Sample records for acid peptide stp

  1. PredSTP: a highly accurate SVM based model to predict sequential cystine stabilized peptides.

    PubMed

    Islam, S M Ashiqul; Sajed, Tanvir; Kearney, Christopher Michel; Baker, Erich J

    2015-07-05

    Numerous organisms have evolved a wide range of toxic peptides for self-defense and predation. Their effective interstitial and macro-environmental use requires energetic and structural stability. One successful group of these peptides includes a tri-disulfide domain arrangement that offers toxicity and high stability. Sequential tri-disulfide connectivity variants create highly compact disulfide folds capable of withstanding a variety of environmental stresses. Their combination of toxicity and stability make these peptides remarkably valuable for their potential as bio-insecticides, antimicrobial peptides and peptide drug candidates. However, the wide sequence variation, sources and modalities of group members impose serious limitations on our ability to rapidly identify potential members. As a result, there is a need for automated high-throughput member classification approaches that leverage their demonstrated tertiary and functional homology. We developed an SVM-based model to predict sequential tri-disulfide peptide (STP) toxins from peptide sequences. One optimized model, called PredSTP, predicted STPs from training set with sensitivity, specificity, precision, accuracy and a Matthews correlation coefficient of 94.86%, 94.11%, 84.31%, 94.30% and 0.86, respectively, using 200 fold cross validation. The same model outperforms existing prediction approaches in three independent out of sample testsets derived from PDB. PredSTP can accurately identify a wide range of cystine stabilized peptide toxins directly from sequences in a species-agnostic fashion. The ability to rapidly filter sequences for potential bioactive peptides can greatly compress the time between peptide identification and testing structural and functional properties for possible antimicrobial and insecticidal candidates. A web interface is freely available to predict STP toxins from http://crick.ecs.baylor.edu/.

  2. The external amino acid signaling pathway promotes activation of Stp1 and Uga35/Dal81 transcription factors for induction of the AGP1 gene in Saccharomyces cerevisiae.

    PubMed Central

    Abdel-Sater, Fadi; Iraqui, Ismaïl; Urrestarazu, Antonio; André, Bruno

    2004-01-01

    Yeast cells respond to the presence of amino acids in their environment by inducing transcription of several amino acid permease genes including AGP1, BAP2, and BAP3. The signaling pathway responsible for this induction involves Ssy1, a permease-like sensor of external amino acids, and culminates with proteolytic cleavage and translocation to the nucleus of the zinc-finger proteins Stp1 and Stp2, the lack of which abolishes induction of BAP2 and BAP3. Here we show that Stp1-but not Stp2-plays an important role in AGP1 induction, although significant induction of AGP1 by amino acids persists in stp1 and stp1 stp2 mutants. This residual induction depends on the Uga35/Dal81 transcription factor, indicating that the external amino acid signaling pathway activates not only Stp1 and Stp2, but also another Uga35/Dal81-dependent transcriptional circuit. Analysis of the AGP1 gene's upstream region revealed that Stp1 and Uga35/Dal81 act synergistically through a 21-bp cis-acting sequence similar to the UAS(AA) element previously found in the BAP2 and BAP3 upstream regions. Although cells growing under poor nitrogen-supply conditions display much higher induction of AGP1 expression than cells growing under good nitrogen-supply conditions, the UAS(AA) itself is totally insensitive to nitrogen availability. Nitrogen-source control of AGP1 induction is mediated by the GATA factor Gln3, likely acting through adjacent 5'-GATA-3' sequences, to amplify the positive effect of UAS(AA). Our data indicate that Stp1 may act in combination with distinct sets of transcription factors, according to the gene context, to promote induction of transcription in response to external amino acids. The data also suggest that Uga35/Dal81 is yet another transcription factor under the control of the external amino acid sensing pathway. Finally, the data show that the TOR pathway mediating global nitrogen control of transcription does not interfere with the external amino acid signaling pathway. PMID

  3. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    PubMed

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  4. DOD Space Test Program (STP)

    NASA Technical Reports Server (NTRS)

    Smith, Llwyn

    1995-01-01

    This paper describes the Space Test Program (STP) which provides access to space for the DOD-wide space research and development (R&D) community. STP matches a ranked list of sanctioned experiments with available budgets and searches for the most cost effective mechanisms to get the experiments into space. The program has successfully flown over 350 experiments, using dedicated freeflyer spacecraft, secondary space on the Space Shuttle, and various host satellites.

  5. Activation of Stat3 Transcription Factor by Herpesvirus Saimiri STP-A Oncoprotein

    PubMed Central

    Chung, Young-Hwa; Cho, Nam-hyuk; Garcia, Maria Ines; Lee, Sun-Hwa; Feng, Pinghui; Jung, Jae U.

    2004-01-01

    The saimiri transforming protein (STP) oncogene of Herpesvirus saimiri subgroup A strain 11 (STP-A11) is not required for viral replication but is required for lymphoid cell immortalization in culture and lymphoma induction in primates. We previously showed that STP-A11 interacts with cellular Src kinase through its SH2 binding motif and that this interaction elicits Src signal transduction. Here we demonstrate that STP-A11 interacts with signal transducer and activator of transcription 3 (Stat3) independently of Src association and that the amino-terminal short proline-rich motif of STP-A11 and the central linker region of Stat3 are necessary for their interaction. STP-A11 formed a triple complex with Src kinase and Stat3 where Src kinase phosphorylated Stat3, resulting in the nuclear localization and transcriptional activation of Stat3. Consequently, the constitutively active Stat3 induced by STP-A11 elicited cellular signal transduction, which ultimately induced cell survival and proliferation upon serum deprivation. Furthermore, this activity was strongly correlated with the induction of Fos, cyclin D1, and Bcl-XL expression. These results demonstrate that STP-A11 independently targets two important cellular signaling molecules, Src and Stat3, and that these proteins cooperate efficiently to induce STP-A11-mediated transformation. PMID:15163742

  6. Fmoc/Trt-amino acids: comparison to Fmoc/tBu-amino acids in peptide synthesis.

    PubMed

    Barlos, K; Gatos, D; Koutsogianni, S

    1998-03-01

    Model peptides containing the nucleophilic amino acids Trp and Met have been synthesized with the application of Fmoc/Trt- and Fmoc/tBu-amino acids, for comparison. The deprotection of the peptides synthesized using Fmoc/Trt-amino acids in all cases leads to crude peptides of higher purity than that of the same peptides synthesized using Fmoc/tBu-amino acids.

  7. Molecular characterization of the Salmonella typhi StpA protein that is related to both Yersinia YopE cytotoxin and YopH tyrosine phosphatase.

    PubMed

    Arricau, N; Hermant, D; Waxin, H; Popoff, M Y

    1997-01-01

    Analysis of the nucleotide sequence of a 4-kb DNA fragment located between the sip and iag loci on Salmonella typhi chromosome revealed three open reading frames, termed sipF, ctpA and stpA. The 82-amino-acid (aa) sipF product showed extensive similarity to the lacP protein from S. typhimurium. The StpA protein (535 aa) exhibited significant similarity to both Yersinia enterocolitica YopE cytotoxin and YopH tyrosine phosphatase. The CtpA polypeptide (130 aa) might be the molecular chaperone of the StpA protein.

  8. Water-Soluble Nanoparticle Receptors Supramolecularly Coded for Acidic Peptides.

    PubMed

    Fa, Shixin; Zhao, Yan

    2018-01-02

    Sequence-specific recognition of peptides is of enormous importance to many chemical and biological applications, but has been difficult to achieve due to the minute differences in the side chains of amino acids. Acidic peptides are known to play important roles in cell growth and gene expression. In this work, we report molecularly imprinted micelles coded with molecular recognition information for the acidic and hydrophobic side chains of acidic peptides. The imprinted receptors could distinguish acidic amino acids from other polar and nonpolar amino acids, with dissociation constants of tens of nanomolar for biologically active peptides containing up to 18 amino acids. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Probing the structure, function, and interactions of the Escherichia coli H-NS and StpA proteins by using dominant negative derivatives.

    PubMed

    Williams, R M; Rimsky, S; Buc, H

    1996-08-01

    Twelve different dominant negative mutants of the Escherichia coli nucleoid-associated protein, H-NS, have been selected and characterized in vivo. The mutants are all severely defective in promoter repression activity in a strain lacking H-NS, and they all disrupt the repression normally exerted by H-NS at two of its target promoters. From the locations of the alterations in these mutants, which result in both large truncations and amino acid substitutions, we propose that H-NAS contains at least two distinct domains. The in vitro protein-protein cross-linking data presented in this report indicate that the proposed N-terminal domain of H-NS has a role in H-NS multimerization. StpA is a protein with known structural and functional homologies to H-NS. We have analyzed the extent of these homologies by constructing and studying StpA mutants predicted to be dominant negative. Our data indicate that the substitutions and deletions found in dominant negative H-NS have similar effects in the context of StpA. We conclude that the domain organizations and functions in StpA and H-NS are closely related. Furthermore, dominant negative H-NS can disrupt the activity of native StpA, and reciprocally, dominant negative StpA can disrupt the activity of native H-NS. We demonstrate that the N-terminal domain of H-NS can be chemically cross-linked to both full-length H-NS and StpA. We account for these observations by proposing that H-NS and StpA have the ability to form hybrid species.

  10. Tracking the Short Term Planning (STP) Development Process

    NASA Technical Reports Server (NTRS)

    Price, Melanie; Moore, Alexander

    2010-01-01

    Part of the National Aeronautics and Space Administration?s mission is to pioneer the future in space exploration, scientific discovery and aeronautics research is enhanced by discovering new scientific tools to improve life on earth. Sequentially, to successfully explore the unknown, there has to be a planning process that organizes certain events in the right priority. Therefore, the planning support team has to continually improve their processes so the ISS Mission Operations can operate smoothly and effectively. The planning support team consists of people in the Long Range Planning area that develop timelines that includes International Partner?s Preliminary STP inputs all the way through to publishing of the Final STP. Planning is a crucial part of the NASA community when it comes to planning the astronaut?s daily schedule in great detail. The STP Process is in need of improvement, because of the various tasks that are required to be broken down in order to get the overall objective of developing a Final STP done correctly. Then a new project came along in order to store various data in a more efficient database. "The SharePoint site is a Web site that provides a central storage and collaboration space for documents, information, and ideas."

  11. Results of a Pilot-Scale Disinfection Test using Peracetic Acid (PAA) at the Oak Ridge National Laboratory (ORNL) Sewage Treatment Plant (STP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen

    The purpose of this report is to present the results of a small pilot-scale test using PAA to disinfect a side stream of the effluent from the ORNL STP. These results provide the basis for requesting approval for full-scale use of PAA at the ORNL STP.

  12. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    PubMed

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  13. Quantitative analysis of pyroglutamic acid in peptides.

    PubMed

    Suzuki, Y; Motoi, H; Sato, K

    1999-08-01

    A simplified and rapid procedure for the determination of pyroglutamic acid in peptides was developed. The method involves the enzymatic cleavage of an N-terminal pyroglutamate residue using a thermostable pyroglutamate aminopeptidase and isocratic HPLC separation of the resulting enzymatic hydrolysate using a column switching technique. Pyroglutamate aminopeptidase from a thermophilic archaebacteria, Pyrococcus furiosus, cleaves N-terminal pyroglutamic acid residue independent of the molecular weight of the substrate. It cleaves more than 85% of pyroglutamate from peptides whose molecular weight ranges from 362.4 to 4599.4 Da. Thus, a new method is presented that quantitatively estimates N-terminal pyroglutamic acid residue in peptides.

  14. Corrosion in a STP Sump. (Subtitle: What Causes It and What Can Be Done About It?)

    EPA Science Inventory

    State regulators have noticed extensive corrosion in the sumps for the submersible turbine pump (STP) of an underground storage tanks storing gasoline and E85. Acetic acid produced by biodegradation of ethanol that found its way into the sump is one plausible explanation. Resea...

  15. Fatty acid conjugation enhances the activities of antimicrobial peptides.

    PubMed

    Li, Zhining; Yuan, Penghui; Xing, Meng; He, Zhumei; Dong, Chuanfu; Cao, Yongchang; Liu, Qiuyun

    2013-04-01

    Antimicrobial peptides are small molecules that play a crucial role in innate immunity in multi-cellular organisms, and usually expressed and secreted constantly at basal levels to prevent infection, but local production can be augmented upon an infection. The clock is ticking as rising antibiotic abuse has led to the emergence of many drug resistance bacteria. Due to their broad spectrum antibiotic and antifungal activities as well as anti-viral and anti-tumor activities, efforts are being made to develop antimicrobial peptides into future microbial agents. This article describes some of the recent patents on antimicrobial peptides with fatty acid conjugation. Potency and selectivity of antimicrobial peptide can be modulated with fatty acid tails of variable length. Interaction between membranes and antimicrobial peptides was affected by fatty acid conjugation. At concentrations above the critical miscelle concentration (CMC), propensity of solution selfassembly hampered binding of the peptide to cell membranes. Overall, fatty acid conjugation has enhanced the activities of antimicrobial peptides, and occasionally it rendered inactive antimicrobial peptides to be bioactive. Antimicrobial peptides can not only be used as medicine but also as food additives.

  16. Hha has a defined regulatory role that is not dependent upon H-NS or StpA

    PubMed Central

    Solórzano, Carla; Srikumar, Shabarinath; Canals, Rocío; Juárez, Antonio; Paytubi, Sonia; Madrid, Cristina

    2015-01-01

    The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence. PMID:26284052

  17. Detection of diastereomer peptides as the intermediates generating D-amino acids during acid hydrolysis of peptides.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko

    2016-11-01

    In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.

  18. Identification and Characterization of a Gene stp17 Located on the Linear Plasmid pBSSB1 as an Enhanced Gene of Growth and Motility in Salmonella enterica Serovar Typhi

    PubMed Central

    Zhang, Haifang; Zhu, Yunxia; Xie, Xiaofang; Wang, Min; Du, Hong; Xu, Shungao; Zhang, Ying; Gong, Mingyu; Ni, Bin; Xu, Huaxi; Huang, Xinxiang

    2016-01-01

    The linear plasmid pBSSB1 mediates the flagellar phase variation in H:z66 positive Salmonella enterica serovar Typhi (S. Typhi). The gene named stp17 (S. Typhi plasmid number 17 gene) is located on pBSSB1 and encodes the protein STP17. The expression pattern at the protein-level and function of STP17 remains unknown. In this study, the recombinant protein STP17His6 was expressed, purified and used to prepare the polyclonal anti-STP17 antibody. We detected protein-level expression of stp17 in S. Typhi and further investigated the protein expression characteristics of stp17 in different growth phases by western blot analysis. The effects of STP17 on bacterial growth and motility were analyzed. In addition, the structure of STP17 was predicted and the active site of STP17 was identified by site-directed mutagenesis. The results showed that STP17 was expressed stably in the wild type strain of S. Typhi. STP17 expression at the protein level peaks when cultures reach an OD600 value of 1.2. The growth rate and motility of the Δstp17 strain were significantly decreased compared with the wild type strain (P < 0.05) and this phenotype was restored in the stp17 complementary strain. Moreover, the growth rate and motility of the stp17 over-expression strain was greater than the wild type strain. STP17 contains nine Helix segments, six Stand segments and some Coil segments in the secondary structural level. The top-ranked 3-D structure of STP17 predicted by I-TASSER contains a putative ATPase domain and the amino acid residues of GLY16, GLY19, LYS20, ASN133, LYS157, and LYS158 may be the active site residues of STP17. Finally, STP17 was able to catalyze the ATP to ADP reaction, suggesting that STP17 may be an ATPase. To our knowledge, this is the first report describing the protein expression characteristics of STP17 in S. Typhi, showing that STP17 promotes bacterial growth and motility, which may be associated with its potential ATPase activity. PMID:27761429

  19. Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana

    PubMed Central

    Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia

    2015-01-01

    Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700

  20. Formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations - A review.

    PubMed

    Zhao, Cindy J; Schieber, Andreas; Gänzle, Michael G

    2016-11-01

    Fermented foods are valued for their rich and complex odour and taste. The metabolic activity of food-fermenting microorganisms determines food quality and generates odour and taste compounds. This communication reviews the formation of taste-active amino acids, amino acid derivatives and peptides in food fermentations. Pathways of the generation of taste compounds are presented for soy sauce, cheese, fermented meats, and bread. Proteolysis or autolysis during food fermentations generates taste-active amino acids and peptides; peptides derived from proteolysis particularly impart umami taste (e.g. α-glutamyl peptides) or bitter taste (e.g. hydrophobic peptides containing proline). Taste active peptide derivatives include pyroglutamyl peptides, γ-glutamyl peptides, and succinyl- or lactoyl amino acids. The influence of fermentation microbiota on proteolysis, and peptide hydrolysis, and the metabolism of glutamate and arginine is well understood, however, the understanding of microbial metabolic activities related to the formation of taste-active peptide derivatives is incomplete. Improved knowledge of the interactions between taste-active compounds will enable the development of novel fermentation strategies to develop tastier, less bitter, and low-salt food products, and may provide novel and "clean label" ingredients to improve the taste of other food products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Histidine-lysine peptides as carriers of nucleic acids.

    PubMed

    Leng, Qixin; Goldgeier, Lisa; Zhu, Jingsong; Cambell, Patricia; Ambulos, Nicholas; Mixson, A James

    2007-03-01

    With their biodegradability and diversity of permutations, peptides have significant potential as carriers of nucleic acids. This review will focus on the sequence and branching patterns of peptide carriers composed primarily of histidines and lysines. While lysines within peptides are important for binding to the negatively charged phosphates, histidines are critical for endosomal lysis enabling nucleic acids to reach the cytosol. Histidine-lysine (HK) polymers by either covalent or ionic bonds with liposomes augment transfection compared to liposome carriers alone. More recently, we have examined peptides as sole carriers of nucleic acids because of their intrinsic advantages compared to the bipartite HK/liposome carriers. With a protocol change and addition of a histidine-rich tail, HK peptides as sole carriers were more effective than liposomes alone in several cell lines. While four-branched polymers with a primary repeating sequence pattern of -HHK- were more effective as carriers of plasmids, eight-branched polymers with a sequence pattern of -HHHK- were more effective as carriers of siRNA. Compared to polyethylenimine, HK carriers of siRNA and plasmids had reduced toxicity. When injected intravenously, HK polymers in complex with plasmids encoding antiangiogenic proteins significantly decreased tumor growth. Furthermore, modification of HK polymers with polyethylene glycol and vascular-specific ligands increased specificity of the polyplex to the tumor by more than 40-fold. Together with further development and insight on the structure of HK polyplexes, HK peptides may prove to be useful as carriers of different forms of nucleic acids both in vitro and in vivo.

  2. 75 FR 8150 - STP Nuclear Operating Company

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 50-498 and 50-499; NRC-2010-060] STP Nuclear Operating... The U.S. Nuclear Regulatory Commission (NRC) is considering issuance of an exemption, pursuant to...,'' for Facility Operating [[Page 8151

  3. Installing amino acids and peptides on N-heterocycles under visible-light assistance

    PubMed Central

    Jin, Yunhe; Jiang, Min; Wang, Hui; Fu, Hua

    2016-01-01

    Readily available natural α-amino acids are one of nature’s most attractive and versatile building blocks in synthesis of natural products and biomolecules. Peptides and N-heterocycles exhibit various biological and pharmaceutical functions. Conjugation of amino acids or peptides with N-heterocycles provides boundless potentiality for screening and discovery of diverse biologically active molecules. However, it is a great challenge to install amino acids or peptides on N-heterocycles through formation of carbon-carbon bonds under mild conditions. In this article, eighteen N-protected α-amino acids and three peptides were well assembled on phenanthridine derivatives via couplings of N-protected α-amino acid and peptide active esters with substituted 2-isocyanobiphenyls at room temperature under visible-light assistance. Furthermore, N-Boc-proline residue was successfully conjugated with oxindole derivatives using similar procedures. The simple protocol, mild reaction conditions, fast reaction, and high efficiency of this method make it an important strategy for synthesis of diverse molecules containing amino acid and peptide fragments. PMID:26830014

  4. Amino Acid and Peptide Immobilization on Oxidized Nanocellulose: Spectroscopic Characterization

    PubMed Central

    Barazzouk, Saïd; Daneault, Claude

    2012-01-01

    In this work, oxidized nanocellulose (ONC) was synthesized and chemically coupled with amino acids and peptides using a two step coupling method at room temperature. First, ONC was activated by N-ethyl-N’-(3-dimethylaminopropyl) carbodiimide hydrochloride, forming a stable active ester in the presence of N-hydroxysuccinimide. Second, the active ester was reacted with the amino group of the amino acid or peptide, forming an amide bond between ONC and the grafted molecule. Using this method, the intermolecular interaction of amino acids and peptides was avoided and uniform coupling of these molecules on ONC was achieved. The coupling reaction was very fast in mild conditions and without alteration of the polysaccharide. The coupling products (ONC-amino acids and ONC-peptides) were characterized by transmission electron microscopy and by the absorption, emission, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectroscopic techniques. PMID:28348303

  5. Analysis of Endogenous D-Amino Acid-Containing Peptides in Metazoa

    PubMed Central

    Bai, Lu; Sheeley, Sarah; Sweedler, Jonathan V.

    2010-01-01

    Peptides are chiral molecules with their structure determined by the composition and configuration of their amino acid building blocks. The naturally occurring amino acids, except glycine, possess two chiral forms. This allows the formation of multiple peptide diastereomers that have the same sequence. Although living organisms use L-amino acids to make proteins, a group of D-amino acid-containing peptides (DAACPs) has been discovered in animals that have at least one of their residues isomerized to the D-form via an enzyme-catalyzed process. In many cases, the biological functions of these peptides are enhanced due to this structural conversion. These DAACPs are different from those known to occur in bacterial cell wall and antibiotic peptides, the latter of which are synthesized in a ribosome-independent manner. DAACPs have now also been identified in a number of distinct groups throughout the Metazoa. Their serendipitous discovery has often resulted from discrepancies observed in bioassays or in chromatographic behavior between natural peptide fractions and peptides synthesized according to a presumed all-L sequence. Because this L-to-D post-translational modification is subtle and not detectable by most sequence determination approaches, it is reasonable to suspect that many studies have overlooked this change; accordingly, DAACPs may be more prevalent than currently thought. Although diastereomer separation techniques developed with synthetic peptides in recent years have greatly aided in the discovery of natural DAACPs, there is a need for new, more robust methods for naturally complex samples. In this review, a brief history of DAACPs in animals is presented, followed by discussion of a variety of analytical methods that have been used for diastereomeric separation and detection of peptides. PMID:20490347

  6. Electrically Driven Single Phase Thermal Management: STP-H5 EHD Experiment

    NASA Technical Reports Server (NTRS)

    Didion, Jeffrey R.

    2016-01-01

    The Electrically Driven Single Phase Thermal Management: STP-H5 iEHDS Experiment is a technology demonstration of prototype proof of concept hardware to establish the feasilibilty and long term operation of this hardware. This is a structural thermal plate that will operate continuous as part of the STP-H5 ISEM experiment for up to 18 months. This presentation discusses the design, fabrication and environmental operational paramertes of the experiment hardware.

  7. Antimicrobial peptides containing unnatural amino acid exhibit potent bactericidal activity against ESKAPE pathogens.

    PubMed

    Hicks, R P; Abercrombie, J J; Wong, R K; Leung, K P

    2013-01-01

    A series of 36 synthetic antimicrobial peptides containing unnatural amino acids were screened to determine their effectiveness to treat Enterococcus faecium, Staphylococcus aureus, Klebsiella pnemoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species (ESKAPE) pathogens, which are known to commonly infect chronic wounds. The primary amino acid sequences of these peptides incorporate either three or six dipeptide units consisting of the unnatural amino acids Tetrahydroisoquinolinecarboxylic acid (Tic) and Octahydroindolecarboxylic acid (Oic). The Tic-Oic dipeptide units are separated by SPACER amino acids with specific physicochemical properties that control how these peptides interact with bacterial cell membranes of different chemical compositions. These peptides exhibited minimum inhibitory concentrations (MIC) against these pathogens in the range from >100 to 6.25 μg/mL. The observed diversity of MIC values for these peptides against the various bacterial strains are consistent with our hypothesis that the complementarity of the physicochemical properties of the peptide and the lipid of the bacteria's cell membrane determines the resulting antibacterial activity of the peptide. Published by Elsevier Ltd.

  8. How Amino Acids and Peptides Shaped the RNA World

    PubMed Central

    van der Gulik, Peter T.S.; Speijer, Dave

    2015-01-01

    The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed. PMID:25607813

  9. Structural similarity between β(3)-peptides synthesized from β(3)-homo-amino acids and aspartic acid monomers.

    PubMed

    Ahmed, Sahar; Sprules, Tara; Kaur, Kamaljit

    2014-07-01

    Formation of stable secondary structures by oligomers that mimic natural peptides is a key asset for enhanced biological response. Here we show that oligomeric β(3)-hexapeptides synthesized from L-aspartic acid monomers (β(3)-peptides 1, 5a, and 6) or homologated β(3)-amino acids (β(3)-peptide 2), fold into similar stable 14-helical secondary structures in solution, except that the former form right-handed 14-helix and the later form left-handed 14-helix. β(3)-Peptides from L-Asp monomers contain an additional amide bond in the side chains that provides opportunities for more hydrogen bonding. However, based on the NMR solution structures, we found that β(3)-peptide from L-Asp monomers (1) and from homologated amino acids (2) form similar structures with no additional side-chain interactions. These results suggest that the β(3)-peptides derived from L-Asp are promising peptide-mimetics that can be readily synthesized using L-Asp monomers as well as the right-handed 14-helical conformation of these β(3)-peptides (such as 1 and 6) may prove beneficial in the design of mimics for right-handed α-helix of α-peptides. © 2014 Wiley Periodicals, Inc.

  10. Unexpected Hydrolytic Instability of N-Acylated Amino Acid Amides and Peptides

    PubMed Central

    2015-01-01

    Remote amide bonds in simple N-acyl amino acid amide or peptide derivatives 1 can be surprisingly unstable hydrolytically, affording, in solution, variable amounts of 3 under mild acidic conditions, such as trifluoroacetic acid/water mixtures at room temperature. This observation has important implications for the synthesis of this class of compounds, which includes N-terminal-acylated peptides. We describe the factors contributing to this instability and how to predict and control it. The instability is a function of the remote acyl group, R2CO, four bonds away from the site of hydrolysis. Electron-rich acyl R2 groups accelerate this reaction. In the case of acyl groups derived from substituted aromatic carboxylic acids, the acceleration is predictable from the substituent’s Hammett σ value. N-Acyl dipeptides are also hydrolyzed under typical cleavage conditions. This suggests that unwanted peptide truncation may occur during synthesis or prolonged standing in solution when dipeptides or longer peptides are acylated on the N-terminus with electron-rich aromatic groups. When amide hydrolysis is an undesired secondary reaction, as can be the case in the trifluoroacetic acid-catalyzed cleavage of amino acid amide or peptide derivatives 1 from solid-phase resins, conditions are provided to minimize that hydrolysis. PMID:24617596

  11. The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides.

    PubMed

    Sophocleous, Andreas M; Desai, Kashappa-Goud H; Mazzara, J Maxwell; Tong, Ling; Cheng, Ji-Xin; Olsen, Karl F; Schwendeman, Steven P

    2013-12-28

    An important poorly understood phenomenon in controlled-release depots involves the strong interaction between common cationic peptides and low Mw free acid end-group poly(lactic-co-glycolic acids) (PLGAs) used to achieve continuous peptide release kinetics. The kinetics of peptide sorption to PLGA was examined by incubating peptide solutions of 0.2-4mM octreotide or leuprolide acetate salts in a 0.1M HEPES buffer, pH7.4, with polymer particles or films at 4-37°C for 24h. The extent of absorption/loading of peptides in PLGA particles/films was assayed by two-phase extraction and amino acid analysis. Confocal Raman microspectroscopy, stimulated Raman scattering (SRS) and laser scanning confocal imaging, and microtome sectioning techniques were used to examine peptide penetration into the polymer phase. The release of sorbed peptide from leuprolide-PLGA particles was evaluated both in vitro (PBST+0.02% sodium azide, 37°C) and in vivo (male Sprague-Dawley rats). We found that when the PLGA-COOH chains are sufficiently mobilized, therapeutic peptides not only bind at the surface, a common belief to date, but also can be internalized and distributed throughout the polymer phase at physiological temperature forming a salt with low-molecular weight PLGA-COOH. Importantly, absorption of leuprolide into low MW PLGA-COOH particles yielded ~17 wt.% leuprolide loading in the polymer (i.e., ~70% of PLGA-COOH acids occupied), and the absorbed peptide was released from the polymer for >2 weeks in a controlled fashion in vitro and as indicated by sustained testosterone suppression in male Sprague-Dawley rats. This new approach, which bypasses the traditional encapsulation method and associated production cost, opens up the potential for facile production of low-cost controlled-release injectable depots for leuprolide and related peptides. © 2013.

  12. The nature of peptide interactions with acid end-group PLGAs and facile aqueous-based microencapsulation of therapeutic peptides

    PubMed Central

    Sophocleous, Andreas M.; Desai, Kashappa-Goud H.; Mazzara, J. Maxwell; Tong, Ling; Cheng, Ji-Xin; Olsen, Karl F.; Schwendeman, Steven P.

    2013-01-01

    An important poorly understood phenomenon in controlled-release depots involves the strong interaction between common cationic peptides and low Mw free acid end-group poly(lactic-co-glycolic acids) (PLGAs) used to achieve continuous peptide release kinetics. The kinetics of peptide sorption to PLGA was examined by incubating peptide solutions of 0.2-4 mM octreotide or leuprolide acetate salts in 0.1 M HEPES buffer, pH 7.4, with polymer particles or films at 4-37 °C for 24 h. The extent of absorption/loading of peptides in PLGA particles/films was assayed by two-phase extraction and amino acid analysis. Confocal Raman microspectroscopy and stimulated Raman scattering (SRS) and laser scanning confocal imaging techniques were used to examine peptide penetration in the polymer phase. The release of sorbed peptide from leuprolide-PLGA particles was evaluated both in vitro (PBST + 0.02% sodium azide, 37 °C) and in vivo (male Sprague-Dawley rats). We found that when the PLGA-COOH chains are sufficiently mobilized, therapeutic peptides not only bind at the surface, a common belief to date, but can also internalized and distributed throughout the polymer phase at physiological temperature forming a salt with low-molecular weight PLGA-COOH. Importantly, absorption of leuprolide into low MW PLGA-COOH particles yielded ~17 wt% leuprolide loading in the polymer (i.e., ~70% of PLGA-COOH acids occupied), and the absorbed peptide was released from the polymer for > 2 weeks in a controlled fashion in vitro and as indicated by sustained testosterone suppression in male Sprague-Dawley rats. This new approach, which bypasses the traditional encapsulation method and associated production cost, opens up the potential for facile production of low-cost controlled-release injectable depots for leuprolide and related peptides. PMID:24021356

  13. Arrangement of Proteinogenic α-Amino Acids on a Cyclic Peptide Comprising Alternate Biphenyl-Cored ζ-Amino Acids.

    PubMed

    Tashiro, Shohei; Chiba, Masayuki; Shionoya, Mitsuhiko

    2017-05-18

    Aiming at precisely arranging several proteinogenic α-amino acids on a folded scaffold, we have developed a cyclic hexapeptide comprising an alternate sequence of biphenyl-cored ζ-amino acids and proteinogenic α-amino acids such as l-leucine. The amino acids were connected by typical peptide synthesis, and the resultant linear hexapeptide was intramolecularly cyclized to form a target cyclic peptide. Theoretical analyses and NMR spectroscopy suggested that the cyclic peptide was folded into an unsymmetrical conformation, and the structure was likely to be flexible in CHCl 3 . The optical properties including UV/Vis absorption, fluorescence, and circular dichroism (CD) were also evaluated. Furthermore, the cyclic peptide became soluble in water by introducing three carboxylate groups at the periphery of the cyclic skeleton. This α/ζ-alternating cyclic peptide is therefore expected to serve as a unique scaffold for arranging several functionalities. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Stereoselective determination of amino acids in beta-amyloid peptides and senile plaques.

    PubMed

    Thorsén, G; Bergquist, J; Westlind-Danielsson, A; Josefsson, B

    2001-06-01

    A novel method for the determination of the enantiomeric composition of peptides is presented. In this paper, the focus has been on beta-amyloid peptides from deceased Alzheimer's disease patients. The peptides are hydrolyzed using mineral acid. The free amino acids are derivatized with the chiral reagent (+)- or (-)-1-(9-anthryl)-2-propyl chloroformate and subsequently separated using micellar electrokinetic chromatography (MEKC) and detected using laser-induced fluorescence (LIF) detection. The high separation efficiency of the MEKC-LIF system, yielding approximately 1 million theoretical plates/m for most amino acids, facilitates the simultaneous chiral determination of nine amino acids. The samples that have been analyzed were standard 1-40 beta-amyloid peptides, in vitro precipitated beta-amyloid fibrils, and human senile plaque samples.

  15. Incorporation of N-amidino-pyroglutamic acid into peptides using intramolecular cyclization of alpha-guanidinoglutaric acid.

    PubMed

    Burov, Sergey; Moskalenko, Yulia; Dorosh, Marina; Shkarubskaya, Zoya; Panarin, Evgeny

    2009-11-01

    N-terminal modification of peptides by unnatural amino acids significantly affects their enzymatic stability, conformational properties and biological activity. Application of N-amidino-amino acids, positively charged under physiological conditions, can change peptide conformation and its affinity to the corresponding receptor. In this article, we describe synthesis of short peptides, containing a new building block-N-amidino-pyroglutamic acid. Although direct guanidinylation of pyroglutamic acid and oxidation of N-amidino-proline using RuO(4) did not produce positive results, N-amidino-Glp-Phe-OH was synthesized on Wang polymer by cyclization of alpha-guanidinoglutaric acid residue. In the course of synthesis, it was found that literature procedure of selective Boc deprotection using TMSOTf/TEA reagent is accompanied by concomitant side reaction of triethylamine alkylation by polymer linker fragment. It should be mentioned that independently from cyclization time and coupling agent (DIC or HCTU), the lactam formation was incomplete. Separation of the cyclic product from the linear precursor was achieved by HPLC in ammonium formate buffer at pH 6. HPLC analysis showed N-amidino-Glp-Phe-OH stability at acidic and physiological pH and fast ring opening in water solution at pH 9. The suggested method of N-amidino-Glp residue formation can be applied in the case of short peptide chains, whereas synthesis of longer ones will require fragment condensation approach.

  16. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  17. StpA and Hha stimulate pausing by RNA polymerase by promoting DNA-DNA bridging of H-NS filaments.

    PubMed

    Boudreau, Beth A; Hron, Daniel R; Qin, Liang; van der Valk, Ramon A; Kotlajich, Matthew V; Dame, Remus T; Landick, Robert

    2018-06-20

    In enterobacteria, AT-rich horizontally acquired genes, including virulence genes, are silenced through the actions of at least three nucleoid-associated proteins (NAPs): H-NS, StpA and Hha. These proteins form gene-silencing nucleoprotein filaments through direct DNA binding by H-NS and StpA homodimers or heterodimers. Both linear and bridged filaments, in which NAPs bind one or two DNA segments, respectively, have been observed. Hha can interact with H-NS or StpA filaments, but itself lacks a DNA-binding domain. Filaments composed of H-NS alone can inhibit transcription initiation and, in the bridged conformation, slow elongating RNA polymerase (RNAP) by promoting backtracking at pause sites. How the other NAPs modulate these effects of H-NS is unknown, despite evidence that they help regulate subsets of silenced genes in vivo (e.g. in pathogenicity islands). Here we report that Hha and StpA greatly enhance H-NS-stimulated pausing by RNAP at 20°C. StpA:H-NS or StpA-only filaments also stimulate pausing at 37°C, a temperature at which Hha:H-NS or H-NS-only filaments have much less effect. In addition, we report that both Hha and StpA greatly stimulate DNA-DNA bridging by H-NS filaments. Together, these observations indicate that Hha and StpA can affect H-NS-mediated gene regulation by stimulating bridging of H-NS/DNA filaments.

  18. The remarkable stability of chimeric, sialic acid-derived alpha/delta-peptides in human blood plasma.

    PubMed

    Saludes, Jonel P; Natarajan, Arutselvan; DeNardo, Sally J; Gervay-Hague, Jacquelyn

    2010-05-01

    Peptides are labile toward proteolytic enzymes, and structural modifications are often required to prolong their metabolic half-life and increase resistance. One modification is the incorporation of non-alpha-amino acids into the peptide to deter recognition by hydrolytic enzymes. We previously reported the synthesis of chimeric alpha/delta-peptides from glutamic acids (Glu) and the sialic acid derivative Neu2en. Conformational analyses revealed these constructs adopt secondary structures in water and may serve as conformational surrogates of polysialic acid. Polysialic acid is a tumor-associated polysaccharide and is correlated with cancer metastasis. Soluble polysialic acid is rapidly cleared from the blood limiting its potential for vaccine development. One motivation in developing structural surrogates of polysialic acid was to create constructs with increased bioavailability. Here, we report plasma stability profiles of Glu/Neu2en alpha/delta-peptides. DOTA was conjugated at the peptide N-termini by solid phase peptide synthesis, radiolabeled with (111)In, incubated in human blood plasma at 37 degrees C, and their degradation patterns monitored by cellulose acetate electrophoresis and radioactivity counting. Results indicate that these peptides exhibit a long half-life that is two- to three-orders of magnitude higher than natural alpha-peptides. These findings provide a viable platform for the synthesis of plasma stable, sialic acid-derived peptides that may find pharmaceutical application.

  19. The bioactive acidic serine- and aspartate-rich motif peptide.

    PubMed

    Minamizaki, Tomoko; Yoshiko, Yuji

    2015-01-01

    The organic component of the bone matrix comprises 40% dry weight of bone. The organic component is mostly composed of type I collagen and small amounts of non-collagenous proteins (NCPs) (10-15% of the total bone protein content). The small integrin-binding ligand N-linked glycoprotein (SIBLING) family, a NCP, is considered to play a key role in bone mineralization. SIBLING family of proteins share common structural features and includes the arginine-glycine-aspartic acid (RGD) motif and acidic serine- and aspartic acid-rich motif (ASARM). Clinical manifestations of gene mutations and/or genetically modified mice indicate that SIBLINGs play diverse roles in bone and extraskeletal tissues. ASARM peptides might not be primary responsible for the functional diversity of SIBLINGs, but this motif is suggested to be a key domain of SIBLINGs. However, the exact function of ASARM peptides is poorly understood. In this article, we discuss the considerable progress made in understanding the role of ASARM as a bioactive peptide.

  20. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    NASA Astrophysics Data System (ADS)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  1. Recent advances in peptide nucleic acid for cancer bionanotechnology.

    PubMed

    Wu, Jun-Chen; Meng, Qing-Chun; Ren, Hong-Mei; Wang, Hong-Tao; Wu, Jie; Wang, Qi

    2017-06-01

    Peptide nucleic acid (PNA) is an oligomer, in which the phosphate backbone has been replaced by a pseudopeptide backbone that is meant to mimic DNA. Peptide nucleic acids are of the utmost importance in the biomedical field because of their ability to hybridize with neutral nucleic acids and their special chemical and biological properties. In recent years, PNAs have emerged in nanobiotechnology for cancer diagnosis and therapy due to their high affinity and sequence selectivity toward corresponding DNA and RNA. In this review, we summarize the recent progresses that have been made in cancer detection and therapy with PNA biotechnology. In addition, we emphasize nanoparticle PNA-based strategies for the efficient delivery of drugs in anticancer therapies.

  2. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo

    PubMed Central

    Waldsich, Christina; Grossberger, Rupert; Schroeder, Renée

    2002-01-01

    Efficient splicing of the td group I intron in vivo is dependent on the ribosome. In the absence of translation, the pre-mRNA is trapped in nonnative-splicing-incompetent conformations. Alternatively, folding of the pre-mRNA can be promoted by the RNA chaperone StpA or by the group I intron-specific splicing factor Cyt-18. To understand the mechanism of action of RNA chaperones, we probed the impact of StpA on the structure of the td intron in vivo. Our data suggest that StpA loosens tertiary interactions. The most prominent structural change was the opening of the base triples, which are involved in the correct orientation of the two major intron core domains. In line with the destabilizing activity of StpA, splicing of mutant introns with a reduced structural stability is sensitive to StpA. In contrast, Cyt-18 strengthens tertiary contacts, thereby rescuing splicing of structurally compromised td mutants in vivo. Our data provide direct evidence for protein-induced conformational changes within catalytic RNA in vivo. Whereas StpA resolves tertiary contacts enabling the RNA to refold, Cyt-18 contributes to the overall compactness of the td intron in vivo. PMID:12208852

  3. Oxidative diversification of amino acids and peptides by small-molecule iron catalysis.

    PubMed

    Osberger, Thomas J; Rogness, Donald C; Kohrt, Jeffrey T; Stepan, Antonia F; White, M Christina

    2016-09-08

    Secondary metabolites synthesized by non-ribosomal peptide synthetases display diverse and complex topologies and possess a range of biological activities. Much of this diversity derives from a synthetic strategy that entails pre- and post-assembly oxidation of both the chiral amino acid building blocks and the assembled peptide scaffolds. The vancomycin biosynthetic pathway is an excellent example of the range of oxidative transformations that can be performed by the iron-containing enzymes involved in its biosynthesis. However, because of the challenges associated with using such oxidative enzymes to carry out chemical transformations in vitro, chemical syntheses guided by these principles have not been fully realized in the laboratory. Here we report that two small-molecule iron catalysts are capable of facilitating the targeted C-H oxidative modification of amino acids and peptides with preservation of α-centre chirality. Oxidation of proline to 5-hydroxyproline furnishes a versatile intermediate that can be transformed to rigid arylated derivatives or flexible linear carboxylic acids, alcohols, olefins and amines in both monomer and peptide settings. The value of this C-H oxidation strategy is demonstrated in its capacity for generating diversity: four 'chiral pool' amino acids are transformed to twenty-one chiral unnatural amino acids representing seven distinct functional group arrays; late-stage C-H functionalizations of a single proline-containing tripeptide furnish eight tripeptides, each having different unnatural amino acids. Additionally, a macrocyclic peptide containing a proline turn element is transformed via late-stage C-H oxidation to one containing a linear unnatural amino acid.

  4. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.

    PubMed

    Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine

    2004-01-01

    Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.

  5. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides

    NASA Astrophysics Data System (ADS)

    McMillen, Chelsea L.; Wright, Patience M.; Cassady, Carolyn J.

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  6. Negative Ion In-Source Decay Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry for Sequencing Acidic Peptides.

    PubMed

    McMillen, Chelsea L; Wright, Patience M; Cassady, Carolyn J

    2016-05-01

    Matrix-assisted laser desorption/ionization (MALDI) in-source decay was studied in the negative ion mode on deprotonated peptides to determine its usefulness for obtaining extensive sequence information for acidic peptides. Eight biological acidic peptides, ranging in size from 11 to 33 residues, were studied by negative ion mode ISD (nISD). The matrices 2,5-dihydroxybenzoic acid, 2-aminobenzoic acid, 2-aminobenzamide, 1,5-diaminonaphthalene, 5-amino-1-naphthol, 3-aminoquinoline, and 9-aminoacridine were used with each peptide. Optimal fragmentation was produced with 1,5-diaminonphthalene (DAN), and extensive sequence informative fragmentation was observed for every peptide except hirudin(54-65). Cleavage at the N-Cα bond of the peptide backbone, producing c' and z' ions, was dominant for all peptides. Cleavage of the N-Cα bond N-terminal to proline residues was not observed. The formation of c and z ions is also found in electron transfer dissociation (ETD), electron capture dissociation (ECD), and positive ion mode ISD, which are considered to be radical-driven techniques. Oxidized insulin chain A, which has four highly acidic oxidized cysteine residues, had less extensive fragmentation. This peptide also exhibited the only charged localized fragmentation, with more pronounced product ion formation adjacent to the highly acidic residues. In addition, spectra were obtained by positive ion mode ISD for each protonated peptide; more sequence informative fragmentation was observed via nISD for all peptides. Three of the peptides studied had no product ion formation in ISD, but extensive sequence informative fragmentation was found in their nISD spectra. The results of this study indicate that nISD can be used to readily obtain sequence information for acidic peptides.

  7. Silicon-Containing Amino Acids: Synthetic Aspects, Conformational Studies, and Applications to Bioactive Peptides.

    PubMed

    Rémond, Emmanuelle; Martin, Charlotte; Martinez, Jean; Cavelier, Florine

    2016-10-12

    Unnatural α-amino acids form a family of essential molecules used for, among other applications, the synthesis of modified peptides, to improve resistance to proteolytic enzyme degradation, and to modulate physico- and biochemical properties of bioactive peptides as well as chiral inducers in asymmetric synthesis. Among them, silicon-containing unnatural amino acids are becoming an interesting new class of building blocks. The replacement of carbon atoms in bioactive substances with silicon is becoming increasingly popular. Peptides containing silyl amino acids hold great promise for maintaining or reinforcing the biological activity of active compounds, while they simultaneously enhance their resistance to enzyme degradation. In addition, the lipophilicity of the silicon atom facilitates their membrane crossing and their bioavailability. Nowadays, the interest of the pharmaceutical industry in peptide- and protein-based therapies is increasing. In this respect, silicon-containing amino acids and peptides are likely to be a significant part of future innovations in this area, and more generally in the area of biomolecules. In this process, commercial availability of silicon-containing amino acids is necessary: new syntheses have been developed, and work in this area is ongoing. This review aims to be a comprehensive and general summary of the different methods used to prepare silicon-containing amino acids and their implications on conformational structures and biological applications when they are incorporated into bioactive molecules.

  8. Mutual amino acid catalysis in salt-induced peptide formation supports this mechanism's role in prebiotic peptide evolution.

    PubMed

    Suwannachot, Y; Rode, B M

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 degrees C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms.

  9. Mutual Amino Acid Catalysis in Salt-Induced Peptide Formation Supports this Mechanism's Role in Prebiotic Peptide Evolution

    NASA Astrophysics Data System (ADS)

    Suwannachot, Yuttana; Rode, Bernd M.

    1999-10-01

    The presence of some amino acids and dipeptides under the conditions of the salt-induced peptide formation reaction (aqueous solution at 85 °C, Cu(II) and NaCl) has been found to catalyze the formation of homopeptides of other amino acids, which are otherwise produced only in traces or not at all by this reaction. The condensation of Val, Leu and Lys to form their homodipeptides can occur to a considerable extent due to catalytic effects of other amino acids and related compounds, among which glycine, histidine, diglycine and diketopiperazine exhibit the most remarkable activity. These findings also lead to a modification of the table of amino acid sequences preferentially formed by the salt-induced peptide formation (SIPF) reaction, previously used for a comparison with the sequence preferences in membrane proteins of primitive organisms

  10. Career advancement opportunities and the ACVP/STP Coalition.

    PubMed

    Cockerell, Gary

    2014-07-01

    A new service to facilitate career advancement opportunities has been implemented by the American College of Veterinary Pathologists (ACVP)/Society of Toxicologic Pathology (STP) Coalition for Veterinary Pathology Fellows. This service will allow rapid communication of these opportunities between veterinary pathologists in academia, industry, and government, and will be useful to trainees as well as established pathologists. © 2014 by The Author(s).

  11. Hydrolytic cleavage of pyroglutamyl-peptide bond. V. selective removal of pyroglutamic acid from biologically active pyroglutamylpeptides in high concentrations of aqueous methanesulfonic acid.

    PubMed

    Kobayashi, Junko; Ohki, Kazuhiro; Okimura, Keiko; Hashimoto, Tadashi; Sakura, Naoki

    2006-06-01

    Application of aqueous methanesulfonic acid (MSA) for selective chemical removal of pyroglutamic acid (pGlu) residue from five biologically active pyroglutamyl-peptides (pGlu-X-peptides, X=amino acid residue at position 2) was examined. Gonadotropin releasing hormone (Gn-RH), dog neuromedin U-8 (d-NMU-8), physalaemin (PH), a bradykinin potentiating peptide (BPP-5a) and neurotensin (NT) as pGlu-X-peptides were incubated in either 70% or 90% aqueous MSA at 25 degrees C. HPLC analysis of the incubation solutions showed that the main decomposition product was H-X-peptide derived from each pGlu-X-peptide by the removal of pGlu. The results revealed that the pGlu-X peptide bond had higher susceptibility than various internal amide bonds in the five peptides examined, including the Trp-Ser bond in Gn-RH, the C-terminal Asn-NH(2) in d-NMU-8, and the Asp-Pro bond in PH, whose acid susceptibility is well known. Thus, mild hydrolysis with high concentrations of aqueous MSA may be applicable to chemically selective removal of pGlu from pGlu-X-peptides for structural examinations.

  12. Biogenic and Synthetic Peptides with Oppositely Charged Amino Acids as Binding Sites for Mineralization.

    PubMed

    Lemloh, Marie-Louise; Altintoprak, Klara; Wege, Christina; Weiss, Ingrid M; Rothenstein, Dirk

    2017-01-28

    Proteins regulate diverse biological processes by the specific interaction with, e.g., nucleic acids, proteins and inorganic molecules. The generation of inorganic hybrid materials, such as shell formation in mollusks, is a protein-controlled mineralization process. Moreover, inorganic-binding peptides are attractive for the bioinspired mineralization of non-natural inorganic functional materials for technical applications. However, it is still challenging to identify mineral-binding peptide motifs from biological systems as well as for technical systems. Here, three complementary approaches were combined to analyze protein motifs consisting of alternating positively and negatively charged amino acids: (i) the screening of natural biomineralization proteins; (ii) the selection of inorganic-binding peptides derived from phage display; and (iii) the mineralization of tobacco mosaic virus (TMV)-based templates. A respective peptide motif displayed on the TMV surface had a major impact on the SiO₂ mineralization. In addition, similar motifs were found in zinc oxide- and zirconia-binding peptides indicating a general binding feature. The comparative analysis presented here raises new questions regarding whether or not there is a common design principle based on acidic and basic amino acids for peptides interacting with minerals.

  13. Taste, umami-enhance effect and amino acid sequence of peptides separated from silkworm pupa hydrolysate.

    PubMed

    Yu, Zilin; Jiang, Hongrui; Guo, Rongcan; Yang, Bo; You, Gang; Zhao, Mouming; Liu, Xiaoling

    2018-06-01

    Four umami peptides were separated and purified by ultrafiltration, gel filtration chromatography and identified by ultra-performance liquid chromatography tandem mass-spectrometry (UPLC-MS/MS), the amino acid sequences of four peptides are Val-Pro-Tyr (VPY), Thr-Ala-Tyr (TAY), Ala-Ala-Pro-Tyr (AAPY) and Gly-Phe-Pro (GFP). The result illustrates that the umami amino acids are not the content of umami peptides, but bitter amino acids are included. The threshold of VPY, TAY, AAPY and GFP were 1.65 mmol/L, 1.76 mmol/L, 2.97 mmol/L and 6.26 mmol/L, respectively. The peptide TAY, VPY and AAPY had an umami-enhancement effect on the monosodium glutamate (MSG) + sodium chloride (NaCl) solution, their concentrations were 2.5 g/L, 5 g/L and 5 g/L, respectively, while GFP has no significant umami-enhancement effect in solution. In addition, the peptides have better taste than its composing amino acids, which indicates that the taste of peptide does not depend on its composing amino acids. Copyright © 2018. Published by Elsevier Ltd.

  14. Relationship between Ethanol in Fuel and Corrosion in STP Sumps

    EPA Science Inventory

    Steve Pollock is a Compliance Inspector with the Petroleum Program in the Virginia Department of Environmental Quality. During his inspections of the STP sumps of underground storage tanks at gasoline service stations in Virginia, Mr. Pollock noticed odd corrosion reactions in so...

  15. Femtomolar Ln(III) affinity in peptide-based ligands containing unnatural chelating amino acids.

    PubMed

    Niedźwiecka, Agnieszka; Cisnetti, Federico; Lebrun, Colette; Delangle, Pascale

    2012-05-07

    The incorporation of unnatural chelating amino acids in short peptide sequences leads to lanthanide-binding peptides with a higher stability than sequences built exclusively from natural residues. In particular, the hexadentate peptide P(22), which incorporates two unnatural amino acids Ada(2) with aminodiacetate chelating arms, showed picomolar affinity for Tb(3+). To design peptides with higher denticity, expected to show higher affinity for Ln(3+), we synthesized the novel unnatural amino acid Ed3a(2) which carries an ethylenediamine triacetate side-chain and affords a pentadentate coordination site. The synthesis of the derivative Fmoc-Ed3a(2)(tBu)(3)-OH, with appropriate protecting groups for direct use in the solid phase peptide synthesis (Fmoc strategy), is described. The two high denticity peptides P(HD2) (Ac-Trp-Ed3a(2)-Pro-Gly-Ada(2)-Gly-NH(2)) and P(HD5) (Ac-Trp-Ada(2)-Pro-Gly-Ed3a(2)-Gly-NH(2)) led to octadentate Tb(3+) complexes with femtomolar stability in water. The position of the high denticity amino acid Ed3a(2) in the hexapeptide sequence appears to be critical for the control of the metal complex speciation. Whereas P(HD5) promotes the formation of polymetallic species in excess of Ln(3+), P(HD2) forms exclusively the mononuclear complex. The octadentate coordination of Tb(3+) by both P(HD) leads to total dehydration of the metal ion in the mononuclear complexes with long luminescence lifetimes (>2 ms). Hence, we demonstrated that unnatural amino acids carrying polyaminocarboxylate side-chains are interesting building blocks to design high affinity Ln-binding peptides. In particular the novel peptide P(HD2) forms a unique octadentate Tb(3+) complex with femtomolar stability in water and an improvement of the luminescence properties with respect to the trisaquo TbP(22) complex by a factor of 4.

  16. MGMT-STP27 methylation status as predictive marker for response to PCV in anaplastic Oligodendrogliomas and Oligoastrocytomas. A report from EORTC study 26951.

    PubMed

    van den Bent, Martin J; Erdem-Eraslan, Lale; Idbaih, Ahmed; de Rooi, Johan; Eilers, Paul H C; Spliet, Wim G M; den Dunnen, Wilfred F A; Tijssen, Cees; Wesseling, Pieter; Sillevis Smitt, Peter A E; Kros, Johan M; Gorlia, Thierry; French, Pim J

    2013-10-01

    The long-term follow-up results from the EORTC-26951 trial showed that the addition of procarbazine, CCNU, and vincristine (PCV) after radiotherapy increases survival in anaplastic oligodendrogliomas/oligoastrocytomas (AOD/AOA). However, some patients appeared to benefit more from PCV treatment than others. We conducted genome-wide methylation profiling of 115 samples included in the EORTC-26951 trial and extracted the CpG island hypermethylated phenotype (CIMP) and MGMT promoter methylation (MGMT-STP27) status. We first show that methylation profiling can be conducted on archival tissues with a performance that is similar to snap-frozen tissue samples. We then conducted methylation profiling on EORTC-26951 clinical trial samples. Univariate analysis indicated that CIMP+ or MGMT-STP27 methylated tumors had an improved survival compared with CIMP- and/or MGMT-STP27 unmethylated tumors [median overall survival (OS), 1.05 vs. 6.46 years and 1.06 vs. 3.8 years, both P < 0.0001 for CIMP and MGMT-STP27 status, respectively]. Multivariable analysis indicates that CIMP and MGMT-STP27 are significant prognostic factors for survival in presence of age, sex, performance score, and review diagnosis in the model. CIMP+ and MGMT-STP27 methylated tumors showed a clear benefit from adjuvant PCV chemotherapy: the median OS of CIMP+ samples in the RT and RT-PCV arms was 3.27 and 9.51 years, respectively (P = 0.0033); for MGMT-STP27 methylated samples, it was 1.98 and 8.65 years. There was no such benefit for CIMP- or for MGMT-STP27 unmethylated tumors. MGMT-STP27 status remained significant in an interaction test (P = 0.003). Statistical analysis of microarray (SAM) identified 259 novel CpGs associated with treatment response. MGMT-STP27 may be used to guide treatment decisions in this tumor type. ©2013 AACR.

  17. Occurrence of the free and Peptide forms of pyroglutamic acid in plasma from the portal blood of rats that had ingested a wheat gluten hydrolysate containing pyroglutamyl peptides.

    PubMed

    Higaki-Sato, Noriko; Sato, Kenji; Inoue, Naomi; Nawa, Yuko; Kido, Yasuhiro; Nakabou, Yukihiro; Hashimoto, Kaori; Nakamura, Yasushi; Ohtsuki, Kozo

    2006-09-20

    In order to determine pyroglutamic acid levels in plasma, we developed a method based on precolumn derivatization of the carboxyl group of pyroglutamic acid with 2-nitrophenylhydrazine. Eight-week-old male SD strain rats were administered 200 mg of an acidic peptide fraction obtained from a commercial wheat gluten hydrolysate containing 0.63 mmol/g pyroglutamyl peptide. After administration, significant amounts of free pyroglutamic acid were observed in the ethanol-soluble fraction of the plasma from the portal vein. In addition, pyroglutamate aminopeptidase digestion of the ethanol-soluble fraction liberated significant amounts of pyroglutamic acid, which indicated the presence of the pyroglutamyl peptide. The presence of the pyroglutamyl peptide in the plasma was further confirmed by size exclusion chromatography. The levels of free and peptide forms of pyroglutamic acid increased significantly and reached a maximum (approximately 40 nmol/mL) at 15 and 30 min after administration, respectively.

