CIERs, but the morphology of resin spheres maintains well. The as-prepared CIERs are used as solid acids to assist the hydrogen peroxide oxidation of cyclohexene to adipic acid (ADA) with tungstic acid as the catalyst precursor. The improved yields of ADA in the recycling reaction are obtained in the presence of acidic CIERs. Meanwhile, the unproductive decomposition of H(2)O(2) is effectively suppressed. The high yields of ADA (about 81%) are kept by the thermally treated CIERs even after the fifth cycle. The thermally treated CIERs exhibit excellent acid-catalytic performance and possess remarkable oxidation-resistant capability.

  8. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes

    DOE PAGES

    Shaffer, David W.; Xie, Yan; Szalda, David J.; ...

    2016-11-01

    In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L)2] catalysts (bdaH2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10–4 M), the rate-determining step (RDS)more » was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10–6 M), the RDS was a bimolecular step with kH/kD ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.« less

  9. Manipulating the Rate-Limiting Step in Water Oxidation Catalysis by Ruthenium Bipyridine–Dicarboxylate Complexes

    SciTech Connect

    Shaffer, David W.; Xie, Yan; Szalda, David J.; Concepcion, Javier J.

    2016-11-01

    In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L)2] catalysts (bdaH2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10–4 M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10–6 M), the RDS was a bimolecular step with kH/kD ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.

  10. Supercritical water oxidation of acrylic acid production wastewater.

    PubMed

    Gong, Y M; Wang, S Z; Tang, X Y; Xu, D H; Ma, H H

    2014-01-01

    Supercritical water oxidation (SCWO) of wastewater from an acrylic acid manufacturing plant has been studied on a continuous flow experimental system, whose reactor was made of Hastelloy C-276. Experimental conditions included a reaction temperature (T) ranging from 673 to 773K, a residence time (t) ranging from 72.7 to 339s, a constant pressure (P) of 25 MPa and a fixed oxidation coefficient (alpha) of 2.0. Experimental results indicated that reaction temperature and residence time had significant influences on the oxidation reaction, and increasing the two operation parameters could improve both degradation of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The COD removal efficiency could reach up to 98.73% at 25 MPa, 773 K and 180.1 s, whereas the destruction efficiency of NH3-N was only 43.71%. We further carried out a kinetic analysis considering the induction period through free radical chain mechanism. It confirms that the power-law rate equation for COD removal was 345 exp(-52200/RT)[COD]1.98[O2]0.17 and for NH3-N removal was 500 exp(-64492.19/RT)[NH3-N]1.87 [O2]0.03. Moreover, the induction time formulations for COD and NH3-N were suspected to be exp(38250/RT)/173 and exp(55690/RT)/15231, respectively. Correspondingly, induction time changed from 2.22 to 5.38 s for COD and 0.38 to 1.38 s for NH3-N. Owing to the catalysis of reactor inner wall surface, more than 97% COD removal was achieved in all samples.

  11. Studies on the oxidation of hexamethylbenzene 1: Oxidation of hexamethylbenzene with nitric acid

    NASA Technical Reports Server (NTRS)

    Chiba, K.; Tomura, S.; Mizuno, T.

    1986-01-01

    The oxidative reaction of hexamethylbenzene (HMB) with nitric acid was studied, and the hitherto unknown polymethylbenzenepolycarboxylic acids were isolated: tetramethylphthalic anhydride, tetramethylisophthalic acid, 1,3,5-, 1,2,4- and 1,2,3-trimethylbenzenetricarboxylic acids. When HMB was warmed with 50% nitric acid at about 80 C, tetramethylphthalic anhydride and tetramethylisophthalic acid were initially produced. The continued reaction led to the production of trimethylbenzenetricarboxylic acids, but only slight amounts of dimethylbenzenetetracarboxylic acids were detected in the reaction mixture. Whereas tetramethylphthalic anydride and tetramethylisophthalic acid were obtained, pentamethylbenzoic acid, a possible precursor of them, was scarcely produced. On the other hand, a yellow material extracted with ether from the initial reaction mixture contained bis-(nitromethyl)prehnitene (CH3)4C6(CH2NO2)2, which was easily converted into the phthalic anhydride.

  12. Rate Constants for Peroxidation of Polyunsaturated Fatty Acids and Sterols in Solution and in Liposomes

    PubMed Central

    Xu, Libin; Davis, Todd A.; Porter, Ned A.

    2013-01-01

    Rate constants for autoxidation propagation of several unsaturated lipids in benzene solution at 37°C and in phosphatidylcholine liposomes were determined by a linoleate radical clock. This radical clock is based on competition between hydrogen atom abstraction by an intermediate peroxyl radical derived from linoleic acid that leads to a trans,cis-conjugated hydroxyoctadecadienoic product and β–fragmentation of the same peroxyl that gives the trans,trans-product hydroxyoctadecadienoic acid. Rate constants determined by this approach in solution relative to linoleic acid (kp = 62 M−1s−1) were: arachidonic acid (kp = 197 ± 13 M−1s−1), eicosapentaenoic acid (kp = 249 ± 16 M−1s−1), docosahexaenoic acid (kp = 334 ± 37 M−1s−1), cholesterol (kp = 11 ± 2 M−1s−1), and 7-dehydrocholesterol (kp = 2,260 ± 40 M−1s−1). Free radical oxidations of multilamellar and unilamellar liposomes of various mixtures of glycerophosphatidylcholine molecular species were also carried out. In some experiments, cholesterol or 7-dehydrocholesterol was incorporated into the lipid mixture undergoing oxidation. A phosphatidylcholine bearing a linoleate ester at sn-2 was a component of each liposome peroxidation reaction and the ratio of trans,cis/trans,trans (t,c/t,t)-conjugated diene oxidation products formed from this phospholipid was determined for each oxidation reaction. This t,c/t,t-product ratio from linoleate was used to “clock” liposome constituents as hydrogen atom donors in the lipid bilayer. Application of this lipid bilayer radical clock gives relative autoxidation propagation rate constants of arachidonate (20:4), eicosapentaenoate (20:5), docosahexaenoate (22:6), and 7-dehydrocholesterol to be 115 ± 7, 145 ± 8, 172 ± 13, and 832 ± 86, respectively, a reactivity trend that parallels the one in solution. We also conclude from the liposome oxidations that linoleate peroxyl radicals at different positions on the eighteen-carbon chain (at C-9 and C

  13. Citric Acid-Modified Fenton's Reaction for the Oxidation of Chlorinated Ethylenes in Soil Solution Systems

    SciTech Connect

    Seol, Yongkoo; Javandel, Iraj

    2008-03-15

    Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in-situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H{sub 2}O{sub 2} concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H{sub 2}O{sub 2} relative to iron catalysts (Fe{sup 2+}/H{sub 2}O{sub 2} < 1/330) would result in lowering the efficiency of contaminant removal by iron chelations in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.

  14. Impact of Fluorescent Lighting on Oxidation of Model Wine Solutions Containing Organic Acids and Iron.

    PubMed

    Grant-Preece, Paris; Barril, Celia; Schmidtke, Leigh M; Clark, Andrew C

    2017-03-22

    Previous studies have provided evidence that light exposure can increase oxygen consumption in wine and that the photodegradation of iron(III) tartrate could contribute to this process. In the present study, model wine solutions containing iron(III) and various organic acids, either alone or combined, were stored in sealed clear glass wine bottles and exposed to light from fluorescent lamps. Dissolved oxygen was monitored, and afterward the organic acid degradation products were determined and the capacity of the solutions to bind sulfur dioxide, the main wine preservative, was assessed. In the dark controls, little or no dissolved oxygen was consumed and the organic acids were stable. In the irradiated solutions, dissolved oxygen was consumed at a rate that was dependent on the specific organic acid present, and the latter were oxidized to various carbonyl compounds. For the solutions containing tartaric acid, malic acid, and/or citric acid, irradiation increased their sulfur dioxide-binding capacity.

  15. Prolonged maternal amino acid infusion in late-gestation pregnant sheep increases fetal amino acid oxidation.

    PubMed

    Rozance, Paul J; Crispo, Michelle M; Barry, James S; O'Meara, Meghan C; Frost, Mackenzie S; Hansen, Kent C; Hay, William W; Brown, Laura D

    2009-09-01

    Protein supplementation during human pregnancy does not improve fetal growth and may increase small-for-gestational-age birth rates and mortality. To define possible mechanisms, sheep with twin pregnancies were infused with amino acids (AA group, n = 7) or saline (C group, n = 4) for 4 days during late gestation. In the AA group, fetal plasma leucine, isoleucine, valine, and lysine concentrations were increased (P < 0.05), and threonine was decreased (P < 0.05). In the AA group, fetal arterial pH (7.365 +/- 0.007 day 0 vs. 7.336 +/- 0.012 day 4, P < 0.005), hemoglobin-oxygen saturation (46.2 +/- 2.6 vs. 37.8 +/- 3.6%, P < 0.005), and total oxygen content (3.17 +/- 0.17 vs. 2.49 +/- 0.20 mmol/l, P < 0.0001) were decreased on day 4 compared with day 0. Fetal leucine disposal did not change (9.22 +/- 0.73 vs. 8.09 +/- 0.63 micromol x min(-1) x kg(-1), AA vs. C), but the rate of leucine oxidation increased 43% in the AA group (2.63 +/- 0.16 vs. 1.84 +/- 0.24 micromol x min(-1) x kg(-1), P < 0.05). Fetal oxygen utilization tended to be increased in the AA group (327 +/- 23 vs. 250 +/- 29 micromol x min(-1) x kg(-1), P = 0.06). Rates of leucine incorporation into fetal protein (5.19 +/- 0.97 vs. 5.47 +/- 0.89 micromol x min(-1) x kg(-1), AA vs. C), release from protein breakdown (4.20 +/- 0.95 vs. 4.62 +/- 0.74 micromol x min(-1) x kg(-1)), and protein accretion (1.00 +/- 0.30 vs. 0.85 +/- 0.25 micromol x min(-1) x kg(-1)) did not change. Consistent with these data, there was no change in the fetal skeletal muscle ubiquitin ligases MaFBx1 or MuRF1 or in the protein synthesis regulators 4E-BP1, eEF2, eIF2alpha, and p70(S6K). Decreased concentrations of certain essential amino acids, increased amino acid oxidation, fetal acidosis, and fetal hypoxia are possible mechanisms to explain fetal toxicity during maternal amino acid supplementation.

  16. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil.

    PubMed

    Lehtovirta-Morley, Laura E; Stoecker, Kilian; Vilcinskas, Andreas; Prosser, James I; Nicol, Graeme W

    2011-09-20

    Nitrification is a fundamental component of the global nitrogen cycle and leads to significant fertilizer loss and atmospheric and groundwater pollution. Nitrification rates in acidic soils (pH < 5.5), which comprise 30% of the world's soils, equal or exceed those of neutral soils. Paradoxically, autotrophic ammonia oxidizing bacteria and archaea, which perform the first stage in nitrification, demonstrate little or no growth in suspended liquid culture below pH 6.5, at which ammonia availability is reduced by ionization. Here we report the discovery and cultivation of a chemolithotrophic, obligately acidophilic thaumarchaeal ammonia oxidizer, "Candidatus Nitrosotalea devanaterra," from an acidic agricultural soil. Phylogenetic analysis places the organism within a previously uncultivated thaumarchaeal lineage that has been observed in acidic soils. Growth of the organism is optimal in the pH range 4 to 5 and is restricted to the pH range 4 to 5.5, unlike all previously cultivated ammonia oxidizers. Growth of this organism and associated ammonia oxidation and autotrophy also occur during nitrification in soil at pH 4.5. The discovery of Nitrosotalea devanaterra provides a previously unsuspected explanation for high rates of nitrification in acidic soils, and confirms the vital role that thaumarchaea play in terrestrial nitrogen cycling. Growth at extremely low ammonia concentration (0.18 nM) also challenges accepted views on ammonia uptake and metabolism and indicates novel mechanisms for ammonia oxidation at low pH.

  17. Peroxidative oxidation of leuco-dichlorofluorescein by prostaglandin H synthase in prostaglandin biosynthesis from polyunsaturated fatty acids.

    PubMed

    Larsen, L N; Dahl, E; Bremer, J

    1996-01-05

    Prostaglandin H synthase can oxidize arachidonic acid with leuco-dichlorofluorescein as reducing cosubstrate. Addition of 0.5 mM phenol increases the oxidation of leuco-dichlorofluorescein to dichlorofluorescein 5-fold, probably by acting as a cyclic intermediate in the oxidation. Tetramethyl-p-phenylenediamine is also oxidized as cosubstrate. Its oxidation is not influenced by phenol. A stoichiometry of close to one mole of tetramethyl-p-phenylenediamine or leuco-dichlorofluorescein consumed per mole of arachidonic acid was found in the initial phase of the reaction. In the presence of phenol + leuco-dichlorofluorescein, the oxidation rate of arachidonic acid is about 40% lower than with phenol alone as cosubstrate. Since dichlorofluorescein has a molar extinction coefficient of 91 . 10(3) at 502 nm, the oxidation of less than 1 microM leuco-dichlorofluorescein can be detected spectrophotometrically. The rate of extinction change with leuco-dichlorofluorescein (at 502 nm) is about 4-fold more rapid than with tetramethyl-p-phenylenediamine (at 611 nm). With this spectrophotometric assay we have confirmed that arachidonic acid, linolenic acid, adrenic acid, gamma-linolenic acid, eicosapentaenoic acid, are substrates for prostaglandin H synthase with decreasing reaction rates in the mentioned order. The same order of reaction rates were found when oxygen consumption was measured. The assay also shows that docosahexaenoic acid is substrate for the enzyme. The reaction rate of the enzyme evidently is decreased both by a n-3 double bond and by deviation from a 20 carbon chain length of the fatty acid substrate.

  18. Texture-dependent anaerobic microsites constrain soil carbon oxidation rates

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Fendorf, Scott

    2016-04-01

    Soil texture, which is a product of parent material, climate and other soil forming factors, is a predictor for long-term storage of soil organic carbon (SOC) storage in many soil ecosystems. Positive correlation between texture (particularly clay content) and SOC storage have long been attributed to protective associations between clay minerals and organic compounds that prevent microbial and enzymatic access - a mechanism commonly referred to as 'mineral protection'. Texture therefore acts as the primary proxy for mineral protection in terrestrial ecosystem models used to assess SOC storage and its sensitivity to global change impacts. Here we show that this protective effect of texture is not only due to mineral protection, but also to the formation of anaerobic microsites. Combining micro-scale laboratory experiments with field-scale observations, we find that oxygen diffusion limitations within clay-rich domains create anaerobic microsites within seemingly well-aerated soils, shifting microbial metabolism to less efficient anaerobic SOC oxidation pathways. Kinetic and thermodynamic constraints reduce SOC oxidation rates within these anaerobic microsites by an order of magnitude relative to aerobic rates, and caused the preservation of bioavailable, polymeric and reduced organic compounds. Lifting these metabolic constraints through increased soil aeration (e.g., through changes in precipitation patterns or land use) may stimulate microbial oxidation of this inherently bioavailable SOC pool. Models that attribute the effects of texture merely to 'mineral protection' may therefore underestimate the vulnerability of soil C to global change impacts.

  19. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs.

    PubMed

    Beam, Jacob P; Bernstein, Hans C; Jay, Zackary J; Kozubal, Mark A; Jennings, Ryan deM; Tringe, Susannah G; Inskeep, William P

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3-3.5; temperature = 68-75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4-40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14-30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1-2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day(-1), and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems.

  20. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    PubMed Central

    Beam, Jacob P.; Bernstein, Hans C.; Jay, Zackary J.; Kozubal, Mark A.; Jennings, Ryan deM.; Tringe, Susannah G.; Inskeep, William P.

    2016-01-01

    Biomineralized ferric oxide microbial mats are ubiquitous features on Earth, are common in hot springs of Yellowstone National Park (YNP, WY, USA), and form due to direct interaction between microbial and physicochemical processes. The overall goal of this study was to determine the contribution of different community members to the assembly and succession of acidic high-temperature Fe(III)-oxide mat ecosystems. Spatial and temporal changes in Fe(III)-oxide accretion and the abundance of relevant community members were monitored over 70 days using sterile glass microscope slides incubated in the outflow channels of two acidic geothermal springs (pH = 3–3.5; temperature = 68–75°C) in YNP. Hydrogenobaculum spp. were the most abundant taxon identified during early successional stages (4–40 days), and have been shown to oxidize arsenite, sulfide, and hydrogen coupled to oxygen reduction. Iron-oxidizing populations of Metallosphaera yellowstonensis were detected within 4 days, and reached steady-state levels within 14–30 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized near 30 days, and emerged as the dominant functional guild after 70 days and in mature Fe(III)-oxide mats (1–2 cm thick). First-order rate constants of Fe(III)-oxide accretion ranged from 0.046 to 0.05 day−1, and in situ microelectrode measurements showed that the oxidation of Fe(II) is limited by the diffusion of O2 into the Fe(III)-oxide mat. The formation of microterracettes also implicated O2 as a major variable controlling microbial growth and subsequent mat morphology. The assembly and succession of Fe(III)-oxide mat communities follows a repeatable pattern of colonization by lithoautotrophic organisms, and the subsequent growth of diverse organoheterotrophs. The unique geochemical signatures and micromorphology of extant biomineralized Fe(III)-oxide mats are also useful for understanding other Fe(II)-oxidizing systems. PMID:26913020

  1. [Investigation on mechanism of pyrite oxidation in acidic solutions].

    PubMed

    Wang, Nan; Yi, Xiao-Yun; Dang, Zhi; Liu, Yun

    2012-11-01

    The mechanism of pyrite oxidation in acidic solutions was investigated by electrochemical analysis methods, such as open-circuit potential, cyclic voltammetry, Tafel polarization curve and anodic polarization curve, using a pyrite-carbon paste electrode as working electrode. The results showed that the oxidation process of pyrite in acidic solutions was via a two-step reaction: the first step was the dissolution of iron moiety and formation of a passivation film composed of elemental sulphur, metal-deficient sulfide and polysulfide; the second step was the further oxidation of these intermediate products to SO4(2-). The final reaction products of pyrite oxidation were Fe3+ and SO4(2-) in acidic solutions. In addition, the open-circuit potential and corrosion potential were positively shifted, the peak current and the corrosion current were increased with the increase in concentration of H2SO4 solutions. This indicated that increased acidity of the system was advantageous to the oxidation of pyrite.

  2. Role of tartaric and malic acids in wine oxidation.

    PubMed

    Danilewicz, John C

    2014-06-04

    Tartaric acid determines the reduction potential of the Fe(III)/Fe(II) redox couple. Therefore, it is proposed that it determines the ability of Fe to catalyze wine oxidation. The importance of tartaric acid was demonstrated by comparing the aerial oxidation of 4-methylcatechol (4-MeC) in model wine made up with tartaric and acetic acids at pH 3.6. Acetic acid, as a weaker Fe(III) ligand, should raise the reduction potential of the Fe couple. 4-MeC was oxidized in both systems, but the mechanisms were found to differ. Fe(II) readily reduced oxygen in tartrate model wine, but Fe(III) alone failed to oxidize the catechol, requiring sulfite assistance. In acetate model wine the reverse was found to operate. These observations should have broad application to model systems designed to study the oxidative process in foods and other beverages. Consideration should be given to the reduction potential of metal couples by the inclusion of appropriate ligands.

  3. Fatty Acid Beta-Oxidation Disorders: A Brief Review

    PubMed Central

    Vishwanath, Vijay A.

    2016-01-01

    Background Mitochondrial fatty acid β-oxidation disorders (FAODs) are a heterogeneous group of defects in fatty acid transport and mitochondrial β-oxidation. They are inherited as autosomal recessive disorders and have a wide range of clinical presentations. Summary The background information and case report provide important insight into mitochondrial FAODs. The article provides a wealth of information describing the scope of these disorders. Key Messages This article presents a typical case of medium chain acyl-CoA dehydrogenase deficiency and summarizes the pathophysiology, clinical presentation, diagnosis and treatment of mitochondrial FAODs. PMID:27536022

  4. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Pandey, Chandra Mouli; Sharma, Aditya; Sumana, Gajjala; Tiwari, Ida; Malhotra, Bansi Dhar

    2013-04-01

    Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (ks) of 61.73 s-1. Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10-14 M and is found to retain about 81% of the initial activity after 9 cycles of use.Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the

  5. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  6. Selective oxidation of glycerol under acidic conditions using gold catalysts

    SciTech Connect

    Villa, Alberto; Veith, Gabriel M; Prati, Laura

    2010-01-01

    H-mordenite-supported PtAu nanoparticles are highly active and selective in the oxidation of glycerol under acidic conditions, which allows the direct preparation of free acids (see picture). The high selectivity for C{sub 3} compounds results from the negligible formation of H{sub 2}O{sub 2}, in contrast to PtAu nanoparticles supported on activated carbon.

  7. Recovery of iron oxides from acid mine drainage and their application as adsorbent or catalyst.

    PubMed

    Flores, Rubia Gomes; Andersen, Silvia Layara Floriani; Maia, Leonardo Kenji Komay; José, Humberto Jorge; Moreira, Regina de Fatima Peralta Muniz

    2012-11-30

    Iron oxide particles recovered from acid mine drainage represent a potential low-cost feedstock to replace reagent-grade chemicals in the production of goethite, ferrihydrite or magnetite with relatively high purity. Also, the properties of iron oxides recovered from acid mine drainage mean that they can be exploited as catalysts and/or adsorbents to remove azo dyes from aqueous solutions. The main aim of this study was to recover iron oxides with relatively high purity from acid mine drainage to act as a catalyst in the oxidation of dye through a Fenton-like mechanism or as an adsorbent to remove dyes from an aqueous solution. Iron oxides (goethite) were recovered from acid mine drainage through a sequential precipitation method. Thermal treatment at temperatures higher than 300 °C produces hematite through a decrease in the BET area and an increase in the point of zero charge. In the absence of hydrogen peroxide, the solids adsorbed the textile dye Procion Red H-E7B according to the Langmuir model, and the maximum amount adsorbed decreased as the temperature of the thermal treatment increased. The decomposition kinetics of hydrogen peroxide is dependent on the H(2)O(2) concentration and iron oxides dosage, but the second-order rate constant normalized to the BET surface area is similar to that for different iron oxides tested in this and others studies. These results indicate that acid mine drainage could be used as a source material for the production of iron oxide catalysts/adsorbents, with comparable quality to those produced using analytical-grade reagents.

  8. Magnesium Oxide Carbonation Rate Law in Saturated Brines

    NASA Astrophysics Data System (ADS)

    Nemer, M. B.; Allen, C.; Deng, H.

    2008-12-01

    Magnesium oxide (MgO) is the only engineered barrier certified by the EPA for emplacement in the Waste Isolation Pilot Plant (WIPP), a U.S. Department of Energy repository for transuranic waste in southeast New Mexico. MgO reduces actinide solubility by sequestering CO2 generated by the biodegradation of cellulosic, plastic, and rubber materials. Demonstration of the effectiveness of MgO is essential for WIPP recertification. In order to be an effective barrier, the rate of CO2 sequestration should be fast compared to the rate CO2 production, over the entire 10,000 year regulatory period. While much research has been conducted on the kinetics of magnesium oxide carbonation in waters with salinity up to that of sea water, we are not aware of any work on determining the carbonation rate law in saturated brines at low partial pressures of CO2 (PCO2 as low as 10-5.5 atm), which is important for performing safety assessments of bedded salt waste repositories. Using a Varian ion-trap gas- chromatograph/mass-spectrometer (GC/MS) we experimentally followed the CO2 sequestration kinetics of magnesium oxide in salt-saturated brines down to a PCO2 as low as 10-5.5 atm. This was performed in a closed reactor with a known initial PCO2. The results of this study show that carbonation is approximately first order in PCO2, in saturated brines. We believe that this method will benefit the study of the detailed kinetics of other similar processes.

  9. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    SciTech Connect

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  10. Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Zih-Huei; Wang, Pei-Ling; Lin, Li-Hung

    2016-04-01

    Wetland is one of the major sources of atmospheric methane. The exact magnitude of methane emission is essentially controlled by microbial processes. Besides of methanogenesis, methanotrophy oxidizes methane with the reduction of various electron acceptors under oxic or anoxic conditions. The interplay of these microbial activities determines the final methane flux under different circumstances. In a tidal wetland, the cyclic flooding and recession of tide render oxygen and sulfate the dominant electron acceptors for methane oxidation. However, the details have not been fully examined, especially for the linkage between potential methane oxidation rates and in situ condition. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effect on microbial methane regulation. Several sediment cores were retrieved during high tide and low tide period and their geochemical profiles were characterized to demonstrate in situ microbial activities. Incubation experiments were conducted to estimate potential aerobic and anaerobic methane oxidation rates in surface and core sediments. Sediment cores collected in high tide and low tide period showed different geochemical characteristics, owning to tidal inundation. Chloride and sulfate concentration were lower during low tide period. A spike of enhanced sulfate at middle depth intervals was sandwiched by two sulfate depleted zones above and underneath. Methane was accumulated significantly with two methane depletion zones nearly mirroring the sulfate spike zone identified. During the high tide period, sulfate decreased slightly with depth with methane production inhibited at shallow depths. However, a methane consumption zone still occurred near the surface. Potential aerobic methane oxidation rates were estimated between 0.7 to 1.1 μmole/g/d, showing no difference between the samples collected at high tide or low tide period. However, a lag phase was widely observed and the lag phase

  11. Amino acid oxidation and alanine production in rat hemidiaphragm in vitro. Effects of dichloroacetate.

    PubMed Central

    Palmer, T N; Caldecourt, M A; Sugden, M C

    1984-01-01

    Dichloroacetate (an activator of pyruvate dehydrogenase) stimulates 14CO2 production from [U-14C]glucose, but not from [U-14C]glutamate, [U-14C]aspartate, [U-14C]- and [1-14C]-valine and [U-14C]- and [1-14C]-leucine. It is concluded (1) that pyruvate dehydrogenase is not rate-limiting in the oxidation to CO2 of amino acids that are metabolized to tricarboxylic acid-cycle intermediates, and (2) that carbohydrate (and not amino acids) is the main carbon precursor in alanine formation in muscle. PMID:6149743

  12. Intrinsic activity and poisoning rate for HCOOH oxidation on platinum stepped surfaces.

    PubMed

    Grozovski, Vitali; Climent, Víctor; Herrero, Enrique; Feliu, Juan M

    2010-08-21

    Pulsed voltammetry has been used to study formic acid oxidation on platinum stepped surfaces to determine the kinetics of the reaction and the role of the surface structure in the reactivity. From the current transients at different potentials, the intrinsic activity of the electrode through the active intermediate reaction path (j(theta = 0)), as well as the rate constant for the CO formation (k(ads)) have been calculated. The kinetics for formic acid oxidation through the active intermediate reaction path is strongly dependent on the surface structure of the electrode, with the highest activity found for the Pt(100) surface. The presence of steps, both on (100) and (111) terraces, does not increase the activity of these surfaces. CO formation only takes place in a narrow potential window very close to the local potential of zero total charge. The extrapolation of the results obtained with stepped surfaces with (111) terraces to zero step density indicates that CO formation should not occur on an ideal Pt(111) electrode. Additionally, the analysis of the Tafel slopes obtained for the different electrodes suggests that the oxidation of formic acid is strongly affected by the presence of adsorbed anions, hydrogen and water.

  13. Heterogeneous Reactions of Acetic Acid with Oxide Surfaces: Effects of Mineralogy and Relative Humidity.

    PubMed

    Tang, Mingjin; Larish, Whitney A; Fang, Yuan; Gankanda, Aruni; Grassian, Vicki H

    2016-07-21

    We have investigated the heterogeneous uptake of gaseous acetic acid on different oxides including γ-Al2O3, SiO2, and CaO under a range of relative humidity conditions. Under dry conditions, the uptake of acetic acid leads to the formation of both acetate and molecularly adsorbed acetic acid on γ-Al2O3 and CaO and only molecularly adsorbed acetic acid on SiO2. More importantly, under the conditions of this study, dimers are the major form for molecularly adsorbed acetic acid on all three particle surfaces investigated, even at low acetic acid pressures under which monomers are the dominant species in the gas phase. We have also determined saturation surface coverages for acetic acid adsorption on these three oxides under dry conditions as well as Langmuir adsorption constants in some cases. Kinetic analysis shows that the reaction rate of acetic acid increases by a factor of 3-5 for γ-Al2O3 when relative humidity increases from 0% to 15%, whereas for SiO2 particles, acetic acid and water are found to compete for surface adsorption sites.

  14. Sensitive and reliable ascorbic acid sensing by lanthanum oxide/reduced graphene oxide nanocomposite.

    PubMed

    Mogha, Navin Kumar; Sahu, Vikrant; Sharma, Meenakshi; Sharma, Raj Kishore; Masram, Dhanraj T

    2014-10-01

    A simple strategy for the detection and estimation of ascorbic acid (AA), using lanthanum oxide-reduced graphene oxide nanocomposite (LO/RGO) on indium tin oxide (ITO) substrate, is reported. LO/RGO displays high catalytic activity toward the oxidation of AA, and the synergism between lanthanum oxide and reduced graphene oxide was attributed to the successful and efficient detection. Detection mechanism and sensing efficacy of LO/RGO nanocomposite are investigated by electrochemical techniques. Chronoamperometric results under optimal conditions show a linear response range from 14 to 100 μM for AA detection. Commercially available vitamin C tablets were also analyzed using the proposed LO/RGO sensor, and the remarkable recovery percentage (97.64-99.7) shows the potential application in AA detection.

  15. Incomplete oxidation of ethylenediaminetetraacetic acid in chemical oxygen demand analysis.

    PubMed

    Anderson, James E; Mueller, Sherry A; Kim, Byung R

    2007-09-01

    Ethylenediaminetetraacetic acid (EDTA) was found to incompletely oxidize in chemical oxygen demand (COD) analysis, leading to incorrect COD values for water samples containing relatively large amounts of EDTA. The degree of oxidation depended on the oxidant used, its concentration, and the length of digestion. The COD concentrations measured using COD vials with a potassium dichromate concentration of 0.10 N (after dilution by sample and sulfuric acid) were near theoretical oxygen demand values. However, COD measured with dichromate concentrations of 0.010 N and 0.0022 N were 30 to 40% lower than theoretical oxygen demand values. Similarly, lower COD values were observed with manganic sulfate as oxidant at 0.011 N. Extended digestion yielded somewhat higher COD values, suggesting incomplete and slower oxidation of EDTA, as a result of lower oxidant concentrations. For wastewater in which EDTA is a large fraction of COD, accurate COD measurement may not be achieved with methods using dichromate concentrations less than 0.1 N.

  16. The Promotion of Indole-3-acetic Acid Oxidation in Pea Buds by Gibberellic Acid and Treatment 1

    PubMed Central

    Ockerse, Ralph; Waber, Jack

    1970-01-01

    Terminal buds of dark-grown pea (Pisum sativum) seedlings have an indole-3-acetic acid oxidase which does not require Mn2+ and 2,4-dichlorophenol as cofactors. Oxidase activity is at least 50 times higher in buds of tall peas than in dwarf seedlings. Administration of gibberellic acid to dwarf peas stimulates both growth and indoleacetic acid oxidase activity to the same levels as in tall seedlings. By contrast, indoleacetic acid oxidation assayed in the presence of Mn2+ and 2,4-dichlorophenol proceeds at similar rates regardless of gibberellin application. Treatment of tall peas with the growth retardant AMO-1618 reduces growth and oxidase activity. Such treated seedlings are indistinguishably dwarf. The enzyme does not appear to be polyphenol oxidase, nor do the results suggest that reduced activity in dwarf buds is due to higher levels of a dialyzable inhibitor. The peroxidative nature of the oxidase is probable. PMID:5500209

  17. Fatty acid oxidation is required for the respiration and proliferation of malignant glioma cells

    PubMed Central

    Lin, Hua; Patel, Shaan; Affleck, Valerie S.; Wilson, Ian; Turnbull, Douglass M.; Joshi, Abhijit R.; Maxwell, Ross

    2017-01-01

    Background. Glioma is the most common form of primary malignant brain tumor in adults, with approximately 4 cases per 100 000 people each year. Gliomas, like many tumors, are thought to primarily metabolize glucose for energy production; however, the reliance upon glycolysis has recently been called into question. In this study, we aimed to identify the metabolic fuel requirements of human glioma cells. Methods. We used database searches and tissue culture resources to evaluate genotype and protein expression, tracked oxygen consumption rates to study metabolic responses to various substrates, performed histochemical techniques and fluorescence-activated cell sorting-based mitotic profiling to study cellular proliferation rates, and employed an animal model of malignant glioma to evaluate a new therapeutic intervention. Results. We observed the presence of enzymes required for fatty acid oxidation within human glioma tissues. In addition, we demonstrated that this metabolic pathway is a major contributor to aerobic respiration in primary-cultured cells isolated from human glioma and grown under serum-free conditions. Moreover, inhibiting fatty acid oxidation reduces proliferative activity in these primary-cultured cells and prolongs survival in a syngeneic mouse model of malignant glioma. Conclusions. Fatty acid oxidation enzymes are present and active within glioma tissues. Targeting this metabolic pathway reduces energy production and cellular proliferation in glioma cells. The drug etomoxir may provide therapeutic benefit to patients with malignant glioma. In addition, the expression of fatty acid oxidation enzymes may provide prognostic indicators for clinical practice. PMID:27365097

  18. Nucleic acid oxidation: an early feature of Alzheimer's disease.

    PubMed

    Bradley-Whitman, Melissa A; Timmons, Michael D; Beckett, Tina L; Murphy, Michael P; Lynn, Bert C; Lovell, Mark A

    2014-01-01

    Studies of oxidative damage during the progression of Alzheimer's disease (AD) suggest its central role in disease pathogenesis. To investigate levels of nucleic acid oxidation in both early and late stages of AD, levels of multiple base adducts were quantified in nuclear and mitochondrial DNA from the superior and middle temporal gyri (SMTG), inferior parietal lobule (IPL), and cerebellum (CER) of age-matched normal control subjects, subjects with mild cognitive impairment, preclinical AD, late-stage AD, and non-AD neurological disorders (diseased control; DC) using gas chromatography/mass spectrometry. Median levels of multiple DNA adducts in nuclear and mitochondrial DNA were significantly (p ≤ 0.05) elevated in the SMTG, IPL, and CER in multiple stages of AD and in DC subjects. Elevated levels of fapyguanine and fapyadenine in mitochondrial DNA suggest a hypoxic environment early in the progression of AD and in DC subjects. Overall, these data suggest that oxidative damage is an early event not only in the pathogenesis of AD but is also present in neurodegenerative diseases in general. Levels of oxidized nucleic acids in nDNA and mtDNA were found to be significantly elevated in mild cognitive impairment (MCI), preclinical Alzheimer's disease (PCAD), late-stage AD (LAD), and a pooled diseased control group (DC) of frontotemporal dementia (FTD) and dementia with Lewy bodies (DLB) subjects compared to normal control (NC) subjects. Nucleic acid oxidation peaked early in disease progression and remained elevated. The study suggests nucleic acid oxidation is a general event in neurodegeneration.

  19. Oxidation kinetics of zinc sulfide: determination of intrinsic rate constant

    SciTech Connect

    Prabhu, G.M.

    1983-06-01

    An initial reaction rate study was done with the help of a thermogravimetric technique. Energy dispersive x-ray analyses on partially oxidized zinc sulfide pellets with a sintered porosity of 72.4% indicated flat sulfur intensity profiles within pellets reacted below 560/sup 0/C, which suggested a homogeneous reaction mechanism. Therefore, reaction temperatures below 600/sup 0/C were chosen for the reaction rate studies. Initial reaction rate studies on 72.4, 58.2, and 34.0% porous, cylindrical zinc sulfide pellets and the corresponding Arrhenius plot suggested chemical control in the temperature range from 480 to 565/sup 0/C. The corresponding intrinsic rate constant is correlated as k = 3.45 x 10/sup 17/ exp (- 86051/RT) cm/s. The variation in sulfur intensity within sintered pellets having a porosity of 72.4% that were reacted at temperatures above 560/sup 0/C indicated that the pore diffusion resistance gradually became comparable to the chemical reaction resistance leading to a mixed control mechanism above 570/sup 0/C. The critical temperature at which this shift occurred, increased with pellet porosity.

  20. Analysis of hop acids and their oxidized derivatives and iso-alpha-acids in beer by capillary electrophoresis-electrospray ionization mass spectrometry.

    PubMed

    García-Villalba, Rocío; Cortacero-Ramírez, Sonia; Segura-Carretero, Antonio; Martín-Lagos Contreras, José Antonio; Fernández-Gutiérrez, Alberto

    2006-07-26

    This study investigates the applicability of on-line coupling of capillary electrophoresis with electrospray ionization tandem mass spectrometry (CZE-ESI-MS) for the separation and characterization of alpha- and beta-acids and oxidized hop acids from crude extracts of different hop varieties. CZE-ESI-MS with negative-ion electrospray ionization proved to be a suitable technique for the determination of these types of natural compounds and their oxidized derivatives. The CZE parameters (pH, concentration, and buffer type) and ESI-MS parameters (nature and flow rate of the sheath liquid, nebulizer pressure, drying gas flow rate, temperature, and compound stability) were optimized. The optimized method provides the potential for a fast qualitative determination of hop acids and their oxidation compounds. The method was also applied to the determination of iso-alpha-acids in beer.

  1. Decomposition of two haloacetic acids in water using UV radiation, ozone and advanced oxidation processes.

    PubMed

    Wang, Kunping; Guo, Jinsong; Yang, Min; Junji, Hirotsuji; Deng, Rongsen

    2009-03-15

    The decomposition of two haloacetic acids (HAAs), dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), from water was studied by means of single oxidants: ozone, UV radiation; and by the advanced oxidation processes (AOPs) constituted by combinations of O(3)/UV radiation, H(2)O(2)/UV radiation, O(3)/H(2)O(2), O(3)/H(2)O(2)/UV radiation. The concentrations of HAAs were analyzed at specified time intervals to elucidate the decomposition of HAAs. Single O(3) or UV did not result in perceptible decomposition of HAAs within the applied reaction time. O(3)/UV showed to be more suitable for the decomposition of DCAA and TCAA in water among the six methods of oxidation. Decomposition of DCAA was easier than TCAA by AOPs. For O(3)/UV in the semi-continuous mode, the effective utilization rate of ozone for HAA decomposition decreased with ozone addition. The kinetics of HAAs decomposition by O(3)/UV and the influence of coexistent humic acids and HCO(3)(-) on the decomposition process were investigated. The decomposition of the HAAs by the O(3)/UV accorded with the pseudo-first-order mode under the constant initial dissolved O(3) concentration and fixed UV radiation. The pseudo-first-order rate constant for the decomposition of DCAA was more than four times that for TCAA. Humic acids can cause the H(2)O(2) accumulation and the decrease in rate constants of HAAs decomposition in the O(3)/UV process. The rate constants for the decomposition of DCAA and TCAA decreased by 41.1% and 23.8%, respectively, when humic acids were added at a concentration of 1.2mgTOC/L. The rate constants decreased by 43.5% and 25.9%, respectively, at an HCO(3)(-) concentration of 1.0mmol/L.

  2. Oxidation of benzene with hydrogen peroxide catalyzed with ferrocene in the presence of pyrazine carboxylic acid

    NASA Astrophysics Data System (ADS)

    Shul'pina, L. S.; Durova, E. L.; Kozlov, Yu. N.; Kudinov, A. R.; Strelkova, T. V.; Shul'pin, G. B.

    2013-12-01

    It is found that ferrocene in the presence of small amounts of pyrazine carboxylic acid (PCA) effectively catalyzes the oxidation of benzene to phenol with hydrogen peroxide. Two main differences upon the oxidation of two different substrates, i.e., cyclohexane and benzene, with the same H2O2-ferrocene-PCA catalytic system are revealed: the rates of benzene oxidation and hydrogen peroxide decomposition are several times lower than the rate of cyclohexane oxidation at close concentrations of both substrates, and the rate constant ratios for the reactions of oxidizing particles with benzene and acetonitrile are significantly lower than would be expected for reactions involving free hydroxyl radicals. The overall rate of hydrogen peroxide decomposition, including both the catalase and oxidase routes, is lower in the presence of benzene than in the presence of cyclohexane. It is suggested on the grounds of these data that a catalytically active particle different from the one generated in the absence of benzene is formed in the presence of benzene. This particle catalyzes hydrogen peroxide decomposition less efficiently than the initial complex and generates a dissimilar oxidizing particle that exhibits higher selectivity. It is shown that reactivity of the system at higher concentrations of benzene differs from that of an initial system not containing an aromatic component with the capability of π-coordination with metal ions.

  3. Pd oxides/hydrous oxides as highly efficient catalyst for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Yan, Liang; Yao, Shikui; Chang, Jinfa; Liu, Changpeng; Xing, Wei

    2014-03-01

    A novel Pd-based catalyst for formic acid electrooxidation (FAEO) was prepared by annealing commercial Pd/C catalyst under the O2 atmosphere at 100 °C, which exhibits excellent catalytic activity and stability for FAEO due to introduction of Pd oxides/hydrous oxides (POHOs). The catalytic activity of the as-prepared catalyst towards FAEO is 1.86 times of the commercial Pd/C catalyst in 0.5 M H2SO4 + 0.5 M HCOOH solution. Chronoamperometric curves show obvious improvement of the as-prepared catalyst electrocatalytic stability for FAEO. It is confirmed that POHOs can provide the required oxygen species for intermediate CO oxidation during the oxidation process of formic acid.

  4. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle.

    PubMed

    Morash, Andrea J; Kotwica, Aleksandra O; Murray, Andrew J

    2013-09-01

    Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O₂) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle. In the heart, PPARα expression was 40% higher than in normoxia after 1 and 7 days of hypoxia. Activities of carnitine palmitoyltransferase (CPT) I and β-hydroxyacyl-CoA dehydrogenase (HOAD) were 75% and 35% lower, respectively, after 1 day of hypoxia, returning to normoxic levels after 7 days. Oxidative phosphorylation respiration rates using palmitoyl-carnitine followed a similar pattern, while respiration using pyruvate decreased. In skeletal muscle, PPARα expression and CPT I activity were 20% and 65% lower, respectively, after 1 day of hypoxia, remaining at this level after 7 days with no change in HOAD activity. Oxidative phosphorylation respiration rates using palmitoyl-carnitine were lower in skeletal muscle throughout hypoxia, while respiration using pyruvate remained unchanged. The rate of CO₂ production from palmitate oxidation was significantly lower in both tissues throughout hypoxia. Thus cardiac muscle may remain reliant on fatty acids during sustained hypoxia, while skeletal muscle decreases fatty acid oxidation and maintains pyruvate oxidation.

  5. Tissue-specific changes in fatty acid oxidation in hypoxic heart and skeletal muscle

    PubMed Central

    Kotwica, Aleksandra O.; Murray, Andrew J.

    2013-01-01

    Exposure to hypobaric hypoxia is sufficient to decrease cardiac PCr/ATP and alters skeletal muscle energetics in humans. Cellular mechanisms underlying the different metabolic responses of these tissues and the time-dependent nature of these changes are currently unknown, but altered substrate utilization and mitochondrial function may be a contributory factor. We therefore sought to investigate the effects of acute (1 day) and more sustained (7 days) hypoxia (13% O2) on the transcription factor peroxisome proliferator-activated receptor α (PPARα) and its targets in mouse cardiac and skeletal muscle. In the heart, PPARα expression was 40% higher than in normoxia after 1 and 7 days of hypoxia. Activities of carnitine palmitoyltransferase (CPT) I and β-hydroxyacyl-CoA dehydrogenase (HOAD) were 75% and 35% lower, respectively, after 1 day of hypoxia, returning to normoxic levels after 7 days. Oxidative phosphorylation respiration rates using palmitoyl-carnitine followed a similar pattern, while respiration using pyruvate decreased. In skeletal muscle, PPARα expression and CPT I activity were 20% and 65% lower, respectively, after 1 day of hypoxia, remaining at this level after 7 days with no change in HOAD activity. Oxidative phosphorylation respiration rates using palmitoyl-carnitine were lower in skeletal muscle throughout hypoxia, while respiration using pyruvate remained unchanged. The rate of CO2 production from palmitate oxidation was significantly lower in both tissues throughout hypoxia. Thus cardiac muscle may remain reliant on fatty acids during sustained hypoxia, while skeletal muscle decreases fatty acid oxidation and maintains pyruvate oxidation. PMID:23785078

  6. Decomposition of phenylarsonic acid by AOP processes: degradation rate constants and by-products.

    PubMed

    Jaworek, K; Czaplicka, M; Bratek, Ł

    2014-10-01

    The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm(-3) phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45 × 10(-3) and 20.12 × 10(-3)) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.

  7. Surface oxide growth on platinum electrode in aqueous trifluoromethanesulfonic acid

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshihisa; Mashio, Tetsuya; Ohma, Atsushi; Dale, Nilesh; Oshihara, Kenzo; Jerkiewicz, Gregory

    2014-10-01

    Platinum in the form of nanoparticles is the key and most expensive component of polymer electrolyte membrane fuel cells, while trifluoromethanesulfonic acid (CF3SO3H) is the smallest fluorinated sulfonic acid. Nafion, which acts as both electrolyte and separator in fuel cells, contains -CF2SO3H groups. Consequently, research on the electrochemical behaviour of Pt in aqueous CF3SO3H solutions creates important background knowledge that can benefit fuel cell development. In this contribution, Pt electro-oxidation is studied in 0.1 M aqueous CF3SO3H as a function of the polarization potential (Ep, 1.10 ≤ Ep ≤ 1.50 V), polarization time (tp, 100 ≤ tp ≤ 104 s), and temperature (T, 278 ≤ T ≤ 333 K). The critical thicknesses (X1), which determines the applicability of oxide growth theories, is determined and related to the oxide thickness (dox). Because X1 > dox for the entire range of Ep, tp, and T values, the formation of Pt surface oxide follows the interfacial place-exchange or the metal cation escape mechanism. The mechanism of Pt electro-oxidation is revised and expanded by taking into account possible interactions of cations, anions, and water molecules with Pt. A modified kinetic equation for the interfacial place exchange is proposed. The application of the interfacial place-exchange and metal cation escape mechanisms leads to an estimation of the Ptδ+-Oδ- surface dipole (μPtO), and the potential drop (Vox) and electric field (Eox) within the oxide. The Pt-anion interactions affect the oxidation kinetics by indirectly influencing the electric field within the double layer and the surface oxide.

  8. Study of photo-oxidative reactivity of sunscreening agents based on photo-oxidation of uric acid by kinetic Monte Carlo simulation.

    PubMed

    Moradmand Jalali, Hamed; Bashiri, Hadis; Rasa, Hossein

    2015-05-01

    In the present study, the mechanism of free radical production by light-reflective agents in sunscreens (TiO2, ZnO and ZrO2) was obtained by applying kinetic Monte Carlo simulation. The values of the rate constants for each step of the suggested mechanism have been obtained by simulation. The effect of the initial concentration of mineral oxides and uric acid on the rate of uric acid photo-oxidation by irradiation of some sun care agents has been studied. The kinetic Monte Carlo simulation results agree qualitatively with the existing experimental data for the production of free radicals by sun care agents.

  9. Uric acid protects membranes and linolenic acid from ozone-induced oxidation.

    PubMed

    Meadows, J; Smith, R C; Reeves, J

    1986-05-29

    Aqueous preparations of linolenic acid, bovine serum albumin, and bovine erythrocyte membrane fragments were bubbled with ozone in the presence or absence of uric acid. Ozonation of the membrane fragments or the bovine serum albumin did not result in protein degradation. After 15 min of ozonation, the absorbance of the thiobarbituric acid-reactive material increased by 0.34 in the linolenic acid preparation and by 0.08 in the suspension of membrane fragments. In the presence of uric acid, these changes in absorbance were reduced to 0.14 for the fatty acid and to 0.01 for the membrane fragments. This result indicates that uric acid protects lipids from ozone-induced oxidation.