  18. Acetohydroxy acid synthase is a target for leucine containing peptide toxicity in Escherichia coli.

    PubMed Central

    Gollop, N; Tavori, H; Barak, Z

    1982-01-01

    Acetohydroxy acid synthase from a mutant resistant to leucine-containing peptides was insensitive to leucine inhibition. It is concluded that acetohydroxy acid synthase is a target for the toxicity of the high concentrations of leucine brought into Escherichia coli K-12 by leucine-containing peptides. PMID:7033214

  19. Raman and surface enhanced Raman spectroscopy of amino acids and peptide

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaojuan; Gu, Huaimin; Wu, Jiwei; Kang, Jian; Dong, Xiao

    2009-08-01

    Surface enhanced Raman scattering (SERS) is potentially tool in the characterization of biomolecules such as amino acids, complicated peptides and proteins, and even tissues or living cells. Amino acids and short peptides contain different functional groups. Therefore, they are suitable for the investigations of the competitive-interactions of these functional groups with colloidal silver surfaces. In this paper, Normal Raman and SERS of amino acids Leucine and Isoleucine and short peptide Leu-Leu were measured on the silver colloidal substrate. Raman shifts that stem from different vibrational mode in the molecular inner structure, and the variations of SERS of the samples were analyzed in this study. The results show that different connection of one methyl to the main chains of the isomer amino acids resulted in different vibration modes in the Normal Raman spectra of Leucine and Isoleucine. In the SERS spectra of the isomer amino acids, all frequency shifts are expressed more differently than those in Normal Raman spectra of solid state. Orientation of this isomer amino acids, as well as specific-competitive interactions of their functional groups with the colloidal silver surface, were speculated by detailed spectral analysis of the obtained SERS spectra. In addition, the dipeptide Leu-Leu, as the corresponding homodipeptide of Leucine, was also measured adsorbed on the colloidal silver surface. The SERS spectrum of Leu-Leu is different from its corresponding amino acid Leucine but both of them are adsorbed on the silver surface through the carboxylate moiety.

  20. Molecular self-assembly using peptide nucleic acids.

    PubMed

    Berger, Or; Gazit, Ehud

    2017-01-01

    Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon. The first application of PNA was in the form of PNA-amphiphiles, resulting in the formation of either lipid integrated structures, hydrogels or fibrillary assemblies. Heteroduplex DNA-PNA assemblies allow the formation of hybrid structures with higher stability as compared with pure DNA. A systematic screen for minimal PNA building blocks resulted in the identification of guanine-containing di-PNA assemblies and protected guanine-PNA monomer spheres showing unique optical properties. Finally, the co-assembly of PNA with thymine-like three-faced cyanuric acid allowed the assembly of poly-adenine PNA into fibers. In summary, we believe that PNAs represent a new and important family of building blocks which converges the advantages of both DNA- and peptide-nanotechnologies. © 2016 Wiley Periodicals, Inc.

  1. Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.

    2001-10-01

    Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.

  2. The STP (Solar-Terrestrial Physics) Semantic Web based on the RSS1.0 and the RDF

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Murata, K. T.; Kimura, E.; Ishikura, S.; Shinohara, I.; Kasaba, Y.; Watari, S.; Matsuoka, D.

    2006-12-01

    In the Solar-Terrestrial Physics (STP), it is pointed out that circulation and utilization of observation data among researchers are insufficient. To archive interdisciplinary researches, we need to overcome this circulation and utilization problems. Under such a background, authors' group has developed a world-wide database that manages meta-data of satellite and ground-based observation data files. It is noted that retrieving meta-data from the observation data and registering them to database have been carried out by hand so far. Our goal is to establish the STP Semantic Web. The Semantic Web provides a common framework that allows a variety of data shared and reused across applications, enterprises, and communities. We also expect that the secondary information related with observations, such as event information and associated news, are also shared over the networks. The most fundamental issue on the establishment is who generates, manages and provides meta-data in the Semantic Web. We developed an automatic meta-data collection system for the observation data using the RSS (RDF Site Summary) 1.0. The RSS1.0 is one of the XML-based markup languages based on the RDF (Resource Description Framework), which is designed for syndicating news and contents of news-like sites. The RSS1.0 is used to describe the STP meta-data, such as data file name, file server address and observation date. To describe the meta-data of the STP beyond RSS1.0 vocabulary, we defined original vocabularies for the STP resources using the RDF Schema. The RDF describes technical terms on the STP along with the Dublin Core Metadata Element Set, which is standard for cross-domain information resource descriptions. Researchers' information on the STP by FOAF, which is known as an RDF/XML vocabulary, creates a machine-readable metadata describing people. Using the RSS1.0 as a meta-data distribution method, the workflow from retrieving meta-data to registering them into the database is automated

  3. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides.

    PubMed

    Blanco-Míguez, Aitor; Gutiérrez-Jácome, Alberto; Pérez-Pérez, Martín; Pérez-Rodríguez, Gael; Catalán-García, Sandra; Fdez-Riverola, Florentino; Lourenço, Anália; Sánchez, Borja

    2016-06-01

    Chemoprevention is the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. In this field, the use of antitumor peptides is of interest as, (i) these molecules are small in size, (ii) they show good cell diffusion and permeability, (iii) they affect one or more specific molecular pathways involved in carcinogenesis, and (iv) they are not usually genotoxic. We have checked the Web of Science Database (23/11/2015) in order to collect papers reporting on bioactive peptide (1691 registers), which was further filtered searching terms such as "antiproliferative," "antitumoral," or "apoptosis" among others. Works reporting the amino acid sequence of an antiproliferative peptide were kept (60 registers), and this was complemented with the peptides included in CancerPPD, an extensive resource for antiproliferative peptides and proteins. Peptides were grouped according to one of the following mechanism of action: inhibition of cell migration, inhibition of tumor angiogenesis, antioxidative mechanisms, inhibition of gene transcription/cell proliferation, induction of apoptosis, disorganization of tubulin structure, cytotoxicity, or unknown mechanisms. The main mechanisms of action of those antiproliferative peptides with known amino acid sequences are presented and finally, their potential clinical usefulness and future challenges on their application is discussed. © 2016 The Protein Society.

  4. From amino acid sequence to bioactivity: The biomedical potential of antitumor peptides

    PubMed Central

    Blanco‐Míguez, Aitor; Gutiérrez‐Jácome, Alberto; Pérez‐Pérez, Martín; Pérez‐Rodríguez, Gael; Catalán‐García, Sandra; Fdez‐Riverola, Florentino; Lourenço, Anália

    2016-01-01

    Abstract Chemoprevention is the use of natural and/or synthetic substances to block, reverse, or retard the process of carcinogenesis. In this field, the use of antitumor peptides is of interest as, (i) these molecules are small in size, (ii) they show good cell diffusion and permeability, (iii) they affect one or more specific molecular pathways involved in carcinogenesis, and (iv) they are not usually genotoxic. We have checked the Web of Science Database (23/11/2015) in order to collect papers reporting on bioactive peptide (1691 registers), which was further filtered searching terms such as “antiproliferative,” “antitumoral,” or “apoptosis” among others. Works reporting the amino acid sequence of an antiproliferative peptide were kept (60 registers), and this was complemented with the peptides included in CancerPPD, an extensive resource for antiproliferative peptides and proteins. Peptides were grouped according to one of the following mechanism of action: inhibition of cell migration, inhibition of tumor angiogenesis, antioxidative mechanisms, inhibition of gene transcription/cell proliferation, induction of apoptosis, disorganization of tubulin structure, cytotoxicity, or unknown mechanisms. The main mechanisms of action of those antiproliferative peptides with known amino acid sequences are presented and finally, their potential clinical usefulness and future challenges on their application is discussed. PMID:27010507

  5. Amino acids and peptides. XXXII: A bifunctional poly(ethylene glycol) hybrid of fibronectin-related peptides.

    PubMed

    Maeda, M; Izuno, Y; Kawasaki, K; Kaneda, Y; Mu, Y; Tsutsumi, Y; Lem, K W; Mayumi, T

    1997-12-18

    An amino acid type poly(ethylene glycol) (aaPPEG) was prepared and its application to a drug carrier was examined. The peptides, Arg-Gly-Asp (RGD) and Glu-Ile-Leu-Asp-Val (EILDV) which were reported as active fragments of Fibronectin (a cell adhesion protein), were conjugated with aaPEG (molecular weight, 10,000). The hybrid, RGD-aaPEG-EILDV, was prepared by a combination of the solid-phase method and the solution method. Antiadhesive activity of the peptides was not lost by its hybrid formation with the large aaPEG molecule. A mixture of RGD (0.43 mmol) and EILDV (0.43 mmol) did not demonstrate an antiadhesive effect, but the hybrid containing 0.43 mmol of each peptide did exhibit this effect.

  6. Release of free amino acids upon oxidation of peptides and proteins by hydroxyl radicals.

    PubMed

    Liu, Fobang; Lai, Senchao; Tong, Haijie; Lakey, Pascale S J; Shiraiwa, Manabu; Weller, Michael G; Pöschl, Ulrich; Kampf, Christopher J

    2017-03-01

    Hydroxyl radical-induced oxidation of proteins and peptides can lead to the cleavage of the peptide, leading to a release of fragments. Here, we used high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) and pre-column online ortho-phthalaldehyde (OPA) derivatization-based amino acid analysis by HPLC with diode array detection and fluorescence detection to identify and quantify free amino acids released upon oxidation of proteins and peptides by hydroxyl radicals. Bovine serum albumin (BSA), ovalbumin (OVA) as model proteins, and synthetic tripeptides (comprised of varying compositions of the amino acids Gly, Ala, Ser, and Met) were used for reactions with hydroxyl radicals, which were generated by the Fenton reaction of iron ions and hydrogen peroxide. The molar yields of free glycine, aspartic acid, asparagine, and alanine per peptide or protein varied between 4 and 55%. For protein oxidation reactions, the molar yields of Gly (∼32-55% for BSA, ∼10-21% for OVA) were substantially higher than those for the other identified amino acids (∼5-12% for BSA, ∼4-6% for OVA). Upon oxidation of tripeptides with Gly in C-terminal, mid-chain, or N-terminal positions, Gly was preferentially released when it was located at the C-terminal site. Overall, we observe evidence for a site-selective formation of free amino acids in the OH radical-induced oxidation of peptides and proteins, which may be due to a reaction pathway involving nitrogen-centered radicals.

  7. Synthesis of peptides from amino acids and ATP with lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1980-01-01

    The paper examines the synthesis of peptides from aminoacids and ATP with a lysine-rich protenoid. The latter in aqueous solution catalyzes the formation of peptides from free amino acids and ATP; this catalytic activity is not found in acidic protenoids, even though the latter contain a basic aminoacid. The pH optimum for the synthesis is about 11, but it is appreciable below 8 and above 13. Temperature data indicate an optimum at 20 C or above, with little increase in rate up to 60 C. Pyrophosphate can be used instead of ATP, but the yields are lower. The ATP-aided syntheses of peptides in aqueous solution occur with several types of proteinous aminoacids.

  8. Canine bombesin-like gastrin releasing peptides stimulate gastrin release and acid secretion in the dog.

    PubMed Central

    Bunnett, N W; Clark, B; Debas, H T; Del Milton, R C; Kovacs, T O; Orloff, M S; Pappas, T N; Reeve, J R; Rivier, J E; Walsh, J H

    1985-01-01

    The synthetic mammalian bombesin-like peptides, canine gastrin releasing peptide 27, 23 and 10, and porcine gastrin releasing peptide 27 were compared with amphibian bombesin 14 and 10 during intravenous infusions into six conscious dogs with chronic gastric cannulae. Gastrin and gastrin releasing peptide were measured in peripherally sampled venous blood by radioimmunoassay and gastric acid secretions were collected. All forms of gastrin releasing peptide stimulated gastrin release and gastric acid secretion in a dose-dependent manner. The larger canine and porcine peptides were more potent than the decapeptide. Bombesin 14 was more potent than bombesin 10. A rise in the venous concentration of immunoreactive gastrin releasing peptide of only 20 fmol ml-1 stimulated gastrin release to about 50% of maximal. Gastrin releasing peptide 10 was cleared from the circulation three times faster than the larger forms and this may account for the apparent differences in potency. PMID:3839849

  9. Endogenous flow of amino acids in the avian ileum as influenced by increasing dietary peptide concentrations.

    PubMed

    Ravindran, Velmurugu; Morel, Patrick C H; Rutherfurd, Shane M; Thomas, Donald V

    2009-03-01

    The aim of the present study was to establish whether feeding broiler chickens with diets containing increasing dietary peptide concentrations would cause increases in ileal endogenous amino acid flow. The flow of N and most amino acids increased quadratically (P < 0.05 to 0.001) with increasing dietary concentrations of peptides. The exceptions were the flow of threonine, serine, glycine, tyrosine and cystine, which increased linearly (P < 0.001) with dietary peptide levels. Another notable exception to the general trend was the flow of proline, which was significantly higher (P < 0.01) in birds fed the protein-free diet. The amino acid profile of endogenous protein, expressed as proportion of crude protein, indicated that the ratios of threonine, glutamic acid, proline, glycine, leucine, histidine, arginine and cystine were influenced (P < 0.05) with increasing dietary peptide concentrations. In general, compared with the protein-free diet, the ratios of threonine and arginine in endogenous protein were lower (P < 0.05) and those of glutamic acid, glycine and histidine were greater (P < 0.05) in diets with high concentrations of peptides. The ratio of proline was found to decrease (P < 0.05) with increasing dietary peptide concentrations. These changes in the amino acid profile of endogenous protein are probably reflective of changes in the output of one or more of the components of endogenous protein. Overall, the present results demonstrated that increasing dietary peptide concentrations increased the flow of endogenous amino acid flow at the terminal ileum of broiler chickens in a dose-dependent manner and also caused changes in the composition of endogenous protein. The observed changes in endogenous amino flow will influence the maintenance requirements for amino acids and also have implications for the calculation of true digestibility coefficient of feedstuffs.

  10. Structural analysis and taste evaluation of γ-glutamyl peptides comprising sulfur-containing amino acids.

    PubMed

    Amino, Yusuke; Wakabayashi, Hidehiko; Akashi, Satoko; Ishiwatari, Yutaka

    2018-03-01

    The structures, flavor-modifying effects, and CaSR activities of γ-glutamyl peptides comprising sulfur-containing amino acids were investigated. The chemical structures, including the linkage mode of the N-terminal glutamic acid, of γ-L-glutamyl-S-(2-propenyl)-L-cysteine (γ-L-glutamyl-S-allyl-L-cysteine) and its sulfoxide isolated from garlic were established by comparing their NMR spectra with those of authentic peptides prepared using chemical methods. Mass spectrometric analysis also enabled determination of the linkage modes in the glutamyl dipeptides by their characteristic fragmentation. In sensory evaluation, these peptides exhibited flavor-modifying effects (continuity) in umami solutions less pronounced but similar to that of glutathione. Furthermore, the peptides exhibited intrinsic flavor due to the sulfur-containing structure, which may be partially responsible for their flavor-modifying effects. In CaSR assays, γ-L-glutamyl-S-methyl-L-cysteinylglycine was most active, which indicates that the presence of a medium-sized aliphatic substituent at the second amino acid residue in γ-glutamyl peptides enhances CaSR activity.

  11. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins.

    PubMed

    Periat, Aurélie; Krull, Ira S; Guillarme, Davy

    2015-02-01

    This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed-phase liquid chromatography, in a two-dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Size restriction on utilization of peptides by amino acid auxotrophs of Neurospora crassa.

    PubMed Central

    Wolfinbarger, L; Marzluf, G A

    1975-01-01

    Growth of an amino acid auxotroph of Neurospora crassa on oligopeptides is shown to occur by extracellular hydrolysis, with subsequent utilization of monomer amino acid residues, and by transport of peptides. Peptides with a hydrodynamic volume greater than that of trileucine are not transported, and this lack of transport is shown to be due to restriction by the oligopeptide transport system rather than the cell wall. PMID:125269

  13. Preferential amino acid sequences in alumina-catalyzed peptide bond formation.

    PubMed

    Bujdák, J; Rode, B M

    2002-05-21

    The catalytic effect of activated alumina on amino acid condensation was investigated. The readiness of amino acids to form peptide sequences was estimated on the basis of the yield of dipeptides and was found to decrease in the order glycine (Gly), alanine (Ala), leucine (Leu), valine (Val), proline (Pro). For example, approximately 15% Gly was converted to the dipeptide (Gly(2)), 5% to cyclic anhydride (cyc(Gly(2))) and small amounts of tri- (Gly(3)) and tetrapeptide (Gly(4)) were formed after 28 days. On the other hand, only trace amounts of Pro(2) were formed from proline under the same conditions. Preferential formation of certain sequences was observed in the mixed reaction systems containing two amino acids. For example, almost ten times more Gly-Val than Val-Gly was formed in the Gly+Val reaction system. The preferred sequences can be explained on the basis of an inductive effect that side groups have on the nucleophilicity and electrophilicity, respectively, of the amino and carboxyl groups. A comparison with published data of amino acid reactions in other reaction systems revealed that the main trends of preferential sequence formation were the same as those described for the salt-induced peptide formation (SIPF) reaction. The results of this work and other previously published papers show that alumina and related mineral surfaces might have played a crucial role in the prebiotic formation of the first peptides on the primitive earth.

  14. Development of a Novel Tetravalent Synthetic Peptide That Binds to Phosphatidic Acid.

    PubMed

    Ogawa, Rina; Nagao, Kohjiro; Taniuchi, Kentaro; Tsuchiya, Masaki; Kato, Utako; Hara, Yuji; Inaba, Takehiko; Kobayashi, Toshihide; Sasaki, Yoshihiro; Akiyoshi, Kazunari; Watanabe-Takahashi, Miho; Nishikawa, Kiyotaka; Umeda, Masato

    2015-01-01

    We employed a multivalent peptide-library screening technique to identify a peptide motif that binds to phosphatidic acid (PA), but not to other phospholipids such as phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS). A tetravalent peptide with the sequence motif of MARWHRHHH, designated as PAB-TP (phosphatidic acid-binding tetravalent peptide), was shown to bind as low as 1 mol% of PA in the bilayer membrane composed of PC and cholesterol. Kinetic analysis of the interaction between PAB-TP and the membranes containing 10 mol% of PA showed that PAB-TP associated with PA with a low dissociation constant of KD = 38 ± 5 nM. Coexistence of cholesterol or PE with PA in the membrane enhanced the PAB-TP binding to PA by increasing the ionization of the phosphomonoester head group as well as by changing the microenvironment of PA molecules in the membrane. Amino acid replacement analysis demonstrated that the tryptophan residue at position 4 of PAB-TP was involved in the interaction with PA. Furthermore, a series of amino acid substitutions at positions 5 to 9 of PAB-TP revealed the involvement of consecutive histidine and arginine residues in recognition of the phosphomonoester head group of PA. Our results demonstrate that the recognition of PA by PAB-TP is achieved by a combination of hydrophobic, electrostatic and hydrogen-bond interactions, and that the tetravalent structure of PAB-TP contributes to the high affinity binding to PA in the membrane. The novel PA-binding tetravalent peptide PAB-TP will provide insight into the molecular mechanism underlying the recognition of PA by PA-binding proteins that are involved in various cellular events.

  15. Solid-phase-assisted synthesis of targeting peptide-PEG-oligo(ethane amino)amides for receptor-mediated gene delivery.

    PubMed

    Martin, Irene; Dohmen, Christian; Mas-Moruno, Carlos; Troiber, Christina; Kos, Petra; Schaffert, David; Lächelt, Ulrich; Teixidó, Meritxell; Günther, Michael; Kessler, Horst; Giralt, Ernest; Wagner, Ernst

    2012-04-28

    In the forthcoming era of cancer gene therapy, efforts will be devoted to the development of new efficient and non-toxic gene delivery vectors. In this regard, the use of Fmoc/Boc-protected oligo(ethane amino)acids as building blocks for solid-phase-supported assembly represents a novel promising approach towards fully controlled syntheses of effective gene vectors. Here we report on the synthesis of defined polymers containing the following: (i) a plasmid DNA (pDNA) binding domain of eight succinoyl-tetraethylenpentamine (Stp) units and two terminal cysteine residues; (ii) a central polyethylene glycol (PEG) chain (with twenty-four oxyethylene units) for shielding; and (iii) specific peptides for targeting towards cancer cells. Peptides B6 and c(RGDfK), which bind transferrin receptor and α(v)β(3) integrin, respectively, were chosen because of the high expression of these receptors in many tumoral cells. This study shows the feasibility of designing these kinds of fully controlled vectors and their success for targeted pDNA-based gene transfer. This journal is © The Royal Society of Chemistry 2012

  16. Stabilization Effect of Amino Acid Side Chains in Peptide Assemblies on Graphite Studied by Scanning Tunneling Microscopy.

    PubMed

    Guo, Yuanyuan; Hou, Jingfei; Zhang, Xuemei; Yang, Yanlian; Wang, Chen

    2017-04-19

    An analysis is presented of the effects of amino acid side chains on peptide assemblies in ambient conditions on a graphite surface. The molecularly resolved assemblies of binary peptides are examined with scanning tunneling microscopy. A comparative analysis of the assembly structures reveals that the lamellae width has an appreciable dependence on the peptide sequence, which could be considered as a manifestation of a stabilizing effect of side-chain moieties of amino acids with high (phenylalanine) and low (alanine, asparagine, histidine and aspartic acid) propensities for aggregation. These amino acids are representative for the chemical structures involving the side chains of charged (histidine and aspartic acid), aromatic (phenylalanine), hydrophobic (alanine), and hydrophilic (asparagine) amino acids. These results might provide useful insight for understanding the effects of sequence on the assembly of surface-bound peptides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Peptide and protein quantitation by acid-catalyzed 18O-labeling of carboxyl groups.

    PubMed

    Haaf, Erik; Schlosser, Andreas

    2012-01-03

    We have developed a new method that applies acidic catalysis with hydrochloric acid for (18)O-labeling of peptides at their carboxyl groups. With this method, peptides get labeled at their C-terminus, at Asp and Glu residues, and at carboxymethylated cysteine residues. Oxygen atoms at phosphate groups of phosphopeptide are not exchanged. Our elaborated labeling protocol is easy to perform, fast (5 h and 30 min), and results in 95-97 atom % incorporation of (18)O at carboxyl groups. Undesired side reactions, such as deamidation or peptide hydrolysis, occur only at a very low level under the conditions applied. In addition, data analysis can be performed automatically using common software tools, such as Mascot Distiller. We have demonstrated the capability of this method for the quantitation of peptides as well as for phosphopeptides. © 2011 American Chemical Society

  18. Non-natural amino acid peptide microarrays to discover Ebola virus glycoprotein ligands.

    PubMed

    Rabinowitz, Joshua A; Lainson, John C; Johnston, Stephen Albert; Diehnelt, Chris W

    2018-02-06

    We demonstrate a platform to screen a virus pseudotyped with Ebola virus glycoprotein (GP) against a library of peptides that contain non-natural amino acids to develop GP affinity ligands. This system could be used for rapid development of peptide-based antivirals for other emerging or neglected tropical infectious diseases.

  19. Laspartomycin, an acidic lipopeptide antibiotic with a unique peptide core.

    PubMed

    Borders, Donald B; Leese, Richard A; Jarolmen, Howard; Francis, Noreen D; Fantini, Amadeo A; Falla, Tim; Fiddes, John C; Aumelas, André

    2007-03-01

    Laspartomycin was originally isolated and characterized in 1968 as a lipopeptide antibiotic related to amphomycin. The molecular weight and structure remained unknown until now. In the present study, laspartomycin was purified by a novel calcium chelate procedure, and the structure of the major component (1) was determined. The structure of laspartomycin C (1) differs from that of amphomycin and all related antibiotics as a result of its peptide region being acidic rather than amphoteric and the amino acid branching into the side chain being diaminopropionic rather than diaminobutyric. In addition, the fatty acid side chain is 2,3-unsaturated compared to 3,4-unsaturated for amphomycin and other related antibiotics. Calcium ion addition to stabilize a particular conformer was found to be important for an enzymatic deacylation of the antibiotic. A peptide resulting from the deacylation was critical for chemical structure determination by NMR studies, which also involved addition of calcium ions to stabilize a conformer.

  20. Lactobacillus gasseri requires peptides, not proteins or free amino acids, for growth in milk.

    PubMed

    Arakawa, K; Matsunaga, K; Takihiro, S; Moritoki, A; Ryuto, S; Kawai, Y; Masuda, T; Miyamoto, T

    2015-03-01

    Lactobacillus gasseri is a widespread commensal lactic acid bacterium inhabiting human mucosal niches and has many beneficial effects as a probiotic. However, L. gasseri is difficult to grow in milk, which hurts usability for the food industry. It had been previously reported that supplementation with yeast extract or proteose peptone, including peptides, enables L. gasseri to grow well in milk. In this study, our objective was to confirm peptide requirement of L. gasseri and evaluate efficacy of peptide release by enzymatic proteolysis on growth of L. gassei in milk. Three strains of L. gasseri did not grow well in modified DeMan, Rogosa, Sharpe broth without any nitrogen sources (MRS-N), but addition of a casein-derived peptide mixture, tryptone, promoted growth. In contrast, little effect was observed after adding casein or a casein-derived amino acid mixture, casamino acids. These results indicate that L. gasseri requires peptides, not proteins or free amino acids, among milk-derived nitrogen sources for growth. Lactobacillus gasseri JCM 1131T hardly had growth capacity in 6 kinds of milk-based media: bovine milk, human milk, skim milk, cheese whey, modified MRS-N (MRSL-N) supplemented with acid whey, and MRSL-N supplemented with casein. Moreover, treatment with digestive proteases, particularly pepsin, to release peptides made it grow well in each milk-based medium. The pepsin treatment was the most effective for growth of strain JCM 1131T in skim milk among the tested food-grade proteases such as trypsin, α-chymotrypsin, calf rennet, ficin, bromelain, and papain. As well as strain JCM 1131T, pepsinolysis of milk improved growth of other L. gasseri strains and some strains of enteric lactobacilli such as Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri. These results suggest that some relatives of L. gasseri also use peptides as desirable nitrogen sources, and that milk may be a good supplier of nutritious

  1. On the efficacy of using the transfer-controlled procedure during periods of STP processor overloads in SS7 networks

    NASA Astrophysics Data System (ADS)

    Rumsewicz, Michael

    1994-04-01

    In this paper, we examine call completion performance, rather than message throughput, in a Common Channel Signaling network in which the processing resources, and not transmission resources, of a Signaling Transfer Point (STP) are overloaded. Specifically, we perform a transient analysis, via simulation, of a network consisting of a single Central Processor-based STP connecting many local exchanges. We consider the efficacy of using the Transfer Controlled (TFC) procedure when the network call attempt rate exceeds the processing capability of the STP. We find the following: (1) the success of the control depends critically on the rate at which TFC's are sent; (2) use of the TFC procedure in theevent of processor overload can provide reasonable call completion rates.

  2. Vasonatrin peptide: a unique synthetic natriuretic and vasorelaxing peptide.

    PubMed Central

    Wei, C M; Kim, C H; Miller, V M; Burnett, J C

    1993-01-01

    This study reports the cardiovascular and renal actions of a novel and newly synthesized 27-amino acid peptide termed vasonatrin peptide (VNP). VNP is a chimera of atrial natriuretic peptide (ANP) and C-type natriuretic peptide (CNP). This synthetic peptide possesses the 22-amino acid structure of CNP, which is a cardiovascular selective peptide of endothelial origin and is structurally related to ANP. VNP also possesses the five-amino acid COOH terminus of ANP. The current study demonstrates both in vitro and in vivo that VNP possesses the venodilating actions of CNP, the natriuretic actions of ANP, and unique arterial vasodilating actions not associated with either ANP or CNP. Images PMID:8408658

  3. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods

    NASA Astrophysics Data System (ADS)

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues.

  4. Distinguishing aspartic and isoaspartic acids in peptides by several mass spectrometric fragmentation methods

    PubMed Central

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P.

    2016-01-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post source decay (PSD), MALDI 157 nm photodissociation, TMPP charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H2O, are present in PSD, photodissociation, and charge tagging. c•+57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues. PMID:27613306

  5. Gas-phase acidities of cysteine-polyalanine peptides I: A(3,4)CSH and HSCA(3,4).

    PubMed

    Ren, Jianhua; Tan, John P; Harper, Robert T

    2009-10-15

    The gas-phase acidities of four cysteine-polyalanine peptides, A(3,4)CSH and HSCA(3,4), were determined using the extended Cooks kinetic method with full entropy analysis. A triple-quadrupole mass spectrometer with an electrospray interface was employed for the experimental study. The ion activation was achieved via collision-induced dissociation (CID) experiments. The deprotonation enthalpies (Delta(acid)H) of the peptides were determined to be 332.2 +/- 2.0 kcal/mol (A(3)CSH), 325.9 +/- 2.0 kcal/mol (A(4)CSH), 319.3 +/- 3.0 kcal/mol (HSCA(3)), and 319.2 +/- 4.0 kcal/mol (HSCA(4)). The deprotonation entropies (Delta(acid)S) of the peptides were estimated based on the entropy term (Delta(DeltaS)) and the deprotonation entropies of the reference acids. By using the deprotonation enthalpies and entropies, the gas-phase acidities (Delta(acid)G) of the peptides were derived: 325.0 +/- 2.0 kcal/mol (A(3)CSH), 320.2 +/- 2.0 kcal/mol (A(4)CSH), 316.3 +/- 3.0 kcal/mol (HSCA(3)), and 315.4 +/- 4.0 kcal/mol (HSCA(4)). Conformations and energetic information of the peptides were calculated through simulated annealing (Tripos), geometry optimization (AM1), and single-point energy calculations (B3LYP/6-31+G(d)), respectively. The calculated theoretical deprotonation enthalpies (Delta(acid)H) of 334.2 kcal/mol (A(3)CSH), 327.7 kcal/mol (A(4)CSH), 320.6 kcal/mol (HSCA(3)), and 318.6 kcal/mol (HSCA(4)) are in good agreement with the experimentally determined values. Both the experimental and computational studies suggest that the two N-terminal cysteine peptides, HSCA(3,4), are significantly more acidic than the corresponding C-terminal ones, A(3,4)CSH. The high acidities of the former are likely due to the helical conformational effects for which the thiolate anion may be strongly stabilized by the interaction with the helix macrodipole.

  6. Peptide array-based interaction assay of solid-bound peptides and anchorage-dependant cells and its effectiveness in cell-adhesive peptide design.

    PubMed

    Kato, Ryuji; Kaga, Chiaki; Kunimatsu, Mitoshi; Kobayashi, Takeshi; Honda, Hiroyuki

    2006-06-01

    Peptide array, the designable peptide library covalently synthesized on cellulose support, was applied to assay peptide-cell interaction, between solid-bound peptides and anchorage-dependant cells, to study objective peptide design. As a model case, cell-adhesive peptides that could enhance cell growth as tissue engineering scaffold material, was studied. On the peptide array, the relative cell-adhesion ratio of NIH/3T3 cells was 2.5-fold higher on the RGDS (Arg-Gly-Asp-Ser) peptide spot as compared to the spot with no peptide, thus indicating integrin-mediated peptide-cell interaction. Such strong cell adhesion mediated by the RGDS peptide was easily disrupted by single residue substitution on the peptide array, thus indicating that the sequence recognition accuracy of cells was strictly conserved in our optimized scheme. The observed cellular morphological extension with active actin stress-fiber on the RGD motif-containing peptide supported our strategy that peptide array-based interaction assay of solid-bound peptide and anchorage-dependant cells (PIASPAC) could provide quantitative data on biological peptide-cell interaction. The analysis of 180 peptides obtained from fibronectin type III domain (no. 1447-1629) yielded 18 novel cell-adhesive peptides without the RGD motif. Taken together with the novel candidates, representative rules of ineffective amino acid usage were obtained from non-effective candidate sequences for the effective designing of cell-adhesive peptides. On comparing the amino acid usage of the top 20 and last 20 peptides from the 180 peptides, the following four brief design rules were indicated: (i) Arg or Lys of positively charged amino acids (except His) could enhance cell adhesion, (ii) small hydrophilic amino acids are favored in cell-adhesion peptides, (iii) negatively charged amino acids and small amino acids (except Gly) could reduce cell adhesion, and (iv) Cys and Met could be excluded from the sequence combination since they have

  7. Expression pattern of peptide and amino acid genes in digestive tract of transporter juvenile turbot ( Scophthalmus maximus L.)

    NASA Astrophysics Data System (ADS)

    Xu, Dandan; He, Gen; Mai, Kangsen; Zhou, Huihui; Xu, Wei; Song, Fei

    2016-04-01

    Turbot ( Scophthalmus maximus L.), a carnivorous fish species with high dietary protein requirement, was chosen to examine the expression pattern of peptide and amino acid transporter genes along its digestive tract which was divided into six segments including stomach, pyloric caeca, rectum, and three equal parts of the remainder of the intestine. The results showed that the expression of two peptide and eleven amino acid transporters genes exhibited distinct patterns. Peptide transporter 1 (PepT1) was rich in proximal intestine while peptide transporter 2 (PepT2) was abundant in distal intestine. A number of neutral and cationic amino acid transporters expressed richly in whole intestine including B0-type amino acid transporter 1 (B0AT1), L-type amino acid transporter 2 (LAT2), T-type amino acid transporter 1 (TAT1), proton-coupled amino acid transporter 1 (PAT1), y+L-type amino acid transporter 1 (y+LAT1), and cationic amino acid transporter 2 (CAT2) while ASC amino acid transporter 2 (ASCT2), sodium-coupled neutral amino acid transporter 2 (SNAT2), and y+L-type amino acid transporter 2 (y+LAT2) abundantly expressed in stomach. In addition, system b0,+ transporters (rBAT and b0,+AT) existed richly in distal intestine. These findings comprehensively characterized the distribution of solute carrier family proteins, which revealed the relative importance of peptide and amino acid absorption through luminal membrane. Our findings are helpful to understand the mechanism of the utilization of dietary protein in fish with a short digestive tract.

  8. Characterisation of neuroprotective efficacy of modified poly-arginine-9 (R9) peptides using a neuronal glutamic acid excitotoxicity model.

    PubMed

    Edwards, Adam B; Anderton, Ryan S; Knuckey, Neville W; Meloni, Bruno P

    2017-02-01

    In a recent study, we highlighted the importance of cationic charge and arginine residues for the neuroprotective properties of poly-arginine and arginine-rich peptides. In this study, using cortical neuronal cultures and an in vitro glutamic acid excitotoxicity model, we examined the neuroprotective efficacy of different modifications to the poly-arginine-9 peptide (R9). We compared an unmodified R9 peptide with R9 peptides containing the following modifications: (i) C-terminal amidation (R9-NH2); (ii) N-terminal acetylation (Ac-R9); (iii) C-terminal amidation with N-terminal acetylation (Ac-R9-NH2); and (iv) C-terminal amidation with D-amino acids (R9D-NH2). The three C-terminal amidated peptides (R9-NH2, Ac-R9-NH2, and R9D-NH2) displayed neuroprotective effects greater than the unmodified R9 peptide, while the N-terminal acetylated peptide (Ac-R9) had reduced efficacy. Using the R9-NH2 peptide, neuroprotection could be induced with a 10 min peptide pre-treatment, 1-6 h before glutamic acid insult, or when added to neuronal cultures up to 45 min post-insult. In addition, all peptides were capable of reducing glutamic acid-mediated neuronal intracellular calcium influx, in a manner that reflected their neuroprotective efficacy. This study further highlights the neuroprotective properties of poly-arginine peptides and provides insight into peptide modifications that affect efficacy.

  9. Evaluation of the effect of D-amino acid incorporation into amyloid-reactive peptides.

    PubMed

    Martin, Emily B; Williams, Angela; Richey, Tina; Wooliver, Craig; Stuckey, Alan; Foster, James S; Kennel, Stephen J; Wall, Jonathan S

    2017-12-11

    Systemic amyloidoses comprise diseases characterized by the deposition of proteinaceous material known as amyloid. Currently, without performing multiple biopsies, there is no way to ascertain the extent of amyloid deposition in patients-a critical piece of information that informs prognosis and therapeutic strategies. We have developed pan-amyloid-targeting peptides for imaging amyloid and recently have adapted these for use as pre-targeting agents in conjunction with immunotherapy. Incorporation of D-amino acids in these peptides may enhance serum half-life, which is an important characteristic of effective peptide therapeutics. Herein, we assess the effects of partial incorporation of D-amino acids into the amyloidophilic peptide p5 on in vivo amyloid reactivity. Peptides, referred to as AQA p5 (d) , aqa p5, and AQA p5, were radiolabeled with iodine-125 and the tissue biodistribution (% injected dose/gram) measured in healthy mice at multiple time points post-injection. Microscopic distribution of the peptides was further visualized using microautoradiography (ARG). Peptides aqa p5 and AQA p5 were injected into healthy and amyloid-laden mice and evaluated by using SPECT/CT imaging at 1, 4 and 24 h post injection. Biodistribution data and ARG revealed persistent retention of [ 125 I] AQA p5 (d) in the liver and kidneys of healthy mice for at least 24 h. In contrast, peptides [ 125 I] aqa p5 and [ 125 I] AQA p5 did not bind these organs and was significantly lower than [ 125 I] AQA p5 (d) at 24 h post injection (p < 0.0001). SPECT/CT imaging of amyloid-laden mice revealed accumulation of both [ 125 I] aqa p5 and [ 125 I] AQA p5 in amyloid-affected organs; whereas, in healthy mice, [ 125 I] aqa p5 was observed in the kidneys and liver at early time points, and free radioiodide liberated during catabolism of [ 125 I] AQA p5 was seen in the stomach and thyroid. Autoradiography confirmed that both [ 125 I] aqa p5 and [ 125 I] AQA p5 peptides specifically bound

  10. Observation of the side chain O-methylation of glutamic acid or aspartic acid containing model peptides by electrospray ionization-mass spectrometry.

    PubMed

    Atik, A Emin; Guray, Melda Z; Yalcin, Talat

    2017-03-15

    O-methylation of the side chains of glutamic acid (E) and aspartic acid (D) residues is generally observed modification when an acidified methanol/water (MeOH/dH 2 O) mixture is used as a solvent system during sample preparation for proteomic research. This chemical modification may result misidentification with endogenous protein methylation; therefore, a special care should be taken during sample handling prior to mass spectrometric analysis. In the current study, we systematically examined the extent of E/D methylation and C-terminus carboxyl group of synthetic model peptides in terms of different incubation temperatures, storage times, and added acid types as well as its percentages. To monitor these effects, C-terminus amidated and free acid forms of synthetic model peptides comprised of E or D residue(s) have been analyzed by electrospray ionization-mass spectrometry (ESI-MS). Additionally, LC-MS/MS experiments were performed to confirm the formation of methylated peptide product. The results showed that the rate of methylation was increased as the temperature increases along with prolong incubation times. Moreover, the extent of methylation was remarkably high when formic acid (FA) used as a protonation agent instead of acetic acid (AA). In addition, it was found that the degree of methylation was significantly decreased by lowering acid percentages in ESI solution. More than one acidic residue containing model peptides have been also used to explore the extent of multiple methylation reaction. Lastly, the ethanol (EtOH) and isopropanol (iPrOH) have been substituted separately with MeOH in sample preparation step to investigate the extent of esterification reaction under the same experimental conditions. However, in the positive perspective of view, this method can be used as a simple, rapid and cheap method for methylation of acidic residues under normal laboratory conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Distinguishing Aspartic and Isoaspartic Acids in Peptides by Several Mass Spectrometric Fragmentation Methods.

    PubMed

    DeGraan-Weber, Nick; Zhang, Jun; Reilly, James P

    2016-12-01

    Six ion fragmentation techniques that can distinguish aspartic acid from its isomer, isoaspartic acid, were compared. MALDI post-source decay (PSD), MALDI 157 nm photodissociation, tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP) charge tagging in PSD and photodissociation, ESI collision-induced dissociation (CID), electron transfer dissociation (ETD), and free-radical initiated peptide sequencing (FRIPS) with CID were applied to peptides containing either aspartic or isoaspartic acid. Diagnostic ions, such as the y-46 and b+H 2 O, are present in PSD, photodissociation, and charge tagging. c • +57 and z-57 ions are observed in ETD and FRIPS experiments. For some molecules, aspartic and isoaspartic acid yield ion fragments with significantly different intensities. ETD and charge tagging appear to be most effective at distinguishing these residues. Graphical Abstract ᅟ.

  12. STP 4-06 Model-Based Technical Data in Procurement, 3D PDF Technology Data Demonstration Project. Phase 1 Summary

    DTIC Science & Technology

    2015-07-01

    O R G STP 4-06 MODEL-BASED TECHNICAL DATA IN PROCUREMENT 3D PDF TECHNOLOGY DATA DEMONSTRATION PROJECT PHASE 1 SUMMARY REPORT DL309T2...LMI’s ISO- certified quality management procedures. J U L Y 2 0 1 5 STP 4-06 MODEL-BASED TECHNICAL DATA IN PROCUREMENT 3D PDF TECHNICAL DATA...Based Technical Data ..................................................................................... 5 3D PDF Demonstration Team

  13. Synthesis of mutual azo prodrugs of anti-inflammatory agents and peptides facilitated by α-aminoisobutyric acid.

    PubMed

    Kennedy, David A; Vembu, Nagarajan; Fronczek, Frank R; Devocelle, Marc

    2011-12-02

    Reported is the synthesis of azo mutual prodrugs of the nonsteroidal anti-inflammatory agents (NSAIDs) 4-aminophenylacetic acid (4-APAA) or 5-aminosalicylic acid (5-ASA) with peptides, including an antibiotic peptide temporin analogue modified at the amino terminal by an α-aminoisobutyric acid (Aib) residue. These prodrugs are designed for colonic delivery of two agents to treat infection and inflammation by the bacterial pathogen Clostridium difficile . © 2011 American Chemical Society

  14. Quantification of amino acids and peptides in an ionic liquid based aqueous two-phase system by LC-MS analysis.

    PubMed

    Oppermann, Sebastian; Oppermann, Christina; Böhm, Miriam; Kühl, Toni; Imhof, Diana; Kragl, Udo

    2018-04-25

    Aqueous two-phase systems (ATPS) occur by the mixture of two polymers or a polymer and an inorganic salt in water. It was shown that not only polymers but also ionic liquids in combination with inorganic cosmotrophic salts are able to build ATPS. Suitable for the formation of ionic liquid-based ATPS systems are hydrophilic water miscible ionic liquids. To understand the driving force for amino acid and peptide distribution in IL-ATPS at different pH values, the ionic liquid Ammoeng 110™ and K 2 HPO 4 have been chosen as a test system. To quantify the concentration of amino acids and peptides in the different phases, liquid chromatography and mass spectrometry (LC-MS) technologies were used. Therefore the peptides and amino acids have been processed with EZ:faast™-Kit from Phenomenex for an easy and reliable quantification method even in complex sample matrices. Partitioning is a surface-dependent phenomenon, investigations were focused on surface-related amino acid respectively peptide properties such as charge and hydrophobicity. Only a very low dependence between the amino acids or peptides hydrophobicity and the partition coefficient was found. Nevertheless, the presented results show that electrostatic respectively ionic interactions between the ionic liquid and the amino acids or peptides have a strong impact on their partitioning behavior.

  15. Improving cell penetration of helical peptides stabilized by N-terminal crosslinked aspartic acids.

    PubMed

    Zhao, Hui; Jiang, Yanhong; Tian, Yuan; Yang, Dan; Qin, Xuan; Li, Zigang

    2017-01-04

    Cell penetration and nucleus translocation efficiency are important for the cellular activities of peptide therapeutics. For helical peptides stabilized by N-terminal crosslinked aspartic acid, correlations between their penetration efficiency/nucleus translocation and physicochemical properties were studied. An increase in hydrophobicity and isoelectric point will promote cellular uptake and nucleus translocation of stabilized helices.

  16. Evaluation of cell-penetrating peptides (CPPs) as vehicles for intracellular delivery of antisense peptide nucleic acid (PNA).

    PubMed

    Bendifallah, Nadia; Rasmussen, Frank Winther; Zachar, Vladimir; Ebbesen, Peter; Nielsen, Peter E; Koppelhus, Uffe

    2006-01-01

    Cell-penetrating peptides (CPPs) are characterized by their ability to be internalized in mammalian cells. To investigate the relative potency of CPPs as carriers of medicinally relevant cargo, a positive read-out assay based on the ability of a peptide nucleic acid (PNA) oligomer to promote correct expression of a recombinant luciferase gene was employed. Seven different CPPs were included in the study: Transportan, oligo-arginine (R7-9), pTat, Penetratin, KFF, SynB3, and NLS. The CPP-PNA conjugates were synthesized by different conjugation chemistries: continuous synthesis, maleimide coupling, and ester or disulfide linkage. Under serum-free conditions PNA-SS-Transportan-amide (ortho)-PNA was found to be the most potent conjugate, resulting in maximum luciferase signal at a concentration of 1-2 microM. (D-Arg)9-PNA showed optimal efficacy at 5 microM but gave rise to only one-third of the luciferase signal obtained with the Transportan conjugate. The pTat- and KFF-PNA conjugates showed significantly lower efficacy. The penetratin-, SynB3-. and NLS-PNA conjugates showed only minimal or no activity. Serum was found to have a drastic negative impact on CPP-driven cellular uptake. PNA-SS-Transportan-acid (ortho) and (D-Arg)9-PNA were least sensitive to the presence of serum. Both the chemical nature and, in the case of Transportan, the position of the peptide PNA coupling were found to have a major impact on the transport capacity of the peptides. However, no simple relationship between linker type and antisense activity of the conjugates could be deduced from the data.

  17. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    PubMed

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Influences of conformations of peptides on stereoinversions and/or isomerizations of aspartic acid residues.

    PubMed

    Oda, Akifumi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Takahashi, Ohgi

    2018-07-01

    Recently, non-enzymatic stereoinversions of aspartic acid (Asp) residues in proteins and peptides have been reported. Here, we performed replica exchange molecular dynamics (REMD) simulations of model peptides (exon 6, 26A-1, and 26A-2) extracted from elastin to investigate their structural features, thereby revealing the factor that influences stereoinversions. For REMD trajectories, we calculated distances between carboxyl carbon in Asp and amide nitrogen in the (n + 1) residue (CN distances). Because bond formation between carbon and nitrogen is indispensable to the formation of a succinimide intermediate the distance between them seems to play an important role in stereoinversion. Moreover, we calculated polar surface areas (PSAs) for the trajectories, finding that CN distances and PSA were different for each peptide, with the longest CN distance and smallest PSA observed for exon 6 peptide, where stereoinversion of Asp is the slowest. Although the average CN distance was shorter for exon 26A-1 peptide than for exon 26A-2 peptide, the number of conformations with CN distances <3.0 Å was greater for exon 26A-2 peptide than for exon 26A-1 peptide. Furthermore, PSA for amide nitrogen of the (n + 1) residue was larger for exon 26A-2 peptide than for exon 26A-1 peptide. These results indicated that the flexibility of Asp and (n + 1) residues and hydrophilicity of peptides, especially in the (n + 1) residue, play important roles in the stereoinversion of Asp. This article is part of a Special Issue entitled: D-Amino acids: biology in the mirror, edited by Dr. Loredano Pollegioni, Dr. Jean-Pierre Mothet and Dr. Molla Gianluca. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Anhydrous trifluoroacetic acid pretreatment converts insoluble polyglutamine peptides to soluble monomers.

    PubMed

    Burra, Gunasekhar; Thakur, Ashwani Kumar

    2015-12-01

    The data provided in this article are related to the research article entitled "Unaided trifluoroacetic acid pretreatment solubilizes polyglutamine (polyGln) peptides and retains their biophysical properties of aggregation" by Burra and Thakur (in press) [1]. This research article reports data from size exclusion chromatography (SEC), reversed phase-high performance liquid chromatography (RP-HPLC) and mass spectrometry (MS) assays. This data show that trifluoroacetic acid (TFA) has the ability to convert insoluble polyGln peptides to soluble monomers. The data also clarify the possibility of trifluoroacetylation modification caused due to TFA. We hope the data presented here will enhance the understanding of polyGln disaggregation and solubilization. For more insightful and useful discussions, see the research article published in Analytical Biochemistry: Methods in the Biological Sciences (Burra and Thakur, in press [1]).

  20. D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP.

    PubMed

    Jia, Fengjing; Wang, Jiayi; Peng, Jinxiu; Zhao, Ping; Kong, Ziqing; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-10-01

    With the increasing emergence of resistant microbes toward conventional antimicrobial agents, there is an urgent need for the development of antimicrobial agents with novel action mode. Antimicrobial peptides (AMPs) are believed to be one kind of ideal alternatives. However, AMPs can be easily degraded by protease, which limited their therapeutic use. In the present study, D-amino acid substitution strategy was employed to enhance the stability of polybia-CP. We investigated the stability of peptides against the degradation of trypsin and chymotrypsin by determining the antimicrobial activity or determining the HPLC profile of peptides after incubation with proteases. Our results showed that both the all D-amino acid derivative (D-CP) and partial D-lysine substitution derivative (D-lys-CP) have an improved stability against trypsin and chymotrypsin. Although D-CP takes left-hand α-helical conformation and D-lys-CP loses some α-helical content, both of the D-amino acid-substituted derivatives maintain their parental peptides' membrane active action mode. In addition, D-lys-CP showed a slight weaker antimicrobial activity than polybia-CP, but the hemolytic activity decreased greatly. These results suggest that D-CP and D-lys-CP can offer strategy to improve the property of AMPs and may be leading compounds for the development of novel antimicrobial agents. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. 2-Chlorotrityl chloride resin. Studies on anchoring of Fmoc-amino acids and peptide cleavage.

    PubMed

    Barlos, K; Chatzi, O; Gatos, D; Stavropoulos, G

    1991-06-01

    The esterification of 2-chlorotrityl chloride resin with Fmoc-amino acids in the presence of DIEA is studied under various conditions. High esterification yields are obtained using 0.6 equiv. Fmoc-amino acid/mmol resin in DCM or DCE, in 25 min, at room temperature. The reaction proceeds without by product formation even in the case of Fmoc-Asn and Fmoc-Gln. The quantitative and easy cleavage of amino acids and peptides from 2-chlorotrityl resin, by using AcOH/TFE/DCM mixtures, is accomplished within 15-60 min at room temperature, while t-butyl type protecting groups remain unaffected. Under these exceptionally mild conditions 2-chlorotrityl cations generated during the cleavage of amino acids and peptides from resin do not attack the nucleophilic side chains of Trp, Met, and Tyr.

  2. Influence of the yeast strain on the changes of the amino acids, peptides and proteins during sparkling wine production by the traditional method.

    PubMed

    Martínez-Rodríguez, A J; Carrascosa, A V; Martín-Alvarez, P J; Moreno-Arribas, V; Polo, M C

    2002-12-01

    The influence of five yeast strains on the nitrogen fractions, amino acids, peptides and proteins, during 12 months of aging of sparkling wines produced by the traditional or Champenoise method, was studied. High-performance liquid chromatography (HPLC) techniques were used for analysis of the amino acid and peptide fractions. Proteins plus polypeptides were determined by the colorimetric Bradford method. Four main stages were detected in the aging of wines with yeast. In the first stage, a second fermentation took place; amino acids and proteins plus polypeptides diminished, and peptides were liberated. In the second stage, there was a release of amino acids and proteins, and peptides were degraded. In the third stage, the release of proteins and peptides predominated. In the fourth stage, the amino acid concentration diminished. The yeast strain used influenced the content of free amino acids and peptides and the aging time in all the nitrogen fractions.

  3. Cyclic Sulfamidate Enabled Syntheses of Amino Acids, Peptides, Carbohydrates, and Natural Products

    EPA Science Inventory

    This article reviews the emergence of cyclic sulfamidates as versatile intermediatesfor the synthesis of unnatural amino acids, chalcogen peptides, modified sugars, drugs and drug candidates, and important natural products.

  4. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide.

    PubMed

    Verdon, Julien; Labanowski, Jérome; Sahr, Tobias; Ferreira, Thierry; Lacombe, Christian; Buchrieser, Carmen; Berjeaud, Jean-Marc; Héchard, Yann

    2011-04-01

    Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1μM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid

  5. Two-level QSAR network (2L-QSAR) for peptide inhibitor design based on amino acid properties and sequence positions.

    PubMed

    Du, Q S; Ma, Y; Xie, N Z; Huang, R B

    2014-01-01

    In the design of peptide inhibitors the huge possible variety of the peptide sequences is of high concern. In collaboration with the fast accumulation of the peptide experimental data and database, a statistical method is suggested for peptide inhibitor design. In the two-level peptide prediction network (2L-QSAR) one level is the physicochemical properties of amino acids and the other level is the peptide sequence position. The activity contributions of amino acids are the functions of physicochemical properties and the sequence positions. In the prediction equation two weight coefficient sets {ak} and {bl} are assigned to the physicochemical properties and to the sequence positions, respectively. After the two coefficient sets are optimized based on the experimental data of known peptide inhibitors using the iterative double least square (IDLS) procedure, the coefficients are used to evaluate the bioactivities of new designed peptide inhibitors. The two-level prediction network can be applied to the peptide inhibitor design that may aim for different target proteins, or different positions of a protein. A notable advantage of the two-level statistical algorithm is that there is no need for host protein structural information. It may also provide useful insight into the amino acid properties and the roles of sequence positions.

  6. Critical Amino Acids in the Active Site of Meprin Metalloproteinases for Substrate and Peptide Bond Specificity*

    PubMed Central

    Villa, James P.; Bertenshaw, Greg P.; Bond, Judith S.

    2008-01-01

    SUMMARY The protease domains of the evolutionarily-related α and ß subunits of meprin metalloproteases are approximately 55% identical at the amino acid level, however, their substrate and peptide bond specificities differ markedly. The meprin ß subunit favors acidic residues proximal to the scissile bond, while the α subunit prefers small or aromatic amino acids flanking the scissile bond. Thus gastrin, a peptide that contains a string of five Glu residues, is an excellent substrate for meprin ß while it is not hydrolyzed by meprin α. Work herein aimed to identify critical amino acids in the meprin active sites that determine the substrate specificity differences. Sequence alignments and homology models, based on the crystal structure of the crayfish astacin, showed electrostatic differences within the meprin active sites. Site-directed mutagenesis of active site residues demonstrated that replacement of a hydrophobic residue by a basic amino acid enabled the meprin α protease to cleave gastrin. The meprin αY199K mutant was most effective; the corresponding mutation of meprin ßK185Y resulted in decreased activity toward gastrin. Peptide cleavage site determinations and kinetic analyses using a variety of peptides extended evidence that meprin αTyr199/ßLys185 are substrate specificity determinants in meprin active sites. These studies shed light on the molecular basis for the substrate specificity differences of astacin metalloproteinases. PMID:12888571

  7. Development of SI-traceable C-peptide certified reference material NMIJ CRM 6901-a using isotope-dilution mass spectrometry-based amino acid analyses.

    PubMed

    Kinumi, Tomoya; Goto, Mari; Eyama, Sakae; Kato, Megumi; Kasama, Takeshi; Takatsu, Akiko

    2012-07-01

    A certified reference material (CRM) is a higher-order calibration material used to enable a traceable analysis. This paper describes the development of a C-peptide CRM (NMIJ CRM 6901-a) by the National Metrology Institute of Japan using two independent methods for amino acid analysis based on isotope-dilution mass spectrometry. C-peptide is a 31-mer peptide that is utilized for the evaluation of β-cell function in the pancreas in clinical testing. This CRM is a lyophilized synthetic peptide having the human C-peptide sequence, and contains deamidated and pyroglutamylated forms of C-peptide. By adding water (1.00 ± 0.01) g into the vial containing the CRM, the C-peptide solution in 10 mM phosphate buffer saline (pH 6.6) is reconstituted. We assigned two certified values that represent the concentrations of total C-peptide (mixture of C-peptide, deamidated C-peptide, and pyroglutamylated C-peptide) and C-peptide. The certified concentration of total C-peptide was determined by two amino acid analyses using pre-column derivatization liquid chromatography-mass spectrometry and hydrophilic chromatography-mass spectrometry following acid hydrolysis. The certified concentration of C-peptide was determined by multiplying the concentration of total C-peptide by the ratio of the relative area of C-peptide to that of the total C-peptide measured by liquid chromatography. The certified value of C-peptide (80.7 ± 5.0) mg/L represents the concentration of the specific entity of C-peptide; on the other hand, the certified value of total C-peptide, (81.7 ± 5.1) mg/L can be used for analyses that does not differentiate deamidated and pyroglutamylated C-peptide from C-peptide itself, such as amino acid analyses and immunochemical assays.

  8. C9/12 Ribbon-Like Structures in Hybrid Peptides Alternating α- and Thiazole-Based γ-Amino Acids.

    PubMed

    Bonnel, Clément; Legrand, Baptiste; Simon, Matthieu; Martinez, Jean; Bantignies, Jean-Louis; Kang, Young Kee; Wenger, Emmanuel; Hoh, Francois; Masurier, Nicolas; Maillard, Ludovic T

    2017-12-11

    According to their restricted conformational freedom, heterocyclic γ-amino acids are usually considered to be related to Z-vinylogous γ-amino acids. In this context, oligomers alternating α-amino acids and thiazole-based γ-amino acids (ATCs) were expected to fold into a canonical 12-helical shape as described for α/γ-hybrid peptides composed of cis-α/β-unsaturated γ-amino acids. However, through a combination of X-ray crystallography, NMR spectroscopy, FTIR experiments, and DFT calculations, it was determined that the folding behavior of ATC-containing hybrid peptides is much more complex. The homochiral α/(S)-ATC sequences were unable to adopt a stable conformation, whereas the heterochiral α/(R)-ATC peptides displayed novel ribbon structures stabilized by unusual C 9/12 -bifurcated hydrogen bonds. These ribbon structures could be considered as a succession of pre-organized γ/α dipeptides and may provide the basis for designing original α-helix mimics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Regional expression and dietary regulation of rat small intestinal peptide and amino acid transporter mRNAs.

    PubMed

    Erickson, R H; Gum, J R; Lindstrom, M M; McKean, D; Kim, Y S

    1995-11-02

    RT-PCR was used to obtain rat small intestinal cDNAs for two peptide transporters, showing conclusively for the first time that both are present in normal intestinal mucosa. Sequencing of these cDNAs showed them to be highly homologous and similar to two different types of peptide transport proteins from either colorectal carcinoma cells (Caco-2) or human and rabbit intestine. An even distribution profile of steady state levels of mRNA for both peptide transporters was observed along the longitudinal axis of small intestine. Both were upregulated in the distal regions of intestine by a high protein diet. Also, high levels of the rat high affinity glutamate transporter EAAC1 were observed in the distal intestine. These results suggest that the distal regions of small intestine play an important role in the absorption of some amino acids and peptides. Furthermore this area appears to be a primary site where dietary-induced changes in peptide and amino acid transport occurs.

  10. Distribution of acidic and neutral drugs in surface waters near sewage treatment plants in the lower Great Lakes, Canada.

    PubMed

    Metcalfe, Chris D; Miao, Xiu-Sheng; Koenig, Brenda G; Struger, John

    2003-12-01

    Prescription and nonprescription drugs have been detected in rivers and streams in Europe and the United States. Sewage treatment plants (STPs) are an important source of these contaminants, but few data exist on the spatial distribution of drugs in surface waters near STPs. Samples of surface water were collected in the summer and fall of 2000 at open-water sites in the lower Great Lakes (Lake Ontario and Lake Erie), at sites near the two STPs for the city of Windsor (ON, Canada), and at sites in Hamilton Harbour (ON, Canada), an embayment of western Lake Ontario that receives discharges from several STPs. In a follow-up study in the summer of 2002, samples of surface water and final effluent from adjacent STPs were collected from sites in Hamilton Harbour and Windsor. In addition, surface water and STP effluent samples were collected in Peterborough (ON, Canada). All samples of surface water and STP effluents were analyzed for selected acidic and neutral drugs. In the survey of Hamilton Harbour and Windsor conducted in 2000, acidic drugs and the antiepileptic drug carbamazepine were detected at ng/L concentrations at sites that were up to 500 m away from the STP, but the hydrological conditions of the receiving waters strongly influenced the spatial distribution of these compounds. Drugs were not detected at open-water locations in western Lake Erie or in the Niagara River near the municipality of Niagara-on-the-Lake (ON, Canada). However, clofibric acid, ketoprofen, fenoprofen, and carbamazepine were detected in samples collected in the summer of 2000 at sites in Lake Ontario and at a site in the Niagara River (Fort Erie, ON, Canada) that were relatively remote from STP discharges. Follow-up studies in the summer of 2002 indicated that concentrations of acidic and neutral drugs in surface waters near the point of sewage discharge into the Little River (ON, Canada) STP were approximately equal to the concentrations in the final effluent from the STP. Caffeine and

  11. Selective detection of carbohydrates and their peptide conjugates by ESI-MS using synthetic quaternary ammonium salt derivatives of phenylboronic acids.

    PubMed

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  12. Selective Detection of Carbohydrates and Their Peptide Conjugates by ESI-MS Using Synthetic Quaternary Ammonium Salt Derivatives of Phenylboronic Acids

    NASA Astrophysics Data System (ADS)

    Kijewska, Monika; Kuc, Adam; Kluczyk, Alicja; Waliczek, Mateusz; Man-Kupisinska, Aleksandra; Lukasiewicz, Jolanta; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2014-06-01

    We present new tags based on the derivatives of phenylboronic acid and apply them for the selective detection of sugars and peptide-sugar conjugates in mass spectrometry. We investigated the binding of phenylboronic acid and its quaternary ammonium salt (QAS) derivatives to carbohydrates and peptide-derived Amadori products by HR-MS and MS/MS experiments. The formation of complexes between sugar or sugar-peptide conjugates and synthetic tags was confirmed on the basis of the unique isotopic distribution resulting from the presence of boron atom. Moreover, incorporation of a quaternary ammonium salt dramatically improved the efficiency of ionization in mass spectrometry. It was found that the formation of a complex with phenylboronic acid stabilizes the sugar moiety in glycated peptides, resulting in simplification of the fragmentation pattern of peptide-derived Amadori products. The obtained results suggest that derivatization of phenylboronic acid as QAS is a promising method for sensitive ESI-MS detection of carbohydrates and their conjugates formed by non-enzymatic glycation or glycosylation.

  13. Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity.

    PubMed

    Almahboub, Sarah A; Narancic, Tanja; Devocelle, Marc; Kenny, Shane T; Palmer-Brown, William; Murphy, Cormac; Nikodinovic-Runic, Jasmina; O'Connor, Kevin E

    2018-01-01

    Terminal modification of peptides is frequently used to improve their hydrophobicity. While N-terminal modification with fatty acids (lipidation) has been reported previously, C-terminal lipidation is limited as it requires the use of linkers. Here we report the use of a biocatalyst for the production of an unnatural fatty amino acid, (S)-2-aminooctanoic acid (2-AOA) with enantiomeric excess > 98% ee and the subsequent use of 2-AOA to modify and improve the activity of an antimicrobial peptide. A transaminase originating from Chromobacterium violaceum was employed with a conversion efficiency 52-80% depending on the ratio of amino group donor to acceptor. 2-AOA is a fatty acid with amino functionality, which allowed direct C- and N-terminal conjugation respectively to an antimicrobial peptide (AMP) derived from lactoferricin B. The antibacterial activity of the modified peptides was improved by up to 16-fold. Furthermore, minimal inhibitory concentrations (MIC) of C-terminally modified peptide were always lower than N-terminally conjugated peptides. The C-terminally modified peptide exhibited MIC values of 25 μg/ml for Escherichia coli, 50 μg/ml for Bacillus subtilis, 100 μg/ml for Salmonella typhimurium, 200 μg/ml for Pseudomonas aeruginosa and 400 μg/ml for Staphylococcus aureus. The C-terminally modified peptide was the only peptide tested that showed complete inhibition of growth of S. aureus.

  14. CycloPs: generating virtual libraries of cyclized and constrained peptides including nonnatural amino acids.

    PubMed

    Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J

    2011-04-25

    We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .

  15. D-Amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties

    PubMed Central

    2005-01-01

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution. PMID:16033333

  16. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties.

    PubMed

    Torres, Allan M; Tsampazi, Chryssanthi; Geraghty, Dominic P; Bansal, Paramjit S; Alewood, Paul F; Kuchel, Philip W

    2005-10-15

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution.

  17. Tritium labeling of amino acids and peptides with liquid and solid tritium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souers, P.C.; Coronado, P.R.; Peng, C.T.

    Amino acids and peptides were labeled with liquid and solid tritium at 21/degree/K and 9/degree/K. At these low temperatures radiation degradation is minimal, and tritium incorporation increases with tritium concentration and exposure time. Ring saturation in L-phenylalanine does not occur. Peptide linkage in oligopeptides is stable toward tritium. Deiodination in 3-iodotyrosine and 3,5-diiodotyrosine occurs readily and proceeds in steps by losing one iodine atom at a time. Nickel and noble metal supported catalysts when used as supports for dispersion of the substrate promote tritium labeling at 21 K. Our study shows that both liquid and solid tritiums are potentially usefulmore » agents for labeling peptides and proteins.« less

  18. Acidity-Triggered Tumor Retention/Internalization of Chimeric Peptide for Enhanced Photodynamic Therapy and Real-Time Monitoring of Therapeutic Effects.

    PubMed

    Han, Kai; Zhang, Wei-Yun; Ma, Zhao-Yu; Wang, Shi-Bo; Xu, Lu-Ming; Liu, Jia; Zhang, Xian-Zheng; Han, He-You

    2017-05-17

    Photodynamic therapy (PDT) holds great promise in tumor treatment. Nevertheless, it remains highly desirable to develop easy-to-fabricated PDT systems with improved tumor accumulation/internalization and timely therapeutic feedback. Here, we report a tumor-acidity-responsive chimeric peptide for enhanced PDT and noninvasive real-time apoptosis imaging. Both in vitro and in vivo studies revealed that a tumor mildly acidic microenvironment could trigger rapid protonation of carboxylate anions in chimeric peptide, which led to increased ζ potential, improved hydrophobicity, controlled size enlargement, and precise morphology switching from sphere to spherocylinder shape of the chimeric peptide. All of these factors realized superfast accumulation and prolonged retention in the tumor region, selective cellular internalization, and enhanced PDT against the tumor. Meanwhile, this chimeric peptide could further generate reactive oxygen species and initiate cell apoptosis during PDT. The subsequent formation of caspase-3 enzyme hydrolyzed the chimeric peptide, achieving a high signal/noise ratio and timely fluorescence feedback. Importantly, direct utilization of the acidity responsiveness of a biofunctional Asp-Glu-Val-Asp-Gly (DEVDG, caspase-3 enzyme substrate) peptide sequence dramatically simplified the preparation and increased the performance of the chimeric peptide furthest.

  19. Amino Acid and Peptide Utilization Profiles of the Fluoroacetate-Degrading Bacterium Synergistetes Strain MFA1 Under Varying Conditions.

    PubMed

    Leong, Lex E X; Denman, Stuart E; Hugenholtz, Philip; McSweeney, Christopher S

    2016-02-01

    Synergistetes strain MFA1 is an asaccharolytic ruminal bacterium isolated based on its ability to degrade fluoroacetate, a plant toxin. The amino acid and peptide requirements of the bacterium were investigated under different culturing conditions. The growth of strain MFA1 and its fluoroacetate degradation rate were enhanced by peptide-rich protein hydrolysates (tryptone and yeast extract) compared to casamino acid, an amino acid-rich protein hydrolysate. Complete utilization and preference for arginine, asparagine, glutamate, glycine, and histidine as free amino acids from yeast extract were observed, while the utilization of serine, threonine, and lysine in free form and peptide-bound glutamate was stimulated during growth on fluoroacetate. A predominant peptide in yeast extract preferentially utilized by strain MFA1 was partially characterized by high-liquid performance chromatography-mass spectrometry as a hepta-glutamate oligopeptide. Similar utilization profiles of amino acids were observed between the co-culture of strain MFA1 with Methanobrevibacter smithii without fluoroacetate and pure strain MFA1 culture with fluoroacetate. This suggests that growth of strain MFA1 could be enhanced by a reduction of hydrogen partial pressure as a result of hydrogen removal by a methanogen or reduction of fluoroacetate.

  20. Preparation of a Trp-BODIPY fluorogenic amino acid to label peptides for enhanced live-cell fluorescence imaging.

    PubMed

    Mendive-Tapia, Lorena; Subiros-Funosas, Ramon; Zhao, Can; Albericio, Fernando; Read, Nick D; Lavilla, Rodolfo; Vendrell, Marc

    2017-08-01

    Fluorescent peptides are valuable tools for live-cell imaging because of the high specificity of peptide sequences for their biomolecular targets. When preparing fluorescent versions of peptides, labels must be introduced at appropriate positions in the sequences to provide suitable reporters while avoiding any impairment of the molecular recognition properties of the peptides. This protocol describes the preparation of the tryptophan (Trp)-based fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH and its incorporation into peptides for live-cell fluorescence imaging-an approach that is applicable to most peptide sequences. Fmoc-Trp(C 2 -BODIPY)-OH contains a BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) fluorogenic core, which works as an environmentally sensitive fluorophore, showing high fluorescence in lipophilic conditions. It is attached to Trp via a spacer-free C-C linkage, resulting in a labeled amino acid that can mimic the molecular interactions of Trp, enabling wash-free imaging. This protocol covers the chemical synthesis of the fluorogenic amino acid Fmoc-Trp(C 2 -BODIPY)-OH (3-4 d), the preparation of the labeled antimicrobial peptide BODIPY-cPAF26 by solid-phase synthesis (6-7 d) and its spectral and biological characterization as a live-cell imaging probe for different fungal pathogens. As an example, we include a procedure for using BODIPY-cPAF26 for wash-free imaging of fungal pathogens, including real-time visualization of Aspergillus fumigatus (5 d for culturing, 1-2 d for imaging).

  1. Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas.

    PubMed

    Glöggler, Stefan; Müller, Rafael; Colell, Johannes; Emondts, Meike; Dabrowski, Martin; Blümich, Bernhard; Appelt, Stephan

    2011-08-14

    Signal Amplification by Reversible-Exchange (SABRE) is a method of hyperpolarizing substrates by polarization transfer from para-hydrogen without hydrogenation. Here, we demonstrate that this method can be applied to hyperpolarize small amounts of all proteinogenic amino acids and some chosen peptides down to the nanomole regime and can be detected in a single scan in low-magnetic fields down to 0.25 mT (10 kHz proton frequency). An outstanding feature is that depending on the chemical state of the used catalyst and the investigated amino acid or peptide, hyperpolarized hydrogen-deuterium gas is formed, which was detected with (1)H and (2)H NMR spectroscopy at low magnetic fields of B(0) = 3.9 mT (166 kHz proton frequency) and 3.2 mT (20 kHz deuterium frequency).

  2. Formation of peptides from amino acids by single or multiple additions of ATP to suspensions of nucleoproteinoid microparticles

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W.

    1981-01-01

    The synthesis of peptides from individual amino acids or pairs of amino acids and ATP in the presence of catalysis by nucleoproteinoid microparticles is investigated. Experiments were performed with suspensions formed from the condensation of lysine-rich and acidic proteinoids with polyadenylic acid, to which were added glycine, phenylalanine, proline, lysine or glycine-phenylalanine mixtures, and ATP either at once or serially. Peptide yields are found to be greatest for equal amounts of acidic and basic proteinoids. The addition of imidazole is found to alter the preference of glycine-phenylalanine mixtures to form mixed heteropeptides rather than homopeptides. A rapid ATP decay in the peptide synthesis reaction is observed, and a greater yield is obtained for repeated small additions than for a single addition of ATP. The experimental system has properties similar to modern cells, and represents an organizational unit ready for the evolution of associated biochemical pathways.

  3. Amino acid sequences of peptides from a chymotryptic digest of a urea-soluble protein fraction (U.S.3) from oxidized wool

    PubMed Central

    Corfield, M. C.; Fletcher, J. C.

    1969-01-01

    1. A chymotryptic digest of the protein fraction U.S.3. from oxidized wool was separated into 51 peptide fractions by chromatography on a column of cation-exchange resin. 2. The less acidic fractions were separated into their component peptides by a combination of cation-exchange-resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid sequences of 34 of these peptides were elucidated, and those of 14 others partially determined. 4. Overlaps between the tryptic and chymotryptic peptides from fraction U.S.3 have enabled ten extended amino acid sequences to be deduced, the longest containing 20 amino acid residues. 5. The relevance of the results to the structures of the helical and non-helical regions of wool is discussed. PMID:5395876

  4. Recent Advances in Chemical Modification of Peptide Nucleic Acids

    PubMed Central

    Rozners, Eriks

    2012-01-01

    Peptide nucleic acid (PNA) has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification. PMID:22991652

  5. Upgrading of the STP Uithoorn: treatment of nutrient rich wastewater from horticulture.

    PubMed

    Piekema, P; Neef, R

    2005-01-01

    The STP Uithoorn will be upgraded to accommodate the treatment of wastewater from a growing population and to meet more stringent nutrient discharge limits in 2006. In 2003 a system choice and preliminary design was made for the upgrading. A special feature is the nutrient rich wastewater flow from the rapidly developing horticulture in the area. Since the future loads from horticulture are highly uncertain, flexibility of the STP after upgrading is an important issue. A three stage system was selected: improved physical-chemical primary treatment, secondary treatment by activated sludge, and tertiary treatment by denitrifying filters. In this way an important part of the existing infrastructure can be reused, and flexibility is assured by constructing the tertiary treatment in modules and by providing a wide range of operational control possibilities. In this paper the process of system choice and selection of type of tertiary treatment are described, as well as the optimisation of the existing treatment. In order to determine the feasibility of allowing a high loading rate on the existing secondary clarifiers, a two-dimensional hydraulic model of the clarification process was used.

  6. Identification and binding mechanism of phage displayed peptides with specific affinity to acid-alkali treated titanium.

    PubMed

    Sun, Yuhua; Tan, Jing; Wu, Baohua; Wang, Jianxin; Qu, Shuxin; Weng, Jie; Feng, Bo

    2016-10-01

    Acid-alkali treatment is one of means widely used for preparing bioactive titanium surfaces. Peptides with specific affinity to titanium surface modified by acid-alkali two-steps treatment were obtained via phage display technology. Out of the eight new unique peptides, titanium-binding peptide 54 displayed by monoclonal M13 phage at its pIII coat protein (TBP54-M13 phage) was proved to have higher binding affinity to the substrate. The binding interaction occurred at the domain from phenylalanine at position 1 to arginine at position 6 in the sequences of TBP54 (FAETHRGFHFSF) mainly via the reaction of these residues with the Ti surface. Together the coordination and electrostatic interactions controlled the specific binding of the phage to the substrate. The binding affinity was dependent on the surface basic hydroxyl group content. In addition, the phage showed a different interaction way with the Ti surface without acid-alkali treatment along with an impaired affinity. This study could provide more understanding of the interaction mechanism between the selected peptide and its specific substrate, and develop a promising method for the biofunctionalization of titanium. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Acidic-basic properties of three alanine-based peptides containing acidic and basic side chains: comparison between theory and experiment.

    PubMed

    Makowska, Joanna; Bagińska, Katarzyna; Liwo, Adam; Chmurzyński, Lech; Scheraga, Harold A

    2008-01-01

    The purpose of this work was to evaluate the effect of the nature of the ionizable end groups, and the solvent, on their acid-base properties in alanine-based peptides. Hence, the acid-base properties of three alanine-based peptides: Ac-KK-(A)(7)-KK-NH(2) (KAK), Ac-OO-(A)(7)-DD-NH(2) (OAD), Ac-KK-(A)(7)-EE-NH(2) (KAE), where A, D, E, K, and O denote alanine, aspartic acid, glutamic acid, lysine, and ornithine, respectively, were determined in water and in methanol by potentiometry. With the availability of these data, the ability of two theoretical methods to simulate pH-metric titration of those peptides was assessed: (i) the electrostatically driven Monte Carlo method with the ECEPP/3 force field and the Poisson-Boltzmann approach to compute solvation energy (EDMC/PB/pH), and (ii) the molecular dynamics method with the AMBER force field and the Generalized Born model (MD/GB/pH). For OAD and KAE, pK(a1) and pK(a2) correspond to the acidic side chains. For all three compounds in both solvents, the pK(a1) value is remarkably lower than the pK(a) of a compound modeling the respective isolated side chain, which can be explained by the influence of the electrostatic field from positively charged ornithine or lysine side chains. The experimental titration curves are reproduced well by the MD/GB/pH approach, the agreement being better if restraints derived from NMR measurements are incorporated in the conformational search. Poorer agreement is achieved by the EDMC/PB/pH method.

  8. The Prebiotic Synthesis of Ethylenediamine Monoacetic Acid, The Repeating Unit of Peptide Nucleic Acids

    NASA Technical Reports Server (NTRS)

    Nelson, Kevin E.; Miller, Stanley L.

    1992-01-01

    The polymerization of ribonucleic acids or their precursors constitutes an important event in prebiotic chemistry. The various problems using ribonucleotides to make RNA suggest that there may have been a precursor. An attractive possibility are the peptide nucleic acids (PNA). PNAs are nucleotide analogs that make use of a polymer of ethylenediamine monoacetic acid (EDMA or 2-amninoethyl glycine) with the bases attached by an acetic acid. EDMA is an especially attractive alternative to the ribose phosphate or deoxyribose phosphate backbone because it contains no chiral centers and is potentially prebiotic, but there is no reported prebiotic synthesis. We have synthesized both EDMA and ethylenediamine diacetic acid (EDDA) from the prebiotic compounds ethylenediamine, formaldehyde, and hydrogen cyanide. The yields of EDMA range from 11 to 79% along with some sEDDA and uEDDA. These reactions work with concentrations of 10(exp -1)M and as low as 10(exp -4)M, and the reaction is likely to be effective at even lower concentrations. Ethylenediamine is a likely prebiotic compound, but it has not yet been demonstrated, although compounds such as ethanolamine and cysteamine have been proven to be prebiotic. Under neutral pH and heating at l00 C, EDMA is converted to the lactam, monoketopiperazine (MKP). The cyclization occurs and has an approximate ratio of MKP/EDMA = 3 at equilibrium. We have measured the solubilities of EDMA center dot H20 as 6.4 m, EDMA center dot HCl center dot H20 as 13.7 m, and EDMA center dot 2HCl center dot H20 as 3.4 m. These syntheses together with the high solubility of EDMA suggest that EDMA would concentrate in drying lagoons and might efficiently form polymers. Given the instability of ribose and the poor polymerizability of nucleotides, the prebiotic presence of EDMA and the possibility of its polymerization raises the possibility that PNAs are the progenitors of present day nucleic acids. A pre-RNA world may have existed in which PNAs or

  9. Acid-base titration of melanocortin peptides: evidence of Trp rotational conformers interconversion.

    PubMed

    Fernandez, Roberto M; Vieira, Renata F F; Nakaie, Clóvis R; Lamy, M Teresa; Ito, Amando S

    2005-01-01

    Tryptophantime-resolved fluorescence was used to monitor acid-base titration properties of alpha-melanocyte stimulating hormone (alpha-MSH) and the biologically more potent analog [Nle4, D-Phe7]alpha -MSH (NDP-MSH), labeled or not with the paramagnetic amino acid probe 2,2,6,6-tetramthylpiperidine-N-oxyl-4-amino-4-carboxylic acid (Toac). Global analysis of fluorescence decay profiles measured in the pH range between 2.0 and 11.0 showed that, for each peptide, the data could be well fitted to three lifetimes whose values remained constant. The less populated short lifetime component changed little with pH and was ascribed to Trp g+ chi1 rotamer, in which electron transfer deactivation predominates over fluorescence. The long and intermediate lifetime preexponential factors interconverted along that pH interval and the result was interpreted as due to interconversion between Trp g- and trans chi1 rotamers, driven by conformational changes promoted by modifications in the ionization state of side-chain residues. The differences in the extent of interconversion in alpha-MSH and NDP-MSH are indicative of structural differences between the peptides, while titration curves suggest structural similarities between each peptide and its Toac-labeled species, in aqueous solution. Though less sensitive than fluorescence, the Toac electron spin resonance (ESR) isotropic hyperfine splitting parameter can also monitor the titration of side-chain residues located relatively far from the probe. Copyright (c) 2005 Wiley Periodicals, Inc.

  10. Multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer: Design, synthesis, and dissolving thrombus.

    PubMed

    Zhang, Shao-Fei; Lü, Shaoyu; Gao, Chunmei; Yang, Jiandong; Yan, Xiang; Li, Tao; Wen, Na; Huang, Mengjie; Liu, Mingzhu

    2018-06-01

    Thrombotic events affect many individuals in a number of ways, all of which can cause significant morbidity and mortality. Nattokinase (NK), as a novel thrombolytic drug, has been used for thrombolytic therapy. It not only possesses plasminogen activator activity, but also directly digests fibrin through limited proteolysis. However, it may undergo inactivation and denaturation in the harsh external environment. In this study, a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer was fabricated and used as a carrier for NK protection and delivery. Different arm numbers of polyethylene glycol-polyglutamic acid peptide dendrimers (x-PEG(G 3 ) x , x = 2, 4, 6, 8) were designed, prepared, and characterized by 1 H NMR and FTIR. Then, x-PEG(G 3 ) x were loaded with NK to form nanocomposites. Their size and morphology were determined by dynamic light scattering and transmission electron microscopy. Enzyme activity was evaluated via UV-Vis absorbance spectra, fluorescence spectra, circular dichroism spectra, and zeta potential measurements. The study reveals that the obtained x-PEG(G 3 ) x /NK nanocomposites possess high enzyme activity. In addition, the nanocomposites show increased viability of rat macrophage cells, and excellent thrombolysis ability in vitro and in vivo. This work establishes a multiarm-polyethylene glycol-polyglutamic acid peptide dendrimer with potential application in NK carrier and thrombolytic therapy. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1687-1696, 2018. © 2018 Wiley Periodicals, Inc.

  11. Complete covalent structure of statherin, a tyrosine-rich acidic peptide which inhibits calcium phosphate precipitation from human parotid saliva.

    PubMed

    Schlesinger, D H; Hay, D I

    1977-03-10

    The complete amino acid sequence of human salivary statherin, a peptide which strongly inhibits precipitation from supersaturated calcium phosphate solutions, and therefore stabilizes supersaturated saliva, has been determined. The NH2-terminal half of this Mr=5380 (43 amino acids) polypeptide was determined by automated Edman degradations (liquid phase) on native statherin. The peptide was digested separately with trypsin, chymotrypsin, and Staphylococcus aureus protease, and the resulting peptides were purified by gel filtration. Manual Edman degradations on purified peptide fragments yielded peptides that completed the amino acid sequence through the penultimate COOH-terminal residue. These analyses, together with carboxypeptidase digestion of native statherin and of peptide fragments of statherin, established the complete sequence of the molecule. The 2 serine residues (positions 2 and 3) in statherin were identified as phosphoserine. The amino acid sequence of human salivary statherin is striking in a number of ways. The NH2-terminal one-third is highly polar and includes three polar dipeptides: H2PO3-Ser-Ser-H2PO3-Arg-Arg-, and Glu-Glu-. The COOH-terminal two-thirds of the molecule is hydrophobic, containing several repeating dipeptides: four of -Gn-Pro-, three of -Tyr-Gln-, two of -Gly-Tyr-, two of-Gln-Tyr-, and two of the tetrapeptide sequence -Pro-Tyr-Gln-Pro-. Unusual cleavage sites in the statherin sequence obtained with chymotrypsin and S. aureus protease were also noted.

  12. Enhanced membrane disruption and antibiotic action against pathogenic bacteria by designed histidine-rich peptides at acidic pH.

    PubMed

    Mason, A James; Gasnier, Claire; Kichler, Antoine; Prévost, Gilles; Aunis, Dominique; Metz-Boutigue, Marie-Hélène; Bechinger, Burkhard

    2006-10-01

    The histidine-rich amphipathic cationic peptide LAH4 has antibiotic and DNA delivery capabilities. Here, we explore the interaction of peptides from this family with model membranes as monitored by solid-state (2)H nuclear magnetic resonance and their antibiotic activities against a range of bacteria. At neutral pH, the membrane disruption is weak, but at acidic pH, the peptides strongly disturb the anionic lipid component of bacterial membranes and cause bacterial lysis. The peptides are effective antibiotics at both pH 7.2 and pH 5.5, although the antibacterial activity is strongly affected by the change in pH. At neutral pH, the LAH peptides were active against both methicillin-resistant and -sensitive Staphylococcus aureus strains but ineffective against Pseudomonas aeruginosa. In contrast, the LAH peptides were highly active against P. aeruginosa in an acidic environment, as is found in the epithelial-lining fluid of cystic fibrosis patients. Our results show that modest antibiotic activity of histidine-rich peptides can be dramatically enhanced by inducing membrane disruption, in this case by lowering the pH, and that histidine-rich peptides have potential as future antibiotic agents.

  13. NMR assignment of a PDZ domain in complex with a HPV51 E6 derived N-terminally pyroglutamic acid modified peptide.

    PubMed

    Mischo, André; Ohlenschläger, Oliver; Ramachandran, Ramadurai; Görlach, Matthias

    2013-04-01

    The resonance assignment of an amino-terminal pyroglutamic acid containing peptide derived from the E6 protein of human papillomavirus (HPV) type 51 in complex with PDZ domain 2 of hDlg/SAP-97 is reported. The assignments include (1)H, (13)C and (15)N resonances for the protein and peptide in the complex and all of the peptide's pyroglutamic acid nuclei.

  14. The neuroprotective efficacy of cell-penetrating peptides TAT, penetratin, Arg-9, and Pep-1 in glutamic acid, kainic acid, and in vitro ischemia injury models using primary cortical neuronal cultures.

    PubMed

    Meloni, Bruno P; Craig, Amanda J; Milech, Nadia; Hopkins, Richard M; Watt, Paul M; Knuckey, Neville W

    2014-03-01

    Cell-penetrating peptides (CPPs) are small peptides (typically 5-25 amino acids), which are used to facilitate the delivery of normally non-permeable cargos such as other peptides, proteins, nucleic acids, or drugs into cells. However, several recent studies have demonstrated that the TAT CPP has neuroprotective properties. Therefore, in this study, we assessed the TAT and three other CPPs (penetratin, Arg-9, Pep-1) for their neuroprotective properties in cortical neuronal cultures following exposure to glutamic acid, kainic acid, or in vitro ischemia (oxygen-glucose deprivation). Arg-9, penetratin, and TAT-D displayed consistent and high level neuroprotective activity in both the glutamic acid (IC50: 0.78, 3.4, 13.9 μM) and kainic acid (IC50: 0.81, 2.0, 6.2 μM) injury models, while Pep-1 was ineffective. The TAT-D isoform displayed similar efficacy to the TAT-L isoform in the glutamic acid model. Interestingly, Arg-9 was the only CPP that displayed efficacy when washed-out prior to glutamic acid exposure. Neuroprotection following in vitro ischemia was more variable with all peptides providing some level of neuroprotection (IC50; Arg-9: 6.0 μM, TAT-D: 7.1 μM, penetratin/Pep-1: >10 μM). The positive control peptides JNKI-1D-TAT (JNK inhibitory peptide) and/or PYC36L-TAT (AP-1 inhibitory peptide) were neuroprotective in all models. Finally, in a post-glutamic acid treatment experiment, Arg-9 was highly effective when added immediately after, and mildly effective when added 15 min post-insult, while the JNKI-1D-TAT control peptide was ineffective when added post-insult. These findings demonstrate that different CPPs have the ability to inhibit neurodamaging events/pathways associated with excitotoxic and ischemic injuries. More importantly, they highlight the need to interpret neuroprotection studies when using CPPs as delivery agents with caution. On a positive note, the cytoprotective properties of CPPs suggests they are ideal carrier molecules to

  15. Design of new acid-activated cell-penetrating peptides for tumor drug delivery

    PubMed Central

    Zhang, Wei; Li, Li; Zhang, Yun; Zhang, Li; Liu, Hui; Wang, Rui

    2017-01-01

    TH(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), a histidine-rich, cell-penetrating peptide with acid-activated pH response, designed and synthesized by our group, can effectively target tumor tissues with an acidic extracellular environment. Since the protonating effect of histidine plays a critical role in the acid-activated, cell-penetrating ability of TH, we designed a series of new histidine substituents by introducing electron donating groups (Ethyl, Isopropyl, Butyl) to the C-2 position of histidine. This resulted in an enhanced pH-response and improved the application of TH in tumor-targeted delivery systems. The substituents were further utilized to form the corresponding TH analogs (Ethyl-TH, Isopropyl-TH and Butyl-TH), making them easier to protonate for positive charge in acidic tumor microenvironments. The pH-dependent cellular uptake efficiencies of new TH analogs were further evaluated using flow cytometry and confocal laser scanning microscopy, demonstrating that ethyl-TH and butyl-TH had an optimal pH-response in an acidic environment. Importantly, the new TH analogs exhibited relatively lower toxicity than TH. In addition, these new TH analogs were linked to the antitumor drug camptothecin (CPT), while butyl-TH modified conjugate presented a remarkably stronger pH-dependent cytotoxicity to cancer cells than TH and the other conjugates. In short, our work opens a new avenue for the development of improved acid-activated, cell-penetrating peptides as efficient anticancer drug delivery vectors. PMID:28603674

  16. Amino acid residue Y196E substitution and C-terminal peptide synergistically alleviate the toxicity of Clostridium perfringens epsilon toxin.

    PubMed

    Yao, Wenwu; Kang, Lin; Gao, Shan; Zhuang, Xiangjin; Zhang, Tao; Yang, Hao; Ji, Bin; Xin, Wenwen; Wang, Jinglin

    2015-06-15

    Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains, and is the causative agent of a lethal enterotoxemia in livestock animals and possibly in humans. However, many details of ETX structure and activity are not known. Therefore, it is important to clarify the relationship between ETX structure and activity. To explore the effect and mechanism of ETX amino acid residue Y196E substitution and C-terminal peptide on toxicity, four recombinant proteins, rETX (without 13 N-terminal peptides and 23 C-terminal peptides), rETX-C (rETX with 23 C-terminal peptides), rETX(Y196E) (rETX with an amino acid residue substitution at Y196) and rETX(Y196E)-C (rETX-C with a Y196E mutation), were constructed in this study. Both the amino acid residue Y196E substitution and the C-terminal peptide reduce ETX toxicity to a similar extent, and the two factors synergistically alleviate ETX toxicity. In addition, we demonstrated that the C-terminal peptides and Y196E amino acid mutation reduce the toxin toxicity in two different pathways: the C-terminal peptides inhibit the binding activity of toxins to target cells, and the Y196E amino acid mutation slightly inhibits the pore-forming or heptamer-forming process. Interaction between the two factors was not observed in pore-forming or binding assays but toxicity assays, which demonstrated that the relationship between domains of the toxin is more complicated than previously appreciated. However, the exact mechanism of synergistic action is not yet clarified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Distinguishing d- and l-aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry.

    PubMed

    Zheng, Xueyun; Deng, Liulin; Baker, Erin S; Ibrahim, Yehia M; Petyuk, Vladislav A; Smith, Richard D

    2017-07-11

    While α-linked amino acids in the l-form are exclusively utilized in mammalian protein building, β-linked and d-form amino acids also have important biological roles. Unfortunately, the structural elucidation and separation of these different amino acid types in peptides has been analytically challenging to date due to the numerous isomers present, limiting our knowledge about their existence and biological roles. Here, we utilized an ultrahigh resolution ion mobility spectrometry platform coupled with mass spectrometry (IMS-MS) to separate amyloid β (Aβ) peptides containing l-aspartic acid, d-aspartic acid, l-isoaspartic acid, and d-isoaspartic acid residues which span α- and β-linked amino acids in both d- and l-forms. The results illustrate how IMS-MS could be used to better understand age-related diseases or protein folding disorders resulting from amino acid modifications.

  18. Poly(lactic acid-glycolic acid) nanoparticles markedly improve immunological protection provided by peptide P10 against murine paracoccidioidomycosis

    PubMed Central

    Amaral, André C; Marques, Alexandre F; Muñoz, Julián E; Bocca, Anamélia L; Simioni, Andreza R; Tedesco, Antonio C; Morais, Paulo C; Travassos, Luiz R; Taborda, Carlos P; Felipe, Maria Sueli S

    2010-01-01

    Background and purpose: The present study reports on the preparation and testing of a sustained delivery system for the immunomodulatory peptide P10 aimed at reducing the in vivo degradation of the peptide and the amount required to elicit a protective immune response against paracoccidioidomycosis. Experimental approach: BALB/c mice were infected with the yeast Paracoccidioides brasiliensis to mimic the chronic form of paracoccidioidomycosis. The animals were treated daily with sulfamethoxazole/trimethoprim alone or combined with peptide P10, either emulsified in Freund's adjuvant or entrapped in poly(lactic acid-glycolic acid) (PLGA) nanoparticles at different concentrations (1 µg, 5 µg, 10 µg, 20 µg or 40 µg·50 µL−1). Therapeutic efficacy was assessed as fungal burden in tissues and the immune response by quantitative determination of cytokines. Key results: Animals given combined chemotherapy and P10 nanotherapy presented a marked reduction of fungal load in the lungs, compared with the non-treated animals. After 30 days of treatment, P10 entrapped within PLGA (1 µg·50 µL−1) was more effective than ‘free’ P10 emulsified in Freund's adjuvant (20 µg·50 µL−1), as an adjuvant to chemotherapy. After treatment for 90 days, the higher doses of P10 entrapped within PLGA (5 or 10 µg·50 µL−1) were most effective. Treatment with P10 emulsified in Freund's adjuvant (20 µg·50 µL−1) or P10 entrapped within PLGA (1 µg·50 µL−1) were accompanied by high levels of interferon-gamma in lung. Conclusions and implications: Combination of sulfamethoxazole/trimethoprim with the P10 peptide entrapped within PLGA demonstrated increased therapeutic efficacy against paracoccidioidomycosis. P10 incorporation into PLGA nanoparticles dramatically reduced the peptide amount necessary to elicit a protective effect. PMID:20136827

  19. Antimicrobial Peptides Produced by Selective Pressure Incorporation of Non-canonical Amino Acids.

    PubMed

    Nickling, Jessica H; Baumann, Tobias; Schmitt, Franz-Josef; Bartholomae, Maike; Kuipers, Oscar P; Friedrich, Thomas; Budisa, Nediljko

    2018-05-04

    Nature has a variety of possibilities to create new protein functions by modifying the sequence of the individual amino acid building blocks. However, all variations are based on the 20 canonical amino acids (cAAs). As a way to introduce additional physicochemical properties into polypeptides, the incorporation of non-canonical amino acids (ncAAs) is increasingly used in protein engineering. Due to their relatively short length, the modification of ribosomally synthesized and post-translationally modified peptides by ncAAs is particularly attractive. New functionalities and chemical handles can be generated by specific modifications of individual residues. The selective pressure incorporation (SPI) method utilizes auxotrophic host strains that are deprived of an essential amino acid in chemically defined growth media. Several structurally and chemically similar amino acid analogs can then be activated by the corresponding aminoacyl-tRNA synthetase and provide residue-specific cAA(s) → ncAA(s) substitutions in the target peptide or protein sequence. Although, in the context of the SPI method, ncAAs are also incorporated into the host proteome during the phase of recombinant gene expression, the majority of the cell's resources are assigned to the expression of the target gene. This enables efficient residue-specific incorporation of ncAAs often accompanied with high amounts of modified target. The presented work describes the in vivo incorporation of six proline analogs into the antimicrobial peptide nisin, a lantibiotic naturally produced by Lactococcus lactis. Antimicrobial properties of nisin can be changed and further expanded during its fermentation and expression in auxotrophic Escherichia coli strains in defined growth media. Thereby, the effects of residue-specific replacement of cAAs with ncAAs can deliver changes in antimicrobial activity and specificity. Antimicrobial activity assays and fluorescence microscopy are used to test the new nisin variants

  20. Efficacy of peptide nucleic acid and selected conjugates against specific cellular pathologies of amyotrophic lateral sclerosis.

    PubMed

    Browne, Elisse C; Parakh, Sonam; Duncan, Luke F; Langford, Steven J; Atkin, Julie D; Abbott, Belinda M

    2016-04-01

    Cellular studies have been undertaken on a nonamer peptide nucleic acid (PNA) sequence, which binds to mRNA encoding superoxide dismutase 1, and a series of peptide nucleic acids conjugated to synthetic lipophilic vitamin analogs including a recently prepared menadione (vitamin K) analog. Reduction of both mutant superoxide dismutase 1 inclusion formation and endoplasmic reticulum stress, two of the key cellular pathological hallmarks in amyotrophic lateral sclerosis, by two of the prepared PNA oligomers is reported for the first time. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  1. Stability improvement of natural food colors: Impact of amino acid and peptide addition on anthocyanin stability in model beverages.

    PubMed

    Chung, Cheryl; Rojanasasithara, Thananunt; Mutilangi, William; McClements, David Julian

    2017-03-01

    Anthocyanins are prone to chemical degradation and color fading in the presence of vitamin C. The potential of three amino acids (l-phenylalanine, l-tyrosine, l-tryptophan) and a polypeptide (ε-poly-l-lysine) in prolonging the color stability of purple carrot anthocyanins (0.025%) in model beverages (0.05% l-ascorbic acid, citric acid, pH 3.0) stored at elevated temperature (40°C/7 days) was examined. In the absence of amino acids or peptides, anthocyanin degraded at first-order reaction rate. Addition of amino acids or peptide (0.1%) increased the color stability of anthocyanins, with the most significant improvement observed for l-tryptophan. The average half-life of anthocyanin color increased from 2 days to 6 days with l-tryptophan addition. Fluorescence quenching measurements revealed that the l-tryptophan interacted with anthocyanins mainly through hydrogen bonding, although some hydrophobic interaction may also have been involved. Overall, this study suggests that amino acid or peptide addition may prolong the color stability of anthocyanin in beverage products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Analysis of the (Trimethylsilyl)propionic Acid-β(12-28) Peptide Binding Equilibrium with NMR Spectroscopy.

    PubMed

    Jayawickrama, D A; Larive, C K

    1999-06-01

    The binding of a small molecule, (trimethylsilyl)propionic acid (TSP), to a 17-residue peptide, β(12-28), is examined using (1)H NMR spectroscopy. β(12-28) (VHHQKLVFFAEDVGSNK) is a central fragment of the 40-42-residue Alzheimer's-associated Aβ peptide. This peptide has been previously shown to form soluble aggregates in low-pH aqueous solution. The TSP resonance is broadened appreciably in solutions containing relatively high concentrations (∼2 mM) of the peptide. The changes in TSP line width measured by titration of a peptide solution with TSP indicate a 1:1 binding stoichiometry. If the concentrations of both the peptide and TSP are reduced by 1 order of magnitude, the resonances of both species are sharp, suggesting that TSP binds predominately to the aggregated peptide. Nuclear Overhauser effect experiments indicate that the TSP interacts predominately with the side chains of the aliphatic peptide residues Leu(17) and Val(18). Pulsed-field gradient NMR measurements of TSP and peptide diffusion coefficients provide a more quantitative picture of the TSP-peptide binding equilibrium. The measured diffusion coefficients were used to calculate the fractions of the free and bound TSP. These results substantiate the conclusion that the stoichiometry of the TSP-peptide binding equilibrium is essentially 1:1 and further indicate anticooperative behavior in solutions containing an excess of TSP resulting in a dissociation of the peptide aggregates.

  3. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.

    PubMed

    Das, Shoubhik; Li, Yuehui; Bornschein, Christoph; Pisiewicz, Sabine; Kiersch, Konstanze; Michalik, Dirk; Gallou, Fabrice; Junge, Kathrin; Beller, Matthias

    2015-10-12

    Efficient reduction of the tertiary amide bond in amino acid derivatives and peptides is described. Functional group selectivity has been achieved by applying a commercially available rhodium precursor and bis(diphenylphosphino)propane (dppp) ligand together with phenyl silane as a reductant. This methodology allows for specific reductive derivatization of biologically interesting peptides and offers straightforward access to a variety of novel peptide derivatives for chemical biology studies and potential pharmaceutical applications. The catalytic system tolerates a variety of functional groups including secondary amides, ester, nitrile, thiomethyl, and hydroxy groups. This convenient hydrosilylation reaction proceeds at ambient conditions and is operationally safe because no air-sensitive reagents or highly reactive metal hydrides are needed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Predicting Three-Dimensional Conformations of Peptides Constructed of Only Glycine, Alanine, Aspartic Acid, and Valine

    NASA Astrophysics Data System (ADS)

    Oda, Akifumi; Fukuyoshi, Shuichi

    2015-06-01

    The GADV hypothesis is a form of the protein world hypothesis, which suggests that life originated from proteins (Lacey et al. 1999; Ikehara 2002; Andras 2006). In the GADV hypothesis, life is thought to have originated from primitive proteins constructed of only glycine, alanine, aspartic acid, and valine ([GADV]-proteins). In this study, the three-dimensional (3D) conformations of randomly generated short [GADV]-peptides were computationally investigated using replica-exchange molecular dynamics (REMD) simulations (Sugita and Okamoto 1999). Because the peptides used in this study consisted of only 20 residues each, they could not form certain 3D structures. However, the conformational tendencies of the peptides were elucidated by analyzing the conformational ensembles generated by REMD simulations. The results indicate that secondary structures can be formed in several randomly generated [GADV]-peptides. A long helical structure was found in one of the hydrophobic peptides, supporting the conjecture of the GADV hypothesis that many peptides aggregated to form peptide multimers with enzymatic activity in the primordial soup. In addition, these results indicate that REMD simulations can be used for the structural investigation of short peptides.

  5. Society of Toxicologic Pathologists (STP) Annual Symposium General Session II: Modem Pathology Methods for Neural Investigations

    EPA Science Inventory

    This half-day session at the 20I0 Joint Symposium of the Society of Toxicologic Pathology (STP) and the International Federation of Societies of Toxicologic Pathologists (IFSTP) explored many deceptively simple questions related to toxicologic neuropathology. What is the best met...

  6. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis.

    PubMed

    Shin, Byung-Sik; Katoh, Takayuki; Gutierrez, Erik; Kim, Joo-Ran; Suga, Hiroaki; Dever, Thomas E

    2017-08-21

    Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  7. Short peptides containing L-lysine and epsilon-aminocaproic acid as potential plasmin inhibitors.

    PubMed

    Purwin, M; Bruzgo, I; Markowska, A; Midura-Nowaczek, K

    2009-11-01

    Eight short peptides containing L-lysine and epsilon-aminocaproic acid were obtained and their effect on the amidolytic activities of plasmin, thrombin and trypsin was examined. Tripeptide amide Boc-EACA-L-Lys-EACA-NH2 was the most effective and specific plasmin inhibitor.

  8. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network

    PubMed Central

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S.; Zeng, Xiao Cheng

    2016-01-01

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks−Chandler−Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ > 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ < 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ = 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter. PMID:27803319

  9. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network.

    PubMed

    Zhu, Chongqin; Gao, Yurui; Li, Hui; Meng, Sheng; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-11-15

    Hydrophobicity of macroscopic planar surface is conventionally characterized by the contact angle of water droplets. However, this engineering measurement cannot be directly extended to surfaces of proteins, due to the nanometer scale of amino acids and inherent nonplanar structures. To measure the hydrophobicity of side chains of proteins quantitatively, numerous parameters were developed to characterize behavior of hydrophobic solvation. However, consistency among these parameters is not always apparent. Herein, we demonstrate an alternative way of characterizing hydrophobicity of amino acid side chains in a protein environment by constructing a monolayer of amino acids (i.e., artificial planar peptide network) according to the primary and the β-sheet secondary structures of protein so that the conventional engineering measurement of the contact angle of a water droplet can be brought to bear. Using molecular dynamics simulations, contact angles θ of a water nanodroplet on the planar peptide network, together with excess chemical potentials of purely repulsive methane-sized Weeks-Chandler-Andersen solute, are computed. All of the 20 types of amino acids and the corresponding planar peptide networks are studied. Expectedly, all of the planar peptide networks with nonpolar amino acids are hydrophobic due to θ [Formula: see text] 90°, whereas all of the planar peptide networks of the polar and charged amino acids are hydrophilic due to θ [Formula: see text] 90°. Planar peptide networks of the charged amino acids exhibit complete-wetting behavior due to θ [Formula: see text] 0°. This computational approach for characterization of hydrophobicity can be extended to artificial planar networks of other soft matter.

  10. Combinatorial assembly of simple and complex D-lysergic acid alkaloid peptide classes in the ergot fungus Claviceps purpurea.

    PubMed

    Ortel, Ingo; Keller, Ullrich

    2009-03-13

    The ergot fungus Claviceps purpurea produces both ergopeptines and simple d-lysergic acid alkylamides. In the ergopeptines, such as ergotamine, d-lysergic acid is linked to a bicyclic tripeptide in amide-like fashion, whereas in the d-lysergylalkanolamides it is linked to an amino alcohol derived from alanine. We show here that these compound classes are synthesized by a set of three non-ribosomal lysergyl peptide synthetases (LPSs), which interact in a combinatorial fashion for synthesis of the relevant product. The trimodular LPS1 assembles with LPS2, the d-lysergic acid recruiting module, to synthesize the d-lysergyltripeptide precursors of ergopeptines from d-lysergic acid and the three amino acids of the peptide chain. Alternatively, LPS2 can assemble with a distinct monomodular non-ribosomal peptide synthetase (NRPS) subunit (ergometrine synthetase) to synthesize the d-lysergic acid alkanolamide ergometrine from d-lysergic acid and alanine. The synthesis proceeds via covalently bound d-lysergyl alanine and release of dipeptide as alcohol with consumption of NADPH. Enzymatic and immunochemical analyses showed that ergometrine synthetase is most probably the enzyme LPS3 whose gene had been identified previously as part of the ergot alkaloid biosynthesis gene cluster in C. purpurea. Inspections of all LPS sequences showed no recognizable peptide linkers for their protein-protein interactions as in NRPS subunits of bacteria. Instead, they all carry conserved N-terminal domains (C0-domains) with similarity to the C-terminal halves of NRPS condensation domains pointing to an alternative mechanism of subunit-subunit interactions in fungal NRPS systems. Phylogenetic analysis of LPS modules and the C0-domains suggests that these enzyme systems most probably evolved by module duplications and rearrangements from a bimodular ancestor.

  11. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis

    PubMed Central

    Shin, Byung-Sik; Katoh, Takayuki; Gutierrez, Erik; Kim, Joo-Ran; Suga, Hiroaki

    2017-01-01

    Abstract Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline. PMID:28637321

  12. Theoretical and experimental studies on alpha/epsilon-hybrid peptides: design of a 14/12-helix from peptides with alternating (S)-C-linked carbo-epsilon-amino acid [(S)-epsilon-Caa((x))] and L-ala.

    PubMed

    Sharma, Gangavaram V M; Babu, Bommagani Shoban; Chatterjee, Deepak; Ramakrishna, Kallaganti V S; Kunwar, Ajit C; Schramm, Peter; Hofmann, Hans-Jörg

    2009-09-04

    An (S)-C-linked carbo-epsilon-amino acid [(S)-epsilon-Caa((x))] was prepared from the known (S)-delta-Caa. This monomer was utilized together with l-Ala to give novel alpha/epsilon-hybrid peptides in 1:1 alternation. Conformational analysis on penta- and hexapeptides by NMR (in CDCl(3)), CD, and MD studies led to the identification of robust 14/12-mixed helices. This is in agreement with the data from a theoretical conformational analysis on the basis of ab initio MO theory providing a complete overview on all formally possible hydrogen-bonded helix patterns of alpha/epsilon-hybrid peptides with 1:1 backbone alternation. The "new motif" of a mixed 14/12-helix was predicted as most stable in vacuum. Obviously, the formation of ordered secondary structures is also possible in peptide foldamers with amino acid constituents of considerable backbone lengths. Thus, alpha/epsilon-hybrid peptides expand the domain of foldamers and allow the introduction of desired functionalities via the alpha-amino acid constituents.

  13. Alanine scan of the peptide antibiotic feglymycin: assessment of amino acid side chains contributing to antimicrobial activity.

    PubMed

    Hänchen, Anne; Rausch, Saskia; Landmann, Benjamin; Toti, Luigi; Nusser, Antje; Süssmuth, Roderich D

    2013-03-18

    The antibiotic feglymycin is a linear 13-mer peptide synthesized by the bacterium Streptomyces sp. DSM 11171. It mainly consists of the nonproteinogenic amino acids 4-hydroxyphenylglycine and 3,5-dihydroxyphenylglycine. An alanine scan of feglymycin was performed by solution-phase peptide synthesis in order to assess the significance of individual amino acid side chains for biological activity. Hence, 13 peptides were synthesized from di- and tripeptide building blocks, and subsequently tested for antibacterial activity against Staphylococcus aureus strains. Furthermore we tested the inhibition of peptidoglycan biosynthesis enzymes MurA and MurC, which are inhibited by feglymycin. Whereas the antibacterial activity is significantly based on the three amino acids D-Hpg1, L-Hpg5, and L-Phe12, the inhibitory activity against MurA and MurC depends mainly on L-Asp13. The difference in the position dependence for antibacterial activity and enzyme inhibition suggests multiple molecular targets in the modes of action of feglymycin. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Ordered Self-Assembled Monolayers of Peptide Nucleic Acids with DNA Recognition Capability

    NASA Astrophysics Data System (ADS)

    Briones, C.; Mateo-Marti, E.; Gómez-Navarro, C.; Parro, V.; Román, E.; Martín-Gago, J. A.

    2004-11-01

    We report on the formation of ordered self-assembled monolayers (SAMs) of single-stranded peptide nucleic acids (ssPNA). In spite of their remarkable length (7nm) thiolated PNAs assemble standing up on gold surfaces similarly to the SAMs of short alkanethiols. SAMs of ssPNA recognize complementary nucleic acids, acting as specific biosensors that discriminate even a point mutation in target ssDNA. These results are obtained by surface characterization techniques that avoid labeling of the target molecule: x-ray photoemission, x-ray absorption and atomic force microscopy.

  15. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    PubMed

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard

    2015-08-03

    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Formation of Amino Acid Thioesters for Prebiotic Peptide Synthesis: Catalysis By Amino Acid Products

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.; DeVincenzi, Donald L. (Technical Monitor)

    1999-01-01

    The origin of life can be described as a series of events in which a prebiotic chemical process came increasingly under the control of its catalytic products. In our search for this prebiotic process that yielded catalytic takeover products (such as polypeptides), we have been investigating a reaction system that generates peptide-forming amino acid thioesters from formaldehyde, glycolaldehyde, and ammonia in the presence of thiols. As shown below, this model process begins by aldol condensation of formaldehyde and glycolaldehyde to give trioses and releases. These sugars then undergo beta-dehydration yielding their respective alpha-ketoaldehydes. Addition of ammonia to the alpha-ketoaldehydes yields imines which can either: (a) rearrange in the presence of thesis to give amino acid thioesters or (be react with another molecule of aldehyde to give imidazoles. This 'one-pot' reaction system operates under mild aqueous conditions, and like modem amino acid biosynthesis, uses sugar intermediates which are converted to products by energy-yielding redox reactions. Recently, we discovered that amino acids, such as the alanine reaction product, catalyze the first and second steps of the process. In the presence of ammonia the process also generates other synthetically useful products, like the important biochemical -- pyruvic acid.

  17. Physical stability of arginine-glycine-aspartic acid peptide coated on anodized implants after installation.

    PubMed

    Huh, Jung-Bo; Lee, Jeong-Yeol; Jeon, Young-Chan; Shin, Sang-Wan; Ahn, Jin-Soo; Ryu, Jae-Jun

    2013-05-01

    The aim of this study was to evaluate the stability of arginine-glycine-aspartic acid (RGD) peptide coatings on implants by measuring the amount of peptide remaining after installation. Fluorescent isothiocyanate (FITC)-fixed RGD peptide was coated onto anodized titanium implants (width 4 mm, length 10 mm) using a physical adsorption method (P) or a chemical grafting method (C). Solid Rigid Polyurethane Foam (SRPF) was classified as either hard bone (H) or soft bone (S) according to its density. Two pieces of artificial bone were fixed in a customized jig, and coated implants were installed at the center of the boundary between two pieces of artificial bone. The test groups were classified as: P-H, P-S, C-H, or C-S. After each installation, implants were removed from the SRPF, and the residual amounts and rates of RGD peptide in implants were measured by fluorescence spectrometry. The Kruskal-Wallis test was used for the statistical analysis (α=0.05). Peptide-coating was identified by fluorescence microscopy and XPS. Total coating amount was higher for physical adsorption than chemical grafting. The residual rate of peptide was significantly larger in the P-S group than in the other three groups (P<.05). The result of this study suggests that coating doses depend on coating method. Residual amounts of RGD peptide were greater for the physical adsorption method than the chemical grafting method.

  18. A short peptide eluted from the H-2Kb molecule of a polyomavirus-positive tumor corresponds to polyomavirus large T antigen peptide at amino acids 578 to 585 and induces polyomavirus-specific immunity.

    PubMed Central

    Berke, Z; Palmer, S; Bergman, T; Wester, D; Svedmyr, J; Linder, S; Jornvall, H; Dalianis, T

    1996-01-01

    A short peptide in complex with the H-2Kb molecule on PyRMA, a polyomavirus transfectant of the mouse lymphoma cell line RMA, was identified as a polyomavirus tumor-specific transplantation antigen. The peptide was obtained by affinity chromatography, acidic extraction, and reverse-phase high-pressure liquid chromatography (HPLC). In one HPLC fraction, a peptide sequence in which 5 of 8 amino acids, GKxGLxxA, corresponded to residues 578 to 585 of polyomavirus large T antigen was identified. In tumor rejection assays, we therefore tested three related synthetic peptides, corresponding to the octapeptide LT 578-585, GKTGLAAA; the nonapeptide LT 578-586, GKTGLAAAL; and the decapeptide LT 578-587, GKTGLAAALI. The octapeptide was found to give the most effective immunization against the outgrowth of the polyomavirus DNA-positive PyRMA tumor. However, none of the three peptides immunized against the original polyoma-virus-negative RMA line. PMID:8627788

  19. Synthesis and stereochemical analysis of β-nitromethane substituted γ-amino acids and peptides.

    PubMed

    Ganesh Kumar, Mothukuri; Mali, Sachitanand M; Gopi, Hosahudya N

    2013-02-07

    The high diastereoselectivity in the Michael addition of nitromethane to α,β-unsaturated γ-amino esters, crystal conformations of β-nitromethane substituted γ-amino acids and peptides are studied. Results suggest that the N-Boc protected amide NH, conformations of α,β-unsaturated γ-amino esters and alkyl side chains play a crucial role in dictating the high diastereoselectivity of nitromethane addition to E-vinylogous amino esters. Investigation of the crystal conformations of both α,β-unsaturated γ-amino esters and the Michael addition products suggests that an H-C(γ)-C(β)=C(α) eclipsed conformer of the unsaturated amino ester leads to the major (anti) product compared to that of an N-C(γ)-C(β)=C(α) eclipsed conformer. The major diastereomers were separated and subjected to the peptide synthesis. The single crystal analysis of the dipeptide containing β-nitromethane substituted γ-amino acids reveals a helical type of folded conformation with an isolated H-bond involving a nine-atom pseudocycle.