  10. The inborn errors of mitochondrial fatty acid oxidation.

    PubMed

    Vianey-Liaud, C; Divry, P; Gregersen, N; Mathieu, M

    1987-01-01

    To date, seven inborn errors of mitochondrial fatty acid oxidation have been identified. A total of about 100 patients in the world have been reported. Clinically the beta-oxidation defects are more often characterized by episodic hypoglycaemia leading to a coma mimicking Reye's syndrome. The hypoglycaemia is non-ketotic since the synthesis of ketone bodies is deficient. Periods of decompensation occur when carbohydrate supply is poor, e.g. prolonged fasting, vomiting, or increased caloric requirements, as and when lipid stores are used. Defects in beta-oxidation have also been reported to be one cause of sudden infant death syndrome. The diagnosis of these inborn errors is by biochemical investigation since where symptoms suggest such a defect, the precise aetiology cannot be assessed. The biochemical diagnosis is based firstly on identification of abnormal plasma and of urinary metabolites during acute attacks. Derivatives of the omega-oxidation and omega-1-oxidation of medium chain fatty acids have been identified, as well as acylglycine and acylcarnitine conjugates. These metabolites are nearly always absent when patients are in good clinical condition. Secondly, the diagnosis must be based on the identification of the enzymatic defects: this involves global assays which allow a localization of the 'level' of the defect (i.e. the oxidation of long, medium or short chain fatty acids) and specific measurement of enzyme activities (acyl-CoA dehydrogenases and electron carriers: ETF and ETF-DH). The diagnosis of these disorders is of prime importance because of the severity of the clinical symptoms. These can be prevented, in some cases, by an appropriate diet (a high carbohydrate, low fat diet, sometimes supplemented with L-carnitine). In other cases, genetic counselling can be offered.

  11. Exogenous amino acids suppress glucose oxidation and potentiate hepatic glucose production in late gestation fetal sheep.

    PubMed

    Brown, Laura D; Kohn, Jaden R; Rozance, Paul J; Hay, William W; Wesolowski, Stephanie R

    2017-02-08

    Acute amino acid (AA) infusion increases AA oxidation rates in normal late gestation fetal sheep. Because fetal oxygen consumption rate does not change with increased AA oxidation, we hypothesized that AA infusion would suppress glucose oxidation pathways and that the additional carbon supply from AA would activate hepatic glucose production. To test this, late gestation fetal sheep were infused intravenously for 3h with saline or exogenous AA (AA). Glucose tracer metabolic studies were performed and skeletal muscle and liver tissues samples were collected. AA infusion increased fetal arterial plasma branched chain AA, cortisol, and glucagon concentrations. Fetal glucose utilization rates were similar between basal and AA periods, yet the fraction of glucose oxidized and glucose oxidation rate were decreased by 40% in the AA period. AA infusion increased expression of PDK4, an inhibitor of glucose oxidation, nearly 2-fold in muscle and liver. In liver, AA infusion tended to increase PCK1 gluconeogenic gene and PCK1 correlated with plasma cortisol concentrations. AA infusion also increased liver mRNA expression of lactate transporter gene (MCT1), protein expression of GLUT2 and LDHA, and phosphorylation of AMPK, 4EBP1, and S6 proteins. In isolated fetal hepatocytes, AA supplementation increased glucose production and PCK1, LDHA, and MCT1 gene expression. These results demonstrate that AA infusion into fetal sheep competitively suppresses glucose oxidation and potentiates hepatic glucose production. These metabolic patterns support flexibility in fetal metabolism in response to increased nutrient substrate supply while maintaining a relatively stable rate of oxidative metabolism.

  12. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    DOE PAGES

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; ...

    2014-12-12

    Here, the partial oxidation of model C2–C4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au2C=C=O, along the way to their full oxidation to form CO2. Infrared measurements of Au2C=C=O formation asmore » a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.« less

  13. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques.

  14. Assembly and Succession of Iron Oxide Microbial Mat Communities in Acidic Geothermal Springs

    SciTech Connect

    Beam, Jake; Bernstein, Hans C.; Jay, Z.; Kozubal, Mark; Jennings, Ryan; Tringe, Susannah G.; Inskeep, William P.

    2016-02-15

    Iron oxide microbial mats are ubiquitous geobiological features on Earth and occur in extant acidic hot springs of Yellowstone National Park (YNP), WY, USA, and form as a result of microbial processes. The relative contribution of different organisms to the development of these mat ecosystems is of specific interest. We hypothesized that chemolithoautotrophic organisms contribute to the early development and production of Fe(III)-oxide mats, which could support later-colonizing heterotrophic microorganisms. Sterile glass slides were incubated in the outflow channels of two acidic geothermal springs in YNP, and spatiotemporal changes in Fe(III)-oxide accretion and abundance of relevant community members were measured. Lithoautotrophic Hydrogenobaculum spp. were first colonizers and the most abundant taxa identified during early successional stages (7 – 40 days). Populations of M. yellowstonensis colonized after ~ 7 days, corresponding to visible Fe(III)-oxide accretion. Heterotrophic archaea colonized after 30 days, and emerge as the dominant functional guild in mature iron oxide mats (1 – 2 cm thick) that form after 70 – 120 days. First-order rate constants of iron oxide accretion ranged from 0.05 – 0.046 day-1, and reflected the absolute amount of iron accreted. Micro- and macroscale microterracettes were identified during iron oxide mat development, and suggest that the mass transfer of oxygen limits microbial growth. This was also demonstrated using microelectrode measurements of oxygen as a function of mat depth, which showed steep gradients in oxygen from the aqueous mat interface to ~ 1 mm. The formation and succession of amorphous Fe(III)-oxide mat communities follows a predictable pattern of distinct stages and growth. The successional stages and microbial signatures observed in these extant Fe(III)-oxide mat communities may be relevant to other past or present Fe(III)-oxide mineralizing systems.

  15. Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Cheng, C. T.; Wilson, K. R.

    2014-12-01

    Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation. We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through

  16. Azo dye Acid Red 27 decomposition kinetics during ozone oxidation and adsorption processes.

    PubMed

    Beak, Mi H; Ijagbemi, Christianah O; Kim, Dong S

    2009-05-01

    To elucidate the effects of ozone dosage, catalysts, and temperature on azo dye decomposition rate in treatment processes, the decomposition kinetics of Acid Red 27 by ozone was investigated. Acid Red 27 decomposition rate followed the first-order reaction with complete dye discoloration in 20 min of ozone reaction. The dye decay rate increases as ozone dosage increases. Using Mn, Zn and Ni as transition metal catalysts during the ozone oxidation process, Mn displayed the greatest catalytic effect with significant increase in the rate of decomposition. The rate of decomposition decreases with increase in temperature and beyond 40 degrees C, increase in decomposition rate was followed by a corresponding increase in temperature. The FT-IR spectra in the range of 1,000-1,800 cm(-1) revealed specific band variations after the ozone oxidation process, portraying structural changes traceable to cleavage of bonds in the benzene ring, the sulphite salt group, and the C-N located beside the -N = N- bond. From the (1)H-NMR spectra, the breaking down of the benzene ring showed the disappearance of the 10 H peaks at 7-8 ppm, which later emerged with a new peak at 6.16 ppm. In a parallel batch test of azo dye Acid Red 27 adsorption onto activated carbon, a low adsorption capacity was observed in the adsorption test carried out after three minutes of ozone injection while the adsorption process without ozone injection yielded a high adsorption capacity.

  17. The Aerobic Oxidation of Bromide to Dibromine Catalyzed by Homogeneous Oxidation Catalysts and Initiated by Nitrate in Acetic Acid

    SciTech Connect

    Partenheimer, Walt; Fulton, John L.; Sorensen, Christina M.; Pham, Van Thai; Chen, Yongsheng

    2014-06-01

    A small amount of nitrate, ~0.002 molal, initiates the Co/Mn catalyzed aerobic oxidation of bromide compounds (HBr,NaBr,LiBr) to dibromine in acetic acid at room temperature. At temperatures 40oC or less , the reaction is autocatalytic. Co(II) and Mn(II) themselves and mixed with ionic bromide are known homogeneous oxidation catalysts. The reaction was discovered serendipitously when a Co/Br and Co/Mn/Br catalyst solution was prepared for the aerobic oxidation of methyaromatic compounds and the Co acetate contained a small amount of impurity i.e. nitrate. The reaction was characterized by IR, UV-VIS, MALDI and EXAFS spectroscopies and the coordination chemistry is described. The reaction is inhibited by water and its rate changed by pH. The change in these variables, as well as others, are identical to those observed during homogeneous, aerobic oxidation of akylaromatics. A mechanism is proposed. Accidental addition of a small amount of nitrate compound into a Co/Mn/Br/acetic acid mixture in a large, commercial feedtank is potentially dangerous.

  18. Germanium oxide removal by citric acid and thiol passivation from citric acid-terminated Ge(100).

    PubMed

    Collins, Gillian; Aureau, Damien; Holmes, Justin D; Etcheberry, Arnaud; O'Dwyer, Colm

    2014-12-02

    Many applications of germanium (Ge) are underpinned by effective oxide removal and surface passivation. This important surface treatment step often requires H-X (X = Cl, Br, I) or HF etchants. Here, we show that aqueous citric acid solutions are effective in the removal of GeOx. The stability of citric acid-treated Ge(100) is compared to HF and HCl treated surfaces and analyzed by X-ray photoelectron spectroscopy. Further Ge surface passivation was investigated by thiolation using alkane monothiols and dithiols. The organic passivation layers show good stability with no oxide regrowth observed after 3 days of ambient exposure.

  19. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress.

    PubMed

    Simón, María Victoria; Agnolazza, Daniela L; German, Olga Lorena; Garelli, Andrés; Politi, Luis E; Agbaga, Martin-Paul; Anderson, Robert E; Rotstein, Nora P

    2016-03-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here, we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat and hydrogen peroxide (H2 O2 ). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in retina photoreceptors, and its precursor, eicosapentaenoic acid (EPA) have multiple beneficial effects. Here, we show that retina neurons in vitro express the desaturase FADS2 and can synthesize DHA from EPA. Moreover, addition of EPA to these cultures protects photoreceptors from oxidative stress and promotes their differentiation through its metabolization to DHA.

  20. Downscaled anodic oxidation process for aluminium in oxalic acid

    NASA Astrophysics Data System (ADS)

    Sieber, M.; Morgenstern, R.; Kuhn, D.; Hackert-Oschätzchen, M.; Schubert, A.; Lampke, T.

    2017-03-01

    The increasing multi-functionality of parts and assemblies in several fields of engineering demands, amongst others, highly functionalised surfaces. For the different applications, on the one hand, there is a need to scale up surface modification processes originating in the nano- and micro-scale. On the other hand, conventional macro-scale surface refinement methods offer a huge potential for application in the said nano- and micro-scale. The anodic oxidation process, which is established especially for aluminium and its alloys, allows the formation of oxide ceramic layers on the surface. The build-up of an oxide ceramic coating comes along with altered chemical, tribological and electrical surface properties. As a basis for further investigations regarding the use of the anodic oxidation process for micro-scale-manufacturing, the scale effects of oxalic acid anodising on commercially pure aluminium as well as on the AlZn5.5MgCu alloy are addressed in the present work. The focus is on the amount of oxide formed during a potentiostatic process in relation to the exchanged amount of charge. Further, the hardness of the coating as an integral measure to assess the porous oxide structure is approached by nano-indentation technique.

  1. Enhanced formic acid oxidation on Cu-Pd nanoparticles

    NASA Astrophysics Data System (ADS)

    Dai, Lin; Zou, Shouzhong

    Developing catalysts with high activity and high resistance to surface poisoning remains a challenge in direct formic acid fuel cell research. In this work, copper-palladium nanoparticles were formed through a galvanic replacement process. After electrochemically selective dissolution of surface Cu, Pd-enriched Cu-Pd nanoparticles were formed. These particles exhibit much higher formic acid oxidation activities than that on pure Pd nanoparticles, and they are much more resistant to the surface poisoning. Possible mechanisms of catalytic activity enhancement are briefly discussed.

  2. Oxidized fatty acids as inter-kingdom signaling molecules.

    PubMed

    Pohl, Carolina H; Kock, Johan L F

    2014-01-20

    Oxylipins or oxidized fatty acids are a group of molecules found to play a role in signaling in many different cell types. These fatty acid derivatives have ancient evolutionary origins as signaling molecules and are ideal candidates for inter-kingdom communication. This review discusses examples of the ability of organisms from different kingdoms to "listen" and respond to oxylipin signals during interactions. The interactions that will be looked at are signaling between animals and plants; between animals and fungi; between animals and bacteria and between plants and fungi. This will aid in understanding these interactions, which often have implications in ecology, agriculture as well as human and animal health.

  3. Ranolazine, a partial fatty acid oxidation inhibitor, its potential benefit in angina and other cardiovascular disorders.

    PubMed

    Bhandari, Bharti; Subramanian, L

    2007-01-01

    Chronic Angina resistant to medical treatment with hemodynamically acting agents is a major problem in clinical setup. For such patients, large number of clinical trials have documented the beneficial effect of Ranolazine. It acts as an anti-anginal agent that controls myocardial ischemia through intracellular metabolic changes. Ranolazine is a partial fatty acid oxidation inhibitor which shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation. Since the oxidation of glucose requires less oxygen than the oxidation of fatty acids, ranolazine can help maintain myocardial function in times of ischemia. In addition, ranolazine has minimal effect on blood pressure and heart rate. Ranolazine, by inhibiting cellular ionic channels, prolongs the corrected QT interval. However, ranolazine has not yet been associated with any incidences of ventricular arrhythmia. Other possible mechanism by which Ranolazine could act is by reducing the formation of reactive oxygen species (ROS) and improves reperfusion mechanical function. Ranolazine has been approved by US FDA for the treatment of chronic angina pectoris in combination with amlodipine, beta-blockers or nitrates in patients who do not show adequate response to other anti-anginals. Ranolazine is a metabolic modulator that is being developed by CV Therapeutics (CVT), under license from Roche (formerly Syntex), as a potential treatment for angina. Ranolazine is available as brand name 'Ranexa' as extended release oral tablets. This review focuses on the clinical effects, the mechanism of actions, drug interactions and beneficial effects of Ranolazine in chronic angina and other cardiometabolic disorders.

  4. Hypochlorous acid-mediated protein oxidation: how important are chloramine transfer reactions and protein tertiary structure?

    PubMed

    Pattison, David I; Hawkins, Clare L; Davies, Michael J

    2007-08-28

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H2O2 and Cl- by the heme enzyme myeloperoxidase, which is released from activated leukocytes. HOCl possesses potent antibacterial properties, but excessive production can lead to host tissue damage that occurs in numerous human pathologies. As proteins and amino acids are highly abundant in vivo and react rapidly with HOCl, they are likely to be major targets for HOCl. In this study, two small globular proteins, lysozyme and insulin, have been oxidized with increasing excesses of HOCl to determine whether the pattern of HOCl-mediated amino acid consumption is consistent with reported kinetic data for isolated amino acids and model compounds. Identical experiments have been carried out with mixtures of N-acetyl amino acids (to prevent reaction at the alpha-amino groups) that mimic the protein composition to examine the role of protein structure on reactivity. The results indicate that tertiary structure facilitates secondary chlorine transfer reactions of chloramines formed on His and Lys side chains. In light of these data, second-order rate constants for reactions of Lys side chain and Gly chloramines with Trp side chains and disulfide bonds have been determined, together with those for further oxidation of Met sulfoxide by HOCl and His side chain chloramines. Computational kinetic models incorporating these additional rate constants closely predict the experimentally observed amino acid consumption. These studies provide insight into the roles of chloramine formation and three-dimensional structure on the reactions of HOCl with isolated proteins and demonstrate that kinetic models can predict the outcome of HOCl-mediated protein oxidation.

  5. Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods.

    PubMed

    Boye, Birame; Dieng, Momar M; Brillas, Enric

    2002-07-01

    The herbicide 4-chlorophenoxyacetic acid (4-CPA) has been degraded in aqueous medium by advanced electrochemical oxidation processes such as electro-Fenton and photoelectro-Fenton with UV light, using an undivided cell containing a Pt anode. In these environmentally clean methods, the main oxidant is the hydroxyl radical produced from Fenton's reaction between Fe2+ added to the medium and H2O2 electrogenerated from an 02-diffusion cathode. Solutions of a 4-CPA concentration <400 ppm within the pH range of 2.0-6.0 at 35 degrees C can be completely mineralized at low current by photoelectro-Fenton, while electro-Fenton leads to ca. 80% of mineralization. 4-CPA is much more slowly degraded by anodic oxidation in the absence and presence of electrogenerated H2O2. 4-Chlorophenol, 4-chlorocatechol, and hydroquinone are identified as aromatic intermediates by CG-MS and quantified by reverse-phase chromatography. Further oxidation of these chloroderivatives yields stable chloride ions. Generated carboxylic acids such as glycolic, glyoxylic, formic, malic, maleic, fumaric, and oxalic are followed by ion exclusion chromatography. The highest mineralization rate found for photoelectro-Fenton is accounted for by the fast photodecomposition of complexes of Fe3+ with such short-chain acids, mainly oxalic acid, under the action of UV light.

  6. Use of radiolabeled acetate to evaluate the rate of clearance of cerebral oxidative metabolites

    SciTech Connect

    Lear, J.L.; Kasliwal, R.; Duryea, R.A.

    1994-05-01

    Radiolabel derived from glucose (GLC) has been shown to have different cerebral retention kinetics than radiolabel derived from deoxyglucose (DG). In particular, activated structures with high metabolic rates have more rapid loss of GLC-derived radiolabel than DG-derived radiolabel. Because GLC-derived radiolabel can be lost from the brain glycolytically through lactate or oxidatively through CO{sub 2}, the cause of the difference between GLC and FDG is uncertain. We investigated the isolated oxidative pathway using radiolabeled acetate, which is only metabolized through the Krebs cycle. Male albino rats were anesthetized with halothane and femoral vein and artery catheters were placed. The rats were allowed to awaken for two hours prior to the studies. 100 uCi of {sup 14}C-acetate was administered as a 30 second IV infusion to each rat. Arterial samples were obtained at regular intervals. Groups of rats were killed at 5, 10, 15, 30, and 60 minutes. Brains were rapidly removed, sectioned, and used to produce autoradiograms. The extracted and retained radiolabel was calculated as the brain concentration at time of death divided by the integral of the arterial tracer concentration. No detectable loss of radiolabel was found over the initial 10 minutes. Thereafter the rate of loss gradually increased reaching a maximum of 1.2% per minute by 60 minutes. This corresponds to a k4 rate constant of 0.012 min{sup -1}. The rate of loss of oxidative metabolites from rat brain was found to be very slow. This probably results from exchange of radiolabel with amino acid pools as the tracer is metabolized through the Krebs cycle. Therefore in conditions were glycolysis is increased out of proportion to oxidation and cerebral lactate concentration rises, radiolabel loss through lactate efflux can be a substantial fraction of overall loss.

  7. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  8. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  9. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  10. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  11. 40 CFR 721.3680 - Ethylene oxide adduct of fatty acid ester with pentaerythritol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Ethylene oxide adduct of fatty acid... New Uses for Specific Chemical Substances § 721.3680 Ethylene oxide adduct of fatty acid ester with... identified generically as ethylene oxide adduct of fatty acid ester with pentaerythritol (PMN P-91-442)...

  12. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream...

  13. Nitric oxide diffusion rate is reduced in the aortic wall.

    PubMed

    Liu, Xiaoping; Srinivasan, Parthasarathy; Collard, Eric; Grajdeanu, Paula; Zweier, Jay L; Friedman, Avner

    2008-03-01

    Endogenous nitric oxide (NO) plays important physiological roles in the body. As a small diatomic molecule, NO has been assumed to freely diffuse in tissues with a diffusion rate similar to that in water. However, this assumption has not been tested experimentally. In this study, a modified Clark-type NO electrode attached with a customized aorta holder was used to directly measure the flux of NO diffusion across the aortic wall at 37 degrees C. Experiments were carefully designed for accurate measurements of the apparent NO diffusion coefficient D and the partition coefficient alpha in the aortic wall. A mathematical model was presented for analyzing experimental data. It was determined that alpha = 1.15 +/- 0.11 and D = 848 +/- 45 mum(2)/s (n = 12). The NO diffusion coefficient in the aortic wall is nearly fourfold smaller than the reported diffusion coefficient in solution at 37 degrees C, indicating that NO diffusion in the vascular wall is no longer free, but markedly dependent on the environment in the tissue where these NO molecules are. These results imply that the NO diffusion rate in the vascular wall may be upregulated and downregulated by certain physiological and/or pathophysiological processes affecting the composition of tissues.

  14. Electrochemical destruction of trans-cinnamic acid by advanced oxidation processes: kinetics, mineralization, and degradation route.

    PubMed

    Flores, Nelly; Thiam, Abdoulaye; Rodríguez, Rosa María; Centellas, Francesc; Cabot, Pere Lluís; Garrido, José Antonio; Brillas, Enric; Sirés, Ignasi

    2016-01-14

    Acidic solutions of trans-cinnamic acid at pH 3.0 have been comparatively treated by anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), and photoelectro-Fenton (PEF). The electrolytic experiments were carried out with a boron-doped diamond (BDD)/air-diffusion cell. The substrate was very slowly abated by AO-H2O2 because of its low reaction rate with oxidizing (•)OH produced from water discharge at the BDD anode. In contrast, its removal was very rapid and at similar rate by EF and PEF due to the additional oxidation by (•)OH in the bulk, formed from Fenton's reaction between cathodically generated H2O2 and added Fe(2+). The AO-H2O2 treatment yielded the lowest mineralization. The EF process led to persistent final products like Fe(III) complexes, which were quickly photolyzed upon UVA irradiation in PEF to give an almost total mineralization with 98 % total organic carbon removal. The effect of current density and substrate concentration on all the mineralization processes was examined. Gas chromatography-mass spectrometry (GC-MS) analysis of electrolyzed solutions allowed identifying five primary aromatics and one heteroaromatic molecule, whereas final carboxylic acids like fumaric, acetic, and oxalic were quantified by ion exclusion high-performance liquid chromatography (HPLC). From all the products detected, a degradation route for trans-cinnamic acid is proposed.

  15. A novel ultrafine leady oxide prepared from spent lead pastes for application as cathode of lead acid battery

    NASA Astrophysics Data System (ADS)

    Yang, Danni; Liu, Jianwen; Wang, Qin; Yuan, Xiqing; Zhu, Xinfeng; Li, Lei; Zhang, Wei; Hu, Yuchen; Sun, Xiaojuan; Kumar, R. Vasant; Yang, Jiakuan

    2014-07-01

    A novel ultrafine leady oxide has been prepared from a combustion-calcination process of lead citrate precursor (Pb3(C6H5O7)2·3H2O), by hydrometallurgical leaching of spent lead pastes firstly. The leady oxides are used to assemble lead acid battery which are subjected to cyclic voltammetry (CV) and battery testing. Various key properties of the new oxides, such as morphology, crystalline phases, degree of oxidation, apparent density and water and acid absorption value have been characterized by chemical analysis, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that leady oxides synthesized at different calcination temperatures mainly comprise β-PbO, α-PbO and Pb. Unlike traditional leady oxide, the new oxide product prepared at 375 °C has a rod-like morphology with greater porous structure, and appears smaller density, lower value of acid absorption and larger propensity for water absorption. In battery testing, the 20 h rate and 1C rate discharge time have exceeded 26 h and 40 min, respectively. Results reveal that the leady oxide prepared at 375 °C exhibits excellent electrochemical performance and initial capacity as positive active material. While leady oxide obtained at 450 °C presents a relatively improved cycle life. Further work is to optimize the battery manufacturing process for better cycle performance.

  16. Neutral fat hydrolysis and long-chain fatty acid oxidation during anaerobic digestion of slaughterhouse wastewater.

    PubMed

    Masse, L; Massé, D I; Kennedy, K J; Chou, S P

    2002-07-05

    Neutral fat hydrolysis and long-chain fatty acid (LCFA) oxidation rates were determined during the digestion of slaughterhouse wastewater in anaerobic sequencing batch reactors operated at 25 degrees C. The experimental substrate consisted of filtered slaughterhouse wastewater supplemented with pork fat particles at various average initial sizes (D(in)) ranging from 60 to 450 microm. At the D(in) tested, there was no significant particle size effect on the first-order hydrolysis rate. The neutral fat hydrolysis rate averaged 0.63 +/- 0.07 d(-1). LCFA oxidation rate was modelled using a Monod-type equation. The maximum substrate utilization rate (kmax) and the half-saturation concentration (Ks) averaged 164 +/- 37 mg LCFA/L/d and 35 +/- 31 mg LCFA/L, respectively. Pork fat particle degradation was mainly controlled by LCFA oxidation rate and, to a lesser extent, by neutral fat hydrolysis rate. Hydrolysis pretreatment of fat-containing wastewaters and sludges should not substantially accelerate their anaerobic treatment. At a D(in) of 450 microm, fat particles were found to inhibit methane production during the initial 20 h of digestion. Inhibition of methane production in the early phase of digestion was the only significant effect of fat particle size on anaerobic digestion of pork slaughterhouse wastewater. Soluble COD could not be used to determine the rate of lipid hydrolysis due to LCFA adsorption on the biomass.

  17. Sulfuric acid intercalated graphite oxide for graphene preparation.

    PubMed

    Hong, Yanzhong; Wang, Zhiyong; Jin, Xianbo

    2013-12-06

    Graphene has shown enormous potential for innovation in various research fields. The current chemical approaches based on exfoliation of graphite via graphite oxide (GO) are potential for large-scale synthesis of graphene but suffer from high cost, great operation difficulties, and serious waste discharge. We report a facile preparation of graphene by rapid reduction and expansion exfoliation of sulfuric acid intercalated graphite oxide (SIGO) at temperature just above 100°C in ambient atmosphere, noting that SIGO is easily available as the immediate oxidation descendent of graphite in sulfuric acid. The oxygenic and hydric groups in SIGO are mainly removed through dehydration as catalyzed by the intercalated sulfuric acid (ISA). The resultant consists of mostly single layer graphene sheets with a mean diameter of 1.07 μm after dispersion in DMF. This SIGO process is reductant free, easy operation, low-energy, environmental friendly and generates graphene with low oxygen content, less defect and high conductivity. The provided synthesis route from graphite to graphene via SIGO is compact and readily scalable.

  18. Ceramides and mitochondrial fatty acid oxidation in obesity.

    PubMed

    Fucho, Raquel; Casals, Núria; Serra, Dolors; Herrero, Laura

    2017-04-01

    Obesity is an epidemic, complex disease that is characterized by increased glucose, lipids, and low-grade inflammation in the circulation, among other factors. It creates the perfect scenario for the production of ceramide, the building block of the sphingolipid family of lipids, which is involved in metabolic disorders such as obesity, diabetes, and cardiovascular disease. In addition, obesity causes a decrease in fatty acid oxidation (FAO), which contributes to lipid accumulation within the cells, conferring more susceptibility to cell dysfunction. C16:0 ceramide, a specific ceramide species, has been identified recently as the principal mediator of obesity-derived insulin resistance, impaired fatty acid oxidation, and hepatic steatosis. In this review, we have sought to cover the importance of the ceramide species and their metabolism, the main ceramide signaling pathways in obesity, and the link between C16:0 ceramide, FAO, and obesity.-Fucho, R., Casals, N., Serra, D., Herrero, L. Ceramides and mitochondrial fatty acid oxidation in obesity.

  19. Ruthenium oxide modified nickel electrode for ascorbic acid detection.

    PubMed

    Lee, Yuan-Gee; Liao, Bo-Xuan; Weng, Yu-Ching

    2017-04-01

    Electrodes of ruthenium oxide modified nickel were prepared by a thermal decomposition method. The stoichiometry of the modifier, RuOx, was quantitatively determined to be a meta-stable phase, RuO5. The electrodes were employed to sense ascorbic acid in alkaline solution with a high sensitivity, 296 μAcm(-2) mM(-1), and good selectivity for eight kinds of disturbing reagents. We found that the ascorbic acid was oxidized irreversibly in solution. To match with the variation of the morphology, the sensitivity reached a maximum when the RuOx segregated with a nano-crystalline feature. We find that the substrate oxidized as the deposited RuOx grew thicker. The feature of the deposited RuOx changed from nano-particles to small islands resulting from the wetting effect of the substrate oxide, NiO; meanwhile the sensitivity decreased dramatically. The endurance of the RuOx/Ni electrode also showed a good performance after 38 days of successive test.

  20. Proteomics-based metabolic modeling reveals that fatty acid oxidation (FAO) controls endothelial cell (EC) permeability.

    PubMed

    Patella, Francesca; Schug, Zachary T; Persi, Erez; Neilson, Lisa J; Erami, Zahra; Avanzato, Daniele; Maione, Federica; Hernandez-Fernaud, Juan R; Mackay, Gillian; Zheng, Liang; Reid, Steven; Frezza, Christian; Giraudo, Enrico; Fiorio Pla, Alessandra; Anderson, Kurt; Ruppin, Eytan; Gottlieb, Eyal; Zanivan, Sara

    2015-03-01

    Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.

  1. Anisotropic interpolation method of silicon carbide oxidation growth rates for three-dimensional simulation

    NASA Astrophysics Data System (ADS)

    Šimonka, Vito; Nawratil, Georg; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We investigate anisotropical and geometrical aspects of hexagonal structures of Silicon Carbide and propose a direction dependent interpolation method for oxidation growth rates. We compute three-dimensional oxidation rates and perform one-, two-, and three-dimensional simulations for 4H- and 6H-Silicon Carbide thermal oxidation. The rates of oxidation are computed according to the four known growth rate values for the Si- (0 0 0 1) , a- (1 1 2 bar 0) , m- (1 1 bar 0 0) , and C-face (0 0 0 1 bar) . The simulations are based on the proposed interpolation method together with available thermal oxidation models. We additionally analyze the temperature dependence of Silicon Carbide oxidation rates for different crystal faces using Arrhenius plots. The proposed interpolation method is an essential step towards highly accurate three-dimensional oxide growth simulations which help to better understand the anisotropic nature and oxidation mechanism of Silicon Carbide.

  2. Electro-oxidation of methanol on Pt(111) in acid solutions: effects of electrolyte anions during electrocatalytic reactions

    NASA Astrophysics Data System (ADS)

    Ogasawara, Hirohito; Ito, Masatoki

    1995-10-01

    The electro-oxidation of methanol on a Pt(111) surface in both sulfuric and perchloric acid solutions was investigated by combined apparatus under both ultra-high vacuum and electrochemical environments. In sulfuric acid solution, a strong lateral interaction was observed between adsorbed bisulfate and CO derived from methanol. Coadsorption of CO derived from methanol with bisulfate ion yielded a (√7 × √7)-R19.1°-CO-bisulfate structure. In perchloric acid solution, however, no lateral interaction between adsorbed CO and perchlorate was seen. The difference in reaction rates of methanol oxidation in both solutions was explained by these specific anion adsorption effects.

  3. Oxidation in Acidic Medium of Lignins from Agricultural Residues

    NASA Astrophysics Data System (ADS)

    Labat, Gisele Aparecida Amaral; Gonçalves, Adilson Roberto

    Agricultural residues as sugarcane straw and bagasse are burned in boilers for generation of energy in sugar and alcohol industries. However, excess of those by-products could be used to obtain products with higher value. Pulping process generates cellulosic pulps and lignin. The lignin could be oxidized and applied in effluent treatments for heavy metal removal. Oxidized lignin presents very strong chelating properties. Lignins from sugarcane straw and bagasse were obtained by ethanol-water pulping. Oxidation of lignins was carried out using acetic acid and Co/Mn/Br catalytical system at 50, 80, and 115 °C for 5 h. Kinetics of the reaction was accomplished by measuring the UV-visible region. Activation energy was calculated for lignins from sugarcane straw and bagasse (34.2 and 23.4 kJ mol-1, respectively). The first value indicates higher cross-linked formation. Fourier-transformed infrared spectroscopy data of samples collected during oxidation are very similar. Principal component analysis applied to spectra shows only slight structure modifications in lignins after oxidation reaction.

  4. Synthesis of docosahexaenoic acid from eicosapentaenoic acid in retina neurons protects photoreceptors from oxidative stress

    PubMed Central

    Simón, María Victoria; Agnolazza, Daniela L.; German, Olga Lorena; Garelli, Andrés; Politi, Luis E.; Agbaga, Martin-Paul; Anderson, Robert E.; Rotstein, Nora P.

    2015-01-01

    Oxidative stress is involved in activating photoreceptor death in several retinal degenerations. Docosahexaenoic acid (DHA), the major polyunsaturated fatty acid in the retina, protects cultured retina photoreceptors from apoptosis induced by oxidative stress and promotes photoreceptor differentiation. Here we investigated whether eicosapentaenoic acid (EPA), a metabolic precursor to DHA, had similar effects and whether retinal neurons could metabolize EPA to DHA. Adding EPA to rat retina neuronal cultures increased opsin expression and protected photoreceptors from apoptosis induced by the oxidants paraquat (PQ) and hydrogen peroxide (H2O2). Palmitic, oleic, and arachidonic acids had no protective effect, showing the specificity for DHA. We found that EPA supplementation significantly increased DHA percentage in retinal neurons, but not EPA percentage. Photoreceptors and glial cells expressed Δ6 desaturase (FADS2), which introduces the last double bond in DHA biosynthetic pathway. Pre-treatment of neuronal cultures with CP-24879 hydrochloride, a Δ5/Δ6 desaturase inhibitor, prevented EPA-induced increase in DHA percentage and completely blocked EPA protection and its effect on photoreceptor differentiation. These results suggest that EPA promoted photoreceptor differentiation and rescued photoreceptors from oxidative stress-induced apoptosis through its elongation and desaturation to DHA. Our data show, for the first time, that isolated retinal neurons can synthesize DHA in culture. PMID:26662863

  5. Field rates for natural attenuation of arsenic in Tinto Santa Rosa acid mine drainage (SW Spain).

    PubMed

    Asta, Maria P; Ayora, Carlos; Acero, Patricia; Cama, Jordi

    2010-05-15

    Reactive transport modelling of the main processes related to the arsenic natural attenuation observed in the acid mine drainage (AMD) impacted stream of Tinto Santa Rosa (SW Spain) was performed. Despite the simplicity of the kinetic expressions used to deal with arsenic attenuation processes, the model reproduced successfully the major chemical trends observed along the acid discharge. Results indicated that the rate of ferrous iron oxidation was similar to the one obtained in earlier field studies in which microbial catalysis is reported to occur. With regard to the scaled arsenic oxidation rate, it is one order of magnitude faster than the values obtained under laboratory conditions suggesting the existence of a catalytic agent in the natural system. Schwertmannite precipitation rate, which was represented by a simple kinetic expression relying on Fe(III) and pH, was in the range calculated for other AMD impacted sites. Finally, the obtained distribution coefficients used for representing arsenic sorption onto Fe(III) precipitates were lower than those deduced from reported laboratory data. This discrepancy is attributed to a decrease in the schwertmannite arsenate sorption capacity as sulphate increases in the solution.

  6. Transient and steady-state kinetics of the oxidation of substituted benzoic acid hydrazides by myeloperoxidase.

    PubMed

    Burner, U; Obinger, C; Paumann, M; Furtmüller, P G; Kettle, A J

    1999-04-02

    Myeloperoxidase is the most abundant protein in neutrophils and catalyzes the production of hypochlorous acid. This potent oxidant plays a central role in microbial killing and inflammatory tissue damage. 4-Aminobenzoic acid hydrazide (ABAH) is a mechanism-based inhibitor of myeloperoxidase that is oxidized to radical intermediates that cause enzyme inactivation. We have investigated the mechanism by which benzoic acid hydrazides (BAH) are oxidized by myeloperoxidase, and we have determined the features that enable them to inactivate the enzyme. BAHs readily reduced compound I of myeloperoxidase. The rate constants for these reactions ranged from 1 to 3 x 10(6) M-1 s-1 (15 degrees C, pH 7.0) and were relatively insensitive to the substituents on the aromatic ring. Rate constants for reduction of compound II varied between 6.5 x 10(5) M-1 s-1 for ABAH and 1.3 x 10(3) M-1 s-1 for 4-nitrobenzoic acid hydrazide (15 degrees C, pH 7.0). Reduction of both compound I and compound II by BAHs adhered to the Hammett rule, and there were significant correlations with Brown-Okamoto substituent constants. This indicates that the rates of these reactions were simply determined by the ease of oxidation of the substrates and that the incipient free radical carried a positive charge. ABAH was oxidized by myeloperoxidase without added hydrogen peroxide because it underwent auto-oxidation. Although BAHs generally reacted rapidly with compound II, they should be poor peroxidase substrates because the free radicals formed during peroxidation converted myeloperoxidase to compound III. We found that the reduction of ferric myeloperoxidase by BAH radicals was strongly influenced by Hansch's hydrophobicity constants. BAHs containing more hydrophilic substituents were more effective at converting the enzyme to compound III. This implies that BAH radicals must hydrogen bond to residues in the distal heme pocket before they can reduce the ferric enzyme. Inactivation of myeloperoxidase by BAHs

  7. Oxidation and etching behaviors of the InAs surface in various acidic and basic chemical solutions

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Lee, Seunghyo; Lim, Sangwoo

    2017-04-01

    Indium arsenide (InAs) is the candidate of choice as a new channel material for application in future technologies beyond the Si-based electronic devices because it has a much higher electron mobility than silicon. In this study, the oxidation and etching behaviors of InAs (100) in various acidic and basic solutions, such as HF, HCl, H2SO4, NaOH, KOH, and NH4OH, were investigated. In addition, the effect of pH on the oxidation and etching reactions taking place on the InAs surface was studied using solutions with a pH ranging from 1 to 13. It was observed that the oxidation of the InAs surface was hindered in acidic solutions, which was attributed to the dissolution of the oxidized surface layer. In particular, the treatment of the InAs surface using a strongly acidic solution with a pH of less than 3 produced an oxide-free surface due to the predominant etching of the InAs surface. The addition of H2O2 to the acidic solutions greatly increased the etching rate of the InAs surface, which suggests that the oxidation process is the rate-limiting step in the sequence of reactions that occur during the etching of the InAs surface in acidic solutions. The etching of InAs was suppressed in neutral solutions, which resulted in the formation of a relatively thicker oxide layer on the surface, and mild etching of the InAs surface took place in basic solutions. However, in basic solutions, the addition of H2O2 did not significantly contribute to the increase of the oxidation state of the InAs surface; thus, its effect on the etching rate of InAs was smaller than in acidic solutions.

  8. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    NASA Astrophysics Data System (ADS)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  9. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  10. Properties of nanocellulose isolated from corncob residue using sulfuric acid, formic acid, oxidative and mechanical methods.

    PubMed

    Liu, Chao; Li, Bin; Du, Haishun; Lv, Dong; Zhang, Yuedong; Yu, Guang; Mu, Xindong; Peng, Hui

    2016-10-20

    In this work, nanocellulose was extracted from bleached corncob residue (CCR), an underutilized lignocellulose waste from furfural industry, using four different methods (i.e. sulfuric acid hydrolysis, formic acid (FA) hydrolysis, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation, and pulp refining, respectively). The self-assembled structure, morphology, dimension, crystallinity, chemical structure and thermal stability of prepared nanocellulose were investigated. FA hydrolysis produced longer cellulose nanocrystals (CNCs) than the one obtained by sulfuric acid hydrolysis, and resulted in high crystallinity and thermal stability due to its preferential degradation of amorphous cellulose and lignin. The cellulose nanofibrils (CNFs) with fine and individualized structure could be isolated by TEMPO-mediated oxidation. In comparison with other nanocellulose products, the intensive pulp refining led to the CNFs with the longest length and the thickest diameter. This comparative study can help to provide an insight into the utilization of CCR as a potential source for nanocellulose production.

  11. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater

    NASA Astrophysics Data System (ADS)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis

    2016-04-01

    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  12. Soot Nanostructure And Its Impact Upon The O2 Oxidation Rate

    NASA Technical Reports Server (NTRS)

    Wal, Randy L. Vander; Tomasek, Aaron J.

    2003-01-01

    Studies of soot oxidation have ranged from in situ flame studies to shock tubes to flow reactors. Each of these systems possesses particular advantages and limitations related to temperature, time and chemical environments. Despite the aforementioned differences, these soot oxidation investigations share three striking features. First and foremost is the wide variation in the rates of oxidation. Reported oxidation rates vary by factors of +6 to - 20 relative to the Nagle Strickland-Constable (NSC) rate for graphite oxidation [3]. Rate variations are not surprising, as the temperatures, residence times, types of oxidants and methods of oxidation differ from study to study. Nevertheless, a valid explanation for rate differences of this magnitude has yet to be presented.

  13. Experimental particle formation rates spanning tropospheric sulfuric acid and ammonia abundances, ion production rates, and temperatures

    NASA Astrophysics Data System (ADS)

    Kürten, Andreas; Bianchi, Federico; Almeida, Joao; Kupiainen-Määttä, Oona; Dunne, Eimear M.; Duplissy, Jonathan; Williamson, Christina; Barmet, Peter; Breitenlechner, Martin; Dommen, Josef; Donahue, Neil M.; Flagan, Richard C.; Franchin, Alessandro; Gordon, Hamish; Hakala, Jani; Hansel, Armin; Heinritzi, Martin; Ickes, Luisa; Jokinen, Tuija; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Lehtipalo, Katrianne; Leiminger, Markus; Makhmutov, Vladimir; Onnela, Antti; Ortega, Ismael K.; Petäjä, Tuukka; Praplan, Arnaud P.; Riccobono, Francesco; Rissanen, Matti P.; Rondo, Linda; Schnitzhofer, Ralf; Schobesberger, Siegfried; Smith, James N.; Steiner, Gerhard; Stozhkov, Yuri; Tomé, António; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Wagner, Paul E.; Wimmer, Daniela; Ye, Penglin; Baltensperger, Urs; Carslaw, Ken; Kulmala, Markku; Curtius, Joachim

    2016-10-01

    Binary nucleation of sulfuric acid and water as well as ternary nucleation involving ammonia are thought to be the dominant processes responsible for new particle formation (NPF) in the cold temperatures of the middle and upper troposphere. Ions are also thought to be important for particle nucleation in these regions. However, global models presently lack experimentally measured NPF rates under controlled laboratory conditions and so at present must rely on theoretical or empirical parameterizations. Here with data obtained in the European Organization for Nuclear Research CLOUD (Cosmics Leaving OUtdoor Droplets) chamber, we present the first experimental survey of NPF rates spanning free tropospheric conditions. The conditions during nucleation cover a temperature range from 208 to 298 K, sulfuric acid concentrations between 5 × 105 and 1 × 109 cm-3, and ammonia mixing ratios from zero added ammonia, i.e., nominally pure binary, to a maximum of 1400 parts per trillion by volume (pptv). We performed nucleation studies under pure neutral conditions with zero ions being present in the chamber and at ionization rates of up to 75 ion pairs cm-3 s-1 to study neutral and ion-induced nucleation. We found that the contribution from ion-induced nucleation is small at temperatures between 208 and 248 K when ammonia is present at several pptv or higher. However, the presence of charges significantly enhances the nucleation rates, especially at 248 K with zero added ammonia, and for higher temperatures independent of NH3 levels. We compare these experimental data with calculated cluster formation rates from the Atmospheric Cluster Dynamics Code with cluster evaporation rates obtained from quantum chemistry.

  14. Laccase-catalyzed bisphenol A oxidation in the presence of 10-propyl sulfonic acid phenoxazine.

    PubMed

    Ivanec-Goranina, Rūta; Kulys, Juozas; Bachmatova, Irina; Marcinkevičienė, Liucija; Meškys, Rolandas

    2015-04-01

    The kinetics of the Coriolopsis byrsina laccase-catalyzed bisphenol A (BisA) oxidation was investigated in the absence and presence of electron-transfer mediator 3-phenoxazin-10-yl-propane-1-sulfonic acid (PPSA) at pH5.5 and 25°C. It was shown that oxidation rate of the hardly degrading compound BisA increased in the presence of the highly reactive substrate PPSA. The increase of reaction rate depends on PPSA and BisA concentrations as well on their ratio, e.g., at 0.2 mmol/L of BisA and 2 μmol/L of PPSA the rate increased 2 times. The kinetic data were analyzed using a scheme of synergistic laccase-catalyzed BisA oxidation. The calculated constant, characterizing reactivity of PPSA with laccase, is almost 1000 times higher than the constant, characterizing reactivity of BisA with laccase. This means that mediator-assisted BisA oxidation rate can be 1000 times higher in comparison to non-mediator reaction if compounds concentration is equal but very low.

  15. Determination of dispersion parameters for oxidizing air and the oxidation rate of calcium sulfites in a pilot desulfurization plant

    SciTech Connect

    Burenkov, D.K.; Derevich, I.V.; Rzaev, A.I.

    1995-10-01

    In the effort to remove sulfur oxides from waste gases, the widest use is gained by desulfurization plants based on wet collection of sulfur dioxide in empty absorbers in which a limestone-gypsum suspension is sprayed, with gypsum being produced as a commodity product. Dispersion of oxidizing air in a model liquid and the oxidation rate of calcium sulfites in a suspension contained in the sump of a pilot desulfurization plant absorber are studied experimentally. Flow velocities, bubble trajectories, and oxidation rates were determined and are presented.

  16. Refractory Oxide Coatings on Titanium for Nitric Acid Applications

    NASA Astrophysics Data System (ADS)

    Ravi Shankar, A.; Kamachi Mudali, U.

    2014-07-01

    Tantalum and Niobium have good corrosion resistance in nitric acid as well as in molten chloride salt medium encountered in spent fuel nuclear reprocessing plants. Commercially, pure Ti (Cp-Ti) exhibits good corrosion resistance in nitric acid medium; however, in vapor condensates of nitric acid, significant corrosion was observed. In the present study, a thermochemical diffusion method was pursued to coat Ta2O5, Nb2O5, and Ta2O5 + Nb2O5 on Ti to improve the corrosion resistance and enhance the life of critical components in reprocessing plants. The coated samples were characterized by XRD, SEM, EDX, profilometry, micro-scratch test, and ASTM A262 Practice-C test in 65 pct boiling nitric acid. The SEM micrograph of the coated samples showed that uniform dense coating containing Ta2O5 and/or Nb2O5 was formed. XRD patterns indicated the formation of TiO2, Ta2O5/Nb2O5, and mixed oxide/solid solution phase on coated Ti samples. ASTM A262 Practice-C test revealed reproducible outstanding corrosion resistance of Ta2O5-coated sample in comparison to Nb2O5- and Ta2O5 + Nb2O5-coated sample. The hardness of the Ta2O5-coated Cp-Ti sample was found to be twice that of uncoated Cp-Ti. The SEM and XRD results confirmed the presence of protective oxide layer (Ta2O5, rutile TiO2, and mixed phase) on coated sample which improved the corrosion resistance remarkably in boiling liquid phase of nitric acid compared to uncoated Cp-Ti and Ti-5Ta-1.8Nb alloy. Three phase corrosion test conducted on Ta2O5-coated samples in boiling 11.5 M nitric acid showed poor corrosion resistance in vapor and condensate phases of nitric acid due to poor adhesion of the coating. The adhesive strength of the coated samples needs to be optimized in order to improve the corrosion resistance in vapor and condensate phases of nitric acid.

  17. Oleic acid-grafted chitosan/graphene oxide composite coating for corrosion protection of carbon steel.

    PubMed

    Fayyad, Eman M; Sadasivuni, Kishor Kumar; Ponnamma, Deepalekshmi; Al-Maadeed, Mariam Al Ali

    2016-10-20

    An anticorrosion coating film based on the formation of nanocomposite coating is reported in this study. The composite consisted of chitosan (green matrix), oleic acid, and graphene oxide (nano filler). The nanocomposite coating was arranged on the surface of carbon steel, and the corrosion resistance was monitored using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP). Compared to the pure chitosan (CS) coating, the corrosion resistance of oleic acid-modified chitosan/graphene oxide film (CS/GO-OA) is increased by 100 folds. Since the well-dispersed smart grafted nanolayers delayed the penetration rate of corrosive species and thus maintained long term anticorrosive stability which is correlated with hydrophobicity and permeability.