  20. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hajari, Timir; Vegt, Nico F. A. van der, E-mail: vandervegt@csi.tu-darmstadt.de

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvationmore » free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar

  1. Solvation thermodynamics of amino acid side chains on a short peptide backbone

    NASA Astrophysics Data System (ADS)

    Hajari, Timir; van der Vegt, Nico F. A.

    2015-04-01

    The hydration process of side chain analogue molecules differs from that of the actual amino acid side chains in peptides and proteins owing to the effects of the peptide backbone on the aqueous solvent environment. A recent molecular simulation study has provided evidence that all nonpolar side chains, attached to a short peptide backbone, are considerably less hydrophobic than the free side chain analogue molecules. In contrast to this, the hydrophilicity of the polar side chains is hardly affected by the backbone. To analyze the origin of these observations, we here present a molecular simulation study on temperature dependent solvation free energies of nonpolar and polar side chains attached to a short peptide backbone. The estimated solvation entropies and enthalpies of the various amino acid side chains are compared with existing side chain analogue data. The solvation entropies and enthalpies of the polar side chains are negative, but in absolute magnitude smaller compared with the corresponding analogue data. The observed differences are large; however, owing to a nearly perfect enthalpy-entropy compensation, the solvation free energies of polar side chains remain largely unaffected by the peptide backbone. We find that a similar compensation does not apply to the nonpolar side chains; while the backbone greatly reduces the unfavorable solvation entropies, the solvation enthalpies are either more favorable or only marginally affected. This results in a very small unfavorable free energy cost, or even free energy gain, of solvating the nonpolar side chains in strong contrast to solvation of small hydrophobic or nonpolar molecules in bulk water. The solvation free energies of nonpolar side chains have been furthermore decomposed into a repulsive cavity formation contribution and an attractive dispersion free energy contribution. We find that cavity formation next to the peptide backbone is entropically favored over formation of similar sized nonpolar side

  2. In Vitro and In Vivo Activities of Antimicrobial Peptides Developed Using an Amino Acid-Based Activity Prediction Method

    PubMed Central

    Wu, Xiaozhe; Wang, Zhenling; Li, Xiaolu; Fan, Yingzi; He, Gu; Wan, Yang; Yu, Chaoheng; Tang, Jianying; Li, Meng; Zhang, Xian; Zhang, Hailong; Xiang, Rong; Pan, Ying; Liu, Yan; Lu, Lian

    2014-01-01

    To design and discover new antimicrobial peptides (AMPs) with high levels of antimicrobial activity, a number of machine-learning methods and prediction methods have been developed. Here, we present a new prediction method that can identify novel AMPs that are highly similar in sequence to known peptides but offer improved antimicrobial activity along with lower host cytotoxicity. Using previously generated AMP amino acid substitution data, we developed an amino acid activity contribution matrix that contained an activity contribution value for each amino acid in each position of the model peptide. A series of AMPs were designed with this method. After evaluating the antimicrobial activities of these novel AMPs against both Gram-positive and Gram-negative bacterial strains, DP7 was chosen for further analysis. Compared to the parent peptide HH2, this novel AMP showed broad-spectrum, improved antimicrobial activity, and in a cytotoxicity assay it showed lower toxicity against human cells. The in vivo antimicrobial activity of DP7 was tested in a Staphylococcus aureus infection murine model. When inoculated and treated via intraperitoneal injection, DP7 reduced the bacterial load in the peritoneal lavage solution. Electron microscope imaging and the results indicated disruption of the S. aureus outer membrane by DP7. Our new prediction method can therefore be employed to identify AMPs possessing minor amino acid differences with improved antimicrobial activities, potentially increasing the therapeutic agents available to combat multidrug-resistant infections. PMID:24982064

  3. Experimental placement of stone matrix asphalt (SMA) : project F-STP-017P(89)E Auburn, Court Street.

    DOT National Transportation Integrated Search

    2003-04-01

    In October 1999 the Maine Department of Transportation utilized stone matrix asphalt to resurface an : intersection in Auburn, Maine. The experimental placement of SMA was part of a pavement project F-STP-017P(89)E. The intersection is at the junctio...

  4. Efficient 18F-Labeling of Large 37-Amino Acid pHLIP Peptide Analogues and their Biological Evaluation

    PubMed Central

    Daumar, Pierre; Wanger-Baumann, Cindy A.; Pillarsetty, NagaVaraKishore; Fabrizio, Laura; Carlin, Sean D.; Andreev, Oleg A.; Reshetnyak, Yana K.; Lewis, Jason S.

    2012-01-01

    Solid tumors often develop an acidic microenvironment, which plays a critical role in tumor progression and is associated with increased level of invasion and metastasis. The 37-residue pH (low) insertion peptide (pHLIP®) is under study as an imaging platform because of its unique ability to insert into cell membranes at a low extracellular pH (pHe<7). Labeling of peptides with [18F]-fluorine is usually performed via prosthetic groups using chemoselective coupling reactions. One of the most successful procedures involves the alkyne-azide copper(I) catalyzed cycloaddition (CuAAC). However, none of the known “click” methods have been applied to peptides as large as pHLIP. We designed a novel prosthetic group and extended the use of the CuAAC “click chemistry” for the simple and efficient 18F-labeling of large peptides. For the evaluation of this labeling approach, a D-amino acid analogue of WT-pHLIP and a L-amino acid control peptide K-pHLIP, both functionalized at the N-terminus with 6-azidohexanoic acid, were used. The novel 6-[18F]fluoro-2-ethynylpyridine prosthetic group, was obtained via nucleophilic substitution on the corresponding bromo-precursor after 10 min at 130 °C with a radiochemical yield of 27.5 ± 6.6% (decay corrected) with high radiochemical purity ≥ 98%. The subsequent CuI catalyzed “click” reaction with the azido functionalized pHLIP peptides was quantitative within 5 min at 70 °C in a mixture of water and ethanol using Cu-acetate and sodium L-ascorbate. [18F]-D-WT-pHLIP and [18F]-L-K-pHLIP were obtained with total radiochemical yields of 5–20% after HPLC purification. The total reaction time was only 85 min including formulation. In vitro stability tests revealed high stability of the [18F]-D-WT-pHLIP in human and mouse plasma after 120 min, with the parent tracer remaining intact at 65 and 85%, respectively. PET imaging and biodistribution studies in LNCaP and PC-3 xenografted mice with the [18F]-D-WT-pHLIP and the negative

  5. Redesigning Channel-Forming Peptides: Amino Acid Substitutions that Enhance Rates of Supramolecular Self-Assembly and Raise Ion Transport Activity

    PubMed Central

    Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.

    2006-01-01

    Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776

  6. Promotion of double-duplex invasion of peptide nucleic acids through conjugation with nuclear localization signal peptide.

    PubMed

    Aiba, Yuichiro; Honda, Yuta; Komiyama, Makoto

    2015-03-02

    Pseudo-complementary peptide nucleic acid (pcPNA), as one of the most widely used synthetic DNA analogues, invades double-stranded DNA according to Watson-Crick rules to form invasion complexes. This unique mode of DNA recognition induces structural changes at the invasion site and can be used for a range of applications. In this paper, pcPNA is conjugated with a nuclear localization signal (NLS) peptide, and its invading activity is notably promoted both thermodynamically and kinetically. Thus, the double-duplex invasion complex is formed promptly at low pcPNA concentrations under high salt conditions, where the invasion otherwise never occurs. Furthermore, NLS-modified pcPNA is successfully employed for site-selective DNA scission, and the targeted DNA is selectively cleaved under conditions that are not conducive for DNA cutters using unmodified pcPNAs. This strategy of pcPNA modification is expected to be advantageous and promising for a range of in vitro and in vivo applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Expression of the cationic antimicrobial peptide lactoferricin fused with the anionic peptide in Escherichia coli.

    PubMed

    Kim, Ha-Kun; Chun, Dae-Sik; Kim, Joon-Sik; Yun, Cheol-Ho; Lee, Ju-Hoon; Hong, Soon-Kwang; Kang, Dae-Kyung

    2006-09-01

    Direct expression of lactoferricin, an antimicrobial peptide, is lethal to Escherichia coli. For the efficient production of lactoferricin in E. coli, we developed an expression system in which the gene for the lysine- and arginine-rich cationic lactoferricin was fused to an anionic peptide gene to neutralize the basic property of lactoferricin, and successfully overexpressed the concatemeric fusion gene in E. coli. The lactoferricin gene was linked to a modified magainin intervening sequence gene by a recombinational polymerase chain reaction, thus producing an acidic peptide-lactoferricin fusion gene. The monomeric acidic peptide-lactoferricin fusion gene was multimerized and expressed in E. coli BL21(DE3) upon induction with isopropyl-beta-D-thiogalactopyranoside. The expression levels of the fusion peptide reached the maximum at the tetramer, while further increases in the copy number of the fusion gene substantially reduced the peptide expression level. The fusion peptides were isolated and cleaved to generate the separate lactoferricin and acidic peptide. About 60 mg of pure recombinant lactoferricin was obtained from 1 L of E. coli culture. The purified recombinant lactoferricin was found to have a molecular weight similar to that of chemically synthesized lactoferricin. The recombinant lactoferricin showed antimicrobial activity and disrupted bacterial membrane permeability, as the native lactoferricin peptide does.

  8. Combinatorial Assembly of Simple and Complex d-Lysergic Acid Alkaloid Peptide Classes in the Ergot Fungus Claviceps purpurea*S⃞

    PubMed Central

    Ortel, Ingo; Keller, Ullrich

    2009-01-01

    The ergot fungus Claviceps purpurea produces both ergopeptines and simple d-lysergic acid alkylamides. In the ergopeptines, such as ergotamine, d-lysergic acid is linked to a bicyclic tripeptide in amide-like fashion, whereas in the d-lysergylalkanolamides it is linked to an amino alcohol derived from alanine. We show here that these compound classes are synthesized by a set of three non-ribosomal lysergyl peptide synthetases (LPSs), which interact in a combinatorial fashion for synthesis of the relevant product. The trimodular LPS1 assembles with LPS2, the d-lysergic acid recruiting module, to synthesize the d-lysergyltripeptide precursors of ergopeptines from d-lysergic acid and the three amino acids of the peptide chain. Alternatively, LPS2 can assemble with a distinct monomodular non-ribosomal peptide synthetase (NRPS) subunit (ergometrine synthetase) to synthesize the d-lysergic acid alkanolamide ergometrine from d-lysergic acid and alanine. The synthesis proceeds via covalently bound d-lysergyl alanine and release of dipeptide as alcohol with consumption of NADPH. Enzymatic and immunochemical analyses showed that ergometrine synthetase is most probably the enzyme LPS3 whose gene had been identified previously as part of the ergot alkaloid biosynthesis gene cluster in C. purpurea. Inspections of all LPS sequences showed no recognizable peptide linkers for their protein-protein interactions as in NRPS subunits of bacteria. Instead, they all carry conserved N-terminal domains (C0-domains) with similarity to the C-terminal halves of NRPS condensation domains pointing to an alternative mechanism of subunit-subunit interactions in fungal NRPS systems. Phylogenetic analysis of LPS modules and the C0-domains suggests that these enzyme systems most probably evolved by module duplications and rearrangements from a bimodular ancestor. PMID:19139103

  9. Peptides containing internal residues of pyroglutamic acid: proton NMR characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, S.A.

    1986-05-01

    The proton NMR characteristics of internal pyroglutamic acid (Glp; 5-oxoproline) residues in seven tripeptides of the general structure Boc-Xxx-Glp-Yyy-NH/sub 2/ were studied. In general, the chemical shifts of several diagnostic protons moved downfield on going from the Glu-containing peptides (Boc-Xxx-Glu-Yyy-NH/sub 2/) to the corresponding Glp-containing peptides. The C-2 proton of the Xxx residue was shifted by about 1.1 ppm. The N-2 proton of the Yyy residue was shifted by about 0.5 ppm. The C-2 proton of the Glx residue itself was shifted by about 0.5 ppm. One of the Glx C-3 protons was also shifted by about 0.5 ppm, butmore » the other remained essentially unchanged. Finally, the Glx C-4 protons were shifted by about 0.3 ppm. Internal Glu residues are readily converted chemically into internal Glp residues. This conversion also occurs as a side reaction during HP cleavage of the protecting group from Glu(OBzl) residues. The spontaneous fragmentation of serum proteins C3, C4 and lambda/sub 2/-macroglobulin under denaturing conditions is probably due to regioselective hydrolysis of an internal Glp residue formed in each of these proteins upon denaturation. These proton NMR characteristics may be useful in establishing the presence of internal Glp residues in synthetic and natural peptides.« less

  10. Hydrolysis of Sequenced β-Casein Peptides Provides New Insight into Peptidase Activity from Thermophilic Lactic Acid Bacteria and Highlights Intrinsic Resistance of Phosphopeptides

    PubMed Central

    Deutsch, Stéphanie-Marie; Molle, Daniel; Gagnaire, Valérie; Piot, Michel; Atlan, Danièle; Lortal, Sylvie

    2000-01-01

    The peptidases of thermophilic lactic acid bacteria have a key role in the proteolysis of Swiss cheeses during warm room ripening. To compare their peptidase activities toward a dairy substrate, a tryptic/chymotryptic hydrolysate of purified β-casein was used. Thirty-four peptides from 3 to 35 amino acids, including three phosphorylated peptides, constitute the β-casein hydrolysate, as shown by tandem mass spectrometry. Cell extracts prepared from Lactobacillus helveticus ITG LH1, ITG LH77, and CNRZ 32, Lactobacillus delbrueckii subsp. lactis ITG LL14 and ITG LL51, L. delbrueckii subsp. bulgaricus CNRZ 397 and NCDO 1489, and Streptococcus thermophilus CNRZ 385, CIP 102303, and TA 060 were standardized in protein. The peptidase activities were assessed with the β-casein hydrolysate as the substrate at pH 5.5 and 24°C (conditions of warm room ripening) by (i) free amino acid release, (ii) reverse-phase chromatography, and (iii) identification of undigested peptides by mass spectrometry. Regardless of strain, L. helveticus was the most efficient in hydrolyzing β-casein peptides. Interestingly, cell extracts of S. thermophilus were not able to release a significant level of free proline from the β-casein hydrolysate, which was consistent with the identification of numerous dipeptides containing proline. With the three lactic acid bacteria tested, the phosphorylated peptides remained undigested or weakly hydrolyzed indicating their high intrinsic resistance to peptidase activities. Finally, several sets of peptides differing by a single amino acid in a C-terminal position revealed the presence of at least one carboxypeptidase in the cell extracts of these species. PMID:11097915

  11. Incorporation of extra amino acids in peptide recognition probe to improve specificity and selectivity of an electrochemical peptide-based sensor.

    PubMed

    Zaitouna, Anita J; Maben, Alex J; Lai, Rebecca Y

    2015-07-30

    We investigated the effect of incorporating extra amino acids (AA) at the n-terminus of the thiolated and methylene blue-modified peptide probe on both specificity and selectivity of an electrochemical peptide-based (E-PB) HIV sensor. The addition of a flexible (SG)3 hexapeptide is, in particular, useful in improving sensor selectivity, whereas the addition of a highly hydrophilic (EK)3 hexapeptide has shown to be effective in enhancing sensor specificity. Overall, both E-PB sensors fabricated using peptide probes with the added AA (SG-EAA and EK-EAA) showed better specificity and selectivity, especially when compared to the sensor fabricated using a peptide probe without the extra AA (EAA). For example, the selectivity factor recorded in the 50% saliva was ∼2.5 for the EAA sensor, whereas the selectivity factor was 7.8 for both the SG-EAA and EK-EAA sensors. Other sensor properties such as the limit of detection and dynamic range were minimally affected by the addition of the six AA sequence. The limit of detection was 0.5 nM for the EAA sensor and 1 nM for both SG-EAA and EK-EAA sensors. The saturation target concentration was ∼200 nM for all three sensors. Unlike previously reported E-PB HIV sensors, the peptide probe functions as both the recognition element and antifouling passivating agent; this modification eliminates the need to include an additional antifouling diluent, which simplifies the sensor design and fabrication protocol. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. An enhancer peptide for membrane-disrupting antimicrobial peptides

    PubMed Central

    2010-01-01

    Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058

  13. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides

    NASA Astrophysics Data System (ADS)

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E.

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. [Figure not available: see fulltext.

  14. Collision-Induced Dissociation of Deprotonated Peptides. Relative Abundance of Side-Chain Neutral Losses, Residue-Specific Product Ions, and Comparison with Protonated Peptides.

    PubMed

    Liang, Yuxue; Neta, Pedatsur; Yang, Xiaoyu; Stein, Stephen E

    2018-03-01

    High-accuracy MS/MS spectra of deprotonated ions of 390 dipeptides and 137 peptides with three to six residues are studied. Many amino acid residues undergo neutral losses from their side chains. The most abundant is the loss of acetaldehyde from threonine. The abundance of losses from the side chains of other amino acids is estimated relative to that of threonine. While some amino acids lose the whole side chain, others lose only part of it, and some exhibit two or more different losses. Side-chain neutral losses are less abundant in the spectra of protonated peptides, being significant mainly for methionine and arginine. In addition to the neutral losses, many amino acid residues in deprotonated peptides produce specific negative ions after peptide bond cleavage. An expanded list of fragment ions from protonated peptides is also presented and compared with those of deprotonated peptides. Fragment ions are mostly different for these two cases. These lists of fragments are used to annotate peptide mass spectral libraries and to aid in the confirmation of specific amino acids in peptides. Graphical Abstract ᅟ.

  15. Light-emitting self-assembled peptide nucleic acids exhibit both stacking interactions and Watson-Crick base pairing.

    PubMed

    Berger, Or; Adler-Abramovich, Lihi; Levy-Sakin, Michal; Grunwald, Assaf; Liebes-Peer, Yael; Bachar, Mor; Buzhansky, Ludmila; Mossou, Estelle; Forsyth, V Trevor; Schwartz, Tal; Ebenstein, Yuval; Frolow, Felix; Shimon, Linda J W; Patolsky, Fernando; Gazit, Ehud

    2015-04-01

    The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone. All 16 combinations of the very short di-PNA building blocks were synthesized and assayed for their ability to self-associate. Only three guanine-containing di-PNAs-CG, GC and GG-could form ordered assemblies, as observed by electron microscopy, and these di-PNAs efficiently assembled into discrete architectures within a few minutes. The X-ray crystal structure of the GC di-PNA showed the occurrence of both stacking interactions and Watson-Crick base pairing. The assemblies were also found to exhibit optical properties including voltage-dependent electroluminescence and wide-range excitation-dependent fluorescence in the visible region.

  16. Escherichia coli K-12 can utilize an exogenous gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase is essential.

    PubMed

    Suzuki, H; Hashimoto, W; Kumagai, H

    1993-09-01

    Escherichia coli K-12 can utilize a gamma-glutamyl peptide as an amino acid source, for which gamma-glutamyltranspeptidase (EC 2.3.2.2) is essential. We suggest that the gamma-glutamyl linkage of a gamma-glutamyl peptide is hydrolyzed by gamma-glutamyltranspeptidase located in the periplasmic space, and the released amino acid is taken up and utilized by E. coli.

  17. Peptide Epimerization Machineries Found in Microorganisms.

    PubMed

    Ogasawara, Yasushi; Dairi, Tohru

    2018-01-01

    D-Amino acid residues have been identified in peptides from a variety of eukaryotes and prokaryotes. In microorganisms, UDP- N -acetylmuramic acid pentapeptide (UDP-MurNAc-L-Ala-D-Glu-meso-diaminopimelate-D-Ala-D-Ala), a unit of peptidoglycan, is a representative. During its biosynthesis, D-Ala and D-Glu are generally supplied by racemases from the corresponding isomers. However, we recently identified a unique unidirectional L-Glu epimerase catalyzing the epimerization of the terminal L-Glu of UDP-MurNAc-L-Ala-L-Glu. Several such enzymes, introducing D-amino acid resides into peptides via epimerization, have been reported to date. This includes a L-Ala-D/L-Glu epimerase, which is possibly used during peptidoglycan degradation. In bacterial primary metabolisms, to the best of our knowledge, these two machineries are the only examples of peptide epimerization. However, a variety of peptides containing D-amino acid residues have been isolated from microorganisms as secondary metabolites. Their biosynthetic mechanisms have been studied and three different peptide epimerization machineries have been reported. The first is non-ribosomal peptide synthetase (NRPS). Excellent studies with dissected modules of gramicidin synthetase and tyrocidine synthetase revealed the reactions of the epimerization domains embedded in the enzymes. The obtained information is still utilized to predict epimerization domains in uncharacterized NRPSs. The second includes the biosynthetic enzymes of lantibiotics, which are ribosome-dependently supplied peptide antibiotics containing polycyclic thioether amino acids (lanthionines). A mechanism for the formation of the D-Ala moiety in lanthionine by two enzymes, dehydratases catalyzing the conversion of L-Ser into dehydroalanine and enzymes catalyzing nucleophilic attack of the thiol of cysteine into dehydroalanine, was clarified. Similarly, the formation of a D-Ala residue by reduction of the dehydroalanine residue was also reported. The last

  18. 75 FR 21678 - STP Nuclear Operating Company South Texas Project, Units 1 and 2 Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... Company South Texas Project, Units 1 and 2 Environmental Assessment and Finding of No Significant Impact... South Texas Project (STP), Units 1 and 2, respectively, located in Matagorda County, Texas. In... 1 and 2, from some of the requirements of 10 CFR Part 26, ``Fitness for Duty Rule.'' Specifically...

  19. 2-Aminobenzamide and 2-Aminobenzoic Acid as New MALDI Matrices Inducing Radical Mediated In-Source Decay of Peptides and Proteins

    NASA Astrophysics Data System (ADS)

    Smargiasso, Nicolas; Quinton, Loic; de Pauw, Edwin

    2012-03-01

    One of the mechanisms leading to MALDI in-source decay (MALDI ISD) is the transfer of hydrogen radicals to analytes upon laser irradiation. Analytes such as peptides or proteins may undergo ISD and this method can therefore be exploited for top-down sequencing. When performed on peptides, radical-induced ISD results in production of c- and z-ions, as also found in ETD and ECD activation. Here, we describe two new compounds which, when used as MALDI matrices, are able to efficiently induce ISD of peptides and proteins: 2-aminobenzamide and 2-aminobenzoic acid. In-source reduction of the disulfide bridge containing peptide Calcitonin further confirmed the radicalar mechanism of the ISD process. ISD of peptides led, in addition to c- and z-ions, to the generation of a-, x-, and y-ions both in positive and in negative ion modes. Finally, good sequence coverage was obtained for the sequencing of myoglobin (17 kDa protein), confirming the effectiveness of both 2-aminobenzamide and 2-aminobenzoic acid as MALDI ISD matrices.

  20. 2-Aminobenzamide and 2-aminobenzoic acid as new MALDI matrices inducing radical mediated in-source decay of peptides and proteins.

    PubMed

    Smargiasso, Nicolas; Quinton, Loic; De Pauw, Edwin

    2012-03-01

    One of the mechanisms leading to MALDI in-source decay (MALDI ISD) is the transfer of hydrogen radicals to analytes upon laser irradiation. Analytes such as peptides or proteins may undergo ISD and this method can therefore be exploited for top-down sequencing. When performed on peptides, radical-induced ISD results in production of c- and z-ions, as also found in ETD and ECD activation. Here, we describe two new compounds which, when used as MALDI matrices, are able to efficiently induce ISD of peptides and proteins: 2-aminobenzamide and 2-aminobenzoic acid. In-source reduction of the disulfide bridge containing peptide Calcitonin further confirmed the radicalar mechanism of the ISD process. ISD of peptides led, in addition to c- and z-ions, to the generation of a-, x-, and y-ions both in positive and in negative ion modes. Finally, good sequence coverage was obtained for the sequencing of myoglobin (17 kDa protein), confirming the effectiveness of both 2-aminobenzamide and 2-aminobenzoic acid as MALDI ISD matrices.

  1. Isoelectric focusing of proteins and peptides

    NASA Technical Reports Server (NTRS)

    Egen, N.

    1979-01-01

    Egg-white solution was chosen as the reference solution in order to assess the effects of operational parameters (voltage, flow rate, ampholine pH range and concentration, and protein concentration) of the RIEF apparatus on protein resolution. Topics of discussion include: (1) comparison of RIEF apparatus to conventional IEF techniques (column and PAG) with respect to resolution and throughput; (2) peptide and protein separation (AHF, Thymosin - Fraction 5, vasoactive peptide, L-asparaginase and ACP); and (3) detection of peptides - dansyl derivatives of amino acids and peptides, post-focusing fluorescent labeling of amino acids, peptides and proteins, and ampholine extraction from focused gels.

  2. OK, thanks! A new mutualism between Chlamydomonas and methylobacteria facilitates growth on amino acids and peptides.

    PubMed

    Calatrava, Victoria; Hom, Erik F Y; Llamas, Ángel; Fernández, Emilio; Galván, Aurora

    2018-04-01

    Nitrogen is a key nutrient for land plants and phytoplankton in terrestrial and aquatic ecosystems. The model alga Chlamydomonas reinhardtii can grow efficiently on several inorganic nitrogen sources (e.g. ammonium, nitrate, nitrite) as well as many amino acids. In this study, we show that Chlamydomonas is unable to use proline, hydroxyproline and peptides that contain these amino acids. However, we discovered that algal growth on these substrates is supported in association with Methylobacterium spp., and that a mutualistic carbon-nitrogen metabolic exchange between Chlamydomonas and Methylobacterium spp. is established. Specifically, the mineralization of these amino acids and peptides by Methylobacterium spp. produces ammonium that can be assimilated by Chlamydomonas, and CO2 photosynthetically fixed by Chlamydomonas yields glycerol that can be assimilated by Methylobacterium. As Chlamydomonas is an algal ancestor to land plants and Methylobacterium is a plant growth-promoting bacterium, this new model of mutualism may facilitate insights into the ecology and evolution of plant-bacterial interactions and design principles of synthetic ecology.

  3. Site-Specific Pyrolysis Induced Cleavage at Aspartic Acid Residue in Peptides and Proteins

    PubMed Central

    Zhang, Shaofeng; Basile, Franco

    2011-01-01

    A simple and site-specific non-enzymatic method based on pyrolysis has been developed to cleave peptides and proteins. Pyrolytic cleavage was found to be specific and rapid as it induced a cleavage at the C-terminal side of aspartic acid in the temperature range of 220–250 °C in 10 seconds. Electrospray Ionization (ESI) mass spectrometry (MS) and tandem-MS (MS/MS) were used to characterize and identify pyrolysis cleavage products, confirming that sequence information is conserved after the pyrolysis process in both peptides and protein tested. This suggests that pyrolysis-induced cleavage at aspartyl residues can be used as a rapid protein digestion procedure for the generation of sequence specific protein biomarkers. PMID:17388620

  4. Science of Opportunity: Heliophysics on the FASTSAT Mission and STP-S26

    NASA Technical Reports Server (NTRS)

    Rowland, Douglas E.; Collier, Michael R.; Sigwarth, John B.; Jones, Sarah L.; Hill, Joanne K.; Benson, Robert; Choi, Michael; Chornay, Dennis; Cooper, John; Feng, Steven; hide

    2011-01-01

    The FASTSAT spacecraft, which was launched on November 19, 2010 on the DoD STP-S26 mission, carries three instruments developed in joint collaboration by NASA GSFC and the US Naval Academy: PISA, TTl, and MINI_ME.I,1 As part of a rapid-development, low-cost instrument design and fabrication program, these instruments were a perfect match for FASTSAT, which was designed and built in less than one year. These instruments, while independently developed, provide a collaborative view of important processes in the upper atmosphere relating to solar and energetic particle input, atmospheric response, and ion outflow. PISA measures in-situ irregularities in electron number density, TIl provides limb measurements of the atomic oxygen temperature profile with altitude, and MINI-ME provides a unique look at ion populations by a remote sen sing technique involving neutral atom imaging. Together with other instruments and payloads on STP-S26 such as the NSF RAX mission, FalconSat-5, and NanoSail-D (launched as a tertiary payload from FASTSAT), these instruments provide a valuable "constellation of opportunity" for following the now of energy and charged and neutral particles through the upper atmosphere. Together, and for a small fraction of the price of a major mission, these spacecraft will measure the energetic electrons impacting the upper atmosphere, the ions leaving it, and the large-scale plasma and neutral response to these energy inputs. The result will be a new model for maximizing scientific return from multiple small, distributed payloads as secondary payloads on a larger launch vehicle.

  5. Effects of 8-mer acidic peptide concentration on the morphology and photoluminescence of synthesized ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Tousi, Marzieh; Cheeney, Joseph; Ngo-Duc, Tam-Triet; Zuo, Zheng; Liu, Jianlin; Haberer, Elaine D.

    2015-11-01

    An 8-mer ZnO-binding peptide, VPGAAEHT, was identified using a M13 pVIII phage display library and employed as an additive during aqueous-based ZnO synthesis at 65 °C. Unlike most other well-studied ZnO-binding sequences which are strongly basic (pI > pH 7), the 8-mer peptide was overall acidic (pI < pH 7) in character, including only a single basic residue. The selected peptide strongly influenced ZnO nanostructure formation. Morphology and optical emission properties were found to be dependent on the concentration of peptide additive. Using lower peptide concentrations (<0.1 mM), single crystal hexagonal rods and platelets were produced, and using higher peptide concentrations (≥0.1 mM), polycrystalline layered platelets, yarn-like structures, and microspheres were assembled. Photoluminescence analysis revealed a characteristic ZnO band-edge peak, as well as sub-bandgap emission peaks. Defect-related green emission, typically associated with surface-related oxygen and zinc vacancies, was significantly reduced by the peptide additive, while blue emission, attributable to oxygen and zinc interstitials, emerged with increased peptide concentrations. Peptide-directed synthesis of ZnO materials may be useful for gas sensing and photocatalytic applications in which properly engineered morphology and defect levels have demonstrated enhanced performance.

  6. Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides

    NASA Astrophysics Data System (ADS)

    Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.

    2017-06-01

    Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.

  7. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    PubMed

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  8. Single amino acid fingerprinting of the human antibody repertoire with high density peptide arrays.

    PubMed

    Weber, Laura K; Palermo, Andrea; Kügler, Jonas; Armant, Olivier; Isse, Awale; Rentschler, Simone; Jaenisch, Thomas; Hubbuch, Jürgen; Dübel, Stefan; Nesterov-Mueller, Alexander; Breitling, Frank; Loeffler, Felix F

    2017-04-01

    The antibody species that patrol in a patient's blood are an invaluable part of the immune system. While most of them shield us from life-threatening infections, some of them do harm in autoimmune diseases. If we knew exactly all the antigens that elicited all the antibody species within a group of patients, we could learn which ones correlate with immune protection, are irrelevant, or do harm. Here, we demonstrate an approach to this question: First, we use a plethora of phage-displayed peptides to identify many different serum antibody binding peptides. Next, we synthesize identified peptides in the array format and rescreen the serum used for phage panning to validate antibody binding peptides. Finally, we systematically vary the sequence of validated antibody binding peptides to identify those amino acids within the peptides that are crucial for binding "their" antibody species. The resulting immune fingerprints can then be used to trace them back to potential antigens. We investigated the serum of an individual in this pipeline, which led to the identification of 73 antibody fingerprints. Some fingerprints could be traced back to their most likely antigen, for example the immunodominant capsid protein VP1 of enteroviruses, most likely elicited by the ubiquitous poliovirus vaccination. Thus, with our approach, it is possible, to pinpoint those antibody species that correlate with a certain antigen, without any pre-information. This can help to unravel hitherto enigmatic diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. REACTION OF AMINO-ACIDS AND PEPTIDE BONDS WITH FORMALDEHYDE AS MEASURED BY CHANGES IN THE ULTRA-VIOLET SPECTRA,

    DTIC Science & Technology

    AMINO ACIDS , CHEMICAL REACTIONS), (*PEPTIDES, CHEMICAL REACTIONS), (*FORMALDEHYDE, CHEMICAL REACTIONS), (*ULTRAVIOLET SPECTROSCOPY, PROTEINS), ABSORPTION SPECTRA, CHEMICAL BONDS, AMIDES, CHEMICAL EQUILIBRIUM, REACTION KINETICS

  10. Development of novel ligands for peptide GPCRs.

    PubMed

    Moran, Brian M; McKillop, Aine M; O'Harte, Finbarr Pm

    2016-12-01

    Incretin based glucagon-like peptide-1 receptor (GLP-1R) agonists which target a G-protein coupled receptor (GPCR) are currently used in the treatment of type 2 diabetes. This review focuses on GPCRs from pancreatic β-cells, including GLP-1, glucose-dependent insulinotropic polypeptide (GIP), glucagon, somatostatin, pancreatic polypeptide (PP), cholecystokinin (CCK), peptide YY (PYY), oxyntomodulin (OXM) and ghrelin receptors. In addition, fatty acids GPCRs are thought to have an increasing role in regulating peptide secretions namely short fatty acids GPCR (GPR41, GPR43), medium chain fatty acid GPCR (GPR84), long chain fatty acid GPCR (GPR40, GPR120) and cannabinoid-like GPCR (GPR55, GPR119). Several pre-clinical and clinical trials are currently ongoing in peptide GPCR based therapies, including dual and triple agonist peptides which activate two or more GPCRs simultaneously. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. 77 FR 74882 - STP Nuclear Operating Company, South Texas Project; Notice of Availability of Draft Supplement 48...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos.: 50-498 and 50-499; NRC-2010-0375] STP Nuclear Operating Company, South Texas Project; Notice of Availability of Draft Supplement 48 to the Generic Environmental Impact Statement for License Renewal of Nuclear Plants and Public Meetings for the License Renewal of South Texas Project Notice is hereby...

  12. PH dependent adhesive peptides

    DOEpatents

    Tomich, John; Iwamoto, Takeo; Shen, Xinchun; Sun, Xiuzhi Susan

    2010-06-29

    A novel peptide adhesive motif is described that requires no receptor or cross-links to achieve maximal adhesive strength. Several peptides with different degrees of adhesive strength have been designed and synthesized using solid phase chemistries. All peptides contain a common hydrophobic core sequence flanked by positively or negatively charged amino acids sequences.

  13. Radiation-induced reductive modifications of sulfur-containing amino acids within peptides and proteins.

    PubMed

    Chatgilialoglu, Chryssostomos; Ferreri, Carla; Torreggiani, Armida; Salzano, Anna Maria; Renzone, Giovanni; Scaloni, Andrea

    2011-10-19

    The complex scenario of radical stress reactions affecting peptides/proteins can be better elucidated through the design of biomimetic studies simulating the consequences of the different free radicals attacking amino acids. In this context, ionizing radiations allowed to examine the specific damages caused by H-atoms and electrons coupled with protons, thus establishing the molecular basis of reductive radical stress. This is an innovative concept that complements the well-known oxidative stress also in view of a complete understanding of the global consequences of radical species reactivities on living systems. This review summarizes the knowledge of the chemical changes present in sulfur-containing amino acids occurring in polypeptides under reductive radical conditions, in particular the transformation of Met and Cys residues into α-amino butyric acid and alanine, respectively. Reductive radical stress causing a desulfurization process, is therefore coupled with the formation of S-centered radicals, which in turn can diffuse apart and become responsible of the damage transfer from proteins to lipids. These reductive modifications assayed in different peptide/protein sequences constitute an integration of the molecular inventories that up to now take into account only oxidative transformations. They can be useful to achieve an integrated vision of the free radical reactivities in a multifunctional system and, overall, for wider applications in the redox proteomics field. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Conformational characterization of the 1-aminocyclobutane-1-carboxylic acid residue in model peptides.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Toniolo, C; Bonora, G M; Benedetti, Z; Di Blasio, B; Iacovino, R; Santini, A; Saviano, M; Kamphuis, J

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the dodecamer level) from the small-ring alicyclic C alpha, alpha-dialkylated glycine 1-aminocyclobutane-1-carboxylic acid (Ac4c) and two Ala/Ac4c tripeptides were synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives Z-Ac4c-OH and Z2-Ac4c-OH, the tripeptides Z-(Ac4c)3-OtBu, Z-Ac4c-(L-Ala)2-OMe and Z-L-Ala-Ac4c-L-Ala-OMe, and the tetrapeptide Z-(Ac4c)4-OtBu were determined in the crystal state by X-ray diffraction. The average geometry of the cyclobutyl moiety of the Ac4c residue was assessed and the tau(N-C alpha-C') bond angle was found to be significantly expanded from the regular tetrahedral value. The conformational data are strongly in favour of the conclusion that the Ac4c residue is an effective beta-turn and helix former. A comparison with the structural propensities of alpha-aminoisobutyric acid, the prototype of C alpha, alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3, 5-8) is made and the implications for the use of the Ac4c residue in conformationally constrained peptide analogues are briefly examined.

  15. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.

    PubMed

    Hong, Yooseong; Legge, Raymond L; Zhang, S; Chen, P

    2003-01-01

    Atomic force microscopy (AFM) and axisymmetric drop shape analysis-profile (ASDA-P) were used to investigate the mechanism of self-assembly of peptides. The peptides chosen consisted of 16 alternating hydrophobic and hydrophilic amino acids, where the hydrophilic residues possess alternating negative and positive charges. Two types of peptides, AEAEAKAKAEAEAKAK (EAK16-II) and AEAEAEAEAKAKAKAK (EAK16-IV), were investigated in terms of nanostructure formation through self-assembly. The experimental results, which focused on the effects of the amino acid sequence and pH, show that the nanostructures formed by the peptides are dependent on the amino acid sequence and the pH of the solution. For pH conditions around neutrality, one of the peptides used in this study, EAK16-IV, forms globular assemblies and has lower surface tension at air-water interfaces than another peptide, EAK16-II, which forms fibrillar assemblies at the same pH. When the pH is lowered below 6.5 or raised above 7.5, there is a transition from globular to fibrillar structures for EAK16-IV, but EAK16-II does not show any structural transition. Surface tension measurements using ADSA-P showed different surface activities of peptides at air-water interfaces. EAK16-II does not show a significant difference in surface tension for the pH range between 4 and 9. However, EAK16-IV shows a noticeable decrease in surface tension at pH around neutrality, indicating that the formation of globular assemblies is related to the molecular hydrophobicity.

  16. Methionine peptide formation under primordial earth conditions.

    PubMed

    Li, Feng; Fitz, Daniel; Fraser, Donald G; Rode, Bernd M

    2008-01-01

    According to recent research on the origin of life it seems more and more likely that amino acids and peptides were among the first biomolecules formed on earth and that a peptide/protein world was thus a key starting point in evolution towards life. Salt-induced Peptide Formation (SIPF) has repeatedly been shown to be the most universal and plausible peptide-forming reaction currently known under prebiotic conditions and forms peptides from amino acids with the help of copper ions and sodium chloride. In this paper we present experimental results for salt-induced peptide formation from methionine. This is the first time that a sulphur-containing amino acid was investigated in this reaction. The possible catalytic effects of glycine and L-histidine in this reaction were also investigated and a possible distinction between the L- and D-forms of methionine was studied as well.

  17. Use of unnatural amino acids to probe structure-activity relationships and mode-of-action of antimicrobial peptides.

    PubMed

    Tossi, Alessandro; Scocchi, Marco; Zahariev, Sotir; Gennaro, Renato

    2012-01-01

    Endogenous antimicrobial peptides (AMPs) can have multimodal mechanisms of bacterial inactivation, such as membrane lysis, interference with cell wall biosynthesis or membrane-based protein machineries, or translocation through the membrane to intracellular targets. The controlled variation of side-chain characteristics in their amino acid residues can provide much useful information on structure-activity relationships and mode-of-action, and also lead to improved activities. The small size and relatively low complexity of AMPs make them amenable to solid-phase peptide synthesis, facilitating the use of nonproteinogenic amino acids and vastly increasing the accessible molecular diversity of side chains. Here, we describe how such residues can be used to modulate such key parameters as cationicity, hydrophobicity, steric factors conformational stability, and H-bonding.

  18. Pulmonary lung surfactant synthetic peptide concentration-dependent modulation of DPPC and POPG acyl chain order in a DPPC:POPG:palmitic acid lipid mixture.

    PubMed

    Krill, S L; Gupta, S L; Smith, T

    1994-05-06

    Lung surfactant-associated protein interaction with lipid matrices and the effects on lipid thermotropic phase behavior are areas of active research. Many studies limit the lipids to a single or two-component system. The current investigation utilizes a three-lipid component matrix (DPPC:POPG:palmitic acid) to investigate the impact of a synthetic surfactant protein B fragment (SP-B 53-78 DiACM) on the dynamic surface activity of the lipid admixture as measured by a Wilhelmy surface balance. Also, the modulation of the individual lipid acyl chain order by the peptide within the lipid matrix is studied through the use of thermal perturbation FTIR spectroscopy. The data clearly demonstrate a concentration-dependent effect of the peptide on the surface activity with an improvement in the dynamic surface tension diagram characteristics (decreased surface tension and increased collapse plateau) especially at low, 0.36 M%, peptide concentrations. These effects are diminished upon further addition of the peptide. FTIR spectral data demonstrate that the peptide addition results in a significant increase in the acyl chain order of the DPPC and POPG components as measured by the position of the methylene stretching vibrational bands. DPPC is most sensitive to the peptide presence, while the palmitic acid is least affected. The transition temperatures of the individual lipids are also increased with the addition of the peptide. The presence of POPG in the matrix achieves the surface activity similarly seen with natural lung surfactant relative to a DPPC/palmitic acid lipid matrix alone. Its presence increases the sensitivity of the DPPC acyl chains to the presence of the peptide. These effects on the chain order are most probably related to the increased acyl chain fluidity which POPG imparts to the lipid matrix because of the presence of the cis double bond. The phosphatidylglycerol headgroup also adds a negative charge to the lipid matrix which enhances the peptide

  19. Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy

    PubMed Central

    Claridge, Shelley A.; Thomas, John C.; Silverman, Miles A.; Schwartz, Jeffrey J.; Yang, Yanlian; Wang, Chen; Weiss, Paul S.

    2014-01-01

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structure at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer’s and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level. PMID:24219245

  20. [Plant signaling peptides. Cysteine-rich peptides].

    PubMed

    Ostrowski, Maciej; Kowalczyk, Stanisław

    2015-01-01

    Recent bioinformatic and genetic analyses of several model plant genomes have revealed the existence of a highly abundant group of signaling peptides that are defined as cysteine-rich peptides (CRPs). CRPs are usually in size between 50 and 90 amino acid residues, they are positively charged, and they contain 4-16 cysteine residues that are important for the correct conformational folding. Despite the structural differences among CRP classes, members from each class have striking similarities in their molecular properties and function. The present review presents the recent progress in research on signaling peptides from several families including: EPF/EPFL, SP11/SCR, PrsS, RALF, LURE, and some other peptides belonging to CRP group. There is convincing evidence indicating multiple roles for these CRPs as signaling molecules during the plant life cycle, ranging from stomata development and patterning, self-incompatibility, pollen tube growth and guidance, reproductive processes, and nodule formation.

  1. 76 FR 16012 - STP Nuclear Operating Company, et al. South Texas Project, Units 1 and 2 Notice of Consideration...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0063; Docket Nos. 50-498 And 50-499] STP Nuclear Operating... Facility Operating License, Proposed No Significant Hazards Consideration Determination, and Opportunity... on the NRC Web site and on the Federal rulemaking Web site http://www.regulations.gov . Because your...

  2. Killing of Mycobacterium avium by Lactoferricin Peptides: Improved Activity of Arginine- and d-Amino-Acid-Containing Molecules

    PubMed Central

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida

    2014-01-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. PMID:24709266

  3. Peptide design using alpha,beta-dehydro amino acids: from beta-turns to helical hairpins.

    PubMed

    Mathur, Puniti; Ramakumar, S; Chauhan, V S

    2004-01-01

    Incorporation of alpha,beta-dehydrophenylalanine (DeltaPhe) residue in peptides induces folded conformations: beta-turns in short peptides and 3(10)-helices in larger ones. A few exceptions-namely, alpha-helix or flat beta-bend ribbon structures-have also been reported in a few cases. The most favorable conformation of DeltaPhe residues are (phi,psi) approximately (-60 degrees, -30 degrees ), (-60 degrees, 150 degrees ), (80 degrees, 0 degrees ) or their enantiomers. DeltaPhe is an achiral and planar residue. These features have been exploited in designing DeltaPhe zippers and helix-turn-helix motifs. DeltaPhe can be incorporated in both right and left-handed helices. In fact, consecutive occurrence of three or more DeltaPhe amino acids induce left-handed screw sense in peptides containing L-amino acids. Weak interactions involving the DeltaPhe residue play an important role in molecular association. The C--H.O==C hydrogen bond between the DeltaPhe side-chain and backbone carboxyl moiety, pi-pi stacking interactions between DeltaPhe side chains belonging to enantiomeric helices have shown to stabilize folding. The unusual capability of a DeltaPhe ring to form the hub of multicentered interactions namely, a donor in aromatic C--H.pi and C--H.O==C and an acceptor in a CH(3).pi interaction suggests its exploitation in introducing long-range interactions in the folding of supersecondary structures. Copyright 2004 Wiley Periodicals, Inc. Biopolymers (Pept Sci), 2004

  4. Amino acid sequences of peptides from a tryptic digest of a urea-soluble protein fraction (U.S.3) from oxidized wool

    PubMed Central

    Corfield, M. C.; Fletcher, J. C.; Robson, A.

    1967-01-01

    1. A tryptic digest of the protein fraction U.S.3 from oxidized wool has been separated into 32 peptide fractions by cation-exchange resin chromatography. 2. Most of these fractions have been resolved into their component peptides by a combination of the techniques of cation-exchange resin chromatography, paper chromatography and paper electrophoresis. 3. The amino acid compositions of 58 of the peptides in the digest present in the largest amounts have been determined. 4. The amino acid sequences of 38 of these have been completely elucidated and those of six others partially derived. 5. These findings indicate that the parent protein in wool from which the protein fraction U.S.3 is derived has a minimum molecular weight of 74000. 6. The structures of wool proteins are discussed in the light of the peptide sequences determined, and, in particular, of those sequences in fraction U.S.3 that could not be elucidated. PMID:16742497

  5. Osmotic Pressure Simulations of Amino Acids and Peptides Highlight Potential Routes to Protein Force Field Parameterization

    PubMed Central

    Miller, Mark S.; Lay, Wesley K.

    2016-01-01

    Recent molecular dynamics (MD) simulations of proteins have suggested that common force fields overestimate the strength of amino acid interactions in aqueous solution. In an attempt to determine the causes of these effects, we have measured the osmotic coefficients of a number of amino acids using the AMBER ff99SB-ILDN force field with two popular water models, and compared the results with available experimental data. With TIP4P-Ew water, interactions between aliphatic residues agree well with experiment, but interactions of the polar residues serine and threonine are found to be excessively attractive. For all tested amino acids, the osmotic coefficients are lower when the TIP3P water model is used. Additional simulations performed on charged amino acids indicate that the osmotic coefficients are strongly dependent on the parameters assigned to the salt ions, with a reparameterization of the sodium:carboxylate interaction reported by the Aksimentiev group significantly improving description of the osmotic coefficient for glutamate. For five neutral amino acids, we also demonstrate a decrease in solute-solute attractions using the recently reported TIP4P-D water model and using the KBFF force field. Finally, we show that for four two-residue peptides improved agreement with experiment can be achieved by re-deriving the partial charges for each peptide. PMID:27052117

  6. Study of the peptide length and amino acid specific substitution in the antigenic activity of the chimeric synthetic peptides, containing the p19 core and gp46 envelope proteins of the HTLV-I virus.

    PubMed

    Marin, Milenen Hernández; Rodríguez-Tanty, Chryslaine; Higginson-Clarke, David; Bocalandro, Yadaris Márquez; Peña, Lilliam Pozo

    2005-10-28

    Four chimeric synthetic peptides (Q5, Q6, Q7(multiply sign in circle), and Q8(multiply sign in circle)), incorporating immunodominant epitopes of the core p19 (105-124 a.a.) and envelope gp46 proteins (175-205 a.a.), of HTLV-I were obtained. Also, two gp46 monomeric peptides M4 and M5(multiply sign in circle) (Ser at position 192) were synthesized. The analysis of the influence of the peptide lengths and the proline to serine substitution on the chimeric and monomeric peptides' antigenicity, with regard to the chimeric peptides Q1, Q2, Q3(multiply sign in circle), and Q4(multiply sign in circle), reported previously, for HTLV-I was carried out. The peptides' antigenicity was evaluated in an ultramicroenzyme-linked immunosorbent assay (UMELISA) using sera of HTLV-I/II. The peptides' antigenicity was affected appreciably by the change of the peptide length and amino acid substitutions into the immunodominant sequence of gp46 peptide.

  7. The 4-pyridylmethyl ester as a protecting group for glutamic and aspartic acids: 'flipping' peptide charge states for characterization by positive ion mode ESI-MS.

    PubMed

    Garapati, Sriramya; Burns, Colin S

    2014-03-01

    Use of the 4-pyridylmethyl ester group for side-chain protection of glutamic acid residues in solid-phase peptide synthesis enables switching of the charge state of a peptide from negative to positive, thus making detection by positive ion mode ESI-MS possible. The pyridylmethyl ester moiety is readily removed from peptides in high yield by hydrogenation. Combining the 4-pyridylmethyl ester protecting group with benzyl ester protection reduces the number of the former needed to produce a net positive charge and allows for purification by RP HPLC. This protecting group is useful in the synthesis of highly acidic peptide sequences, which are often beset by problems with purification by standard RP HPLC and characterization by ESI-MS. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.

  8. Flanking signal and mature peptide residues influence signal peptide cleavage

    PubMed Central

    Choo, Khar Heng; Ranganathan, Shoba

    2008-01-01

    Background Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii) Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs. PMID:19091014

  9. Biologically active peptides of the vesicular stomatitis virus glycoprotein.

    PubMed Central

    Schlegel, R; Wade, M

    1985-01-01

    A peptide corresponding to the amino-terminal 25 amino acids of the mature vesicular stomatitis virus glycoprotein has recently been shown to be a pH-dependent hemolysin. In the present study, we analyzed smaller constituent peptides and found that the hemolytic domain resides within the six amino-terminal amino acids. Synthesis of variant peptides indicates that the amino-terminal lysine can be replaced by another positively charged amino acid (arginine) but that substitution with glutamic acid results in the total loss of the hemolytic function. Peptide-induced hemolysis was dependent upon buffer conditions and was inhibited when isotonicity was maintained with mannitol, sucrose, or raffinose. In sucrose, all hemolytic peptides were also observed to mediate hemagglutination. The large 25-amino acid peptide is also a pH-dependent cytotoxin for mammalian cells and appears to effect gross changes in cell permeability. Conservation of the amino terminus of vesicular stomatitis virus and rabies virus suggests that the membrane-destabilizing properties of this domain may be important for glycoprotein function. Images PMID:2981356

  10. Integrating the intrinsic conformational preferences of non-coded α-amino acids modified at the peptide bond into the NCAD database

    PubMed Central

    Revilla-López, Guillem; Rodríguez-Ropero, Francisco; Curcó, David; Torras, Juan; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Alemán, Carlos

    2011-01-01

    Recently, we reported a database (NCAD, Non-Coded Amino acids Database; http://recerca.upc.edu/imem/index.htm) that was built to compile information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, the experimentally-established conformational propensities, and applications (J. Phys. Chem. B 2010, 114, 7413). The database initially contained the information available for α-tetrasubstituted α-amino acids. In this work, we extend NCAD to three families of compounds, which can be used to engineer peptides and proteins incorporating modifications at the –NHCO– peptide bond. Such families are: N-substituted α-amino acids, thio-α-amino acids, and diamines and diacids used to build retropeptides. The conformational preferences of these compounds have been analyzed and described based on the information captured in the database. In addition, we provide an example of the utility of the database and of the compounds it compiles in protein and peptide engineering. Specifically, the symmetry of a sequence engineered to stabilize the 310-helix with respect to the α-helix has been broken without perturbing significantly the secondary structure through targeted replacements using the information contained in the database. PMID:21491493

  11. Highly efficient peptide formation from N-acetylaminoacyl-AMP anhydride and free amino acid

    NASA Technical Reports Server (NTRS)

    Mullins, D. W., Jr.; Lacey, J. C., Jr.

    1983-01-01

    The kinetics of formation of the N-blocked dipeptide, N-acetylglycylglycine, from N-acetylglycyl adenylate anhydride and glycine in aqueous solution at 25 C, and at various PH's are reported. The reaction is of interest in that over a physiologically relevant pH range (6-8), peptide synthesis proceeds more rapidly than hydrolysis, even at those pH's at which this compound becomes increasingly susceptible to base-catalyzed hydrolysis. Under similar conditions, the corresponding unblocked aminoacyl adenylate anhydrides are considerably more unstable, and undergo appreciable hydrlysis in the presence of free amino acid. Because N-blocked aminoacyl adenylate anhydrides serve as model compounds of peptidyl adenylate anhydrides, these results suggest that primitive amino acid polymerization systems may have operated by cyclic reactivation of the peptidyl carboxyl group, rather than that of the incoming amino acid.

  12. Targeted delivery of hyaluronic acid to the ocular surface by a polymer-peptide conjugate system for dry eye disease.

    PubMed

    Lee, David; Lu, Qiaozhi; Sommerfeld, Sven D; Chan, Amanda; Menon, Nikhil G; Schmidt, Tannin A; Elisseeff, Jennifer H; Singh, Anirudha

    2017-06-01

    Hyaluronic acid (HA) solutions effectively lubricate the ocular surface and are used for the relief of dry eye related symptoms. However, HA undergoes rapid clearance due to limited adhesion, which necessitates frequent instillation. Conversely, highly viscous artificial tear formulations with HA blur vision and interfere with blinking. Here, we developed an HA-eye drop formulation that selectively binds and retains HA for extended periods of time on the ocular surface. We synthesized a heterobifunctional polymer-peptide system with one end binding HA while the other end binding either sialic acid-containing glycosylated transmembrane molecules on the ocular surface epithelium, or type I collagen molecule within the tissue matrix. HA solution was mixed with the polymer-peptide system and tested on both ex vivo and in vivo models to determine its ability to prolong HA retention. Furthermore, rabbit ocular surface tissues treated with binding peptides and HA solutions demonstrated superior lubrication with reduced kinetic friction coefficients compared to tissues treated with conventional HA solution. The results suggest that binding peptide-based solution can keep the ocular surface enriched with HA for prolonged times as well as keep it lubricated. Therefore, this system can be further developed into a more effective treatment for dry eye patients than a standard HA eye drop. Eye drop formulations containing HA are widely used to lubricate the ocular surface and relieve dry eye related symptoms, however its low residence time remains a challenge. We designed a polymer-peptide system for the targeted delivery of HA to the ocular surface using sialic acid or type I collagen as anchors for HA immobilization. The addition of the polymer-peptide system to HA eye drop exhibited a reduced friction coefficient, and it can keep the ocular surface enriched with HA for prolonged time. This system can be further developed into a more effective treatment for dry eye than a

  13. Collision-induced dissociation of diazirine-labeled peptide ions. Evidence for Brønsted-acid assisted elimination of nitrogen.

    PubMed

    Marek, Aleš; Tureček, František

    2014-05-01

    Gas-phase dissociations were investigated for several peptide ions containing the Gly-Leu* N-terminal motif where Leu* was a modified norleucine residue containing the photolabile diazirine ring. Collisional activation of gas-phase peptide cations resulted in facile N₂ elimination that competed with backbone dissociations. A free lysine ammonium group can act as a Brønsted acid to facilitate N₂ elimination. This dissociation was accompanied by insertion of a lysine proton in the side chain of the photoleucine residue, as established by deuterium labeling and gas-phase sequencing of the products. Electron structure calculations were used to provide structures and energies of reactants, intermediates, and transition states for Gly-Leu*-Gly-Gly-Lys amide ions that were combined with RRKM calculations of unimolecular rate constants. The calculations indicated that Brønsted acid-catalyzed eliminations were kinetically preferred over direct loss of N₂ from the diazirine ring. Mechanisms are proposed to explain the proton-initiated reactions and discuss the reaction products. The non-catalyzed diazirine ring cleavage and N₂ loss is proposed as a thermometer dissociation for peptide ion dissociations.

  14. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping.

    PubMed

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren; Nielsen, Morten

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope.

  15. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  16. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules.

    PubMed

    Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé

    2014-06-01

    Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Bile Acid-regulated Peroxisome Proliferator-activated Receptor-α (PPARα) Activity Underlies Circadian Expression of Intestinal Peptide Absorption Transporter PepT1/Slc15a1*

    PubMed Central

    Okamura, Ayako; Koyanagi, Satoru; Dilxiat, Adila; Kusunose, Naoki; Chen, Jia Jun; Matsunaga, Naoya; Shibata, Shigenobu; Ohdo, Shigehiro

    2014-01-01

    Digested proteins are mainly absorbed as small peptides composed of two or three amino acids. The intestinal absorption of small peptides is mediated via only one transport system: the proton-coupled peptide transporter-1 (PepT1) encoded from the soluble carrier protein Slc15a1. In mammals, intestinal expression of PepT1/Slc15a1 oscillates during the daily feeding cycle. Although the oscillation in the intestinal expression of PepT1/Slc15a1 is suggested to be controlled by molecular components of circadian clock, we demonstrated here that bile acids regulated the oscillation of PepT1/Slc15a1 expression through modulating the activity of peroxisome proliferator-activated receptor α (PPARα). Nocturnally active mice mainly consumed their food during the dark phase. PPARα activated the intestinal expression of Slc15a1 mRNA during the light period, and protein levels of PepT1 peaked before the start of the dark phase. After food intake, bile acids accumulated in intestinal epithelial cells. Intestinal accumulated bile acids interfered with recruitment of co-transcriptional activator CREB-binding protein/p300 on the promoter region of Slc15a1 gene, thereby suppressing PPARα-mediated transactivation of Slc15a1. The time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the intestinal expression of PepT1/Slc15a1 during the daily feeding cycle that led to circadian changes in the intestinal absorption of small peptides. These findings suggest a molecular clock-independent mechanism by which bile acid-regulated PPARα activity governs the circadian expression of intestinal peptide transporter. PMID:25016014

  18. Bioactive dietary peptides and amino acids in inflammatory bowel disease.

    PubMed

    Zhang, Hua; Hu, Chien-An A; Kovacs-Nolan, Jennifer; Mine, Yoshinori

    2015-10-01

    Inflammatory bowel disease (IBD), most commonly ulcerative colitis (UC) and Crohn's disease (CD), is a chronic inflammation of the gastrointestinal tract. Patients affected with IBD experience symptoms including abdominal pain, persistent diarrhea, rectal bleeding, and weight loss. There is no cure for IBD; thus treatments typically focus on preventing complications, inducing and maintaining remission, and improving quality of life. During IBD, dysregulation of the intestinal immune system leads to increased production of pro-inflammatory cytokines, such as TNF-α and IL-6, and recruitment of activated immune cells to the intestine, causing tissue damage and perpetuating the inflammatory response. Recent biological therapies targeting specific inflammatory cytokines or pathways, in particular TNF-α, have shown promise, but not all patients respond to treatment, and some individuals become intolerant to treatment over time. Dietary peptides and amino acids (AAs) have been shown to modulate intestinal immune functions and influence inflammatory responses, and may be useful as alternative or ancillary treatments in IBD. This review focuses on dietary interventions for IBD treatment, in particular the role of dietary peptides and AAs in reducing inflammation, oxidative stress, and apoptosis in the gut, as well as recent advances in the cellular mechanisms responsible for their anti-inflammatory activity.

  19. Information transfer from peptide nucleic acids to RNA by template-directed syntheses

    NASA Technical Reports Server (NTRS)

    Schmidt, J. G.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Peptide nucleic acids (PNAs) are uncharged analogs of DNA and RNA in which the ribose-phosphate backbone is substituted by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. A PNA C10 oligomer has been shown to act as template for efficient formation of oligoguanylates from activated guanosine ribonucleotides. In a previous paper we used heterosequences of DNA as templates in sequence-dependent polymerization of PNA dimers. In this paper we show that information can be transferred from PNA to RNA. We describe the reactions of activated mononucleotides on heterosequences of PNA. Adenylic, cytidylic and guanylic acids were incorporated into the products opposite their complement on PNA, although less efficiently than on DNA templates.

  20. ArrayPitope: Automated Analysis of Amino Acid Substitutions for Peptide Microarray-Based Antibody Epitope Mapping

    PubMed Central

    Hansen, Christian Skjødt; Østerbye, Thomas; Marcatili, Paolo; Lund, Ole; Buus, Søren

    2017-01-01

    Identification of epitopes targeted by antibodies (B cell epitopes) is of critical importance for the development of many diagnostic and therapeutic tools. For clinical usage, such epitopes must be extensively characterized in order to validate specificity and to document potential cross-reactivity. B cell epitopes are typically classified as either linear epitopes, i.e. short consecutive segments from the protein sequence or conformational epitopes adapted through native protein folding. Recent advances in high-density peptide microarrays enable high-throughput, high-resolution identification and characterization of linear B cell epitopes. Using exhaustive amino acid substitution analysis of peptides originating from target antigens, these microarrays can be used to address the specificity of polyclonal antibodies raised against such antigens containing hundreds of epitopes. However, the interpretation of the data provided in such large-scale screenings is far from trivial and in most cases it requires advanced computational and statistical skills. Here, we present an online application for automated identification of linear B cell epitopes, allowing the non-expert user to analyse peptide microarray data. The application takes as input quantitative peptide data of fully or partially substituted overlapping peptides from a given antigen sequence and identifies epitope residues (residues that are significantly affected by substitutions) and visualize the selectivity towards each residue by sequence logo plots. Demonstrating utility, the application was used to identify and address the antibody specificity of 18 linear epitope regions in Human Serum Albumin (HSA), using peptide microarray data consisting of fully substituted peptides spanning the entire sequence of HSA and incubated with polyclonal rabbit anti-HSA (and mouse anti-rabbit-Cy3). The application is made available at: www.cbs.dtu.dk/services/ArrayPitope. PMID:28095436

  1. Antimicrobial activity of a new synthetic peptide loaded in polylactic acid or poly(lactic-co-glycolic) acid nanoparticles against Pseudomonas aeruginosa, Escherichia coli O157:H7 and methicillin resistant Staphylococcus aureus (MRSA)

    NASA Astrophysics Data System (ADS)

    Cruz, J.; Flórez, J.; Torres, R.; Urquiza, M.; Gutiérrez, J. A.; Guzmán, F.; Ortiz, C. C.

    2017-03-01

    Nanocarrier systems are currently being developed for peptide, protein and gene delivery to protect them in the blood circulation and in the gastrointestinal tract. Polylactic acid (PLA) and poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with a new antimicrobial GIBIM-P5S9K peptide were obtained by the double emulsion solvent extraction/evaporation method. PLA- and PLGA-NPs were spherical with sizes between 300 and 400 nm for PLA and 200 and 300 nm for PLGA and <0.3 polydispersity index as determined by dynamic light scattering and scanning electron microscopy), having the zeta potential of >20 mV. The peptide-loading efficiency of PLA-NP and PLGA-NPs was 75% and 55%, respectively. PLA- and PLGA-NPs released around 50% of this peptide over 8 h. In 10% human sera the size of peptide loaded PLA- and PLGA-NPs increased between 25.2% and 39.3%, the PDI changed from 3.2 to 5.1 and the surface charge from -7.15 to 14.6 mV. Both peptide loaded PLA- and PLGA-NPs at 0.5 μM peptide concentration inhibited the growth of Escherichia coli O157:H7 (E. coli O157:H7), methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas. aeruginosa (P. aeruginosa). In contrast, free peptide inhibited at 10 μM but did not inhibit at 0.5 and 1 μM. These PLA- and PLGA-NPs presented <10% hemolysis indicating that they are hemocompatible and promising for delivery and protection system of GIBIM-P5S9K peptide.

  2. Reductionist Approach in Peptide-Based Nanotechnology.

    PubMed

    Gazit, Ehud

    2018-06-20

    The formation of ordered nanostructures by molecular self-assembly of proteins and peptides represents one of the principal directions in nanotechnology. Indeed, polyamides provide superior features as materials with diverse physical properties. A reductionist approach allowed the identification of extremely short peptide sequences, as short as dipeptides, which could form well-ordered amyloid-like β-sheet-rich assemblies comparable to supramolecular structures made of much larger proteins. Some of the peptide assemblies show remarkable mechanical, optical, and electrical characteristics. Another direction of reductionism utilized a natural noncoded amino acid, α-aminoisobutryic acid, to form short superhelical assemblies. The use of this exceptional helix inducer motif allowed the fabrication of single heptad repeats used in various biointerfaces, including their use as surfactants and DNA-binding agents. Two additional directions of the reductionist approach include the use of peptide nucleic acids (PNAs) and coassembly techniques. The diversified accomplishments of the reductionist approach, as well as the exciting future advances it bears, are discussed.

  3. Isotopic tracing for calculating the surface density of arginine-glycine-aspartic acid-containing peptide on allogeneic bone.

    PubMed

    Hou, Xiao-bin; Hu, Yong-cheng; He, Jin-quan

    2013-02-01

    To investigate the feasibility of determining the surface density of arginine-glycine-aspartic acid (RGD) peptides grafted onto allogeneic bone by an isotopic tracing method involving labeling these peptides with (125) I, evaluating the impact of the input concentration of RGD peptides on surface density and establishing the correlation between surface density and their input concentration. A synthetic RGD-containing polypeptide (EPRGDNYR) was labeled with (125) I and its specific radioactivity calculated. Reactive solutions of RGD peptide with radioactive (125) I-RGD as probe with input concentrations of 0.01 mg/mL, 0.10 mg/mL, 0.50 mg/mL, 1.00 mg/mL, 2.00 mg/mL and 4.00 mg/mL were prepared. Using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as a cross-linking agent, reactions were induced by placing allogeneic bone fragments into reactive solutions of RGD peptide of different input concentrations. On completion of the reactions, the surface densities of RGD peptides grafted onto the allogeneic bone fragments were calculated by evaluating the radioactivity and surface areas of the bone fragments. The impact of input concentration of RGD peptides on surface density was measured and a curve constructed. Measurements by a radiodensity γ-counter showed that the RGD peptides had been labeled successfully with (125) I. The allogeneic bone fragments were radioactive after the reaction, demonstrating that the RGD peptides had been successfully grafted onto their surfaces. It was also found that with increasing input concentration, the surface density increased. It was concluded that the surface density of RGD peptides is quantitatively related to their input concentration. With increasing input concentration, the surface density gradually increases to saturation value. © 2013 Chinese Orthopaedic Association and Wiley Publishing Asia Pty Ltd.

  4. Peptide Conjugates of Benzene Carboxylic Acids as Agonists and Antagonists of Amylin Aggregation.

    PubMed

    Profit, Adam A; Vedad, Jayson; Desamero, Ruel Z B

    2017-02-15

    Human islet amyloid polypeptide (hIAPP), also known as amylin, is a 37 residue peptide hormone that is stored and co-secreted with insulin. hIAPP plays a pivotal role in type 2 diabetes and is the major component of amyloid deposits found in the pancreas of patients afflicted with the disease. The self-assembly of hIAPP and the formation of amyloid is linked to the death of insulin producing β-cells. Recent findings suggest that soluble hIAPP oligomers are the cytotoxic species responsible for β-cell loss whereas amyloid fibrils themselves may indeed be innocuous. Potential avenues of therapeutic intervention include the development of compounds that prevent hIAPP self-assembly as well as those that reduce or eliminate lag time and rapidly accelerate the formation of amyloid fibrils. Both of these approaches minimize temporal exposure to soluble cytotoxic hIAPP oligomers. Toward this end our laboratory has pursued an electrostatic repulsion approach to the development of potential inhibitors and modulators of hIAPP self-assembly. Peptide conjugates were constructed in which benzene carboxylic acids of varying charge were employed as electrostatic disrupting elements and appended to the N-terminal of the hIAPP 22-29 (NFGAILSS) self-recognition sequence. The self-assembly kinetics of conjugates were characterized by turbidity measurements and the structure of aggregates probed by Raman and CD spectroscopy while the morphology was assessed using transmission electron microscopy. Several benzene carboxylic acid peptide conjugates failed to self-assemble and some were found to inhibit the aggregation of full-length amylin while others served to enhance the rate of amyloid formation and/or increase the yield of amyloid produced. Studies reveal that the geometric display of free carboxylates on the benzene ring of the conjugates plays an important role in the activity of conjugates. In addition, a number of free benzene carboxylic acids were found to modulate amylin

  5. Dehydroalanine-based inhibition of a peptide epimerase from spider venom.

    PubMed

    Murkin, Andrew S; Tanner, Martin E

    2002-11-29

    Ribosomally produced peptides that contain D-amino acids have been isolated from a number of vertebrate and invertebrate sources. In each case, the D-amino acids are introduced by a posttranslational modification of a parent peptide containing only amino acids of the L-configuration. The only known enzyme to catalyze such a reaction is the peptide epimerase (also known as peptide isomerase) from the venom of the funnel web spider, Agelenopsis aperta. This enzyme interconverts two 48-amino-acid-long peptide toxins that differ only by the stereochemistry at a single serine residue. In this paper we report the synthesis and testing of two pentapeptide analogues that contain modified amino acids at the site normally occupied by the substrate serine residue. When the L-chloroalanine-containing peptide 3 was incubated with the epimerase it was converted into the dehydroalanine-containing peptide 4 via an elimination of HCl. The dehydroalanine peptide 4 was independently synthesized and found to act as a potent inhibitor of the epimerase (IC50 = 0.5 microM). These results support a direct deprotonation/reprotonation mechanism in which a carbanionic intermediate is formed. The observed inhibition by 4 can be attributed to the sp(2)-hybridization of the alpha-carbon in the dehydroalanine unit that mimics the planar geometry of the anionic intermediate.

  6. Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications.

    PubMed

    Jiang, Tao; Yu, Xiaohua; Carbone, Erica J; Nelson, Clarke; Kan, Ho Man; Lo, Kevin W-H

    2014-11-20

    Delivering drugs specifically to bone tissue is very challenging due to the architecture and structure of bone tissue. Poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) hold great promise for the delivery of therapeutics to bone tissue. The goal of the present research was to formulate a PLGA-based NP drug delivery system for bone tissue exclusively. Since poly-aspartic acids (poly-Asp) peptide sequence has been shown to bind to hydroxyapatite (HA), and has been suggested as a molecular tool for bone-targeting applications, we fabricated PLGA-based NPs linked with poly-Asp peptide sequence. Nanoparticles made of methoxy - poly(ethylene glycol) (PEG)-PLGA and maleimide-PEG-PLGA were prepared using a water-in-oil-in-water double emulsion and solvent evaporation method. Fluorescein isothiocyanate (FITC)-tagged poly-Asp peptide was conjugated to the surface of the nanoparticles via the alkylation reaction between the sulfhydryl groups at the N-terminal of the peptide and the CC double bond of maleimide at one end of the polymer chain to form thioether bonds. The conjugation of FITC-tagged poly-Asp peptide to PLGA NPs was confirmed by NMR analysis and fluorescent microscopy. The developed nanoparticle system is highly aqueous dispersible with an average particle size of ∼80 nm. In vitro binding analyses demonstrated that FITC-poly-Asp NPs were able to bind to HA gel as well as to mineralized matrices produced by human mesenchymal stem cells and mouse bone marrow stromal cells. Using a confocal microscopy technique, an ex vivo binding study of mouse major organ ground sections revealed that the FITC-poly-Asp NPs were able to bind specifically to the bone tissue. In addition, proliferation studies indicated that our FITC-poly-Asp NPs did not induce cytotoxicity to human osteoblast-like MG63 cell lines. Altogether, these promising results indicated that this nanoscale targeting system was able to bind to bone tissue specifically and might have a great

  7. A study of elastase peptides from bovine white matter proteolipid.

    PubMed

    Lees, M B; Macklin, W B; Chao, B H

    1981-10-01

    Bovine white matter proteolipid has been digested with elastase in the presence of deoxycholate. After acidification, the digest was separated into an acid-soluble and an acid-insoluble fraction. The acid-insoluble fraction was enriched in nonpolar amino acids and, by a combination of solvent fractionation and chromatography, a fraction was obtained which consisted of a mixture of two peptides with a molecular weight of approximately 4000 daltons. The acid-soluble peptides were separated by molecular sieve, ion exchange and high performance liquid chromatography (HPLC) in the reverse phase mode. The purified peptides were smaller than expected on the basis of their elution position from a molecular sieve column, suggesting they were in an aggregated state during the initial chromatography. Reverse phase HPLC was shown to be useful for fingerprinting these peptide mixtures. The data demonstrate the difficulties associated with the study of this proteolipid and emphasize the tendency of both the protein and the peptides derived from it to aggregate.

  8. Screening and Identification of Peptides Specifically Targeted to Gastric Cancer Cells from a Phage Display Peptide Library

    PubMed

    Sahin, Deniz; Taflan, Sevket Onur; Yartas, Gizem; Ashktorab, Hassan; Smoot, Duane T

    2018-04-25

    Background: Gastric cancer is the second most common cancer among the malign cancer types. Inefficiency of traditional techniques both in diagnosis and therapy of the disease makes the development of alternative and novel techniques indispensable. As an alternative to traditional methods, tumor specific targeting small peptides can be used to increase the efficiency of the treatment and reduce the side effects related to traditional techniques. The aim of this study is screening and identification of individual peptides specifically targeted to human gastric cancer cells using a phage-displayed peptide library and designing specific peptide sequences by using experimentally-eluted peptide sequences. Methods: Here, MKN-45 human gastric cancer cells and HFE-145 human normal gastric epithelial cells were used as the target and control cells, respectively. 5 rounds of biopannning with a phage display 12-peptide library were applied following subtraction biopanning with HFE-145 control cells. The selected phage clones were established by enzyme-linked immunosorbent assay and immunofluorescence detection. We first obtain random phage clones after five biopanning rounds, determine the binding levels of each individual clone. Then, we analyze the frequencies of each amino acid in best binding clones to determine positively overexpressed amino acids for designing novel peptide sequences. Results: DE532 (VETSQYFRGTLS) phage clone was screened positive, showing specific binding on MKN-45 gastric cancer cells. DE-Obs (HNDLFPSWYHNY) peptide, which was designed by using amino acid frequencies of experimentally selected peptides in the 5th round of biopanning, showed specific binding in MKN-45 cells. Conclusion: Selection and characterization of individual clones may give us specifically binding peptides, but more importantly, data extracted from eluted phage clones may be used to design theoretical peptides with better binding properties than even experimentally selected ones

  9. Characterization of three peptides derived from prosomatostatin [prosomatostatin-(1-63)-, -(65-76)- and -(79-92)-peptides] in a human pancreatic tumour.

    PubMed

    Conlon, J M; Eriksson, B; Grimelius, L; Oberg, K; Thim, L

    1987-11-15

    By using only reverse-phase h.p.l.c., three fragments of prosomatostatin were isolated from an extract of a human pancreatic neuroendocrine tumour that produced somatostatin, vasoactive intestinal polypeptide and gastrin-releasing peptide. The amino acid composition of the peptides indicated that they represented prosomatostatin-(1-63)-peptide, prosomatostain-(65-76)-peptide and prosomatostatin-(79-92)-peptide (somatostatin-14). The identity of prosomatostatin-(1-63)-peptide was confirmed by characterization of the products of digestion with Armillaria mellea (honey fungus) proteinase. Partial micro-sequencing of prosomatostatin-(1-63)-peptide showed that the Gly24-Ala25 bond of preprosomatostatin was the site of cleavage of the signal peptide. Thus human prosomatostatin is a protein of 92 amino acid residues that is proteolytically cleaved in a pancreatic tumour at the site of a dibasic-residue (arginine-lysine) processing site and at a single-monobasic-residue (arginine) processing site.

  10. [Distiller Yeasts Producing Antibacterial Peptides].

    PubMed

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  11. A Statistical Analysis of the PPII Propensity of Amino Acid Guests in Proline-Rich Peptides

    PubMed Central

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-01-01

    There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. PMID:21320454

  12. STS-39 AFP-675 and STP-1 MPESS in OV-103's payload bay (PLB)

    NASA Image and Video Library

    1991-05-06

    STS039-10-019 (28 April-6 May 1991) --- This 35mm frame, taken from inside the crew cabin, shows some of the cargo in Discovery's payload bay. Seen are the tops of canisters on the STP-1 payload, configured on the STS 39 Hitchhiker carrier; and the Air Force Program (AFP) 675 package. AFP-675 consists of the Cryogenic Infrared Radiance Instrumentation for Shuttle (CIRRIS)-1A; Far Ultraviolet Camera (FAR-UV) Experiment; Horizon Ultraviolet Program (HUP); Quadruple Ion Neutral Mass Spectrometer (QINMS); and the Uniformly Redundant Array (URA).

  13. Hydroxyapatite-binding peptides for bone growth and inhibition

    DOEpatents

    Bertozzi, Carolyn R [Berkeley, CA; Song, Jie [Shrewsbury, MA; Lee, Seung-Wuk [Walnut Creek, CA

    2011-09-20

    Hydroxyapatite (HA)-binding peptides are selected using combinatorial phage library display. Pseudo-repetitive consensus amino acid sequences possessing periodic hydroxyl side chains in every two or three amino acid sequences are obtained. These sequences resemble the (Gly-Pro-Hyp).sub.x repeat of human type I collagen, a major component of extracellular matrices of natural bone. A consistent presence of basic amino acid residues is also observed. The peptides are synthesized by the solid-phase synthetic method and then used for template-driven HA-mineralization. Microscopy reveal that the peptides template the growth of polycrystalline HA crystals .about.40 nm in size.

  14. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin.

    PubMed Central

    Haynie, S L; Crum, G A; Doele, B A

    1995-01-01

    A series of polymer-bound antimicrobial peptides was prepared, and the peptides were tested for their antimicrobial activities. The immobilized peptides were prepared by a strategy that used solid-phase peptide synthesis that linked the carboxy-terminal amino acid with an ethylenediamine-modified polyamide resin (PepsynK). The acid-stable, permanent amide bond between the support and the nascent peptide renders the peptide resistant to cleavage from the support during the final acid-catalyzed deprotection step in the synthesis. Select immobilized peptides containing amino acid sequences that ranged from the naturally occurring magainin to simpler synthetic sequences with idealized secondary structures were excellent antimicrobial agents against several organisms. The immobilized peptides typically reduced the number of viable cells by > or = 5 log units. We show that the reduction in cell numbers cannot be explained by the action of a soluble component. We observed no leached or hydrolyzed peptide from the resin, nor did we observe any antimicrobial activity in soluble extracts from the immobilized peptide. The immobilized peptides were washed and reused for repeated microbial contact and killing. These results suggest that the surface actions by magainins and structurally related antimicrobial peptides are sufficient for their lethal activities. PMID:7726486

  15. Contribution of Peptide Backbone to Anti-Citrullinated Peptide Antibody Reactivity

    PubMed Central

    Trier, Nicole Hartwig; Dam, Catharina Essendrup; Olsen, Dorthe Tange; Hansen, Paul Robert; Houen, Gunnar

    2015-01-01

    Rheumatoid arthritis (RA) is one of the most common autoimmune diseases, affecting approximately 1–2% of the world population. One of the characteristic features of RA is the presence of autoantibodies. Especially the highly specific anti-citrullinated peptide antibodies (ACPAs), which have been found in up to 70% of RA patients’ sera, have received much attention. Several citrullinated proteins are associated with RA, suggesting that ACPAs may react with different sequence patterns, separating them from traditional antibodies, whose reactivity usually is specific towards a single target. As ACPAs have been suggested to be involved in the development of RA, knowledge about these antibodies may be crucial. In this study, we examined the influence of peptide backbone for ACPA reactivity in immunoassays. The antibodies were found to be reactive with a central Cit-Gly motif being essential for ACPA reactivity and to be cross-reactive between the selected citrullinated peptides. The remaining amino acids within the citrullinated peptides were found to be of less importance for antibody reactivity. Moreover, these findings indicated that the Cit-Gly motif in combination with peptide backbone is essential for antibody reactivity. Based on these findings it was speculated that any amino acid sequence, which brings the peptide into a properly folded structure for antibody recognition is sufficient for antibody reactivity. These findings are in accordance with the current hypothesis that structural homology rather than sequence homology are favored between citrullinated epitopes. These findings are important in relation to clarifying the etiology of RA and to determine the nature of ACPAs, e.g. why some Cit-Gly-containing sequences are not targeted by ACPAs. PMID:26657009

  16. Thalassospiramide G, a new γ-amino-acid-bearing peptide from the marine bacterium Thalassospira sp.

    PubMed

    Um, Soohyun; Pyee, Yuna; Kim, Eun-Hee; Lee, Sang Kook; Shin, Jongheon; Oh, Dong-Chan

    2013-02-26

    In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1), along with thalassospiramides A and D (2-3), was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA), 4-amino-3,5-dihydroxy-pentanoic acid (ADPA), and unique 2-amino-1-(1H-indol-3-yl) ethanone (AIEN), was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3), including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA), was rigorously determined by 1H-1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2-3) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells, with IC(50) values of 16.4 and 4.8 μM, respectively.

  17. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  18. Bioactivity of food peptides: biological response of rats to bovine milk whey peptides following acute exercise

    PubMed Central

    Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Risso, Eder Muller; Amaya-Farfan, Jaime

    2017-01-01

    ABSTRACT Background: Several physiologically beneficial effects of consuming a whey protein hydrolysate (WPH) have been attributed to the greater availability of bioactive peptides. Aims: The aim was to investigate the effect of four branched-chain amino acid- (BCAA-)containing dipeptides, present in WPH, on immune modulation, stimulation of HSP expression, muscle protein synthesis, glycogen content, satiety signals and the impact of these peptides on the plasma free amino acid profiles. Methods: The animals were divided in groups: control (rest, without gavage), vehicle (water), L-isoleucyl-L-leucine (lle-Leu), L-leucyl-L-isoleucine (Leu-lle), L-valyl-Lleucine (Val-Leu), L-leucyl-L-valine (Leu-Val) and WPH. All animals were submitted to acute exercise, except for control. Results: lle-Leu stimulated immune response, hepatic and muscle glycogen and HSP60 expression, whereas Leu-Val enhanced HSP90 expression. All dipeptides reduced glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, no changes were observed on leptin. All peptides inhibited NF-kB expression. The plasma amino acid time-course showed peptide-specific and isomer-specific metabolic features, including increases of the BCAAs. Conclusion: The data indicate that lle-Leu was effective to attenuate immune-suppression exercise-induced, promoted glycogen content and stimulated anti-stress effect (HSP). Furthermore, Leu-Val increased HSP90, p-4EBP1, p-mTOR and p-AMPK expression. The data suggest the involvement of these peptides in various beneficial functions of WPH consumption. PMID:28326005

  19. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide.

    PubMed

    Matsubara, Teruhiko; Ujie, Michiko; Yamamoto, Takashi; Akahori, Miku; Einaga, Yasuaki; Sato, Toshinori

    2016-08-09

    The progression of influenza varies according to age and the presence of an underlying disease; appropriate treatment is therefore required to prevent severe disease. Anti-influenza therapy, such as with neuraminidase inhibitors, is effective, but diagnosis at an early phase of infection before viral propagation is critical. Here, we show that several dozen plaque-forming units (pfu) of influenza virus (IFV) can be detected using a boron-doped diamond (BDD) electrode terminated with a sialic acid-mimic peptide. The peptide was used instead of the sialyloligosaccharide receptor, which is the common receptor of influenza A and B viruses required during the early phase of infection, to capture IFV particles. The peptide, which was previously identified by phage-display technology, was immobilized by click chemistry on the BDD electrode, which has excellent electrochemical characteristics such as low background current and weak adsorption of biomolecules. Electrochemical impedance spectroscopy revealed that H1N1 and H3N2 IFVs were detectable in the range of 20-500 pfu by using the peptide-terminated BDD electrode. Our results demonstrate that the BDD device integrated with the receptor-mimic peptide has high sensitivity for detection of a low number of virus particles in the early phase of infection.

  20. Uncovering the design rules for peptide synthesis of metal nanoparticles.

    PubMed

    Tan, Yen Nee; Lee, Jim Yang; Wang, Daniel I C

    2010-04-28

    Peptides are multifunctional reagents (reducing and capping agents) that can be used for the synthesis of biocompatible metal nanoparticles under relatively mild conditions. However, the progress in peptide synthesis of metal nanoparticles has been slow due to the lack of peptide design rules. It is difficult to establish sequence-reactivity relationships from peptides isolated from biological sources (e.g., biomineralizing organisms) or selected by combinatorial display libraries because of their widely varying compositions and structures. The abundance of random and inactive amino acid sequences in the peptides also increases the difficulty in knowledge extraction. In this study, a "bottom-up" approach was used to formulate a set of rudimentary rules for the size- and shape-controlled peptide synthesis of gold nanoparticles from the properties of the 20 natural alpha-amino acids for AuCl(4)(-) reduction and binding to Au(0). It was discovered that the reduction capability of a peptide depends on the presence of certain reducing amino acid residues, whose activity may be regulated by neighboring residues with different Au(0) binding strengths. Another finding is the effect of peptide net charge on the nucleation and growth of the Au nanoparticles. On the basis of these understandings, several multifunctional peptides were designed to synthesize gold nanoparticles in different morphologies (nanospheres and nanoplates) and with sizes tunable by the strategic placement of selected amino acid residues in the peptide sequence. The methodology presented here and the findings are useful for establishing the scientific basis for the rational design of peptides for the synthesis of metal nanostructures.

  1. Effects of Chemical Structure on Hydrolysis Pathways of Small Peptides in Coastal Seawater

    NASA Astrophysics Data System (ADS)

    Liu, S.; Reyna, N. E.; Hamdan, L. J.; Liu, Z.

    2016-02-01

    Deciphering peptide hydrolysis pathways is key to understanding the mechanism of peptide hydrolysis, in particular the types of extracellular enzymes that are active in seawater. From the hydrolyzed fragments of small peptides, one can estimate the role of amino-, carboxy-, and endopeptidases in a quantitative way. In this study, we incubated several small peptides with different amino acid compositions, alanine-valine-phenylalanine-alanine (AVFA), phenylalanine-alanine-serine-tryptophan-glycine-alanine (FASWGA), VFA, SWGA, VVFA, arginine-valine-phenylalanine-alanine (RVFA), SVFA, aspartic acid-valine-phenylalanine-alanine (DVFA), trialanine (AAA), and AVF in two coastal seawaters (ship channel seawater in the western Gulf of Mexico and Sta. C6 seawater in the northern Gulf of Mexico). In both seawaters, aminopeptidases played a more dominant role (22-67%) in hydrolyzing peptides with hydrophobic amino acid at the N-terminus, such as AVFA, VVFA, VFA, and AAA, or with basic amino acid at the N-terminus (RVFA), as compared to those with N-terminal polar amino acid (SVFA, SWGA) or acidic amino acid (DVFA) (0-24%). This result indicates that amino acid composition in a peptide structure affects how the peptide is hydrolyzed. We also found that peptides in the C6 seawater were hydrolyzed dominantly by aminopeptidases (10-59%), while those in the ship channel seawater also by endo- or carboxypeptidases (9-69%). This pattern suggests that peptide hydrolysis pathways depend on specific environment conditions, such as bacterial community structure, that can lead to variations in abundances or activities among amino-, carboxy- and endopeptidases. Overall, the results provide insights into the effects of chemical structure and seawater environment on peptide hydrolysis pathways.

  2. Chemo-Enzymatic Synthesis of Each Enantiomer of Orthogonally-Protected 4,4-Difluoroglutamic Acid – A Candidate Monomer for Chiral Brønsted-Acid Peptide-Based Catalysts

    PubMed Central

    Li, Yang

    2011-01-01

    We have accomplished an asymmetric synthesis of each enantiomer of 4,4-difluoroglutamic acid. This α-amino acid has been of interest in medicinal chemistry circles. Key features of the synthesis include highly scalable procedures, a Reformatsky-based coupling reaction, and straightforward functional group manipulations to make the parent amino acid. Enantioenrichment derives from an enzymatic resolution of the synthetic material. Conversion of the optically enriched compounds to orthogonally protected forms allows selective formation of peptide bonds. 4,4- Difluoroglutamic acid, in a suitably protected form, is also shown to exhibit enhanced catalytic activity in both an oxidation reaction and a reduction reaction, in comparison to the analogous glutamic acid derivative. PMID:22039908

  3. Poly-arginine and arginine-rich peptides are neuroprotective in stroke models

    PubMed Central

    Meloni, Bruno P; Brookes, Laura M; Clark, Vince W; Cross, Jane L; Edwards, Adam B; Anderton, Ryan S; Hopkins, Richard M; Hoffmann, Katrin; Knuckey, Neville W

    2015-01-01

    Using cortical neuronal cultures and glutamic acid excitotoxicity and oxygen-glucose deprivation (OGD) stroke models, we demonstrated that poly-arginine and arginine-rich cell-penetrating peptides (CPPs), are highly neuroprotective, with efficacy increasing with increasing arginine content, have the capacity to reduce glutamic acid-induced neuronal calcium influx and require heparan sulfate preotoglycan-mediated endocytosis to induce a neuroprotective effect. Furthermore, neuroprotection could be induced with immediate peptide treatment or treatment up to 2 to 4 hours before glutamic acid excitotoxicity or OGD, and with poly-arginine-9 (R9) when administered intravenously after stroke onset in a rat model. In contrast, the JNKI-1 peptide when fused to the (non-arginine) kFGF CPP, which does not rely on endocytosis for uptake, was not neuroprotective in the glutamic acid model; the kFGF peptide was also ineffective. Similarly, positively charged poly-lysine-10 (K10) and R9 fused to the negatively charged poly-glutamic acid-9 (E9) peptide (R9/E9) displayed minimal neuroprotection after excitotoxicity. These results indicate that peptide positive charge and arginine residues are critical for neuroprotection, and have led us to hypothesize that peptide-induced endocytic internalization of ion channels is a potential mechanism of action. The findings also question the mode of action of different neuroprotective peptides fused to arginine-rich CPPs. PMID:25669902

  4. Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library.

    PubMed

    Krumpe, Lauren R H; Schumacher, Kathryn M; McMahon, James B; Makowski, Lee; Mori, Toshiyuki

    2007-10-05

    Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis. In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method. We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource. The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.

  5. New potentially antihypertensive peptides liberated in milk during fermentation with selected lactic acid bacteria and kombucha cultures.

    PubMed

    Elkhtab, Ebrahim; El-Alfy, Mohamed; Shenana, Mohamed; Mohamed, Abdelaty; Yousef, Ahmed E

    2017-12-01

    Compounds with the ability to inhibit angiotensin-converting enzyme (ACE) are used medically to treat human hypertension. The presence of such compounds naturally in food is potentially useful for treating the disease state. The goal of this study was to screen lactic acid bacteria, including species commonly used as dairy starter cultures, for the ability to produce new potent ACE-inhibiting peptides during milk fermentation. Strains of Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus helveticus, Lactobacillus paracasei, Lactococcus lactis, Leuconostoc mesenteroides, and Pediococcus acidilactici were tested in this study. Additionally, a symbiotic consortium of yeast and bacteria, used commercially to produce kombucha tea, was tested. Commercially sterile milk was inoculated with lactic acid bacteria strains and kombucha culture and incubated at 37°C for up to 72 h, and the liberation of ACE-inhibiting compounds during fermentation was monitored. Fermented milk was centrifuged and the supernatant (crude extract) was subjected to ultrafiltration using 3- and 10-kDa cut-off filters. Crude and ultrafiltered extracts were tested for ACE-inhibitory activity. The 10-kDa filtrate resulting from L. casei ATCC 7469 and kombucha culture fermentations (72 h) showed the highest ACE-inhibitory activity. Two-step purification of these filtrates was done using HPLC equipped with a reverse-phase column. Analysis of HPLC-purified fractions by liquid chromatography-mass spectrometry/mass spectrometry identified several new peptides with potent ACE-inhibitory activities. Some of these peptides were synthesized, and their ACE-inhibitory activities were confirmed. Use of organisms producing these unique peptides in food fermentations could contribute positively to human health. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Helleborus purpurascens-Amino Acid and Peptide Analysis Linked to the Chemical and Antiproliferative Properties of the Extracted Compounds.

    PubMed

    Segneanu, Adina-Elena; Grozescu, Ioan; Cziple, Florentina; Berki, Daniel; Damian, Daniel; Niculite, Cristina Mariana; Florea, Alexandru; Leabu, Mircea

    2015-12-11

    There is a strong drive worldwide to discover and exploit the therapeutic potential of a large variety of plants. In this work, an alcoholic extract of Helleborus purpurascens (family Ranunculaceae) was investigated for the identification of amino acids and peptides with putative antiproliferative effects. In our work, a separation strategy was developed using solvents of different polarity in order to obtain active compounds. Biochemical components were characterized through spectroscopic (mass spectroscopy) and chromatographic techniques (RP-HPLC and GC-MS). The biological activity of the obtained fractions was investigated in terms of their antiproliferative effects on HeLa cells. Through this study, we report an efficient separation of bioactive compounds (amino acids and peptides) from a plant extract dependent on solvent polarity, affording fractions with unaffected antiproliferative activities. Moreover, the two biologically tested fractions exerted a major antiproliferative effect, thereby suggesting potential anticancer therapeutic activity.

  7. Epitaxial Nucleation on Rationally Designed Peptide Functionalized Interface

    DTIC Science & Technology

    2011-07-19

    of 17 amino acid peptides. In this report, we focus on the findings from several variants of these sequences, including the role of charge...separation and histidine-gold coordination. We find that these 17 amino acid peptide sequences behave robustly, where periodicity appears to dominate the...26,27 Secondary structure propensity refers to the intrinsic inclination of individual amino acids to a given secondary structure, where side-group

  8. Synthesis of peptide .alpha.-thioesters

    DOEpatents

    Camarero, Julio A [Livermore, CA; Mitchell, Alexander R [Livermore, CA; De Yoreo, James J [Clayton, CA

    2008-08-19

    Disclosed herein is a new method for the solid phase peptide synthesis (SPPS) of C-terminal peptide .alpha. thioesters using Fmoc/t-Bu chemistry. This method is based on the use of an aryl hydrazine linker, which is totally stable to conditions required for Fmoc-SPPS. When the peptide synthesis has been completed, activation of the linker is achieved by mild oxidation. The oxidation step converts the acyl-hydrazine group into a highly reactive acyl-diazene intermediate which reacts with an .alpha.-amino acid alkylthioester (H-AA-SR) to yield the corresponding peptide .alpha.-thioester in good yield. A variety of peptide thioesters, cyclic peptides and a fully functional Src homology 3 (SH3) protein domain have been successfully prepared.

  9. Enzymatic characterization of peptidic materials isolated from aqueous solutions of ammonium cyanide (pH 9) and hydrocyanic acid (pH 6) exposed to ionizing radiation.

    PubMed

    Niketic, V; Draganić, Z; Nesković, S; Draganić, I

    1982-01-01

    The enzymatic digestion of some radiolytically produced peptidic materials was examined. The substrates were compounds isolated from 0.1 molar solutions of NH4CN (pH 9) and HCN (pH 6), after their exposure to gamma rays from a 60Co source (15-20 Mrad doses). Commercial proteolytic enzymes pronase and aminopeptidase M were used. The examined materials were of composite nature and proteolytic action was systematically observed after their subsequent purification. In some fractions the effect was found to be positive with up to 30% of peptide bonds cleaved with respect to the amino acid content. These findings support our previous conclusions on the free radical induced formation of peptidic backbones without the intervention of amino acids. Some side effects were also noted which might be of interest in observations on enzymatic cleavage of other composite peptidic materials of abiotic origin.

  10. Improved Force Fields for Peptide Nucleic Acids with Optimized Backbone Torsion Parameters.

    PubMed

    Jasiński, Maciej; Feig, Michael; Trylska, Joanna

    2018-06-06

    Peptide nucleic acids are promising nucleic acid analogs for antisense therapies as they can form stable duplex and triplex structures with DNA and RNA. Computational studies of PNA-containing duplexes and triplexes are an important component for guiding their design, yet existing force fields have not been well validated and parametrized with modern computational capabilities. We present updated CHARMM and Amber force fields for PNA that greatly improve the stability of simulated PNA-containing duplexes and triplexes in comparison with experimental structures and allow such systems to be studied on microsecond time scales. The force field modifications focus on reparametrized PNA backbone torsion angles to match high-level quantum mechanics reference energies for a model compound. The microsecond simulations of PNA-PNA, PNA-DNA, PNA-RNA, and PNA-DNA-PNA complexes also allowed a comprehensive analysis of hydration and ion interactions with such systems.

  11. A statistical analysis of the PPII propensity of amino acid guests in proline-rich peptides.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-02-16

    There has been considerable debate about the intrinsic PPII propensity of amino-acid residues in denatured polypeptides. Experimentally, the propensity scale is based on the behavior of guest amino-acid residues placed in the middle of polyproline hosts. We have used classical molecular dynamics simulations, with state-of-the-art force fields to carry out a comprehensive analysis of the conformational equilibria of the proline-based host oligopeptides with single guests. The tracked structural characteristics include the PPII content, the cis/trans isomerization of the prolyl bonds, the puckering of the pyrrolidine rings of the proline residues, and the secondary structural motifs. We find no evidence for an intrinsic PPII propensity in any of the guest amino acids other than proline. Instead, the PPII content as derived from experiments may be explained in terms of: 1), a local correlation between the dihedral angles of the guest amino acid and the proline residue immediately preceding it; and 2), a nonlocal correlation between the cis/trans states of the peptide bonds. In terms of the latter, we find that the presence of a guest (other than proline, tyrosine, or tryptophan) increases the trans content of most of the prolyl bonds, which results in an effective increase of the peptide PPII content. With respect to the local dihedral correlations, we find that these are well described in terms of the so-called odds-ratio statistic. Expressed in terms of free energy language, the PPII content based on the odds-ratio of the relevant residues correlate well with the experimentally measured PPII content. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. Thalassospiramide G, a New γ-Amino-Acid-Bearing Peptide from the Marine Bacterium Thalassospira sp

    PubMed Central

    Um, Soohyun; Pyee, Yuna; Kim, Eun-Hee; Lee, Sang Kook; Shin, Jongheon; Oh, Dong-Chan

    2013-01-01

    In the chemical investigation of marine unicellular bacteria, a new peptide, thalassospiramide G (1), along with thalassospiramides A and D (2–3), was discovered from a large culture of Thalassospira sp. The structure of thalassospiramide G, bearing γ-amino acids, such as 4-amino-5-hydroxy-penta-2-enoic acid (AHPEA), 4-amino-3,5-dihydroxy-pentanoic acid (ADPA), and unique 2-amino-1-(1H-indol-3-yl)ethanone (AIEN), was determined via extensive spectroscopic analysis. The absolute configuration of thalassospiramide D (3), including 4-amino-3-hydroxy-5-phenylpentanoic acid (AHPPA), was rigorously determined by 1H–1H coupling constant analysis and chemical derivatization. Thalassospiramides A and D (2–3) inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated mouse macrophage RAW 264.7 cells, with IC50 values of 16.4 and 4.8 μM, respectively. PMID:23442790

  13. Energetics and dynamics of the fragmentation reactions of protonated peptides containing methionine sulfoxide or aspartic acid via energy- and time-resolved surface induced dissociation.

    PubMed

    Lioe, Hadi; Laskin, Julia; Reid, Gavin E; O'Hair, Richard A J

    2007-10-25

    The surface-induced dissociation (SID) of six model peptides containing either methionine sulfoxide or aspartic acid (GAILM(O)GAILR, GAILM(O)GAILK, GAILM(O)GAILA, GAILDGAILR, GAILDGAILK, and GAILDGAILA) have been studied using a specially configured Fourier transform ion-cyclotron resonance mass spectrometer (FT-ICR MS). In particular, we have investigated the energetics and dynamics associated with (i) preferential cleavage of the methionine sulfoxide side chain via the loss of CH3SOH (64 Da), and (ii) preferential cleavage of the amide bond C-terminal to aspartic acid. The role of proton mobility in these selective bond cleavage reactions was examined by changing the C-terminal residue of the peptide from arginine (nonmobile proton conditions) to lysine (partially mobile proton conditions) to alanine (mobile proton conditions). Time- and energy-resolved fragmentation efficiency curves (TFECs) reveal that selective cleavages due to the methionine sulfoxide and aspartic acid residues are characterized by slow fragmentation kinetics. RRKM modeling of the experimental data suggests that the slow kinetics is associated with large negative entropy effects and these may be due to the presence of rearrangements prior to fragmentation. It was found that the Arrhenius pre-exponential factor (A) for peptide fragmentations occurring via selective bond cleavages are 1-2 orders of magnitude lower than nonselective peptide fragmentation reactions, while the dissociation threshold (E0) is relatively invariant. This means that selective bond cleavage is kinetically disfavored compared to nonselective amide bond cleavage. It was also found that the energetics and dynamics for the preferential loss of CH3SOH from peptide ions containing methionine sulfoxide are very similar to selective C-terminal amide bond cleavage at the aspartic acid residue. These results suggest that while preferential cleavage can compete with amide bond cleavage energetically, dynamically, these processes

  14. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less

  15. Peptide Array X-Linking (PAX): A New Peptide-Protein Identification Approach

    PubMed Central

    Okada, Hirokazu; Uezu, Akiyoshi; Soderblom, Erik J.; Moseley, M. Arthur; Gertler, Frank B.; Soderling, Scott H.

    2012-01-01

    Many protein interaction domains bind short peptides based on canonical sequence consensus motifs. Here we report the development of a peptide array-based proteomics tool to identify proteins directly interacting with ligand peptides from cell lysates. Array-formatted bait peptides containing an amino acid-derived cross-linker are photo-induced to crosslink with interacting proteins from lysates of interest. Indirect associations are removed by high stringency washes under denaturing conditions. Covalently trapped proteins are subsequently identified by LC-MS/MS and screened by cluster analysis and domain scanning. We apply this methodology to peptides with different proline-containing consensus sequences and show successful identifications from brain lysates of known and novel proteins containing polyproline motif-binding domains such as EH, EVH1, SH3, WW domains. These results suggest the capacity of arrayed peptide ligands to capture and subsequently identify proteins by mass spectrometry is relatively broad and robust. Additionally, the approach is rapid and applicable to cell or tissue fractions from any source, making the approach a flexible tool for initial protein-protein interaction discovery. PMID:22606326

  16. Peptide nucleic acids rather than RNA may have been the first genetic molecule

    NASA Technical Reports Server (NTRS)

    Nelson, K. E.; Levy, M.; Miller, S. L.

    2000-01-01

    Numerous problems exist with the current thinking of RNA as the first genetic material. No plausible prebiotic processes have yet been demonstrated to produce the nucleosides or nucleotides or for efficient two-way nonenzymatic replication. Peptide nucleic acid (PNA) is a promising precursor to RNA, consisting of N-(2-aminoethyl)glycine (AEG) and the adenine, uracil, guanine, and cytosine-N-acetic acids. However, PNA has not yet been demonstrated to be prebiotic. We show here that AEG is produced directly in electric discharge reactions from CH(4), N(2), NH(3), and H(2)O. Electric discharges also produce ethylenediamine, as do NH(4)CN polymerizations. AEG is produced from the robust Strecker synthesis with ethylenediamine. The NH(4)CN polymerization in the presence of glycine leads to the adenine and guanine-N(9)-acetic acids, and the cytosine and uracil-N(1)-acetic acids are produced in high yield from the reaction of cyanoacetaldehyde with hydantoic acid, rather than urea. Preliminary experiments suggest that AEG may polymerize rapidly at 100 degrees C to give the polypeptide backbone of PNA. The ease of synthesis of the components of PNA and possibility of polymerization of AEG reinforce the possibility that PNA may have been the first genetic material.

  17. The efficacy of acrylic acid grafting and arginine-glycine-aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits.

    PubMed

    Park, Byung Woo; Yang, Hee Seok; Baek, Se Hyun; Park, Kwideok; Han, Dong Keun; Lee, Tae Soo

    2007-06-01

    To determine the effects of acrylic acid (AA) grafting by argon plasma treatment and of immobilization of arginine-glycine-aspartic acid (RGD) peptides on fibrovascular ingrowth rate into high-density porous polyethylene (HPPE) anophthalmic orbital implants. Sixty rabbits were divided into three groups, with 20 rabbits in each group: (1) control group, rabbits implanted with unmodified HPPE; (2) PAA group, rabbits implanted with HPPE grafted with poly(AA) by argon plasma treatment; (3) RGD group, rabbits implanted with HPPE grafted with AA by argon plasma treatment and subsequently immobilized with RGD peptide. An HPPE spherical implant was put in the abdominal muscles of rabbit. After implantation for 4 weeks, the retrieved implants were sectioned and stained with hematoxylin and eosin (H&E). Blood vessels were counted using CD-31 immunostaining. Cross-sectional areas of fibrovascular ingrowth, blood vessel densities, and host inflammatory response scores were determined for all three groups. The mean cross-sectional areas of fibrovascularization at 2 and 3 weeks after implantation were the greatest in the RGD group, followed by the PAA group. While minimal fibrovascular ingrowths were noted in all implants at 1 week, all the implants showed nearly complete ingrowth at 4 weeks. Blood vessel densities were the highest in the RGD group, followed by the PAA group at 2, 3, and 4 weeks. The mean inflammation scores of the PAA and RGD groups were less than that of the control group. Fibrovascularization into HPPE implants was enhanced by surface grafting of AA and further improved by immobilizing RGD peptides onto the grafted AA surfaces. The inflammatory reactions were mild by either technique of surface modification.

  18. Method for predicting peptide detection in mass spectrometry

    DOEpatents

    Kangas, Lars [West Richland, WA; Smith, Richard D [Richland, WA; Petritis, Konstantinos [Richland, WA

    2010-07-13

    A method of predicting whether a peptide present in a biological sample will be detected by analysis with a mass spectrometer. The method uses at least one mass spectrometer to perform repeated analysis of a sample containing peptides from proteins with known amino acids. The method then generates a data set of peptides identified as contained within the sample by the repeated analysis. The method then calculates the probability that a specific peptide in the data set was detected in the repeated analysis. The method then creates a plurality of vectors, where each vector has a plurality of dimensions, and each dimension represents a property of one or more of the amino acids present in each peptide and adjacent peptides in the data set. Using these vectors, the method then generates an algorithm from the plurality of vectors and the calculated probabilities that specific peptides in the data set were detected in the repeated analysis. The algorithm is thus capable of calculating the probability that a hypothetical peptide represented as a vector will be detected by a mass spectrometry based proteomic platform, given that the peptide is present in a sample introduced into a mass spectrometer.

  19. Antimicrobial Peptides in 2014

    PubMed Central

    Wang, Guangshun; Mishra, Biswajit; Lau, Kyle; Lushnikova, Tamara; Golla, Radha; Wang, Xiuqing

    2015-01-01

    This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms. PMID:25806720

  20. Antitumoral Cascade-Targeting Ligand for IL-6 Receptor-Mediated Gene Delivery to Glioma.

    PubMed

    Wang, Shanshan; Reinhard, Sören; Li, Chengyi; Qian, Min; Jiang, Huiling; Du, Yilin; Lächelt, Ulrich; Lu, Weiyue; Wagner, Ernst; Huang, Rongqin

    2017-07-05

    The effective treatment of glioma is largely hindered by the poor transfer of drug delivery systems across the blood-brain barrier (BBB) and the difficulty in distinguishing healthy and tumorous cells. In this work, for the first time, an interleukin-6 receptor binding I 6 P 7 peptide was exploited as a cascade-targeting ligand in combination with a succinoyl tetraethylene pentamine (Stp)-histidine oligomer-based nonviral gene delivery system (I 6 P 7 -Stp-His/DNA). The I 6 P 7 peptide provides multiple functions, including the cascade-targeting potential represented by a combined BBB-crossing and subsequent glioma-targeting ability, as well as a direct tumor-inhibiting effect. I 6 P 7 -Stp-His/DNA nanoparticles (NPs) mediated higher gene expression in human glioma U87 cells than in healthy human astrocytes and a deeper penetration into glioma spheroids than scrambled peptide-modified NPs. Transport of I 6 P 7 -modified, but not the control, NPs across the BBB was demonstrated in vitro in a transwell bEnd.3 cell model resulting in transfection of underlying U87 cells and also in vivo in glioma-bearing mice. Intravenous administration of I 6 P 7 -Stp-His/plasmid DNA (pDNA)-encoding inhibitor of growth 4 (pING4) significantly prolonged the survival time of orthotopic U87 glioma-bearing mice. The results denote that I 6 P 7 peptide is a roborant cascade-targeting ligand, and I 6 P 7 -modified NPs might be exploited for efficient glioma therapy. Copyright © 2017. Published by Elsevier Inc.

  1. Systematic Errors in Peptide and Protein Identification and Quantification by Modified Peptides*

    PubMed Central

    Bogdanow, Boris; Zauber, Henrik; Selbach, Matthias

    2016-01-01

    The principle of shotgun proteomics is to use peptide mass spectra in order to identify corresponding sequences in a protein database. The quality of peptide and protein identification and quantification critically depends on the sensitivity and specificity of this assignment process. Many peptides in proteomic samples carry biochemical modifications, and a large fraction of unassigned spectra arise from modified peptides. Spectra derived from modified peptides can erroneously be assigned to wrong amino acid sequences. However, the impact of this problem on proteomic data has not yet been investigated systematically. Here we use combinations of different database searches to show that modified peptides can be responsible for 20–50% of false positive identifications in deep proteomic data sets. These false positive hits are particularly problematic as they have significantly higher scores and higher intensities than other false positive matches. Furthermore, these wrong peptide assignments lead to hundreds of false protein identifications and systematic biases in protein quantification. We devise a “cleaned search” strategy to address this problem and show that this considerably improves the sensitivity and specificity of proteomic data. In summary, we show that modified peptides cause systematic errors in peptide and protein identification and quantification and should therefore be considered to further improve the quality of proteomic data annotation. PMID:27215553

  2. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    PubMed Central

    Lakshmanan, Anupama; Hauser, Charlotte A.E.

    2011-01-01

    In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures. PMID:22016623

  3. Peptides, proteins and peptide/protein-polymer conjugates as drug delivery system.

    PubMed

    Mukherjee, Biswajit; Karmakar, Swapna D; Hossain, Chowdhury M; Bhattacharya, Sanchari

    2014-01-01

    In the last few decades, novel drug delivery strategies have been a big priority to the formulation scientists. Peptides and proteins have drawn a special attention for their wide scope in the area. Serum albumin, transferrin, recom- binant proteins, virus capsids etc. are used as carrier for drug and biomolecules. Conjugates of polymers with proteins have also shown strong potency in the field of drug delivery. Polyethylene glycol is one of the most successful polymers that has been used extensively to develop protein conjugated formulations. Besides, polyvinyl pyrrolidone, polylactic-co- glycolic acid, N-(2-hydroxypropyl) methacrylamide copolymer, polyglutamic acid have also been investigated. In this re- view, we will highlight on the most recent overview of various advantages, limitations and marketed products of proteins, peptides and protein/peptide-polymer conjugates as drug carriers, such products in clinical trials and their various uses in the field of modern drug delivery. Understanding the key features of these materials and the vigorous research in this field will develop new drug formulations that will combat various types of life-threatening diseases.

  4. How Does Amino Acid Ligand Modulate Au Core Structure and Characteristics in Peptide Coated Au Nanocluster?

    PubMed

    Li, Nan; Li, Xu; Zhao, Hongkang; Zhao, Lina

    2018-03-01

    The atomic structures and the corresponding physicochemical properties of peptide coated Au nanoclusters determine their distinctive biological targeting applications. To learn the modulation of amino acid ligand on the atomic structure and electronic characteristics of coated Au core is the fundamental knowledge for peptide coated Au nanocluster design and construction. Based on our recent coated Au nanocluster configuration study (Nanoscale, 2016, 8, 11454), we built the typically simplified Au13(Cys-Au-Cys) system to more clearly learn the basic modulation information of amino acid ligand on Au core by the density functional theory (DFT) calculations. There are two isomers as ligand adjacent bonding (Iso1) and diagonal bonding (Iso2) to Au13 cores. The geometry optimizations indicate the adjacent bonding Iso1 is more stable than Iso2. More important, the Au13 core of Iso1 distorts much more significantly than that of Iso2 by Cys-Au-Cys bonding through the root-mean-square deviation (RMSD) analysis, which modulate their electronic characteristics in different ways. In addition, the frontier molecular orbital results of Au13(Cys-Au-Cys) isomers confirm that the Au cores mainly determine the blue shifts of Au13(Cys-Au-Cys) systems versus the original Au13 core in their UV-visible absorption spectrum studies. The configuration of Au13 core performs deformation under Cys-Au-Cys ligand modulation to reach new stability with distinct atomic structure and electronic properties, which could be the theory basis for peptide coated AuNCs design and construction.

  5. Peptide (Lys-Leu) and amino acids (Lys and Leu) supplementations improve physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation.

    PubMed

    Yang, Huirong; Zong, Xuyan; Cui, Chun; Mu, Lixia; Zhao, Haifeng

    2017-12-22

    Lys and Leu were generally considered as the key amino acids for brewer's yeast during beer brewing. In the present study, peptide Lys-Leu and a free amino acid (FAA) mixture of Lys and Leu (Lys + Leu) were supplemented in 24 °P wort to examine their effects on physiological activity and fermentation performance of brewer's yeast during very high-gravity (VHG) wort fermentation. Results showed that although both peptide Lys-Leu and their FAA mixture supplementations could increase the growth and viability, intracellular trehalose and glycerol content, wort fermentability, and ethanol content for brewer's yeast during VHG wort fermentation, and peptide was better than their FAA mixture at promoting growth and fermentation for brewer's yeast when the same dose was kept. Moreover, peptide Lys-Leu supplementation significantly increased the assimilation of Asp, but decreased the assimilation of Gly, Ala, Val, (Cys)2, Ile, Leu, Tyr, Phe, Lys, Arg, and Pro. However, the FAA mixture supplementation only promoted the assimilation of Lys and Leu, while reduced the absorption of total amino acids to a greater extent. Thus, the peptide Lys-Leu was more effective than their FAA mixture on the improvement of physiological activity, fermentation performance, and nitrogen metabolism of brewer's yeast during VHG wort fermentation. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  6. D-Amino acids incorporation in the frog skin-derived peptide esculentin-1a(1-21)NH2 is beneficial for its multiple functions.