  18. Oxidation kinetics of crystal violet by potassium permanganate in acidic medium

    NASA Astrophysics Data System (ADS)

    Khan, Sameera Razi; Ashfaq, Maria; Mubashir; Masood, Summyia

    2016-05-01

    The oxidation kinetics of crystal violet (a triphenylmethane dye) by potassium permanganate was focused in an acidic medium by the spectrophotometric method at 584 nm. The oxidation reaction of crystal violet by potassium permanganate is carried out in an acidic medium at different temperatures ranging within 298-318 K. The kinetic study was carried out to investigate the effect of the concentration, ionic strength and temperature. The reaction followed first order kinetics with respect to potassium permanganate and crystal violet and the overall rate of the reaction was found to be second order. Thermodynamic activation parameters like the activation energy ( E a), enthalpy change (Δ H*), free energy change (Δ G*), and entropy change (Δ S*) have also been evaluated.

  19. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-07

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  20. Statistical analysis of oxidation rates for K Basin fuel in dry air

    SciTech Connect

    Trimble, D.J.

    1998-02-06

    Test data from oxidation of K Basin fuel (SNF) samples in dry air were reviewed, and linear reaction rates were derived on a time-average basis. The derived rates were compared to literature data for unirradiated uranium in dry air using rate law of the form log(rate) = a + b (I/T). The analyses found differences between the SNF data and the literature data. Oxidation rate below 150 C was higher for K Basin fuel than for unirradiated uranium.

  1. Combined defects in oxidative phosphorylation and fatty acid β-oxidation in mitochondrial disease

    PubMed Central

    Nsiah-Sefaa, Abena; McKenzie, Matthew

    2016-01-01

    Mitochondria provide the main source of energy to eukaryotic cells, oxidizing fats and sugars to generate ATP. Mitochondrial fatty acid β-oxidation (FAO) and oxidative phosphorylation (OXPHOS) are two metabolic pathways which are central to this process. Defects in these pathways can result in diseases of the brain, skeletal muscle, heart and liver, affecting approximately 1 in 5000 live births. There are no effective therapies for these disorders, with quality of life severely reduced for most patients. The pathology underlying many aspects of these diseases is not well understood; for example, it is not clear why some patients with primary FAO deficiencies exhibit secondary OXPHOS defects. However, recent findings suggest that physical interactions exist between FAO and OXPHOS proteins, and that these interactions are critical for both FAO and OXPHOS function. Here, we review our current understanding of the interactions between FAO and OXPHOS proteins and how defects in these two metabolic pathways contribute to mitochondrial disease pathogenesis. PMID:26839416

  2. CHLORINATION OF AMINO ACIDS: REACTION PATHWAYS AND REACTION RATES.

    PubMed

    How, Zuo Tong; Linge, Kathryn; Busetti, Francesco; Joll, Cynthia A

    2017-03-15

    Chlorination of amino acids can result in the formation of organic monochloramines or organic dichloramines, depending on the chlorine to amino acid ratio (Cl:AA). After formation, organic chloramines degrade into aldehydes, nitriles and N-chloraldimines. In this paper, the formation of organic chloramines from chlorination of lysine, tyrosine and valine were investigated. Chlorination of tyrosine and lysine demonstrated that the presence of a reactive secondary group can increase the Cl:AA ratio required for the formation of N,N-dichloramines, and potentially alter the reaction pathways between chlorine and amino acids, resulting in the formation of unexpected by-products. In a detailed investigation, we report rate constants for all reactions in the chlorination of valine, for the first time, using experimental results and modelling. At Cl:AA = 2.8, the chlorine was found to first react quickly with valine (5.4x104 M-1 s-1) to form N-monochlorovaline, with a slower subsequent reaction with N-monochlorovaline to form N,N-dichlorovaline (4.9x102 M-1 s-1), although some N-monochlorovaline degraded into isobutyraldehyde (1.0x10-4 s-1). The N,N-dichlorovaline then competitively degraded into isobutyronitrile (1.3x10-4 s-1) and N-chloroisobutyraldimine (1.2x10-4 s-1). In conventional drinking water disinfection, N-chloroisobutyraldimine can potentially be formed in concentrations higher than its odour threshold concentration, resulting in aesthetic challenges and an unknown health risk.

  3. Effect of pH and nitrite concentration on nitrite oxidation rate.

    PubMed

    Jiménez, E; Giménez, J B; Ruano, M V; Ferrer, J; Serralta, J

    2011-10-01

    The effect of pH and nitrite concentration on the activity of the nitrite oxidizing bacteria (NOB) in an activated sludge reactor has been determined by means of laboratory batch experiments based on respirometric techniques. The bacterial activity was measured at different pH and at different total nitrite concentrations (TNO₂). The experimental results showed that the nitrite oxidation rate (NOR) depends on the TNO₂ concentration independently of the free nitrous acid (FNA) concentration, so FNA cannot be considered as the real substrate for NOB. NOB were strongly affected by low pH values (no activity was detected at pH 6.5) but no inhibition was observed at high pH values (activity was nearly the same for the pH range 7.5-9.95). A kinetic expression for nitrite oxidation process including switch functions to model the effect of TNO₂ concentration and pH inhibition is proposed. Substrate half saturation constant and pH inhibition constants have been obtained.

  4. Fatty acid binding protein facilitates sarcolemmal fatty acid transport but not mitochondrial oxidation in rat and human skeletal muscle

    PubMed Central

    Holloway, Graham P; Lally, Jamie; Nickerson, James G; Alkhateeb, Hakam; Snook, Laelie A; Heigenhauser, George J F; Calles-Escandon, Jorge; Glatz, Jan F C; Luiken, Joost J F P; Spriet, Lawrence L; Bonen, Arend

    2007-01-01

    The transport of long-chain fatty acids (LCFAs) across mitochondrial membranes is regulated by carnitine palmitoyltransferase I (CPTI) activity. However, it appears that additional fatty acid transport proteins, such as fatty acid translocase (FAT)/CD36, influence not only LCFA transport across the plasma membrane, but also LCFA transport into mitochondria. Plasma membrane-associated fatty acid binding protein (FABPpm) is also known to be involved in sacrolemmal LCFA transport, and it is also present on the mitochondria. At this location, it has been identified as mitochondrial aspartate amino transferase (mAspAT), despite being structurally identical to FABPpm. Whether this protein is also involved in mitochondrial LCFA transport and oxidation remains unknown. Therefore, we have examined the ability of FABPpm/mAspAT to alter mitochondrial fatty acid oxidation. Muscle contraction increased (P < 0.05) the mitochondrial FAT/CD36 content in rat (+22%) and human skeletal muscle (+33%). By contrast, muscle contraction did not alter the content of mitochondrial FABPpm/mAspAT protein in either rat or human muscles. Electrotransfecting rat soleus muscles, in vivo, with FABPpm cDNA increased FABPpm protein in whole muscle (+150%; P < 0.05), at the plasma membrane (+117%; P < 0.05) and in mitochondria (+80%; P < 0.05). In these FABPpm-transfected muscles, palmitate transport into giant vesicles was increased by +73% (P < 0.05), and fatty acid oxidation in intact muscle was increased by +18% (P < 0.05). By contrast, despite the marked increase in mitochondrial FABPpm/mAspAT protein content (+80%), the rate of mitochondrial palmitate oxidation was not altered (P > 0.05). However, electrotransfection increased mAspAT activity by +70% (P < 0.05), and the mitochondrial FABPpm/mAspAT protein content was significantly correlated with mAspAT activity (r= 0.75). It is concluded that FABPpm has two distinct functions depending on its subcellular location: (a) it contributes to

  5. Comparison of the Sputter Rates of Oxide Films Relative to the Sputter Rate of SiO2

    SciTech Connect

    Baer, Donald R.; Engelhard, Mark H.; Lea, Alan S.; Nachimuthu, Ponnusamy; Droubay, Timothy C.; Kim, J.; Lee, B.; Mathews, C.; Opila, R. L.; Saraf, Laxmikant V.; Stickle, William F.; Wallace, Robert; Wright, B. S.

    2010-09-02

    Because of the increasing technological importance of oxide films for a variety of applications, there is a growing interest in knowing the sputter rates for a wide variety of oxides. To support needs of users of the Environmental Molecular Sciences Laboratory (EMSL) User facility as well as our research programs, we have made a series of measurements of the sputter rates for oxide films that have been grown by oxygen plasma assisted molecular beam epitaxy (OPA-MBE), pulsed laser deposition (PLD), Atomic Layer Deposition (ALD), electrochemical oxidation, or sputter deposition. The sputter rates for these oxide films were determined in comparison to the sputter rates for thermally grown SiO2, a common sputter rate reference material. The film thicknesses and densities of these films were usually measured using x-ray reflectivity (XRR). These samples were mounted in an x-ray photoelectron spectroscopy (XPS) system or an Auger electron spectrometer for sputtering measurements using argon ion sputtering. Although the primary objective was to determine relative sputter rates at a fixed angle, the measurements were also used to determine: i) the angle dependence of the relative sputter rates; ii) the energy dependence of the relative sputter rates; and iii) the extent of ion beam reduction for the various oxides. Materials examined include: SiO2 (reference films), Al2O3, CeO2, Cr2O3, Fe2O3, HfO2, ITO (In-Sn-oxide) Ta2O5, TiO2 (anatase and rutile) and ZnO. We find that the sputter rates for the oxides can vary up to a factor of two (usually slower) from that observed for SiO2. The ratios of sputter rates to SiO2 appear to be relatively independent of ion beam energy for the range of 1kV to 4 kV and for incident angles of less than 50º. As expected, the ion beam reduction of the oxides varies with the sputter angle. These studies demonstrate that we can usually obtain sputter rate reproducibility better than 5% for similar oxide films.

  6. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.

    PubMed

    Bekmezci, Ozan K; Ucar, Deniz; Kaksonen, Anna H; Sahinkaya, Erkan

    2011-05-30

    The treatment of synthetic acid mine drainage (AMD) water (pH 3.0-6.5) containing sulfate (3.0-3.5 g L(-1)) and various metals (Co, Cu, Fe, Mn, Ni, and Zn) was studied in an ethanol-fed sulfate-reducing 4-compartment anaerobic baffled reactor (ABR) at 32°C. The reactor was operated for 160 days at different chemical oxygen demand (COD)/sulfate ratios, hydraulic retention times (HRT), pH, and metal concentrations to study the robustness of the process. The last compartment of the reactor was aerated at different rates to study the bio-oxidation of sulfide to elemental sulfur. The highest sulfate reduction efficiency (88%) was obtained with a feed sulfate concentration of 3.5 g L(-1), COD/sulfate mass ratio of 0.737, feed pH of 3.0 and HRT of 2 days without aeration in the 4th compartment. The corresponding COD removal efficiency was about 92%. The alkalinity produced in the sulfidogenic ethanol oxidation neutralized the acidic mine water from pH 3.0-4.5 to pH 7.0-8.0. Effluent soluble and total heavy metal concentrations were substantially reduced with removal efficiencies generally higher than 99%, except for Mn (25-77%). Limited aeration in the 4th compartment of ABR promoted incomplete oxidation of sulfide to elemental sulfur rather than complete oxidation to sulfate. Depending on the aeration rate and HRT, 32-74% of produced sulfide was oxidized to elemental sulfur. This study demonstrates that by optimizing operating conditions, sulfate reduction, metal removal, alkalinity generation, and excess sulfide oxidation can be achieved in a single ABR treating AMD.

  7. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  8. 40 CFR 721.10529 - Cobalt iron manganese oxide, carboxylic acid-modified (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cobalt iron manganese oxide... Significant New Uses for Specific Chemical Substances § 721.10529 Cobalt iron manganese oxide, carboxylic acid... substance identified generically as cobalt iron manganese oxide, carboxylic acid-modified (PMN P-12-35)...

  9. Nitrogen mineralization rates of the acidic, xeric soils of the New Jersey Pinelands: field rates

    SciTech Connect

    Poovarodom, S.; Tate, R.L. III; Bloom, R.A.

    1988-04-01

    Using the buried-bag procedure, the authors quantified nitrogen mineralization rates in the xeric, acidic Lakehurst, and Atsion sands of the New Jersey Pine Barrens. Average annual nitrogen yields in the upper 15 cm for the Lakehurst and the Atsion sands were 38.4 and 53.0 kg N/ha, corresponding to 4.5 and 2.5% of the total nitrogen, respectively. Net nitrogen mineralization in both soils exhibited distinct seasonal patterns with maxima in summer and minimum rates in the winter. Nitrification accounted for only 5% of the total N mineralized in both soils. This is consistent with the finding of low populations of autotrophic nitrifiers in these soils.

  10. Fuel selection in Wistar rats exposed to cold: shivering thermogenesis diverts fatty acids from re-esterification to oxidation.

    PubMed

    Vaillancourt, Eric; Haman, François; Weber, Jean-Michel

    2009-09-01

    This study characterizes the effects of shivering thermogenesis on metabolic fuel selection in Wistar rats. Because lipids account for most of the heat produced, we have investigated: (1) whether the rate of appearance of non-esterified fatty acids (R(a) NEFAs) is stimulated by shivering, (2) whether mono-unsaturated (oleate) and saturated fatty acids (palmitate) are affected similarly, and (3) whether the partitioning between fatty acid oxidation and re-esterification is altered by cold exposure. Fuel oxidation was measured by indirect calorimetry and fatty acid mobilization by continuous infusion of 9,10-[(3)H]oleate and 1-[(14)C]palmitate. During steady-state cold exposure, results show that total heat production is unequally shared by the oxidation of lipids (52% of metabolic rate), carbohydrates (35%) and proteins (13%), and that the same fuel selection pattern is observed at all shivering intensities. All previous research shows that mammals stimulate R(a) NEFA to support exercise or shivering. In contrast, results reveal that the R(a) NEFA of the rat remains constant during cold exposure (55 micromol kg(1) min(1)). No preferential use of mono-unsaturated over saturated fatty acids could be demonstrated. The rat decreases its rate of fatty acid re-esterification from 48.4 +/- 6.4 to 19.6 +/- 6.3 micromol kg(1) min(1) to provide energy to shivering muscles. This study is the first to show that mammals do not only increase fatty acid availability for oxidation by stimulating R(a) NEFA. Reallocation of fatty acids from re-esterification to oxidation is a novel, alternative strategy used by the rat to support shivering.

  11. Controls and rates of acid production in commercial-scale sulfur blocks.

    PubMed

    Birkham, T K; Hendry, M J; Barbour, S L; Lawrence, J R

    2010-01-01

    Acidic drainage (pH 0.4-1.0) from oxidizing elemental sulfur (S(0)) blocks is an environmental concern in regions where S(0) is stockpiled. In this study, the locations, controls, and rates of H(2)SO(4) production in commercial-scale S(0) blocks ( approximately 1-2 x 10(6) m(3)) in northern Alberta, Canada, were estimated. In situ modeling of O(2) concentrations ([O(2)]) suggest that 70 to >97% of the annual H(2)SO(4) production occurs in the upper 1 m of the blocks where temperatures increase to >15 degrees C during the summer. Laboratory experiments show that S(0) oxidation rates are sensitive to temperature (Q(10) = 4.3) and dependent on the activity of autotrophic S(0)-oxidizing microbes. The annual efflux of SO(4) in drainage water from a S(0) block (5.5 x 10(5) kg) was within the estimated range of SO(4) production within the block (2.7 x 10(5) to 1.2 x 10(6) kg), suggesting that H(2)SO(4) production and removal rates were approximately equal during the study period. The low mean relative humidity within the block (68%; SD = 17%; n = 21) was attributed to osmotic suction from elevated H(2)SO(4) concentrations and suggests a mean in situ pH of approximately -2.1. The low pH of drainage waters was attributed to the mixing of fresh infiltrating water and low-pH in situ water. Heat generation during S(0) oxidation was an important factor in maintaining elevated temperatures (mean, 11.1 degrees C) within the block. The implications of this research are relevant globally because construction methods and the physical properties of S(0) blocks are similar worldwide.

  12. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment.

    PubMed

    Stopnisek, Nejc; Gubry-Rangin, Cécile; Höfferle, Spela; Nicol, Graeme W; Mandic-Mulec, Ines; Prosser, James I

    2010-11-01

    Both bacteria and thaumarchaea contribute to ammonia oxidation, the first step in nitrification. The abundance of putative ammonia oxidizers is estimated by quantification of the functional gene amoA, which encodes ammonia monooxygenase subunit A. In soil, thaumarchaeal amoA genes often outnumber the equivalent bacterial genes. Ecophysiological studies indicate that thaumarchaeal ammonia oxidizers may have a selective advantage at low ammonia concentrations, with potential adaptation to soils in which mineralization is the major source of ammonia. To test this hypothesis, thaumarchaeal and bacterial ammonia oxidizers were investigated during nitrification in microcosms containing an organic, acidic forest peat soil (pH 4.1) with a low ammonium concentration but high potential for ammonia release during mineralization. Net nitrification rates were high but were not influenced by addition of ammonium. Bacterial amoA genes could not be detected, presumably because of low abundance of bacterial ammonia oxidizers. Phylogenetic analysis of thaumarchaeal 16S rRNA gene sequences indicated that dominant populations belonged to group 1.1c, 1.3, and "deep peat" lineages, while known amo-containing lineages (groups 1.1a and 1.1b) comprised only a small proportion of the total community. Growth of thaumarchaeal ammonia oxidizers was indicated by increased abundance of amoA genes during nitrification but was unaffected by addition of ammonium. Similarly, denaturing gradient gel electrophoresis analysis of amoA gene transcripts demonstrated small temporal changes in thaumarchaeal ammonia oxidizer communities but no effect of ammonium amendment. Thaumarchaea therefore appeared to dominate ammonia oxidation in this soil and oxidized ammonia arising from mineralization of organic matter rather than added inorganic nitrogen.

  13. Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of alpha- and beta-pinene.

    PubMed

    Bilde, M; Pandis, S N

    2001-08-15

    The semivolatile oxidation products (trans-norpinic acid, pinic acid, cis-pinonic acid, etc.) of the biogenic monoterpenes (alpha-pinene, beta-pinene, etc.) contribute to the atmospheric burden of particulate matter. Using the tandem differential mobility analysis (TDMA) technique evaporation rates of glutaric acid, trans-norpinic acid, and pinic acid particles were measured in a laminar flow reactor. The vapor pressure of glutaric acid was found to be log(p0 glutaric/Pa) = - 3,510 K/T + 8.647 over the temperature range 290-300 K in good agreement with the values previously reported by Tao and McMurry (1989). The measured vapor pressure of trans-norpinic acid over the temperature range 290-312 K is log(p0 norpinic/Pa) = - 2,196.9 K/T + 3.522, and the vapor pressure of pinic acid is log(p0 pinic/ Pa) = - 5,691.7 K/T + 14.73 over the temperature range 290-323 K. The uncertainty on the reported vapor pressures is estimated to be approximately +/- 50%. The vapor pressure of cis-pinonic acid is estimated to be of the order of 7 x 10(-5) Pa at 296 K.

  14. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    NASA Technical Reports Server (NTRS)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  15. Dose rate dependence of the speciation of neptunium in irradiated solutions of nitric acid

    SciTech Connect

    Precek, M.; Paulenova, A.; Mincher, B.J.; Mezyk, S.P.

    2013-07-01

    The effects of radiation on the redox speciation of neptunium are of interest due to their impact on the performance of separation of neptunium from highly radioactive solutions of dissolved used nuclear fuel. In this study, the influence of dose rate change from 0.4 kGy/h to 6 kGy/h was examined during irradiation of solutions of initially hexavalent 2.0-2.5 mM neptunium in nitric acid of two different concentrations (0.5 and 1 M). Results indicate that the immediate radiolytic steady-state concentration of neptunium(V) were depressed and its initial radiolytic yield was up to 2-times lower (in 1 M HNO{sub 3} solutions)during irradiations with the higher dose rate. The finding is explained on the basis of the enhancement of the role of oxidizing radicals during the radiolytic process. (authors)

  16. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.

    PubMed

    Guinea, Elena; Arias, Conchita; Cabot, Pere Lluís; Garrido, José Antonio; Rodríguez, Rosa María; Centellas, Francesc; Brillas, Enric

    2008-01-01

    Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed.

  17. Increasing mitochondrial muscle fatty acid oxidation induces skeletal muscle remodeling toward an oxidative phenotype.

    PubMed

    Hénique, Carole; Mansouri, Abdelhak; Vavrova, Eliska; Lenoir, Véronique; Ferry, Arnaud; Esnous, Catherine; Ramond, Elodie; Girard, Jean; Bouillaud, Frédéric; Prip-Buus, Carina; Cohen, Isabelle

    2015-06-01

    Adult skeletal muscle is a dynamic, remarkably plastic tissue, which allows myofibers to switch from fast/glycolytic to slow/oxidative types and to increase mitochondrial fatty acid oxidation (mFAO) capacity and vascularization in response to exercise training. mFAO is the main muscle energy source during endurance exercise, with carnitine palmitoyltransferase 1 (CPT1) being the key regulatory enzyme. Whether increasing muscle mFAO affects skeletal muscle physiology in adulthood actually remains unknown. To investigate this, we used in vivo electrotransfer technology to express in mouse tibialis anterior (TA), a fast/glycolytic muscle, a mutated CPT1 form (CPT1mt) that is active but insensitive to malonyl-CoA, its physiologic inhibitor. In young (2-mo-old) adult mice, muscle CPT1mt expression enhanced mFAO (+40%), but also increased the percentage of oxidative fibers (+28%), glycogen content, and capillary-to-fiber density (+45%). This CPT1mt-induced muscle remodeling, which mimicked exercise-induced oxidative phenotype, led to a greater resistance to muscle fatigue. In the context of aging, characterized by sarcopenia and reduced oxidative capacity, CPT1mt expression in TAs from aged (20-mo-old) mice partially reversed aging-associated sarcopenia and fiber-type transition, and increased muscle capillarity. These findings provide evidence that mFAO regulates muscle phenotype and may be a potential target to combat age-related decline in muscle function.

  18. Mechanism of oxidation of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt with oxygen in subcritical water.

    PubMed

    Imbierowicz, Mirosław

    2017-06-01

    The article presents the results of studies on the oxidation mechanism of 3-hydroxy-2,7-naphthalenedisulfonic acid disodium salt (R-salt) with oxygen in subcritical water. To this aim, a series of experiments were carried out which showed that at a temperature of 413 K and pH > 9 the oxidation reaction of a substrate with oxygen was relatively quick and after approximately 40 min the R-salt oxidation yield exceeded 95%. In an acidic medium (pH < 7), the rate of R-salt oxidation is small. In order to identify the mechanism of R-salt oxidation, experiments were carried out at 413-569 K in solutions with pH = 10.0 and at partial oxygen pressure pO2 = 1.73 MPa. As a result of these experiments, a stable oxidation product was isolated from the reaction mixture and subjected to spectroscopic analysis. The analysis of (H)NMR of this product proved that a stable intermediate product of R-salt oxidation was 4-sulfophthalic acid sodium salt. The results of the experiments have shown that destructive oxidation of R-salt can easily be obtained at a temperature of 413 K, but satisfactory reduction of TOC in wastewater containing this substrate requires the use of very high temperature: at 569 K only 60% reduction of TOC was achieved.

  19. CPT1{alpha} over-expression increases long-chain fatty acid oxidation and reduces cell viability with incremental palmitic acid concentration in 293T cells

    SciTech Connect

    Jambor de Sousa, Ulrike L.; Koss, Michael D.; Fillies, Marion; Gahl, Anja; Scheeder, Martin R.L.; Cardoso, M. Cristina; Leonhardt, Heinrich; Geary, Nori; Langhans, Wolfgang; Leonhardt, Monika . E-mail: monika.leonhardt@inw.agrl.ethz.ch

    2005-12-16

    To test the cellular response to an increased fatty acid oxidation, we generated a vector for an inducible expression of the rate-limiting enzyme carnitine palmitoyl-transferase 1{alpha} (CPT1{alpha}). Human embryonic 293T kidney cells were transiently transfected and expression of the CPT1{alpha} transgene in the tet-on vector was activated with doxycycline. Fatty acid oxidation was measured by determining the conversion of supplemented, synthetic cis-10-heptadecenoic acid (C17:1n-7) to C15:ln-7. CPT1{alpha} over-expression increased mitochondrial long-chain fatty acid oxidation about 6-fold. Addition of palmitic acid (PA) decreased viability of CPT1{alpha} over-expressing cells in a concentration-dependent manner. Both, PA and CPT1{alpha} over-expression increased cell death. Interestingly, PA reduced total cell number only in cells over-expressing CPT1{alpha}, suggesting an effect on cell proliferation that requires PA translocation across the mitochondrial inner membrane. This inducible expression system should be well suited to study the roles of CPT1 and fatty acid oxidation in lipotoxicity and metabolism in vivo.

  20. Lewis acid catalysis and Green oxidations: sequential tandem oxidation processes induced by Mn-hyperaccumulating plants.

    PubMed

    Escande, Vincent; Renard, Brice-Loïc; Grison, Claude

    2015-04-01

    Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.

  1. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness.

  2. Alkylation by propylene oxide of deoxyribonucleic acid, adenine, guanosine and deoxyguanylic acid

    PubMed Central

    Lawley, P. D.; Jarman, M.

    1972-01-01

    1. Propylene oxide reacts with DNA in aqueous buffer solution at about neutral pH to yield two principal products, identified as 7-(2-hydroxypropyl)guanine and 3-(2-hydroxypropyl)adenine, which hydrolyse out of the alkylated DNA at neutral pH values at 37°C. 2. These products were obtained in quantity by reactions between propylene oxide and guanosine or adenine respectively. 3. The reactions between propylene oxide and adenine in acetic acid were parallel to those between dimethyl sulphate and adenine in neutral aqueous solution; the alkylated positions in adenine in order of decreasing reactivity were N-3, N-1 and N-9. A method for separating these alkyladenines is described. 4. Deoxyguanylic acid sodium salt was alkylated at N-7 by propylene oxide in neutral aqueous solution. 5. The nature of the side chain in the principal alkylation products was established by mass spectrometry, and the nature of the products is consistent with their formation by the bimolecular reaction mechanism. PMID:5073240

  3. Rat liver microsomal lipid peroxidation produced during the oxidative metabolism of ethacrynic acid.

    PubMed

    Yamamoto, K; Masubuchi, Y; Narimatsu, S; Kobayashi, S; Horie, T

    2001-04-01

    Thiobarbituric acid reactive substances (TBARS) were produced in rat liver microsomal suspension incubated with ethacrynic acid (loop diuretic drug) and NADPH. Two oxidative metabolites of ethacrynic acid with dicarboxylic acid and hydroxylated ethyl group, respectively, were formed in the reaction mixture. The oxidative metabolism of ethacrynic acid was inhibited by cytochrome P450 inhibitors. The formation of TBARS was remarkably depressed by inhibitors like diethyldithiocarbamate and disulfiram. These results indicate that lipid peroxidation occurred in rat liver microsomes through the oxidative metabolism of ethacrynic acid.

  4. The Loss Of Macrophage Fatty Acid Oxidation Does Not Potentiate Systemic Metabolic Dysfunction.

    PubMed

    Gonzalez-Hurtado, Elsie; Lee, Jieun; Choi, Joseph; Selen Alpergin, Ebru S; Collins, Samuel L; Horton, Maureen R; Wolfgang, Michael J

    2017-02-21

    Fatty acid oxidation in macrophages has been suggested to play a causative role in high-fat diet-induced metabolic dysfunction, particularly in the etiology of adipose driven insulin resistance. To understand the contribution of macrophage fatty acid oxidation directly to metabolic dysfunction in high-fat diet-induced obesity, we generated mice with a myeloid-specific knockout of carnitine palmitoyltransferase 2 (CPT2 Mϕ-KO), an obligate step in mitochondrial long-chain fatty acid oxidation. While fatty acid oxidation was clearly induced upon IL-4 stimulation, fatty acid oxidation deficient CPT2 Mϕ-KO bone marrow derived macrophages (BMDM) displayed canonical markers of M2 polarization following IL-4 stimulation in vitro. In addition, loss of macrophage fatty acid oxidation in vivo did not alter the progression of high-fat diet induced obesity, inflammation, macrophage polarization, oxidative stress, or glucose intolerance. These data suggest that although alternatively activated macrophages up-regulate fatty acid oxidation, fatty acid oxidation is dispensable for macrophage polarization and high-fat diet-induced metabolic dysfunction. Macrophage fatty acid oxidation likely plays a correlative rather than causative role in systemic metabolic dysfunction.

  5. Activation of peroxisome proliferator-activated receptor-{alpha} enhances fatty acid oxidation in human adipocytes

    SciTech Connect

    Lee, Joo-Young; Hashizaki, Hikari; Goto, Tsuyoshi; Sakamoto, Tomoya; Takahashi, Nobuyuki; Kawada, Teruo

    2011-04-22

    Highlights: {yields} PPAR{alpha} activation increased mRNA expression levels of adipocyte differentiation marker genes and GPDH activity in human adipocytes. {yields} PPAR{alpha} activation also increased insulin-dependent glucose uptake in human adipocytes. {yields} PPAR{alpha} activation did not affect lipid accumulation in human adipocytes. {yields} PPAR{alpha} activation increased fatty acid oxidation through induction of fatty acid oxidation-related genes in human adipocytes. -- Abstract: Peroxisome proliferator-activated receptor-{alpha} (PPAR{alpha}) is a key regulator for maintaining whole-body energy balance. However, the physiological functions of PPAR{alpha} in adipocytes have been unclarified. We examined the functions of PPAR{alpha} using human multipotent adipose tissue-derived stem cells as a human adipocyte model. Activation of PPAR{alpha} by GW7647, a potent PPAR{alpha} agonist, increased the mRNA expression levels of adipocyte differentiation marker genes such as PPAR{gamma}, adipocyte-specific fatty acid-binding protein, and lipoprotein lipase and increased both GPDH activity and insulin-dependent glucose uptake level. The findings indicate that PPAR{alpha} activation stimulates adipocyte differentiation. However, lipid accumulation was not changed, which is usually observed when PPAR{gamma} is activated. On the other hand, PPAR{alpha} activation by GW7647 treatment induced the mRNA expression of fatty acid oxidation-related genes such as CPT-1B and AOX in a PPAR{alpha}-dependent manner. Moreover, PPAR{alpha} activation increased the production of CO{sub 2} and acid soluble metabolites, which are products of fatty acid oxidation, and increased oxygen consumption rate in human adipocytes. The data indicate that activation of PPAR{alpha} stimulates both adipocyte differentiation and fatty acid oxidation in human adipocytes, suggesting that PPAR{alpha} agonists could improve insulin resistance without lipid accumulation in adipocytes. The expected

  6. Genetic Variation of Fatty Acid Oxidation and Obesity, A Literature Review

    PubMed Central

    Freitag Luglio, Harry

    2016-01-01

    Modulation of fat metabolism is an important component of the etiology of obesity as well as individual response to weight loss program. The influence of lipolysis process had receives many attentions in recent decades. Compared to that, fatty acid oxidation which occurred after lipolysis seems to be less exposed. There are limited publications on how fatty acid oxidation influences predisposition to obesity, especially the importance of genetic variations of fatty acid oxidation proteins on development of obesity. The aim of this review is to provide recent knowledge on how polymorphism of genes related fatty acid oxidation is obtained. Studies in human as well as animal model showed that disturbance of genes related fatty acid oxidation process gave impact on body weight and risks to obesity. Several polymorphisms on CD36, CPT, ACS and FABP had been shown to be related to obesity either by regulating enzymatic activity or directly influence fatty acid oxidation process. PMID:27127449

  7. Ruthenium-catalyzed oxidation of alkenes, alkynes, and alcohols to organic acids with aqueous hydrogen peroxide.

    PubMed

    Che, Chi-Ming; Yip, Wing-Ping; Yu, Wing-Yiu

    2006-09-18

    A protocol that adopts aqueous hydrogen peroxide as a terminal oxidant and [(Me3tacn)(CF3CO2)2Ru(III)(OH2)]CF3CO2 (1; Me3tacn = 1,4,7-trimethyl-1,4,7-triazacyclononane) as a catalyst for oxidation of alkenes, alkynes, and alcohols to organic acids in over 80% yield is presented. For the oxidation of cyclohexene to adipic acid, the loading of 1 can be lowered to 0.1 mol %. On the one-mole scale, the oxidation of cyclohexene, cyclooctene, and 1-octanol with 1 mol % of 1 produced adipic acid (124 g, 85% yield), suberic acid (158 g, 91% yield), and 1-octanoic acid (129 g, 90% yield), respectively. The oxidative C=C bond-cleavage reaction proceeded through the formation of cis- and trans-diol intermediates, which were further oxidized to carboxylic acids via C-C bond cleavage.

  8. Comparative Oxidative Stability of Fatty Acid Alkyl Esters by Accelerated Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several fatty acid alkyl esters were subjected to accelerated methods of oxidation, including EN 14112 (Rancimat method) and pressurized differential scanning calorimetry (PDSC). Structural trends elucidated from both methods that improved oxidative stability included decreasing the number of doubl...

  9. Kinetics of atmospheric oxidation of nitrous acid by oxygen in aqueous medium

    NASA Astrophysics Data System (ADS)

    Mudgal, Punit K.; Bansal, S. P.; Gupta, K. S.

    The facts that the high concentrations of nitrous acid have been reported in dew, fog, rain and cloud water and that its oxidation by dissolved oxygen is very fast in freezing conditions have led us to study the kinetics of aqueous phase oxidation of nitrous acid by dissolved oxygen in the pH range 1.0-4.5 at 30 °C. The reaction was followed by measuring [O 2] and under pseudo-first-order conditions the results were in agreement with the rate law: -d[O]t/dt=k0[N]02[H]2[O]t/(K+[H])2, where k0 is third-order composite rate coefficient and Ka is the dissociation constant of HNO 2. The values of k0 and Ka were determined to be 1×10 2 L 2 mol -2 s -1 and 3.84×10 -4, respectively. Consistent with the kinetics results two alternative mechanisms have been considered. The first of these mechanisms assumes an intermediate complex formation, [HNO 2.O 2], by the reaction of HNO 2 and O 2 in a rapid pre-equilibrium, followed by the reaction of this intermediate with another molecule of HNO 2. The second mechanism, originally proposed by Damschen and Martin [1983. Aqueous aerosol oxidation of nitrous acid by O 2, O 3 and H 2O 2. Atmospheric Environment 17, 2005-2011], assumes the formation of a dimer, [HNO 2] 2, in a rapid pre-equilibrium followed by the reaction of the dimer with O 2 to form HNO 3. The application of the mechanisms to fast oxidation of nitrite by dissolved oxygen under freezing conditions is discussed.

  10. Determining the Fate of a Non-Heme Iron Oxidation Catalyst Under Illumination, Oxygen, and Acid.

    PubMed

    Esarey, Samuel L; Holland, Joel C; Bartlett, Bart M

    2016-11-07

    We analyze the stability of the non-heme water oxidation catalyst (WOC), Fe(bpmcn)Cl2 toward oxygen and illumination under nonaqueous and acidic conditions. Fe(bpmcn)Cl2 has been previously used as a C-H activation catalyst, a homogeneous WOC, and as a cocatalyst anchored to WO3 for photoelectrochemical water oxidation. This paper reports that the ligand dissociates at pH 1 with a rate constant k = 19.8(2) × 10(-3) min(-1), resulting in loss of catalytic activity. The combination of UV-vis experiments, (1)H NMR spectroscopy, and cyclic voltammetry confirm free bpmcn and Fe(2+) present in solution under acidic conditions. Even under nonaqueous conditions, both oxygen and illumination together show slow oxidation of iron over the course of a few hours, consistent with forming an Fe(3+)-O2(-) intermediate as corroborated by resonance-enhanced Raman spectroscopy, with a rate constant of k = 3.03(8) × 10(-3) min(-1). This finding has implications in both the merits of non-heme iron complexes as WOCs as well as cocatalysts in photoelectrochemical schemes: the decomposition mechanisms may include both anchoring group hydrolysis and instability under illumination.

  11. Fatty acid oxidation in brain is limited by the low activity of 3-ketoacyl-CoA thiolase

    SciTech Connect

    Yang, S.; He, X.; Schulz, H.

    1987-05-01

    In an attempt to establish why the brain is virtually incapable of oxidizing fatty acids, the activities of the ..beta..-oxidation enzymes in rat brain and rat heart mitochondria were measured and compared with each other. Although the apparent K/sub m/ values and chain-length specificities of the brain and heart enzymes are similar, the specific activities of all but one brain enzyme are between 4% and 50% of those observed in heart mitochondria. The exception is 3-ketoacyl-CoA thiolase (EC 2.3.1.16) whose specific activity in brain mitochondria is 125-times lower than in heart mitochondria. The partially purified brain 3-ketoacyl-CoA thiolase was shown to be catalytically and immunologically identical with the heart enzyme. The low rate of fatty acid oxidation in brain mitochondria estimated on the basis of palmitoylcarnitine-supported respiration and (1-/sup 14/C)palmitoylcarnitine degradation may be the consequence of the low activity of 3-ketoacyl-CoA thiolase. Inhibition of (1-/sup 14/C)palmitoylcarnitine oxidation by 4-bromocrotonic acid proves that the observed oxidation of fatty acids in brain is dependent on 3-ketoacyl-CoA thiolase and thus occurs via ..beta..-oxidation. Since the reactions catalyzed by carnitine palmitoyltransferase (EC 2.3.1.21) and acyl-CoA synthetase (EC 6.2.1.3) do not seem to restrict fatty acid oxidation in brain, it is concluded that the oxidation of fatty acids in rat brain is limited by the activity of the mitochondrial 3-ketoacyl-CoA thiolase.

  12. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    EPA Science Inventory

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...

  13. Measurement and modeling of oxidation rate of hydrogen isotopic gases by soil.

    PubMed

    Ota, Masakazu; Yamazawa, Hiromi; Moriizumi, Jun; Iida, Takao

    2007-01-01

    Measurements of oxidation rate of hydrogen isotopic gases by soil were made to model HT oxidation rate by soil. Soil was sampled at a cultivated farmland and laboratory measurements of the oxidation rate of H(2) and D(2) gases simulating HT gas were carried out under controlled conditions of soil. The oxidation rate increased with increase of H(2) or D(2) concentration in air and nearly saturated at high concentration. The oxidation rate was low under extremely dry and wet soil conditions and was the highest at soil water content of 8-14 w/w%. The oxidation rate increased exponentially with increasing soil temperature and was the highest at 46 degrees C. Michaelis constant K(m) increased exponentially with increasing soil temperature. Oxidation rate of H(2) was generally higher than that of D(2), while K(m) of H(2) was generally lower than that of D(2). From these results, oxidation rate of HT was modeled as a product of the functions that represent dependency on each soil factor.

  14. Fatty acid oxidation and the regulation of malonyl-CoA in human muscle.

    PubMed

    Båvenholm, P N; Pigon, J; Saha, A K; Ruderman, N B; Efendic, S

    2000-07-01

    Questions concerning whether malonyl-CoA is regulated in human muscle and whether malonyl-CoA modulates fatty acid oxidation are still unanswered. To address these questions, whole-body fatty acid oxidation and the concentration of malonyl-CoA, citrate, and malate were determined in the vastus lateralis muscle of 16 healthy nonobese Swedish men during a sequential euglycemic-hyperinsulinemic clamp. Insulin was infused at rates of 0.25 and 1.0 mU x kg(-1) x min(-1), and glucose was infused at rates of 2.0 +/- 0.2 and 8.1 +/- 0.7 mg x kg(-1) x min(-1), respectively. During the low-dose insulin infusion, whole-body fatty acid oxidation, as determined by indirect calorimetry, decreased by 22% from a basal rate of 0.94 +/- 0.06 to 0.74 +/- 0.07 mg x kg(-1) x min(-1) (P = 0.005), but no increase in malonyl-CoA was observed. In contrast, during the high-dose insulin infusion, malonyl-CoA increased from 0.20 +/- 0.01 to 0.24 +/- 0.01 nmol/g (P < 0.001), and whole-body fatty acid oxidation decreased by an additional 41% to 0.44 +/- 0.06 mg x kg(-1) x min(-1) (P < 0.001). The increase in malonyl-CoA was associated with 30-50% increases in the concentrations of citrate (102 +/- 6 vs. 137 +/- 7 nmol/g, P < 0.001), an allosteric activator of the rate-limiting enzyme in the malonyl-CoA formation, acetyl-CoA carboxylase, and malate (80 +/- 6 vs. 126 +/- 9 nmol/g, P = 0.002), an antiporter for citrate efflux from the mitochondria. Significant correlations were observed between the concentration of malonyl-CoA and both glucose utilization (r = 0.53, P = 0.002) and the sum of the concentrations of citrate and malate (r = 0.52, P < 0.001), a proposed index of the cytosolic concentration of citrate. In addition, an inverse correlation between malonyl-CoA concentration and fatty acid oxidation was observed (r = -0.32, P = 0.03). The results indicate that an infusion of insulin and glucose at a high rate leads to increases in the concentration of malonyl-CoA in skeletal muscle and to

  15. Physiochemical Characterization of Iodine (V) Oxide: Hydration Rates

    DTIC Science & Technology

    2014-12-15

    overall oxidation‐reduction reaction between aluminum and the various iodine (V) oxides. For comparative purposes, enthalpy of formation for HI3O8...from Reference 19. 14 Distribution A Scheme 2. Enthalpy of Reaction 10Al(s) + 3I2O5(s) → 5Al2O3(g) + 3I2(g); ΔHrxn = ‐6.04 kJ/g or... enthalpy for each of these reactions is similar when the iodine (V) oxides react with aluminum, however, the number of moles of gas produced varies

  16. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    PubMed Central

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2014-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through newborn screening by tandem mass spectrometry. With earlier identification and preventative treatments, mortality and morbidity rates have improved. However, in the absence of severe health and neurological effects from these disorders, subtle developmental delays or neuropsychological deficits have been noted. Medical records were reviewed to identify outcomes in 85 children with FAOD’s diagnosed through newborn screening and followed at one metabolic center. Overall, 54% of these children identified through newborn screening experienced developmental challenges. Speech delay or relative weakness in language was noted in 26 children (31%) and motor delays were noted in 24 children (29%). The majority of the 46 children receiving psychological evaluations performed well within the average range, with only 11% scoring <85 on developmental or intelligence tests. These results highlight the importance of screening children with fatty acid oxidation disorders to identify those with language, motor, or cognitive delay. Although expanded newborn screening dramatically changes the health and developmental outcomes in many children with fatty acid oxidation disorders, it also complicates the interpretation of biochemical and molecular findings and raises questions about the effectiveness or necessity of treatment in a large number of cases. Only by systematically evaluating developmental and neuropsychological outcomes using standardized methods will the true implications of newborn screening, laboratory results, and treatments for neurocognitive outcome in these disorders become clear. PMID:23798014

  17. Determination of in Situ Rates of Methane Production and Oxidation From Terrestrial Wetlands

    NASA Astrophysics Data System (ADS)

    Shoemaker, J. K.; Schrag, D. P.

    2005-12-01

    Wetlands are responsible for over 70% of non-anthropogenic methane emissions. We present a method, using the δ13C of CO2 in pore water, to obtain the in situ rates of methanogenesis occurring beneath the wetland surface. This method allows us to distinguish methanogenesis from methane oxidation during escape, both of which contribute to the net methane flux. The δ13C of CO2(aq) - the dominant form of DIC in acidic natural waters - reflects the processes occurring at that location modified by transport of gas from surrounding depths. Methane production and oxidation are imprinted in the δ13C signature of the aqueous CO2 with heaviest values at depth resulting from the fractionation associated with methane production. We measured δ13C profiles with depth along with CO2 and CH4 concentrations from Sallie's Fen in Barrington, NH. Although the δ13C profiles varied considerably between locations and seasons, the logarithmic shape of the curves showed that methane production was restricted below a certain depth in the sediment - sometimes as shallow as 30 cm. Using a one-dimensional diffusion-reaction model, we are able to estimate rates of methane oxidation and successfully reproduce features present in the data's seasonal cycle. Features of the data not reproducible by the model indicate the importance of alternate gas transport routes such as ebullition and plant-mediated transport. The model also provides evidence for low-level oxygen availability during the winter-spring transition and narrow zones of very high productivity at depths of 60-70cm during the winter. We suggest that this method provides insight directly into the processes that determine methane fluxes from natural wetlands and has great potential for improving our understanding of the biogeochemistry of these systems.

  18. Theoretical insights into heme-catalyzed oxidation of cyclohexane to adipic acid.

    PubMed

    Noack, Holger; Georgiev, Valentin; Blomberg, Margareta R A; Siegbahn, Per E M; Johansson, Adam Johannes

    2011-02-21

    Adipic acid is a key compound in the chemical industry, where it is mainly used in the production of polymers. The conventional process of its generation requires vast amounts of energy and, moreover, produces environmentally deleterious substances. Thus, there is interest in alternative ways to gain adequate amounts of adipic acid. Experimental reports on a one-pot iron-catalyzed conversion of cyclohexane to adipic acid motivated a theoretical investigation based on density functional theory calculations. The process investigated is interesting because it requires less energy than contemporary methods and does not produce environmentally harmful side products. The aim of the present contribution is to gain insight into the mechanism of the iron-catalyzed cyclohexane conversion to provide a basis for the further development of this process. The rate-limiting step of the process is discussed, but considering the accuracy of the calculations, it is difficult to ensure whether the rate-limiting step is in the substrate oxidation or in the generation of the catalytically active species. It is shown that the slowest step in the substrate oxidation is the conversion of cyclohexanol to cyclohexane-1,2-diol. Hydrogen-atom transfer from one of the OH groups of cyclohexane-1,2-diol makes the intradiol cleavage occur spontaneously.

  19. A practical synthesis of betulonic acid using selective oxidation of betulin on aluminium solid support.

    PubMed

    Melnikova, Nina; Burlova, Irina; Kiseleva, Tatiana; Klabukova, Irina; Gulenova, Marina; Kislitsin, Capital A Cyrillicleksey; Vasin, Viktor; Tanaseichuk, Boris

    2012-10-09

    The room temperature oxidation of betulin by Cr(VI) compounds in aqueous acetone on solid supports such as alumina, zeolites and silica gel has been studied. The oxidation on alumina support leaded to a single product--betulonic acid--in quantitative yield. One hundred percent selective oxidation during 30 min of betulin up to betulonic aldehyde was determined when silica gel support was used. The oxidation of betulin using zeolites as a support gives a mixture of betulonic acid and aldehyde in a 2:1 ratio. It is proposed the selective oxidation up to betulonic acid is due to the influence of Al³⁺-ions.

  20. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis.

    PubMed

    Gonçalves-de-Albuquerque, Cassiano Felippe; Medeiros-de-Moraes, Isabel Matos; Oliveira, Flora Magno de Jesus; Burth, Patrícia; Bozza, Patrícia Torres; Castro Faria, Mauro Velho; Silva, Adriana Ribeiro; Castro-Faria-Neto, Hugo Caire de

    2016-01-01

    Sepsis is characterized by inflammatory and metabolic alterations, which lead to massive cytokine production, oxidative stress and organ dysfunction. In severe systemic inflammatory response syndrome, plasma non-esterified fatty acids (NEFA) are increased. Several NEFA are deleterious to cells, activate Toll-like receptors and inhibit Na+/K+-ATPase, causing lung injury. A Mediterranean diet rich in olive oil is beneficial. The main component of olive oil is omega-9 oleic acid (OA), a monounsaturated fatty acid (MUFA). We analyzed the effect of OA supplementation on sepsis. OA ameliorated clinical symptoms, increased the survival rate, prevented liver and kidney injury and decreased NEFA plasma levels in mice subjected to cecal ligation and puncture (CLP). OA did not alter food intake and weight gain but diminished reactive oxygen species (ROS) production and NEFA plasma levels. Carnitine palmitoyltransferase IA (CPT1A) mRNA levels were increased, while uncoupling protein 2 (UCP2) liver expression was enhanced in mice treated with OA. OA also inhibited the decrease in 5' AMP-activated protein kinase (AMPK) expression and increased the enzyme expression in the liver of OA-treated mice compared to septic animals. We showed that OA pretreatment decreased NEFA concentration and increased CPT1A and UCP2 and AMPK levels, decreasing ROS production. We suggest that OA has a beneficial role in sepsis by decreasing metabolic dysfunction, supporting the benefits of diets high in monounsaturated fatty acids (MUFA).

  1. Extraction of vanadium from vanadium slag by high pressure oxidative acid leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Guo-quan; Zhang, Ting-an; Lü, Guo-zhi; Zhang, Ying; Liu, Yan; Liu, Zhuo-lin

    2015-01-01

    To extract vanadium in an environment friendly manner, this study focuses on the process of leaching vanadium from vanadium slag by high pressure oxidative acid leaching. Characterizations of the raw slag, mineralogy transformation, and the form of leach residues were made by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. The result shows that the vanadium slag is composed of major phases of fayalite, titanomagnetite, and spinel. During the high pressure oxidative acid leaching process, the fayalite and spinel phases are gradually decomposed by sulfuric acid, causing the release of vanadium and iron in the solution. Meanwhile, unreacted silicon and titanium are enriched in the leach residues. With the initial concentration of sulfuric acid at 250 g·L-1, a leaching temperature of 140°C, a leaching time of 50 min, a liquid-solid ratio of 10:1 mL·g-1, and oxygen pressure at 0.2 MPa, the leaching rate of vanadium reaches 97.69%.

  2. Ammonia-oxidizing activity and microbial community structure in acid tea (Camellia sinensis) orchard soil

    NASA Astrophysics Data System (ADS)

    Okamura, K.; Takanashi, A.; Yamada, T.; Hiraishi, A.

    2012-03-01

    The purpose of this study was to determine the ammonia-oxidizing activity and the phylogentic composition of microorganisms involved in acid tea (Camellia sinensis) orchard soil. All soil samples were collected from three sites located in Tahara and Toyohashi, Aichi Prefecture, Japan. The potential nitrification rate (PNR) was measured by the chlorate inhibition method. The soil pH of tea orchards studied ranged from 2.78 to 4.84, differing significantly from sample to sample, whereas that of meadow and unplanted fields ranged from 5.78 to 6.35. The PNR ranged from 0.050 to 0.193 μg NO2--Ng-1 h-1 and were positively correlated with the soil pH (r2 = 0.382, p<0.001). Bulk DNA was extracted from a tea orchard soil (pH 4.8; PNR, 0.078 μg NO2--Ng-1 h-1) and subjected to PCR-aided clone library analyses targeting archaeal and bacterial amoA genes. The detected archaeal clones separated from the cluster of the 'Soil clones' and tightly clustered with the clones originating from other acidic soil environments including the Chinese tea orchard soil. These results suggest that the specific archaeal populations dominate as the ammonia oxidizers in acid tea-orchard soils and possibly other acid soils, independent of geographic locations, which results from the adaptation to specific ecological niches.

  3. Omega-3 Polyunsaturated Fatty Acids and Heart Rate Variability

    PubMed Central

    Christensen, Jeppe Hagstrup

    2011-01-01

    Omega-3 polyunsaturated fatty acids (PUFA) may modulate autonomic control of the heart because omega-3 PUFA is abundant in the brain and other nervous tissue as well as in cardiac tissue. This might partly explain why omega-3 PUFA offer some protection against sudden cardiac death (SCD). The autonomic nervous system is involved in the pathogenesis of SCD. Heart rate variability (HRV) can be used as a non-invasive marker of cardiac autonomic control and a low HRV is a predictor for SCD and arrhythmic events. Studies on HRV and omega-3 PUFA have been performed in several populations such as patients with ischemic heart disease, patients with diabetes mellitus, patients with chronic renal failure, and in healthy subjects as well as in children. The studies have demonstrated a positive association between cellular content of omega-3 PUFA and HRV and supplementation with omega-3 PUFA seems to increase HRV which could be a possible explanation for decreased risk of arrhythmic events and SCD sometimes observed after omega-3 PUFA supplementation. However, the results are not consistent and further research is needed. PMID:22110443

  4. Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process.

    PubMed

    Lu, Junhe; Shi, Yuanyuan; Ji, Yuefei; Kong, Deyang; Huang, Qingguo

    2017-01-01

    Laccase is a widely present extracellular phenoloxidase excreted by fungi, bacteria, and high plants. It is able to catalyze one-electron oxidation of phenolic compounds into radical intermediates that can subsequently couple to each other via covalent bonds. These reactions are believed to play an important role in humification process and the transformation of contaminants containing phenolic functionalities in the environment. In this study, we investigated the kinetics of triclosan transformation catalyzed by laccase. It was found that the rate of triclosan oxidation was first order to the concentrations of both substrate and enzyme. Humic acid (HA) could inhibit the reaction by quenching the radical intermediate of triclosan generated by laccase oxidation. Such inhibition was more significant in the presence of divalent metal cations. This is because that binding to metal ions neutralized the negative charge of HA molecules, thus making them more accessible to laccase molecule that is also negatively charged. Therefore, it has greater chance to quench the radical intermediate that is very unstable and can only diffuse a limited distance after being released from the enzyme catalytic center. Based on these understandings, a reaction model was developed by integration of metal-HA binding equilibriums and kinetic equations. This model precisely predicted the transformation rate of triclosan in the presence of HA and divalent metal ions including Ca(2+), Mg(2+), Cd(2+), Co(2+), Mn(2+), Ba(2+), and Zn(2+). Overall, this work reveals important insights into laccase catalyzed oxidative coupling process.

  5. Long-Chain Fatty Acid Combustion Rate Is Associated with Unique Metabolite Profiles in Skeletal Muscle Mitochondria

    PubMed Central

    Seifert, Erin L.; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R.; Wohlgemuth, Gert; Adams, Sean H.; Harper, Mary-Ellen

    2010-01-01

    Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat

  6. [Evaluation on contribution rate of each component total salvianolic acids and characterization of apparent oil/water partition coefficient].

    PubMed

    Yan, Hong-mei; Chen, Xiao-yun; Xia, Hai-jian; Liu, Dan; Jia, Xiao-bin; Zhang, Zhen-hai

    2015-02-01

    The difference between three representative components of total salvianolic acids in pharmacodynamic activity were compared by three different pharmacological experiments: HUVECs oxidative damage experiment, 4 items of blood coagulation in vitro experiment in rabbits and experimental myocardial ischemia in rats. And the effects of contribution rate of each component were calculated by multi index comprehensive evaluation method based on CRITIC weights. The contribution rates of salvianolic acid B, rosmarinic acid and Danshensu were 28.85%, 30.11%, 41.04%. Apparent oil/water partition coefficient of each representative components of total salvianolic acids in n-octyl alcohol-buffer was tested and the total salvianolic acid components were characterized based on a combination of the approach of self-defined weighting coefficient with effects of contribution rate. Apparent oil/water partition coefficient of total salvianolic acids was 0.32, 1.06, 0.89, 0.98, 0.90, 0.13, 0.02, 0.20, 0.56 when in octanol-water/pH 1.2 dilute hydrochloric acid solution/ pH 2.0, 2.5, 5.0, 5.8, 6.8, 7.4, 7.8 phosphate buffer solution. It provides a certain reference for the characterization of components.

  7. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation

    SciTech Connect

    Kajimoto, Masaki; Ledee, Dolena R.; Xu, Chun; Kajimoto, Hidemi; Isern, Nancy G.; Portman, Michael A.

    2014-01-01

    Background: Extracorporeal membrane oxygenation (ECMO) provides a rescue for children with severe cardiac failure. We previously showed that triiodothyronine (T3) improves cardiac function by modulating pyruvate oxidation during weaning. This study was focused on fatty acid (FA) metabolism modulated by T3 for weaning from ECMO after cardiac injury. Methods: Nineteen immature piglets (9.1-15.3 kg) were separated into 3 groups with ECMO (6.5 hours) and wean: normal circulation (Group-C);transient coronary occlusion (10 minutes) followed by ECMO (Group-IR); and IR with T3 supplementation (Group-IR-T3). 13-Carbon labeled lactate, medium-chain and long-chain FAs were infused as oxidative substrates. Substrate fractional contribution to the citric acid cycle (FC) was analyzed by 13-Carbon nuclear magnetic resonance. Results: ECMO depressed circulating T3 levels to 40% baseline at 4 hours and were restored in Group-IR-T3. Group-IR decreased cardiac power, which was not fully restorable and 2 pigs were lost because of weaning failure. Group-IR also depressed FC-lactate, while the excellent contractile function and energy efficiency in Group-IR-T3 occurred along with a marked FC-lactate increase and [ATP]/[ADP] without either decreasing FC-FAs or elevating myocardial oxygen consumption over Group-C or -IR. Conclusions: T3 releases inhibition of lactate oxidation following ischemia-reperfusion injury without impairing FA oxidation. These findings indicate that T3 depression during ECMO is maladaptive, and that restoring levels improves metabolic flux and enhances contractile function during weaning.

  8. Combinatorial search for improved metal oxide oxygen evolution electrocatalysts in acidic electrolytes.

    PubMed

    Seley, David; Ayers, Katherine; Parkinson, B A

    2013-02-11

    A library of electrocatalysts for water electrolysis under acidic conditions was created by ink jet printing metal oxide precursors followed by pyrolysis in air to produce mixed metal oxides. The compositions were then screened in acidic electrolytes using a pH sensitive fluorescence indicator that became fluorescent due to the pH change at the electrode surface because of the release of protons from water oxidation. The most promising materials were further characterized by measuring polarization curves and Tafel slopes as anodes for water oxidation. Mixed metal oxides that perform better than the iridium oxide standard were identified.

  9. A Finite Rate Chemical Analysis of Nitric Oxide Flow Contamination Effects on Scramjet Performance

    NASA Technical Reports Server (NTRS)

    Cabell, Karen F.; Rock, Kenneth E.

    2003-01-01

    The level of nitric oxide contamination in the test gas of the Langley Research Center Arc-Heated Scramjet Test Facility and the effect of the contamination on scramjet test engine performance were investigated analytically. A finite rate chemical analysis was performed to determine the levels of nitric oxide produced in the facility at conditions corresponding to Mach 6 to 8 flight simulations. Results indicate that nitric oxide levels range from one to three mole percent, corroborating previously obtained measurements. A three-stream combustor code with finite rate chemistry was used to investigate the effects of nitric oxide on scramjet performance. Results indicate that nitric oxide in the test gas causes a small increase in heat release and thrust performance for the test conditions investigated. However, a rate constant uncertainty analysis suggests that the effect of nitric oxide ranges from no net effect, to an increase of about 10 percent in thrust performance.

  10. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy.

    PubMed

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J

    2016-12-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  11. Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Dorniani, Dena; Saifullah, Bullo; Barahuie, Farahnaz; Arulselvan, Palanisamy; Hussein, Mohd Zobir Bin; Fakurazi, Sharida; Twyman, Lance J.

    2016-11-01

    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies.

  12. Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate

    PubMed Central

    Wone, Bernard W. M.; Donovan, Edward R.; Cushman, John C.; Hayes, Jack P.

    2014-01-01

    Aerobic metabolism of vertebrates is linked to membrane fatty acid (FA) composition. Although the membrane pacemaker hypothesis posits that desaturation of FAs accounts for variation in resting or basal metabolic rate (BMR), little is known about the FA profiles that underpin variation in maximal metabolic rate (MMR). We examined membrane FA composition of liver and skeletal muscle in mice after seven generations of selection for increased MMR. In both liver and skeletal muscle, unsaturation index did not differ between control and high-MMR mice. We also examined membrane FA composition at the individual-level of variation. In liver, 18:0, 20:3 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In gastrocnemius muscle, 18:2 n-6, 20:4 n-6, and 22:6 n-3 FAs were significant predictors of MMR. In addition, muscle 16:1 n-7, 18:1 n-9, and 22:5 n-3 FAs were significant predictors of BMR, whereas no liver FAs were significant predictors of BMR. Our findings indicate that (i) individual variation in MMR and BMR appear to be linked to membrane FA composition in the skeletal muscle and liver, and (ii) FAs that differ between selected and control lines are involved in pathways that can affect MMR or BMR. PMID:23422919

  13. Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration.

    PubMed

    Su, Wen-Yu; Chen, Yu-Chun; Lin, Feng-Huei

    2010-08-01

    Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution-gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3-8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration.

  14. An injectable oxidated hyaluronic acid/adipic acid dihydrazide hydrogel as a vitreous substitute.

    PubMed

    Su, Wen-Yu; Chen, Ko-Hua; Chen, Yu-Chun; Lee, Yen-Hsien; Tseng, Ching-Li; Lin, Feng-Huei

    2011-01-01

    Vitrectomy is a common procedure for treating ocular-related diseases. The surgery involves removing the vitreous humor from the center of the eye, and vitreous substitutes are needed to replace the vitreous humor after vitrectomy. In the present study, we developed a colorless, transparent and injectable hydrogel with appropriate refractive index as a vitreous substitute. The hydrogel is formed by oxidated hyaluronic acid (oxi-HA) cross-linked with adipic acid dihydrazide (ADH). Hyaluronic acid (HA) was oxidized by sodium periodate to create aldehyde functional groups, which could be cross-linked by ADH. The refractive index of this hydrogel ranged between 1.3420 and 1.3442, which is quite similar to human vitreous humor (1.3345). The degradation tests demonstrated that the hydrogel could maintain the gel matrix over 35 days, depending on the ADH concentration. In addition, the cytotoxicity was evaluated on retina pigmented epithelium (RPE) cells cultivated following the ISO standard (tests for in vitro cytotoxicity), and the hydrogel was found to be non-toxic. In a preliminary animal study, the oxi-HA/ADH hydrogel was injected into the vitreous cavity of rabbit eyes. The evaluations of slit-lamp observation, intraocular pressure, cornea thickness and histological examination showed no significant abnormal biological reactions for 3 weeks. This study suggests that the injectable oxi-HA/ADH hydrogel should be a potential vitreous substitute.

  15. Endothelial dysfunction is induced by proinflammatory oxidant hypochlorous acid.

    PubMed

    Zhang, C; Patel, R; Eiserich, J P; Zhou, F; Kelpke, S; Ma, W; Parks, D A; Darley-Usmar, V; White, C R

    2001-10-01

    The myeloperoxidase (MPO)-derived oxidant hypochlorous acid (HOCl) plays a role in tissue injury under inflammatory conditions. The present study tests the hypothesis that HOCl decreases nitric oxide (NO) bioavailability in the vasculature of Sprague-Dawley rats. Aortic ring segments were pretreated with HOCl (1-50 microM) followed by extensive washing. Endothelium-dependent relaxation was then assessed by cumulative addition of acetylcholine (ACh) or the calcium ionophore A23187. HOCl treatment significantly impaired both ACh- and A23187-mediated relaxation. In contrast, endothelium-independent relaxation induced by sodium nitroprusside was unaffected. The inhibitory effect of HOCl on ACh-induced relaxation was reversed by exposure of ring segments to L-arginine but not D-arginine. In cellular studies, HOCl did not alter endothelial NO synthase (NOS III) protein or activity, but inhibited formation of the NO metabolites nitrate (NO3(-) and nitrite (NO2(-). The reduction in total NO metabolite production in bovine aortic endothelial cells was also reversed by addition of L-arginine. These data suggest that HOCl induces endothelial dysfunction via modification of L-arginine.

  16. A chamber study of the influence of boreal BVOC emissions and sulfuric acid on nanoparticle formation rates at ambient concentrations

    NASA Astrophysics Data System (ADS)

    Dal Maso, M.; Liao, L.; Wildt, J.; Kiendler-Scharr, A.; Kleist, E.; Tillmann, R.; Sipilä, M.; Hakala, J.; Lehtipalo, K.; Ehn, M.; Kerminen, V.-M.; Kulmala, M.; Worsnop, D.; Mentel, T.

    2016-02-01

    Aerosol formation from biogenic and anthropogenic precursor trace gases in continental background areas affects climate via altering the amount of available cloud condensation nuclei. Significant uncertainty still exists regarding the agents controlling the formation of aerosol nanoparticles. We have performed experiments in the Jülich plant-atmosphere simulation chamber with instrumentation for the detection of sulfuric acid and nanoparticles, and present the first simultaneous chamber observations of nanoparticles, sulfuric acid, and realistic levels and mixtures of biogenic volatile compounds (BVOCs). We present direct laboratory observations of nanoparticle formation from sulfuric acid and realistic BVOC precursor vapour mixtures performed at atmospherically relevant concentration levels. We directly measured particle formation rates separately from particle growth rates. From this, we established that in our experiments, the formation rate was proportional to the product of sulfuric acid and biogenic VOC emission strength. The formation rates were consistent with a mechanism in which nucleating BVOC oxidation products are rapidly formed and activate with sulfuric acid. The growth rate of nanoparticles immediately after birth was best correlated with estimated products resulting from BVOC ozonolysis.

  17. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils.

    PubMed

    Zhang, Li-Mei; Hu, Hang-Wei; Shen, Ju-Pei; He, Ji-Zheng

    2012-05-01

    Increasing evidence demonstrated the involvement of ammonia-oxidizing archaea (AOA) in the global nitrogen cycle, but the relative contributions of AOA and ammonia-oxidizing bacteria (AOB) to ammonia oxidation are still in debate. Previous studies suggest that AOA would be more adapted to ammonia-limited oligotrophic conditions, which seems to be favored by protonation of ammonia, turning into ammonium in low-pH environments. Here, we investigated the autotrophic nitrification activity of AOA and AOB in five strongly acidic soils (pH<4.50) during microcosm incubation for 30 days. Significantly positive correlations between nitrate concentration and amoA gene abundance of AOA, but not of AOB, were observed during the active nitrification. (13)CO(2)-DNA-stable isotope probing results showed significant assimilation of (13)C-labeled carbon source into the amoA gene of AOA, but not of AOB, in one of the selected soil samples. High levels of thaumarchaeal amoA gene abundance were observed during the active nitrification, coupled with increasing intensity of two denaturing gradient gel electrophoresis bands for specific thaumarchaeal community. Addition of the nitrification inhibitor dicyandiamide (DCD) completely inhibited the nitrification activity and CO(2) fixation by AOA, accompanied by decreasing thaumarchaeal amoA gene abundance. Bacterial amoA gene abundance decreased in all microcosms irrespective of DCD addition, and mostly showed no correlation with nitrate concentrations. Phylogenetic analysis of thaumarchaeal amoA gene and 16S rRNA gene revealed active (13)CO(2)-labeled AOA belonged to groups 1.1a-associated and 1.1b. Taken together, these results provided strong evidence that AOA have a more important role than AOB in autotrophic ammonia oxidation in strongly acidic soils.

  18. Mechanisms of Oxidative Damage in Multiple Sclerosis and Neurodegenerative Diseases: Therapeutic Modulation via Fumaric Acid Esters

    PubMed Central

    Lee, De-Hyung; Gold, Ralf; Linker, Ralf A.

    2012-01-01

    Oxidative stress plays a crucial role in many neurodegenerative conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis and Parkinson’s as well as Huntington’s disease. Inflammation and oxidative stress are also thought to promote tissue damage in multiple sclerosis (MS). Recent data point at an important role of anti-oxidative pathways for tissue protection in chronic-progressive MS, particularly involving the transcription factor nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2). Thus, novel therapeutics enhancing cellular resistance to free radicals could prove useful for MS treatment. Here, fumaric acid esters (FAE) are a new, orally available treatment option which had already been tested in phase II/III MS trials demonstrating beneficial effects on relapse rates and magnetic resonance imaging markers. In vitro, application of dimethylfumarate (DMF) leads to stabilization of Nrf2, activation of Nrf2-dependent transcriptional activity and abundant synthesis of detoxifying proteins. Furthermore, application of FAE involves direct modification of the inhibitor of Nrf2, Kelch-like ECH-associated protein 1. On cellular levels, the application of FAE enhances neuronal survival and protects astrocytes against oxidative stress. Increased levels of Nrf2 are detected in the central nervous system of DMF treated mice suffering from experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In EAE, DMF ameliorates the disease course and improves preservation of myelin, axons and neurons. Finally, Nrf2 is also up-regulated in the spinal cord of autopsy specimens from untreated patients with MS, probably as part of a naturally occurring anti-oxidative response. In summary, oxidative stress and anti-oxidative pathways are important players in MS pathophysiology and constitute a promising target for future MS therapies like FAE. PMID:23109883

  19. Ellagic acid ameliorates isoproterenol induced oxidative stress: Evidence from electrocardiological, biochemical and histological study.

    PubMed

    Kannan, M Mari; Quine, S Darlin

    2011-05-20

    The present study was designed to evaluate the cardioprotective effects of ellagic acid against isoproterenol induced myocardial infarction in rats by studying electrocardiography, blood pressure, cardiac markers, lipid peroxidation, antioxidant defense system and histological changes. Male Wistar rats were treated orally with ellagic acid (7.5 and 15mg/kg) daily for a period of 10 days. After 10 days of pretreatment, isoproterenol (100mg/kg) was injected subcutaneously to rats at an interval of 24h for 2 days to induce myocardial infarction. Isoproterenol administered rats showed significant changes in the electrocardiogram pattern, arterial pressure, and heart rate. Isoproterenol-induced rats also showed significant (P<0.05) increase in the levels of serum troponin-I, creatine kinase, lactate dehydrogenase, C-reactive protein, plasma homocysteine, heart tissue thiobarbituric acid reactive substances and lipid hydro peroxides. The activities/levels of antioxidant system were decreased in isoproterenol-induced rats. The histopathological findings of the myocardial tissue evidenced myocardial damage in isoproterenol induced rats. The oral pretreatment of ellagic acid restored the pathological electrocardiographic patterns, regulated the arterial blood pressures and heart rate in the isoproterenol induced myocardial infarcted rats. The ellagic acid pretreatment significantly reduced the levels of biochemical markers, lipid peroxidation and significantly increased the activities/levels of the antioxidant system in the isoproterenol induced rats. An inhibited myocardial necrosis was evidenced by the histopathological findings in ellagic acid pretreated isoproterenol induced rats. Our study shows that oral pretreatment of ellagic acid prevents isoproterenol induced oxidative stress in myocardial infarction.

  20. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  1. Radical-derived oxidation products of 5-aminosalicylic acid and N-acetyl-5-aminosalicylic acid.

    PubMed

    Fischer, C; Klotz, U

    1994-11-04

    5-Aminosalicylic acid is an agent effective in the treatment of chronic inflammatory bowel diseases. Its ability to scavenge radicals is considered to be a major factor responsible for its therapeutic efficacy. In this study oxidation products of aminosalicylates with hydroxyl radicals were produced. The compounds that could be discovered by gas chromatographic-mass spectrometric analysis originate from a 1,4-benzoquinone monoimine intermediate which subsequently undergoes multiple reactions such as hydrolysis, reductive 1,4-Michael addition, reoxidation and decarboxylation. Some of these products could represent metabolites formed under in vivo conditions and thus provide a tool for screening biological material from subjects under different clinical conditions.

  2. Low Phytic Acid Barley Responses to Phosphorus Rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low phytic acid (LPA) barley (Hordeum vulgare L.) cultivars partition phosphorus in seed tissue differently than conventional barley cultivars through a reduction in seed phytic acid (myo-inositol-1,2,3,4,5,6-hexkisphosphate) coupled with an increase in inorganic phosphorus. The response of the LPA...

  3. Nanotoxicity of graphene oxide: Assessing the influence of oxidation debris in the presence of humic acid.

    PubMed

    Clemente, Zaira; Castro, Vera Lúcia S S; Franqui, Lidiane S; Silva, Cristiane A; Martinez, Diego Stéfani T

    2017-03-28

    This study sought to evaluate the toxicological effects of graphene oxide (GO) through tests with Danio rerio (zebrafish) embryos, considering the influence of the base washing treatment and the interaction with natural organic matter (i.e., humic acid, HA). A commercial sample of GO was refluxed with NaOH to remove oxidation debris (OD) byproducts, which resulted in a base washed GO sample (bw-GO). This process decreased the total oxygenated groups in bw-GO and its stability in water compared to GO. When tested in the presence of HA, both GO and bw-GO stabilities were enhanced in water. Although the embryo exposure showed no acute toxicity or malformation, the larvae exposed to GO showed a reduction in their overall length and acetylcholinesterase activity. In the presence of HA, GO also inhibited acid phosphatase activity. Our findings indicate a mitigation of material toxicity after OD removal. The difference in the biological effects may be related to the materials' bioavailability and biophysicochemical interactions. This study reports for the first time the critical influence of OD on the GO material biological reactivity and HA interaction, providing new data for nanomaterial environmental risk assessment and sustainable nanotechnology.

  4. Thrombin-activated human platelets acutely generate oxidized docosahexaenoic-acid-containing phospholipids via 12-lipoxygenase.

    PubMed

    Morgan, Lloyd T; Thomas, Christopher P; Kühn, Hartmut; O'Donnell, Valerie B

    2010-10-01

    Arachidonate-containing oxidized phospholipids are acutely generated by 12-LOX (12-lipoxygenase) in agonist-activated platelets. In the present study, formation of structurally related lipids by oxidation of DHA (docosahexaenoic acid)-containing phospholipids is demonstrated using lipidomic approaches. Precursor scanning reverse-phase LC (liquid chromatography)-MS/MS (tandem MS) identified a new family of lipids that comprise phospholipid-esterified HDOHE (hydroxydocosahexaenoic acid). Two diacyl and two plasmalogen PEs (phosphatidylethanolamines) containing predominantly the 14-HDOHE positional isomer (18:0p/14-HDOHE-PE, 18:0a/14-HDOHE-PE, 16:0a/14-HDOHE-PE and 16:0p/14-HDOHE-PE) were structurally characterized using MS/MS and by comparison with biogenic standards. An involvement of 12-LOX was indicated as purified recombinant human 12-LOX also generated the 14-HDOHE isomer from DHA. Pharmacological studies using inhibitors and recombinant platelet 12-LOX indicate that they form via esterification of newly formed non-esterified HDOHE. HDOHE-PEs formed at significant rates (2-4 ng/4×10(7) cells) within 2-180 min of thrombin stimulation, and their formation was blocked by calcium chelation. In summary, a new family of oxidized phospholipid was identified in thrombin-activated human platelets.

  5. Protein oxidation: an overview of metabolism of sulphur containing amino acid, cysteine.

    PubMed

    Ahmad, Saheem; Khan, Hamda; Shahab, Uzma; Rehman, Shahnawaz; Rafi, Zeeshan; Khan, Mohd Yasir; Ansari, Ahsanullah; Siddiqui, Zeba; Ashraf, Jalaluddin Mohammad; Abdullah, Saleh M S; Habib, Safia; Uddin, Moin

    2017-01-01

    The available data suggest that among cellular constituents, proteins are the major target for oxidation primarily because of their quantity and high rate of interactions with ROS. Proteins are susceptible to ROS modifications of amino acid side chains which alter protein structure. Among the amino acids, Cysteine (Cys) is more prone to oxidation by ROS because of its high nucleophilic property. The reactivity of Cys with ROS is due to the presence of thiol group. In the oxidised form, Cys forms disulfide bond, which are primary covalent cross-link found in proteins, and which stabilize the native conformation of a protein. Indirect evidence suggests that thiol modifications by ROS may be involved in neurodegenerative disorders, but the significance and precise extent of the contributions are poorly understood. Here, we review the role of oxidized Cys in different pathological consequences and its biochemistry may increase the research in the discovery of new therapies. The purpose of this review is to re-examine the role and biochemistry of oxidised Cys residues.

  6. Competitive Oxidation Kinetics and Microbial Ecology: Intermediate Sulfur Transformations in Acid Mine Drainage Environments

    NASA Astrophysics Data System (ADS)

    Druschel, G. K.; Hamers, R. J.; Banfield, J. F.

    2001-12-01

    Experimental studies have demonstrated that oxidation of pyrite proceeds through several intermediate sulfur species, notably elemental sulfur, thiosulfate, and polythionates (Schippers et al., 1996). However, detailed sampling and analysis of flowing waters and pore waters failed to detect intermediate sulfur species in the 5-way area of the Richmond metal sulfide deposit at the Iron Mountain Mine in northern California. Potential energy available from the oxidation of intermediate sulfur species is considerable, so microbial activity may explain absence of intermediate sulfur compounds at the site. However, the abundance of sulfur-oxidizing microorganisms in areas of active pyrite oxidation at the 5-way is generally low (Bond et al. 2000). Rapid inorganic oxidation rates may prevent microorganisms from utilizing these intermediate sulfur species, thus shaping the structure of microbial communities in acid mine drainage (AMD) environments. Rates and mechanisms of oxidation for tetrathionate and elemental sulfur have been experimentally determined. Batch and flow-through experiments have indicated very slow oxidation of elemental sulfur in inorganic solutions analogous to AMD environments. Results for tetrathionate indicate the importance of non-metabolic and inorganic processes, including surface catalysis and the generation of hydroxyl radicals. Surface catalysis occurs through trithionate on iron oxide surfaces. Hydroxyl radicals may be formed directly by microbes living in proximity to pyrite surfaces, or at pyrite surfaces undergoing wetting and drying cycles. Further experiments investigating the importance of organic compounds associated with iron-oxidizing microorganisms acting as electron transport shuttles and/or wetting agents and ab initio calculations of the electronic structure of potential reactants and intermediates are currently being performed. It is suggested that inorganic processes involved with seasonal wetting and drying of pyritic sediment

  7. Influence of lipid profile and fatty acid composition on the oxidation behavior of rat and guinea pig low density lipoprotein.

    PubMed

    Vázquez, M; Merlos, M; Adzet, T; Laguna, J C

    1998-02-01

    Low density lipoprotein (LDL) oxidation is one of the first steps proposed for the development of atherosclerosis. Since lipid profile and fatty acid composition may affect this process, we studied the influence of these factors on the oxidation behavior of rat and guinea pig LDL. Marked compositional differences were observed. Thus, the main lipid carried by rat LDL was triglyceride (TG) (35.8 +/- 5.8%, w/w) whereas total cholesterol (TC) represented 23.8 +/- 3.0%. In contrast, guinea pig LDL contained 13.2 +/- 2% of TG and 44.8 +/- 4.5% of TC. Rat LDL contained higher 20:4(n-6) molar percentages than guinea pig LDL. Thiobarbituric acid reactive substances (TBARS) production (255 +/- 26 and 137 +/- 13 nmol malondialdehyde/mg prot. for rat and guinea pig LDL, respectively) and the maximum rate of conjugated dienes (CD) formation (485 +/- 93 and 77 +/- 11 nmol CD/min/mg protein for rat and guinea pig LDL, respectively) showed that rat LDL are less resistant to oxidation in vitro than guinea pig LDL. The higher oxidation rate of rat LDL seems to be related to its lipid profile, mainly to the high proportion of TG, and to the high content of 20:4(n-6), which is one of the fatty acids most prone to oxidation.

  8. Modeling Low-Dose-Rate Effects in Irradiated Bipolar-Base Oxides

    SciTech Connect

    Cirba, C.R.; Fleetwood, D.M.; Graves, R.J.; Michez, A.; Milanowski, R.J.; Saigne, F.; Schrimpf, R.D.; Witczak, S.C.

    1998-10-26

    A physical model is developed to quantify the contribution of oxide-trapped charge to enhanced low-dose-rate gain degradation in bipolar junction transistors. Multiple-trapping simulations show that space charge limited transport is partially responsible for low-dose-rate enhancement. At low dose rates, more holes are trapped near the silicon-oxide interface than at high dose rates, resulting in larger midgap voltage shifts at lower dose rates. The additional trapped charge near the interface may cause an exponential increase in excess base current, and a resultant decrease in current gain for some NPN bipolar technologies.

  9. Neuropsychological Outcomes in Fatty Acid Oxidation Disorders: 85 Cases Detected by Newborn Screening

    ERIC Educational Resources Information Center

    Waisbren, Susan E.; Landau, Yuval; Wilson, Jenna; Vockley, Jerry

    2013-01-01

    Mitochondrial fatty acid oxidation disorders include conditions in which the transport of activated acyl-Coenzyme A (CoA) into the mitochondria or utilization of these substrates is disrupted or blocked. This results in a deficit in the conversion of fat into energy. Most patients with fatty acid oxidation defects are now identified through…

  10. The Baeyer-Villiger Oxidation with Trifluoroacetic Acid and Household Sodium Percarbonate

    ERIC Educational Resources Information Center

    Kjonaas, Richard A.; Clemons, Anthony E.

    2008-01-01

    A method for carrying out the Baeyer-Villiger oxidation of cyclopentanone to [delta]-valerolactone in a large-section introductory organic chemistry laboratory course is reported. The oxidizing agent is trifluoroperoxyacetic acid generated in situ from trifluoroacetic acid and household sodium percarbonate such as OxiClean, Oxi Magic, or…

  11. Electrophoretic deposition and electrochemical behavior of novel graphene oxide-hyaluronic acid-hydroxyapatite nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Li, Ming; Liu, Qian; Jia, Zhaojun; Xu, Xuchen; Shi, Yuying; Cheng, Yan; Zheng, Yufeng; Xi, Tingfei; Wei, Shicheng

    2013-11-01

    Novel ternary graphene oxide-hyaluronic acid-hydroxyapatite (GO-HY-HA) nanocomposite coatings were prepared on Ti substrate using anodic electrophoretic deposition (EPD). Hyaluronic acid was employed as charging additive and dispersion agent during EPD. The kinetics and mechanism of the deposition, and the microstructure of the coated samples were investigated using scanning electron microscopy, X-ray diffraction, Raman spectrum, thermo-gravimetric analysis, and microscopic Fourier transform infrared analysis. The results showed that the addition of GO sheets into the HY-HA suspensions could increase the deposition rate and inhibit cracks creation and propagation in the coatings. The corrosion resistant of the resulting samples were evaluated using potentiodynamic polarization method in simulated body fluid, and the GO-HY-HA coatings could effectively improve the anti-corrosion property of the Ti substrate.

  12. Optimization of Lipase-Mediated Synthesis of 1-Nonene Oxide Using Phenylacetic Acid and Hydrogen Peroxide

    PubMed Central

    Abdulmalek, Emilia; Arumugam, Mahashanon; Basri, Mahiran; Rahman, Mohd Basyaruddin Abdul

    2012-01-01

    Herein, an efficient epoxidation of 1-nonene is described. In a simple epoxidation system, commercially available Novozym 435, an immobilized Candida antarctica lipase B, and hydrogen peroxide (H2O2) were utilized to facilitate the in situ oxidation of phenylacetic acid to the corresponding peroxy acid which then reacted with 1-nonene to give 1-nonene oxide with high yield and selectivity. The aliphatic terminal alkene was epoxidised efficiently in chloroform to give an excellent yield (97%–99%) under the optimum reaction conditions, including temperature (35 °C), initial H2O2 concentration (30%), H2O2 amount (4.4 mmol), H2O2 addition rate (one step), acid amount (8.8 mmol), and stirring speed (250 rpm). Interestingly, the enzyme was stable under the single-step addition of H2O2 with a catalytic activity of 190.0 Ug−1. The entire epoxidation process was carried out within 12 h using a conventional water bath shaker. PMID:23202943

  13. Lysine requirements of pre-lay broiler breeder pullets: determination by indicator amino acid oxidation.

    PubMed

    Coleman, Russell A; Bertolo, Robert F; Moehn, Soenke; Leslie, Michael A; Ball, Ronald O; Korver, Doug R

    2003-09-01

    The indicator amino acid oxidation (IAAO) method allows the determination of amino acid requirements under conditions of low growth rate as found in pre-laying broiler breeder pullets. Cobb 500 breeder pullets (20 wk old; 2290 +/- 280 g, n = 4) were adapted (6 d) to a pelleted, purified control diet containing all nutrients at >or=110% of NRC recommendations. After recovery from surgery for implantation of a jugular catheter, each bird was fed, in random order, test diets containing one of nine levels of lysine (0.48, 0.96, 1.92, 2.88, 3.84, 4.80, 7.68, 9.60 and 14.40 g/kg of diet). Indicator oxidation was determined during 4-h primed (74 kBq/kg body), constant infusions (44 kBq x h(-1). kg body(-1)) of L-[1-(14)C]phenylalanine. Using the breakpoint of a one-slope broken-line model, the lysine requirement was determined to be 4.88 +/- 0.96 g/kg of diet or 366 +/- 72 mg x hen(-1) x d(-1) with an upper 95% CI of 6.40 g/kg of diet or 480 mg x hen(-1) x d(-1). IAAO allows determination of individual bird amino acid requirements for specific ages and types of birds over short periods of time and enables more accurate broiler breeder pullet diet formulation.

  14. Imbalance of heterologous protein folding and disulfide bond formation rates yields runaway oxidative stress

    PubMed Central

    2012-01-01

    Background The protein secretory pathway must process a wide assortment of native proteins for eukaryotic cells to function. As well, recombinant protein secretion is used extensively to produce many biologics and industrial enzymes. Therefore, secretory pathway dysfunction can be highly detrimental to the cell and can drastically inhibit product titers in biochemical production. Because the secretory pathway is a highly-integrated, multi-organelle system, dysfunction can happen at many levels and dissecting the root cause can be challenging. In this study, we apply a systems biology approach to analyze secretory pathway dysfunctions resulting from heterologous production of a small protein (insulin precursor) or a larger protein (α-amylase). Results HAC1-dependent and independent dysfunctions and cellular responses were apparent across multiple datasets. In particular, processes involving (a) degradation of protein/recycling amino acids, (b) overall transcription/translation repression, and (c) oxidative stress were broadly associated with secretory stress. Conclusions Apparent runaway oxidative stress due to radical production observed here and elsewhere can be explained by a futile cycle of disulfide formation and breaking that consumes reduced glutathione and produces reactive oxygen species. The futile cycle is dominating when protein folding rates are low relative to disulfide bond formation rates. While not strictly conclusive with the present data, this insight does provide a molecular interpretation to an, until now, largely empirical understanding of optimizing heterologous protein secretion. This molecular insight has direct implications on engineering a broad range of recombinant proteins for secretion and provides potential hypotheses for the root causes of several secretory-associated diseases. PMID:22380681

  15. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Technical Reports Server (NTRS)

    Tsotsis, T. T.; Sane, R. C.

    1987-01-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  16. Reaction rate oscillations during catalytic CO oxidation: A brief overview

    NASA Astrophysics Data System (ADS)

    Tsotsis, T. T.; Sane, R. C.

    1987-04-01

    It is not the intent here to present a comprehensive review of the dynamic behavior of the catalytic oxidation of CO. This reaction is one of the most widely studied in the field of catalysis. A review paper by Engel and Ertl has examined the basic kinetic and mechanistic aspects, and a comprehensive paper by Razon and Schmitz was recently devoted to its dynamic behavior. Those interested in further study of the subject should consult these reviews and a number of general review papers on catalytic reaction dynamics. The goal is to present a brief overview of certain interesting aspects of the dynamic behavior of this reaction and to discuss a few questions and issues, which are still the subject of study and debate.

  17. Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria.

    PubMed

    Makrecka-Kuka, Marina; Volska, Kristine; Antone, Unigunde; Vilskersts, Reinis; Grinberga, Solveiga; Bandere, Dace; Liepinsh, Edgars; Dambrova, Maija

    2017-02-05

    Increased plasma concentration of trimethylamine N-oxide (TMAO), a proatherogenic metabolite, has been linked to adverse cardiovascular outcomes; however, it remains unclear whether TMAO is a biomarker or whether it induces direct detrimental cardiovascular effects. Because altered cardiac energy metabolism and mitochondrial dysfunction play crucial roles in the development of cardiovascular diseases, we hypothesized that increased TMAO concentration may alter mitochondrial energy metabolism. The aim of the present study was to determine the effects of TMAO on cardiac mitochondrial energy metabolism. Acute exposure of cardiac fibers to TMAO decreased LEAK (substrate-dependent) and OXPHOS (oxidative phosphorylation-dependent) mitochondrial respiration with pyruvate and impaired substrate flux via pyruvate dehydrogenase. The administration of TMAO at a dose of 120mg/kg for 8 weeks increased TMAO concentration in plasma and cardiac tissues 22-23 times to about 15μM and 11nmol/g, respectively. Long-term TMAO administration decreased mitochondrial LEAK state respiration with pyruvate by 30% without affecting OXPHOS state respiration. However, no significant changes in mitochondrial reactive oxygen species production were observed after acute exposure of cardiac fibers to TMAO under physiological conditions. In addition, both long-term TMAO administration and acute exposure to TMAO decreased respiration with palmitoyl-CoA indicating impaired β-oxidation. Taken together, our results demonstrate that increased TMAO concentration impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Thus, the accumulation of TMAO in cardiac tissues leads to disturbances in energy metabolism that can increase the severity of cardiovascular events.

  18. Determination of deoxycholic acid pool size and input rate using (24-/sup 13/C)deoxycholic acid and serum sampling

    SciTech Connect

    Stellard, F.; Paumgartner, G.; van Berge Henegouwen, G.P.; van der Werf, S.D.

    1986-11-01

    We have developed an isotope dilution method for determination of deoxycholic acid pool size and input rate which employs oral administration of 50 mg of (24-/sup 13/C)deoxycholic acid and serum sampling. The method has been validated by classical isotope dilution technique using (24-/sup 14/C)deoxycholic acid and bile sampling in five patients with colonic adenomas. Excellent agreement between pool sizes and input rates determined with /sup 13/C/12C isotope ratio measurements in serum and /sup 14/C measurements in bile was obtained when isotope ratios were measured in the conjugated fraction of deoxycholic acid in serum. We conclude that pool size and input rate of deoxycholic acid can accurately be determined by blood sampling after oral administration of (24-/sup 13/C)deoxycholic acid, therewith eliminating the use of radioactive tracers and the need for bile sampling.

  19. Evaluating and predicting the oxidative stability of vegetable oils with different fatty acid compositions.

    PubMed

    Li, Hongyan; Fan, Ya-wei; Li, Jing; Tang, Liang; Hu, Jiang-ning; Deng, Ze-yuan

    2013-04-01

    The aim of this research was to evaluate the oxidative stabilities and qualities of different vegetable oils (almond, blend 1-8, camellia, corn, palm, peanut, rapeseed, sesame, soybean, sunflower, and zanthoxylum oil) based on peroxide value (PV), vitamin E content, free fatty acid, and fatty acid composition. The vegetable oils with different initial fatty acid compositions were studied under accelerated oxidation condition. It showed that PV and n-3 polyunsaturated fatty acid (PUFA) changed significantly during 21 d accelerated oxidation storage. Based on the changes of PV and fatty acid composition during the oxidation process, mathematical models were hypothesized and the models were simulated by Matlab to generate the proposed equations. These equations were established on the basis of the different PUFA contents as 10% to 28%, 28% to 46%, and 46% to 64%, respectively. The simulated models were proven to be validated and valuable for assessing the degree of oxidation and predicting the shelf life of vegetable oils.

  20. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    NASA Astrophysics Data System (ADS)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  1. Carboxylic acids in secondary aerosols from oxidation of cyclic monoterpenes by ozone

    SciTech Connect

    Glasius, M.; Lahaniati, M.; Calogirou, A.; Di Bella, D.; Jensen, N.R.; Hjorth, J.; Kotzias, D.; Larsen, B.R.

    2000-03-15

    A series of smog chamber experiments have been conducted in which five cyclic monoterpenes were oxidized by ozone. The evolved secondary aerosol was analyzed by GC-MS and HPLC-MS for nonvolatile polar oxidation products with emphasis on the identification of carboxylic acids. Three classes of compounds were determined at concentration levels corresponding to low percentage molar yields: i.e., dicarboxylic acids, oxocarboxylic acids, and hydroxyketocarboxylic acids. Carboxylic acids are highly polar and have lower vapor pressures than their corresponding aldehydes and may thus play an important role in secondary organic aerosol formation processes. The most abundant carboxylic acids were the following: cis-pinic acid AB1(cis-3-carboxy-2,2-dimethylcyclobutylethanoic acid) from {alpha} and {beta}-pinene; cis-pinonic acid A3 (cis-3-acetyl-2,2-dimethylcyclobutylethanoic acid) and cis-10-hydroxypinonic acid Ab6 (cis-2,2-dimethyl-3-hydroxyacetylcyclobutyl-ethanoic acid) from {alpha}-pinene and {beta}-pinene; cis-3-caric acid C1 (cis-2,2-dimethyl-1,3-cyclopropyldiethanoic acid), cis-3-caronic acid C3 (2,2-dimethyl-3-(2-oxopropyl)cyclopropanylethanoic acid), and cis-10-hydroxy-3-caronic acid C6 (cis-2,2-dimethyl-3(hydroxy-2-oxopropyl)cyclopropanylethanoic acid) from 3-carene; cis-sabinic acid S1 (cis-2-carboxy-1-isopropylcyclopropylethanoic acid) from sabinene; limonic acid L1 (3-isopropenylhexanedioic acid), limononic acid L3 (3-isopropenyl-6-oxo-heptanoic acid), 7-hydroxy-limononic acid L6 (3-isopropenyl-7-hydroxy-6-oxoheptanoic acid), and 7-hydroxylimononic acid Lg{prime} (7-hydroxy-3-isopropenyl-6-oxoheptanoic acid) from limonene.

  2. Acidity variations across the cloud drop size spectrum and their influence on rates of atmospheric sulfate production

    SciTech Connect

    Collett, J.L. Jr.; Bator, A.; Rao, Xin; Demoz, B.

    1994-11-01

    Measurements of pH variations within natural cloud drop populations reveal that small drops are often more acidic than large drops. Cloud samples collected from coastal stratus clouds, frontal clouds, and radiation fogs, from heavily polluted and pristine locations, had pH values ranging from below three to more than seven. Differences between small and large cloud drop acidities as large as two pH units were observed, although differences were generally below one pH unit. This chemical heterogenity can significantly enhance oxidation of sulfur dioxide to sulfate within clouds, relative to oxidation rates predicted from the average cloudwater composition. One-third of the sampled clouds were estimated to experience an increase of at least 20% in the rate of sulfur oxidation by ozone (8% of the clouds had increases exceeding 100%) as a result of acidity differences between large and small cloud drops. These findings suggest that sulfate production within clouds, a critical component of the global sulfur cycle, may be more rapid than previously though. 20 refs., 3 figs.

  3. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  4. Manoyl oxide alpha-arabinopyranoside and grindelic acid diterpenoids from Grindelia integrifolia.

    PubMed

    Ahmed, A A; Mahmoud, A A; Ahmed, U M; El-Bassuony, A A; Abd El-Razk, M H; Pare, P W; Karchesy, J

    2001-10-01

    Two new manoyl oxide-alpha-arabinopyranoside diterpenoids, 15-hydroxy-13-epi-manoyl oxide-14-O-alpha-L-arabinopyranoside (tarapacol-14-O-alpha-L-arabinopyranoside) (1) and 15-acetoxy-13-epi-manoyl oxide-14-O-alpha-L-arabinopyranoside (tarapacol-15-acetate-14-O-alpha-L-arabinopyranoside) (2), as well as a new grindelic acid derivative, 19-hydroxygrindelic acid (3), together with five known diterpenoids (tarapacol, tarapacanol A, grindelic acid, methyl grindeloate, 3beta-hydroxygrindelic acid, 4) were isolated from the aerial parts of Grindelia integrifolia. The structures of 1-3 were elucidated by spectral data analysis.

  5. Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Lovley, D.R.

    1998-01-01

    Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2- 14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.

  6. The indicator amino acid oxidation method identified limiting amino acids in two parenteral nutrition solutions in neonatal piglets.

    PubMed

    Brunton, Janet A; Shoveller, Anna K; Pencharz, Paul B; Ball, Ronald O

    2007-05-01

    Recent studies using the indicator amino acid oxidation (IAAO) technique in TPN-fed piglets and infants have been instrumental in defining parenteral amino acid requirements. None of the commercial products in use are ideal when assessed against these new data. Our objectives were to determine whether the oxidation of an indicator amino acid would decline with the addition of amino acids that were limiting in the diets of TPN-fed piglets, and to use this technique to identify limiting amino acids in a new amino acid profile. Piglets (n = 26) were randomized to receive TPN with amino acids provided by Vaminolact (VM) or by a new profile (NP). After 5 d of TPN administration, lysine oxidation was measured using a constant infusion of L- [1-(14)C]-lysine. Immediately following the first IAAO study, the piglets were further randomized within diet group to receive either 1) supplemental aromatic amino acids (AAA), 2) sulfur amino acids (SAA) or 3) both (AAA+SAA) (n = 4-5 per treatment group). A second IAAO study was carried out 18 h later. In the first IAAO study, lysine oxidation was high for both groups (18 vs. 21% for VM and NP, respectively, P = 0.055). The addition of AAA to VM induced a 30% decline in lysine oxidation compared with baseline (P < 0.01). Similarly, SAA added to NP lowered lysine oxidation by approximately 30% (P < 0.01). The application of the IAAO technique facilitates rapid evaluation of the amino acids that are limiting to protein synthesis in parenteral solutions.