    PubMed

    Di Grazia, Antonio; Cappiello, Floriana; Cohen, Hadar; Casciaro, Bruno; Luca, Vincenzo; Pini, Alessandro; Di, Y Peter; Shai, Yechiel; Mangoni, Maria Luisa

    2015-12-01

    Naturally occurring antimicrobial peptides (AMPs) represent promising future antibiotics. We have previously isolated esculentin-1a(1-21)NH2, a short peptide derived from the frog skin AMP esculentin-1a, with a potent anti-Pseudomonal activity. Here, we investigated additional functions of the peptide and properties responsible for these activities. For that purpose, we synthesized the peptide, as well as its structurally altered analog containing two D-amino acids. The peptides were then biophysically and biologically investigated for their cytotoxicity and immunomodulating activities. The data revealed that compared to the wild-type, the diastereomer: (1) is significantly less toxic towards mammalian cells, in agreement with its lower α-helical structure, as determined by circular dichroism spectroscopy; (2) is more effective against the biofilm form of Pseudomonas aeruginosa (responsible for lung infections in cystic fibrosis sufferers), while maintaining a high activity against the free-living form of this important pathogen; (3) is more stable in serum; (4) has a higher activity in promoting migration of lung epithelial cells, and presumably in healing damaged lung tissue, and (5) disaggregates and detoxifies the bacterial lipopolysaccharide (LPS), albeit less than the wild-type. Light scattering studies revealed a correlation between anti-LPS activity and the ability to disaggregate the LPS. Besides shedding light on the multifunction properties of esculentin-1a(1-21)NH2, the D-amino acid containing isomer may serve as an attractive template for the development of new anti-Pseudomonal compounds with additional beneficial properties. Furthermore, together with other studies, incorporation of D-amino acids may serve as a general approach to optimize the future design of new AMPs.

  7. Constancy and diversity in the flavivirus fusion peptide.

    PubMed

    Seligman, Stephen J

    2008-02-14

    Flaviviruses include the mosquito-borne dengue, Japanese encephalitis, yellow fever and West Nile and the tick-borne encephalitis viruses. They are responsible for considerable world-wide morbidity and mortality. Viral entry is mediated by a conserved fusion peptide containing 16 amino acids located in domain II of the envelope protein E. Highly orchestrated conformational changes initiated by exposure to acidic pH accompany the fusion process and are important factors limiting amino acid changes in the fusion peptide that still permit fusion with host cell membranes in both arthropod and vertebrate hosts. The cell-fusing related agents, growing only in mosquitoes or insect cell lines, possess a different homologous peptide. Analysis of 46 named flaviviruses deposited in the Entrez Nucleotides database extended the constancy in the canonical fusion peptide sequences of mosquito-borne, tick-borne and viruses with no known vector to include more recently-sequenced viruses. The mosquito-borne signature amino acid, G104, was also found in flaviviruses with no known vector and with the cell-fusion related viruses. Despite the constancy in the canonical sequences in pathogenic flaviviruses, mutations were surprisingly frequent with a 27% prevalence of nonsynonymous mutations in yellow fever virus fusion peptide sequences, and 0 to 7.4% prevalence in the others. Six of seven yellow fever patients whose virus had fusion peptide mutations died. In the cell-fusing related agents, not enough sequences have been deposited to estimate reliably the prevalence of fusion peptide mutations. However, the canonical sequences homologous to the fusion peptide and the pattern of disulfide linkages in protein E differed significantly from the other flaviviruses. The constancy of the canonical fusion peptide sequences in the arthropod-borne flaviviruses contrasts with the high prevalence of mutations in most individual viruses. The discrepancy may be the result of a survival advantage

  8. Peptide Transduction-Based Therapies for Prostate Cancer

    DTIC Science & Technology

    2004-06-01

    using an M13 peptide phage display library. Initial screening of the library for transduction of tumors in vivo has identified peptides able to...marker conjugates may have to be tested. (Months 6-12, Year 1) Progress: These experiments have been initiated. Task 4. An M13 peptide phage display ... phage 12 amino acid control peptide display library (New England Biolabs, Beverly, MA ) was used. Briefly, One nude mouse bearing a human tumor line

  9. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    PubMed Central

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P. R. O.

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a ‘preservation motif’, and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival. PMID:21687667

  10. Dinosaur peptides suggest mechanisms of protein survival.

    PubMed

    San Antonio, James D; Schweitzer, Mary H; Jensen, Shane T; Kalluri, Raghu; Buckley, Michael; Orgel, Joseph P R O

    2011-01-01

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results show empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.

  11. Dinosaur Peptides Suggest Mechanisms of Protein Survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    San Antonio, James D.; Schweitzer, Mary H.; Jensen, Shane T.

    Eleven collagen peptide sequences recovered from chemical extracts of dinosaur bones were mapped onto molecular models of the vertebrate collagen fibril derived from extant taxa. The dinosaur peptides localized to fibril regions protected by the close packing of collagen molecules, and contained few acidic amino acids. Four peptides mapped to collagen regions crucial for cell-collagen interactions and tissue development. Dinosaur peptides were not represented in more exposed parts of the collagen fibril or regions mediating intermolecular cross-linking. Thus functionally significant regions of collagen fibrils that are physically shielded within the fibril may be preferentially preserved in fossils. These results showmore » empirically that structure-function relationships at the molecular level could contribute to selective preservation in fossilized vertebrate remains across geological time, suggest a 'preservation motif', and bolster current concepts linking collagen structure to biological function. This non-random distribution supports the hypothesis that the peptides are produced by the extinct organisms and suggests a chemical mechanism for survival.« less

  12. Interfacial and emulsifying properties of designed β-strand peptides.

    PubMed

    Dexter, Annette F

    2010-12-07

    The structural and surfactant properties of a series of amphipathic β-strand peptides have been studied as a function of pH. Each nine-residue peptide has a framework of hydrophobic proline and phenylalanine amino acid residues, alternating with acidic or basic amino acids to give a sequence closely related to known β-sheet formers. Surface activity, interfacial mechanical properties, electronic circular dichroism (ECD), droplet sizing and zeta potential measurements were used to gain an overview of the peptide behavior as the molecular charge varied from ±4 to 0 with pH. ECD data suggest that the peptides form polyproline-type helices in bulk aqueous solution when highly charged, but may fold to β-hairpins rather than β-sheets when uncharged. In the uncharged state, the peptides adsorb readily at a macroscopic fluid interface to form mechanically strong interfacial films, but tend to give large droplet sizes on emulsification, apparently due to flocculation at a low droplet zeta potential. In contrast, highly charged peptide states gave a low interfacial coverage, but retained good emulsifying activity as judged by droplet size. Best emulsification was generally seen for intermediate charged states of the peptides, possibly representing a compromise between droplet zeta potential and interfacial binding affinity. The emulsifying properties of β-strand peptides have not been previously reported. Understanding the interfacial properties of such peptides is important to their potential development as biosurfactants.

  13. Antimicrobial Polymers: Mimicking Amino Acid Functionali ty, Sequence Control and Three-dimensional Structure of Host-defen se Peptides.

    PubMed

    Hartlieb, Matthias; Williams, Elizabeth G L; Kuroki, Agnès; Perrier, Sébastien; Locock, Katherine E S

    2017-01-01

    Peptides and proteins control and direct all aspects of cellular function and communication. Having been honed by nature for millions of years, they also typically display an unsurpassed specificity for their biological targets. This underlies the continued focus on peptides as promising drug candidates. However, the development of peptides into viable drugs is hampered by their lack of chemical and pharmacokinetic stability and the cost of large scale production. One method to overcome such hindrances is to develop polymer systems that are able to retain the important structural features of these biologically active peptides, while being cheaper and easier to produce and manipulate chemically. This review illustrates these principles using examples of polymers designed to mimic antimicrobial host-defence peptides. The host-defence peptides have been identified as some of the most important leads for the next generation of antibiotics as they typically exhibit broad spectrum antimicrobial ability, low toxicity toward human cells and little susceptibility to currently known mechanisms of bacterial resistance. Their movement from the bench to clinic is yet to be realised, however, due to the limitations of these peptides as drugs. The literature provides a number of examples of polymers that have been able to mimic these peptides through all levels of structure, starting from specific amino acid sidechains, through to more global features such as overall charge, molecular weight and threedimensional structure (e.g. α-helical). The resulting optimised polymers are able retain the activity profile of the peptides, but within a synthetic macromolecular construct that may be better suited to the development of a new generation of antimicrobial therapeutics. Such work has not only produced important new leads to combat the growing threat of antibiotic resistance, but may also open up new ways for polymers to mimic other important classes of biologically active peptides

  14. Tidbits for the synthesis of bis(2-sulfanylethyl)amido (SEA) polystyrene resin, SEA peptides and peptide thioesters.

    PubMed

    Ollivier, Nathalie; Raibaut, Laurent; Blanpain, Annick; Desmet, Rémi; Dheur, Julien; Mhidia, Reda; Boll, Emmanuelle; Drobecq, Hervé; Pira, Silvain L; Melnyk, Oleg

    2014-02-01

    Protein total chemical synthesis enables the atom-by-atom control of the protein structure and therefore has a great potential for studying protein function. Native chemical ligation of C-terminal peptide thioesters with N-terminal cysteinyl peptides and related methodologies are central to the field of protein total synthesis. Consequently, methods enabling the facile synthesis of peptide thioesters using Fmoc-SPPS are of great value. Herein, we provide a detailed protocol for the preparation of bis(2-sulfanylethyl)amino polystyrene resin as a starting point for the synthesis of C-terminal bis(2-sulfanylethyl)amido peptides and of peptide thioesters derived from 3-mercaptopropionic acid. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  15. Novel assay system for acidic Peptide:N-glycanase (aPNGase) activity in crude plant extract.

    PubMed

    Uemura, Ryota; Ogura, Mikako; Matsumaru, Chihiro; Akiyama, Tsuyoshi; Maeda, Megumi; Kimura, Yoshinobu

    2018-04-15

    Acidic peptide:N-glycanase (aPNGase) plays a pivotal role in plant glycoprotein turnover. For the construction of aPNGase-knockout or -overexpressing plants, a new method to detect the activity in crude plant extracts is required because endogenous peptidases present in the extract hamper enzyme assays using fluorescence-labeled N-glycopeptides as a substrate. In this study, we developed a new method for measuring aPNGase activity in crude extracts from plant materials.

  16. Characterizing Peptide Neutral Losses Induced by Negative Electron-Transfer Dissociation (NETD)

    PubMed Central

    Rumachik, Neil G.; McAlister, Graeme C.; Russell, Jason D.; Bailey, Derek J.; Wenger, Craig D.; Coon, Joshua J.

    2012-01-01

    We implemented negative electron-transfer dissociation (NETD) on a hybrid ion trap/Orbitrap mass spectrometer to conduct ion/ion reactions using peptide anions and radical reagent cations. In addition to sequence-informative ladders of a•- and x-type fragment ions, NETD generated intense neutral loss peaks corresponding to the entire or partial side-chain cleavage from amino acids constituting a given peptide. Thus, a critical step towards the characterization of this recently introduced fragmentation technique is a systematic study of synthetic peptides to identify common neutral losses and preferential fragmentation pathways. Examining 46 synthetic peptides with high mass accuracy and high resolution analysis permitted facile determination of the chemical composition of each neutral loss. We identified 19 unique neutral losses from 14 amino acids and three modified amino acids, and assessed the specificity and sensitivity of each neutral loss using a database of 1542 confidently identified peptides generated from NETD shotgun experiments employing high-pH separations and negative electrospray ionization. As residue-specific neutral losses indicate the presence of certain amino acids, we determined that many neutral losses have potential diagnostic utility. We envision this catalogue of neutral losses being incorporated into database search algorithms to improve peptide identification specificity and to further advance characterization of the acidic proteome. PMID:22290482

  17. Effect of surface modification of nanofibres with glutamic acid peptide on calcium phosphate nucleation and osteogenic differentiation of marrow stromal cells.

    PubMed

    Karaman, Ozan; Kumar, Ankur; Moeinzadeh, Seyedsina; He, Xuezhong; Cui, Tong; Jabbari, Esmaiel

    2016-02-01

    Biomineralization is mediated by extracellular matrix (ECM) proteins with amino acid sequences rich in glutamic acid. The objective of this study was to investigate the effect of calcium phosphate deposition on aligned nanofibres surface-modified with a glutamic acid peptide on osteogenic differentiation of rat marrow stromal cells. Blend of EEGGC peptide (GLU) conjugated low molecular weight polylactide (PLA) and high molecular weight poly(lactide-co-glycolide) (PLGA) was electrospun to form aligned nanofibres (GLU-NF). The GLU-NF microsheets were incubated in a modified simulated body fluid for nucleation of calcium phosphate crystals on the fibre surface. To achieve a high calcium phosphate to fibre ratio, a layer-by-layer approach was used to improve diffusion of calcium and phosphate ions inside the microsheets. Based on dissipative particle dynamics simulation of PLGA/PLA-GLU fibres, > 80% of GLU peptide was localized to the fibre surface. Calcium phosphate to fibre ratios as high as 200%, between those of cancellous (160%) and cortical (310%) bone, was obtained with the layer-by-layer approach. The extent of osteogenic differentiation and mineralization of marrow stromal cells seeded on GLU-NF microsheets was directly related to the amount of calcium phosphate deposition on the fibres prior to cell seeding. Expression of osteogenic markers osteopontin, alkaline phosphatase (ALP), osteocalcin and type 1 collagen increased gradually with calcium phosphate deposition on GLU-NF microsheets. Results demonstrate that surface modification of aligned synthetic nanofibres with EEGGC peptide dramatically affects nucleation and growth of calcium phosphate crystals on the fibres leading to increased osteogenic differentiation of marrow stromal cells and mineralization. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Food-derived immunomodulatory peptides.

    PubMed

    Santiago-López, Lourdes; Hernández-Mendoza, Adrián; Vallejo-Cordoba, Belinda; Mata-Haro, Verónica; González-Córdova, Aarón F

    2016-08-01

    Food proteins contain specific amino acid sequences within their structures that may positively impact bodily functions and have multiple immunomodulatory effects. The functional properties of these specific sequences, also referred to as bioactive peptides, are revealed only after the degradation of native proteins during digestion processes. Currently, milk proteins have been the most explored source of bioactive peptides, which presents an interesting opportunity for the dairy industry. However, plant- and animal-derived proteins have also been shown to be important sources of bioactive peptides. This review summarizes the in vitro and in vivo evidence of the role of various food proteins as sources of immunomodulatory peptides and discusses the possible pathways involving these properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. Peptides and peptidomimetics as immunomodulators

    PubMed Central

    Gokhale, Ameya S; Satyanarayanajois, Seetharama

    2014-01-01

    Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically. PMID:25186605

  20. Maize Bioactive Peptides against Cancer

    NASA Astrophysics Data System (ADS)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  1. Peptide nucleic acid probe for protein affinity purification based on biotin-streptavidin interaction and peptide nucleic acid strand hybridization.

    PubMed

    Tse, Jenny; Wang, Yuanyuan; Zengeya, Thomas; Rozners, Eriks; Tan-Wilson, Anna

    2015-02-01

    We describe a new method for protein affinity purification that capitalizes on the high affinity of streptavidin for biotin but does not require dissociation of the biotin-streptavidin complex for protein retrieval. Conventional reagents place both the selectively reacting group (the "warhead") and the biotin on the same molecule. We place the warhead and the biotin on separate molecules, each linked to a short strand of peptide nucleic acid (PNA), synthetic polymers that use the same bases as DNA but attached to a backbone that is resistant to attack by proteases and nucleases. As in DNA, PNA strands with complementary base sequences hybridize. In conditions that favor PNA duplex formation, the warhead strand (carrying the tagged protein) and the biotin strand form a complex that is held onto immobilized streptavidin. As in DNA, the PNA duplex dissociates at moderately elevated temperature; therefore, retrieval of the tagged protein is accomplished by a brief exposure to heat. Using iodoacetate as the warhead, 8-base PNA strands, biotin, and streptavidin-coated magnetic beads, we demonstrate retrieval of the cysteine protease papain. We were also able to use our iodoacetyl-PNA:PNA-biotin probe for retrieval and identification of a thiol reductase and a glutathione transferase from soybean seedling cotyledons. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Ozonation and H2O2/UV treatment of clofibric acid in water: a kinetic investigation.

    PubMed

    Andreozzi, Roberto; Caprio, Vincenzo; Marotta, Raffaele; Radovnikovic, Anita

    2003-10-31

    The presence of pharmaceuticals or their active metabolites in surface and ground waters has been recently reported as mainly due to an incomplete removal of these pollutants in sewage treatment plants (STP). Advanced oxidation processes may represent a suitable tool to reduce environmental release of these species by enhancing the global efficiency of reduction of pharmaceuticals in the municipal sewage plant effluents. The present work aims at assessing the kinetics of abatement from aqueous solutions of clofibric acid (a metabolite of the blood lipid regulator clofibrate) which has been found in surface, ground and drinking waters. Ozonation and hydrogen peroxide photolysis are capable of fast removal of this species in aqueous solution, with an almost complete conversion of the organic chlorine content into chloride ions for the investigated reaction conditions. A validation of assessed kinetics at clofibric acid concentrations as low as those found in STP effluents is presented for both systems.

  3. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  4. Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.

    PubMed

    Sato, Kenji

    2018-03-28

    Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.

  5. Development of hyaluronic acid-Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides.

    PubMed

    Kumar, Arun; Sahoo, Bishwabhusan; Montpetit, Alison; Behera, Sumita; Lockey, Richard F; Mohapatra, Shyam S

    2007-06-01

    Novel hybrid nanoparticles comprised of hyaluronic acid (HA) and iron oxide were synthesized and characterized for the first time with the average diameter of less than 160 nm. The iron oxide (Fe2O3) particles are hybridized between HA layers by electrostatic interactions between the positive surface charge of the Fe2O3 nanoparticles and the negative charge of the carboxylate groups of HA, forming a corral-like structure. The particles were also characterized by FTIR and NMR to verify the hybridization. The particles were tested for their ability to deliver peptides to the cells using HEK293 and A549 cells. Results show that these particles delivered peptides at about 100% level. These HA-iron oxide nanoparticles are expected to be useful in developing effective tissue and cell targeting systems.

  6. Cysteine-containing peptides having antioxidant properties

    DOEpatents

    Bielicki, John K [Castro Valley, CA

    2007-05-15

    The term "homology" or "homologous" means an amino acid similarity measured by the program, BLAST (Altschul et al (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:33 89 3402), and expressed as --(% identity n/n). In measuring homology between a peptide and a protein of greater size, homology is measured only in the corresponding region; that is, the protein is regarded as only having the same general length as the peptide, allowing for gaps and insertions.

  7. PEPlife: A Repository of the Half-life of Peptides

    NASA Astrophysics Data System (ADS)

    Mathur, Deepika; Prakash, Satya; Anand, Priya; Kaur, Harpreet; Agrawal, Piyush; Mehta, Ayesha; Kumar, Rajesh; Singh, Sandeep; Raghava, Gajendra P. S.

    2016-11-01

    Short half-life is one of the key challenges in the field of therapeutic peptides. Various studies have reported enhancement in the stability of peptides using methods like chemical modifications, D-amino acid substitution, cyclization, replacement of labile aminos acids, etc. In order to study this scattered data, there is a pressing need for a repository dedicated to the half-life of peptides. To fill this lacuna, we have developed PEPlife (http://crdd.osdd.net/raghava/peplife), a manually curated resource of experimentally determined half-life of peptides. PEPlife contains 2229 entries covering 1193 unique peptides. Each entry provides detailed information of the peptide, like its name, sequence, half-life, modifications, the experimental assay for determining half-life, biological nature and activity of the peptide. We also maintain SMILES and structures of peptides. We have incorporated web-based modules to offer user-friendly data searching and browsing in the database. PEPlife integrates numerous tools to perform various types of analysis such as BLAST, Smith-Waterman algorithm, GGSEARCH, Jalview and MUSTANG. PEPlife would augment the understanding of different factors that affect the half-life of peptides like modifications, sequence, length, route of delivery of the peptide, etc. We anticipate that PEPlife will be useful for the researchers working in the area of peptide-based therapeutics.

  8. The reaction of iodobenzene-p-sulphonyl chloride (pipsyl chloride) with certain amino acids and peptides, and with insulin

    PubMed Central

    Fletcher, J. C.

    1967-01-01

    1. A system of separation using buffered Celite columns is described that enables the pipsyl derivatives of most of the common amino acids to be separated. 2. The reaction of pipsyl chloride with several amino acids not included in previous studies has been investigated. In particular, knowledge of the acid-soluble pipsyl derivatives of arginine, histidine, lysine, tyrosine and cysteic acid has been extended. 3. Reproducible factors have been obtained that enable corrections to be applied for the breakdown of pipsylamino acids on acid hydrolysis. 4. The reaction of pipsyl chloride with peptides has been studied under various conditions. 5. The extent of the reaction between pipsyl chloride and insulin depends on the nature of the solvent–buffer system, and under the best conditions so far found is about 75% complete. 6. In an Appendix, the separation of pipsylamino acids by thin-layer chromatography is described. PMID:16742498

  9. pDeep: Predicting MS/MS Spectra of Peptides with Deep Learning.

    PubMed

    Zhou, Xie-Xuan; Zeng, Wen-Feng; Chi, Hao; Luo, Chunjie; Liu, Chao; Zhan, Jianfeng; He, Si-Min; Zhang, Zhifei

    2017-12-05

    In tandem mass spectrometry (MS/MS)-based proteomics, search engines rely on comparison between an experimental MS/MS spectrum and the theoretical spectra of the candidate peptides. Hence, accurate prediction of the theoretical spectra of peptides appears to be particularly important. Here, we present pDeep, a deep neural network-based model for the spectrum prediction of peptides. Using the bidirectional long short-term memory (BiLSTM), pDeep can predict higher-energy collisional dissociation, electron-transfer dissociation, and electron-transfer and higher-energy collision dissociation MS/MS spectra of peptides with >0.9 median Pearson correlation coefficients. Further, we showed that intermediate layer of the neural network could reveal physicochemical properties of amino acids, for example the similarities of fragmentation behaviors between amino acids. We also showed the potential of pDeep to distinguish extremely similar peptides (peptides that contain isobaric amino acids, for example, GG = N, AG = Q, or even I = L), which were very difficult to distinguish using traditional search engines.

  10. Distinguishing d - and l -aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Deng, Liulin; Baker, Erin S.

    2017-01-01

    Ion mobility spectrometry (IMS) was utilized to separate Aβ peptide variants containing isomeric asparic and isoaspartic acid residues with either al- ord-form. The abundance of each variant is of great interest in Alzheimer's disease studies and also to evaluate how often these modifications are occurring in other environmental and biological samples.

  11. Use of ferrous chelates of SH-containing amino acids and peptides for the removal of NO/sub x/ and SO/sub 2/ from flue gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, S.G.; Littlejohn, D.; Liu, D.K.

    1988-11-01

    The use of ferrous complexes of SH-containing amino acids and peptides for the removal of NO and SO/sub 2/ in wet flue gas clean-up systems is reported. The ferrous chelates investigated in the present study include those of cysteine, N-acetylcysteine, penicillamine, N-acetylpenicillamine, glutathine, and cysteinylglycine. Compared to conventional chelates such as EDTA, these thioamino acids/peptides not only can stabilize ferrous ion in alkaline solutions to promote the absorption of NO but are also capable of rapidly reducing any ferric ions formed during the scrubbing process back to ferrous ions so that continual absorption of NO can be achieved. In themore » case of ferrous cysteine and ferrous penicillamine, most of the absorbed NO is reduced to N/sub 2/. The disulfide form of several of the thioamino acids/peptides produced upon oxidation can be conveniently reduced by SO/sub 2/ and H/sub 2/S to regenerate the starting materials, thus making possible the recycling of the reagents.« less

  12. Morintides: cargo-free chitin-binding peptides from Moringa oleifera.

    PubMed

    Kini, Shruthi G; Wong, Ka H; Tan, Wei Liang; Xiao, Tianshu; Tam, James P

    2017-03-31

    Hevein-like peptides are a family of cysteine-rich and chitin-binding peptides consisting of 29-45 amino acids. Their chitin-binding property is essential for plant defense against fungi. Based on the number of cysteine residues in their sequences, they are divided into three sub-families: 6C-, 8C- and 10C-hevein-like peptides. All three subfamilies contain a three-domain precursor comprising a signal peptide, a mature hevein-like peptide and a C-terminal domain comprising a hinge region with protein cargo in 8C- and 10C-hevein-like peptides. Here we report the isolation and characterization of two novel 8C-hevein-like peptides, designated morintides (mO1 and mO2), from the drumstick tree Moringa oleifera, a drought-resistant tree belonging to the Moringaceae family. Proteomic analysis revealed that morintides comprise 44 amino acid residues and are rich in cysteine, glycine and hydrophilic amino acid residues such as asparagine and glutamine. Morintides are resistant to thermal and enzymatic degradation, able to bind to chitin and inhibit the growth of phyto-pathogenic fungi. Transcriptomic analysis showed that they contain a three-domain precursor comprising an endoplasmic reticulum (ER) signal sequence, a mature peptide domain and a C-terminal domain. A striking feature distinguishing morintides from other 8C-hevein-like peptides is a short and protein-cargo-free C-terminal domain. Previously, a similar protein-cargo-free C-terminal domain has been observed only in ginkgotides, the 8C-hevein-like peptides from a gymnosperm Ginkgo biloba. Thus, morintides, with a cargo-free C-terminal domain, are a stand-alone class of 8C-hevein-like peptides from angiosperms. Our results expand the existing library of hevein-like peptides and shed light on molecular diversity within the hevein-like peptide family. Our work also sheds light on the anti-fungal activity and stability of 8C-hevein-like peptides.

  13. Bioactive Molecules Released in Food by Lactic Acid Bacteria: Encrypted Peptides and Biogenic Amines

    PubMed Central

    Pessione, Enrica; Cirrincione, Simona

    2016-01-01

    Lactic acid bacteria (LAB) can produce a huge amount of bioactive compounds. Since their elective habitat is food, especially dairy but also vegetal food, it is frequent to find bioactive molecules in fermented products. Sometimes these compounds can have adverse effects on human health such as biogenic amines (tyramine and histamine), causing allergies, hypertensive crises, and headache. However, some LAB products also display benefits for the consumers. In the present review article, the main nitrogen compounds produced by LAB are considered. Besides biogenic amines derived from the amino acids tyrosine, histidine, phenylalanine, lysine, ornithine, and glutamate by decarboxylation, interesting peptides can be decrypted by the proteolytic activity of LAB. LAB proteolytic system is very efficient in releasing encrypted molecules from several proteins present in different food matrices. Alpha and beta-caseins, albumin and globulin from milk and dairy products, rubisco from spinach, beta-conglycinin from soy and gluten from cereals constitute a good source of important bioactive compounds. These encrypted peptides are able to control nutrition (mineral absorption and oxidative stress protection), metabolism (blood glucose and cholesterol lowering) cardiovascular function (antithrombotic and hypotensive action), infection (microbial inhibition and immunomodulation) and gut-brain axis (opioids and anti-opioids controlling mood and food intake). Very recent results underline the role of food-encrypted peptides in protein folding (chaperone-like molecules) as well as in cell cycle and apoptosis control, suggesting new and positive aspects of fermented food, still unexplored. In this context, the detailed (transcriptomic, proteomic, and metabolomic) characterization of LAB of food interest (as starters, biocontrol agents, nutraceuticals, and probiotics) can supply a solid evidence-based science to support beneficial effects and it is a promising approach as well to obtain

  14. Use of a Designed Peptide Array To Infer Dissociation Trends for Nontryptic Peptides in Quadrupole Ion Trap and Quadrupole Time-of-Flight Mass Spectrometry

    DOE PAGES

    Gaucher, Sara P.; Morrow, Jeffrey A.; Faulon, Jean-Loup M.

    2007-09-14

    Observed peptide gas-phase fragmentation patterns are a complex function of many variables. In order to systematically probe this phenomenon, an array of 40 peptides was synthesized for study. The array of sequences was designed to hold certain variables (peptide length) constant and randomize or balance others (peptide amino acid distribution and position). A high-quality tandem mass spectrometry (MS/MS) data set was acquired for each peptide for all observed charge states on multiple MS instruments, quadrupole-time-of-flight and quadrupole ion trap. The data were analyzed as a function of total charge state and number of mobile protons. Previously known dissociation trends weremore » observed, validating our approach. In addition, the general influence of basic amino acids on dissociation could be determined because, in contrast to the more widely studied tryptic peptides, the amino acids H, K, and R were positionally distributed. Interestingly, our results suggest that cleavage at all basic amino acids is suppressed when a mobile proton is available. Cleavage at H becomes favored only under conditions where a partially mobile proton is present, a caveat to the previously reported trend of enhanced cleavage at H. In conclusion, all acquired data were used as a benchmark to determine how well these sequences would have been identified in a database search using a common algorithm, Mascot.« less

  15. Biological assay using T cell response for Cry-consensus peptide designed for the peptide-based immunotherapy of Japanese cedar pollinosis.

    PubMed

    Kozutsumi, Daisuke; Tsunematsu, Masako; Yamaji, Taketo; Kino, Kohsuke

    2007-01-01

    Cry-consensus peptide is a linearly linked peptide of T-cell epitopes for the management of Japanese cedar (JC) pollinosis and is expected to become a new drug for immunotherapy. However, the mechanism of T-cell epitopes in allergic diseases is not well understood, and thus, a simple in vitro procedure for evaluation of its biological activity is desired. Peripheral blood mononuclear cells (PBMC) were isolated from 27 JC pollinosis patients and 10 healthy subjects, and cultured in vitro for 4 days in the presence of Cry-consensus peptide and (3)H-thymidine. The relationship between growth stimulation (stimulation index; SI) and antigen-specific IgE levels in serum was also investigated in JC pollinosis patients. Moreover, to confirm the importance of the primary sequence in Cry-consensus peptide, heat-treated Cry-consensus peptide and a mixture of the amino acids of which Cry-consensus peptide is composed, and their (3)H-thymidine uptake was compared with Cry-consensus peptide. Finally, whether Cry-consensus peptide stimulates PBMCs from healthy subjects was investigated. The mean SI of JC patients showed a good correlation with Cry-consensus peptide concentration in the culture medium; however, the SI was independent of the anti-Cry j 1 IgE level. Heat-denatured Cry-consensus peptide retained a PBMC proliferation stimulatory effect comparable to the original Cry-consensus peptide, while the mixture of amino acids constituting Cry-consensus peptide did not stimulate PBMC proliferation. PBMCs from healthy subjects did not respond to Cry-consensus peptide at all. These data indicate that the PBMC response of patients suffering from JC pollinosis to Cry-consensus peptide is specific for the sequence of T cell epitopes thereof and may be useful for the evaluation of the efficacy of Cry-consensus peptide in vivo.

  16. Antimicrobial Peptides and Nanotechnology, Recent Advances and Challenges.

    PubMed

    Biswaro, Lubhandwa S; da Costa Sousa, Mauricio G; Rezende, Taia M B; Dias, Simoni C; Franco, Octavio L

    2018-01-01

    Antimicrobial peptides are sequences of amino acids, which present activity against microorganisms. These peptides were discovered over 70 years ago, and are abundant in nature from soil bacteria, insects, amphibians to mammals and plants. They vary in amino acids number, the distance between amino acids within individual peptide structure, net charge, solubility and other physical chemical properties as well as differ in mechanism of action. These peptides may provide an alternative treatment to conventional antibiotics, which encounter resistance such as the peptide nisin applied in treating methicillin resistant Staphylococcus aureus (MRSA) or may behave synergistically with known antibiotics against parasites for instance, nisin Z when used in synergy with ampicillin reported better activity against Pseudomonas fluorescens than when the antibiotic was alone. AMPs are known to be active against viruses, bacteria, fungi and protozoans. Nanotechnology is an arena which explores the synthesis, characterization and application of an array of delivery systems at a one billionth of meter scale. Such systems are implemented to deliver drugs, proteins, vaccines, and peptides. The role of nanotechnology in delivering AMPs is still at its early development stage. There are challenges of incorporating AMPs into drug delivery system. This review intends to explore in depth, the role of nanotechnology in delivering AMPs as well as presenting the current advances and accompanying challenges of the technology.

  17. C-terminal peptide extension via gas-phase ion/ion reactions

    PubMed Central

    Peng, Zhou; McLuckey, Scott A.

    2015-01-01

    The formation of peptide bonds is of great importance from both a biological standpoint and in routine organic synthesis. Recent work from our group demonstrated the synthesis of peptides in the gas-phase via ion/ion reactions with sulfo-NHS reagents, which resulted in conjugation of individual amino acids or small peptides to the N-terminus of an existing ‘anchor’ peptide. Here, we demonstrate a complementary approach resulting in the C-terminal extension of peptides. Individual amino acids or short peptides can be prepared as reagents by incorporating gas phase-labile protecting groups to the reactive C-terminus and then converting the N-terminal amino groups to the active ketenimine reagent. Gas-phase ion/ion reactions between the anionic reagents and doubly protonated “anchor” peptide cations results in extension of the “anchor” peptide with new amide bond formation at the C-terminus. We have demonstrated that ion/ion reactions can be used as a fast, controlled, and efficient means for C-terminal peptide extension in the gas phase. PMID:26640400

  18. A family of silver(I) complexes built with 2-sulfoterephthalic acid monosodium salt and different aminopyridine ligands: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tan, Gai-Xiu; Liu, Bao-Lin; Dai, Yu-Bei; Xu, Na; Wen, Wei-Fen; Cao, Chong; Xiao, Hong-Ping

    2017-05-01

    Five Ag(I) coordination complexes, namely, [Ag6(2-stp)2(3-methyl-2-apy)3·H2O]n (1), [Ag3(2-stp)(4-methyl-2-apy)3]n (2), [Na2Ag18(2-stp)4(2-Hstp)4(5-methyl-2-apy)16 (H2O)4·11H2O]n (3), Ag3(2-stp)(6-methy-2-apy)4·H2O (4), and [Ag6(2-stp)2(6-methyl-2-apy)8(H2O)2·H2O]n (5) (2-NaH2stp = 2-sulfoterephthalic acid monosodium salt, 3-methyl-2-apy = 3-methyl-2-aminopyridine, 4-methyl-2-apy = 4-methyl-2-aminopyridine, 5-methyl-2-apy = 5-methyl-2-aminopyridine, 6-methyl-2-apy = 6-methyl-2-aminopyridine), have been synthesized and structurally characterized. Complexes 1 and 2 show two-dimensional network. In complex 3, the adjacent Ag10 units are bridged by 5-methyl-2-apy ligands to form a 2D infinite undulated sheet. Adjacent 2D sheets are linked by coordinative bonds between carboxylic oxygen atoms and Na(I) ions to form a 3D coordination polymer. Complex 4 is a 0-D discrete trinuclear molecule, and the self-complementary the Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds incorporating hydrogen bond motifs extend these molecules into a 2D supramolecular framework. Compound 5 exhibits 1D-chain structure. However, complex 5 shows 3D supramolecular structure results from the linkage of neighboring layers through a rich hydrogen-bonding between uncoordinated sulfonates, amino groups and coordinated carboxylates. The thermogravimetric analyses and photoluminescence of the complexes were also investigated.

  19. Conformational characterization of peptides rich in the cycloaliphatic C alpha,alpha-disubstituted glycine 1-aminocyclononane-1-carboxylic acid.

    PubMed

    Gatos, M; Formaggio, F; Crisma, M; Valle, G; Toniolo, C; Bonora, G M; Saviano, M; Iacovino, R; Menchise, V; Galdiero, S; Pedone, C; Benedetti, E

    1997-01-01

    A series of N- and C-protected, monodispersed homo-oligopeptides (to the pentamer level) from the cycloaliphatic C alpha,alpha-dialkylated glycine 1-aminocyclononane-1-carboxylic acid (Ac9c) and two Ala/Ac9c tripeptides have been synthesized by solution methods and fully characterized. The conformational preferences of all the model peptides were determined in deuterochloroform solution by FT-IR absorption and 1H-NMR. The molecular structures of the amino acid derivatives mCIAc-Ac9c-OH and Z-Ac9c-OtBu, the dipeptide pBrBz-(Ac9c)2-OtBu, the tetrapeptide Z-(Ac9c)4-OtBu, and the pentapeptide Z-(Ac9c)5-OtBu were determined in the crystal state by X-ray diffraction. Based on this information, the average geometry and the preferred conformation for the cyclononyl moiety of the Ac9c residue have been assessed. The backbone conformational data are strongly in favour of the conclusion that the Ac9c residue is a strong beta-turn and helix former. A comparison with the structural propensity of alpha-aminoisobutyric acid, the prototype of C alpha,alpha-dialkylated glycines, and the other extensively investigated members of the family of 1-aminocycloalkane-1-carboxylic acids (Acnc, with n = 3-8) is made and the implications for the use of the Ac9c residue in conformationally constrained analogues of bioactive peptides are briefly examined.

  20. Specific Amyloid Binding of Polybasic Peptides In Vivo Is Retained by β-Sheet Conformers but Lost in the Disrupted Coil and All D-Amino Acid Variants.

    PubMed

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Wooliver, Craig; Christopher Scott, J; Donnell, Robert; Martin, Emily B; Kennel, Stephen J

    2017-10-01

    The heparin-reactive, helical peptide p5 is an effective amyloid imaging agent in mice with systemic amyloidosis. Analogs of p5 with modified secondary structure characteristics exhibited altered binding to heparin, synthetic amyloid fibrils, and amyloid extracts in vitro. Herein, we further study the effects of peptide helicity and chirality on specific amyloid binding using a mouse model of systemic inflammation-associated (AA) amyloidosis. Peptides with disrupted helical structure [p5 (coil) and p5 (Pro3) ], with an extended sheet conformation [p5 (sheet) ] or an all-D enantiomer [p5 (D) ], were chemically synthesized, radioiodinated, and their biodistribution studied in WT mice as well as transgenic animals with severe systemic AA amyloidosis. Peptide binding was assessed qualitatively by using small animal single-photon emission computed tomography/x-ray computed tomography imaging and microautoradiography and quantitatively using tissue counting. Peptides with reduced helical propensity, p5 (coil) and p5 (Pro3) , exhibited significantly reduced binding to AA amyloid-laden organs. In contrast, peptide p5 (D) was retained by non-amyloid-related ligands in the liver and kidneys of both WT and AA mice, but it also bound AA amyloid in the spleen. The p5 (sheet) peptide specifically bound AA amyloid in vivo and was not retained by healthy tissues in WT animals. Modification of amyloid-targeting peptides using D-amino acids should be performed cautiously due to the introduction of unexpected secondary pharmacologic effects. Peptides that adopt a helical structure, to align charged amino acid side chains along one face, exhibit specific reactivity with amyloid; however, polybasic peptides with a propensity for β-sheet conformation are also amyloid-reactive and may yield a novel class of amyloid-targeting agents for imaging and therapy.

  1. Biodiscovery of aluminum binding peptides

    NASA Astrophysics Data System (ADS)

    Adams, Bryn L.; Sarkes, Deborah A.; Finch, Amethist S.; Hurley, Margaret M.; Stratis-Cullum, Dimitra

    2013-05-01

    Cell surface peptide display systems are large and diverse libraries of peptides (7-15 amino acids) which are presented by a display scaffold hosted by a phage (virus), bacteria, or yeast cell. This allows the selfsustaining peptide libraries to be rapidly screened for high affinity binders to a given target of interest, and those binders quickly identified. Peptide display systems have traditionally been utilized in conjunction with organic-based targets, such as protein toxins or carbon nanotubes. However, this technology has been expanded for use with inorganic targets, such as metals, for biofabrication, hybrid material assembly and corrosion prevention. While most current peptide display systems employ viruses to host the display scaffold, we have recently shown that a bacterial host, Escherichia coli, displaying peptides in the ubiquitous, membrane protein scaffold eCPX can also provide specific peptide binders to an organic target. We have, for the first time, extended the use of this bacterial peptide display system for the biodiscovery of aluminum binding 15mer peptides. We will present the process of biopanning with macroscopic inorganic targets, binder enrichment, and binder isolation and discovery.

  2. Enhanced Cellular Uptake of Short Polyarginine Peptides through Fatty Acylation and Cyclization

    PubMed Central

    2015-01-01

    Many of the reported arginine-rich cell-penetrating peptides (CPPs) for the enhanced delivery of drugs are linear peptides composed of more than seven arginine residues to retain the cell penetration properties. Herein, we synthesized a class of nine polyarginine peptides containing 5 and 6 arginines, namely, R5 and R6. We further explored the effect of acylation with long chain fatty acids (i.e., octanoic acid, dodecanoic acid, and hexadecanoic acid) and cyclization on the cell penetrating properties of the peptides. The fluorescence-labeled acylated cyclic peptide dodecanoyl-[R5] and linear peptide dodecanoyl-(R5) showed approximately 13.7- and 10.2-fold higher cellular uptake than that of control 5,6-carboxyfluorescein, respectively. The mechanism of the peptide internalization into cells was found to be energy-dependent endocytosis. Dodecanoyl-[R5] and dodecanoyl-[R6] enhanced the intracellular uptake of a fluorescence-labeled cell-impermeable negatively charged phosphopeptide (F′-GpYEEI) in human ovarian cancer cells (SK-OV-3) by 3.4-fold and 5.5-fold, respectively, as shown by flow cytometry. The cellular uptake of F′-GpYEEI in the presence of hexadecanoyl-[R5] was 9.3- and 6.0-fold higher than that in the presence of octanoyl-[R5] and dodecanoyl-[R5], respectively. Dodecanoyl-[R5] enhanced the cellular uptake of the phosphopeptide by 1.4–2.5-fold higher than the corresponding linear peptide dodecanoyl-(R5) and those of representative CPPs, such as hepta-arginine (CR7) and TAT peptide. These results showed that a combination of acylation by long chain fatty acids and cyclization on short arginine-containing peptides can improve their cell-penetrating property, possibly through efficient interaction of rigid positively charged R and hydrophobic dodecanoyl moiety with the corresponding residues in the cell membrane phospholipids. PMID:24978295

  3. Enteroendocrine-derived glucagon-like peptide-2 controls intestinal amino acid transport.

    PubMed

    Lee, Jennifer; Koehler, Jacqueline; Yusta, Bernardo; Bahrami, Jasmine; Matthews, Dianne; Rafii, Mahroukh; Pencharz, Paul B; Drucker, Daniel J

    2017-03-01

    Glucagon-like peptide-2 (GLP-2) is co-secreted with GLP-1 from gut endocrine cells, and both peptides act as growth factors to expand the surface area of the mucosal epithelium. Notably, GLP-2 also enhances glucose and lipid transport in enterocytes; however, its actions on control of amino acid (AA) transport remain unclear. Here we examined the mechanisms linking gain and loss of GLP-2 receptor (GLP-2R) signaling to control of intestinal amino acid absorption in mice. Absorption, transport, and clearance of essential AAs, specifically lysine, were measured in vivo by Liquid Chromatography triple quadrupole Mass Spectrometry (LC-MS/MS) and ex vivo with Ussing chambers using intestinal preparations from Glp2 r +/+ and Glp2r - / - mice. Immunoblotting determined jejunal levels of protein components of signaling pathways (PI3K-AKT, and mTORC1-pS6-p4E-BP1) following administration of GLP-2, protein gavage, and rapamycin to fasted Glp2 r +/+ and Glp2r - / - mice. Expression of AA transporters from full thickness jejunum and 4F2hc from brush border membrane vesicles (BBMVs) was measured by real-time PCR and immunoblotting, respectively. Acute administration of GLP-2 increased basal AA absorption in vivo and augmented basal lysine transport ex vivo . GLP-2-stimulated lysine transport was attenuated by co-incubation with wortmannin, rapamycin, or tetrodotoxin ex vivo . Phosphorylation of mTORC1 effector proteins S6 and 4E-BP1 was significantly increased in wild-type mice in response to GLP-2 alone, or when co-administered with protein gavage, and abolished following oral gavage of rapamycin. In contrast, activation of GLP-1R signaling did not enhance S6 phosphorylation. Disruption of GLP-2 action in Glp2r -/- mice reduced lysine transport ex vivo and attenuated the phosphorylation of S6 and 4E-BP1 in response to oral protein. Moreover, the expression of cationic AA transporter slc7a9 in response to refeeding, and the abundance of 4F2hc in BBMVs following protein

  4. Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery

    PubMed Central

    Vasconcelos, Aimee; Vega, Estefania; Pérez, Yolanda; Gómara, María J; García, María Luisa; Haro, Isabel

    2015-01-01

    In this work, a peptide for ocular delivery (POD) and human immunodeficiency virus transactivator were conjugated with biodegradable poly(lactic-co-glycolic acid) (PGLA)–polyethylene glycol (PEG)-nanoparticles (NPs) in an attempt to improve ocular drug bioavailability. The NPs were prepared by the solvent displacement method following two different pathways. One involved preparation of PLGA NPs followed by PEG and peptide conjugation (PLGA-NPs-PEG-peptide); the other involved self-assembly of PLGA-PEG and the PLGA-PEG-peptide copolymer followed by NP formulation. The conjugation of the PEG and the peptide was confirmed by a colorimetric test and proton nuclear magnetic resonance spectroscopy. Flurbiprofen was used as an example of an anti-inflammatory drug. The physicochemical properties of the resulting NPs (morphology, in vitro release, cell viability, and ocular tolerance) were studied. In vivo anti-inflammatory efficacy was assessed in rabbit eyes after topical instillation of sodium arachidonate. Of the formulations developed, the PLGA-PEG-POD NPs were the smaller particles and exhibited greater entrapment efficiency and more sustained release. The positive charge on the surface of these NPs, due to the conjugation with the positively charged peptide, facilitated penetration into the corneal epithelium, resulting in more effective prevention of ocular inflammation. The in vitro toxicity of the NPs developed was very low; no ocular irritation in vitro (hen’s egg test–chorioallantoic membrane assay) or in vivo (Draize test) was detected. Taken together, these data demonstrate that PLGA-PEG-POD NPs are promising vehicles for ocular drug delivery. PMID:25670897

  5. Cytosolic antibody delivery by lipid-sensitive endosomolytic peptide

    NASA Astrophysics Data System (ADS)

    Akishiba, Misao; Takeuchi, Toshihide; Kawaguchi, Yoshimasa; Sakamoto, Kentarou; Yu, Hao-Hsin; Nakase, Ikuhiko; Takatani-Nakase, Tomoka; Madani, Fatemeh; Gräslund, Astrid; Futaki, Shiroh

    2017-08-01

    One of the major obstacles in intracellular targeting using antibodies is their limited release from endosomes into the cytosol. Here we report an approach to deliver proteins, which include antibodies, into cells by using endosomolytic peptides derived from the cationic and membrane-lytic spider venom peptide M-lycotoxin. The delivery peptides were developed by introducing one or two glutamic acid residues into the hydrophobic face. One peptide with the substitution of leucine by glutamic acid (L17E) was shown to enable a marked cytosolic liberation of antibodies (immunoglobulins G (IgGs)) from endosomes. The predominant membrane-perturbation mechanism of this peptide is the preferential disruption of negatively charged membranes (endosomal membranes) over neutral membranes (plasma membranes), and the endosomolytic peptide promotes the uptake by inducing macropinocytosis. The fidelity of this approach was confirmed through the intracellular delivery of a ribosome-inactivation protein (saporin), Cre recombinase and IgG delivery, which resulted in a specific labelling of the cytosolic proteins and subsequent suppression of the glucocorticoid receptor-mediated transcription. We also demonstrate the L17E-mediated cytosolic delivery of exosome-encapsulated proteins.

  6. Automatic meta-data collection of STP observation data

    NASA Astrophysics Data System (ADS)

    Ishikura, S.; Kimura, E.; Murata, K.; Kubo, T.; Shinohara, I.

    2006-12-01

    For the geo-science and the STP (Solar-Terrestrial Physics) studies, various observations have been done by satellites and ground-based observatories up to now. These data are saved and managed at many organizations, but no common procedure and rule to provide and/or share these data files. Researchers have felt difficulty in searching and analyzing such different types of data distributed over the Internet. To support such cross-over analyses of observation data, we have developed the STARS (Solar-Terrestrial data Analysis and Reference System). The STARS consists of client application (STARS-app), the meta-database (STARS- DB), the portal Web service (STARS-WS) and the download agent Web service (STARS DLAgent-WS). The STARS-DB includes directory information, access permission, protocol information to retrieve data files, hierarchy information of mission/team/data and user information. Users of the STARS are able to download observation data files without knowing locations of the files by using the STARS-DB. We have implemented the Portal-WS to retrieve meta-data from the meta-database. One reason we use the Web service is to overcome a variety of firewall restrictions which is getting stricter in recent years. Now it is difficult for the STARS client application to access to the STARS-DB by sending SQL query to obtain meta- data from the STARS-DB. Using the Web service, we succeeded in placing the STARS-DB behind the Portal- WS and prevent from exposing it on the Internet. The STARS accesses to the Portal-WS by sending the SOAP (Simple Object Access Protocol) request over HTTP. Meta-data is received as a SOAP Response. The STARS DLAgent-WS provides clients with data files downloaded from data sites. The data files are provided with a variety of protocols (e.g., FTP, HTTP, FTPS and SFTP). These protocols are individually selected at each site. The clients send a SOAP request with download request messages and receive observation data files as a SOAP Response with

  7. Broad Range Amino Acid Specificity of RNA-dependent Lipid Remodeling by Multiple Peptide Resistance Factors*

    PubMed Central

    Roy, Hervé; Ibba, Michael

    2009-01-01

    Aminoacylphosphatidylglycerol synthases (aaPGSs) are multiple peptide resistance factors that transfer amino acids from aminoacyl-tRNAs to phosphatidylglycerol (PG) in the cytoplasmic membrane. Aminoacylation of PG is used by bacteria to decrease the net negative charge of the cell envelope, diminishing affinity for charged molecules and allowing for adaptation to environmental changes. Lys-PGS, which transfers lysine to PG, is essential for the virulence of certain pathogens, providing resistance to both host cationic antimicrobial peptides and therapeutic antibiotics. Ala-PGS was also recently described, but little is known about the possible activities of other members of the highly diverse aaPGS family of proteins. Systematic deletion of the predicted membrane-inserted domains of several aaPGSs revealed that the carboxyl-terminal hydrophilic domain alone is sufficient for aminoacylphosphatidylglycerol transferase catalytic activity. In contrast to previously characterized aaPGSs, the Enterococcus faecium enzyme used an expanded repertoire of amino acids to modify PG with Ala, Arg, or Lys. Reexamination of previously characterized aaPGSs also revealed broader than anticipated substrate specificity, for example Bacillus subtilis Lys-PGS was shown to also catalyze Ala-PG synthesis. The relaxed substrate specificities of these aaPGSs allows for more elaborate remodeling of membrane lipids than previously thought, potentially providing bacteria that harbor these enzymes resistance to a broad spectrum of antibiotics and environmental stresses. PMID:19734140

  8. Comprehensive computational design of ordered peptide macrocycles

    PubMed Central

    Hosseinzadeh, Parisa; Bhardwaj, Gaurav; Mulligan, Vikram Khipple; Shortridge, Matthew D.; Craven, Timothy W.; Pardo-Avila, Fátima; Rettie, Stephen A.; Kim, David E.; Silva, Daniel-Adriano; Ibrahim, Yehia M.; Webb, Ian K.; Cort, John R.; Adkins, Joshua N.; Varani, Gabriele; Baker, David

    2018-01-01

    Mixed-chirality peptide macrocycles such as cyclosporine are among the most potent therapeutics identified to date, but there is currently no way to systematically search the structural space spanned by such compounds. Natural proteins do not provide a useful guide: Peptide macrocycles lack regular secondary structures and hydrophobic cores, and can contain local structures not accessible with L-amino acids. Here, we enumerate the stable structures that can be adopted by macrocyclic peptides composed of L- and D-amino acids by near-exhaustive backbone sampling followed by sequence design and energy landscape calculations. We identify more than 200 designs predicted to fold into single stable structures, many times more than the number of currently available unbound peptide macrocycle structures. Nuclear magnetic resonance structures of 9 of 12 designed 7- to 10-residue macrocycles, and three 11- to 14-residue bicyclic designs, are close to the computational models. Our results provide a nearly complete coverage of the rich space of structures possible for short peptide macrocycles and vastly increase the available starting scaffolds for both rational drug design and library selection methods. PMID:29242347

  9. Isolation and characterisation of in vitro and cellular free radical scavenging peptides from corn peptide fractions.

    PubMed

    Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo

    2015-02-16

    Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.

  10. Acquisition and Assimilation of Nitrogen as Peptide-Bound and D-Enantiomers of Amino Acids by Wheat

    PubMed Central

    Hill, Paul W.; Quilliam, Richard S.; DeLuca, Thomas H.; Farrar, John; Farrell, Mark; Roberts, Paula; Newsham, Kevin K.; Hopkins, David W.; Bardgett, Richard D.; Jones, David L.

    2011-01-01

    Nitrogen is a key regulator of primary productivity in many terrestrial ecosystems. Historically, only inorganic N (NH4 + and NO3 -) and L-amino acids have been considered to be important to the N nutrition of terrestrial plants. However, amino acids are also present in soil as small peptides and in D-enantiomeric form. We compared the uptake and assimilation of N as free amino acid and short homopeptide in both L- and D-enantiomeric forms. Sterile roots of wheat (Triticum aestivum L.) plants were exposed to solutions containing either 14C-labelled L-alanine, D-alanine, L-trialanine or D-trialanine at a concentration likely to be found in soil solution (10 µM). Over 5 h, plants took up L-alanine, D-alanine and L-trialanine at rates of 0.9±0.3, 0.3±0.06 and 0.3±0.04 µmol g−1 root DW h−1, respectively. The rate of N uptake as L-trialanine was the same as that as L-alanine. Plants lost ca.60% of amino acid C taken up in respiration, regardless of the enantiomeric form, but more (ca.80%) of the L-trialanine C than amino acid C was respired. When supplied in solutions of mixed N form, N uptake as D-alanine was ca.5-fold faster than as NO3 -, but slower than as L-alanine, L-trialanine and NH4 +. Plants showed a limited capacity to take up D-trialanine (0.04±0.03 µmol g−1 root DW h−1), but did not appear to be able to metabolise it. We conclude that wheat is able to utilise L-peptide and D-amino acid N at rates comparable to those of N forms of acknowledged importance, namely L-amino acids and inorganic N. This is true even when solutes are supplied at realistic soil concentrations and when other forms of N are available. We suggest that it may be necessary to reconsider which forms of soil N are important in the terrestrial N cycle. PMID:21541281

  11. Zoledronic acid induces dose-dependent increase of antigen-specific CD8 T-cell responses in combination with peptide/poly-IC vaccine.

    PubMed

    Park, Hye-Mi; Cho, Hyun-Il; Shin, Chang-Ae; Shon, Hyun-Jung; Kim, Tai-Gyu

    2016-03-04

    Zoledronic acid (ZA) is used for treating osteoporosis and for preventing skeletal fractures in cancer patients suffering from myeloma and prostate cancer. It is also reported to directly induce cancer cell apoptosis and indirectly modulate T-cell immune response as an antitumor agent. In this study, the effect of ZA following peptide/polyinosinic-polycytidylic acid (poly-IC) vaccination was investigated in a murine tumor model. The combination of ZA with peptide/poly-IC vaccine showed a synergistic effect on the induction of antigen-specific CD8 T-cell response. Three consecutive intravenous administrations of ZA was defined to induce the highest CD8 T-cell response. Further, total splenocyte counts and antigen-specific CD8 T-cell response gradually increased depending on the dose of ZA. In tumor-bearing mice, ZA showed a dose-dependent decrease of growth and prolonged survival. Treatment with ZA only decreased the number of CD11b(+)Gr1(+) myeloid cells in blood. Our results demonstrate that the use of ZA could improve antitumor immune responses induced by the peptide/poly-IC vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Catalytically increased prebiotic peptide formation: ditryptophan, dilysine, and diserine.

    PubMed

    Plankensteiner, Kristof; Reiner, Hannes; Rode, Bernd M

    2005-10-01

    "Mutual" amino acid catalysis of glycine on the formation of ditryptophan, dilysine, and diserine in the prebiotically relevant Salt-Induced Peptide Formation (SIPF) Reaction was investigated varying the starting concentration and chirality of the educt amino acid, and analyzing the increase of yield resulting from this catalytic effect. Our results show the possibility of an amplified diverse pool of peptides being available for chemical evolution of larger peptides and proteins using also these more complicated amino acids for the evolution of more complex functions in future biochemical cycles and thus for the emergence of life. Catalytic effects are especially high in the case of serine, the most basic amino acid of the three, but are also significant for the other two examples investigated in the present work. Besides that, especially for serine, but also in the case of tryptophan, differences in catalytic yield increase according to the chiral form of the amino acid used could be observed.

  13. Catalytically Increased Prebiotic Peptide Formation: Ditryptophan, Dilysine, and Diserine

    NASA Astrophysics Data System (ADS)

    Plankensteiner, Kristof; Reiner, Hannes; Rode, Bernd M.