  7. Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Gong, Hyejin; Kim, Seong-Taek; Lee, Jong Doo; Yim, Sanggyu

    2013-02-01

    The surface of multi-walled carbon nanotube (MWCNT) was chemically oxidized using nitric acid and sulfuric-nitric acid mixtures. Thermogravimetric analysis, transmission electron microscopy and infrared spectroscopy revealed that the use of acid mixtures led to higher degree of oxidation. More quantitative identification of surface carboxylic acids was carried out using X-ray photoelectron spectroscopy (XPS) and acid-base titration. However, these techniques are costly and require very long analysis times to promptly respond to the extent of the reaction. We propose a much simpler method using pH measurements and pre-determined pKa value in order to estimate the concentration of carboxylic acids on the oxidized MWCNT surfaces. The results from this technique were consistent with those obtained from XPS and titration, and it is expected that this simple quantification method can provide a cheap and fast way to monitor and control the oxidation reaction of MWCNT.

  8. Anesthesia with halothane and nitrous oxide alters protein and amino acid metabolism in dogs

    SciTech Connect

    Horber, F.F.; Krayer, S.; Rehder, K.; Haymond, M.W.

    1988-09-01

    General anesthesia in combination with surgery is known to result in negative nitrogen balance. To determine whether general anesthesia without concomitant surgery decreases whole body protein synthesis and/or increases whole body protein breakdown, two groups of dogs were studied: Group 1 (n = 6) in the conscious state and Group 2 (n = 8) during general anesthesia employing halothane (1.5 MAC) in 50% nitrous oxide and oxygen. Changes in protein metabolism were estimated by isotope dilution techniques employing simultaneous infusions of (4,53H)leucine and alpha-(1-14C)-ketoisocaproate (KIC). Total leucine carbon flux was unchanged or slightly increased in the anesthetized animals when compared to the conscious controls, indicating only a slight increase in the rate of proteolysis. However, leucine oxidation was increased (P less than 0.001) by more than 80% in the anesthetized animals when compared with their conscious controls, whereas whole body nonoxidative leucine disappearance, an indicator of whole body protein synthesis, was decreased. The ratio of leucine oxidation to the nonoxidative rate of leucine disappearance, which provides an index of the catabolism of at least one essential amino acid in the postabsorptive state, was more than twofold increased (P less than 0.001) in the anesthetized animals regardless of the tracer employed. These studies suggest that the administration of anesthesia alone, without concomitant surgery, is associated with a decreased rate of whole body protein synthesis and increased leucine oxidation, resulting in increased leucine and protein catabolism, which may be underlying or initiating some of the protein wasting known to occur in patients undergoing surgery.

  9. Oolong tea increases metabolic rate and fat oxidation in men.

    PubMed

    Rumpler, W; Seale, J; Clevidence, B; Judd, J; Wiley, E; Yamamoto, S; Komatsu, T; Sawaki, T; Ishikura, Y; Hosoda, K

    2001-11-01

    According to traditional Chinese belief, oolong tea is effective in the control of body weight. Few controlled studies, however, have been conducted to measure the impact of tea on energy expenditure (EE) of humans. A randomized cross-over design was used to compare 24-h EE of 12 men consuming each of four treatments: 1) water, 2) full-strength tea (daily allotment brewed from 15 g of tea), 3) half-strength tea (brewed from 7.5 g tea) and 4) water containing 270 mg caffeine, equivalent to the concentration in the full-strength tea treatment. Subjects refrained from consuming caffeine or flavonoids for 4 d prior to the study. Tea was brewed each morning; beverages were consumed at room temperature as five 300 mL servings. Subjects received each treatment for 3 d; on the third day, EE was measured by indirect calorimetry in a room calorimeter. For the 3 d, subjects consumed a typical American diet. Energy content of the diet was tailored to each subject's needs as determined from a preliminary measure of 24-h EE by calorimetry. Relative to the water treatment, EE was significantly increased 2.9 and 3.4% for the full-strength tea and caffeinated water treatments, respectively. This increase over water alone represented an additional expenditure of 281 and 331 kJ/d for subjects treated with full-strength tea and caffeinated water, respectively. In addition, fat oxidation was significantly higher (12%) when subjects consumed the full-strength tea rather than water.

  10. Pro-oxidant/antioxidant behaviours of ascorbic acid, tocopherol, and plant extracts in n-3 highly unsaturated fatty acid rich oil-in-water emulsions.

    PubMed

    Jayasinghe, Chamila; Gotoh, Naohiro; Wada, Shun

    2013-12-01

    This study investigated the oxidative stability of n-3 highly unsaturated fatty acid (n-3 HUFA) rich (35% n-3 HUFA) oil-in-water emulsions (10 wt% oil) with commercial antioxidants and natural plant extracts. Ascorbic acid, α-tocopherol, and the extracts of Indian gooseberry fruit (Emblica officinalis) (IGFE) and sweet basil leaves (Ocimum basilicum L.) (SBLE) were used for the study as antioxidants. The progress of oxidation in the systems was evaluated at 35 °C over 120 h against a control (without antioxidant) by monitoring the formation of primary (conjugated dienes) and secondary (volatile carbonyl compounds) oxidation products. Volatile carbonyl compounds were trapped as derivatives of pentafluorophenyl hydrazine and quantified by headspace solid-phase microextraction analysis. About 40 volatile carbonyls were successfully identified by this method. trans,trans-2,4-Heptadienal, trans,cis-2,4-heptadienal, 3,5-octadien-2-one, and 1-penten-3-ol were predominant. The volatile carbonyl compounds and conjugated dienes were formed at low rates in emulsion systems in which α-tocopherol and natural plant extracts had been introduced, compared to the control. Emulsion systems containing ascorbic acid showed low stability, as indicated by the oxidation products that were formed at high rates compared to the control. These results indicated that ascorbic acid activated the oxidation reactions in n-3 HUFA rich water emulsions, while natural plant extracts that were rich in polyphenols and α-tocopherol were active as antioxidants. The present study further demonstrated the applicability of the polar paradox theory in the determination of stability for n-3 HUFA rich water emulsions with commercial antioxidants and natural plant extracts.

  11. Oxalic acid capped iron oxide nanorods as a sensing platform.

    PubMed

    Sharma, Anshu; Baral, Dinesh; Bohidar, H B; Solanki, Pratima R

    2015-08-05

    A label free impedimetric immunosensor has been fabricated using protein bovine serum albumin (BSA) and monoclonal antibodies against Vibrio cholerae (Ab) functionalized oxalic acid (OA) capped iron oxide (Fe3O4) nanorods for V. cholerae detection. The structural and morphological studies of Fe3O4 and OA-Fe3O4, were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, OA-Fe3O4 nanorods were obtained as about 29±1 and 39±1nm, respectively. The hydrodynamic radius of nanorods is found as 116nm (OA-Fe3O4) and 77nm (Fe3O4) by DLS measurement. Cytotoxicity of Fe3O4 and OA-Fe3O4 nanorods has been investigated in the presence of human epithelial kidney (HEK) cell line 293 using MTT assay. The cell viability and proliferation studies reveal that the OA-Fe3O4 nanorods facilitate cell growth. The results of electrochemical response studies of the fabricated BSA/Ab/OA-Fe2O3/ITO immunosensor exhibits good linearity in the range of 12.5-500ng mL(-1) with low detection limit of 0.5ng mL(-1), sensitivity 0.1Ωng(-1)ml(-1)cm(-2) and reproducibility more than 11 times.

  12. Chemical weathering on Mars: Rate of oxidation of iron dissolved in brines

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1993-01-01

    Salts believed to occur in Martian regolith imply that brines occur on Mars, which may have facilitated the oxidation of dissolved Fe(2+) ions after they were released during chemical weathering of basaltic ferromagnesian silicate and iron sulfide minerals. Calculations show that the rate of oxidation of Fe(2+) ions at -35 C in a 6M chloride-sulfate brine that might exist on Mars is about 10(exp 6) times slower that the oxidation rate of iron in ice-cold terrestrial seawater.

  13. Tetramer-dimer equilibrium of oxyhemoglobin mutants determined from auto-oxidation rates.

    PubMed Central

    Griffon, N.; Baudin, V.; Dieryck, W.; Dumoulin, A.; Pagnier, J.; Poyart, C.; Marden, M. C.

    1998-01-01

    One of the main difficulties with blood substitutes based on hemoglobin (Hb) solutions is the auto-oxidation of the hemes, a problem aggravated by the dimerization of Hb tetramers. We have employed a method to study the oxyHb tetramer-dimer equilibrium based on the rate of auto-oxidation as a function of protein concentration. The 16-fold difference in dimer and tetramer auto-oxidation rates (in 20 mM phosphate buffer at pH 7.0, 37 degrees C) was exploited to determine the fraction dimer. The results show a transition of the auto-oxidation rate from low to high protein concentrations, allowing the determination of the tetramer-dimer dissociation coefficient K4,2 = [Dimer] 2/[Tetramer]. A 14-fold increase in K4,2 was observed for addition of 10 mM of the allosteric effector inositol hexaphosphate (IHP). Recombinant hemoglobins (rHb) were genetically engineered to obtain Hb with a lower oxygen affinity than native Hb (Hb A). The rHb alpha2beta2 [(C7) F41Y/(G4) N102Y] shows a fivefold increase in K4,2 at pH 7.0, 37 degrees C. An atmosphere of pure oxygen is necessary in this case to insure fully oxygenated Hb. When this condition is satisfied, this method provides an efficient technique to characterize both the tetramer-dimer equilibrium and the auto-oxidation rates of various oxyHb. For low oxygen affinity Hb equilibrated under air, the presence of deoxy subunits accelerates the auto-oxidation. Although a full analysis is complicated, the auto-oxidation studies for air equilibrated samples are more relevant to the development of a blood substitute based on Hb solutions. The double mutants, rHb alpha2beta2 [(C7) F41Y/(G4) N102A] and rHb alpha2beta2 [(C7) F41Y/(E10) K66T], show a lower oxygen affinity and a higher rate of oxidation than Hb A. Simulations of the auto-oxidation rate versus Hb concentration indicate that very high protein concentrations are required to observe the tetramer auto-oxidation rate. Because the dimers oxidize much more rapidly, even a small

  14. Bio-inspired amino acid oxidation by a non-heme iron catalyst.

    PubMed

    Góger, Szabina; Bogáth, Dóra; Baráth, Gábor; Simaan, A Jalila; Speier, Gábor; Kaizer, József

    2013-06-01

    This study reports the kinetics and mechanism of Fe(III)-catalyzed oxidative decarboxylation and deamination of a series of acyclic (α-aminoisobutyric acid, α-(methylamino)isobutyric acid, alanine, norvaline, and 2-aminobutyric acid) and cyclic (1-aminocyclopropane-1-carboxylic acid, 1-amino-1-cyclobutanecarboxylic acid, 1-aminocyclopentanecarboxylic acid, and 1-aminocyclohexanecarboxylicacid) amino acids using hydrogen peroxide, t-butyl hydroperoxide, iodosylbenzene, m-chloroperbenzoic acid, and peroxomonosulphate as oxidant in 75% DMF-25% water solvent mixture. Model complex [Fe(IV)O(SALEN)](•+) (SALENH2: N,N'-bis(salicylidene)ethylenediamine) was generated by the reaction of Fe(III)(SALEN)Cl and H2O2 in CH3CN at 278 K as reported earlier. This method provided us high-valent oxoiron species, stable enough to ensure the direct observation of the reaction with amino acids.

  15. Catalytic ozonation of fenofibric acid over alumina-supported manganese oxide.

    PubMed

    Rosal, Roberto; Gonzalo, María S; Rodríguez, Antonio; García-Calvo, Eloy

    2010-11-15

    The catalytic ozonation of fenofibric acid was studied using activated alumina and alumina-supported manganese oxide in a semicontinuous reactor. The rate constants at 20°C for the non-catalytic reaction of fenofibric acid with ozone and hydroxyl radicals were 3.43±0.20 M(-1) s(-1) and (6.55±0.33)×10(9) M(-1) s(-1), respectively. The kinetic constant for the catalytic reaction between fenofibric acid and hydroxyl radicals did not differ significantly from that of homogeneous ozonation, either using Al(2)O(3) or MnO(x)/Al(2)O(3). The results showed a considerable increase in the generation of hydroxyl radicals due to the use of catalysts even in the case of catalytic runs performed using a real wastewater matrix. Both catalysts promoted the decomposition of ozone in homogeneous phase, but the higher production of hydroxyl radicals corresponded to the catalyst with more activity in terms of ozone decomposition. We did not find evidence of the catalysts having any effect on rate constants, which suggests that the reaction may not involve the adsorption of organics on catalyst surface.

  16. Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation.

    PubMed

    Pattison, David I; Davies, Michael J

    2005-05-17

    Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and chloride ions by the heme enzyme myeloperoxidase (MPO) released from activated leukocytes. In addition to its potent antibacterial effects, excessive HOCl production can lead to host tissue damage, with this implicated in human diseases such as atherosclerosis, cystic fibrosis, and arthritis. HOCl reacts rapidly with biological materials, with proteins being major targets. Chlorinated amines (chloramines) formed from Lys and His side chains and alpha-amino groups on proteins are major products of these reactions; these materials are however also oxidants and can undergo further reactions. In this study, the kinetics of reaction of His side-chain chloramines with other protein components have been investigated by UV/visible spectroscopy and stopped flow methods at pH 7.4 and 22 degrees C, using the chloramines of the model compound 4-imidazoleacetic acid and N-alpha-acetyl-histidine. The second-order rate constants decrease in a similar order (Cys > Met > disulfide bonds > Trp approximately alpha-amino > Lys > Tyr > backbone amides > Arg) to the corresponding reactions of HOCl, but are typically 5-25 times slower. These rate constants are consistent with His side-chain chloramines being important secondary oxidants in HOCl-mediated damage. These studies suggest that formation and subsequent reactions of His side-chain chloramines may be responsible for the targeted secondary modification of selected protein residues by HOCl that has previously been observed experimentally and highlight the importance of chloramine structure on their subsequent reactivity.

  17. Manipulation of plasma uric acid in broiler chicks and its effect on leukocyte oxidative activity.

    PubMed

    Simoyi, Melvin F; Van Dyke, Knox; Klandorf, Hillar

    2002-03-01

    Birds have high metabolic rates, body temperatures, and plasma glucose concentrations yet physiologically age at a rate slower than comparably sized mammals. These studies were designed to test the hypothesis that the antioxidant uric acid protects birds against oxidative stress. Mixed sex broiler chicks (3 wk old) were fed diets supplemented or not with purines (0.6 mol hypoxanthine or inosine). Study 1 consisted of 18 female Cobb x Cobb broilers that were fed purines for 7 days, whereas study 2 consisted of 12 males in a 21-day trial. Study 3 involved 30 mixed sex broilers that were fed 40 or 50 mg allopurinol/kg body mass (BM) for 21 days, a drug that lowers plasma uric acid (PUA). PUA and leukocyte oxidative activity (LOA) were determined weekly for all studies. For study 2, pectoralis major shear force, relative kidney and liver sizes (RKS and RLS), and plasma glucose concentrations were also determined. In study 1, PUA concentration was increased three- and twofold (P < 0.001) in birds fed inosine or hypoxanthine, respectively, compared with control birds. LOA of birds supplemented with inosine was lower (P < 0.05) than that of control or hypoxanthine birds. In study 2, PUA concentrations were increased fivefold (P < 0.001) in birds fed inosine and twofold (P < 0.001) in birds fed hypoxanthine compared with control birds at day 21. RKS (g/kg BM) was greater (P < 0.001) for chicks fed purine diets compared with control chicks. Muscle shear value was lower (P < 0.05) in chicks fed purine diets. PUA concentration was decreased (P < 0.001) in birds consuming allopurinol diets, whereas LOA was increased (P < 0.01) in study 3. These studies show that PUA concentrations can be related to oxidative stress in birds, which can be linked to tissue aging.

  18. Kinetics and mechanism of oxidation of chondroitin-4-sulfate polysaccharide by chromic acid in aqueous perchlorate solutions.

    PubMed

    Hassan, Refat; Ibrahim, Samia; Dahy, Abdel Rahman; Zaafarany, Ishaq; Tirkistani, Fahd; Takagi, Hideo

    2013-02-15

    The kinetics of chromic acid oxidation of chondroitin-4-sulfate polysaccharide as sulfated carbohydrates at a constant ionic strength of 4.0 mol dm(-3) has been investigated, spectrophotometrically. The reaction kinetics showed a first-order dependence in chromic acid and fractional-first-order kinetics with respect to the chondroitin-4-sulfate concentration. The influence of [H(+)] on the reaction rates showed that the oxidation process is acid-catalyzed. Added Mn(2+) ions indicated the formation of Cr(IV) as intermediate species. A kinetic evidence for formation of 1:1 intermediate complex was revealed. The kinetic parameters have been evaluated and a tentative reaction mechanism in good consistent with the kinetic results obtained is discussed.

  19. Micelle-assisted signaling of peracetic acid by the oxidation of pyreneboronic acid via monomer-excimer switching.

    PubMed

    Choi, Jiyoung; Lee, Hyo Jin; Cho, Min Jeoung; Chang, Suk-Kyu

    2015-08-15

    A simple fluorescent probe for the industrial oxidant peracetic acid (PAA) was investigated. PAA-assisted oxidative conversion of pyrene-1-boronic acid into 1-hydroxypyrene was used as the signaling tool. Pyreneboronic acid was found to display selective signaling behavior, being more responsive to PAA than to other commonly used practical oxidants such as H2O2 and HOCl. The changes in pyrene monomer fluorescence to excimer were used in the quantitative analysis of PAA. When using the surfactant hexadecyltrimethylammonium bromide as a micellar additive, the signaling of PAA was markedly enhanced. Selective fluorescence signaling of PAA by pyrene-1-boronic acid with a detection limit of 1.5×10(-6)M in aqueous environment was successfully achieved.

  20. Oxidative degradation of bis (2,4,4-trimethylpentyl) dithiophosphinic acid in nitric acid studied by electrospray ionization mass spectrometry

    SciTech Connect

    G. S. Groenewold; D. R. Peterman

    2012-10-01

    Samples of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex-301) were analyzed using direct infusion electrospray ionization mass spectrometry. Positive ion spectra of standard and stereo-pure acids displayed ions typical of the unmodified compound, cationized monomeric and dimeric cluster ion species. In addition, a significant ions 2 u less than the dimeric clusters were seen, that correspond to an oxidatively coupled species designated Cyx2 that is observed as H- or Na-cationized species in the electrospray analyses. Based on uncorrected ion intensities, Cyx2 is estimated to account for about 20% of the total in the standard materials. When samples that were contacted with 3 M HNO3 were analyzed, the positive ion spectrum consisted nearly entirely of ions derived from the oxidatively coupled product, indicating that the acid promotes coupling. The negative ion spectra of the standard acids consisted nearly entirely of the conjugate base that is formed by deprotonation of the acids, and cluster ions containing multiple acid molecules. The negative spectra of the HNO3-contacted samples also contained the conjugate base of the unmodified acid, but also two other species that correspond to the dioxo- and perthio- derivatives. It is concluded that HNO3 contact causes significant oxidation, forming at least three major products, Cyx2, the perthio-acid, and the dioxo-acid.

  1. Oxidation rate of graphitic matrix material in the kinetic regime for VHTR air ingress accident scenarios

    NASA Astrophysics Data System (ADS)

    Lee, Jo Jo; Ghosh, Tushar K.; Loyalka, Sudarshan K.

    2014-08-01

    Data on oxidation rates of matrix-grade graphite in the kinetically-controlled temperature regime of graphite oxidation are needed for safety analysis of High Temperature Gas Cooled Reactors and Very High Temperature Reactors. In this work, the oxidation rate of graphitic matrix material GKrS was measured thermogravimetrically for various oxygen concentrations and with temperatures from 873 to 1873 K. A semi-empirical Arrhenius rate equation was also developed for this temperature range. The activation energy of the graphitic material is found to be about 111.5 kJ/mol. The order of reaction was found to be about 0.89. The surface of oxidized GKrS was characterized by Scanning Electron Microscopy, Electron Dispersive Spectroscopy, Fourier Transform Infrared Spectroscopy and X-ray Photoelectron Spectroscopy.

  2. Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide.

    PubMed

    Jankovsky, Ondrej; Novacek, Michal; Luxa, Jan; Sedmidubsky, David; Bohacova, Marie; Pumera, Martin; Sofer, Zdenek

    2017-02-28

    Graphite oxide is the most widely used precursor for the synthesis of graphene by top-down methods. We demonstrate a significant influence of nitric acid concentration on the structure and composition of the graphite oxide prepared by graphite oxidation. In general, two main chlorate based oxidation methods are currently used for graphite oxide synthesis, Staudenmaier method dealing with 98 wt.% nitric acid and Hofmann method dealing with 68 wt.% nitric acid. However a gradual change of nitric acid concentration allowed for the continuous change of the graphite oxide composition. The prepared samples were thoroughly characterized by microscopic techniques as well as various spectroscopic and analytical methods. Lowering of nitric acid concentration led to an increase of oxidation degree and in particular to a concentration of epoxy and hydroxyl groups. This knowledge is not only useful for the large scale synthesis of graphite oxide with tunable size and chemical composition, but the use of nitric acid in lower concentration can also significantly reduce the overall cost of the synthesis.

  3. Parabola-like shaped pH-rate profile for phenols oxidation by aqueous permanganate.

    PubMed

    Du, Juanshan; Sun, Bo; Zhang, Jing; Guan, Xiaohong

    2012-08-21

    Oxidation of phenols by permanganate in the pH range of 5.0-9.0 generally exhibits a parabola-like shape with the maximum reaction rate obtained at pH close to phenols' pK(a). However, a monotonic increase or decrease is observed if phenols' pK(a) is beyond the pH range of 5.0-9.0. A proton transfer mechanism is proposed in which the undissociated phenol is directly oxidized by permanganate to generate products while a phenolate-permanganate adduct, intermediate, is formed between dissociated phenol and permanganate ion and this is the rate-limiting step for phenolates oxidation by permanganate. The intermediate combines with H(+) and then decomposes to products. Rate equations derived based on the steady-state approximation can well simulate the experimentally derived pH-rate profiles. Linear free energy relationships (LFERs) were established among the parameters obtained from the modeling, Hammett constants, and oxygen natural charges in phenols and phenolates. LFERs reveal that chlorine substituents have opposite influence on the susceptibility of phenols and phenolates to permanganate oxidation and phenolates are not necessarily more easily oxidized than their neutral counterparts. The chlorine substituents regulate the reaction rate of chlorophenolates with permanganate mainly by influencing the natural charges of the oxygen atoms of dissociated phenols while they influence the oxidation of undissociated chlorophenols by permanganate primarily by forming intramolecular hydrogen bonding with the phenolic group.

  4. The Use of Ascorbate as an Oxidation Inhibitor in Prebiotic Amino Acid Synthesis: A Cautionary Note

    NASA Astrophysics Data System (ADS)

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO2-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO2 was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO2-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO2-rich atmosphere under the conditions studied.

  5. The use of ascorbate as an oxidation inhibitor in prebiotic amino acid synthesis: a cautionary note.

    PubMed

    Kuwahara, Hideharu; Eto, Midori; Kawamoto, Yukinori; Kurihara, Hironari; Kaneko, Takeo; Obayashi, Yumiko; Kobayashi, Kensei

    2012-12-01

    It is generally thought that the terrestrial atmosphere at the time of the origin of life was CO(2)-rich and that organic compounds such as amino acids would not have been efficiently formed abiotically under such conditions. It has been pointed out, however, that the previously reported low yields of amino acids may have been partially due to oxidation by nitrite/nitrate during acid hydrolysis. Specifically, the yield of amino acids was found to have increased significantly (by a factor of several hundred) after acid hydrolysis with ascorbic acid as an oxidation inhibitor. However, it has not been shown that CO(2) was the carbon source for the formation of the amino acids detected after acid hydrolysis with ascorbic acid. We therefore reinvestigated the prebiotic synthesis of amino acids in a CO(2)-rich atmosphere using an isotope labeling experiment. Herein, we report that ascorbic acid does not behave as an appropriate oxidation inhibitor, because it contributes amino acid contaminants as a consequence of its reactions with the nitrogen containing species and formic acid produced during the spark discharge experiment. Thus, amino acids are not efficiently formed from a CO(2)-rich atmosphere under the conditions studied.

  6. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  7. Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-08-01

    Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.

  8. Oxidation-Resistant Coating For Bipolar Lead/Acid Battery

    NASA Technical Reports Server (NTRS)

    Bolstad, James J.

    1993-01-01

    Cathode side of bipolar substrate coated with nonoxidizable conductive layer. Coating prepared as water slurry of aqueous dispersion of polyethylene copolymer plus such conductive fillers as tin oxide, titanium, tantalum, or tungsten oxide. Applied easily to substrate of polyethylene carbon plastic. As slurry dries, conductive, oxidation-resistant coating forms on positive side of substrate.

  9. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  10. Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils ▿ †

    PubMed Central

    Yao, Huaiying; Gao, Yangmei; Nicol, Graeme W.; Campbell, Colin D.; Prosser, James I.; Zhang, Limei; Han, Wenyan; Singh, Brajesh K.

    2011-01-01

    Ammonia oxidation is the first and rate-limiting step of nitrification and is performed by both ammonia-oxidizing archaea (AOA) and bacteria (AOB). However, the environmental drivers controlling the abundance, composition, and activity of AOA and AOB communities are not well characterized, and the relative importance of these two groups in soil nitrification is still debated. Chinese tea orchard soils provide an excellent system for investigating the long-term effects of low pH and nitrogen fertilization strategies. AOA and AOB abundance and community composition were therefore investigated in tea soils and adjacent pine forest soils, using quantitative PCR (qPCR), terminal restriction fragment length polymorphism (T-RFLP) and sequence analysis of respective ammonia monooxygenase (amoA) genes. There was strong evidence that soil pH was an important factor controlling AOB but not AOA abundance, and the ratio of AOA to AOB amoA gene abundance increased with decreasing soil pH in the tea orchard soils. In contrast, T-RFLP analysis suggested that soil pH was a key explanatory variable for both AOA and AOB community structure, but a significant relationship between community abundance and nitrification potential was observed only for AOA. High potential nitrification rates indicated that nitrification was mainly driven by AOA in these acidic soils. Dominant AOA amoA sequences in the highly acidic tea soils were all placed within a specific clade, and one AOA genotype appears to be well adapted to growth in highly acidic soils. Specific AOA and AOB populations dominated in soils at particular pH values and N content, suggesting adaptation to specific niches. PMID:21571885

  11. Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films.

    PubMed

    Biduski, Bárbara; Silva, Francine Tavares da; Silva, Wyller Max da; Halal, Shanise Lisie de Mello El; Pinto, Vania Zanella; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-01-01

    The objective of this study was to evaluate the effects of acid and oxidation modifications on sorghum starch, as well as the effect of dual modification of starch on the physical, morphological, mechanical, and barrier properties of biodegradable films. The acid modification was performed with 3% lactic acid and the oxidation was performed with 1.5% active chlorine. For dual modification, the acid modification was performed first, followed by oxidation under the same conditions as above. Both films of the oxidized starches, single and dual, had increased stiffness, providing a higher tensile strength and lower elongation when compared to films based on native and single acid modified starches. However, the dual modification increased the water vapor permeability of the films without changing their solubility. The increase in sorghum starch concentration in the filmogenic solution increased the thickness, water vapor permeability, and elongation of the films.

  12. S-oxygenation of thiocarbamides IV: Kinetics of oxidation of tetramethylthiourea by aqueous bromine and acidic bromate.

    PubMed

    Ajibola, Risikat O; Simoyi, Reuben H

    2011-04-07

    The kinetics and mechanism of oxidation of tetramethylthiourea (TTTU) by bromine and acidic bromate has been studied in aqueous media. The kinetics of reaction of bromate with TTTU was characterized by an induction period followed by formation of bromine. The reaction stoichiometry was determined to be 4BrO(3)(-) + 3(R)(2)C═S + 3H(2)O → 4Br(-) + 3(R)(2)C═O + 3SO(4)(2-) + 6H(+). For the reaction of TTTU with bromine, a 4:1 stoichiometric ratio of bromine to TTTU was obtained with 4Br(2) + (R)(2)C═S + 5H(2)O → 8Br(-) + SO(4)(2-) + (R)(2)C═O + 10H(+). The oxidation pathway went through the formation of tetramethythiourea sulfenic acid as evidenced by the electrospray ionization mass spectrum of the dynamic reaction solution. This S-oxide was then oxidized to produce tetramethylurea and sulfate as final products of reaction. There was no evidence for the formation of the sulfinic and sulfonic acids in the oxidation pathway. This implicates the sulfoxylate anion as a precursor to formation of sulfate. In aerobic conditions, this anion can unleash a series of genotoxic reactive oxygen species which can explain TTTU's observed toxicity. A bimolecular rate constant of 5.33 ± 0.32 M(-1) s(-1) for the direct reaction of TTTU with bromine was obtained.

  13. A facile synthesis of MPd (M = Co, Cu) nanoparticles and their catalysis for formic acid oxidation.

    PubMed

    Mazumder, Vismadeb; Chi, Miaofang; Mankin, Max N; Liu, Yi; Metin, Önder; Sun, Daohua; More, Karren L; Sun, Shouheng

    2012-02-08

    Monodisperse CoPd nanoparticles (NPs) were synthesized and studied for catalytic formic acid (HCOOH) oxidation (FAO). The NPs were prepared by coreduction of Co(acac)(2) (acac = acetylacetonate) and PdBr(2) at 260 °C in oleylamine and trioctylphosphine, and their sizes (5-12 nm) and compositions (Co(10)Pd(90) to Co(60)Pd(40)) were controlled by heating ramp rate, metal salt concentration, or metal molar ratios. The 8 nm CoPd NPs were activated for HCOOH oxidation by a simple ethanol wash. In 0.1 M HClO(4) and 2 M HCOOH solution, their catalytic activities followed the trend of Co(50)Pd(50) > Co(60)Pd(40) > Co(10)Pd(90) > Pd. The Co(50)Pd(50) NPs had an oxidation peak at 0.4 V with a peak current density of 774 A/g(Pd). As a comparison, commercial Pd catalysts showed an oxidation peak at 0.75 V with peak current density of only 254 A/g(Pd). The synthesis procedure could also be extended to prepare CuPd NPs when Co(acac)(2) was replaced by Cu(ac)(2) (ac = acetate) in an otherwise identical condition. The CuPd NPs were less active catalysts than CoPd or even Pd for FAO in HClO(4) solution. The synthesis provides a general approach to Pd-based bimetallic NPs and will enable further investigation of Pd-based alloy NPs for electro-oxidation and other catalytic reactions.

  14. Water evaporation rates across hydrophobic acid monolayers at equilibrium spreading pressure.

    PubMed

    Tsuji, Minami; Nakahara, Hiromichi; Moroi, Yoshikiyo; Shibata, Osamu

    2008-02-15

    The effect of alkanoic acid [CH(3)(CH(2))(n-2)COOH; HCn] and perfluoroalkanoic acid [CF(3)(CF(2))(n-2)COOH; FCn] monolayers on the water evaporation rate was investigated by thermogravimetry tracing the decrease in amount of water with time. The evaporation rate from the surface covered by a monolayer was measured as a function of temperature and hydrophobic chain length of the acids, where the monolayer was under an equilibrium spreading pressure. From thermal behavior of the crystallized acids, their solid states are C-type in crystalline state over the temperature range from 298.2 to 323.2 K. The dry air was flowed through a furnace tube of a thermogravimetry apparatus at the flow rate of 80 mL min(-1), where the evaporation rate becomes almost constant irrespective of the flow rate. The temperature dependence of the evaporation rate was analyzed kinetically to evaluate the activation energy and thermodynamics values for the activated complex, which demonstrated that these values were almost the same for both alkanoic acids and perfluoroalkanoic acids, although the effect of perfluoroalkanoic acids on the evaporation rate was smaller than that of corresponding hydrogenated fatty acids. The difference in the evaporation rate between FCn and HCn was examined by atomic force microscopy (AFM), Brewster angle microscopy (BAM), surface potential (DeltaV) at equilibrium spreading pressure, and Langmuir curve (pi-A isotherm), and their results were consistent and supported the difference.

  15. Uranium Oxide Rate Summary for the Spent Nuclear Fuel (SNF) Project (OCRWM)

    SciTech Connect

    PAJUNEN, A.L.

    2000-09-20

    The purpose of this document is to summarize the uranium oxidation reaction rate information developed by the Hanford Spent Nuclear Fuel (SNF) Project and describe the basis for selecting reaction rate correlations used in system design. The selection basis considers the conditions of practical interest to the fuel removal processes and the reaction rate application during design studies. Since the reaction rate correlations are potentially used over a range of conditions, depending of the type of evaluation being performed, a method for transitioning between oxidation reactions is also documented. The document scope is limited to uranium oxidation reactions of primary interest to the SNF Project processes. The reactions influencing fuel removal processes, and supporting accident analyses, are: uranium-water vapor, uranium-liquid water, uranium-moist air, and uranium-dry air. The correlation selection basis will consider input from all available sources that indicate the oxidation rate of uranium fuel, including the literature data, confirmatory experimental studies, and fuel element observations. Trimble (2000) summarizes literature data and the results of laboratory scale experimental studies. This document combines the information in Trimble (2000) with larger scale reaction observations to describe uranium oxidation rate correlations applicable to conditions of interest to the SNF Project.

  16. The ascorbic acid-dependent oxidation of reduced nicotinamide–adenine dinucleotide by ciliary and retinal microsomes

    PubMed Central

    Heath, H.; Fiddick, Rosemary

    1965-01-01

    1. The presence of an ascorbic acid-dependent NADH oxidation in ocular tissues has been established. Subcellular fractionation revealed that the enzyme is localized in the microsomes. The distribution of the enzyme in some ocular tissues has been determined; microsomes from the ciliary processes and the retina have comparable activities, which are much higher than those from the cornea or lens. 2. NADPH cannot replace NADH, and cysteine, reduced glutathione, ergothioneine and dehydroascorbic acid cannot be substituted for ascorbic acid in the reaction. The rate of NADH oxidation was greatly increased in the presence of cucumber ascorbate oxidase, and the enzyme appears to be NADH–monodehydroascorbate transhydrogenase. 3. Cytochrome b5 is present in retinal microsomes. 4. The enzyme is inhibited by p-chloromercuribenzoate and iodoacetate, but not by cyanide, Amytal or malonate. 5. High concentrations of chloroquine cause a partial inhibition of the reaction, probably owing to interaction of this compound with the enzyme thiol groups. Low concentrations of Diamox, comparable with those attained in tissues during therapy with this drug, bring about partial inhibition of the reaction. Eserine, cortisone, hydrocortisone, 11-deoxycorticosterone and dexamethasone have no effect on the rate of oxidation. 6. The possible role of ascorbic acid and NADH–monodehydroascorbate transhydrogenase in the formation of aqueous humour and secretory mechanisms is discussed. PMID:14345883

  17. Cements containing syringic acid esters -- o-ethoxybenzoic acid and zinc oxide.

    PubMed

    Brauer, G M; Stansbury, J W

    1984-02-01

    Fissure caries is reduced when syringic acid is incorporated into a cariogenic diet of rats. It was therefore of interest to synthesize n-hexyl and 2-ethylhexyl syringate and to evaluate the properties of cements with these compounds as ingredients. Liquids containing the esters dissolved in o-ethoxybenzoic acid (EBA) - when mixed with powders made up from zinc oxide, aluminum oxide, and hydrogenated rosin - hardened in from four to nine min. Properties of the cements were determined, when possible, according to ANSI/ADA specification tests. Depending on the powder-liquid ratio employed, we obtained compositions with varying physical properties desirable for different dental applications. The syringate cements, compared with the commonly used ZOE materials, have improved compressive and tensile strength, lower water solubility, do not inhibit polymerization, and are compatible with acrylic monomers. These cements pass, and mostly greatly exceed, the requirements for ZOE-type restorative materials. They also bond significantly to resins, composites, and non-precious metals. The bond strength is somewhat less than that of n-hexyl vanillate-EBA cement, but greatly exceeds the adhesion to various substrates of ZOE luting agents. Cements containing n-hexyl syringate were somewhat brittle. Best results were obtained with liquid compositions containing 5% 2-ethylhexyl syringate, 7% n-hexyl vanillate, and 88% EBA, which yielded non-brittle materials. These cements, because of the syringate ingredient, may possess caries-reducing properties. Thus, perhaps in conjunction with fluoride additives, they would be useful as insulating bases, pulp capping agents, root canal sealers, soft tissue packs, or intermediate restoratives.

  18. Reduced graphene oxide aerogel with high-rate supercapacitive performance in aqueous electrolytes

    PubMed Central

    2013-01-01

    Reduced graphene oxide aerogel (RGOA) is synthesized successfully through a simultaneous self-assembly and reduction process using hypophosphorous acid and I2 as reductant. Nitrogen sorption analysis shows that the Brunauer-Emmett-Teller surface area of RGOA could reach as high as 830 m2 g−1, which is the largest value ever reported for graphene-based aerogels obtained through the simultaneous self-assembly and reduction strategy. The as-prepared RGOA is characterized by a variety of means such as scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. Electrochemical tests show that RGOA exhibits a high-rate supercapacitive performance in aqueous electrolytes. The specific capacitance of RGOA is calculated to be 211.8 and 278.6 F g−1 in KOH and H2SO4 electrolytes, respectively. The perfect supercapacitive performance of RGOA is ascribed to its three-dimensional structure and the existence of oxygen-containing groups. PMID:23692674

  19. Preferential Oxidation of Triacylglyceride-Derived Fatty Acids in Heart is Augmented by the Nuclear Receptor PPARα

    PubMed Central

    Banke, Natasha H.; Wende, Adam R.; Leone, Teresa C.; O’Donnell, J. Michael; Abel, E. Dale; Kelly, Daniel P.; Lewandowski, E. Douglas

    2010-01-01

    Rationale Long chain fatty acids (LCFA) are the preferred substrate for energy provision in hearts. However, the contribution of endogenous triacylglyceride (TAG) turnover to LCFA oxidation and the overall dependence of mitochondrial oxidation on endogenous lipid is largely unstudied. Objective We sought to determine the role of TAG turnover in supporting LCFA oxidation and the influence of the lipid-activated nuclear receptor, PPARα, on this balance. Methods and Results Palmitoyl turnover within TAG and palmitate oxidation rates were quantified in isolated hearts, from normal mice (non-transgenic, NTG) and mice with cardiac-specific overexpression of PPARα (MHC-PPARα). Turnover of palmitoyl units within TAG, and thus palmitoyl-CoA recycling, in NTG (4.5± 2.3 μmoles/min/gdw) was 3.75-fold faster than palmitate oxidation (1.2 ±0.4). This high rate of palmitoyl unit turnover indicates preferential oxidation of palmitoyl units derived from TAG in normal hearts. PPARα overexpression augmented TAG turnover 3-fold over NTG hearts, despite similar fractions of acetyl-CoA synthesis from palmitate and oxygen use at the same workload. Palmitoyl turnover within TAG of MHC-PPARα hearts (16.2 ± 2.9, P<0.05) was 12.5-fold faster than oxidation (1.3 ± 0.2). Elevated TAG turnover in MHC-PPARα correlated with increased mRNA for enzymes involved in both TAG synthesis, Gpam, Dgat1, and Agpat3, and lipolysis, Pnliprp1. Conclusions The role of endogenous TAG in supporting β-oxidation in the normal heart is much more dynamic than previously thought, and lipolysis provides the bulk of LCFA for oxidation. Accelerated palmitoyl turnover in TAG, due to chronic PPARα activation, results in near requisite oxidation of LCFA from TAG. PMID:20522803

  20. Calcium bisulfite oxidation rate in the wet limestone-gypsum flue gas desulfurization process

    SciTech Connect

    Lancia, A.; Musmarra, D.

    1999-06-01

    In this paper oxidation of calcium bisulfite in aqueous solutions was studied, in connection with the limestone-gypsum flue gas desulfurization process. Experimental measurements of the oxidation rate were carried out in a laboratory scale stirred reactor with continuous feeding of both gas and liquid phase. A calcium bisulfite clear solution was used as liquid phase, and pure oxygen or mixtures of oxygen and nitrogen were used as gas phase. Experiments were carried out at T = 45 C varying the composition of the liquid phase and the oxygen partial pressure. Manganous sulfate was used as catalyst. The analysis of the experimental results showed that the kinetics of bisulfite oxidation in the presence of MnSO{sub 4} follow a parallel reaction mechanism, in which the overall reaction rate can be calculated as the sum between the uncatalyzed rate (3/2 order in bisulfite ion) and the catalyzed reaction rate (first order in manganous ion).

  1. Hydrogen Peroxide Cycling in Acidic Geothermal Environments and Potential Implications for Oxidative Stress

    NASA Astrophysics Data System (ADS)

    Mesle, M.; Beam, J.; Jay, Z.; Bodle, B.; Bogenschutz, E.; Inskeep, W.

    2014-12-01

    Hydrogen peroxide (H2O2) may be produced in natural waters via photochemical reactions between dissolved oxygen, organic carbon and light. Other reactive oxygen species (ROS) such as superoxide and hydroxyl radicals are potentially formed in environments with high concentrations of ferrous iron (Fe(II), ~10-100 μM) by reaction between H2O2 and Fe(II) (i.e., Fenton chemistry). Thermophilic archaea and bacteria inhabiting acidic iron-oxide mats have defense mechanisms against both extracellular and intracellular peroxide, such as peroxiredoxins (which can degrade H2O2) and against other ROS, such as superoxide dismutases. Biological cycling of H2O2 is not well understood in geothermal ecosystems, and geochemical measurements combined with molecular investigations will contribute to our understanding of microbial response to oxidative stress. We measured H2O2 and other dissolved compounds (Fe(II), Fe(III), H2S, O2), as well as photon flux, pH and temperature, over time in surface geothermal waters of several acidic springs in Norris Geyser Basin, Yellowstone National Park, WY (Beowulf Spring and One Hundred Spring Plain). Iron-oxide mats were sampled in Beowulf Spring for on-going analysis of metatranscriptomes and RT-qPCR assays of specific stress-response gene transcription (e.g., superoxide dismutases, peroxiredoxins, thioredoxins, and peroxidases). In situ analyses show that H2O2 concentrations are lowest in the source waters of sulfidic systems (ca. 1 μM), and increase by two-fold in oxygenated waters corresponding to Fe(III)-oxide mat formation (ca. 2 - 3 μM). Channel transects confirm increases in H2O2 as a function of oxygenation (distance). The temporal dynamics of H2O2, O2, Fe(II), and H2S in Beowulf geothermal waters were also measured during a diel cycle, and increases in H2O2 were observed during peak photon flux. These results suggest that photochemical reactions may contribute to changes in H2O2. We hypothesize that increases in H2O2 and O2

  2. Formic-acid-induced depolymerization of oxidized lignin to aromatics.

    PubMed

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J; Stahl, Shannon S

    2014-11-13

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  3. Formic-acid-induced depolymerization of oxidized lignin to aromatics

    NASA Astrophysics Data System (ADS)

    Rahimi, Alireza; Ulbrich, Arne; Coon, Joshua J.; Stahl, Shannon S.

    2014-11-01

    Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.

  4. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    PubMed

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated.

  5. Effect of lipoxygenase oxidation on surface deposition of unsaturated fatty acids.

    PubMed

    Tayeb, Ali H; Hubbe, Martin Allen; Zhang, Yanxia; Rojas, Orlando J

    2017-04-14

    We studied the interactions of lipid molecules (linoleic acid, glycerol trilinoleate and a complex mixture of wood extractives) with hydrophilic and hydrophobic surfaces (cellulose nanofibrils, CNF, and polyethylene terephthalate, PET, respectively). The effect of lipoxygenase treatment to minimize the affinity of the lipids with the given surface was considered. Application of an electroacoustic sensing technique (QCM) allowed the monitoring of the kinetics of oxidation as well as dynamics of lipid deposition on CNF and PET. The effect of the lipoxygenase enzymes (LOX) was elucidated with regards to their ability to reduce the formation of soiling lipid layers. The results pointed to the fact that the rate of colloidal oxidation depended on the type of lipid substrate. The pre-treatment of the lipids with LOX reduced substantially their affinity to the surfaces, especially PET. Surface plasmon resonance (SPR) sensograms confirmed the effect of oxidation in decreasing the extent of deposition on the hydrophilic CNF. QCM energy dissipation analyses revealed the possible presence of a loosely adsorbed lipid layer on the PET surface. The morphology of the deposits accumulated on the solids was determined by atomic force microscopy and indicated important changes upon lipid treatment with LOX. The results highlighted the benefit of enzyme as a bio-based treatment to reduce hydrophobic interactions, thus providing a viable solution to the control of lipid deposition from aqueous media.

  6. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways.

    PubMed

    Mur, Luis A J; Prats, Elena; Pierre, Sandra; Hall, Michael A; Hebelstrup, Kim H

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used.

  7. Evaluation of Humic Acid and Tannic Acid Fouling in Graphene Oxide-Coated Ultrafiltration Membranes.

    PubMed

    Chu, Kyoung Hoon; Huang, Yi; Yu, Miao; Her, Namguk; Flora, Joseph R V; Park, Chang Min; Kim, Suhan; Cho, Jaeweon; Yoon, Yeomin

    2016-08-31

    Three commercially available ultrafiltration (UF) membranes (poly(ether sulfone), PES) that have nominal molecular weight cut-offs (5, 10, and 30 kDa) were coated with graphene oxide (GO) nanosheets. Field-emission scanning electron microscopy, Fourier-transform infrared spectroscopy, confocal laser scanning microscopy, water contact angle measurements, and X-ray photoelectron spectroscopy were employed to determine the changed physicochemical properties of the membranes after GO coating. The water permeability and single-solute rejection of GO-coated (GOC) membranes for humic acid (HA) molecules were significantly higher by approximately 15% and 55%, respectively, compared to those of pristine UF membranes. However, the GOc membranes for single-solute tannic acid (TA) rejection showed similar trends of higher flux decline versus pristine PES membranes, because the relatively smaller TA molecules were readily adsorbed onto the membrane pores. When the mixed-solute of HA and TA rejection tests were performed, in particular, the adsorbed small TA molecules resulted in irreversible membrane fouling due to cake formation and membrane pore blocking on the membrane surface for the HA molecules. Although both membranes showed significantly higher flux declines for small molecules rejection, the GOc membranes showed better performance than the pristine UF membranes in terms of the rejection of various mixed-solute molecules, due to higher membrane recovery and antifouling capabilities.

  8. Integrating nitric oxide into salicylic acid and jasmonic acid/ ethylene plant defense pathways

    PubMed Central

    Mur, Luis A. J.; Prats, Elena; Pierre, Sandra; Hall, Michael A.; Hebelstrup, Kim H.

    2013-01-01

    Plant defense against pests and pathogens is known to be conferred by either salicylic acid (SA) or jasmonic acid (JA)/ethylene (ET) pathways, depending on infection or herbivore-grazing strategy. It is well attested that SA and JA/ET pathways are mutually antagonistic allowing defense responses to be tailored to particular biotic stresses. Nitric oxide (NO) has emerged as a major signal influencing resistance mediated by both signaling pathways but no attempt has been made to integrate NO into established SA/JA/ET interactions. NO has been shown to act as an inducer or suppressor of signaling along each pathway. NO will initiate SA biosynthesis and nitrosylate key cysteines on TGA-class transcription factors to aid in the initiation of SA-dependent gene expression. Against this, S-nitrosylation of NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 (NPR1) will promote the NPR1 oligomerization within the cytoplasm to reduce TGA activation. In JA biosynthesis, NO will initiate the expression of JA biosynthetic enzymes, presumably to over-come any antagonistic effects of SA on JA-mediated transcription. NO will also initiate the expression of ET biosynthetic genes but a suppressive role is also observed in the S-nitrosylation and inhibition of S-adenosylmethionine transferases which provides methyl groups for ET production. Based on these data a model for NO action is proposed but we have also highlighted the need to understand when and how inductive and suppressive steps are used. PMID:23818890

  9. Regulating the Skin Permeation Rate of Escitalopram by Ion-pair Formation with Organic Acids.

    PubMed

    Song, Tian; Quan, Peng; Xiang, Rongwu; Fang, Liang

    2016-12-01

    In order to regulate the skin permeation rate (flux) of escitalopram (ESP), ion-pair strategy was used in our work. Five organic acids with different physicochemical properties, benzoic acid (BA), ibuprofen (IB), salicylic acid (SA), benzenesulfonic acid (BSA), and p-aminobenzoic acid (PABA), were employed as counter-ions to regulate the permeation rate of ESP across the rabbit abdominal skin in vitro. The interaction between ESP and organic acids was characterized by FTIR and (13)C NMR spectroscopy. Results showed that all organic acids investigated in this study performed a controlling effect on ESP flux. To further analyze the factors concerned with the permeation capability of ESP-acid complex, a multiple linear regression model was used. It is concluded that the steady-state flux (J) of ESP-acid complexes had a positive correlation with log K o/w (the n-octanol/water partition coefficient of ion-pair complex) and pK a (the acidity of organic acid counter-ion), but a negative correlation with MW (the molecular weight of ion-pair complex). The logK o/w of ion-pair complex is the primary one in all the factors that influence the skin permeation rate of ESP. The results demonstrated that organic acid with appropriate physicochemical properties can be considered as suitable candidate for the transdermal drug delivery of escitalopram.

  10. Dietary Medium Chain Fatty Acid Supplementation Leads to Reduced VLDL Lipolysis and Uptake Rates in Comparison to Linoleic Acid Supplementation

    PubMed Central

    van Schalkwijk, Daniël B.; Pasman, Wilrike J.; Hendriks, Henk F. J.; Verheij, Elwin R.; Rubingh, Carina M.; van Bochove, Kees; Vaes, Wouter H. J.; Adiels, Martin; Freidig, Andreas P.; de Graaf, Albert A.

    2014-01-01

    Dietary medium chain fatty acids (MCFA) and linoleic acid follow different metabolic routes, and linoleic acid activates PPAR receptors. Both these mechanisms may modify lipoprotein and fatty acid metabolism after dietary intervention. Our objective was to investigate how dietary MCFA and linoleic acid supplementation and body fat distribution affect the fasting lipoprotein subclass profile, lipoprotein kinetics, and postprandial fatty acid kinetics. In a randomized double blind cross-over trial, 12 male subjects (age 51±7 years; BMI 28.5±0.8 kg/m2), were divided into 2 groups according to waist-hip ratio. They were supplemented with 60 grams/day MCFA (mainly C8:0, C10:0) or linoleic acid for three weeks, with a wash-out period of six weeks in between. Lipoprotein subclasses were measured using HPLC. Lipoprotein and fatty acid metabolism were studied using a combination of several stable isotope tracers. Lipoprotein and tracer data were analyzed using computational modeling. Lipoprotein subclass concentrations in the VLDL and LDL range were significantly higher after MCFA than after linoleic acid intervention. In addition, LDL subclass concentrations were higher in lower body obese individuals. Differences in VLDL metabolism were found to occur in lipoprotein lipolysis and uptake, not production; MCFAs were elongated intensively, in contrast to linoleic acid. Dietary MCFA supplementation led to a less favorable lipoprotein profile than linoleic acid supplementation. These differences were not due to elevated VLDL production, but rather to lower lipolysis and uptake rates. PMID:25049048

  11. Oxidation of Co(II) by ozone and reactions of Co(III) in solutions of sulfuric acid

    NASA Astrophysics Data System (ADS)

    Levanov, A. V.; Isaikina, O. Ya.; Lunin, V. V.

    2016-12-01

    Reactions of the oxidation of bivalent cobalt ions by ozone, of the spontaneous decomposition of trivalent cobalt, and of interactions between Co(III) and chloride ions in solutions of sulfuric acid are studied. The order and rate constant of the process of decomposition of Co(III) are determined. Information on the kinetics of the interaction between Co(III) and Cl- is obtained. Kinetic patterns of the accumulation of Co(III) during the ozonation of solutions of CoSO4 in sulfuric acid are explained. Molar absorption coefficients of Co(III) and Co2+ ions in the visible range of wavelengths are determined.

  12. Targeting oxidative stress attenuates malonic acid induced Huntington like behavioral and mitochondrial alterations in rats.

    PubMed

    Kalonia, Harikesh; Kumar, Puneet; Kumar, Anil

    2010-05-25

    Objective of the present study was to explore the possible role of oxidative stress in the malonic acid induced behavioral, biochemical and mitochondrial alterations in rats. In the present study, unilateral single injections of malonic acid at different doses (1.5, 3 and 6 micromol) were made into the ipsilateral striatum in rats. Behavioral parameters were accessed on 1st, 7th and 14th day post malonic acid administration. Oxidative stress parameters and mitochondrial enzyme functions were assessed on day 14 after behavioral observations. Ipsilateral striatal malonic acid (3 and 6 micromol) administration significantly reduced body weight, locomotor activity, motor coordination and caused oxidative damage (lipid peroxidation, nitrite, superoxide dismutase, catalase and glutathione) in the striatum as compared to sham treated animal. Mitochondrial enzyme complexes and MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolinium bromide) activity were significantly inhibited by malonic acid. Vitamin E treatment (50 and 100 mg/kg, p.o.) significantly reversed the various behavioral, biochemical and mitochondrial alterations in malonic acid treated animals. Our findings show that targeting oxidative stress by vitamin E in malonic acid model, results in amelioration of behavioral and mitochondrial alterations are linked to inhibition of oxidative damage. Based upon these finding present study hypothesize that protection exerted by vitamin E on behavioral, mitochondrial markers indicates the possible preservation of the functional status of the striatal neurons by targeting the deleterious actions of oxidative stress.

  13. Effect of UVA fluence rate on indicators of oxidative stress in human dermal fibroblasts.

    PubMed

    Hoerter, James D; Ward, Christopher S; Bale, Kyle D; Gizachew, Admasu N; Graham, Rachelle; Reynolds, Jaclyn; Ward, Melanie E; Choi, Chesca; Kagabo, Jean-Leonard; Sauer, Michael; Kuipers, Tara; Hotchkiss, Timothy; Banner, Nate; Chellson, Renee A; Ohaeri, Theresa; Gant, Langston; Vanderhill, Leah

    2008-02-19

    During the course of a day human skin is exposed to solar UV radiation that fluctuates in fluence rate within the UVA (290-315 nm) and UVB (315-400 nm) spectrum. Variables affecting the fluence rate reaching skin cells include differences in UVA and UVB penetrating ability, presence or absence of sunscreens, atmospheric conditions, and season and geographical location where the exposure occurs. Our study determined the effect of UVA fluence rate in solar-simulated (SSR) and tanning-bed radiation (TBR) on four indicators of oxidative stress---protein oxidation, glutathione, heme oxygenase-1, and reactive oxygen species--in human dermal fibroblasts after receiving equivalent UVA and UVB doses. Our results show that the higher UVA fluence rate in TBR increases the level of all four indicators of oxidative stress. In sequential exposures when cells are exposed first to SSR, the lower UVA fluence rate in SSR induces a protective response that protects against oxidative stress following a second exposure to a higher UVA fluence rate. Our studies underscore the important role of UVA fluence rate in determining how human skin cells respond to a given dose of radiation containing both UVA and UVB radiation.

  14. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  15. The dose rate effect and the homogeneity of radio-oxidation of plastics

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.

    2001-12-01

    The homogeneity of the radio-oxidation of plastics in different depths from the surface has been determined by measuring the thermo-oxidative stability (oxidative induction time - OIT) of irradiated samples. Two materials have been studied: a fire retarding EPR/EVA cable sheathing compound with the thickness of 4.4 mm and a high-density polyethylene (HDPE) (20 mm thick) which was studied for potential use as a material for radioactive waste disposal containers. Both materials have been irradiated using 60Co gamma-ray source at different dose rates in the interval from 8.5 to 8550 Gy/h. Irradiated samples have been cut into very thin slices and the thermo-oxidative stability (OIT) has been measured using differential scanning calorimeter. In this way the dependence of OIT values on the distance from the surface has been obtained for both samples and at applied dose rates.

  16. Reflectometry-Ellipsometry Reveals Thickness, Growth Rate, and Phase Composition in Oxidation of Copper.

    PubMed

    Diaz Leon, Juan J; Fryauf, David M; Cormia, Robert D; Zhang, Min-Xian Max; Samuels, Kathryn; Williams, R Stanley; Kobayashi, Nobuhiko P

    2016-08-31

    The oxidation of copper is a complicated process. Copper oxide develops two stable phases at room temperature and standard pressure (RTSP): cuprous oxide (Cu2O) and cupric oxide (CuO). Both phases have different optical and electrical characteristics that make them interesting for applications such as solar cells or resistive switching devices. For a given application, it is necessary to selectively control oxide thickness and cupric/cuprous oxide phase volume fraction. The thickness and composition of a copper oxide film growing on the surface of copper widely depend on the characteristics of as-deposited copper. In this Research Article, two samples, copper films prepared by two different deposition techniques, electron-beam evaporation and sputtering, were studied. As the core part of the study, the formation of the oxidized copper was analyzed routinely over a period of 253 days using spectroscopic polarized reflectometry-spectroscopic ellipsometry (RE). An effective medium approximation (EMA) model was used to fit the RE data. The RE measurements were complemented and validated by using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and X-ray diffraction (XRD). Our results show that the two samples oxidized under identical laboratory ambient conditions (RTSP, 87% average relative humidity) developed unique oxide films following an inverse-logarithmic growth rate with thickness and composition different from each other over time. Discussion is focused on the ability of RE to simultaneously extract thickness (i.e., growth rate) and composition of copper oxide films and on plausible physical mechanisms responsible for unique oxidation habits observed in the two copper samples. It appears that extended surface characteristics (i.e., surface roughness and grain boundaries) and preferential crystalline orientation of as-deposited polycrystalline copper films control the growth kinetics of the copper oxide film. Analysis based on a noncontact

  17. AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle.

    PubMed

    Smith, Angela C; Bruce, Clinton R; Dyck, David J

    2005-06-01

    Muscle contraction increases glucose uptake and fatty acid (FA) metabolism in isolated rat skeletal muscle, due at least in part to an increase in AMP-activated kinase activity (AMPK). However, the extent to which AMPK plays a role in the regulation of substrate utilization during contraction is not fully understood. We examined the acute effects of 5-aminoimidazole-4-carboxamide riboside (AICAR; 2 mm), a pharmacological activator of AMPK, on FA metabolism and glucose oxidation during high intensity tetanic contraction in isolated rat soleus muscle strips. Muscle strips were exposed to two different FA concentrations (low fatty acid, LFA, 0.2 mm; high fatty acid, HFA, 1 mm) to examine the role that FA availability may play in both exogenous and endogenous FA metabolism with contraction and AICAR. Synergistic increases in AMPK alpha2 activity (+45%; P<0.05) were observed after 30 min of contraction with AICAR, which further increased exogenous FA oxidation (LFA: +71%, P<0.05; HFA: +46%, P<0.05) regardless of FA availability. While there were no changes in triacylglycerol (TAG) esterification, AICAR did increase the ratio of FA partitioned to oxidation relative to TAG esterification (LFA: +65%, P<0.05). AICAR significantly blunted endogenous TAG hydrolysis (LFA: -294%, P<0.001; HFA: -117%, P<0.05), but had no effect on endogenous oxidation rates, suggesting a better matching between TAG hydrolysis and subsequent oxidative needs of the muscle. There was no effect of AICAR on the already elevated rates of glucose oxidation during contraction. These results suggest that FA metabolism is very sensitive to AMPK alpha2 stimulation during contraction.

  18. Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid by metal-oxide-coated Ti electrodes.

    PubMed

    Maharana, Dusmant; Xu, Zesheng; Niu, Junfeng; Rao, Neti Nageswara

    2015-10-01

    Electrochemical oxidation of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) over metal-oxide-coated Ti anodes, i.e., Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2, was examined. The degradation efficiency of over 90% was attained at 20 min at different initial concentrations (0.5-20 mg L(-1)) and initial pH values (3.1-11.2). The degradation efficiencies of 2,4,5-T on Ti/SnO2-Sb/Ce-PbO2, Ti/SnO2-Sb and Ti/RuO2 anodes were higher than 99.9%, 97.2% and 91.5% at 30 min, respectively, and the respective total organic carbon removal ratios were 65.7%, 54.6% and 37.2%. The electrochemical degradation of 2,4,5-T in aqueous solution followed pseudo-first-order kinetics. The compounds, i.e., 2,5-dichlorohydroquinone and 2,5-dihydroxy-p-benzoquinone, have been identified as the main aromatic intermediates by liquid chromatography-mass spectrometry. The results showed that the energy efficiencies of 2,4,5-T (20 mg L(-1)) degradation with Ti/SnO2-Sb/Ce-PbO2 anode at the optimal current densities from 2 to 16 mA cm(-2) ranged from 8.21 to 18.73 kWh m(-3).

  19. Acid-base and catalytic properties of the products of oxidative thermolysis of double complex compounds

    NASA Astrophysics Data System (ADS)

    Pechenyuk, S. I.; Semushina, Yu. P.; Kuz'mich, L. F.; Ivanov, Yu. V.

    2016-01-01

    Acid-base properties of the products of thermal decomposition of [M(A)6] x; [M1(L)6] y (where M is Co, Cr, Cu, Ni; M1 is Fe, Cr, Co; A is NH3, 1/2 en, 1/2 pn, CO(NH2)2; and L is CN, 1/2C2O4) binary complexes in air and their catalytic properties in the oxidation reaction of ethanol with atmospheric oxygen are studied. It is found that these thermolysis products are mixed oxides of the central atoms of complexes characterized by pH values of the zero charge point in the region of 4-9, OH-group sorption limits from 1 × 10-4 to 4.5 × 10-4 g-eq/g, OH-group surface concentrations of 10-50 nm-2 in 0.1 M NaCl solutions, and S sp from 3 to 95 m2/g. Their catalytic activity is estimated from the apparent rate constant of the conversion of ethanol in CO2. The values of constants are (1-6.5) × 10-5 s-1, depending on the gas flow rate and the S sp value.

  20. Isotope composition of sulphate in acid mine drainage as measure of bacterial oxidation

    USGS Publications Warehouse

    Taylor, B.E.; Wheeler, M.C.; Nordstrom, D.K.

    1984-01-01

    The formation of acid waters by oxidation of pyrite-bearing ore deposits, mine tailing piles, and coal measures is a complex biogeochemical process and is a serious environmental problem. We have studied the oxygen and sulphur isotope geochemistry of sulphides, sulphur, sulphate and water in the field and in experiments to identify sources of oxygen and reaction mechanisms of sulphate formation. Here we report that the oxygen isotope composition of sulphate in acid mine drainage shows a large variation due to differing proportions of atmospheric- and water-derived oxygen from both chemical and bacterially-mediated oxidation. 18O-enrichment of sulphate results from pyrite oxidation facilitated by Thiobacillus ferrooxidans in aerated environments. Oxygen isotope analysis may therefore be useful in monitoring the effectiveness of abatement programmes designed to inhibit bacterial oxidation. Sulphur isotopes show no significant fractionation between pyrite and sulphate, indicating the quantitative insignificance of intermediate oxidation states of sulphur under acid conditions. ?? 1984 Nature Publishing Group.

  1. Fatty acids and oxidative stability of meat from lambs fed carob-containing diets.

    PubMed

    Gravador, Rufielyn S; Luciano, Giuseppe; Jongberg, Sisse; Bognanno, Matteo; Scerra, Manuel; Andersen, Mogens L; Lund, Marianne N; Priolo, Alessandro

    2015-09-01

    Male Comisana lambs were individually stalled and, for 56 days, were fed concentrates with 60% barley (n = 8 lambs), or concentrates in which barley was partially replaced by 24% or 35% carob pulp (n = 9 lambs in each group). The intramuscular fatty acids were analyzed and the color stability, lipid and protein oxidation were measured in fresh meat overwrapped with polyvinyl chloride film at 0, 3 or 6 days of storage at 4 °C in the dark. Carob pulp increased the concentration of polyunsaturated fatty acids (PUFA) in muscle, including the rumenic acid (P < 0.01), and reduced the saturated fatty acids (P < 0.01) and the n-6/n-3 PUFA ratio (P = 0.01). The meat did not undergo extensive oxidative deterioration and the diet did not affect the oxidative stability parameters. Therefore, carob in lamb diet could increase PUFA in muscle without compromising meat oxidative stability.

  2. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate.

    PubMed

    Law, Yingyu; Ni, Bing-Jie; Lant, Paul; Yuan, Zhiguo

    2012-06-15

    The relationship between the ammonia oxidation rate (AOR) and nitrous oxide production rate (N(2)OR) of an enriched ammonia-oxidising bacteria (AOB) culture was investigated. The AOB culture was enriched in a nitritation system fed with synthetic anaerobic digester liquor. The AOR was controlled by adjusting the dissolved oxygen (DO) and pH levels and also by varying the initial ammonium (NH(4)(+)) concentration in batch experiments. Tests were also performed directly on the parent reactor where a stepwise decrease/increase in DO was implemented to alter AOR. The experimental data indicated a clear exponential relationship between the biomass specific N(2)OR and AOR. Four metabolic models were used to analyse the experimental data. The metabolic model formulated based on aerobic N(2)O production from the decomposition of nitrosyl radical (NOH) predicted the exponential correlation observed experimentally. The experimental data could not be reproduced by models developed on the basis of N(2)O production through nitrite (NO(2)(-)) and nitric oxide (NO) reduction by AOB.

  3. Intrinsic activity and poisoning rate for HCOOH oxidation at Pt(100) and vicinal surfaces containing monoatomic (111) steps.

    PubMed

    Grozovski, Vitali; Climent, Víctor; Herrero, Enrique; Feliu, Juan M

    2009-08-03

    Pulsed voltammetry is used to study formic acid oxidation on Pt(2n-1,1,1) surfaces and determine the effects of the size of the (100) terrace and the (111) step density on the reaction mechanism. The intrinsic activity of the electrode through the active intermediate reaction path (j(theta=) (0)), as well as the rate constant for the CO formation (k(ads)), are calculated from the current transients obtained at different potentials. For surfaces with wide terraces, j(theta=) (0) and k(ads) are almost insensitive to the step density, which suggests that step and terrace sites have a similar activity for this reaction. For narrow terraces (n<6), the intrinsic activity diminishes. The dependence of the reaction rates on the electrode potential is also elucidated. The CO formation only takes place in a narrow potential window, very close to the potential of zero total charge, while the direct oxidation takes place even when the surface is covered by anions. The different behavior for both reactions suggests that the adsorption mode of formic acid is different for each path.

  4. Formation of the carboxamidine precursor of cyanuric acid from guanine oxidative lesion dehydro-guanidinohydantoin.

    PubMed

    Irvoas, Joris; Trzcionka, Jérôme; Pratviel, Geneviève

    2014-09-01

    DNA damage under oxidative stress leads to oxidation of guanine base. The identification of the resulting guanine lesions in cellular DNA is difficult due to the sensitivity of the primary oxidation products to hydrolysis and/or further oxidation. We isolated dehydroguanidino-hydantoin (DGh) (or oxidized guanidinohydantoin), a secondary oxidation product of guanine, and showed that this lesion reacts readily with nucleophiles such as asymmetric peroxides and transforms to 2,4,6-trioxo-1,3,5-triazinane-1-carboxamidine residue. Further hydrolysis of this intermediate leads to cyanuric acid and finally to urea residue. This work demonstrates a new possible pathway for the formation of the well-known carboxamidine precursor of cyanuric acid lesion.

  5. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    SciTech Connect

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; Slowing, Igor I.

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic form and thereby activates hydrogen.

  6. Synergistic interaction between oxides of copper and iron for production of fatty alcohols from fatty acids

    DOE PAGES

    Kandel, Kapil; Chaudhary, Umesh; Nelson, Nicholas C.; ...

    2015-10-08

    In this study, the selective hydrogenation of fatty acids to fatty alcohols can be achieved under moderate conditions (180 °C, 30 bar H2) by simultaneously supporting copper and iron oxides on mesoporous silica nanoparticles. The activity of the cosupported oxides is significantly higher than that of each supported metal oxide and of a physical mixture of both individually supported metal oxides. A strong interaction between both metal oxides is evident from dispersion, XRD, TPR, and acetic acid TPD measurements, which is likely responsible for the synergistic behavior of the catalyst. Copper oxide is reduced in situ to its metallic formmore » and thereby activates hydrogen.« less

  7. Energetics of methanol and formic acid oxidation on Pt(111): Mechanistic insights from adsorption calorimetry

    NASA Astrophysics Data System (ADS)

    Silbaugh, Trent L.; Karp, Eric M.; Campbell, Charles T.

    2016-08-01

    The catalytic and electrocatalytic oxidation and reforming of methanol and formic acid have received intense interest due to potential use in direct fuel cells and as prototype models for understanding electrocatalysis. Consequently, the reaction energy diagram (energies of all the adsorbed intermediates and activation energies of all the elementary steps) have been estimated for these reactions on Pt(111) by density functional theory (DFT) in several studies. However, no experimental measurement of these energy diagrams have been reported, nor is there a consensus on the mechanisms. Here, we use energies of key intermediates on Pt(111) from single crystal adsorption calorimetry (SCAC) and temperature programmed desorption (TPD) to build a combined energy diagram for these reactions. It suggests a new pathway involving monodentate formate as a key intermediate, with bidentate formate only being a spectator species that slows the rate. This helps reconcile conflicting proposed mechanisms.

  8. Copper catalyzed oxidation of ascorbate (vitamin C). Inhibitory effect of catalase, superoxide dismutase, serum proteins (ceruloplasmin, albumin, apotransferrin) and amino acids.

    PubMed

    Løvstad, R A

    1987-01-01

    The inhibitory effect of catalase and superoxide dismutase on copper catalyzed oxidation of ascorbate is probably due to a binding of copper ions. Scavengers of hydroxyl ions and singlet oxygen had no effect on the ascorbate oxidation rate. Copper binding serum proteins reduced the oxidation rate; the order of effectiveness being: Ceruloplasmin greater than human albumin = bovine albumin greater than apotransferrin. The excellent protection obtained with catalase and ceruloplasmin is possibly due to a strong affinity for cuprous ions generated during the reaction. Cupric ion binding amino acids (His, Thr, Glu, Gln, Tyr) had considerably weaker protective effect than the proteins studied. Apparently they do not compete favorably with ascorbate for cupric ions.

  9. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    DOE PAGES

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; ...

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show thatmore » all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.« less

  10. Evaluation of Pt Alloys as Electrocatalysts for Oxalic Acid Oxidation: A Combined Experimental and Computational Study

    SciTech Connect

    Perry, Albert; Babanova, Sofia; Matanovic, Ivana; Neumman, Anica; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen

    2016-07-14

    Here in this study we combined experimental approaches and density functional theory to evaluate novel platinum-based materials as electrocatalysts for oxalic acid oxidation. Several Pt alloys, PtSn (1:1), PtSn (19:1), PtRu (1:4), PtRuSn (5:4:1), and PtRhSn (3:1:4), were synthetized using sacrificial support method and tested for oxidation of oxalic acid at pH 4. It was shown that PtSn (1:1) and PtRu (1:4) have higher mass activity relative to Pt. These two materials along with Pt and one of the least active alloys, PtSn (19:1), were further analyzed for the oxidation of oxalic acid at different pHs. The results show that all samples tested followed an identical trend of decreased onset potential with increased pH and increased catalytic activity with decreased pH. Density functional theory was further utilized to gain a fundamental knowledge about the mechanism of oxalic acid oxidation on Pt, PtSn (1:1), and PtRu (1:4). In conclusion, the results of the calculations along with the experimentally observed dependence of generated currents on the oxalic acid concentration indicate that the mechanism of oxalic acid oxidation on Pt proceeds without the participation of surface oxidizing species, while on Pt alloys it involves their participation.

  11. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  12. Augmenting antifungal activity of oxidizing agent with kojic acid: Control of Penicillium strains infecting crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative treatment is a strategy for preventing Penicillium contamination in foods or crops. Antifungal efficacy of oxidant [hydrogen peroxide (H2O2)], biotic effector [kojic acid (KA)] and abiotic stress (heat), alone or in combination, was investigated in Penicillium. The levels of antifungal int...

  13. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  14. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  15. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  16. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  17. 40 CFR 721.3700 - Fatty acid, ester with styrenated phenol, ethylene oxide adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... phenol, ethylene oxide adduct. 721.3700 Section 721.3700 Protection of Environment ENVIRONMENTAL..., ethylene oxide adduct. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as fatty acid, ester with styrenated phenol, ethylene...

  18. Effect of Reacting Surface Density on the Overall Graphite Oxidation Rate

    SciTech Connect

    Chang H. Oh; Eung Kim; Jong Lim; Richard Schultz; David Petti

    2009-05-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internal pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1)Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because

  19. Comparison between conjugated linoleic acid and essential fatty acids in preventing oxidative stress in bovine mammary epithelial cells.

    PubMed

    Basiricò, L; Morera, P; Dipasquale, D; Tröscher, A; Bernabucci, U

    2017-03-01

    Some in vitro and in vivo studies have demonstrated protective effects of conjugated linoleic acid (CLA) isomers against oxidative stress and lipid peroxidation. However, only a few and conflicting studies have been conducted showing the antioxidant potential of essential fatty acids. The objectives of the study were to compare the effects of CLA to other essential fatty acids on the thiol redox status of bovine mammary epithelia cells (BME-UV1) and their protective role against oxidative damage on the mammary gland by an in vitro study. The BME-UV1 cells were treated with complete medium containing 50 μM of cis-9,trans-11 CLA, trans-10,cis-12 CLA, α-linolenic acid, γ-linolenic acid, and linoleic acid. To assess the cellular antioxidant response, glutathione, NADPH, and γ-glutamyl-cysteine ligase activity were measured 48 h after addition of fatty acids (FA). Intracellular reactive oxygen species and malondialdehyde production were also assessed in cells supplemented with FA. Reactive oxygen species production after 3 h of H2O2 exposure was assessed to evaluate and to compare the potential protection of different FA against H2O2-induced oxidative stress. All FA treatments induced an intracellular GSH increase, matched by high concentrations of NADPH and an increase of γ-glutamyl-cysteine ligase activity. Cells supplemented with FA showed a reduction in intracellular malondialdehyde levels. In particular, CLA isomers and linoleic acid supplementation showed a better antioxidant cellular response against oxidative damage induced by H2O2 compared with other FA.

  20. Stereoselective and nonstereoselective effects of ibuprofen enantiomers on mitochondrial beta-oxidation of fatty acids

    SciTech Connect

    Freneaux, E.; Fromenty, B.; Berson, A.; Labbe, G.; Degott, C.; Letteron, P.; Larrey, D.; Pessayre, D. , Hopital Beaujon, Clichy )

    1990-11-01

    The effects of the R-(-) and S-(+)ibuprofen enantiomers were first studied in vitro with mouse liver mitochondria incubated in the presence of various concentrations of exogenous coenzyme A. In the presence of a low concentration of coenzyme A (2.5 microM), the R-(-)enantiomer (which forms an acylcoenzyme A) inhibited stereoselectively the beta oxidation of (1-{sup 14}C)palmitic acid but not that of (1-{sup 14}C)palmitoyl-L-carnitine (which can directly enter the mitochondria). In the presence, however, of a concentration of coenzyme A (50 microM) reproducing that present in liver cell cytosol, both enantiomers (2 mM) slightly inhibited the beta oxidation of (1-{sup 14}C)palmitic acid and markedly inhibited the beta oxidation of (1-{sup 14}C)octanoic acid and (1-{sup 14}C)butyric acid. In vivo, both enantiomers (1 mmol.kg-1) similarly inhibited the formation of ({sup 14}C)CO{sub 2} from (1-{sup 14}C)fatty acids. Both enantiomers similarly decreased plasma ketone bodies. Both similarly increased hepatic triglycerides, and both produced mild microvesicular steatosis of the liver. We conclude that both ibuprofen enantiomers inhibit beta oxidation of fatty acids in vitro and in vivo. In addition, the R-(-)enantiomer may stereoselectively sequester coenzyme A; at low concentrations of coenzyme A in vitro, this may stereoselectively inhibit the mitochondrial uptake and beta oxidation of long chain fatty acids.

  1. FABP4 reversed the regulation of leptin on mitochondrial fatty acid oxidation in mice adipocytes

    PubMed Central

    Gan, Lu; Liu, Zhenjiang; Cao, Weina; Zhang, Zhenzhen; Sun, Chao

    2015-01-01

    Fatty acid binding protein 4 (FABP4), plays key role in fatty acid transportation and oxidation, and increases with leptin synergistically during adipose inflammation process. However, the regulation mechanism between FABP4 and leptin on mitochondrial fatty acid oxidation remains unclear. In this study, we found that FABP4 reduced the expression of leptin, CPT-1 and AOX1 in mice adipocytes. Conversely, FABP4 was down-regulated in a time-dependent manner by leptin treatment. Additionally, forced expression of FABP4 attenuated the expression of PGC1-α, UCP2, CPT-1, AOX1 and COX2 compared with leptin incubation. Moreover, mitochondrial membrane potential, fatty acid oxidation enzyme medium-chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase (LCAD) and Cyt C levels were reduced in response to the overexpression of FABP4. These reductions correspond well with the reduced release of free fatty acid and the inactivation of mitochondrial complexes I and III by FABP4 overexpression. Furthermore, addition of the Akt/mTOR pathway-specific inhibitor (MK2206) blocked the mitochondrial fatty acid oxidation and respiration factors, whereas interference of FABP4 overcame these effects. Taken together, FABP4 could reverse the activation of the leptin-induced mitochondrial fatty acid oxidation, and the inhibition of Akt/mTOR signal pathway played a key role in this process. PMID:26310911

  2. Wet air oxidation of formic acid using nanoparticle-modified polysulfone hollow fibers as gas-liquid contactors.

    PubMed

    Hogg, Seth R; Muthu, Satish; O'Callaghan, Michael; Lahitte, Jean-Francois; Bruening, Merlin L

    2012-03-01

    Catalytic wet air oxidation (CWAO) using membrane contactors is attractive for remediation of aqueous pollutants, but previous studies of even simple reactions such as formic acid oxidation required multiple passes through tubular ceramic membrane contactors to achieve high conversion. This work aims to increase single-pass CWAO conversions by using polysulfone (PS) hollow fibers as contactors to reduce diffusion distances in the fiber lumen. Alternating adsorption of polycations and citrate-stabilized platinum colloids in fiber walls provides catalytically active PS hollow fibers. Using a single PS fiber, 50% oxidation of a 50 mM formic acid feed solution results from a single pass through the fiber lumen (15 cm length) with a solution residence time of 40 s. Increasing the number of PS fibers to five while maintaining the same volumetric flow rate leads to over 90% oxidation, suggesting that further scale up in the number of fibers will facilitate high single pass conversions at increased flow rates. The high conversion compared to prior studies with ceramic fibers stems from shorter diffusion distances in the fiber lumen. However, the activity of the Pt catalyst is 20-fold lower than in previous ceramic fibers. Focusing the Pt deposition near the fiber lumen and limiting pore wetting to this region might increase the activity of the catalyst.

  3. Rate law of Fe(II) oxidation under low O2 conditions

    NASA Astrophysics Data System (ADS)

    Kanzaki, Yoshiki; Murakami, Takashi

    2013-12-01

    Despite intensive studies on Fe(II) oxidation kinetics, the oxidation rate law has not been established under low O2 conditions. The importance of Fe(II) oxidation under low O2 conditions has been recently recognized; for instance, the Fe(II)/Fe(III) compositions of paleosols, ancient soils formed by weathering, can produce a quantitative pattern of the atmospheric oxygen increase during the Paleoproterozoic. The effects of partial pressure of atmospheric oxygen (PO2) on the Fe(II) oxidation rate were investigated to establish the Fe(II) oxidation rate - PO2 relationships under low O2 conditions. All oxidation experiments were carried out in a glove box by introducing Ar gas at ∼10-5-∼10-4 atm of PO2, pH 7.57-8.09 and 22 °C. Luminol chemiluminescence was adopted to measure low Fe(II) concentrations (down to ∼2 nM). Combining previous data under higher PO2 conditions (10-3-0.2 atm) with the present data, the rate law for Fe(II) oxidation over a wide range of PO2 (10-5-0.2 atm) was found to be written as: d[Fe(II)]/dt=-k[Fe(II)][[]2 where the exponent of [O2], x, and the rate constant, k, change from x = 0.98 (±0.04) and log k = 15.46 (±0.06) at ∼6 × 10-3-0.2 atm of PO2 to x = 0.58 (±0.02) and log k = 13.41 (±0.03) at 10-5-∼6 × 10-3 atm of PO2. The most plausible mechanism that explains the change in x under low O2 conditions is that, instead of O2, oxygen-derived oxidants, H2O2 and to some extent, O2rad -, dominate the oxidation reactions at <∼10-3 atm of PO2. The rate law found in the present study requires us to reconsider distributions of Fe redox species at low PO2 in natural environments, especially in paleoweathering profiles, and may provide a deeper understanding of the evolution of atmospheric oxygen in the Precambrian.

  4. Carotenoids, birdsong and oxidative status: administration of dietary lutein is associated with an increase in song rate and circulating antioxidants (albumin and cholesterol) and a decrease in oxidative damage.

    PubMed

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits.

  5. Carotenoids, Birdsong and Oxidative Status: Administration of Dietary Lutein Is Associated with an Increase in Song Rate and Circulating Antioxidants (Albumin and Cholesterol) and a Decrease in Oxidative Damage

    PubMed Central

    Casagrande, Stefania; Pinxten, Rianne; Zaid, Erika; Eens, Marcel

    2014-01-01

    Despite the appealing hypothesis that carotenoid-based colouration signals oxidative status, evidence supporting the antioxidant function of these pigments is scarce. Recent studies have shown that lutein, the most common carotenoid used by birds, can enhance the expression of non-visual traits, such as birdsong. Nevertheless, the underlying physiological mechanisms remain unclear. In this study we hypothesized that male European starlings (Sturnus vulgaris) fed extra lutein increase their song rate as a consequence of an improved oxidative status. Although birdsong may be especially sensitive to the redox status, this has, to the best of our knowledge, never been tested. Together with the determination of circulating oxidative damage (ROMs, reactive oxygen metabolites), we quantified uric acid, albumin, total proteins, cholesterol, and testosterone, which are physiological parameters potentially sensitive to oxidation and/or related to both carotenoid functions and birdsong expression. We found that the birds fed extra lutein sang more frequently than control birds and showed an increase of albumin and cholesterol together with a decrease of oxidative damage. Moreover, we could show that song rate was associated with high levels of albumin and cholesterol and low levels of oxidative damage, independently from testosterone levels. Our study shows for the first time that song rate honestly signals the oxidative status of males and that dietary lutein is associated with the circulation of albumin and cholesterol in birds, providing a novel insight to the theoretical framework related to the honest signalling of carotenoid-based traits. PMID:25549336

  6. Reliability of Urinary Excretion Rate Adjustment in Measurements of Hippuric Acid in Urine

    PubMed Central

    Nicolli, Annamaria; Chiara, Federica; Gambalunga, Alberto; Carrieri, Mariella; Bartolucci, Giovanni Battista; Trevisan, Andrea

    2014-01-01

    The urinary excretion rate is calculated based on short-term, defined time sample collections with a known sample mass, and this measurement can be used to remove the variability in urine concentrations due to urine dilution. Adjustment to the urinary excretion rate of hippuric acid was evaluated in 31 healthy volunteers (14 males and 17 females). Urine was collected as short-term or spot samples and tested for specific gravity, creatinine and hippuric acid. Hippuric acid values were unadjusted or adjusted to measurements of specific gravity, creatinine or urinary excretion rate. Hippuric acid levels were partially independent of urinary volume and urinary flow rate, in contrast to specific gravity and creatinine, which were both highly dependent on the hippuric acid level. Accordingly, hippuric acid was independent on urinary specific gravity and creatinine excretion. Unadjusted and adjusted values for specific gravity or creatinine were generally closely correlated, especially in spot samples. Values adjusted to the urinary excretion rate appeared well correlated to those unadjusted and adjusted to specific gravity or creatinine values. Thus, adjustment of crude hippuric acid values to the urinary excretion rate is a valid procedure but is difficult to apply in the field of occupational medicine and does not improve the information derived from values determined in spot urine samples, either unadjusted or adjusted to specific gravity and creatinine. PMID:25019265

  7. Detailed electrochemical studies of the tetraruthenium polyoxometalate water oxidation catalyst in acidic media: identification of an extended oxidation series using Fourier transformed alternating current voltammetry.

    PubMed

    Lee, Chong-Yong; Guo, Si-Xuan; Murphy, Aidan F; McCormac, Timothy; Zhang, Jie; Bond, Alan M; Zhu, Guibo; Hill, Craig L; Geletii, Yurii V

    2012-11-05

    The electrochemistry of the water oxidation catalyst, Rb(8)K(2)[{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(γ-SiW(10)O(36))(2)] (Rb(8)K(2)-1(0)) has been studied in the presence and absence of potassium cations in both hydrochloric and sulfuric acid solutions by transient direct current (dc) cyclic voltammetry, a steady state dc method in the rotating disk configuration and the kinetically sensitive technique of Fourier transformed large-amplitude alternating current (ac) voltammetry. In acidic media, the presence of potassium ions affects the kinetics (apparent rate of electron transfer) and thermodynamics (reversible potentials) of the eight processes (A'/A to H/H') that are readily detected under dc voltammetric conditions. The six most positive processes (A'/A to F/F'), each involve a one electron ruthenium based charge transfer step (A'/A, B'/B are Ru(IV/V) oxidation and C/C' to F/F' are Ru(IV/III) reduction). The apparent rate of electron transfer of the ruthenium centers in sulfuric acid is higher than in hydrochloric acid. The addition of potassium cations increases the apparent rates and gives rise to a small shift of reversible potential. Simulations of the Fourier transformed ac voltammetry method show that the B'/B, E/E', and F/F' processes are quasi-reversible, while the others are close to reversible. A third Ru(IV/V) oxidation process is observed just prior to the positive potential limit via dc methods. Importantly, the ability of the higher harmonic components of the ac method to discriminate against the irreversible background solvent process allows this (process I) as well as an additional fourth reversible ruthenium based process (J) to be readily identified. The steady-state rotating disk electrode (RDE) method confirmed that all four Ru-centers in Rb(8)K(2)-1(0) are in oxidation state IV. The dc and ac data indicate that reversible potentials of the four ruthenium centers are evenly spaced, which may be relevant to understanding of the water oxidation

  8. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheet paste electrode.

    PubMed

    Beitollahi, Hadi; Hamzavi, Mozhdeh; Torkzadeh-Mahani, Masoud

    2015-01-01

    A new ferrocene-derivative compound, 2-chlorobenzoyl ferrocene, was synthesized and used to construct a modified graphene oxide sheet paste electrode. The electrooxidation of hydrochlorothiazide at the surface of the modified electrode was studied. Under optimized conditions, the square wave voltammetric (SWV) peak current of hydrochlorothiazide increased linearly with hydrochlorothiazide concentration in the range of 5.0 × 10(-8) to 2.0 × 10(-4) M and a detection limit of 20.0 nM was obtained for hydrochlorothiazide. The diffusion coefficient and kinetic parameters (such as electron transfer coefficient and the heterogeneous rate constant) for hydrochlorothiazide oxidation were also determined. The prepared modified electrode exhibits a very good resolution between the voltammetric peaks of hydrochlorothiazide and folic acid which makes it suitable for the detection of hydrochlorothiazide in the presence of folic acid in real samples.

  9. Label-free amino acid detection based on nanocomposites of graphene oxide hybridized with gold nanoparticles.

    PubMed

    Zhang, Qian; Zhang, Diming; Lu, Yanli; Xu, Gang; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-03-15

    Nanocomposites of graphene oxide and gold nanoparticles (GO/GNPs) were synthesized for label-free detections of amino acids. Interactions between the composites and amino acids were investigated by both naked-eye observation and optical absorption spectroscopy. The GO/GNPs composites displayed apparent color changes and absorption spectra changes in presences of amino acids including glutamate, aspartate, and cysteine. The interaction mechanisms of the composites and amino acids were discussed and explored with sulfhydryl groups and non-α-carboxylic groups on the amino acids. Sensing properties of the composites were tested, while pure gold particles were used as the control. The results suggested that the GO/GNPs composites had better linearity and stability in dose-dependent responses to the amino acids than those of the particles, especially in detections for acidic amino acids. Therefore, the nanocomposites platform can provide a convenient and efficient approach for label-free optical detections of important molecules such as amino acids.

  10. Reduction of iron-oxide-carbon composites: part I. Estimation of the rate constants

    SciTech Connect

    Halder, S.; Fruehan, R.J.

    2008-12-15

    A new ironmaking concept using iron-oxide-carbon composite pellets has been proposed, which involves the combination of a rotary hearth furnace (RHF) and an iron bath smelter. This part of the research focuses on studying the two primary chemical kinetic steps. Efforts have been made to experimentally measure the kinetics of the carbon gasification by CO{sub 2} and wustite reduction by CO by isolating them from the influence of heat- and mass-transport steps. A combined reaction model was used to interpret the experimental data and determine the rate constants. Results showed that the reduction is likely to be influenced by the chemical kinetics of both carbon oxidation and wustite reduction at the temperatures of interest. Devolatilized wood-charcoal was observed to be a far more reactive form of carbon in comparison to coal-char. Sintering of the iron-oxide at the high temperatures of interest was found to exert a considerable influence on the reactivity of wustite by virtue of altering the internal pore surface area available for the reaction. Sintering was found to be predominant for highly porous oxides and less of an influence on the denser ores. It was found using an indirect measurement technique that the rate constants for wustite reduction were higher for the porous iron-oxide than dense hematite ore at higher temperatures (> 1423 K). Such an indirect mode of measurement was used to minimize the influence of sintering of the porous oxide at these temperatures.

  11. Fe(II) Oxidation and Sources of Acidity on Mars

    NASA Technical Reports Server (NTRS)

    Niles, P. B.; Peretyazkho, T. S.; Sutter, B.

    2017-01-01

    There is an apparent paradox be-tween the evidence that aqueous environments on Mars were predominantly acidic, and the fact that Mars is predominantly a basaltic (and olivine-rich) planet. The problem being that basalt and olivine will act to neutralize acidic solutions they come into contact with, and that there is a lot more basaltic crust on Mars than water or acid. This is especially true if there is an appreciable amount of water available to bring the acid in contact with the basaltic crust. Several hypotheses for ancient mar-tian environments call on long lived groundwater and aqueous systems.

  12. Monocarboxylic acids from oxidation of acyclic isoprenoid alkanes by Mycobacterium fortuitum

    NASA Technical Reports Server (NTRS)

    Cox, R. E.; Maxwell, J. R.; Myers, R. N.

    1976-01-01

    Mycobacterium fortuitum utilizes certain stereoisomeric mixtures of individual multimethyl branched alkanes as sole carbon source, including 2,6(R), 10(S), 14(RS)-tetramethylhexadecane; 2,6(R), 10(S), 14(RS)-tetramethylheptadecane; 2,6(RS), 10(RS)-trimethyltetradecane, and 2,6(R), 10(S)-trimethylpentadecane. Products of oxidation isolated from the bacterial lipids were acids derived predominantly from oxidation of the isopropyl terminus of each alkane, except in the case of 2,6(RS), 10(RS)-trimethyltetradecane. With the latter, acids from oxidation at either terminus were detected in comparable proportions.

  13. An innovative zinc oxide-coated zeolite adsorbent for removal of humic acid

    EPA Science Inventory

    Zinc oxide (ZnO)-coated zeolite adsorbents were developed by both nitric acid modification and Zn(NO3)2•6H2O functionalization of zeolite. The developed adsorbents were used for the removal of humic acid (HA) from aqueous solutions. The adsorption capacity of the adsorbents at 21...

  14. Acid volatile sulfides oxidation and metals (Mn, Zn) release upon sediment resuspension: laboratory experiment and model development.

    PubMed

    Hong, Yong Seok; Kinney, Kerry A; Reible, Danny D

    2011-03-01

    Sediment from the Anacostia River (Washington, DC, USA) was suspended in aerobic artificial river water for 14 d to investigate the dynamics of dissolved metals release and related parameters including pH, acid volatile sulfides (AVS), and dissolved/solid phase Fe(2+). To better understand and predict the underlying processes, a mathematical model is developed considering oxidation of reduced species, dissolution of minerals, pH changes, and pH-dependent metals' sorption to sediment. Oxidation rate constants of elemental sulfur and zinc sulfide, and a dissolution rate constant of carbonate minerals, were adjusted to fit observations. The proposed model and parameters were then applied, without further calibration, to literature-reported experimental observations of resuspension in an acid sulfate soil collected in a coastal flood plain. The model provided a good description of the dynamics of AVS, Fe(2+), S(0)((s)), pH, dissolved carbonates concentrations, and the release of Ca((aq)), Mg((aq)), and Zn((aq)) in both sediments. Accurate predictions of Mn((aq)) release required adjustment of sorption partitioning coefficient, presumably due to the presence of Mn scavenging by phases not accounted for in the model. The oxidation of AVS (and the resulting release of sulfide-bound metals) was consistent with a two-step process, a relatively rapid AVS oxidation to elemental sulfur (S(0)((s))) and a slow oxidation of S(0)((s)) to SO(4)(2-)((aq)), with an associated decrease in pH from neutral to acidic conditions. This acidification was the dominant factor for the release of metals into the aqueous phase.

  15. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid.

    PubMed

    Tavafoghi, M; Brodusch, N; Gauvin, R; Cerruti, M

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca(2+) and PO4(3-) ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca(2+) and PO4(3-) ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca(2+) and PO4(3-) ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only.

  16. Hydroxyapatite formation on graphene oxide modified with amino acids: arginine versus glutamic acid

    PubMed Central

    Tavafoghi, M.; Brodusch, N.; Gauvin, R.; Cerruti, M.

    2016-01-01

    Hydroxyapatite (HA, Ca5(PO4)3OH) is the main inorganic component of hard tissues, such as bone and dentine. HA nucleation involves a set of negatively charged phosphorylated proteins known as non-collagenous proteins (NCPs). These proteins attract Ca2+ and PO43− ions and increase the local supersaturation to a level required for HA precipitation. Polar and charged amino acids (AAs) are highly expressed in NCPs, and seem to be responsible for the mineralizing effect of NCPs; however, the individual effect of these AAs on HA mineralization is still unclear. In this work, we investigate the effect of a negatively charged (Glu) and positively charged (Arg) AA bound to carboxylated graphene oxide (CGO) on HA mineralization in simulated body fluids (SBF). Our results show that Arg induces HA precipitation faster and in larger amounts than Glu. We attribute this to the higher stability of the complexes formed between Arg and Ca2+ and PO43− ions, and also to the fact that Arg exposes both carboxyl and amino groups on the surface. These can electrostatically attract both Ca2+ and PO43− ions, thus increasing local supersaturation more than Glu, which exposes carboxyl groups only. PMID:26791001

  17. An environment-friendly preparation of reduced graphene oxide nanosheets via amino acid.

    PubMed

    Chen, Dezhi; Li, Lidong; Guo, Lin

    2011-08-12

    Chemically modified graphene has been studied in many applications due to its excellent electrical, mechanical, and thermal properties. Among the chemically modified graphenes, reduced graphene oxide is the most important for its structure and properties, which are similar to pristine graphene. Here, we introduce an environment-friendly approach for preparation of reduced graphene oxide nanosheets through the reduction of graphene oxide that employs L-cysteine as the reductant under mild reaction conditions. The conductivity of the reduced graphene oxide nanosheets produced in this way increases by about 10(6) times in comparison to that of graphene oxide. This is the first report about using amino acids as a reductant for the preparation of reduced graphene oxide nanosheets, and this procedure offers an alternative route to large-scale production of reduced graphene oxide nanosheets for applications that require such material.