    2005-10-01

    “Mutual” amino acid catalysis of glycine on the formation of ditryptophan, dilysine, and diserine in the prebiotically relevant Salt-Induced Peptide Formation (SIPF) Reaction was investigated varying the starting concentration and chirality of the educt amino acid, and analyzing the increase of yield resulting from this catalytic effect. Our results show the possibility of an amplified diverse pool of peptides being available for chemical evolution of larger peptides and proteins using also these more complicated amino acids for the evolution of more complex functions in future biochemical cycles and thus for the emergence of life. Catalytic effects are especially high in the case of serine, the most basic amino acid of the three, but are also significant for the other two examples investigated in the present work. Besides that, especially for serine, but also in the case of tryptophan, differences in catalytic yield increase according to the chiral form of the amino acid used could be observed.

  14. Determination of the sequences of protein-derived peptides and peptide mixtures by mass spectrometry

    PubMed Central

    Morris, Howard R.; Williams, Dudley H.; Ambler, Richard P.

    1971-01-01

    Micro-quantities of protein-derived peptides have been converted into N-acetylated permethyl derivatives, and their sequences determined by low-resolution mass spectrometry without prior knowledge of their amino acid compositions or lengths. A new strategy is suggested for the mass spectrometric sequencing of oligopeptides or proteins, involving gel filtration of protein hydrolysates and subsequent sequence analysis of peptide mixtures. Finally, results are given that demonstrate for the first time the use of mass spectrometry for the analysis of a protein-derived peptide mixture, again without prior knowledge of the protein or components within the mixture. PMID:5158904

  15. Use of synthetic peptide libraries for the H-2Kd binding motif identification.

    PubMed

    Quesnel, A; Casrouge, A; Kourilsky, P; Abastado, J P; Trudelle, Y

    1995-01-01

    To identify Kd-binding peptides, an approach based on small peptide libraries has been developed. These peptide libraries correspond to all possible single-amino acid variants of a particular Kd-binding peptide, SYIPSAEYI, an analog of the Plasmodium berghei 252-260 antigenic peptide SYIPSAEKI. In the parent sequence, each position is replaced by all the genetically encoded amino acids (except cysteine). The multiple analog syntheses are performed either by the Divide Couple and Recombine method or by the Single Resin method and generate mixtures containing 19 peptides. The present report deals with the synthesis, the purification, the chemical characterization by amino acid analysis and electrospray mass spectrometry (ES-MS), and the application of such mixtures in binding tests with a soluble, functionally empty, single-chain H-2Kd molecule denoted SC-Kd. For each mixture, bound peptides were eluted and analyzed by sequencing. Since the binding tests were realized in noncompetitive conditions, our results show that a much broader set of peptides bind to Kd than expected from previous studies. This may be of practical importance when looking for low affinity peptides such as tumor peptides capable of eliciting protective immune response.

  16. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    PubMed

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  17. Catalytic Activities Of [GADV]-Peptides

    NASA Astrophysics Data System (ADS)

    Oba, Takae; Fukushima, Jun; Maruyama, Masako; Iwamoto, Ryoko; Ikehara, Kenji

    2005-10-01

    We have previously postulated a novel hypothesis for the origin of life, assuming that life on the earth originated from “[GADV]-protein world”, not from the “RNA world” (see Ikehara's review, 2002). The [GADV]-protein world is constituted from peptides and proteins with random sequences of four amino acids (glycine [G], alanine [A], aspartic acid [D] and valine [V]), which accumulated by pseudo-replication of the [GADV]-proteins. To obtain evidence for the hypothesis, we produced [GADV]-peptides by repeated heat-drying of the amino acids for 30 cycles ([GADV]-P30) and examined whether the peptides have some catalytic activities or not. From the results, it was found that the [GADV]-P30 can hydrolyze several kinds of chemical bonds in molecules, such as umbelliferyl-β-D-galactoside, glycine-p-nitroanilide and bovine serum albumin. This suggests that [GADV]-P30 could play an important role in the accumulation of [GADV]-proteins through pseudo-replication, leading to the emergence of life. We further show that [GADV]-octapaptides with random sequences, but containing no cyclic compounds as diketepiperazines, have catalytic activity, hydrolyzing peptide bonds in a natural protein, bovine serum albumin. The catalytic activity of the octapeptides was much higher than the [GADV]-P30 produced through repeated heat-drying treatments. These results also support the [GADV]-protein-world hypothesis of the origin of life (see Ikehara's review, 2002). Possible steps for the emergence of life on the primitive earth are presented.

  18. Ammonium sulfate and MALDI in-source decay: a winning combination for sequencing peptides

    PubMed Central

    Delvolve, Alice; Woods, Amina S.

    2009-01-01

    In previous papers we highlighted the role of ammonium sulfate in increasing peptide fragmentation by in source decay (ISD). The current work systematically investigated effects of MALDI extraction delay, peptide amino acid composition, matrix and ammonium sulfate concentration on peptides ISD fragmentation. The data confirmed that ammonium sulfate increased peptides signal to noise ratio as well as their in source fragmentation resulting in complete sequence coverage regardless of the amino acid composition. This method is easy, inexpensive and generates the peptides sequence instantly. PMID:19877641

  19. De novo design and structure-activity relationships of peptide emulsifiers and foaming agents.

    PubMed

    Enser, M; Bloomberg, G B; Brock, C; Clark, D C

    1990-04-01

    A series of eight amphipathic peptides (8, 11, 15, 2 x 18, 22, 26, 29 amino acids in length) were designed to investigate the effects of amino acid composition, peptide length and secondary structure on surface activity assessed as emulsification and foaming activity. The potential for alpha-helix formation at the hydrophobic/hydrophilic interface was maximized through the use of helix-forming amino acids, a relatively large hydrophobic surface of 200 degrees of arc and ion pairs between basic and acidic amino acids on the hydrophilic surface. Emulsification activity increased rapidly between 11 and 22 residues as alpha-helicity in aqueous solution increased. Despite their small size, the peptides produced exceptionally stable emulsions, compared with proteins. Foaming activity was enhanced by the presence of aromatic amino acids and the activity of the best peptide examined was superior to that of bovine serum albumin and beta-lactoglobulin.

  20. Information transfer from DNA to peptide nucleic acids by template-directed syntheses

    NASA Technical Reports Server (NTRS)

    Schmidt, J. G.; Christensen, L.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1997-01-01

    Peptide nucleic acids (PNAs) are analogs of nucleic acids in which the ribose-phosphate backbone is replaced by a backbone held together by amide bonds. PNAs are interesting as models of alternative genetic systems because they form potentially informational base paired helical structures. Oligocytidylates have been shown to act as templates for formation of longer oligomers of G from PNA G2 dimers. In this paper we show that information can be transferred from DNA to PNA. DNA C4T2C4 is an efficient template for synthesis of PNA G4A2G4 using G2 and A2 units as substrates. The corresponding synthesis of PNA G4C2G4 on DNA C4G2C4 is less efficient. Incorporation of PNA T2 into PNA products on DNA C4A2C4 is the least efficient of the three reactions. These results, obtained using PNA dimers as substrates, parallel those obtained using monomeric activated nucleotides.

  1. Post-translational amino acid racemization in the frog skin peptide deltorphin I in the secretion granules of cutaneous serous glands.

    PubMed

    Auvynet, Constance; Seddiki, Nabila; Dunia, Irene; Nicolas, Pierre; Amiche, Mohamed; Lacombe, Claire

    2006-01-01

    The dermal glands of the South American hylid frog Phyllomedusa bicolor synthesize and expel huge amounts of cationic, alpha-helical, 24- to 33-residue antimicrobial peptides, the dermaseptins B. These glands also produce a wide array of peptides that are similar to mammalian hormones and neuropeptides, including a heptapeptide opioid containing a D-amino acid, deltorphin I (Tyr-DAla-Phe-Asp-Val-Val-Gly NH2). Its biological activity is due to the racemization of L-Ala2 to D-Ala. The dermaseptins B and deltorphins are all derived from a single family of precursor polypeptides that have an N-terminal preprosequence that is remarkably well conserved, although the progenitor sequences giving rise to mature opioid or antimicrobial peptides are markedly different. Monoclonal and polyclonal antibodies were used to examine the cellular and ultrastructural distributions of deltorphin I and dermaseptin B in the serous glands by immunofluoresence confocal microscopy and immunogold-electron microscopy. Preprodeltorphin I and preprodermaseptins B are sorted into the regulated pathway of secretion, where they are processed to give the mature products. Deltorphin I, [l-Ala2]-deltorphin I and dermaseptin B are all stored together in secretion granules which accumulate in the cytoplasm of all serous glands. We conclude that the L- to D-amino acid isomerization of the deltorphin I occurs in the secretory granules as a post-translational event. Thus the specificity of isomerization depends on the presence of structural and/or conformational determinants in the peptide N-terminus surrounding the isomerization site.

  2. Mechanical characteristics of beta sheet-forming peptide hydrogels are dependent on peptide sequence, concentration and buffer composition

    PubMed Central

    Müller, Michael; König, Finja; Meyer, Nina; Gattlen, Jasmin; Pieles, Uwe; Peters, Kirsten; Kreikemeyer, Bernd; Mathes, Stephanie; Saxer, Sina

    2018-01-01

    Self-assembling peptide hydrogels can be modified regarding their biodegradability, their chemical and mechanical properties and their nanofibrillar structure. Thus, self-assembling peptide hydrogels might be suitable scaffolds for regenerative therapies and tissue engineering. Owing to the use of various peptide concentrations and buffer compositions, the self-assembling peptide hydrogels might be influenced regarding their mechanical characteristics. Therefore, the mechanical properties and stability of a set of self-assembling peptide hydrogels, consisting of 11 amino acids, made from four beta sheet self-assembling peptides in various peptide concentrations and buffer compositions were studied. The formed self-assembling peptide hydrogels exhibited stiffnesses ranging from 0.6 to 205 kPa. The hydrogel stiffness was mostly affected by peptide sequence followed by peptide concentration and buffer composition. All self-assembling peptide hydrogels examined provided a nanofibrillar network formation. A maximum self-assembling peptide hydrogel dissolution of 20% was observed for different buffer solutions after 7 days. The stability regarding enzymatic and bacterial digestion showed less degradation in comparison to the self-assembling peptide hydrogel dissolution rate in buffer. The tested set of self-assembling peptide hydrogels were able to form stable scaffolds and provided a broad spectrum of tissue-specific stiffnesses that are suitable for a regenerative therapy. PMID:29657766

  3. STP Research Results: An Annual Research Update on the First Transitions of B.C. Grade 12 Graduates into B.C. Public Post-Secondary Education

    ERIC Educational Resources Information Center

    Heslop, Joanne

    2017-01-01

    Every year, the Student Transitions Project (STP) collects post-secondary enrollment and credential completion data from the twenty-five British Columbia (B.C.) public post-secondary institutions and links this data to secondary enrollment information via encrypted personal education numbers (PENs). Now comprising fourteen full years of…

  4. Distinct position-specific sequence features of hexa-peptides that form amyloid-fibrils: application to discriminate between amyloid fibril and amorphous β-aggregate forming peptide sequences

    PubMed Central

    2013-01-01

    Background Comparison of short peptides which form amyloid-fibrils with their homologues that may form amorphous β-aggregates but not fibrils, can aid development of novel amyloid-containing nanomaterials with well defined morphologies and characteristics. The knowledge gained from the comparative analysis could also be applied towards identifying potential aggregation prone regions in proteins, which are important for biotechnology applications or have been implicated in neurodegenerative diseases. In this work we have systematically analyzed a set of 139 amyloid-fibril hexa-peptides along with a highly homologous set of 168 hexa-peptides that do not form amyloid fibrils for their position-wise as well as overall amino acid compositions and averages of 49 selected amino acid properties. Results Amyloid-fibril forming peptides show distinct preferences and avoidances for amino acid residues to occur at each of the six positions. As expected, the amyloid fibril peptides are also more hydrophobic than non-amyloid peptides. We have used the results of this analysis to develop statistical potential energy values for the 20 amino acid residues to occur at each of the six different positions in the hexa-peptides. The distribution of the potential energy values in 139 amyloid and 168 non-amyloid fibrils are distinct and the amyloid-fibril peptides tend to be more stable (lower total potential energy values) than non-amyloid peptides. The average frequency of occurrence of these peptides with lower than specific cutoff energies at different positions is 72% and 50%, respectively. The potential energy values were used to devise a statistical discriminator to distinguish between amyloid-fibril and non-amyloid peptides. Our method could identify the amyloid-fibril forming hexa-peptides to an accuracy of 89%. On the other hand, the accuracy of identifying non-amyloid peptides was only 54%. Further attempts were made to improve the prediction accuracy via machine learning

  5. Selective coupling of methotrexate to peptide hormone carriers through a gamma-carboxamide linkage of its glutamic acid moiety: benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate activation in salt coupling.

    PubMed Central

    Nagy, A; Szoke, B; Schally, A V

    1993-01-01

    A convenient synthetic method is described for the preparation of peptide-methotrexate (MTX) conjugates in which MTX is coupled selectively through the gamma-carboxyl group of its glutamic acid moiety to a free amino group in peptide analogs. The syntheses of a somatostatin analog-MTX conjugate (MTX-D-Phe-Cys-Tyr-D-Trp-Lys-Val-Cys-Thr-NH2) (AN-51) and two conjugates of analogs of luteinizing hormone-releasing hormone (LH-RH) with MTX [Glp-His-Trp-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-Gly-NH2] (AJ-04) and [Ac-Ser-Tyr-D-Lys(MTX)-Leu-Arg-Pro-NH-Et] AJ-51 are presented as examples. Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP reagent) was used in the synthesis for activation of 4-amino-4-deoxy-N10-methylpteroic acid, which reacted with the potassium salt of glutamic acid alpha-tert-butyl ester in dimethyl sulfoxide to form the suitably protected MTX derivative. This synthesis provides an example of the high suitability of BOP reagent for the salt-coupling method. The selectively protected MTX derivative was then coupled to the different peptide carriers and deprotected under relatively mild conditions by trifluoroacetic acid. The conjugates of MTX with hormonal analogs are suitable for targeting to various tumors that possess receptors for the peptide moieties. PMID:8101004

  6. Accumulation of deaminated peptides in anoxic sediments of Santa Barbara Basin

    NASA Astrophysics Data System (ADS)

    Abdulla, Hussain A.; Burdige, David J.; Komada, Tomoko

    2018-02-01

    Proteins represent the most abundant class of biomolecules in marine sinking particles and microbial biomass, yet their cycling in marine sediments is not fully understood. To investigate whether some portion of hydrolyzed proteins escapes complete remineralization and accumulate in the pore waters, we analyzed dissolved organic matter from the anoxic sediments of Santa Barbara Basin, California, by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FTICR-MS). The results showed an increase in the molecular diversity and abundance of dissolved organic nitrogen (DON) formulas with depth. A comparison of the detected DON formulas to a database of small peptides (2-4 amino acid sequences) returned 119 matches, and these formulas were most abundant near the sediment surface. When we compared our detected formulas to all possible structures that would result from deamination of peptides in the database, we found 680 formula matches. However, these molecular formulas can represent hundreds of different structural isomers (in the present case as many as 3257 different deaminated peptide structures), which cannot be distinguished by the FTICR-MS settings that were used. Analysis of amino acid sequences suggests that these deaminated peptides may be the products of selective degradation of source proteins in marine sediments. We hypothesize that these deaminated peptides accumulate in the pore waters due to extracellular proteinases being inhibited from completely hydrolyzing specific peptides to free amino acids. We suggest that anaerobic microbes deaminate peptides largely to produce H2, which is ultimately used as a reducing agent by other sediment microbes (e.g. CO2 reduction by methanogens). Simple calculations suggest that deaminated peptides may represent ∼25-45% of DOC accumulating in these sediment pore waters. Unlike rapid remineralization of free amino acids, peptide deamination leaves behind the peptide carbon skeleton. Molecular structures of these

  7. Peptide library synthesis on spectrally encoded beads for multiplexed protein/peptide bioassays

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy Q.; Brower, Kara; Harink, Björn; Baxter, Brian; Thorn, Kurt S.; Fordyce, Polly M.

    2017-02-01

    Protein-peptide interactions are essential for cellular responses. Despite their importance, these interactions remain largely uncharacterized due to experimental challenges associated with their measurement. Current techniques (e.g. surface plasmon resonance, fluorescence polarization, and isothermal calorimetry) either require large amounts of purified material or direct fluorescent labeling, making high-throughput measurements laborious and expensive. In this report, we present a new technology for measuring antibody-peptide interactions in vitro that leverages spectrally encoded beads for biological multiplexing. Specific peptide sequences are synthesized directly on encoded beads with a 1:1 relationship between peptide sequence and embedded code, thereby making it possible to track many peptide sequences throughout the course of an experiment within a single small volume. We demonstrate the potential of these bead-bound peptide libraries by: (1) creating a set of 46 peptides composed of 3 commonly used epitope tags (myc, FLAG, and HA) and single amino-acid scanning mutants; (2) incubating with a mixture of fluorescently-labeled antimyc, anti-FLAG, and anti-HA antibodies; and (3) imaging these bead-bound libraries to simultaneously identify the embedded spectral code (and thus the sequence of the associated peptide) and quantify the amount of each antibody bound. To our knowledge, these data demonstrate the first customized peptide library synthesized directly on spectrally encoded beads. While the implementation of the technology provided here is a high-affinity antibody/protein interaction with a small code space, we believe this platform can be broadly applicable to any range of peptide screening applications, with the capability to multiplex into libraries of hundreds to thousands of peptides in a single assay.

  8. Optimization of Reversed-Phase Peptide Liquid Chromatography Ultraviolet Mass Spectrometry Analyses Using an Automated Blending Methodology

    PubMed Central

    Chakraborty, Asish B.; Berger, Scott J.

    2005-01-01

    The balance between chromatographic performance and mass spectrometric response has been evaluated using an automated series of experiments where separations are produced by the real-time automated blending of water with organic and acidic modifiers. In this work, the concentration effects of two acidic modifiers (formic acid and trifluoroacetic acid) were studied on the separation selectivity, ultraviolet, and mass spectrometry detector response, using a complex peptide mixture. Peptide retention selectivity differences were apparent between the two modifiers, and under the conditions studied, trifluoroacetic acid produced slightly narrower (more concentrated) peaks, but significantly higher electrospray mass spectrometry suppression. Trifluoroacetic acid suppression of electrospray signal and influence on peptide retention and selectivity was dominant when mixtures of the two modifiers were analyzed. Our experimental results indicate that in analyses where the analyzed components are roughly equimolar (e.g., a peptide map of a recombinant protein), the selectivity of peptide separations can be optimized by choice and concentration of acidic modifier, without compromising the ability to obtain effective sequence coverage of a protein. In some cases, these selectivity differences were explored further, and a rational basis for differentiating acidic modifier effects from the underlying peptide sequences is described. PMID:16522853

  9. Mammaglobin peptide as a novel biomarker for breast cancer detection

    PubMed Central

    Galvis-Jiménez, Julie M.; Curtidor, Hernando; Patarroyo, Manuel A.; Monterrey, Pedro; Ramírez-Clavijo, Sandra R.

    2013-01-01

    Among the different types of tests used for cancer diagnosis, molecular tests have been increrasingly incorporated because of their ability to detect either expression or functional changes in the molecules associated with the disease. Mammaglobin is a protein found in mammary tissue and can be detected in serum. This protein has been proposed as a biomarker to diagnose breast cancer, given that patients exhibit an increased amount of the protein in serum and tumor tissue, in comparison to healthy individuals. The ELISA test was used in the present study to detect mammaglobin in blood samples from 51 breast cancer patients and 51 control individuals. Antibodies against mamaglobin were generated in rabbits by using the following synthetic peptides: A (amino acids 13 to 21), B (amino acids 31 to 39), C (amino acids 56 to 64) and a D peptide, corresponding to the protein isoform without three amino acids (59, 60 and 61 amino acids) from peptide C. All peptides were immunogenic and allowed generation of antibodies that were able to discriminate patients from controls. The best results were obtained for antiserum B, achieving the best sensitivity (86.3%) and specificity (96%). PMID:23358476

  10. Lipid-peptide-polymer conjugates and nanoparticles thereof

    DOEpatents

    Xu, Ting; Dong, He; Shu, Jessica

    2015-06-02

    The present invention provides a conjugate having a peptide with from about 10 to about 100 amino acids, wherein the peptide adopts a helical structure. The conjugate also includes a first polymer covalently linked to the peptide, and a hydrophobic moiety covalently linked to the N-terminus of the peptide, wherein the hydrophobic moiety comprises a second polymer or a lipid moiety. The present invention also provides helix bundles form by self-assembling the conjugates, and particles formed by self-assembling the helix bundles. Methods of preparing the helix bundles and particles are also provided.

  11. Determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides by gas–liquid chromatography

    PubMed Central

    Hediger, Hedy; Stevens, Richard L.; Brandenberger, Hans; Schmid, Karl

    1973-01-01

    A new procedure for the qualitative and quantitative determination of asparagine, glutamine and pyrrolidonecarboxylic acid in total enzymic hydrolysates of peptides and glycopeptides based on g.l.c. has been developed. Under the conditions of esterification and trifluoroacetylation N-trifluoroacetylaspartic acid mono-n-butyl ester was formed from asparagine and N-trifluoroacetylglutamic acid mono-n-butyl ester from both glutamine and pyrrolidonecarboxylic acid. To distinguish between the latter two compounds, the esterification was carried out at room temperature yielding 30% of esterified pyrrolidonecarboxylic acid but less than 1% of esterified glutamine. In extending the g.l.c. of amino acids, the previously unknown positions in the g.l.c. elution pattern of the following amino acids could also be reproducibly determined: carboxymethylcysteine, homoserine, hydroxylysine and ∈-methyl-lysine. Further, certain glycopeptides were investigated and the artifacts due to their carbohydrate moieties were determined. PMID:4733240

  12. Cloning of precursors for two MIH/VIH-related peptides in the prawn, Macrobrachium rosenbergii.

    PubMed

    Yang, W J; Rao, K R

    2001-11-30

    Two cDNA clones (634 and 1366 bp) encoding MIH/VIH (molt-inhibiting hormone/vitellogenesis-inhibiting hormone)-related peptides were isolated and sequenced from a Macrobrachium rosenbergii eyestalk ganglia cDNA library. The clones contain a 360 and 339 bp open-reading frame, and their conceptually translated peptides consist of a 41 and 34 amino acid signal peptide, respectively, and a 78 amino acid residue mature peptide hormone. The amino acid sequences of the peptides exhibit higher identities with other known MIHs and VIH (44-69%) than with CHHs (28-33%). This is the first report describing the cloning and sequencing of two MIH/VIH-related peptides in a single crustacean species. Transcription of these mRNAs was detected in the eyestalk ganglia, but not in the thoracic ganglia, hepatopancreas, gut, gill, heart, or muscle.

  13. Evolutionary Importance of the Intramolecular Pathways of Hydrolysis of Phosphate Ester Mixed Anhydrides with Amino Acids and Peptides

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Beaufils, Damien; Rossi, Jean-Christophe; Pascal, Robert

    2014-12-01

    Aminoacyl adenylates (aa-AMPs) constitute essential intermediates of protein biosynthesis. Their polymerization in aqueous solution has often been claimed as a potential route to abiotic peptides in spite of a highly efficient CO2-promoted pathway of hydrolysis. Here we investigate the efficiency and relevance of this frequently overlooked pathway from model amino acid phosphate mixed anhydrides including aa-AMPs. Its predominance was demonstrated at CO2 concentrations matching that of physiological fluids or that of the present-day ocean, making a direct polymerization pathway unlikely. By contrast, the occurrence of the CO2-promoted pathway was observed to increase the efficiency of peptide bond formation owing to the high reactivity of the N-carboxyanhydride (NCA) intermediate. Even considering CO2 concentrations in early Earth liquid environments equivalent to present levels, mixed anhydrides would have polymerized predominantly through NCAs. The issue of a potential involvement of NCAs as biochemical metabolites could even be raised. The formation of peptide-phosphate mixed anhydrides from 5(4H)-oxazolones (transiently formed through prebiotically relevant peptide activation pathways) was also observed as well as the occurrence of the reverse cyclization process in the reactions of these mixed anhydrides. These processes constitute the core of a reaction network that could potentially have evolved towards the emergence of translation.

  14. Structural Characterization of Monomers and Oligomers of D-Amino Acid-Containing Peptides Using T-Wave Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Pang, Xueqin; Jia, Chenxi; Chen, Zhengwei; Li, Lingjun

    2017-01-01

    The D-residues are crucial to biological function of D-amino acid containing peptides (DAACPs). Previous ion mobility mass spectrometry (IM-MS) studies revealing oligomerization patterns of amyloid cascade demonstrated conversion from native soluble unstructured assembly to fibril ß-sheet oligomers, which has been implicated in amyloid diseases, such as Alzheimer's disease and type 2 diabetes. Although neuropeptides are typically present at very low concentrations in circulation, their local concentrations could be much higher in large dense core vesicles, forming dimers or oligomers. We studied the oligomerization of protonated and metal-adducted achatin I and dermorphin peptide isomers with IM-MS. Our results suggested that dimerization, oligomerization, and metal adduction augment the structural differences between D/L peptide isomers compared to protonated monomers. Dimers and oligomers enhanced the structural differences between D/L peptide isomers in both aqueous and organic solvent system. Furthermore, some oligomer forms were only observed for either D- or L-isomers, indicating the importance of chiral center in oligomerization process. The oligomerization patterns of D/L isomers appear to be similar. Potassium adducts were detected to enlarge the structural differences between D/L isomers.

  15. Multifunctional hybrid networks based on self assembling peptide sequences

    NASA Astrophysics Data System (ADS)

    Sathaye, Sameer

    The overall aim of this dissertation is to achieve a comprehensive correlation between the molecular level changes in primary amino acid sequences of amphiphilic beta-hairpin peptides and their consequent solution-assembly properties and bulk network hydrogel behavior. This has been accomplished using two broad approaches. In the first approach, amino acid substitutions were made to peptide sequence MAX1 such that the hydrophobic surfaces of the folded beta-hairpins from the peptides demonstrate shape specificity in hydrophobic interactions with other beta-hairpins during the assembly process, thereby causing changes to the peptide nanostructure and bulk rheological properties of hydrogels formed from the peptides. Steric lock and key complementary hydrophobic interactions were designed to occur between two beta-hairpin molecules of a single molecule, LNK1 during beta-sheet fibrillar assembly of LNK1. Experimental results from circular dichroism, transmission electron microscopy and oscillatory rheology collectively indicate that the molecular design of the LNK1 peptide can be assigned the cause of the drastically different behavior of the networks relative to MAX1. The results indicate elimination or significant reduction of fibrillar branching due to steric complementarity in LNK1 that does not exist in MAX1, thus supporting the original hypothesis. As an extension of the designed steric lock and key complementarity between two beta-hairpin molecules of the same peptide molecule. LNK1, three new pairs of peptide molecules LP1-KP1, LP2-KP2 and LP3-KP3 that resemble complementary 'wedge' and 'trough' shapes when folded into beta-hairpins were designed and studied. All six peptides individually and when blended with their corresponding shape complement formed fibrillar nanostructures with non-uniform thickness values. Loose packing in the assembled structures was observed in all the new peptides as compared to the uniform tight packing in MAX1 by SANS analysis. This

  16. What peptides these deltorphins be.

    PubMed

    Lazarus, L H; Bryant, S D; Cooper, P S; Salvadori, S

    1999-02-01

    The deltorphins are a class of highly selective delta-opioid heptapeptides from the skin of the Amazonian frogs Phyllomedusa sauvagei and P. bicolor. The first of these fascinating peptides came to light in 1987 by cloning of the cDNA of from frog skins, while the other members of this family were identified either by cDNA or isolation of the peptides. The distinctive feature of deltorphins is the presence of a naturally occurring D-enantiomer at the second position in their common N-terminal sequence, Tyr-D-Xaa-Phe, comparable to dermorphin, which is the prototype of a group of mu-selective opioids from the same source. The D-amino acid and the anionic residues, either Glu or Asp, as well as their unique amino acid compositions are responsible for the remarkable biostability, high delta-receptor affinity, bioactivity and peptide conformation. This review summarizes a decade of research from many laboratories that defined which residues and substituents in the deltorphins interact with the delta-receptor and characterized pharmacological and physiological activities in vitro and in vivo. It begins with a historical description of the topic and presents general schema for the synthesis of peptide analogues of deltorphins A, B and C as a means to document the methods employed in producing a myriad of analogues. Structure activity studies of the peptides and their pharmacological activities in vitro are detailed in abundantly tabulated data. A brief compendium of the current level of knowledge of the delta-receptor assists the reader to appreciate the rationale for the design of these analogues. Discussion of the conformation of these peptides addresses how structure leads to further hypotheses regarding ligand receptor interaction. The review ends with a broad discussion of the potential applications of these peptides in clinical and therapeutic settings.

  17. Human proinsulin C-peptide from a precursor overexpressed in Pichia pastoris.

    PubMed

    Huang, Yang-Bin; Li, Jiang; Gao, Xin; Sun, Jiu-Ru; Lu, Yi; Feng, Tao; Fei, Jian; Cui, Da-Fu; Xia, Qi-Chang; Ren, Jun; Zhang, You-Shang

    2006-08-01

    In this article we report the production of human proinsulin C-peptide with 31 amino acid residues from a precursor overexpressed in Pichia pastoris. A C-peptide precursor expression plasmid containing nine C-peptide genes in tandem was constructed and used to transform P. pastoris. Transformants with a high copy number of the C-peptide precursor gene integrated into the chromosome of P. pastoris were selected. In high-density fermentation in a 300 liter fermentor using a simple culture medium composed mainly of salt and methanol, the C-peptide precursor was overexpressed to a level of 2.28 g per liter. A simple procedure was established to purify the expression product from the culture medium. The purified C-peptide precursor was converted into C-peptide by trypsin and carboxypeptidase B joint digestion. The yield of C-peptide with a purity of 96% was 730 mg per liter of culture. The purified C-peptide was characterized by mass spectrometry, N- and C-terminal amino acid sequencing, and sodium dodecylsulfate-polyacrylamide gel electrophoresis.

  18. In Vitro Effect of Malachite Green on Candida albicans Involves Multiple Pathways and Transcriptional Regulators UPC2 and STP2

    PubMed Central

    Dhamgaye, Sanjiveeni; Devaux, Frederic; Manoharlal, Raman; Vandeputte, Patrick; Shah, Abdul Haseeb; Singh, Ashutosh; Blugeon, Corinne; Sanglard, Dominique

    2012-01-01

    In this study, we show that a chemical dye, malachite green (MG), which is commonly used in the fish industry as an antifungal, antiparasitic, and antibacterial agent, could effectively kill Candida albicans and non-C. albicans species. We have demonstrated that Candida cells are susceptible to MG at a very low concentration (MIC that reduces growth by 50% [MIC50], 100 ng ml−1) and that the effect of MG is independent of known antifungal targets, such as ergosterol metabolism and major drug efflux pump proteins. Transcriptional profiling in response to MG treatment of C. albicans cells revealed that of a total of 207 responsive genes, 167 genes involved in oxidative stress, virulence, carbohydrate metabolism, heat shock, amino acid metabolism, etc., were upregulated, while 37 genes involved in iron acquisition, filamentous growth, mitochondrial respiration, etc., were downregulated. We confirmed experimentally that Candida cells exposed to MG resort to a fermentative mode of metabolism, perhaps due to defective respiration. In addition, we showed that MG triggers depletion of intracellular iron pools and enhances reactive oxygen species (ROS) levels. These effects could be reversed by the addition of iron or antioxidants, respectively. We provided evidence that the antifungal effect of MG is exerted through the transcription regulators UPC2 (regulating ergosterol biosynthesis and azole resistance) and STP2 (regulating amino acid permease genes). Taken together, our transcriptome, genetic, and biochemical results allowed us to decipher the multiple mechanisms by which MG exerts its anti-Candida effects, leading to a metabolic shift toward fermentation, increased generation of ROS, labile iron deprivation, and cell necrosis. PMID:22006003

  19. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes

    PubMed Central

    Gaylord, Brent S.; Heeger, Alan J.; Bazan, Guillermo C.

    2002-01-01

    The light-harvesting properties of cationic conjugated polymers are used to sensitize the emission of a dye on a specific peptide nucleic acid (PNA) sequence for the purpose of homogeneous, “real-time” DNA detection. Signal transduction is controlled by hybridization of the neutral PNA probe and the negative DNA target. Electrostatic interactions bring the hybrid complex and cationic polymer within distances required for Förster energy transfer. Conjugated polymer excitation provides fluorescein emission >25 times higher than that obtained by exciting the dye, allowing detection of target DNA at concentrations of 10 pM with a standard fluorometer. A simple and highly sensitive assay with optical amplification that uses the improved hybridization behavior of PNA/DNA complexes is thus demonstrated. PMID:12167673

  20. A non-canonical peptide synthetase adenylates 3-methyl-2-oxovaleric acid for auriculamide biosynthesis.

    PubMed

    Braga, Daniel; Hoffmeister, Dirk; Nett, Markus

    2016-01-01

    Auriculamide is the first natural product known from the predatory bacterium Herpetosiphon aurantiacus. It is composed of three unusual building blocks, including the non-proteinogenic amino acid 3-chloro-L-tyrosine, the α-hydroxy acid L-isoleucic acid, and a methylmalonyl-CoA-derived ethane unit. A candidate genetic locus for auriculamide biosynthesis was identified and encodes four enzymes. Among them, the non-canonical 199 kDa four-domain nonribosomal peptide synthetase, AulA, is extraordinary in that it features two consecutive adenylation domains. Here, we describe the functional characterization of the recombinantly produced AulA. The observed activation of 3-methyl-2-oxovaleric acid by the enzyme supports the hypothesis that it participates in the biosynthesis of auriculamide. An artificially truncated version of AulA that lacks the first adenylation domain activated this substrate like the full-length enzyme which shows that the first adenylation domain is dispensable. Additionally, we provide evidence that the enzyme tolerates structural variation of the substrate. α-Carbon substituents significantly affected the substrate turnover. While all tested aliphatic α-keto acids were accepted by the enzyme and minor differences in chain size and branches did not interfere with the enzymatic activity, molecules with methylene α-carbons led to low turnover. Such enzymatic plasticity is an important attribute to help in the perpetual search for novel molecules and to access a greater structural diversity by mutasynthesis.

  1. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB.

    PubMed

    Garton, Michael; Nim, Satra; Stone, Tracy A; Wang, Kyle Ethan; Deber, Charles M; Kim, Philip M

    2018-02-13

    Biologics are a rapidly growing class of therapeutics with many advantages over traditional small molecule drugs. A major obstacle to their development is that proteins and peptides are easily destroyed by proteases and, thus, typically have prohibitively short half-lives in human gut, plasma, and cells. One of the most effective ways to prevent degradation is to engineer analogs from dextrorotary (D)-amino acids, with up to 10 5 -fold improvements in potency reported. We here propose a general peptide-engineering platform that overcomes limitations of previous methods. By creating a mirror image of every structure in the Protein Data Bank (PDB), we generate a database of ∼2.8 million D-peptides. To obtain a D-analog of a given peptide, we search the (D)-PDB for similar configurations of its critical-"hotspot"-residues. As a proof of concept, we apply our method to two peptides that are Food and Drug Administration approved as therapeutics for diabetes and osteoporosis, respectively. We obtain D-analogs that activate the GLP1 and PTH1 receptors with the same efficacy as their natural counterparts and show greatly increased half-life. Copyright © 2018 the Author(s). Published by PNAS.

  2. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity.

    PubMed

    Joseph, Christine G; Wilczynski, Andrzej; Holder, Jerry R; Xiang, Zhimin; Bauzo, Rayna M; Scott, Joseph W; Haskell-Luevano, Carrie

    2003-12-01

    Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.

  3. Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.

    PubMed

    Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur

    2011-06-01

    Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.

  4. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids

    PubMed Central

    Danhof, Heather A.; Vylkova, Slavena; Vesely, Elisa M.; Ford, Amy E.; Gonzalez-Garay, Manuel

    2016-01-01

    ABSTRACT The opportunistic fungal pathogen Candida albicans thrives within diverse niches in the mammalian host. Among the adaptations that underlie this fitness is an ability to utilize a wide array of nutrients, especially sources of carbon that are disfavored by many other fungi; this contributes to its ability to survive interactions with the phagocytes that serve as key barriers against disseminated infections. We have reported that C. albicans generates ammonia as a byproduct of amino acid catabolism to neutralize the acidic phagolysosome and promote hyphal morphogenesis in a manner dependent on the Stp2 transcription factor. Here, we report that this species rapidly neutralizes acidic environments when utilizing carboxylic acids like pyruvate, α-ketoglutarate (αKG), or lactate as the primary carbon source. Unlike in cells growing in amino acid-rich medium, this does not result in ammonia release, does not induce hyphal differentiation, and is genetically distinct. While transcript profiling revealed significant similarities in gene expression in cells grown on either carboxylic or amino acids, genetic screens for mutants that fail to neutralize αKG medium identified a nonoverlapping set of genes, including CWT1, encoding a transcription factor responsive to cell wall and nitrosative stresses. Strains lacking CWT1 exhibit retarded αKG-mediated neutralization in vitro, exist in a more acidic phagolysosome, and are more susceptible to macrophage killing, while double cwt1Δ stp2Δ mutants are more impaired than either single mutant. Together, our observations indicate that C. albicans has evolved multiple ways to modulate the pH of host-relevant environments to promote its fitness as a pathogen. PMID:27935835

  5. Antioxidative Peptides Derived from Enzyme Hydrolysis of Bone Collagen after Microwave Assisted Acid Pre-Treatment and Nitrogen Protection

    PubMed Central

    Lin, Yun-Jian; Le, Guo-Wei; Wang, Jie-Yun; Li, Ya-Xin; Shi, Yong-Hui; Sun, Jin

    2010-01-01

    This study focused on the preparation method of antioxidant peptides by enzymatic hydrolysis of bone collagen after microwave assisted acid pre-treatment and nitrogen protection. Phosphoric acid showed the highest ability of hydrolysis among the four other acids tested (hydrochloric acid, sulfuric acid and/or citric acid). The highest degree of hydrolysis (DH) was 9.5% using 4 mol/L phosphoric acid with a ratio of 1:6 under a microwave intensity of 510 W for 240 s. Neutral proteinase gave higher DH among the four protease tested (Acid protease, neutral protease, Alcalase and papain), with an optimum condition of: (1) ratio of enzyme and substrate, 4760 U/g; (2) concentration of substrate, 4%; (3) reaction temperature, 55 °C and (4) pH 7.0. At 4 h, DH increased significantly (P < 0.01) under nitrogen protection compared with normal microwave assisted acid pre-treatment hydrolysis conditions. The antioxidant ability of the hydrolysate increased and reached its maximum value at 3 h; however DH decreased dramatically after 3 h. Microwave assisted acid pre-treatment and nitrogen protection could be a quick preparatory method for hydrolyzing bone collagen. PMID:21151439

  6. Photo-degradation of clofibric acid by ultraviolet light irradiation at 185 nm.

    PubMed

    Li, Wenzhen; Lu, Shuguang; Chen, Nuo; Gu, Xiaogang; Qiu, Zhaofu; Fan, Ji; Lin, Kuangfei

    2009-01-01

    As a metabolite of lipid regulators, clofibric acid (CA) was investigated in this study for its ultraviolet (UV) degradation at monochromatic wavelength of 185 nm using Milli-Q water and sewage treatment plant (STP) effluent. The effects of CA initial concentration, solution pH, humic acid (HA), nitrate and bicarbonate anions on CA degradation performances were evaluated. All CA degradation patterns well fitted the pseudo-first-order kinetic model. The results showed that OH generated from water photolysis by UV185 irradiation was involved, resulting in indirect CA photolysis but contributed less to the whole CA removal when compared to the main direct photolysis process. Acid condition favored slightly to CA degradation and other constituents in solution, such as HA (5.0-100.0 mg L(-1)), nitrate and bicarbonate anions (1.0x10(-3) mol L(-1) and 0.1 mol L(-1)), had negative effects on CA degradation. When using real STP effluent CA degradation could reach 97.4% (without filtration) and 99.3% (with filtration) after 1 hr irradiation, showing its potential mean in pharmaceuticals removal in UV disinfection unit. Mineralization tests showed that rapid chloride ion release happened, resulting in no chlorinated intermediates accumulation, and those non-chlorinated intermediate products could further be nearly completely degraded to CO2 and H2O after 6 hrs.

  7. Near-UV Photodissociation of Tryptic Peptide Cation Radicals. Scope and Effects of Amino Acid Residues and Radical Sites

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Tureček, František

    2017-07-01

    Peptide cation-radical fragment ions of the z-type, [●AXAR+], [●AXAK+], and [●XAR+], where X = A, C, D, E, F, G, H, K, L, M, N, P, Y, and W, were generated by electron transfer dissociation of peptide dications and investigated by MS3-near-ultraviolet photodissociation (UVPD) at 355 nm. Laser-pulse dependence measurements indicated that the ion populations were homogeneous for most X residues except phenylalanine. UVPD resulted in dissociations of backbone CO-NH bonds that were accompanied by hydrogen atom transfer, producing fragment ions of the [yn]+ type. Compared with collision-induced dissociation, UVPD yielded less side-chain dissociations even for residues that are sensitive to radical-induced side-chain bond cleavages. The backbone dissociations are triggered by transitions to second ( B) excited electronic states in the peptide ion R-CH●-CONH- chromophores that are resonant with the 355-nm photon energy. Electron promotion increases the polarity of the B excited states, R-CH+-C●(O-)NH-, and steers the reaction to proceed by transfer of protons from proximate acidic Cα and amide nitrogen positions.

  8. Single Molecule Spectroscopy of Amino Acids and Peptides by Recognition Tunneling

    PubMed Central

    Zhao, Yanan; Ashcroft, Brian; Zhang, Peiming; Liu, Hao; Sen, Suman; Song, Weisi; Im, JongOne; Gyarfas, Brett; Manna, Saikat; Biswas, Sovan; Borges, Chad; Lindsay, Stuart

    2014-01-01

    The human proteome has millions of protein variants due to alternative RNA splicing and post-translational modifications, and variants that are related to diseases are frequently present in minute concentrations. For DNA and RNA, low concentrations can be amplified using the polymerase chain reaction, but there is no such reaction for proteins. Therefore, the development of single molecule protein sequencing is a critical step in the search for protein biomarkers. Here we show that single amino acids can be identified by trapping the molecules between two electrodes that are coated with a layer of recognition molecules and measuring the electron tunneling current across the junction. A given molecule can bind in more than one way in the junction, and we therefore use a machine-learning algorithm to distinguish between the sets of electronic ‘fingerprints’ associated with each binding motif. With this recognition tunneling technique, we are able to identify D, L enantiomers, a methylated amino acid, isobaric isomers, and short peptides. The results suggest that direct electronic sequencing of single proteins could be possible by sequentially measuring the products of processive exopeptidase digestion, or by using a molecular motor to pull proteins through a tunnel junction integrated with a nanopore. PMID:24705512

  9. Mutagenesis of NosM Leader Peptide Reveals Important Elements in Nosiheptide Biosynthesis

    PubMed Central

    Jin, Liang; Wu, Xuri; Xue, Yanjiu; Jin, Yue; Wang, Shuzhen

    2016-01-01

    ABSTRACT Nosiheptide, a typical member of the ribosomally synthesized and posttranslationally modified peptides (RiPPs), exhibits potent activity against multidrug-resistant Gram-positive bacterial pathogens. The precursor peptide of nosiheptide (NosM) is comprised of a leader peptide with 37 amino acids and a core peptide containing 13 amino acids. To pinpoint elements in the leader peptide that are essential for nosiheptide biosynthesis, a collection of mutants with unique sequence features, including N- and C-terminal motifs, peptide length, and specific sites in the leader peptide, was generated by mutagenesis in vivo. The effects of various mutants on nosiheptide biosynthesis were evaluated. In addition to the necessity of a conserved motif LEIS box, native length and the N-terminal 12 amino acid residues were indispensable, and single-site substitutions of these 12 amino acid residues resulted in changes ranging from a greater-than-5-fold decrease to a 2-fold increase of nosiheptide production, depending on the sites and substituted residues. Moreover, although the C-terminal motif is not conservative, significant effects of this portion on nosiheptide production were also evident. Taken together, the present results further highlight the importance of the leader peptide in nosiheptide biosynthesis, and provide new insights into the diversity and specificity of leader peptides in the biosynthesis of various RiPPs. IMPORTANCE As a representative thiopeptide, nosiheptide exhibits excellent antibacterial activity. Although the biosynthetic gene cluster and several modification steps have been revealed, the presence and roles of the leader peptide within the precursor peptide of the nosiheptide gene cluster remain elusive. Thus, identification of specific elements in the leader peptide can significantly facilitate the genetic manipulation of the gene cluster for increasing nosiheptide production or generating diverse analogues. Given the complexity of the

  10. Dissociation Behavior of a TEMPO-Active Ester Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS) in Negative ESI-MS.

    PubMed

    Hage, Christoph; Ihling, Christian H; Götze, Michael; Schäfer, Mathias; Sinz, Andrea

    2017-01-01

    We have synthesized a homobifunctional amine-reactive cross-linking reagent, containing a TEMPO (2,2,6,6-tetramethylpiperidine-1-oxy) and a benzyl group (Bz), termed TEMPO-Bz-linker, to derive three-dimensional structural information of proteins. The aim for designing this novel cross-linker was to facilitate the mass spectrometric analysis of cross-linked products by free radical initiated peptide sequencing (FRIPS). In an initial study, we had investigated the fragmentation behavior of TEMPO-Bz-derivatized peptides upon collision activation in (+)-electrospray ionization collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) experiments. In addition to the homolytic NO-C bond cleavage FRIPS pathway delivering the desired odd-electron product ions, an alternative heterolytic NO-C bond cleavage, resulting in even-electron product ions mechanism was found to be relevant. The latter fragmentation route clearly depends on the protonation of the TEMPO-Bz-moiety itself, which motivated us to conduct (-)-ESI-MS, CID-MS/MS, and MS 3 experiments of TEMPO-Bz-cross-linked peptides to further clarify the fragmentation behavior of TEMPO-Bz-peptide molecular ions. We show that the TEMPO-Bz-linker is highly beneficial for conducting FRIPS in negative ionization mode as the desired homolytic cleavage of the NO-C bond is the major fragmentation pathway. Based on characteristic fragments, the isomeric amino acids leucine and isoleucine could be discriminated. Interestingly, we observed pronounced amino acid side chain losses in cross-linked peptides if the cross-linked peptides contain a high number of acidic amino acids. Graphical Abstract ᅟ.

  11. Sungsanpin, a lasso peptide from a deep-sea streptomycete.

    PubMed

    Um, Soohyun; Kim, Young-Joo; Kwon, Hyuknam; Wen, He; Kim, Seong-Hwan; Kwon, Hak Cheol; Park, Sunghyouk; Shin, Jongheon; Oh, Dong-Chan

    2013-05-24

    Sungsanpin (1), a new 15-amino-acid peptide, was discovered from a Streptomyces species isolated from deep-sea sediment collected off Jeju Island, Korea. The planar structure of 1 was determined by 1D and 2D NMR spectroscopy, mass spectrometry, and UV spectroscopy. The absolute configurations of the stereocenters in this compound were assigned by derivatizations of the hydrolysate of 1 with Marfey's reagents and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate, followed by LC-MS analysis. Careful analysis of the ROESY NMR spectrum and three-dimensional structure calculations revealed that sungsanpin possesses the features of a lasso peptide: eight amino acids (-Gly(1)-Phe-Gly-Ser-Lys-Pro-Ile-Asp(8)-) that form a cyclic peptide and seven amino acids (-Ser(9)-Phe-Gly-Leu-Ser-Trp-Leu(15)) that form a tail that loops through the ring. Sungsanpin is thus the first example of a lasso peptide isolated from a marine-derived microorganism. Sungsanpin displayed inhibitory activity in a cell invasion assay with the human lung cancer cell line A549.

  12. A Novel Soluble Peptide with pH-Responsive Membrane Insertion.

    PubMed

    Nguyen, Vanessa P; Alves, Daiane S; Scott, Haden L; Davis, Forrest L; Barrera, Francisco N

    2015-11-03

    Several diseases, such as cancer, are characterized by acidification of the extracellular environment. Acidosis can be employed as a target to specifically direct therapies to the diseased tissue. We have used first principles to design an acidity-triggered rational membrane (ATRAM) peptide with high solubility in solution that is able to interact with lipid membranes in a pH-dependent fashion. Biophysical studies show that the ATRAM peptide binds to the surface of lipid membranes at pH 8.0. However, acidification leads to the peptide inserting into the lipid bilayer as a transmembrane α-helix. The insertion of ATRAM into membranes occurs at a moderately acidic pH (with a pK of 6.5), similar to the extracellular pH found in solid tumors. Studies with human cell lines showed a highly efficient pH-dependent membrane targeting, without causing toxicity. Here we show that it is possible to rationally design a soluble peptide that selectively targets cell membranes in acidic environments.

  13. The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate.

    PubMed

    O'Connor, Stephen; Szwej, Emilia; Nikodinovic-Runic, Jasmina; O'Connor, Aisling; Byrne, Annette T; Devocelle, Marc; O'Donovan, Norma; Gallagher, William M; Babu, Ramesh; Kenny, Shane T; Zinn, Manfred; Zulian, Qun Ren; O'Connor, Kevin E

    2013-04-01

    The biodegradable polymer medium chain length polyhydroxyalkanoate (mclPHA), produced by Pseudomonas putida CA-3, was depolymerised and the predominant monomer (R)-3-hydroxydecanoic acid (R10) purified. R10 was conjugated to a d-peptide DP18 and its derivatives. All peptides conjugated with R10 exhibited greater anti-cancer activity compared to the unconjugated peptides. Unconjugated and conjugated peptides were cytocidal for cancer cells. Conjugation of R10 to peptides was essential for enhanced anti-proliferation activity, as unconjugated mixes did not result in enhancement of anti-cancer activity. The conjugation of R10 resulted in more rapid uptake of peptides into HeLa and MiaPaCa cells compared to unconjugated peptide. Both unconjugated and R10 conjugated peptides localized to the mitochondria of HeLa and MiaPaCa cells and induced apoptosis. Peptide conjugated with a terminally hydroxylated decanoic acid (ω-hydroxydecanoic acid) exhibited 3.3 and 6.3 fold higher IC(50) values compared to R10 conjugated peptide indicating a role for the position of the hydroxyl moiety in enhancement of anti-cancer activity. Conjugation of decanoic acid (C10) to peptides resulted in similar or higher IC(50) values compared to R10 conjugates but C10 conjugates did not exhibit any cancer selectivity. Combination studies showed that R10DP18L exhibited synergy with cisplatin, gemcitabine, and taxotere with IC(50) values in the nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Novel ZnO-binding peptides obtained by the screening of a phage display peptide library

    NASA Astrophysics Data System (ADS)

    Golec, Piotr; Karczewska-Golec, Joanna; Łoś, Marcin; Węgrzyn, Grzegorz

    2012-11-01

    Zinc oxide (ZnO) is a semiconductor compound with a potential for wide use in various applications, including biomaterials and biosensors, particularly as nanoparticles (the size range of ZnO nanoparticles is from 2 to 100 nm, with an average of about 35 nm). Here, we report isolation of novel ZnO-binding peptides, by screening of a phage display library. Interestingly, amino acid sequences of the ZnO-binding peptides reported in this paper and those described previously are significantly different. This suggests that there is a high variability in sequences of peptides which can bind particular inorganic molecules, indicating that different approaches may lead to discovery of different peptides of generally the same activity (e.g., binding of ZnO) but having various detailed properties, perhaps crucial under specific conditions of different applications.

  15. Effect of peptide length on the conjugation to the gold nanoparticle surface: a molecular dynamic study.

    PubMed

    Ramezani, Fatemeh; Habibi, Mostafa; Rafii-Tabar, Hashem; Amanlou, Massoud

    2015-01-29

    Gold nanoparticles now command a great deal of attention for medical applications. Despite the importance of nano-bio interfaces, interaction between peptides and proteins with gold surfaces is not still fully understood, especially in a molecular level. In the present study computational simulation of adsorption of 20 amino acids, in three forms of mono-amino acid, homo di-peptide and homo tri-peptide, on the gold nanoparticles was performed by Gromacs using OPLSAA force field. The flexibility, stability, and size effect of the peptides on the gold nanoparticles were studied as well as the molecular structure of them. According to our results, adsorbed homo tri-peptides on the gold surface had more flexibility, more gyration, and the farthest distance from the GNP in comparison with homo di-peptides and mono-amino acids. Our findings provide new insights into the precise control of interactions between amino acids anchored on the GNPs.

  16. Application of synthetic peptides for detection of anti-citrullinated peptide antibodies.

    PubMed

    Trier, Nicole Hartwig; Holm, Bettina Eide; Slot, Ole; Locht, Henning; Lindegaard, Hanne; Svendsen, Anders; Nielsen, Christoffer Tandrup; Jacobsen, Søren; Theander, Elke; Houen, Gunnar

    2016-02-01

    Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA) and represent an important tool for the serological diagnosis of RA. In this study, we describe ACPA reactivity to overlapping citrullinated Epstein-Barr virus nuclear antigen-1 (EBNA-1)-derived peptides and analyze their potential as substrates for ACPA detection by streptavidin capture enzyme-linked immunosorbent assay. Using systematically overlapping peptides, containing a 10 amino acid overlap, labelled with biotin C-terminally or N-terminally, sera from 160 individuals (RA sera (n=60), healthy controls (n=40), systemic lupus erythematosus (n=20), Sjögren's syndrome (n=40)) were screened for antibody reactivity. Antibodies to a panel of five citrullinated EBNA-1 peptides were found in 67% of RA sera, exclusively of the IgG isotype, while 53% of the patient sera reacted with a single peptide, ARGGSRERARGRGRG-Cit-GEKR, accounting for more than half of the ACPA reactivity alone. Moreover, these antibodies were detected in 10% of CCP2-negative RA sera. In addition, 47% of the RA sera reacted with two or three citrullinated EBNA-1 peptides from the selected peptide panel. Furthermore, a negative correlation between the biotin attachment site and the location of citrulline in the peptides was found, i.e. the closer the citrulline was located to biotin, the lower the antibody reactivity. Our data suggest that citrullinated EBNA-1 peptides may be considered a substrate for the detection of ACPAs and that the presence of Epstein-Barr virus may play a role in the induction of these autoantibodies. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Structural specificity of mucosal-cell transport and metabolism of peptide drugs: implication for oral peptide drug delivery

    NASA Technical Reports Server (NTRS)

    Bai, J. P.; Amidon, G. L.

    1992-01-01

    The brush border membrane of intestinal mucosal cells contains a peptide carrier system with rather broad substrate specificity and various endo- and exopeptidase activities. Small peptide (di-/tripeptide)-type drugs with or without an N-terminal alpha-amino group, including beta-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors, are transported by the peptide transporter. Polypeptide drugs are hydrolyzed by brush border membrane proteolytic enzymes to di-/tripeptides and amino acids. Therefore, while the intestinal brush border membrane has a carrier system facilitating the absorption of di-/tripeptide drugs, it is a major barrier limiting oral availability of polypeptide drugs. In this paper, the specificity of peptide transport and metabolism in the intestinal brush border membrane is reviewed.

  18. Rapid identification of Staphylococcus aureus and methicillin resistance by flow cytometry using a peptide nucleic acid probe.

    PubMed

    Shrestha, Nabin K; Scalera, Nikole M; Wilson, Deborah A; Brehm-Stecher, Byron; Procop, Gary W

    2011-09-01

    A total of 56 Staphylococcus aureus isolates incubated for 2 h in the presence or absence of oxacillin were analyzed by flow cytometry after labeling with an S. aureus-specific peptide nucleic acid (PNA) probe. Two defined ratios, the paired signal count ratio (PSCR) and the gate signal count ratio (GSCR), differentiated methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) with sensitivities of 100% each and specificities of 96% and 100%, respectively.

  19. Peptide Folding and Translocation Across the Water-Membrane Interface

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chang, Sherwood (Technical Monitor)

    1997-01-01

    The ability of small peptides to organize at aqueous interfaces was examined by performing a series of large-scale, molecular dynamics computer simulations of several peptides composed of two amino acids, nonpolar leucine (L) and polar glutamine (Q). The peptides differed in size and sequence of the amino acids. Studies on dipeptides LL, LQ, QL and QQ were extended to two heptamers, LQQLLQL and LQLQLQL, designed to maximize interfacial stability of an alpha-helix and a beta-strand, respectively, by exposing polar side chains to water and nonpolar side chains to a nonpolar phase. Finally, a transition of an undecamer, composed entirely of leucine residues, from a disordered structure in water to an alpha-helix in a nonpolar phase representing the interior of the membrane was investigated. Complete folding of a peptide in solution was accomplished for the first time in computer simulations. The simulations revealed several basic principles governing the sequence-dependent organization of peptides at interfaces. Short peptides tend to accumulate at interfaces and acquire ordered structures, providing that they have a proper sequence of polar and nonpolar amino acids. The dominant factor determining the interfacial structure of peptides is the hydrophobic effect, which is manifested at aqueous interfaces as a tendency for polar and nonpolar groups of the solute to segregate into the aqueous and nonpolar phases, respectively. If peptides consist of nonpolar residue's only, they become inserted into the nonpolar phase. As demonstrated by the example of the leucine undecamer, such peptides fold into an alpha-helix as they partition into the nonpolar medium. The folding proceeds through an intermediate, called 3-10-helix, which remains in equilibrium with the alpha-helix. Once in the nonpolar environment, the peptides can readily change their orientation with respect to the interface from parallel to perpendicular, especially in response to local electric fields. The

  20. Amphipathic peptide affects the lateral domain organization of lipid bilayers.

    PubMed

    Polozov, I V; Polozova, A I; Molotkovsky, J G; Epand, R M

    1997-09-04

    Using lipid-specific fluorescent probes, we studied the effects of amphipathic helical, membrane active peptides of the A- and L-type on membrane domain organization. In zwitterionic binary systems composed of mixtures of phosphatidylcholine and phosphatidylethanolamine, both types of peptides associated with the fluid phase. While binding with high affinity to fluid membranes, peptides were unable to penetrate into the lipid membrane in the gel state. If trapped kinetically by cooling from the fluid phase, peptides dissociated from the gel membrane on the time scale of several hours. While the geometrical shape of the alpha-helical peptides determines their interactions with membranes with non-bilayer phase propensity, the shape complementarity mechanism by itself is unable to induce lateral phase separation in a fluid membrane. Charge-charge interactions are capable of inducing lateral domain formation in fluid membranes. Both peptides had affinity for anionic lipids which resulted in about 30% enrichment of acidic lipids within several nanometers of the peptide's tryptophan, but there was no long-range order in peptide-induced lipid demixing. Peptide insertion in fluid acidic membranes was accompanied by only a small increase in bilayer surface and a decrease in polarity in the membrane core. Peptide-lipid charge-charge interactions were also capable of modulating existing domain composition in the course of the main phase transition in mixtures of anionic phosphatidylglycerol with zwitterionic phosphatidylcholine.