  18. Copper-catalyzed tandem phosphination-decarboxylation-oxidation of alkynyl acids with H-phosphine oxides: a facile synthesis of β-ketophosphine oxides.

    PubMed

    Zhang, Pengbo; Zhang, Liangliang; Gao, Yuzhen; Xu, Jian; Fang, Hua; Tang, Guo; Zhao, Yufen

    2015-05-07

    The general method for the tandem phosphination-decarboxylation-oxidation of alkynyl acids under aerobic conditions has been developed. In the presence of CuSO4·5H2O and TBHP, the reactions provide a novel access to β-ketophosphine oxides in good to excellent yields. This transformation allows the direct formation of a P-C bond and the construction of a keto group in one reaction.

  19. The Optical Properties of a Polished Uranium Surface and its Epitaxial Oxide, and the Rate of Oxide Growth Determined by Spectrophotometry

    SciTech Connect

    Siekhaus, W; Nelson, A

    2005-12-05

    Wide-band reflectrometry and ellipsometry have been used to determine the optical properties n and k of freshly polished uranium and of the epitaxial oxide layer, and also the rate of oxide growth in air. Results for uranium metal as well as for epitaxial oxide are compared with single wavelength ellipsometry literature values.

  20. Acetylation control of cardiac fatty acid β-oxidation and energy metabolism in obesity, diabetes, and heart failure.

    PubMed

    Fukushima, Arata; Lopaschuk, Gary D

    2016-12-01

    Alterations in cardiac energy metabolism are an important contributor to the cardiac pathology associated with obesity, diabetes, and heart failure. High rates of fatty acid β-oxidation with cardiac insulin resistance represent a cardiac metabolic hallmark of diabetes and obesity, while a marginal decrease in fatty acid oxidation and a prominent decrease in insulin-stimulated glucose oxidation are commonly seen in the early stages of heart failure. Alterations in post-translational control of energy metabolic processes have recently been identified as an important contributor to these metabolic changes. In particular, lysine acetylation of non-histone proteins, which controls a diverse family of mitochondrial metabolic pathways, contributes to the cardiac energy derangements seen in obesity, diabetes, and heart failure. Lysine acetylation is controlled both via acetyltransferases and deacetylases (sirtuins), as well as by non-enzymatic lysine acetylation due to increased acetyl CoA pool size or dysregulated nicotinamide adenine dinucleotide (NAD(+)) metabolism (which stimulates sirtuin activity). One of the important mitochondrial acetylation targets are the fatty acid β-oxidation enzymes, which contributes to alterations in cardiac substrate preference during the course of obesity, diabetes, and heart failure, and can ultimately lead to cardiac dysfunction in these disease states. This review will summarize the role of lysine acetylation and its regulatory control in the context of mitochondrial fatty acid β-oxidation. The functional contribution of cardiac protein lysine acetylation to the shift in cardiac energy substrate preference that occurs in obesity, diabetes, and especially in the early stages of heart failure will also be reviewed. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.

  1. Micromechanical properties of intercalated compounds of graphite oxide with dodecahydro- closo-dodecaboric acid

    NASA Astrophysics Data System (ADS)

    Karpenko, A. A.; Saldin, V. I.

    2016-08-01

    The micromechanical properties (Young's modulus, deformation, and adhesion) of the intercalated compound of graphite oxide with dodecahydro- closo-dodecaboric acid were studied by atomic force microscopy, transmission electron microscopy, and Raman spectroscopy and compared with the same characteristics of the starting graphite oxide. The significant difference in the micromechanical properties of the materials under study is dictated by differences in the topography and properties of their film surface, which, in turn, can be determined by their chemical composition. The introduction of dodecahydro- closo-dodecaboric acid in the interplanar space of graphite oxide affects the structuring of the latter. A considerable increase in the adhesion of the intercalated compound relative to that of oxide graphite is explained by high adhesive properties of the introduced acid, the Young's modulus of graphite oxide being higher than that of the intercalated compound. This was attributed to the high hydrophilicity of dodecahydro- closo-dodecaboric acid and the difficulty of water removal from the interplanar space; water plasticizes the material, which becomes softer than graphite oxide. The difference in the structure of the coating of the intercalated compounds and the starting graphite oxide was found to be also reflected by their Raman spectra, namely, by the increased intensity of the D line with the preserved position of the G line, which points to the impurity nature of the intercalate and the unchanged hexagonal lattice of graphite.

  2. Modelling of silicon oxynitridation by nitrous oxide using the reaction rate approach

    SciTech Connect

    Dominique Krzeminski, Christophe

    2013-12-14

    Large technological progress in oxynitridation processing leads to the introduction of silicon oxynitride as ultra-thin gate oxide. On the theoretical side, few studies have been dedicated to the process modelling of oxynitridation. Such an objective is a considerable challenge regarding the various atomistic mechanisms occurring during this fabrication step. In this article, some progress performed to adapt the reaction rate approach for the modelling of oxynitride growth by a nitrous ambient are reported. The Ellis and Buhrman's approach is used for the gas phase decomposition modelling. Taking into account the mass balance of the species at the interface between the oxynitride and silicon, a minimal kinetic model describing the oxide growth has been calibrated and implemented. The influence of nitrogen on the reaction rate has been introduced in an empirical way. The oxidation kinetics predicted with this minimal model compares well with several experiments.

  3. Oxidation and decomposition mechanisms of air sensitive aluminum clusters at high heating rates

    NASA Astrophysics Data System (ADS)

    DeLisio, Jeffery B.; Mayo, Dennis H.; Guerieri, Philip M.; DeCarlo, Samantha; Ives, Ross; Bowen, Kit; Eichhorn, Bryan W.; Zachariah, Michael R.

    2016-09-01

    Molecular near zero oxidation state clusters of metals are of interest as fuel additives. In this work high heating rate decomposition of the Al(I) tetrameric cluster, [AlBr(NEt3)]4 (Et = C2H5), was studied at heating rates of up to 5 × 105 K/s using temperature-jump time-of-flight mass spectrometry (T-jump TOFMS). Gas phase Al and AlHx species were rapidly released during decomposition of the cluster, at ∼220 °C. The activation energy for decomposition was determined to be ∼43 kJ/mol. Addition of an oxidizer, KIO4, increased Al, AlO, and HBr signal intensities, showing direct oxidation of the cluster with gas phase oxygen.

  4. Effect of cooling rate on achieving thermodynamic equilibrium in uranium-plutonium mixed oxides

    NASA Astrophysics Data System (ADS)

    Vauchy, Romain; Belin, Renaud C.; Robisson, Anne-Charlotte; Hodaj, Fiqiri

    2016-02-01

    In situ X-ray diffraction was used to study the structural changes occurring in uranium-plutonium mixed oxides U1-yPuyO2-x with y = 0.15; 0.28 and 0.45 during cooling from 1773 K to room-temperature under He + 5% H2 atmosphere. We compare the fastest and slowest cooling rates allowed by our apparatus i.e. 2 K s-1 and 0.005 K s-1, respectively. The promptly cooled samples evidenced a phase separation whereas samples cooled slowly did not due to their complete oxidation in contact with the atmosphere during cooling. Besides the composition of the annealing gas mixture, the cooling rate plays a major role on the control of the Oxygen/Metal ratio (O/M) and then on the crystallographic properties of the U1-yPuyO2-x uranium-plutonium mixed oxides.

  5. Silver-catalyzed arylation of (hetero)arenes by oxidative decarboxylation of aromatic carboxylic acids.

    PubMed

    Kan, Jian; Huang, Shijun; Lin, Jin; Zhang, Min; Su, Weiping

    2015-02-09

    A long-standing challenge in Minisci reactions is achieving the arylation of heteroarenes by oxidative decarboxylation of aromatic carboxylic acids. To address this challenge, the silver-catalyzed intermolecular Minisci reaction of aromatic carboxylic acids was developed. With an inexpensive silver salt as a catalyst, this new reaction enables a variety of aromatic carboxylic acids to undergo decarboxylative coupling with electron-deficient arenes or heteroarenes regardless of the position of the substituents on the aromatic carboxylic acid, thus eliminating the need for ortho-substituted aromatic carboxylic acids, which were a limitation of previously reported methods.

  6. Oxidative carbonylation - A new syngas route to sebacic acid

    SciTech Connect

    Kesling, H.S.

    1986-03-01

    Conventional technology for sebacic acid manufacture involves caustic soda decomposition of ricinoleic acid at high temperature. Principal co-products include 2-octanol and glycerine. Castor oil, which is the natural source for ricinoleic acid, is subject to price fluctuation due to cyclic crop production and protectionist policies by foreign governments. Castor oil technology is also at disadvantage because the overall product yield is low (<80%) and co-product 2-octanol must compete with cheap 2-ethylhexanol in plasticizer applications. These and other factors have resulted in a significant decline in the sebacic acid market from about 30 MM lbs. per year in the 70's to less that 5 MM lbs. in the 80's. Thus, there is a clear need for a new process to produce sebacic acid from cheap and readily available petrochemicals. In Japan, the need for new technology was answered by the development of an electrolytic route to sebacic acid. The Kolbe type electrolytic process involves dimerization of adipic acid half methyl ester salt to give dimethyl sebacate. The dimerization proceeds in 92% yield with 90% selectivity based on the adipate half ester. The main drawbacks of this process are the cost of energy utilized by the electrolytic process and the cost of adipic acid. A recent Chem Systems report indicates a small advantage for the Asahi electrolytic process with ample room for new technology development.

  7. High-rate lithium-sulfur batteries promoted by reduced graphene oxide coating.

    PubMed

    Li, Nianwu; Zheng, Mingbo; Lu, Hongling; Hu, Zibo; Shen, Chenfei; Chang, Xiaofeng; Ji, Guangbin; Cao, Jieming; Shi, Yi

    2012-04-28

    Lithium-sulfur batteries have a poor rate performance and low cycle stability due to the shuttling loss of intermediate lithium polysulfides. To address this issue, a carbon-sulfur nanocomposite coated with reduced graphene oxide was designed to confine the polysulfides.

  8. Effects of the biologically produced polymer alginic acid on macroscopic and microscopic calcite dissolution rates.

    PubMed

    Perry, Thomas D; Duckworth, Owen W; McNamara, Christopher J; Martin, Scot T; Mitchell, Ralph

    2004-06-01

    Dissolution of carbonate minerals has significant environmental effects. Microorganisms affect carbonate dissolution rates by producing extracellular metabolites, including complex polysaccharides such as alginic acid. Using a combined atomic force microscopy (AFM)/flowthrough reactor apparatus, we investigated the effects of alginic acid on calcite dissolution. Macroscopic dissolution rates, derived from the aqueous metal ion concentrations, are 10(-5.5) mol m(-2) s(-1) for 5 < pH < 12 in the absence of alginic acid compared to 10(-4.8) mol m(-2) s(-1) in its presence. The AFM images demonstrate that alginic acid preferentially attacks the obtuse steps of dissolution pits on the calcite surface. In pure water, the obtuse and acute steps retreat at similar rates, and the pits are nearly isotropic except under highly acidic conditions. In alginic acid, the acute step retreat rate is nearly unchanged in comparison to water, whereas the obtuse step retreat rate increases with decreasing pH values. As a result, the pits remain rhombohedral but propagate faster in the obtuse direction. To explain these observations, we propose that alginic acid preferentially forms dissolution active surface complexes with calcium atoms on the obtuse step, which results in anisotropic ligand-promoted dissolution.

  9. Lipid and protein oxidation in hepatic homogenates and cell membranes exposed to bile acids.

    PubMed

    Fuentes-Broto, Lorena; Martínez-Ballarín, Enrique; Miana-Mena, Javier; Berzosa, Cesar; Piedrafita, Eduardo; Cebrián, Igor; Reiter, Russel J; García, Joaquín J

    2009-01-01

    Cholestasis occurs in a variety of hepatic diseases and causes damage due to accumulation of bile acids in the liver. The aim was to investigate the effect of several bile acids, i.e. chenodeoxycholic, taurochenodeoxycholic, deoxycholic, taurodeoxycholic, ursodeoxycholic, lithocholic and taurolithocholic (TLC), in inducing oxidative damage. Hepatic tissue of male Sprague-Dawley rats was incubated with or without 1 mM of each bile acid, with or without 0.1 mM FeCl(3) and 0.1 mM ascorbic acid for the purpose of generating free radicals. Several bile acids increased lipid and protein oxidation, with TLC being the most pro-oxidative (657% and 175% in homogenates and 350% and 311% in membranes, respectively). TLC also enhanced iron-induced oxidative stress to lipids (21% in homogenates and 29% in membranes) and to proteins (74% in membranes). This enhancement was dose- and time-dependent and was reduced by melatonin. These results suggest that bile acids differentially mediate hepatic oxidative stress and may be involved in the physiopathology of cholestasis.

  10. From thiol to sulfonic acid: modeling the oxidation pathway of protein thiols by hydrogen peroxide.

    PubMed

    van Bergen, Laura A H; Roos, Goedele; De Proft, Frank

    2014-08-07

    Hydrogen peroxide is a natural oxidant that can oxidize protein thiols (RSH) via sulfenic acid (RSOH) and sulfinic acid (RSO2H) to sulfonic acid (RSO3H). In this paper, we study the complete anionic and neutral oxidation pathway from thiol to sulfonic acid. Reaction barriers and reaction free energies for all three oxidation steps are computed, both for the isolated substrates and for the substrates in the presence of different model ligands (CH4, H2O, NH3) mimicking the enzymatic environment. We found for all three barriers that the anionic thiolate is more reactive than the neutral thiol. However, the assistance of the environment in the neutral pathway in a solvent-assisted proton-exchange (SAPE) mechanism can lower the reaction barrier noticeably. Polar ligands can decrease the reaction barriers, whereas apolar ligands do not influence the barrier heights. The same holds for the reaction energies: they decrease (become more negative) in the presence of polar ligands whereas apolar ligands do not have an influence. The consistently negative consecutive reaction energies for the oxidation in the anionic pathway when going from thiolate over sulfenic and sulfinic acid to sulfonic acid are in agreement with biological reversibility.

  11. Phytochemicals in regulating fatty acid β-oxidation: Potential underlying mechanisms and their involvement in obesity and weight loss.

    PubMed

    Rupasinghe, H P Vasantha; Sekhon-Loodu, Satvir; Mantso, Theodora; Panayiotidis, Mihalis I

    2016-09-01

    Excessive accumulation of fat as the result of more energy intake and less energy expenditure is known as obesity. Lipids are essential components in the human body and are vital for maintaining homeostasis and physiological as well as cellular metabolism. Fatty acid synthesis and catabolism (by fatty acid oxidation) are normal part of basic fuel metabolism in animals. Fatty acids are degraded in the mitochondria by a biochemical process called β-oxidation in which two-carbon fragments are produced in each cycle. The increase in fatty acid β-oxidation is negatively correlated with body mass index. Although healthy life style, avoiding Western diet, dieting and strenuous exercise are the commonly used methods to lose weight, they are not considered a permanent solution in addition to risk attenuation of basal metabolic rate (BMR). Pharmacotherapy offers benefits of weight loss by altering the satiety and lowering absorption of fat from the food; however, its side effects may outweigh the benefits of weight loss. Alternatively, dietary phytochemicals and natural health products offer great potential as an efficient weight loss strategy by modulating lipid metabolism and/or increasing BMR and thermogenesis. Specifically, polyphenols such as citrus flavonoids, green tea epigallocatechin gallate, resveratrol, capsaicin and curcumin, have been reported to increase lipolysis and induce fatty acid β-oxidation through modulation of hormone sensitive lipase, acetyl-coA carboxylase, carnitine acyl transferase and peroxisome proliferator-activated receptor gamma coactivator-1. In this review article, we discuss selected phytochemicals in relation to their integrated functionalities and specific mechanisms for weight loss.

  12. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules

    PubMed Central

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K.; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J.; Dunne, Eimear M.; Flagan, Richard C.; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P.; Rondo, Linda; Santos, Filipe D.; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S.; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M.; Worsnop, Douglas R.

    2013-01-01

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions. PMID:24101502

  13. Molecular understanding of atmospheric particle formation from sulfuric acid and large oxidized organic molecules.

    PubMed

    Schobesberger, Siegfried; Junninen, Heikki; Bianchi, Federico; Lönn, Gustaf; Ehn, Mikael; Lehtipalo, Katrianne; Dommen, Josef; Ehrhart, Sebastian; Ortega, Ismael K; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Hutterli, Manuel; Duplissy, Jonathan; Almeida, João; Amorim, Antonio; Breitenlechner, Martin; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Kajos, Maija; Keskinen, Helmi; Kirkby, Jasper; Kupc, Agnieszka; Kürten, Andreas; Kurtén, Theo; Laaksonen, Ari; Mathot, Serge; Onnela, Antti; Praplan, Arnaud P; Rondo, Linda; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Sipilä, Mikko; Tomé, António; Tsagkogeorgas, Georgios; Vehkamäki, Hanna; Wimmer, Daniela; Baltensperger, Urs; Carslaw, Kenneth S; Curtius, Joachim; Hansel, Armin; Petäjä, Tuukka; Kulmala, Markku; Donahue, Neil M; Worsnop, Douglas R

    2013-10-22

    Atmospheric aerosols formed by nucleation of vapors affect radiative forcing and therefore climate. However, the underlying mechanisms of nucleation remain unclear, particularly the involvement of organic compounds. Here, we present high-resolution mass spectra of ion clusters observed during new particle formation experiments performed at the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research. The experiments involved sulfuric acid vapor and different stabilizing species, including ammonia and dimethylamine, as well as oxidation products of pinanediol, a surrogate for organic vapors formed from monoterpenes. A striking resemblance is revealed between the mass spectra from the chamber experiments with oxidized organics and ambient data obtained during new particle formation events at the Hyytiälä boreal forest research station. We observe that large oxidized organic compounds, arising from the oxidation of monoterpenes, cluster directly with single sulfuric acid molecules and then form growing clusters of one to three sulfuric acid molecules plus one to four oxidized organics. Most of these organic compounds retain 10 carbon atoms, and some of them are remarkably highly oxidized (oxygen-to-carbon ratios up to 1.2). The average degree of oxygenation of the organic compounds decreases while the clusters are growing. Our measurements therefore connect oxidized organics directly, and in detail, with the very first steps of new particle formation and their growth between 1 and 2 nm in a controlled environment. Thus, they confirm that oxidized organics are involved in both the formation and growth of particles under ambient conditions.

  14. Empirical Modeling of Iron Oxide Dissolution in Sulphuric and Hydrochloric Acid

    NASA Astrophysics Data System (ADS)

    Hemmelmann, Jan C.; Xu, Hao; Krumm, Wolfgang

    2013-10-01

    A new approach is presented to an empirical modeling of chemical pickling processes, based on the activation energy of oxide dissolution in hydrochloric acid (HCl) and sulfuric acid (H2SO4). The model allows us to calculate pickling times as a function of definite parameters. The main oxide layers on hot-rolled materials are magnetite (Fe3O4), hematite (Fe2O3), and wustite (FeO). On the laboratory scale, the activation energy of each oxide has been determined. FeO is a metastable oxide and has been produced based on magnetite powder in a H2/H2O atmosphere. The oxide powders used for the experimental procedure have been analyzed by X-ray powder diffraction to insure the proper stoichiometry and composition. The model allows us to calculate the time of oxide dissolution based on the parameters temperature, acid concentration, and the composition of the oxide layer. Calculated values are verified by surface potential measurement on industrial oxide layers. The hot-rolled material used for verification is low carbon steel. A comparison between calculated pickling times and experimental data will be presented.

  15. Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid.

    PubMed

    Orge, C A; Órfão, J J M; Pereira, M F R

    2012-04-30

    Manganese oxide and manganese oxide-carbon composites were prepared and tested as catalysts for the removal of oxalic acid by ozonation. Their performances were compared with the parent carbon material (activated carbon or carbon xerogel) used to prepare the composites. Oxalic acid degradation by carbon materials is slower than that attained with manganese oxide or manganese oxide-carbon composites. A complete degradation after 90 and 45 min of reaction was obtained for carbon materials and for the catalysts containing manganese, respectively. The ozonation in the presence of the prepared composites are supposed to occur mainly by surface reactions, following a direct oxidation mechanism by molecular ozone and/or surface oxygenated radicals.

  16. Electrocatalytic Oxidation of Formate with Nickel Diphosphane Dipeptide Complexes. Effect of Ligands Modified with Amino Acids

    SciTech Connect

    Galan, Brandon R.; Reback, Matthew L.; Jain, Avijita; Appel, Aaron M.; Shaw, Wendy J.

    2013-09-03

    A series of nickel bis-diphosphine complexes with dipeptides appended to the ligands were investigated for the catalytic oxidation of formate. Typical rates of ~7 s-1 were found, similar to the parent complex (~8 s-1), with amino acid size and positioning contributing very little to rate or operating potential. Hydroxyl functionalities did result in lower rates, which were recovered by protecting the hydroxyl group. The results suggest that the overall dielectric introduced by the dipeptides does not play an important role in catalysis, but free hydroxyl groups do influence activity suggesting contributions from intra- or intermolecular interactions. These observations are important in developing a fundamental understanding of the affect that an enzyme-like outer coordination sphere can have upon molecular catalysts. This work was funded by the US DOE Basic Energy Sciences, Chemical Sciences, Geoscience and Biosciences Division (BRG, AJ, AMA, WJS), the US DOE Basic Energy Sciences, Physical Bioscience program (MLR). Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy.

  17. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  18. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  19. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  20. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  1. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  2. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  3. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  4. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified...

  5. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  6. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  7. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  8. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  9. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... limits for nitrogen oxides at least as protective as the emission limits listed in table 1 of...

  10. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  11. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  12. The effect of valinomycin in fibroblasts from patients with fatty acid oxidation disorders

    SciTech Connect

    Ndukwe Erlingsson, Uzochi Chimdinma; Iacobazzi, Francesco; Liu, Aiping; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2013-08-09

    Highlights: •Valinomycin can cause mitochondrial stress and stimulate fatty acid oxidation. •Cells with VLCAD deficiency fail to increase fatty acid oxidation in response to valinomycin. •Response to valinomycin can help in the diagnosis of VLCAD deficiency. -- Abstract: Disorders of the carnitine cycle and of the beta oxidation spiral impair the ability to obtain energy from fats at time of fasting and stress. This can result in hypoketotic hypoglycemia, cardiomyopathy, cardiac arrhythmia and other chronic medical problems. The in vitro study of fibroblasts from patients with these conditions is impaired by their limited oxidative capacity. Here we evaluate the capacity of valinomycin, a potassium ionophore that increases mitochondrial respiration, to increase the oxidation of fatty acids in cells from patients with inherited fatty acid oxidation defects. The addition of valinomycin to fibroblasts decreased the accumulation of the lipophilic cation tetraphenylphosphonium (TPP{sup +}) at low concentrations due to the dissipation of the mitochondrial membrane potential. At higher doses, valinomycin increased TPP{sup +} accumulation due to the increased potassium permeability of the plasma membrane and subsequent cellular hyperpolarization. The incubation of normal fibroblasts with valinomycin increased [{sup 14}C]-palmitate oxidation (measured as [{sup 14}C]O{sub 2} release) in a dose-dependent manner. By contrast, valinomycin failed to increase palmitate oxidation in fibroblasts from patients with very long chain acyl CoA dehydrogenase (VLCAD) deficiency. This was not observed in fibroblasts from patients heterozygous for this condition. These results indicate that valinomycin can increase fatty acid oxidation in normal fibroblasts and could be useful to differentiate heterozygotes from patients affected with VLCAD deficiency.

  13. Chemoproteomic Profiling of Acetanilide Herbicides Reveals Their Role in Inhibiting Fatty Acid Oxidation.

    PubMed

    Counihan, Jessica L; Duckering, Megan; Dalvie, Esha; Ku, Wan-Min; Bateman, Leslie A; Fisher, Karl J; Nomura, Daniel K

    2017-03-17

    Acetanilide herbicides are among the most widely used pesticides in the United States, but their toxicological potential and mechanisms remain poorly understood. Here, we have used chemoproteomic platforms to map proteome-wide cysteine reactivity of acetochlor (AC), the most widely used acetanilide herbicide, in vivo in mice. We show that AC directly reacts with >20 protein targets in vivo in mouse liver, including the catalytic cysteines of several thiolase enzymes involved in mitochondrial and peroxisomal fatty acid oxidation. We show that the fatty acids that are not oxidized, due to impaired fatty acid oxidation, are instead diverted into other lipid pathways, resulting in heightened free fatty acids, triglycerides, cholesteryl esters, and other lipid species in the liver. Our findings show the utility of chemoproteomic approaches for identifying novel mechanisms of toxicity associated with environmental chemicals like acetanilide herbicides.

  14. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    NASA Astrophysics Data System (ADS)

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-09-01

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four ‘chiral pool’ amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  15. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  16. Uric acid correlates to oxidation and inflammation in opposite directions in women

    PubMed Central

    Wu, Sheng Hui; Shu, Xiao Ou; Milne, Ginger; Xiang, Yong-Bing; Zhang, Xianglan; Cai, Qiuyin; Fazio, Sergio; Linton, MacRae F; Chen, Honglei; Purdue, Mark; Rothman, Nathaniel; Gao, Yu-Tang; Zheng, Wei; Yang, Gong

    2016-01-01

    Objective To evaluate the association of uric acid (UA) levels with a panel of markers of oxidative stress and inflammation. Methods Plasma UA levels, along with a panel of oxidative stress and inflammatory markers, were measured in 755 Chinese women. Results Plasma UA levels were inversely associated with urinary levels of the oxidative stress marker F2-isoprostanes and positively correlated to levels of inflammatory markers such as C-reactive protein and some proinflammatory cytokines (tumor necrosis factor-α and interleukin-6) in blood as well as prostaglandin E2 metabolites in urine. Conclusions Plasma UA levels correlate to oxidation and inflammation biomarkers in opposite directions in women. PMID:26301880

  17. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes[S

    PubMed Central

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M. Luisa; Ribot, Joan; Landrier, Jean-François

    2015-01-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells. PMID:25914170

  18. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes.

    PubMed

    Tourniaire, Franck; Musinovic, Hana; Gouranton, Erwan; Astier, Julien; Marcotorchino, Julie; Arreguin, Andrea; Bernot, Denis; Palou, Andreu; Bonet, M Luisa; Ribot, Joan; Landrier, Jean-François

    2015-06-01

    A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.

  19. Oxidative aging of mixed oleic acid/sodium chloride aerosol particles

    NASA Astrophysics Data System (ADS)

    Dennis-Smither, Benjamin J.; Miles, Rachael E. H.; Reid, Jonathan P.

    2012-10-01

    Studies of the oxidative aging of single mixed component aerosol particles formed from oleic acid (OL) and sodium chloride over a range of relative humidities (RH) and ozone concentrations by aerosol optical tweezers are reported. The rate of loss of OL and changes in the organic phase volume are directly measured, comparing particles with effloresced and deliquesced inorganic seeds. The kinetics of the OL loss are analyzed and the value of the reactive uptake coefficient of ozone by OL is compared to previous studies. The reaction of OL is accompanied by a decrease in the particle volume, consistent with the evaporation of semivolatile products over a time scale of tens of thousands of seconds. Measurements of the change in the organic phase volume allow the branching ratio to involatile components to be estimated; between 50 and 85% of the initial organic volume remains involatile, depending on ozone concentration. The refractive index (RI) of the organic phase increases during and after evaporation of volatile products, consistent with aging followed by a slow restructuring in particle morphology. The hygroscopicity of the particle and kinetics of the response of the organic phase to changes in RH are investigated. Both size and RI of unoxidized and oxidized particles respond promptly to RH changes with values of the RI consistent with linear mixing rules. Such studies of the simultaneous changes in composition and size of mixed component aerosol provide valuable data for benchmarking kinetic models of heterogeneous atmospheric aging.

  20. Pyrazinoic acid efflux rate in Mycobacterium tuberculosis is a better proxy of pyrazinamide resistance.

    PubMed

    Zimic, Mirko; Fuentes, Patricia; Gilman, Robert H; Gutiérrez, Andrés H; Kirwan, Daniela; Sheen, Patricia

    2012-01-01

    Pyrazinamide is one of the most important drugs in the treatment of latent Mycobacterium tuberculosis infection. The emergence of strains resistant to pyrazinamide represents an important public health problem, as both first- and second-line treatment regimens include pyrazinamide. The accepted mechanism of action states that after the conversion of pyrazinamide into pyrazinoic acid by the bacterial pyrazinamidase enzyme, the drug is expelled from the bacteria by an efflux pump. The pyrazinoic acid is protonated in the extracellular environment and then re-enters the mycobacterium, releasing the proton and causing a lethal disruption of the membrane. Although it has been shown that mutations causing significant loss of pyrazinamidase activity significantly contribute to pyrazinamide resistance, the mechanism of resistance is not completely understood. The pyrazinoic acid efflux rate may depend on multiple factors, including pyrazinamidase activity, intracellular pyrazinamidase concentration, and the efficiency of the efflux pump. Whilst the importance of the pyrazinoic acid efflux rate to the susceptibility to pyrazinamide is recognized, its quantitative effect remains unknown. Thirty-four M. tuberculosis clinical isolates and a Mycobacterium smegmatis strain (naturally resistant to PZA) were selected based on their susceptibility to pyrazinamide, as measured by Bactec 460TB and the Wayne method. For each isolate, the initial velocity at which pyrazinoic acid is released from the bacteria and the initial velocity at which pyrazinamide enters the bacteria were estimated. The data indicated that pyrazinoic acid efflux rates for pyrazinamide-susceptible M. tuberculosis strains fell within a specific range, and M. tuberculosis strains with a pyrazinoic acid efflux rate below this range appeared to be resistant. This finding contrasts with the high pyrazinoic acid efflux rate for M. smegmatis, which is innately resistant to pyrazinamide: its pyrazinoic acid efflux

  1. Fenton-like oxidation of small aromatic acids from biomass burning in water and in the absence of light: implications for atmospheric chemistry.

    PubMed

    Santos, Patrícia S M; Duarte, Armando C

    2015-01-01

    The oxidation of organic compounds from biomass burning in the troposphere is worthy of concern due to the uncertainty of chemical transformations that occur during the reactions and to the possibility of such compounds producing others more aggressive to the environment in general. In this work was studied the oxidation of relevant atmospheric organic compounds resulting from biomass burning, three small aromatic acids with similar molecular structures (benzoic, 4-hydroxybenzoic and 3,5-dihydroxybenzoic acids), in aqueous phase and in the absence of light. The oxidation process used was the Fenton-like reaction and it was evaluated by ultraviolet-visible and molecular fluorescence spectroscopies. The extent of oxidation of the acids depended on the pH of the solution, and the rate of reaction increased as the pH decreased from neutral (5) to acid (4) in atmospheric waters. Even in the absence of light, Fenton-like oxidation of the three acids originated new chromophoric compounds, which tended to be more complex than the reactants. However, after the formation of new compounds they were totally oxidized for 3,5-dihydroxybenzoic acid and only partially degraded for benzoic and 4-hydroxybenzoic acids, at least after 48 h of reaction at pH 4.5. Furthermore, the night period may be sufficient for a full degradation of the 3,5-dihydroxybenzoic acid and of their oxidation products in atmospheric waters. Thus, the results obtained in this study highlight that organic compounds from biomass burning with similar molecular structures may have different behavior regarding to their reactivity and persistence in atmospheric waters, even without light.

  2. [H2O2 oxidation of 1,4-dihydropyridines over Mg2+ ion exchanged clinoptilolite and solventless solid state acid decomposition of ester to 3,5-pyridinedicarboxylic acid].

    PubMed

    Yamashiro, Takashi; Sato, Kanji; Nomura, Masayuki; Nakata, Shinichi

    2009-10-01

    The acid property of alkali and alkali earth cation exchanged clinoptiolites were observed by micro-calorimetry of NH(3) adsorption at 200 degrees C. The reaction rates on decomposition of tert-butyl acetate (TBA) over clinoptilolites was proportional to the acid strength. 1,4-Dihydropyridines were oxidized to corresponding Pyridines in high yields at room temperature by H(2)O(2) aqueous solution over Mg(2+) ion exchanged clinoptilolte (CZ-Mg) in acetone. Solventless acid ester decomposition of Di-tert-butyl 3,5-pyridinedicarboxylate to 3,5-Pyridinedicarboxylic acid was effected using CZ-Mg at 170 degrees C.

  3. Solid-State 17O NMR Study of Benzoic Acid Adsorption On Metal Oxide Surfaces

    SciTech Connect

    Hagaman, Edward {Ed} W; Chen, Banghao; Jiao, Jian; Parsons, Williams

    2012-01-01

    Solid-state 17O NMR spectra of 17O-labeled benzoic and anisic acids are reported and benzoic acid is used to probe the surface of metal oxides. Complexes formed when benzoic acid is dry-mixed with mesoporous silica, and nonporous titania and alumina are characterized. Chemical reactions with silica are not observed. The nature of benzoic acid on silica is a function of the water content of the oxide. The acid disperses in the pores of the silica if the silica is in equilibrium with ambient laboratory humidity. The acid displays high mobility as evidenced by a liquid-like, Lorentzian resonance. Excess benzoic acid remains as the crystalline hydrogen-bonded dimer. Benzoic acid reacts with titania and alumina surfaces in equilibrium with laboratory air to form the corresponding titanium and aluminum benzoates. In both materials the oxygen of the 17O-labeled acid is bound to the metal, showing the reaction proceeds by bond formation between oxygen deficient metal sites and the oxygen of the carboxylic acid. 27Al MAS NMR confirms this mechanism for the reaction on alumina. Dry mixing of benzoic acid with alumina rapidly quenches pentacoordinate aluminum sites, excellent evidence that these sites are confined to the surface of the alumina particles.

  4. Oxidation mechanism and overall removal rates of endocrine disrupting chemicals by aquatic plants.

    PubMed

    Reis, A R; Tabei, K; Sakakibara, Y

    2014-01-30

    The purpose of this study was to evaluate experimentally and theoretically the oxidation mechanisms and overall removal rates of phenolic endocrine disrupting chemicals (EDCs) by aquatic plants. EDCs used in this study were bisphenol-A (BPA), 2,4-dichlorophenol (2,4-DCP), 4-tert-octylphenol (4-t-OP), and pentachlorophenol (PCP). Referring to reported detection levels in aquatic environments and contaminated sites, the feed concentration of each EDC was set from 1 to 100μg/L. Experimental results showed that, except for PCP, phenolic EDCs were stably and concurrently removed by different types of aquatic plants over 70 days in long-term continuous treatments. Primal enzymes responsible for oxidation of BPA, 2,4-DCP, and 4-t-OP were peroxidases (POs). Moreover, enzymatic removal rates of BPA, 2,4-DCP, and 4-t-OP by POs were more than 2 orders of magnitude larger than those by aquatic plants. Assuming that overall removal rates of EDCs are controlled by mass transfer rates onto liquid films on the surface of aquatic plants, an electrochemical method based on the limiting current theory was developed to measure the mass transfer rates of EDCs. Because of extremely large removal rates of EDCs by POs, observed removal rates by aquatic plants were in reasonably good agreement with calculated results by a mathematical model developed based on an assumption that mass transfer limitation is a rate-limiting step.

  5. Increased Hepatic Fatty Acids Uptake and Oxidation by LRPPRC-Driven Oxidative Phosphorylation Reduces Blood Lipid Levels

    PubMed Central

    Lei, Shi; Sun, Run-zhu; Wang, Di; Gong, Mei-zhen; Su, Xiang-ping; Yi, Fei; Peng, Zheng-wu

    2016-01-01

    Hyperlipidemia is one of the major risk factors of atherosclerosis and other cardiovascular diseases. This study aimed to investigate the impact of leucine rich pentatricopeptide repeat containing protein (LRPPRC)-driven hepatic oxidative phoshorylation on blood lipid levels. The hepatic LRPPRC level was modulated by liver-specific transgenic or adeno-associated virus 8 carried shRNA targeting Lrpprc (aav-shLrpprc). Mice were fed with a high fat diet to induce obesity. Gene expression was analyzed by quantitative real-time PCR and / or western blot. The hepatic ATP level, hepatic and serum lipids contents, and mitochondria oxidative phosphorylation (OxPhos) complex activities were measured using specific assay kits. The uptake and oxidation of fatty acid by hepatocytes were assessed using 14C-palmitate. LRPPRC regulated the expression of genes encoded by mitochondrial genome but not those by nuclear genome involved in mitochondria biogenesis, OxPhos, and lipid metabolism. Increased OxPhos in liver mediated by LRPPRC resulted in the increase of hepatic ATP level. Lrpprc promoted palmitate uptake and oxidation by hypatocytes. The hepatic and serum triglyceride and total cholesterol levels were inversely associated with the hepatic LRPPRC level. These data demonstrated that LRPPRC-driven hepatic OxPhos could promote fatty acids uptake and oxidation by hepatocytes and reduce both hepatic and circulating triglyceride and cholesterol levels. PMID:27462273

  6. Acute Treatment with Lauric Acid Reduces Blood Pressure and Oxidative Stress in Spontaneously Hypertensive Rats.

    PubMed

    Alves, Naiane Ferraz Bandeira; de Queiroz, Thyago Moreira; de Almeida Travassos, Rafael; Magnani, Marciane; de Andrade Braga, Valdir

    2017-04-01

    The effects of acute administration of lauric acid (LA), the most abundant medium-chain fatty acid of coconut oil, on blood pressure, heart rate and oxidative stress were investigated in spontaneously hypertensive rats (SHR). Intravenous doses of LA reduced blood pressure in a dose-dependent fashion (1, 3, 4, 8 and 10 mg/kg) in both SHR and Wistar Kyoto rats. LA (10(-8) to 3 × 10(-3) M) induced vasorelaxation in isolated superior mesenteric artery rings of SHR in the presence (n = 7) or absence (n = 8) of functional endothelium [maximum effect (ME) = 104 ± 3 versus 103 ± 4%]. After exposure to KCl (60 mM), LA also induced concentration-dependent vasorelaxation (n = 7) compared to that under Phe-induced contraction (ME = 113.5 + 5.1 versus 104.5 + 4.0%). Furthermore, LA-induced vasorelaxation in vessels contracted with S(-)-BayK8644 (200 nM), a L-type Ca(2+) channel agonist (ME = 91.4 + 4.3 versus 104.5 + 4.0%, n = 7). Lastly, LA (10(-3) M) reduced NADPH-dependent superoxide accumulation in the heart (18 ± 1 versus 25 ± 1 MLU/min/μg protein, n = 4, p < 0.05) and kidney (82 ± 3 versus 99 ± 4 MLU/min/μg protein, n = 4, p < 0.05). Our data show that LA reduces blood pressure in normotensive and hypertensive rats. In SHR, this effect might involve Ca(+2) channels in the resistance vessels and by its capability of reducing oxidative stress in heart and kidneys.

  7. Phytosphingosine degradation pathway includes fatty acid α-oxidation reactions in the endoplasmic reticulum.

    PubMed

    Kitamura, Takuya; Seki, Naoya; Kihara, Akio

    2017-03-28

    Although normal fatty acids (FAs) are degraded via β-oxidation, unusual FAs such as 2-hydroxy (2-OH) FAs and 3-methyl-branched FAs are degraded via α-oxidation. Phytosphingosine (PHS) is one of the long-chain bases (the sphingolipid components) and exists in specific tissues, including the epidermis and small intestine in mammals. In the degradation pathway, PHS is converted to 2-OH palmitic acid and then to pentadecanoic acid (C15:0-COOH) via FA α-oxidation. However, the detailed reactions and genes involved in the α-oxidation reactions of the PHS degradation pathway have yet to be determined. In the present study, we reveal the entire PHS degradation pathway: PHS is converted to C15:0-COOH via six reactions [phosphorylation, cleavage, oxidation, CoA addition, cleavage (C1 removal), and oxidation], in which the last three reactions correspond to the α-oxidation. The aldehyde dehydrogenase ALDH3A2 catalyzes both the first and second oxidation reactions (fatty aldehydes to FAs). In Aldh3a2-deficient cells, the unmetabolized fatty aldehydes are reduced to fatty alcohols and are incorporated into ether-linked glycerolipids. We also identify HACL2 (2-hydroxyacyl-CoA lyase 2) [previous name, ILVBL; ilvB (bacterial acetolactate synthase)-like] as the major 2-OH acyl-CoA lyase involved in the cleavage (C1 removal) reaction in the FA α-oxidation of the PHS degradation pathway. HACL2 is localized in the endoplasmic reticulum. Thus, in addition to the already-known FA α-oxidation in the peroxisomes, we have revealed the existence of FA α-oxidation in the endoplasmic reticulum in mammals.

  8. Lipid oxidation stability of omega-3- and conjugated linoleic acid-enriched sous vide chicken meat.

    PubMed

    Narciso-Gaytán, C; Shin, D; Sams, A R; Keeton, J T; Miller, R K; Smith, S B; Sánchez-Plata, M X

    2011-02-01

    Lipid oxidation is known to occur rather rapidly in cooked chicken meat containing relatively high amounts of polyunsaturated fatty acids. To assess the lipid oxidation stability of sous vide chicken meat enriched with n-3 and conjugated linoleic acid (CLA) fatty acids, 624 Cobb × Ross broilers were raised during a 6-wk feeding period. The birds were fed diets containing CLA (50% cis-9, trans-11 and 50% trans-10, cis-12 isomers), flaxseed oil (FSO), or menhaden fish oil (MFO), each supplemented with 42 or 200 mg/kg of vitamin E (dl-α-tocopheryl acetate). Breast or thigh meat was vacuum-packed, cooked (74°C), cooled in ice water, and stored at 4.4°C for 0, 5, 10, 15, and 30 d. The lipid oxidation development of the meat was estimated by quantification of malonaldehyde (MDA) values, using the 2-thiobarbituric acid reactive substances analysis. Fatty acid, nonheme iron, moisture, and fat analyses were performed as well. Results showed that dietary CLA induced deposition of cis-9, trans-11 and trans-10, cis-12 CLA isomers, increased the proportion of saturated fatty acids, and decreased the proportions of monounsaturated and polyunsaturated fatty acids. Flaxseed oil induced higher deposition of C18:1, C18:2, C18:3, and C20:4 fatty acids, whereas MFO induced higher deposition of n-3 fatty acids, eicosapentaenoic acid (C20:5), and docosahexaenoic acid (C22:6; P < 0.05). Meat lipid oxidation stability was affected by the interaction of either dietary oil or vitamin E with storage day. Lower (P < 0.05) MDA values were found in the CLA treatment than in the MFO and FSO treatments. Lower (P < 0.05) MDA values were detected in meat samples from the 200 mg/kg of vitamin E than in meat samples from the 42 mg/kg of vitamin E. Nonheme iron values did not affect (P > 0.05) lipid oxidation development. In conclusion, dietary CLA, FSO, and MFO influenced the fatty acid composition of chicken muscle and the lipid oxidation stability of meat over the storage time. Supranutritional

  9. Lactic acid jet test: in vitro erosion rates of glass ionomer dental cements containing radiopacifying elements.

    PubMed

    Williams, J A; Billington, R W; Pearson, G J

    1993-06-01

    The lactic acid jet test erosion rates were measured for 13 radiopaque glass ionomer dental materials obtained from a number of manufacturing sources. The erosion rate was compared with that found for the non-radiopaque restorative from the same manufacturer to determine whether the addition of an extra element had affected the resistance to erosion. Six materials were not significantly affected, six showed a significant increase in erosion rate. Only one material showed a reduced erosion rate. Materials containing a high proportion of any additive could show an increased erosion rate. Glass ionomer cements with or without radiopacifying elements had low erosion rates compared with other dental materials.

  10. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions.

    PubMed

    Segarra, K E A; Schubotz, F; Samarkin, V; Yoshinaga, M Y; Hinrichs, K-U; Joye, S B

    2015-06-30

    The role of anaerobic oxidation of methane (AOM) in wetlands, the largest natural source of atmospheric methane, is poorly constrained. Here we report rates of microbially mediated AOM (average rate=20 nmol cm(-3) per day) in three freshwater wetlands that span multiple biogeographical provinces. The observed AOM rates rival those in marine environments. Most AOM activity may have been coupled to sulphate reduction, but other electron acceptors remain feasible. Lipid biomarkers typically associated with anaerobic methane-oxidizing archaea were more enriched in (13)C than those characteristic of marine systems, potentially due to distinct microbial metabolic pathways or dilution with heterotrophic isotope signals. On the basis of this extensive data set, AOM in freshwater wetlands may consume 200 Tg methane per year, reducing their potential methane emissions by over 50%. These findings challenge precepts surrounding wetland carbon cycling and demonstrate the environmental relevance of an anaerobic methane sink in ecosystems traditionally considered strong methane sources.

  11. Hyaluronic Acid Modified Tantalum Oxide Nanoparticles Conjugating Doxorubicin for Targeted Cancer Theranostics.

    PubMed

    Jin, Yushen; Ma, Xibo; Feng, Shanshan; Liang, Xiao; Dai, Zhifei; Tian, Jie; Yue, Xiuli

    2015-12-16

    Theranostic tantalum oxide nanoparticles (TaOxNPs) of about 40 nm were successfully developed by conjugating functional molecules including polyethylene glycol (PEG), near-infrared (NIR) fluorescent dye, doxorubicin (DOX), and hyaluronic acid (HA) onto the surface of the nanoparticles (TaOx@Cy7-DOX-PEG-HA NPs) for actively targeting delivery, pH-responsive drug release, and NIR fluorescence/X-ray CT bimodal imaging. The obtained nanoagent exhibits good biocompatibility, high cumulative release rate in the acidic microenvironments, long blood circulation time, and superior tumor-targeting ability. Both in vitro and in vivo experiments show that it can serve as an excellent contrast agent to simultaneously enhance fluorescence imaging and CT imaging greatly. Most importantly, such a nanoagent could enhance the therapeutic efficacy of the tumor greatly and the tumor growth inhibition was evaluated to be 87.5%. In a word, multifunctional TaOx@Cy7-DOX-PEG-HA NPs can serve as a theranostic nanomedicine for fluorescence/X-ray CT bimodal imaging, remote-controlled therapeutics, enabling personalized detection, and treatment of cancer with high efficacy.

  12. Mitochondrial and peroxisomal fatty acid oxidation in liver homogenates and isolated hepatocytes from control and clofibrate-treated rats.

    PubMed

    Mannaerts, G P; Debeer, L J; Thomas, J; De Schepper, P J

    1979-06-10

    Mitochondrial and peroxisomal fatty acid oxidation were compared in whole liver homogenates. Oxidation of 0.2 mM palmitoyl-CoA or oleate by mitochondria increased rapidly with increasing molar substrate:albumin ratios and became saturated at ratios below 3, while peroxisomal oxidation increased more slowly and continued to rise to reach maximal activity in the absence of albumin. Under the latter condition mitochondrial oxidation was severely depressed. In homogenates from normal liver peroxisomal oxidation was lower than mitochondrial oxidation at all ratios tested except when albumin was absent. In contrast with mitochondrial oxidation, peroxisomal oxidation did not produce ketones, was cyanide-insensitive, was not dependent on carnitine, and was not inhibited by (+)-octanoylcarnitine, malonyl-CoA and 4-pentenoate. Mitochondrial oxidation was inhibited by CoASH concentrations that were optimal for peroxisomal oxidation. In the presence of albumin, peroxisomal oxidation was stimulated by Triton X-100 but unaffected by freeze-thawing; both treatments suppressed mitochondrial oxidation. Clofibrate treatment increased mitochondrial and peroxisomal oxidation 2- and 6- to 8-fold, respectively. Peroxisomal oxidation remained unchanged in starvation and diabetes. Fatty acid oxidation was severely depressed by cyanide and (+)-octanoylcarnitine in hepatocytes from normal rats. Hepatocytes from clofibrate-treated rats, which displayed a 3- to 4-fold increase in fatty acid oxidation, were less inhibited by (+)-octanoylcarnitine. Hydrogen peroxide production was severalfold higher in hepatocytes from treated animals oxidizing fatty acids than in control hepatocytes. Assuming that all H2O2 produced during fatty acid oxidation was due to peroxisomal oxidation, it was calculated that the contribution of the peroxisomes to fatty acid oxidation was less than 10% both in cells from control and clofibrate-treated animals.

  13. Rates of chemical cleavage of DNA and RNA oligomers containing guanine oxidation products.

    PubMed

    Fleming, Aaron M; Alshykhly, Omar; Zhu, Judy; Muller, James G; Burrows, Cynthia J

    2015-06-15

    The nucleobase guanine in DNA (dG) and RNA (rG) has the lowest standard reduction potential of the bases, rendering it a major site of oxidative damage in these polymers. Mapping the sites at which oxidation occurs in an oligomer via chemical reagents utilizes hot piperidine for cleaving oxidized DNA and aniline (pH 4.5) for cleaving oxidized RNA. In the present studies, a series of time-dependent cleavages of DNA and RNA strands containing various guanine lesions were examined to determine the strand scission rate constants. The guanine base lesions 8-oxo-7,8-dihydroguanine (OG), spiroiminodihydantoin (Sp), 5-guanidinohydantoin (Gh), 2,2,4-triamino-2H-oxazol-5-one (Z), and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) were evaluated in piperidine-treated DNA and aniline-treated RNA. These data identified wide variability in the chemical lability of the lesions studied in both DNA and RNA. Further, the rate constants for cleaving lesions in RNA were generally found to be significantly smaller than for lesions in DNA. The OG nucleotides were poorly cleaved in DNA and RNA; Sp nucleotides were slowly cleaved in DNA and did not cleave significantly in RNA; Gh and Z nucleotides cleaved in both DNA and RNA at intermediate rates; and 2Ih oligonucleotides cleaved relatively quickly in both DNA and RNA. The data are compared and contrasted with respect to future experimental design.

  14. Strategies to reduce short-chain organic acids and synchronously establish high-rate composting in acidic household waste.

    PubMed

    Bergersen, Ove; Bøen, Anne S; Sørheim, Roald

    2009-01-01

    The aim of this study was to document whether addition of lime or increased amount of bulking agent would ensure, efficiently, a predictable composting process in acidic SSOW applicable in full scale plants. The results show that both lime addition and increasing the amount of bulking agent relative to waste support the development of high-rate respiration in composting. Both strategies are considered efficient in establishing desired microbial composting processes of acid household waste. Reduction in the content of different organic acids and loss on ignition were higher when more bulking agent was used compared with adding 5% lime to the acidic SSOW. Respiration was completely repressed in samples with 10% lime, where pH remained high. In addition fat and protein seem to degrade faster with increasing amount of bulking agent.

  15. Extraction of benzene and naphthalene carboxylic acids using quaternary ammonium salts as a model study for the separation of coal oxidation products

    SciTech Connect

    Kawamura, K.; Nagano, H.; Okuwaki, A.

    2005-07-01

    The ion-pair solvent extraction of benzene- and naphthalene-carboxylic acids has been investigated as a model study for the separation of coal oxidation products, which are formed by treatment with alkaline solutions at high temperatures. It was possible that benzene- and naphthalene-dicarboxylic acids are extracted into several types of organic solvents with quaternary ammonium ions. The extraction equilibrium constants (K{sub ex}) for benzoic acid, 1,2-benzenedicarboxylic acid, 1,3-benzenedicarboxylic acid, 1-naphthoic acid, 2-naphthoic acid, 2,3-naphthalenedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid into chloroform were determined at 20{sup o}C. The difference of K{sub ex} among the aromatic acids was sufficiently large for designing a separation method for these aromatic acids. It was unexpected that the extraction of dicarboxylic acids was slower than that of monocarboxylic acids, although the ion-pair formation of aromatic carboxylate ion with quaternary ammonium ion is normally considered as a diffusion control reaction in aqueous phase. Thus, this fact suggests that the phase transfer of the ion-pair from aqueous to organic phase is the rate-determining step. Liner-free-energy relationship was observed for the monocarboxylic acids using different quaternary ammonium salts while that was ambiguous for the dicarboxylic acids. This is due to the steric influence of the counter ions for the magnitude of K{sub ex}.

  16. Large enhancement in the heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric oxide

    DOE PAGES

    Richards-Henderson, Nicole K.; Goldstein, Allen H.; Wilson, Kevin R.

    2015-10-27

    In this paper we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10–50 fold acceleration originates from free radical chain reactions, propagated by alkoxy radicals that form inside the aerosol by the reaction of NO with peroxy radicals, which do not appear to produce chain terminating products (e.g., alkyl nitrates), unlike gas phase mechanisms. Lastly, a kinetic model, constrained by experiments, suggests that in polluted regions heterogeneous oxidation plays a much more prominent role in the daily chemical evolution of organic aerosol than previously believed.

  17. Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid.

    PubMed

    Brühlmann, Fredi; Fourage, Laurent; Ullmann, Christophe; Haefliger, Olivier P; Jeckelmann, Nicolas; Dubois, Cédric; Wahler, Denis

    2014-08-20

    Directed evolution via iterative cycles of random and targeted mutagenesis was applied to the P450 domain of the subterminal fatty acid hydroxylase CYP102A1 of Bacillus megaterium to shift its regioselectivity towards the terminal position of palmitic acid. A powerful and versatile high throughput assay based on LC-MS allowed the simultaneous detection of primary and secondary oxidation products, which was instrumental for identifying variants with a strong preference for the terminal oxidation of palmitic acid. The best variants identified acquired up to 11 amino acid alterations. Substitutions at F87, I263, and A328, relatively close to the bound substrate based on available crystallographic information contributed significantly to the altered regioselectivity. However, non-obvious residues much more distant from the bound substrate showed surprising strong contributions to the increased selectivity for the terminal position of palmitic acid.

  18. New method of treating dilute mineral acids using magnesium-aluminum oxide.

    PubMed

    Kameda, Tomohito; Yabuuchi, Fumiko; Yoshioka, Toshiaki; Uchida, Miho; Okuwaki, Akitsugu

    2003-04-01

    Mineral acids, such as H(3)PO(4), H(2)SO(4), HCl, and HNO(3,) were treated with magnesium-aluminum oxide (Mg-Al oxide), which behaved as a neutralizer and fixative of anions. Anion removal increased with increasing Mg-Al oxide quantity, time, Mg/Al molar ratio, and initial acid concentration. Up to 95% removal of anions was achieved in 0.5 N acids using a stoichiometric quantity of Mg(0.80)Al(0.20)O(1.10) for H(3)PO(4), 1.75 stoichiometric quantities for H(2)SO(4), or 2.5 stoichiometric quantities for HCl or HNO(3) at 20 degrees C over a period of 6 h. The final solutions were found to have a pH in the range of 8-12. Selectivity of acid removal was found to follow the following order: H(3)PO(4) > H(2)SO(4) > HCl > HNO(3). The equivalent of acid removal per 1 g of Mg-Al oxide decreased as the Mg/Al molar ratio of Mg-Al oxide increased.

  19. The Effect of Citric Acid on the Oxidation of Organic Contaminants by Fenton's Reagent

    NASA Astrophysics Data System (ADS)

    Seol, Y.; Javandel, I.; Lee, G.

    2003-12-01

    Combined with acids and iron catalysts, hydrogen peroxide (H2O2) as Fenton's reagent is proven to be effective in oxidizing halogenated volatile organic compounds (VOCs). The Fenton's reagent, traditionally used for waste water treatment technique, has been applied to the remediation of contaminated soil systems and numerous investigators have found intrinsic iron salts are effective source of iron catalyst for the reaction. Citric acid, which is naturally occurring nutrients to microorganisms and less destructive to soil chemical properties, is selected for an acidifying agent to create acidic soil condition. However, citric acid has been considered as a reaction inhibitant because it sequesters ferric iron from Fenton's catalytic cycle by forming strong chelates with iron. This paper presents the feasibility of using citric acid as an acidifying agent of soil matrix for the Fenton-like oxidation. Series of batch tests were performed to test disappearance of VOCs in various aqueous systems with two acidifying agents (citric acid or sulfuric acid) and three iron sources (iron sulfate, water soluble soil iron, or soil matrix). Batch results show that soluble iron is essential for near complete disappearance of VOCs and that citric acid performs similarly to sulfuric acid at low H2O2 dosage (< 1 wt%). The test soil provided water-soluble soil iron but also contained scavengers of the oxidizing agents, resulting in limited removals of VOCs. Column tests confirmed the results of the batch tests, suggesting citric acid is also as effective as sulfuric acid in providing acidic environment for the Fenton-like oxidation. The batch experiments also reveal that higher doses of H2O2 lower the degree of VOC removals in citric acid systems. Potential explanations for this declining include that excessive presence of H2O2 expedites the oxidation of ferrous to ferric iron, which then forms a strong complex with citrate, leading to the sequestration of the iron from the Fenton

  20. Ethylene adsorption and oxidation on Pt( h k l) in acidic media

    NASA Astrophysics Data System (ADS)

    Berná, Antonio; Kuzume, Akiyoshi; Herrero, Enrique; Feliu, Juan M.

    Ethylene adsorption and oxidation on platinum electrodes have been investigated in acidic solution by means of cyclic voltammetry and in situ infrared spectroscopy. Ethylene oxidation is a surface structure-sensitive reaction being Pt(1 1 1) the only active electrode surface at potentials below surface oxidation. In situ infrared reflection absorption spectroscopy (IRRAS) allows to identify the products formed during the adsorption and oxidation of ethylene. Vinylidene species were detected as oxidized adsorbates coming from ethylene and the only oxygen-containing species observed were on-top adsorbed CO and dissolved CO 2 that is the final oxidation product. A potential dependent equilibrium for transformation between two different adsorption configurations of adsorbed vinylidene, μ 3-η 2-C dbnd CH 2 and μ-C dbnd CH 2, has been observed.

  1. Highly unsaturated fatty acid might act as an antioxidant in emulsion system oxidized by azo compound.

    PubMed

    Gotoh, Naohiro; Noguchi, Yosuke; Ishihara, Akiko; Yamaguchi, Kaita; Mizobe, Hoyo; Nagai, Toshiharu; Otake, Ikuko; Ichioka, Kenji; Wada, Shun

    2010-01-01

    Now it is recognized that DHA is oxidatively stable fatty acid compared with linoleic acid (LA) in emulsified system, although DHA is oxidatively unstable in a bulk system. In fact, an emulsified mixture of DHA and LA behaves as in a bulk system, namely the oxidative stability of DHA becomes lower than that of LA. Therefore, in this study, tridocosahexaenoate (DDD) and glycerol trilinoleate (LLL) were separately emulsified using TritonX-100 as an emulsifier and DDD emulsion was mixed with the oxidizing LLL emulsion using a water-soluble radical initiator, 2,2'-azobis(2-aminopropane) dihydrochloride. As a result, DHA suppressed the oxidation of LA, while DHA was not significantly oxidized. This suppression ability was examined using glycerol trieicosapentaenoate, glycerol trilinolenate, or glycerol trioleate instead of DDD and it was found that this activity was increased with the increasing number of double bonds in the structure. Furthermore, the same type of experiment was carried out using a lipid-soluble radical initiator, 2,2'-azobisisobutyronitrile and the similar result was obtained. These results indicated that a highly polyunsaturated fatty acid might act as an antioxidant in an emulsion system oxidized by an azo compound.

  2. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. II. ACID AND GENERAL BASE CATALYZED HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate acid and neutral hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition states of a ...

  3. Oxidation of glyoxylic acid by cerium(IV): Oxygen-induced enhancement of the primary radical concentration

    SciTech Connect

    Neumann, B. ||; Steinbock, O.; Dalal, N.S. |; Mueller, S.C. |||

    1996-07-25

    In order to help understand the role of oxygen in Ce(IV)-induced oxidation of small carbonic acids, we investigated the reaction of glyoxylic acid (HCOCOOH) and Ce(IV) in 1 M sulfuric acid. Spectrophotometric data showed that in excess of glyoxylic acid the consumption of Ce(IV) obeys pseudo-first-order kinetics, with a rate constant of 8.8 L mol{sup -1} s{sup -1} at 25{degree}C and an activation energy of 80 kJ mol{sup -1}. Rapid-flow EPR measurements revealed an approximately 1:2:1 triplet with a g value of 2.0071{+-}0.0005 and a hyperfine splitting of 7.1{+-}0.2 G, assignable to the primary radical formed by abstraction of a hydrogen atom from hydrated glyoxylic acid. The rate constant for the anaerobic self-decay of the radical was measured as approximately 3.7x10{sup 9} L mol{sup -1} s{sup -1}. Surprisingly, oxygen had no effect on the Ce(IV) kinetics, while the radical decay was significantly inhibited under aerobic conditions (ratio of experimental rate constants = 6.3). Amperometric measurements revealed accompanying oxygen consumption. Analyses based on numerical simulations show that the observed oxygen-induced increase in radical concentration cannot be explained in the framework of standard autooxidation mechanisms. An alternative reaction scheme is suggested which reproduces the observed aerobic radical kinetics and which thus could be relevant to similar oxidation reactions. 30 refs., 7 figs., 2 tabs.

  4. Kinetics and mechanism of the oxidation of pentathionate ion by chlorine dioxide in a slightly acidic medium.

    PubMed

    Xu, Li; Csekő, György; Petz, Andrea; Horváth, Attila K

    2014-02-27

    The chlorine dioxide-pentathionate reaction has been studied at a slightly acidic medium by conventional UV-vis spectroscopy monitoring the absorbance at 430 nm. We have shown that pentathionate was oxidized to sulfate, but chlorate is also a marginal product of the reaction besides the chloride ion. The stoichiometry of the reaction can be established as a linear combination of two limiting stoichiometries under our experimental conditions. Kinetics of the reaction was found to be also complex because initial rate studies revealed that formal kinetic orders of both the hydrogen ion and chlorine dioxide is far from unity. Moreover, log-log plot of the initial rate against pentathionate concentration indicated a nonconstant formal kinetic order. We also observed a significant catalytic effect of chloride ion. Based on our observations and simultaneous evaluation of the kinetic curves, an 11-step kinetic model is obtained with 6 fitted rate coefficients. A relatively simple rate equation has also been derived and discussed.

  5. The Campylobacter jejuni Ferric Uptake Regulator Promotes Acid Survival and Cross-Protection against Oxidative Stress

    PubMed Central

    Askoura, Momen; Sarvan, Sabina; Couture, Jean-François

    2016-01-01

    Campylobacter jejuni is a prevalent cause of bacterial gastroenteritis in humans worldwide. The mechanisms by which C. jejuni survives stomach acidity remain undefined. In the present study, we demonstrated that the C. jejuni ferric uptake regulator (Fur) plays an important role in C. jejuni acid survival and acid-induced cross-protection against oxidative stress. A C. jejuni Δfur mutant was more sensitive to acid than the wild-type strain. Profiling of the acid stimulon of the C. jejuni Δfur mutant allowed us to uncover Fur-regulated genes under acidic conditions. In particular, Fur was found to upregulate genes involved in flagellar and cell envelope biogenesis upon acid stress, and mutants with deletions of these genes were found to be defective in surviving acid stress. Interestingly, prior acid exposure of C. jejuni cross-protected against oxidative stress in a catalase (KatA)- and Fur-dependent manner. Western blotting and reverse transcription-quantitative PCR revealed increased expression of KatA upon acid stress. Electrophoretic mobility shift assays (EMSAs) demonstrated that the binding affinity between Fur and the katA promoter is reduced in vitro under conditions of low pH, rationalizing the higher levels of expression of katA under acidic conditions. Strikingly, the Δfur mutant exhibited reduced virulence in both human epithelial cells and the Galleria mellonella infection model. Altogether, this is the first study showing that, in addition to its role in iron metabolism, Fur is an important regulator of C. jejuni acid responses and this function cross-protects against oxidative stress. Moreover, our results clearly demonstrate Fur's important role in C. jejuni pathogenesis. PMID:26883589

  6. Mechanistic Details and Reactivity Descriptors in Oxidation and Acid Catalysis of Methanol

    SciTech Connect

    Deshlahra, Prashant; Carr, Robert T.; Chai, Song-Hai; Iglesia, Enrique

    2015-02-06

    Acid and redox reaction rates of CH₃OH-O₂ mixtures on polyoxometalate (POM) clusters, together with isotopic, spectroscopic, and theoretical assessments of catalyst properties and reaction pathways, were used to define rigorous descriptors of reactivity and to probe the compositional effects for oxidative dehydrogenation (ODH) and dehydration reactions. ³¹P-MAS NMR, transmission electron microscopy and titrations of protons with di-tert-butylpyridine during catalysis showed that POM clusters retained their Keggin structure upon dispersion on SiO₂ and after use in CH₃OH reactions. The effects of CH₃OH and O₂ pressures and of D-substitution on ODH rates show that C-H activation in molecularly adsorbed CH₃OH is the sole kinetically relevant step and leads to reduced centers as intermediates present at low coverages; their concentrations, measured from UV-vis spectra obtained during catalysis, are consistent with the effects of CH₃OH/O₂ ratios predicted from the elementary steps proposed. First-order ODH rate constants depend strongly on the addenda atoms (Mo vs W) but weakly on the central atom (P vs Si) in POM clusters, because C-H activation steps inject electrons into the lowest unoccupied molecular orbitals (LUMO) of the clusters, which are the d-orbitals at Mo⁶⁺ and W⁶⁺ centers. H-atom addition energies (HAE) at O-atoms in POM clusters represent the relevant theoretical probe of the LUMO energies and of ODH reactivity. The calculated energies of ODH transition states at each O-atom depend linearly on their HAE values with slopes near unity, as predicted for late transition states in which electron transfer and C-H cleavage are essentially complete. HAE values averaged over all accessible O-atoms in POM clusters provide the appropriate reactivity descriptor for oxides whose known structures allow accurate HAE calculations. CH₃OH dehydration proceeds via parallel pathways mediated by late carbenium-ion transition states; effects of

  7. Mass spectrometric quantification of amino acid oxidation products identifies oxidative mechanisms of diabetic end-organ damage

    PubMed Central

    Vivekanadan-Giri, Anuradha; Wang, Jeffrey H.; Byun, Jaeman

    2010-01-01

    Diabetes mellitus is increasingly prevalent worldwide. Diabetic individuals are at markedly increased risk for premature death due to cardiovascular disease. Furthermore, substantial morbidity results from microvascular complications which include retinopathy, nephropathy, and neuropathy. Clinical studies involving diabetic patients have suggested that degree of diabetic hyperglycemia correlates with risk of complications. Recent evidence implicates a central role for oxidative stress and vascular inflammation in all forms of insulin resistance, obesity, diabetes and its complications. Although, glucose promotes glycoxidation reactions in vitro and products of glycoxidation and lipoxidation are elevated in plasma and tissue in diabetics, the exact relationships among hyperglycemia, the diabetic state, and oxidative stress are not well-understood. Using a combination of in vitro and in vivo experiments, we have identified amino acid oxidation markers that serve as molecular fingerprints of specific oxidative pathways. Quantification of these products utilizing highly sensitive and specific gas chromatography/mass spectrometry in animal models of diabetic complications and in humans has provided insights in oxidative pathways that result in diabetic complications. Our studies strongly support the hypothesis that unique oxidants are generated in the microenvironment of tissues vulnerable to diabetic damage. Potential therapies interrupting these reactive pathways in target tissue are likely to be beneficial in preventing diabetic complications. PMID:18752069

  8. Mechanisms of Docosahexaenoic and Eicosapentaenoic Acid Loss from Pacific Saury and Comparison of Their Retention Rates after Various Cooking Methods.

    PubMed

    Cheung, Lennie K Y; Tomita, Haruo; Takemori, Toshikazu

    2016-08-01

    The docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) contents of Pacific saury (Cololabis saira), a fatty fish and staple of the Japanese diet, have been reported to decrease after cooking. This study compared the DHA and EPA contents remaining in saury after grilling, pan-frying or deep-frying to center temperatures of 75, 85, or 95 °C, and examined physical loss, lipid oxidation, and thermal degradation as mechanisms of DHA and EPA loss. Temperature changes inside the saury were monitored using thermocouples, while DHA and EPA contents, oxygen radical absorbance capacity, and measurements of lipid oxidation (that is, carbonyl value and thiobarbituric acid value) were determined chemically. Visualization of temperature distribution inside fish samples during cooking revealed large differences in heat transfer among cooking methods. True retention rates in grilled (DHA: 84 ± 15%; EPA: 87 ± 14%) and pan-fried samples (DHA: 85 ± 16%; EPA: 77 ± 17%) were significantly higher than deep-fried samples (DHA: 58 ± 17%; EPA: 51 ± 18%), but were not affected by final center temperatures despite differences in cooking times. Physical loss via cooking losses (grilling and pan-frying) or migration into frying oil (deep-frying) accounted for large quantities of DHA and EPA loss, while lipid oxidation and thermal degradation did not appear to be major mechanisms of loss. The antioxidant capacity of saury was not significantly affected by cooking treatments. The results of this study suggest that minimization of physical losses during cooking may increase DHA and EPA contents retained in cooked Pacific saury.

  9. Mechanistic Insights into the Catalytic Oxidation of Carboxylic Acids on Au/TiO2: Partial Oxidation of Propionic and Butyric Acid to Gold Ketenylidene through Unsaturated Acids

    SciTech Connect

    McEntee, Monica; Tang, Wenjie; Neurock, Matthew; Yates, Jr., John T.

    2014-12-12

    Here, the partial oxidation of model C2–C4 (acetic, propionic, and butyric) carboxylic acids on Au/TiO2 catalysts consisting of Au particles ~3 nm in size was investigated using transmission infrared spectroscopy and density functional theory. All three acids readily undergo oxidative dehydrogenation on Au/TiO2. Propionic and butyric acid dehydrogenate at the C2–C3 positions, whereas acetic acid dehydrogenates at the C1–C2 position. The resulting acrylate and crotonate intermediates are subsequently oxidized to form β-keto acids that decarboxylate. All three acids form a gold ketenylidene intermediate, Au2C=C=O, along the way to their full oxidation to form CO2. Infrared measurements of Au2C=C=O formation as a function of time provides a surface spectroscopic probe of the kinetics for the activation and oxidative dehydrogenation of the alkyl groups in the carboxylate intermediates that form.

  10. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial

    PubMed Central

    Jannas-Vela, Sebastian; Roke, Kaitlin; Boville, Stephanie; Mutch, David M.; Spriet, Lawrence L.

    2017-01-01

    Fish oil (FO) has been shown to have beneficial effects in the body via incorporation into the membranes of many tissues. It has been proposed that omega-3 fatty acids in FO may increase whole body resting metabolic rate (RMR) and fatty acid (FA) oxidation in human subjects, but the results to date are equivocal. The purpose of this study was to investigate the effects of a 12 week FO supplementation period on RMR and substrate oxidation, in comparison to an olive oil (OO) control group, in young healthy males (n = 26; 22.8 ± 2.6 yr). Subjects were matched for age, RMR, physical activity, VO2max and body mass, and were randomly separated into a group supplemented with either OO (3 g/d) or FO containing 2 g/d eicosapentaenoic acid (EPA) and 1 g/d docosahexaenoic acid (DHA). Participants visited the lab for RMR and substrate oxidation measurements after an overnight fast (10–12 hr) at weeks 0, 6 and 12. Fasted blood samples were taken at baseline and after 12 weeks of supplementation. There were significant increases in the EPA (413%) and DHA (59%) levels in red blood cells after FO supplementation, with no change of these fatty acids in the OO group. RMR and substrate oxidation did not change after supplementation with OO or FO after 6 and 12 weeks. Since there was no effect of supplementation on metabolic measures, we pooled the two treatment groups to determine whether there was a seasonal effect on RMR and substrate oxidation. During the winter season, there was an increase in FA oxidation (36%) with a concomitant decrease (34%) in carbohydrate (CHO) oxidation (p < 0.01), with no change in RMR. These measures were unaffected during the summer season. In conclusion, FO supplementation had no effect on RMR and substrate oxidation in healthy young males. Resting FA oxidation was increased and CHO oxidation reduced over a 12 week period in the winter, with no change in RMR. Trial Registration: ClinicalTrials.gov NCT02092649 PMID:28212390

  11. Lack of effects of fish oil supplementation for 12 weeks on resting metabolic rate and substrate oxidation in healthy young men: A randomized controlled trial.

    PubMed

    Jannas-Vela, Sebastian; Roke, Kaitlin; Boville, Stephanie; Mutch, David M; Spriet, Lawrence L

    2017-01-01

    Fish oil (FO) has been shown to have beneficial effects in the body via incorporation into the membranes of many tissues. It has been proposed that omega-3 fatty acids in FO may increase whole body resting metabolic rate (RMR) and fatty acid (FA) oxidation in human subjects, but the results to date are equivocal. The purpose of this study was to investigate the effects of a 12 week FO supplementation period on RMR and substrate oxidation, in comparison to an olive oil (OO) control group, in young healthy males (n = 26; 22.8 ± 2.6 yr). Subjects were matched for age, RMR, physical activity, VO2max and body mass, and were randomly separated into a group supplemented with either OO (3 g/d) or FO containing 2 g/d eicosapentaenoic acid (EPA) and 1 g/d docosahexaenoic acid (DHA). Participants visited the lab for RMR and substrate oxidation measurements after an overnight fast (10-12 hr) at weeks 0, 6 and 12. Fasted blood samples were taken at baseline and after 12 weeks of supplementation. There were significant increases in the EPA (413%) and DHA (59%) levels in red blood cells after FO supplementation, with no change of these fatty acids in the OO group. RMR and substrate oxidation did not change after supplementation with OO or FO after 6 and 12 weeks. Since there was no effect of supplementation on metabolic measures, we pooled the two treatment groups to determine whether there was a seasonal effect on RMR and substrate oxidation. During the winter season, there was an increase in FA oxidation (36%) with a concomitant decrease (34%) in carbohydrate (CHO) oxidation (p < 0.01), with no change in RMR. These measures were unaffected during the summer season. In conclusion, FO supplementation had no effect on RMR and substrate oxidation in healthy young males. Resting FA oxidation was increased and CHO oxidation reduced over a 12 week period in the winter, with no change in RMR.

  12. The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice.

    PubMed

    Tsai, Jui-He; Chi, Maggie M-Y; Schulte, Maureen B; Moley, Kelle H

    2014-02-01

    Embryo implantation and development requires the endometrial stromal cells (ESCs) to undergo decidualization. This differentiation process requires glucose utilization, and blockade of the pentose phosphate pathway inhibits decidualization of ESCs both in vitro and in vivo. Glucose and fatty acids are energy substrates for many cell types, and fatty acid beta-oxidation is critical for embryo implantation. Here, we investigated whether beta-oxidation is required for decidualization of ESCs. As assessed by marker gene expression, decidualization of human primary ESCs was blocked by reducing activity of carnitine calmitoyltransferase I, the rate-limiting enzyme in beta-oxidation, either by short hairpin RNA-mediated silencing or by treatment with the inhibitor etomoxir. Ranolazine (RAN), a partial beta-oxidation inhibitor, blocked early decidualization of a human ESC line. However, decidualization resumed after several days, most likely due to a compensatory up-regulation of GLUT1 expression and an increase in glucose metabolism. Simultaneous inhibition of the beta-oxidation pathway with RAN and the pentose phosphate pathway with glucosamine (GlcN) impaired in vitro decidualization of human ESCs more strongly than inhibition of either pathway alone. These findings were confirmed in murine ESCs in vitro, and exposure to RAN plus GlcN inhibited decidualization in vivo in a deciduoma model. Finally, intrauterine implantation of time-release RAN and GlcN pellets reduced pup number. Importantly, pup number returned to normal after the end of the pellet-active period. This work indicates that both fatty acids and glucose metabolism pathways are important for ESC decidualization, and suggests novel pathways to target for the design of future nonhormonal contraceptives.

  13. The role of peroxisomal fatty acyl-CoA beta-oxidation in bile acid biosynthesis

    SciTech Connect

    Hayashi, H.; Miwa, A. )

    1989-11-01

    The physiological role of the peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) is not yet established. We speculated that there might be a relationship between peroxisomal degradation of long-chain fatty acids in the liver and the biosynthesis of bile acids. This was investigated using (1-{sup 14}C)butyric acid and (1-{sup 14}C)lignoceric acid as substrates of FAOS in mitochondria and peroxisomes, respectively. The incorporation of ({sup 14}C)lignoceric acid into primary bile acids was approximately four times higher than that of ({sup 14}C)butyric acid (in terms of C-2 units). The pools of these two fatty acids in the liver were exceedingly small. The incorporations of radioactivity into the primary bile acids were strongly inhibited by administration of aminotriazole, which is a specific inhibitor of peroxisomal FAOS in vivo. Aminotriazole inhibited preferentially the formation of cholate, the major primary bile acid, from both ({sup 14}C)lignoceric acid and ({sup 14}C)butyric acid, rather than the formation of chenodeoxycholate. The former inhibition was about 70% and the latter was approximately 40-50%. In view of reports that cholate is biosynthesized from endogenous cholesterol, the above results indicate that peroxisomal FAOS may have an anabolic function, supplying acetyl CoA for bile acid biosynthesis.

  14. Structure and oxidation capacity of amino acid chloramine derivatives and their effects on platelet aggregation.

    PubMed

    Murina, M A; Chudina, N A; Roshchupkin, D I; Belakina, N S; Sergienko, V I

    2004-12-01

    Comparison of antiaggregation capacity of N-chloramine acids with different position of the chloramine group in the molecule showed that in the most efficient compounds the distance between the chloramine and carboxyl groups was 3-5 carbon atoms. This feature of antiaggregation activity was not related to the difference in oxidation capacity of N-chloramine acids. It was hypothesized that the revealed structural dependence of antiaggregation activity of N-chloramine acids is determined by the structure of platelet membrane, in particular, the presence of a negatively charged group near the site of interaction between N-chloramine acids and platelet membrane.

  15. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  16. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.

    PubMed

    Hugo, Martín; Turell, Lucía; Manta, Bruno; Botti, Horacio; Monteiro, Gisele; Netto, Luis E S; Alvarez, Beatriz; Radi, Rafael; Trujillo, Madia

    2009-10-13

    Drug resistance and virulence of Mycobacterium tuberculosis are partially related to the pathogen's antioxidant systems. Peroxide detoxification in this bacterium is achieved by the heme-containing catalase peroxidase and different two-cysteine peroxiredoxins. M. tuberculosis genome also codifies for a putative one-cysteine peroxiredoxin, alkyl hydroperoxide reductase E (MtAhpE). Its expression was previously demonstrated at a transcriptional level, and the crystallographic structure of the recombinant protein was resolved under reduced and oxidized states. Herein, we report that the conformation of MtAhpE changed depending on its single cysteine redox state, as reflected by different tryptophan fluorescence properties and changes in quaternary structure. Dynamics of fluorescence changes, complemented by competition kinetic assays, were used to perform protein functional studies. MtAhpE reduced peroxynitrite 2 orders of magnitude faster than hydrogen peroxide (1.9 x 10(7) M(-1) s(-1) vs 8.2 x 10(4) M(-1) s(-1) at pH 7.4 and 25 degrees C, respectively). The latter also caused cysteine overoxidation to sulfinic acid, but at much slower rate constant (40 M(-1) s(-1)). The pK(a) of the thiol in the reduced enzyme was 5.2, more than one unit lower than that of the sulfenic acid in the oxidized enzyme. The pH profile of hydrogen peroxide-mediated thiol and sulfenic acid oxidations indicated thiolate and sulfenate as the reacting species. The formation of sulfenic acid as well as the catalytic peroxidase activity of MtAhpE was demonstrated using the artificial reducing substrate thionitrobenzoate. Taken together, our results indicate that MtAhpE is a relevant component in the antioxidant repertoire of M. tuberculosis probably involved in peroxide and specially peroxynitrite detoxification.

  17. Effect of artichoke extract (Cynara scolymus L.) on palmitic-1-14C acid oxidation in rats.

    PubMed

    Juzyszyn, Zygmunt; Czerny, Boguslaw; Pawlik, Andrzej; Drozdzik, Marek

    2008-05-01

    Studies on the effect of the artichoke extract (AE) on oxidation of palmitic-1-14C acid administered intravenously to rats at a dose 25 and 50 mg/kg bw demonstrated marked enhancement of both 14CO2 expiration rate and 14CO2 recovery in the expired air. The extract suppressed accumulation of palmitic-1-14C acid in serum lipids and epididymal fat pad tissue as well. The effects of the extract on 14CO2 expiration rate, 14CO2 recovery, as well as accumulation of palmitic-1-14C acid were dose dependent. Total14CO2 recovery in expired air during 60 min was elevated by 17.3% (p < 0.05) and 52.1% (p < 0.001) in rats administered the extract at a dose of 25 and 50 mg/kg, respectively. The rats supplemented with the AE at a dose of 25 and 50 mg/kg bw were characterized by 10.0% (not significant) and 19% (p < 0.05) decrease in( 14)C radioactivity of serum lipids as well as reduction of epididymal fat tissue 14C radioactivity by 8.7 and 17.5% (p < 0.05), respectively, in comparison with the control rats. Thus, the results demonstrate that the AE possess stimulatory properties with respect to oxidation of palmitic acid administered to rats, and provide new information on the mechanism of antilipemic activity of the extract associated with activation of lipid oxidation in the organism.

  18. Compensation effect in reactions between trans-4,4'-dinitrostilbene oxide and arylsulfonic acids

    NASA Astrophysics Data System (ADS)

    Shpan'ko, I. V.; Sadovaya, I. V.

    2016-12-01

    The effect structure and temperature have on the rate and free activation energy of reactions between trans-4,4'-dinitrostilbene oxide and Y-substituted arylsulfonic acids YC6H4SO3H in a mixture of dioxane with 1,2-dichloroethane (7: 3 vol/vol) at 265, 281, and 298 K is studied. It is found that as a result of the nonadditivity of the joint effect of substituents Y and temperature on the rate of the process of oxirane ring opening, the cross reaction series exhibits isoparametric properties in the aspect of enthalpy-entropy compensation. This allows the experimental determination of an isoparametric point with respect to the constant of substituent Y (σY IP= 0.52), in which activation entropy Δ S ≠ = 0 and free activation energy Δ G ≠ do not depend on temperature (Δ G ≠ = Δ H ≠), and to conduct the transition through this point with inversion of the order of the effect temperature has on the value of Δ G ≠ as a result of reversing the sign of Δ S ≠: in the series Y (σY) = 4-OCH3 (-0.27), 4-CH3 (-0.17), H (0), 4-Cl (0.23), and 3-NO2 (0.71), the values of Δ S ≠ (J/(mol K)) are-140,-119,-85,-42, and 44, respectively. The possibility of using isoparametric points as quantitative mechanistic criteria is demonstrated.

  19. The effects of walking on heart rate, ventilation rate and acid-base status in the lobster homarus americanus

    PubMed

    Rose; Wilkens; Walker

    1998-09-01

    American lobsters Homarus americanus were exercised on an underwater treadmill at speeds from 1.7 to 8 m min-1 to determine the effects of exercise on heart rate, ventilation rate and acid-base status. Heart and ventilation rates showed almost instantaneous increases at the start of exercise, but the magnitude of the increase was not related to speed. Maximum heart rate was approximately 80-90 beats min-1 and maximum ventilation rate was 175-180 beats min-1 at all speeds tested. Exercise at all speeds caused a decrease in haemolymph pH, with the acidosis after exercise at 8 m min-1 being significantly greater than at the other three speeds. Concomitant with this acidosis was a large increase in partial pressure of carbon dioxide, with the largest increase occurring after exercise at 8 m min-1. The concentration of lactate in the haemolymph increased to similar levels at all speeds of walking. Davenport analysis indicates that the acidosis was predominantly respiratory in nature. Although it was anticipated that heart and ventilation rates would show increases proportional to the speed of exercise, this was not the case. Rather, the responses were fixed regardless of walking speed. The reason for this phenomenon remains unexplained.

  20. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    SciTech Connect

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  1. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States

    SciTech Connect

    Yavitt, J.B.; Lang, G.E.; Downey, D.M. )

    1988-09-01

    Potential rates of methane production and carbon dioxide production were measured on 11 dates in 1986 in peat from six plant communities typical of moss-dominated peatlands in the Appalachian Mountains. Annual methane production ranged from 2.7 to 17.5 mol/sq m, and annual carbon dioxide production ranged from 30.6 to 79.0 mol/sq m. The wide range in methane production values among the communities found within a single peatland indicates that obtaining one production value for a peatland may not be appropriate. Low temperature constrained the potential for methane production in winter, while the chemical quality of the peat substrate appears to control methane production in the summer. Methane oxidation was measured throughout the peat profile to a depth of 30 cm. Values for methane oxidation ranged from 0.08 to 18.7 microM/hr among the six plant communities. Aerobic methane-oxidizing bacteria probably mediated most of the activity. On a daily basis during the summer, between 11 and 100% of the methane produced is susceptible to oxidation within the peat column. Pools of dissolved methane and dissolved carbon dioxide in pore waters were less than 0.2 and less than 1.0 mol/sq m, respectively, indicating that methane does not accumulate in the pore waters. Peatlands have been considered as an important source of biologically produced methane. Despite the high rates of methane production, the high rates of methane oxidation dampen the potential emission of methane to the atmosphere. 41 refs., 7 figs., 4 tabs.

  2. Peracetic acid oxidation of saline waters in the absence and presence of H ₂O ₂: secondary oxidant and disinfection byproduct formation.

    PubMed

    Shah, Amisha D; Liu, Zheng-Qian; Salhi, Elisabeth; Höfer, Thomas; von Gunten, Urs

    2015-02-03

    Peracetic acid (PAA) is a disinfectant considered for use in ballast water treatment, but its chemical behavior in such systems (i.e., saline waters) is largely unknown. In this study, the reactivity of PAA with halide ions (chloride and bromide) to form secondary oxidants (HOCl, HOBr) was investigated. For the PAA-chloride and PAA-bromide reactions, second-order rate constants of (1.47 ± 0.58) × 10(-5) and 0.24 ± 0.02 M(-1) s(-1) were determined for the formation of HOCl or HOBr, respectively. Hydrogen peroxide (H2O2), which is always present in PAA solutions, reduced HOCl or HOBr to chloride or bromide, respectively. As a consequence, in PAA-treated solutions with [H2O2] > [PAA], the HOBr (HOCl) steady-state concentrations were low with a limited formation of brominated (chlorinated) disinfection byproducts (DBPs). HOI (formed from the PAA-iodide reaction) affected this process because it can react with H2O2 back to iodide. H2O2 is thus consumed in a catalytic cycle and leads to less efficient HOBr scavenging at even low iodide concentrations (<1 μM). In PAA-treated solutions with [H2O2] < [PAA] and high bromide levels, mostly brominated DBPs are formed. In synthetic water, bromate was formed from the oxidation of bromide. In natural brackish waters, bromoform (CHBr3), bromoacetic acid (MBAA), dibromoacetic acid (DBAA), and tribromoacetic acid (TBAA) formed at up to 260, 106, 230, and 89 μg/L, respectively for doses of 2 mM (ca. 150 mg/L) PAA and [H2O2] < [PAA]. The same brackish waters, treated with PAA with [H2O2] ≫ [PAA], similar to conditions found in commercial PAA solutions, resulted in no trihalomethanes and only low haloacetic acid concentrations.

  3. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis

    PubMed Central

    Osberger, Thomas J.; Rogness, Donald C.; Kohrt, Jeffrey T.; Stepan, Antonia F.; White, M. Christina

    2016-01-01

    Secondary metabolites synthesized by nonribosomal peptide synthetases (NRPSs) display diverse and complex topologies and possess an impressive range of biological activities1,2 Much of this diversity derives from a synthetic strategy that entails the oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds pre-3 and post-assembly2. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis.4 However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized outside of nature.5 In this manuscript, we report that two small-molecule iron catalysts are capable of facilitating the targeted C—H oxidative modification of amino acids and peptides with preservation of α-center chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins, and amines in both monomer and peptide settings. The value of this C—H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids (UAAs) representing seven distinct functional group arrays; late-stage C—H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different UAAs. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C—H oxidation to one containing a linear UAA. PMID:27479323

  4. Synthesis and characterization of nanocrystalline nickel oxide using NaOH and oxalic acid as oxide sources

    NASA Astrophysics Data System (ADS)

    Sathishkumar, K.; Shanmugam, N.; Kannadasan, N.; Cholan, S.; Viruthagiri, G.

    2014-04-01

    Precursors of nickel oxide (NiO) nanoparticles were synthesized through a simple chemical precipitation method by changing the oxide source used for the synthesis. The synthesized precursors were subjected to thermo gravimetric analysis (TGA) to determine the temperature at which the precursors decompose into nickel oxide. The obtained results of TGA suggest that precursor NiO prepared using sodium hydroxide (NaOH) showed NiO formation at 600 °C, whereas, when oxalic acid was used as oxide source the formation of NiO took place at 400 °C. After calcinations of the precursors at respective temperatures, NiO nanocrystals have been harvested. The synthesized NiO powders were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) spectroscopy, field emission scanning electron microscopy (FE-SEM), energy dispersive x-ray analysis (EDX), and vibrating sample magnetometer (VSM) analysis. An FE-TEM image of NiO prepared using oxalic acid showed spherical and elliptical particles with sizes in the range of 15 nm. The Williamson-Hall (W-H) plots were drawn for the annealed products to study their lattice strain and crystallite size. The sizes of NiO nanocrystals obtained from W-H analysis are well correlated with sizes estimated using Scherrer’s formula. The relatively low saturation magnetization of NiO confirms its super paramagnetic behavior.

  5. Chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine.

    PubMed

    Koriem, Khaled M M; Soliman, Rowan E

    2014-01-01

    Methamphetamine intoxication can cause acute hepatic failure. Chlorogenic and caftaric acids are the major dietary polyphenols present in various foods. The aim of this study was to evaluate the protective role of chlorogenic and caftaric acids in liver toxicity and oxidative stress induced by methamphetamine in rats. Thirty-two male albino rats were divided into 4 equal groups. Group 1, which was control group, was injected (i.p) with saline (1 mL/kg) twice a day over seven-day period. Groups 2, 3, and 4 were injected (i.p) with methamphetamine (10 mg/kg) twice a day over seven-day period, where groups 3 and 4 were injected (i.p) with 60 mg/kg chlorogenic acid and 40 mg/kg caftaric acid, respectively, one day before methamphetamine injections. Methamphetamine increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, bilirubin, cholesterol, low-density lipoprotein, and triglycerides. Also, malondialdehyde in serum, liver, and brain and plasma and liver nitric oxide levels were increased while methamphetamine induced a significant decrease in serum total protein, albumin, globulin, albumin/globulin ratio, brain serotonin, norepinephrine and dopamine, blood and liver superoxide dismutase, and glutathione peroxidase levels. Chlorogenic and caftaric acids prior to methamphetamine injections restored all the above parameters to normal values. In conclusion, chlorogenic and caftaric acids before methamphetamine injections prevented liver toxicity and oxidative stress where chlorogenic acid was more effective.

  6. Effects of ascorbic acid and antioxidants on color, lipid oxidation and volatiles of irradiated ground beef

    NASA Astrophysics Data System (ADS)

    Ahn, D. U.; Nam, K. C.

    2004-09-01

    Beef loins with 3 different aging times after slaughter were ground, added with none, 0.1% ascorbic acid, 0.01% sesamol+0.01% α-tocopherol, or 0.1% ascorbic acid+0.01% sesamol+0.01% tocopherol. The meats were packaged in oxygen-permeable bags, irradiated at 2.5 kGy, and color, oxidation-reduction potential (ORP), lipid oxidation and volatile profiles were determined. Irradiation decreased the redness of ground beef, and visible color of beef changed from a bright red to a green/brown depending on the age of meat. Addition of ascorbic acid prevented color changes in irradiated beef, and the effect of ascorbic acid became greater as the age of meat or storage time after irradiation increased. The ground beef added with ascorbic acid had lower ORP than control, and the low ORP of meat helped maintaining the heme pigments in reduced form. During aerobic storage, S-volatiles disappeared while volatile aldehydes significantly increased in irradiated beef. Addition of ascorbic acid at 0.1% or sesamol+α-tocopherol at each 0.01% level to ground beef prior to irradiation were effective in reducing lipid oxidation and S-volatiles. As storage time increased, however, the antioxidant effect of sesamol+tocopherol in irradiated ground beef was superior to that of ascorbic acid.

  7. An acid-tolerant ammonia-oxidizing γ-proteobacterium from soil.

    PubMed

    Hayatsu, Masahito; Tago, Kanako; Uchiyama, Ikuo; Toyoda, Atsushi; Wang, Yong; Shimomura, Yumi; Okubo, Takashi; Kurisu, Futoshi; Hirono, Yuhei; Nonaka, Kunihiko; Akiyama, Hiroko; Itoh, Takehiko; Takami, Hideto

    2017-01-10

    Nitrification, the microbial oxidation of ammonia to nitrate via nitrite, occurs in a wide range of acidic soils. However, the ammonia-oxidizing bacteria (AOB) that have been isolated from soil to date are acid-sensitive. Here we report the isolation and characterization of an acid-adapted AOB from an acidic agricultural soil. The isolated AOB, strain TAO100, is classified within the Gammaproteobacteria based on phylogenetic characteristics. TAO100 can grow in the pH range of 5-7.5 and survive in highly acidic conditions until pH 2 by forming cell aggregates. Whereas all known gammaproteobacterial AOB (γ-AOB) species, which have been isolated from marine and saline aquatic environments, are halophiles, TAO100 is not phenotypically halophilic. Thus, TAO100 represents the first soil-originated and non-halophilic γ-AOB. The TAO100 genome is considerably smaller than those of other γ-AOB and lacks several genes associated with salt tolerance which are unnecessary for survival in soil. The ammonia monooxygenase subunit A gene of TAO100 and its transcript are higher in abundance than those of ammonia-oxidizing archaea and betaproteobacterial AOB in the strongly acidic soil. These results indicate that TAO100 plays an important role in the nitrification of acidic soils. Based on these results, we propose TAO100 as a novel species of a new genus, Candidatus Nitrosoglobus terrae.The ISME Journal advance online publication, 10 January 2017; doi:10.1038/ismej.2016.191.

  8. Susceptibility of podocytes to palmitic acid is regulated by fatty acid oxidation and inversely depends on acetyl-CoA carboxylases 1 and 2.

    PubMed

    Kampe, Kapil; Sieber, Jonas; Orellana, Jana Marina; Mundel, Peter; Jehle, Andreas Werner

    2014-02-15

    Type 2 diabetes is characterized by dyslipidemia with elevated free fatty acids (FFAs). Loss of podocytes is a hallmark of diabetic nephropathy, and podocytes are susceptible to saturated FFAs, which induce endoplasmic reticulum (ER) stress and podocyte death. Genome-wide association studies indicate that expression of acetyl-CoA carboxylase (ACC) 2, a key enzyme of fatty acid oxidation (FAO), is associated with proteinuria in type 2 diabetes. Here, we show that stimulation of FAO by aminoimidazole-4-carboxamide-1β-D-ribofuranoside (AICAR) or by adiponectin, activators of the low-energy sensor AMP-activated protein kinase (AMPK), protects from palmitic acid-induced podocyte death. Conversely, inhibition of carnitine palmitoyltransferase (CPT-1), the rate-limiting enzyme of FAO and downstream target of AMPK, augments palmitic acid toxicity and impedes the protective AICAR effect. Etomoxir blocked the AICAR-induced FAO measured with tritium-labeled palmitic acid. The beneficial effect of AICAR was associated with a reduction of ER stress, and it was markedly reduced in ACC-1/-2 double-silenced podocytes. In conclusion, the stimulation of FAO by modulating the AMPK-ACC-CPT-1 pathway may be part of a protective mechanism against saturated FFAs that drive podocyte death. Further studies are needed to investigate the potentially novel therapeutic implications of these findings.

  9. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  10. High basal metabolic rate does not elevate oxidative stress during reproduction in laboratory mice.

    PubMed