  1. Mass spectrometric survey of peptides in cephalopods with an emphasis on the FMRFamide-related peptides.

    PubMed

    Sweedler, J V; Li, L; Floyd, P; Gilly, W

    2000-12-01

    A matrix-assisted laser desorption/ionization (MALDI) mass spectrometric (MS) survey of the major peptides in the stellar, fin and pallial nerves and the posterior chromatophore lobe of the cephalopods Sepia officinalis, Loligo opalescens and Dosidicus gigas has been performed. Although a large number of putative peptides are distinct among the three species, several molecular masses are conserved. In addition to peptides, characterization of the lipid content of the nerves is reported, and these lipid peaks account for many of the lower molecular masses observed. One conserved set of peaks corresponds to the FMRFamide-related peptides (FRPs). The Loligo opalescens FMRFa gene has been sequenced. It encodes a 331 amino acid residue prohormone that is processed into 14 FRPs, which are both predicted by the nucleotide sequence and confirmed by MALDI MS. The FRPs predicted by this gene (FMRFa, FLRFa/FIRFa and ALSGDAFLRFa) are observed in all three species, indicating that members of this peptide family are highly conserved across cephalopods.

  2. Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides

    PubMed Central

    Li, Hao; Anuwongcharoen, Nuttapat; Malik, Aijaz Ahmad; Prachayasittikul, Virapong; Wikberg, Jarl E. S.; Nantasenamat, Chanin

    2016-01-01

    Host defense peptides (HDPs) are positively-charged and amphipathic components of the innate immune system that have demonstrated great potential to become the next generation of broad spectrum therapeutic agents effective against a vast array of pathogens and tumor. As such, many approaches have been taken to improve the therapeutic efficacy of HDPs. Amongst these methods, the incorporation of d-amino acids (d-AA) is an approach that has demonstrated consistent success in improving HDPs. Although, virtually all HDP review articles briefly mentioned about the role of d-AA, however it is rather surprising that no systematic review specifically dedicated to this topic exists. Given the impact that d-AA incorporation has on HDPs, this review aims to fill that void with a systematic discussion of the impact of d-AA on HDPs. PMID:27376281

  3. Origin of bombesin-like peptides in human fetal lung.

    PubMed

    Yoshizaki, K; de Bock, V; Solomon, S

    1984-02-27

    Four different forms of bombesin-like immunoreactive peaks were detected in extracts of human fetal lung by the use of reversed-phase high performance liquid chromatography (HPLC). Peaks I, II, III and IV, (increasing retention time), were eluted using a 14-38% of acetonitrile gradient containing 0.1% trifluoroacetic acid (TFA). Peak II was the major material found in the extract of human fetal lung obtained at 16-20 weeks gestation. None of the four compounds contained in the eluted peaks had the same retention time as amphibian bombesin or porcine gastrin releasing peptide (GRP). On reversed-phase HPLC using two different solvent systems TFA or heptafluorobutyric acid (HFBA) as a hydrophobic counter ion, and in gel filtration chromatography, the chromatographic behavior of the main peak (peak II) was the same as that of the carboxyl terminal fragments of GRP, GRP18-27 or GRP19-27. This suggested that the peptide(s) in peak II resembled in composition the carboxy terminal 9 or 10 amino acids of porcine GRP. Following tryptic digestion the material in peak IV was converted to the more polar compound present in peak II. Two other peptide peaks were eluted close to peak II and these were presumed to be a modification of this main peak. One of the possible biosynthetic steps in the formation of bombesin-like peptides in human fetal lung could be a tryptic conversion of a less polar peptide to a more polar form (peak IV to II).

  4. UV laser-induced cross-linking in peptides

    PubMed Central

    Leo, Gabriella; Altucci, Carlo; Bourgoin-Voillard, Sandrine; Gravagnuolo, Alfredo M.; Esposito, Rosario; Marino, Gennaro; Costello, Catherine E.; Velotta, Raffaele; Birolo, Leila

    2013-01-01

    RATIONALE The aim of this study was to demonstrate, and to characterize by high resolution mass spectrometry, that it is possible to preferentially induce covalent cross-links in peptides by using high energy femtosecond UV laser pulses. The cross-link is readily formed only when aromatic amino acids are present in the peptide sequence. METHODS Three peptides, xenopsin, angiotensin I, interleukin, individually or in combination, were exposed to high energy femtosecond UV laser pulses, either alone or in the presence of spin trapping molecules, the reaction products being characterized by high resolution mass spectrometry. RESULTS High resolution mass spectrometry and spin trapping strategies showed that cross-linking occurs readily, proceeds via a radical mechanism, and is the highly dominant reaction, proceeding without causing significant photo-damage in the investigated range of experimental parameters. CONCLUSIONS High energy femtosecond UV laser pulses can be used to induce covalent cross-links between aromatic amino acids in peptides, overcoming photo-oxidation processes, that predominate as the mean laser pulse intensity approaches illumination conditions achievable with conventional UV light sources. PMID:23754800

  5. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth.

    PubMed

    Konstantinov, Konstantin K; Konstantinova, Alisa F

    2018-03-01

    Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.

  6. Chiral Symmetry Breaking in Peptide Systems During Formation of Life on Earth

    NASA Astrophysics Data System (ADS)

    Konstantinov, Konstantin K.; Konstantinova, Alisa F.

    2018-03-01

    Chiral symmetry breaking in complex chemical systems with a large number of amino acids and a large number of similar reactions was considered. It was shown that effective averaging over similar reaction channels may result in very weak effective enantioselectivity of forward reactions, which does not allow most of the known models to result in chiral symmetry breaking during formation of life on Earth. Models with simple and catalytic synthesis of a single amino acid, formation of peptides up to length five, and sedimentation of insoluble pair of substances were considered. It was shown that depending on the model and the values of the parameters, chiral symmetry breaking may occur in up to about 10% out of all possible unique insoluble pair combinations even in the absence of any catalytic synthesis and that minimum total number of amino acids in the pair is 5. If weak enantioselective forward catalytic synthesis of amino acids is present, then the number of possible variants, in which chiral symmetry breaking may occur, increases substantially. It was shown that that the most interesting catalysts have zero or one amino acid of "incorrect" chirality. If the parameters of the model are adjusted in such a way to result in an increase of concentration of longer peptides, then catalysts with two amino acids of incorrect chirality start to appear at peptides of length five. Models of chiral symmetry breaking in the presence of epimerization were considered for peptides up to length three. It was shown that the range of parameters in which chiral symmetry breaking could occur significantly shrinks in comparison to previously considered models with peptides up to length two. An experiment of chiral symmetry breaking was proposed. The experiment consists of a three-step cycle: reversible catalytic synthesis of amino acids, reversible synthesis of peptides, and irreversible sedimentation of insoluble substances.

  7. T7 lytic phage-displayed peptide libraries: construction and diversity characterization.

    PubMed

    Krumpe, Lauren R H; Mori, Toshiyuki

    2014-01-01

    In this chapter, we describe the construction of T7 bacteriophage (phage)-displayed peptide libraries and the diversity analyses of random amino acid sequences obtained from the libraries. We used commercially available reagents, Novagen's T7Select system, to construct the libraries. Using a combination of biotinylated extension primer and streptavidin-coupled magnetic beads, we were able to prepare library DNA without applying gel purification, resulting in extremely high ligation efficiencies. Further, we describe the use of bioinformatics tools to characterize library diversity. Amino acid frequency and positional amino acid diversity and hydropathy are estimated using the REceptor LIgand Contacts website http://relic.bio.anl.gov. Peptide net charge analysis and peptide hydropathy analysis are conducted using the Genetics Computer Group Wisconsin Package computational tools. A comprehensive collection of the estimated number of recombinants and titers of T7 phage-displayed peptide libraries constructed in our lab is included.

  8. Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe3O4 Magnetic Nanoparticles for Enhanced Cell Internalization

    NASA Astrophysics Data System (ADS)

    Tudisco, C.; Cambria, M. T.; Giuffrida, A. E.; Sinatra, F.; Anfuso, C. D.; Lupo, G.; Caporarello, N.; Falanga, A.; Galdiero, S.; Oliveri, V.; Satriano, C.; Condorelli, G. G.

    2018-02-01

    A versatile synthetic route based on magnetic Fe3O4 nanoparticle (MNP) prefunctionalization with a phosphonic acid monolayer has been used to covalently bind the gH625 peptide on the nanoparticle surface. gH625 is a membranotropic peptide capable of easily crossing the membranes of various cells including the typical human blood-brain barrier components. A similar synthetic route was used to prepare another class of MNPs having a functional coating based on PEG, rhodamine, and folic acid, a well-known target molecule, to compare the performance of the two cell-penetrating systems (i.e., gH625 and folic acid). Our results demonstrate that the uptake of gH625-decorated MNPs in immortalized human brain microvascular endothelial cells after 24 h is more evident compared to folic acid-functionalized MNPs as evidenced by confocal laser scanning microscopy. On the other hand, both functionalized systems proved capable of being internalized in a brain tumor cell line (i.e., glioblastoma A-172). These findings indicate that the functionalization of MNPs with gH625 improves their endothelial cell internalization, suggesting a viable strategy in designing functional nanostructures capable of first crossing the BBB and, then, of reaching specific tumor brain cells.

  9. Peptide and protein delivery using new drug delivery systems.

    PubMed

    Jain, Ashish; Jain, Aviral; Gulbake, Arvind; Shilpi, Satish; Hurkat, Pooja; Jain, Sanjay K

    2013-01-01

    Pharmaceutical and biotechnological research sorts protein drug delivery systems by importance based on their various therapeutic applications. The effective and potent action of the proteins/peptides makes them the drugs of choice for the treatment of numerous diseases. Major research issues in protein delivery include the stabilization of proteins in delivery devices and the design of appropriate target-specific protein carriers. Many efforts have been made for effective delivery of proteins/peptidal drugs through various routes of administrations for successful therapeutic effects. Nanoparticles made of biodegradable polymers such as poly lactic acid, polycaprolactone, poly(lactic-co-glycolic acid), the poly(fumaric-co-sebacic) anhydride chitosan, and modified chitosan, as well as solid lipids, have shown great potential in the delivery of proteins/peptidal drugs. Moreover, scientists also have used liposomes, PEGylated liposomes, niosomes, and aquasomes, among others, for peptidal drug delivery. They also have developed hydrogels and transdermal drug delivery systems for peptidal drug delivery. A receptor-mediated delivery system is another attractive strategy to overcome the limitation in drug absorption that enables the transcytosis of the protein across the epithelial barrier. Modification such as PEGnology is applied to various proteins and peptides of the desired protein and peptides also increases the circulating life, solubility and stability, pharmacokinetic properties, and antigenicity of protein. This review focuses on various approaches for effective protein/peptidal drug delivery, with special emphasis on insulin delivery.

  10. Cloning of cDNAs encoding new peptides of the dermaseptin-family.

    PubMed

    Wechselberger, C

    1998-10-14

    Dermaseptins are a group of basic (lysine-rich) peptides, 27-34 amino acids in length and involved in the defense of frog skin against microbial invasion. By using a degenerated oligonucleotide primer binding to the 5'-untranslated region of previously characterized cDNAs of these peptides, it was possible to identify new members of the dermaseptin family in the South American frogs Agalychnis annae and Pachymedusa dacnicolor. Amino acid alignment and secondary structure prediction reveals, that only five of the deduced peptides can be supposed to be also functional homologs to the known dermaseptins from Phyllomedusa bicolor and Phyllomedusa sauvagei. The remaining six peptides described in this paper have not been isolated and characterized yet.

  11. Antimicrobial peptides from the skins of North American frogs.

    PubMed

    Conlon, J Michael; Kolodziejek, Jolanta; Nowotny, Norbert

    2009-08-01

    North America is home to anuran species belonging to the families Bufonidae, Eleutherodactylidae, Hylidae, Leiopelmatidae, Ranidae, and Scaphiopodidae but antimicrobial peptides have been identified only in skin secretions and/or skin extracts of frogs belonging to the Leiopelmatidae ("tailed frogs") and Ranidae ("true frogs"). Eight structurally-related cationic alpha-helical peptides with broad-spectrum antibacterial activity, termed ascaphins, have been isolated from specimens of Ascaphus truei (Leiopelmatidae) occupying a coastal range. Characterization of orthologous antimicrobial peptides from Ascaphus specimens occupying an inland range supports the proposal that this population should be regarded as a separate species A. montanus. Ascaphin-8 shows potential for development into a therapeutically valuable anti-infective agent. Peptides belonging to the brevinin-1, esculentin-1, esculentin-2, palustrin-1, palustrin-2, ranacyclin, ranatuerin-1, ranatuerin-2, and temporin families have been isolated from North American ranids. It is proposed that "ranalexins" represent brevinin-1 peptides that have undergone a four amino acid residue internal deletion. Current taxonomic recommendations divide North American frogs from the family Ranidae into two genera: Lithobates and Rana. Cladistic analysis based upon the amino acid sequences of the brevinin-1 peptides provides strong support for this assignment.

  12. A lesson from Bombinins H, mildly cationic diastereomeric antimicrobial peptides from Bombina skin.

    PubMed

    Mangoni, Maria Luisa

    2013-12-01

    Gene-encoded peptide antibiotics represent fascinating molecules for the development of new antimicrobials with a new mode of action: and one of the richest sources is amphibian skin. In particular, the skin of the fire-bellied toad Bombina genus contains mildly cationic antimicrobial peptides (AMPs), named bombinins H, with attractive properties. Indeed, some members of this peptide family coexist in skin secretions as isomers in which a single D-amino acid (alloisoleucine or leucine) is incorporated as a result of a post-translational modification of the respective gene-encoded Lamino acid. Here, a brief overview of the genes coding for these peptides, their spectrum of antimicrobial activities, mechanism of action and interactions with biological or model membranes is reported. Remarkably, a single D-amino acid substitution represents a unique approach developed by Nature not only to modulate the peptide stability in vivo, but also to confer the all-L peptide and its diastereomer distinctive biological features. Overall, such findings should assist in the generation of new peptide-based anti-infective agents, which are urgently needed because of the growing emergence of microbial strains resistant to conventional antimicrobials.

  13. Helicity of short E-R/K peptides.

    PubMed

    Sommese, Ruth F; Sivaramakrishnan, Sivaraj; Baldwin, Robert L; Spudich, James A

    2010-10-01

    Understanding the secondary structure of peptides is important in protein folding, enzyme function, and peptide-based drug design. Previous studies of synthetic Ala-based peptides (>12 a.a.) have demonstrated the role for charged side chain interactions involving Glu/Lys or Glu/Arg spaced three (i, i + 3) or four (i, i + 4) residues apart. The secondary structure of short peptides (<9 a.a.), however, has not been investigated. In this study, the effect of repetitive Glu/Lys or Glu/Arg side chain interactions, giving rise to E-R/K helices, on the helicity of short peptides was examined using circular dichroism. Short E-R/K-based peptides show significant helix content. Peptides containing one or more E-R interactions display greater helicity than those with similar E-K interactions. Significant helicity is achieved in Arg-based E-R/K peptides eight, six, and five amino acids long. In these short peptides, each additional i + 3 and i + 4 salt bridge has substantial contribution to fractional helix content. The E-R/K peptides exhibit a strongly linear melt curve indicative of noncooperative folding. The significant helicity of these short peptides with predictable dependence on number, position, and type of side chain interactions makes them an important consideration in peptide design.

  14. SATPdb: a database of structurally annotated therapeutic peptides

    PubMed Central

    Singh, Sandeep; Chaudhary, Kumardeep; Dhanda, Sandeep Kumar; Bhalla, Sherry; Usmani, Salman Sadullah; Gautam, Ankur; Tuknait, Abhishek; Agrawal, Piyush; Mathur, Deepika; Raghava, Gajendra P.S.

    2016-01-01

    SATPdb (http://crdd.osdd.net/raghava/satpdb/) is a database of structurally annotated therapeutic peptides, curated from 22 public domain peptide databases/datasets including 9 of our own. The current version holds 19192 unique experimentally validated therapeutic peptide sequences having length between 2 and 50 amino acids. It covers peptides having natural, non-natural and modified residues. These peptides were systematically grouped into 10 categories based on their major function or therapeutic property like 1099 anticancer, 10585 antimicrobial, 1642 drug delivery and 1698 antihypertensive peptides. We assigned or annotated structure of these therapeutic peptides using structural databases (Protein Data Bank) and state-of-the-art structure prediction methods like I-TASSER, HHsearch and PEPstrMOD. In addition, SATPdb facilitates users in performing various tasks that include: (i) structure and sequence similarity search, (ii) peptide browsing based on their function and properties, (iii) identification of moonlighting peptides and (iv) searching of peptides having desired structure and therapeutic activities. We hope this database will be useful for researchers working in the field of peptide-based therapeutics. PMID:26527728

  15. Peptide adsorption on the hydrophobic surface: A free energy perspective

    NASA Astrophysics Data System (ADS)

    Sheng, Yuebiao; Wang, Wei; Chen, P.

    2011-05-01

    Protein adsorption is a very attractive topic which relates to many novel applications in biomaterials, biotechnology and nanotechnology. Ionic complementary peptides are a group of novel nano-biomaterials with many biomedical applications. In this work, molecular dynamics simulations of the ionic-complementary peptide EAK16-II on a hydrophobic graphite surface were performed under neutral, acidic and basic solution conditions. Adsorption free energy contour maps were obtained by analyzing the dynamical trajectories. Hydrophobic interactions were found to govern the adsorption of the first peptide molecule, and both hydrophobic and electrostatic interactions contributed to the adsorption of the second peptide molecule. Especially under acidic and basic solution conditions, interplay existed among chain-chain hydrophobic, chain-surface hydrophobic and chain-chain electrostatic interactions during the adsorption of the second peptide molecule. Non-charged residues were found to lie on the graphite surface, while charged residue side-chains oriented towards the solution after the peptide deposited on the surface. These results provide a basis for understanding peptide adsorption on the hydrophobic surface under different solution conditions, which is useful for novel applications such as bioactive implant devices and drug delivery material design.

  16. Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. Exon 1-encoded prepropeptide is conserved in genes for peptides of highly different structures and activities.

    PubMed

    Vouille, V; Amiche, M; Nicolas, P

    1997-09-01

    We cloned the genes of two members of the dermaseptin family, broad-spectrum antimicrobial peptides isolated from the skin of the arboreal frog Phyllomedusa bicolor. The dermaseptin gene Drg2 has a 2-exon coding structure interrupted by a small 137-bp intron, wherein exon 1 encoded a 22-residue hydrophobic signal peptide and the first three amino acids of the acidic propiece; exon 2 contained the 18 additional acidic residues of the propiece plus a typical prohormone processing signal Lys-Arg and a 32-residue dermaseptin progenitor sequence. The dermaseptin genes Drg2 and Drg1g2 have conserved sequences at both untranslated ends and in the first and second coding exons. In contrast, Drg1g2 comprises a third coding exon for a short version of the acidic propiece and a second dermaseptin progenitor sequence. Structural conservation between the two genes suggests that Drg1g2 arose recently from an ancestral Drg2-like gene through amplification of part of the second coding exon and 3'-untranslated region. Analysis of the cDNAs coding precursors for several frog skin peptides of highly different structures and activities demonstrates that the signal peptides and part of the acidic propieces are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The organization of the genes that belong to this family, with the signal peptide and the progenitor sequence on separate exons, permits strikingly different peptides to be directed into the secretory pathway. The recruitment of such a homologous 'secretory' exon by otherwise non-homologous genes may have been an early event in the evolution of amphibian.

  17. Chemical methods for peptide and protein production.

    PubMed

    Chandrudu, Saranya; Simerska, Pavla; Toth, Istvan

    2013-04-12

    Since the invention of solid phase synthetic methods by Merrifield in 1963, the number of research groups focusing on peptide synthesis has grown exponentially. However, the original step-by-step synthesis had limitations: the purity of the final product decreased with the number of coupling steps. After the development of Boc and Fmoc protecting groups, novel amino acid protecting groups and new techniques were introduced to provide high quality and quantity peptide products. Fragment condensation was a popular method for peptide production in the 1980s, but unfortunately the rate of racemization and reaction difficulties proved less than ideal. Kent and co-workers revolutionized peptide coupling by introducing the chemoselective reaction of unprotected peptides, called native chemical ligation. Subsequently, research has focused on the development of novel ligating techniques including the famous click reaction, ligation of peptide hydrazides, and the recently reported α-ketoacid-hydroxylamine ligations with 5-oxaproline. Several companies have been formed all over the world to prepare high quality Good Manufacturing Practice peptide products on a multi-kilogram scale. This review describes the advances in peptide chemistry including the variety of synthetic peptide methods currently available and the broad application of peptides in medicinal chemistry.

  18. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  19. Cell Penetration Properties of a Highly Efficient Mini Maurocalcine Peptide

    PubMed Central

    Tisseyre, Céline; Bahembera, Eloi; Dardevet, Lucie; Sabatier, Jean-Marc; Ronjat, Michel; De Waard, Michel

    2013-01-01

    Maurocalcine is a highly potent cell-penetrating peptide isolated from the Tunisian scorpion Maurus palmatus. Many cell-penetrating peptide analogues have been derived from the full-length maurocalcine by internal cysteine substitutions and sequence truncation. Herein we have further characterized the cell-penetrating properties of one such peptide, MCaUF1-9, whose sequence matches that of the hydrophobic face of maurocalcine. This peptide shows very favorable cell-penetration efficacy compared to Tat, penetratin or polyarginine. The peptide appears so specialized in cell penetration that it seems hard to improve by site directed mutagenesis. A comparative analysis of the efficacies of similar peptides isolated from other toxin members of the same family leads to the identification of hadrucalcin’s hydrophobic face as an even better CPP. Protonation of the histidine residue at position 6 renders the cell penetration of MCaUF1-9 pH-sensitive. Greater cell penetration at acidic pH suggests that MCaUF1-9 can be used to specifically target cancer cells in vivo where tumor masses grow in more acidic environments. PMID:24276021

  20. Homologies between the amino acid sequences of some vertebrate peptide hormones and peptides isolated from invertebrate sources.

    PubMed

    De Loof, A; Schoofs, L

    1990-01-01

    1. The 4K-prothoracicotropic hormone (PTTH) or bombyxin and the melanization-reddish coloration hormone of the silkworm Bombyx mori resemble insulin and insulin-like growth factors. 2. The family of adipokinetic/red pigment concentrating hormones has some similarity with glucagon. 3. Members of the FMRFamide family are found in vertebrates as well as in invertebrates. 4. In Locusta, a molecule immunologically and biologically related to amphibian melanophore stimulating hormone has been partially characterized. 5. Enkephalins and enkephalin-related peptides occur in insects and other invertebrates. 6. Peptides belonging to the tachykinin family have been isolated from molluscan (Octopus) salivary glands and from insect nervous tissue (Locusta migratoria). 7. Invertebrate arginine-vasotocin homologs have been isolated from an insect (Locusta migratoria) and from a mollusc (Conus). 8. In Leucophaea, Locusta and Drosophila, peptides resembling those of the vertebrate gastrin/cholecystokinin family have been identified. 9. As the number of different neuro-/gut peptides with possible function(s) as hormone, neurotransmitter or neuromodulator is now estimated to be of the order of a few hundred, more similarities will probably show up in the near future.

  1. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters.

    PubMed

    Lindqvist, Niina; Tuhkanen, Tuula; Kronberg, Leif

    2005-06-01

    The occurrence of five acidic pharmaceuticals, ibuprofen, naproxen, ketoprofen, diclofenac and bezafibrate, in seven different sewage treatment plants (STP) and three receiving waters were determined. The analytical procedure included solid phase extraction, liquid chromatographic separation and detection by a triple-quadrupole mass spectrometer. The studied pharmaceuticals were found in all the STPs. The pattern of the occurrence of individual compounds was the same in every STP and matched the consumption figures reported in the literature. Ibuprofen is the most used pharmaceutical in Finland and was accordingly found to be the most abundant compound in the raw sewage. In the treatment processes, the highest removal rate was observed for ibuprofen and the lowest for diclofenac, 92%+/-8% and 26%+/-17%, respectively. Due to the incomplete removal in the STPs, the pharmaceuticals were found in rivers at the discharge points of the STP effluents. Downstream from the discharge points, the concentrations decreased significantly mainly due to dilution in the river water. The risk to the aquatic environment was estimated by a ratio of measured environmental concentration (MEC) and predicted no-effect concentration (PNEC). At the concentrations the compounds were found in the surface waters, they should not pose risk for the aquatic environment. However, at dry seasons and/or during malfunctions of STPs, ibuprofen could be associated with a risk in small river systems.

  2. Amide Neighbouring-Group Effects in Peptides: Phenylalanine as Relay Amino Acid in Long-Distance Electron Transfer.

    PubMed

    Nathanael, Joses G; Gamon, Luke F; Cordes, Meike; Rablen, Paul R; Bally, Thomas; Fromm, Katharina M; Giese, Bernd; Wille, Uta

    2018-05-04

    In nature, proteins serve as media for long-distance electron transfer (ET) to carry out redox reactions in distant compartments. This ET occurs either by a single-step superexchange or through a multi-step charge hopping process, which uses side chains of amino acids as stepping stones. In this study we demonstrate that Phe can act as a relay amino acid for long-distance electron hole transfer through peptides. The considerably increased susceptibility of the aromatic ring to oxidation is caused by the lone pairs of neighbouring amide carbonyl groups, which stabilise the Phe radical cation. This neighbouring-amide-group effect helps improve understanding of the mechanism of extracellular electron transfer through conductive protein filaments (pili) of anaerobic bacteria during mineral respiration. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Peptide synthesis under Enceladus hydrothermal condition

    NASA Astrophysics Data System (ADS)

    Fujishima, Kosuke; Takano, Yoshinori; Takai, Ken; Takahagi, Wataru; Adachi, Keito; Shibuya, Takazo; Tomita, Masaru

    2016-07-01

    Enceladus is one of the moons of Saturn, and it has been known to harbor interior ocean beneath the icy crust. The mass spectrometry data obtained by Cassini spacecraft indicates the presence of salty, and most likely alkaline ocean containing various organic compounds. While geochemical and other radiation related processes for in situ production of organics remain elusive, thermally unaltered carbonaceous chondrites, consisting the main body of Enceladus are known to be enriched with organic matters potentially including the building blocks of life (e.g., amino acids and amino acid precursors). Assuming that abiotic amino acids exist in the Enceladus alkaline seawater, we hypothesized that water-rock interaction may contribute to condensation of localized amino acids leading to peptide formation. In order to test this hypothesis, we have developed the Enceladus hydrothermal reactor based on the chemical constraints obtained through previous experimental and theoretical studies. We have added six different amino acids and introduced a thermal fluctuation system simulating the periodic tidal heating of the interior chondritic core. Total, eight sea water samples were obtained over the course of 147 days of experiment. While detection of peptide using Capillary Electrophoresis Time-of-Flight Mass Spectrometry (CE-TOF/MS) is still at the preliminary stage, so far pH monitoring and H2 and CO2 Gas Chromatography Mass Spectrometry (GC-MS) data clearly indicated the occurrence of serpentinization/carbonation reaction. Here, we discuss the interaction between aqueous alteration reactions and thermal cycling processes for the role of abiotic peptide formation under the Enceladus hydrothermal condition.

  4. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-11-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine.

  5. Design, Synthesis, and Actions of a Novel Chimeric Natriuretic Peptide: CD-NP

    PubMed Central

    Lisy, Ondrej; Huntley, Brenda K.; McCormick, Daniel J.; Kurlansky, Paul A.; Burnett, John C.

    2008-01-01

    Objectives Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Background Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Methods Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Results Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. Conclusions The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides. PMID:18582636

  6. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP.

    PubMed

    Lisy, Ondrej; Huntley, Brenda K; McCormick, Daniel J; Kurlansky, Paul A; Burnett, John C

    2008-07-01

    Our aim was to design, synthesize and test in vivo and in vitro a new chimeric peptide that would combine the beneficial properties of 2 distinct natriuretic peptides with a biological profile that goes beyond native peptides. Studies have established the beneficial vascular and antiproliferative properties of C-type natriuretic peptide (CNP). While lacking renal actions, CNP is less hypotensive than the cardiac peptides atrial natriuretic peptide and B-type natriuretic peptide but unloads the heart due to venodilation. Dendroaspis natriuretic peptide is a potent natriuretic and diuretic peptide that is markedly hypotensive and functions via a separate guanylyl cyclase receptor compared with CNP. Here we engineered a novel chimeric peptide CD-NP that represents the fusion of the 22-amino acid peptide CNP together with the 15-amino acid linear C-terminus of Dendroaspis natriuretic peptide. We also determined in vitro in cardiac fibroblasts cyclic guanosine monophosphate-activating and antiproliferative properties of CD-NP. Our studies demonstrate in vivo that CD-NP is natriuretic and diuretic, glomerular filtration rate enhancing, cardiac unloading, and renin inhibiting. CD-NP also demonstrates less hypotensive properties when compared with B-type natriuretic peptide. In addition, CD-NP in vitro activates cyclic guanosine monophosphate and inhibits cardiac fibroblast proliferation. The current findings advance an innovative design strategy in natriuretic peptide drug discovery and development to create therapeutic peptides with favorable properties that may be preferable to those associated with native natriuretic peptides.

  7. Hydrophilic and Cell-Penetrable Pyrrolidinyl Peptide Nucleic Acid via Post-synthetic Modification with Hydrophilic Side Chains.

    PubMed

    Pansuwan, Haruthai; Ditmangklo, Boonsong; Vilaivan, Chotima; Jiangchareon, Banphot; Pan-In, Porntip; Wanichwecharungruang, Supason; Palaga, Tanapat; Nuanyai, Thanesuan; Suparpprom, Chaturong; Vilaivan, Tirayut

    2017-09-20

    Peptide nucleic acid (PNA) is a nucleic acid mimic in which the deoxyribose-phosphate was replaced by a peptide-like backbone. The absence of negative charge in the PNA backbone leads to several unique behaviors including a stronger binding and salt independency of the PNA-DNA duplex stability. However, PNA possesses poor aqueous solubility and cannot directly penetrate cell membranes. These are major obstacles that limit in vivo applications of PNA. In previous strategies, the PNA can be conjugated to macromolecular carriers or modified with positively charged side chains such as guanidinium groups to improve the aqueous solubility and cell permeability. In general, a preformed modified PNA monomer was required. In this study, a new approach for post-synthetic modification of PNA backbone with one or more hydrophilic groups was proposed. The PNA used in this study was the conformationally constrained pyrrolidinyl PNA with prolyl-2-aminocyclopentanecarboxylic acid dipeptide backbone (acpcPNA) that shows several advantages over the conventional PNA. The aldehyde modifiers carrying different linkers (alkylene and oligo(ethylene glycol)) and end groups (-OH, -NH 2 , and guanidinium) were synthesized and attached to the backbone of modified acpcPNA by reductive alkylation. The hybrids between the modified acpcPNAs and DNA exhibited comparable or superior thermal stability with base-pairing specificity similar to those of unmodified acpcPNA. Moreover, the modified apcPNAs also showed the improvement of aqueous solubility (10-20 folds compared to unmodified PNA) and readily penetrate cell membranes without requiring any special delivery agents. This study not only demonstrates the practicality of the proposed post-synthetic modification approach for PNA modification, which could be readily applied to other systems, but also opens up opportunities for using pyrrolidinyl PNA in various applications such as intracellular RNA sensing, specific gene detection, and antisense

  8. T7 lytic phage-displayed peptide libraries exhibit less sequence bias than M13 filamentous phage-displayed peptide libraries.

    PubMed

    Krumpe, Lauren R H; Atkinson, Andrew J; Smythers, Gary W; Kandel, Andrea; Schumacher, Kathryn M; McMahon, James B; Makowski, Lee; Mori, Toshiyuki

    2006-08-01

    We investigated whether the T7 system of phage display could produce peptide libraries of greater diversity than the M13 system of phage display due to the differing processes of lytic and filamentous phage morphogenesis. Using a bioinformatics-assisted computational approach, collections of random peptide sequences obtained from a T7 12-mer library (X(12)) and a T7 7-mer disulfide-constrained library (CX(7)C) were analyzed and compared with peptide populations obtained from New England BioLabs' M13 Ph.D.-12 and Ph.D.-C7C libraries. Based on this analysis, peptide libraries constructed with the T7 system have fewer amino acid biases, increased peptide diversity, and more normal distributions of peptide net charge and hydropathy than the M13 libraries. The greater diversity of T7-displayed libraries provides a potential resource of novel binding peptides for new as well as previously studied molecular targets. To demonstrate their utility, several of the T7-displayed peptide libraries were screened for streptavidin- and neutravidin-binding phage. Novel binding motifs were identified for each protein.

  9. Thermal behavior of potato starch and water-vaporization behavior of its paste controlled with amino acid and peptide-rich food materials.

    PubMed

    Sakauchi, Satoshi; Hattori, Makoto; Yoshida, Tadashi; Yagishita, Takahiro; Ito, Koichi; Akemitsu, Shin-Ichi; Takahashi, Koji

    2010-03-01

    The particular effect of 4 kinds of amino acid and peptide-rich food material (APRM) containing different charged amino acid contents on the gelatinization and retrogradation behavior of potato starch granules and on the water-vaporization behavior was analyzed by differential scanning calorimetry, rapid viscoanalysis, x-ray diffractometry, thermal gravimetry-differential thermal analysis, and pulsed NMR. APRM with a high-charged amino acid content produced unique gelatinization and retrogradation behavior in terms of an elevated gelatinization temperature, reduced viscosity, higher setback, and lower retrograded starch melting enthalpy. The recovered x-ray diffraction intensity decreased with increasing charged amino acid content. APRM with high-charged amino acid content could provide an improved paste having easy vaporization of external water in the swollen starch granules due to the reduced swelling.

  10. Method for enhanced accuracy in predicting peptides using liquid separations or chromatography

    DOEpatents

    Kangas, Lars J.; Auberry, Kenneth J.; Anderson, Gordon A.; Smith, Richard D.

    2006-11-14

    A method for predicting the elution time of a peptide in chromatographic and electrophoretic separations by first providing a data set of known elution times of known peptides, then creating a plurality of vectors, each vector having a plurality of dimensions, and each dimension representing the elution time of amino acids present in each of these known peptides from the data set. The elution time of any protein is then be predicted by first creating a vector by assigning dimensional values for the elution time of amino acids of at least one hypothetical peptide and then calculating a predicted elution time for the vector by performing a multivariate regression of the dimensional values of the hypothetical peptide using the dimensional values of the known peptides. Preferably, the multivariate regression is accomplished by the use of an artificial neural network and the elution times are first normalized using a transfer function.

  11. Synthesis, anti-MRSA, and anti-VRE activity of hemin conjugates with amino acids and branched peptides.

    PubMed

    Okorochenkov, Sergei A; Zheltukhina, Galina A; Mirchink, Elena P; Isakova, Elena B; Feofanov, Alexey V; Nebolsin, Vladimir E

    2013-10-01

    The increasing prevalence of antibiotic-resistant bacterial strains has necessitated the synthesis of novel antibacterial agents. It was previously shown that naturally occurring metalloporphyrin hemin possesses dark antibacterial activity against Gram-positive bacteria. To improve hemin antibacterial activity, we synthesized a number of hemin conjugates with amino acids and branched peptides. Arginine-containing hemin conjugates demonstrated high antibacterial activity against Gram-positive bacteria including methicillin- and vancomycin-resistant strains in vitro. Most of the synthesized conjugates showed low toxicity against human erythrocytes and leukocytes. © 2013 John Wiley & Sons A/S.

  12. Effects of the Amino Acid Linkers on the Melanoma-Targeting and Pharmacokinetic Properties of Indium-111-labeled Lactam Bridge-Cyclized α-MSH Peptides

    PubMed Central

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-01-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma targeting and pharmacokinetic properties of novel 111In-labeled lactam bridge-cyclized DOTA-[X]-CycMSHhex {1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH2, X=GlyGlyNle, GlyGluNle or NleGlyGlu} peptides. Methods Three novel DOTA-GGNle-CycMSHhex, DOTA-GENle-CycMSHhex and DOTA-NleGE-CycMSHhex peptides were designed and synthesized. The melanocortin-1 (MC1) receptor binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma targeting and pharmacokinetic properties of 111In-DOTA-GGNle-CycMSHhex and 111In-DOTA-GENle-CycMSHhex were determined in B16/F1 melanoma-bearing C57 mice. Results DOTA-GGNle-CycMSHhex and DOTA-GENle-CycMSHhex displayed 2.1 and 11.5 nM MC1 receptor binding affinities, whereas DOTA-NleGE-CycMSHhex showed 873.4 nM MC1 receptor binding affinity. The introduction of the -GlyGly- linker maintained high melanoma uptake while decreased the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex. The tumor uptake values of 111In-DOTA-GGNle-CycMSHhex were 19.05 ± 5.04 and 18.6 ± 3.56 % injected dose/gram (%ID/g) at 2 and 4 h post-injection. 111In-DOTA-GGNle-CycMSHhex exhibited 28, 32 and 42% less renal uptake values than 111In-DOTA-Nle-CycMSHhex we reported previously, and 61, 65 and 68% less liver uptake values than 111In-DOTA-Nle-CycMSHhex at 2, 4 and 24 h post-injection, respectively. Conclusion The amino acid linkers exhibited the profound effects on the melanoma targeting and pharmacokinetic properties of the 111In-labeled lactam bridge-cyclized α-MSH peptides. Introduction of the -GlyGly- linker maintained high melanoma uptake while reducing the renal and liver uptakes of 111In-DOTA-GlyGlyNle-CycMSHhex, highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide for melanoma treatment when labeled with a therapeutic

  13. The Specificity of Peptide Chain Extension by N-Carboxyanhydrides

    NASA Technical Reports Server (NTRS)

    Wen, Ke; Orgel, Leslie E.

    2001-01-01

    We have used amino acids activated by carbonyldiimidazole to study the enantiospecificity of peptide elongation in aqueous solution. Peptide primers Glu(sub 10) and Ala3Glulo were elongated with the enantiomers of arginine, glutamic acid, asparagine, phenylalanine, serine and valine. The homochiral addition was always the more efficient reaction; the enantiospecificity was large in some cases but very small in others. In every case Ala(sub 3)Glu(sub l0) was elongated more efficiently than Glu(sub 10).

  14. Isolation and Structural Characterization of Antioxidant Peptides from Degreased Apricot Seed Kernels.

    PubMed

    Zhang, Haisheng; Xue, Jing; Zhao, Huanxia; Zhao, Xinshuai; Xue, Huanhuan; Sun, Yuhan; Xue, Wanrui

    2018-05-03

    Background : The composition and sequence of amino acids have a prominent influence on theantioxidant activities of peptides. Objective : A series of isolation and purification experiments was conducted to explore the amino acid sequence of antioxidant peptides, which led to its antioxidation causes. Methods : The degreased apricot seed kernels were hydrolyzed by compound proteases of alkaline protease and flavor protease (3:2, u/u) to prepare apricot seed kernel hydrolysates (ASKH). ASKH were separated into ASKH-A and ASKH-B by dialysis bag. ASKH-B (MW < 3.5 kDa) was further separated into fractions by Sephadex G-25 and G-15 gel-filtration chromatography. Reversed-phase HPLC (RP-HPLC) was performed to separate fraction B4b into two antioxidant peptides (peptide B4b-4 and B4b-6). Results : The amino acid sequences were Val-Leu-Tyr-Ile-Trp and Ser-Val-Pro-Tyr-Glu, respectively. Conclusions : The results suggested that ASKH antioxidant peptides may have potential utility as healthy ingredients and as food preservatives due to their antioxidant activity. Highlights : Materials with regional characteristics were selected to explore, and hydrolysates were identified by RP-HPLC and matrix-assisted laser desorption ionization-time-of-flight-MS to obtain amino acid sequences.

  15. Small cationic antimicrobial peptides delocalize peripheral membrane proteins

    PubMed Central

    Wenzel, Michaela; Chiriac, Alina Iulia; Otto, Andreas; Zweytick, Dagmar; May, Caroline; Schumacher, Catherine; Gust, Ronald; Albada, H. Bauke; Penkova, Maya; Krämer, Ute; Erdmann, Ralf; Metzler-Nolte, Nils; Straus, Suzana K.; Bremer, Erhard; Becher, Dörte; Brötz-Oesterhelt, Heike; Sahl, Hans-Georg; Bandow, Julia Elisabeth

    2014-01-01

    Short antimicrobial peptides rich in arginine (R) and tryptophan (W) interact with membranes. To learn how this interaction leads to bacterial death, we characterized the effects of the minimal pharmacophore RWRWRW-NH2. A ruthenium-substituted derivative of this peptide localized to the membrane in vivo, and the peptide also integrated readily into mixed phospholipid bilayers that resemble Gram-positive membranes. Proteome and Western blot analyses showed that integration of the peptide caused delocalization of peripheral membrane proteins essential for respiration and cell-wall biosynthesis, limiting cellular energy and undermining cell-wall integrity. This delocalization phenomenon also was observed with the cyclic peptide gramicidin S, indicating the generality of the mechanism. Exogenous glutamate increases tolerance to the peptide, indicating that osmotic destabilization also contributes to antibacterial efficacy. Bacillus subtilis responds to peptide stress by releasing osmoprotective amino acids, in part via mechanosensitive channels. This response is triggered by membrane-targeting bacteriolytic peptides of different structural classes as well as by hypoosmotic conditions. PMID:24706874

  16. Peptide/laccase cocatalyzed asymmetric α-oxyamination of aldehydes.

    PubMed

    Akagawa, Kengo; Kudo, Kazuaki

    2011-07-01

    An asymmetric α-oxyamination could be successfully performed by a peptide catalyst and laccase. The combination of peptide catalysis and enzymatic air oxidation promoted the reaction smoothly in water without employing a metal reagent. The oxyaminated compounds could be obtained as both aldehyde and carboxylic acid products depending on the reaction conditions.

  17. Antibacterial and anticancer activity of a series of novel peptides incorporating cyclic tetra-substituted C(α) amino acids.

    PubMed

    Hicks, Rickey P

    2016-09-15

    Eleven antimicrobial peptides (AMP) based on the incorporation of cyclic tetra substituted C(α) amino acids, as well as other unnatural amino acids were designed, synthesized and screened for in vitro activity against 18 strains of bacteria as well as 12 cancer cell lines. The AMPs discussed herein are derived from the following peptide sequence: Ac-GF(X)G(X)B(X)G(X)F(X)G(X)GB(X)BBBB-amide, X=any one of the following residues, A5c, A6c, Tic or Oic and B=any one of the following residues, Arg, Lys, Orn, Dpr or Dab. A diversity of in vitro inhibitory activity was observed for these AMPs. Several analogs exhibited single digit μM activity against drug resistant bacteria including; multiple drug resistant Mycobacterium tuberculosis, extremely drug resistant Mycobacterium tuberculosis and MRSA. The physicochemical properties of the basic amino acid residues incorporated into these AMPs seem to play a major role in defining antibacterial activity. Overall hydrophobicity seems to play a limited role in defining antibacterial activity. The ESKAPE pathogens were used to compare the activity of these AMPs to another family of synthetic AMPs incorporating the unnatural amino acids Tic and Oic. In most cases similarly substituted members of both families exhibited similar inhibitory activity against the ESKAPE pathogens. In specific cases differences in activity as high as 15 fold were observed between analogs. In addition four of these AMPs exhibited promising IC50 (<7.5μM) values against 12 different and diverse cancer cell lines. Five other AMPs exhibited promising IC50 (<7.5μM) values against selected cancer cell lines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Peptide Analysis Using Tandem Mass Spectrometry

    DTIC Science & Technology

    1989-06-01

    to give pyroglutamic acid during storage, eliminating ammonia. It is almost absent in the spectrum of a freshly-prepared sample and is not seen in...USING TANDEM MASS SPECTROMETRY INTRODUCTION S The objective of the project was to determine the complete amino acid sequence of the large polypeptide...Ubiquitin by use of fast atom bombardment (FAB) ionization and tandem mass spectrometry. The peptide containing 76 amino acid residues was available

  19. PIPI: PTM-Invariant Peptide Identification Using Coding Method.

    PubMed

    Yu, Fengchao; Li, Ning; Yu, Weichuan

    2016-12-02

    In computational proteomics, the identification of peptides with an unlimited number of post-translational modification (PTM) types is a challenging task. The computational cost associated with database search increases exponentially with respect to the number of modified amino acids and linearly with respect to the number of potential PTM types at each amino acid. The problem becomes intractable very quickly if we want to enumerate all possible PTM patterns. To address this issue, one group of methods named restricted tools (including Mascot, Comet, and MS-GF+) only allow a small number of PTM types in database search process. Alternatively, the other group of methods named unrestricted tools (including MS-Alignment, ProteinProspector, and MODa) avoids enumerating PTM patterns with an alignment-based approach to localizing and characterizing modified amino acids. However, because of the large search space and PTM localization issue, the sensitivity of these unrestricted tools is low. This paper proposes a novel method named PIPI to achieve PTM-invariant peptide identification. PIPI belongs to the category of unrestricted tools. It first codes peptide sequences into Boolean vectors and codes experimental spectra into real-valued vectors. For each coded spectrum, it then searches the coded sequence database to find the top scored peptide sequences as candidates. After that, PIPI uses dynamic programming to localize and characterize modified amino acids in each candidate. We used simulation experiments and real data experiments to evaluate the performance in comparison with restricted tools (i.e., Mascot, Comet, and MS-GF+) and unrestricted tools (i.e., Mascot with error tolerant search, MS-Alignment, ProteinProspector, and MODa). Comparison with restricted tools shows that PIPI has a close sensitivity and running speed. Comparison with unrestricted tools shows that PIPI has the highest sensitivity except for Mascot with error tolerant search and Protein

  20. Polycyclic Peptides: A New Type of Cavitand,

    DTIC Science & Technology

    PEPTIDES, MOLECULAR STRUCTURE, MOLECULES, SYNTHESIS, ETHERS, DEXTRINS , PROTEINS, AMINO ACIDS, RESIDUES, CROSSLINKING(CHEMISTRY), DIMERS, CESIUM, CARBON, OXYGEN, NITROGEN, CAVITIES, NUCLEAR MAGNETIC RESONANCE.

  1. Racemic synthesis and solid phase peptide synthesis application of the chimeric valine/leucine derivative 2-amino-3,3,4-trimethyl-pentanoic acid.

    PubMed

    Pelà, M; Del Zoppo, L; Allegri, L; Marzola, E; Ruzza, C; Calo, G; Perissutti, E; Frecentese, F; Salvadori, S; Guerrini, R

    2014-07-01

    The synthesis of non natural amino acid 2-amino-3,3,4-trimethyl-pentanoic acid (Ipv) ready for solid phase peptide synthesis has been developed. Copper (I) chloride Michael addition, followed by a Curtius rearrangement are the key steps for the lpv synthesis. The racemic valine/leucine chimeric amino acid was then successfully inserted in position 5 of neuropeptide S (NPS) and the diastereomeric mixture separated by reverse phase HPLC. The two diastereomeric NPS derivatives were tested for intracellular calcium mobilization using HEK293 cells stably expressing the mouse NPS receptor where they behaved as partial agonist and pure antagonist.

  2. Development of Novel Radiogallium-Labeled Bone Imaging Agents Using Oligo-Aspartic Acid Peptides as Carriers

    PubMed Central

    Ogawa, Kazuma; Ishizaki, Atsushi; Takai, Kenichiro; Kitamura, Yoji; Kiwada, Tatsuto; Shiba, Kazuhiro; Odani, Akira

    2013-01-01

    68Ga (T 1/2 = 68 min, a generator-produced nuclide) has great potential as a radionuclide for clinical positron emission tomography (PET). Because poly-glutamic and poly-aspartic acids have high affinity for hydroxyapatite, to develop new bone targeting 68Ga-labeled bone imaging agents for PET, we used 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) as a chelating site and conjugated aspartic acid peptides of varying lengths. Subsequently, we compared Ga complexes, Ga-DOTA-(Asp)n (n = 2, 5, 8, 11, or 14) with easy-to-handle 67Ga, with the previously described 67Ga-DOTA complex conjugated bisphosphonate, 67Ga-DOTA-Bn-SCN-HBP. After synthesizing DOTA-(Asp)n by a Fmoc-based solid-phase method, complexes were formed with 67Ga, resulting in 67Ga-DOTA-(Asp)n with a radiochemical purity of over 95% after HPLC purification. In hydroxyapatite binding assays, the binding rate of 67Ga-DOTA-(Asp)n increased with the increase in the length of the conjugated aspartate peptide. Moreover, in biodistribution experiments, 67Ga-DOTA-(Asp)8, 67Ga-DOTA-(Asp)11, and 67Ga-DOTA-(Asp)14 showed high accumulation in bone (10.5±1.5, 15.1±2.6, and 12.8±1.7% ID/g, respectively) but were barely observed in other tissues at 60 min after injection. Although bone accumulation of 67Ga-DOTA-(Asp)n was lower than that of 67Ga-DOTA-Bn-SCN-HBP, blood clearance of 67Ga-DOTA-(Asp)n was more rapid. Accordingly, the bone/blood ratios of 67Ga-DOTA-(Asp)11 and 67Ga-DOTA-(Asp)14 were comparable with those of 67Ga-DOTA-Bn-SCN-HBP. In conclusion, these data provide useful insights into the drug design of 68Ga-PET tracers for the diagnosis of bone disorders, such as bone metastases. PMID:24391942

  3. Integration of surface-active, periodically sequenced peptides into lipid-based microbubbles.

    PubMed

    Badami, Joseph V; Desir, Pierre; Tu, Raymond S

    2014-07-29

    The development of microbubbles toward functional, "theranostic" particles requires the incorporation of constituents with high binding specificity and therapeutic efficacy. Integrating peptides or proteins into the shell of lipid-based microbubbles can provide a means to access both receptor-ligand interactions and therapeutic properties. Simultaneously, peptides or proteins can define the characteristic monolayer mechanics of lipid bubbles and eliminate the need for post-bubble generation modification. The ability to engineer peptide sequences de novo that effectively partition into the bubble monolayer remains parametrically daunting. This work contributes to this effort using two simple amphipathic helical peptides that examine the role of local electrostatics and secondary structure. The two periodically sequenced peptides both have three positive charges, but peptide "K-2.5" spaces those charges 2.5 amino acids apart, while peptide "K-6.0" spaces the charges six amino acids apart. Size populations were determined for bubbles containing each peptide species using light scattering, and a quantitative method was developed to clearly define the fraction of peptides binding onto the microbubble monolayer. The impact of both the initial peptide concentration and the zwitterionic:anionic lipid ratio on peptide binding was also evaluated. Our results indicate that the lipid ratio affected only K-6.0 binding, which appears to be an outcome of the greater ensemble average α-helical population of the K-6.0. These findings provide further insights into the role of charge separation on peptide secondary structure, establishing a simple design metric for peptide binding onto microbubble systems.

  4. Insights into the Interactions of Amino Acids and Peptides with Inorganic Materials Using Single-Molecule Force Spectroscopy.

    PubMed

    Das, Priyadip; Duanias-Assaf, Tal; Reches, Meital

    2017-03-06

    The interactions between proteins or peptides and inorganic materials lead to several interesting processes. For example, combining proteins with minerals leads to the formation of composite materials with unique properties. In addition, the undesirable process of biofouling is initiated by the adsorption of biomolecules, mainly proteins, on surfaces. This organic layer is an adhesion layer for bacteria and allows them to interact with the surface. Understanding the fundamental forces that govern the interactions at the organic-inorganic interface is therefore important for many areas of research and could lead to the design of new materials for optical, mechanical and biomedical applications. This paper demonstrates a single-molecule force spectroscopy technique that utilizes an AFM to measure the adhesion force between either peptides or amino acids and well-defined inorganic surfaces. This technique involves a protocol for attaching the biomolecule to the AFM tip through a covalent flexible linker and single-molecule force spectroscopy measurements by atomic force microscope. In addition, an analysis of these measurements is included.

  5. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening.

    PubMed

    Oda, Akifumi; Noji, Ikuhiko; Fukuyoshi, Shuichi; Takahashi, Ohgi

    2015-12-10

    Because the aspartic acid (Asp) residues in proteins are occasionally isomerized in the human body, not only l-α-Asp but also l-β-Asp, D-α-Asp and D-β-Asp are found in human proteins. In these isomerized aspartic acids, the proportion of D-β-Asp is the largest and the proportions of l-β-Asp and D-α-Asp found in human proteins are comparatively small. To explain the proportions of aspartic acid isomers, the possibility of an enzyme able to repair l-β-Asp and D-α-Asp is frequently considered. The protein L-isoaspartyl (D-aspartyl) O-methyltransferase (PIMT) is considered one of the possible repair enzymes for l-β-Asp and D-α-Asp. Human PIMT is an enzyme that recognizes both l-β-Asp and D-α-Asp, and catalyzes the methylation of their side chains. In this study, the binding modes between PIMT and peptide substrates containing l-β-Asp or D-α-Asp residues were investigated using computational protein-ligand docking and molecular dynamics simulations. The results indicate that carboxyl groups of both l-β-Asp and D-α-Asp were recognized in similar modes by PIMT and that the C-terminal regions of substrate peptides were located in similar positions on PIMT for both the l-β-Asp and D-α-Asp peptides. In contrast, for peptides containing l-α-Asp or D-β-Asp residues, which are not substrates of PIMT, the computationally constructed binding modes between PIMT and peptides greatly differed from those between PIMT and substrates. In the nonsubstrate peptides, not inter- but intra-molecular hydrogen bonds were observed, and the conformations of peptides were more rigid than those of substrates. Thus, the in silico analytical methods were able to distinguish substrates from nonsubstrates and the computational methods are expected to complement experimental analytical methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cloning and heterologous expression of the antibiotic peptide (ABP) genes from Rhizopus oligosporus NBRC 8631.

    PubMed

    Yamada, Osamu; Sakamoto, Kazutoshi; Tominaga, Mihoko; Nakayama, Tasuku; Koseki, Takuya; Fujita, Akiko; Akita, Osamu

    2005-03-01

    We carried out protein sequencing of purified Antibiotic Peptide (ABP), and cloned two genes encoding this peptide as abp1 and abp2, from Rhizopus oligosporus NBRC 8631. Both genes contain an almost identical 231-bp segment, with only 3 nucleotide substitutions, encoding a 77 amino acid peptide. The abp gene product comprises a 28 amino acid signal sequence and a 49 amino acid mature peptide. Northern blot analysis showed that at least one of the abp genes is transcribed in R. oligosporus NBRC 8631. A truncated form of abp1 encoding only the mature peptide was fused with the alpha-factor signal peptide and engineered for expression in Pichia pastoris SMD1168H. Culture broth of the recombinant Pichia displayed ABP activity against Bacillus subtilis NBRC 3335 after induction of heterologous gene expression. This result indicates that mature ABP formed the active structure without the aid of other factors from R. oligosporus, and was secreted.

  7. Recent studies on the antimicrobial peptides lactoferricin and lactoferrampin.

    PubMed

    Yin, C; Wong, J H; Ng, T B

    2014-01-01

    Lactoferricin and lactoferrampin, peptides derived from the whey protein lactoferrin, are antimicrobial agents with a promising prospect and are currently one of the research focuses. In this review, a basic introduction including location and solution structures of these two peptides is given. Their biological activities encompassing antiviral, antibacterial, antifungal and anti-inflammatory activities with possible mechanisms are mentioned. In terms of modification studies, research about identification of their active derivatives and crucial amino acid residues is also discussed. Various attempts at modification of lactoferricin and lactoferrampin such as introducing big hydrophobic side-chains; employing special amino acids for synthesis; N-acetylization, amidation, cyclization and peptide chimera are summarized. The studies on lactoferricin-lactoferrampin chimera are discussed in detail. Future prospects of lactoferricin and lactoferrampin are covered.

  8. Isolation, Purification and Molecular Mechanism of a Peanut Protein-Derived ACE-Inhibitory Peptide

    PubMed Central

    Shi, Aimin; Liu, Hongzhi; Liu, Li; Hu, Hui; Wang, Qiang; Adhikari, Benu

    2014-01-01

    Although a number of bioactive peptides are capable of angiotensin I-converting enzyme (ACE) inhibitory effects, little is known regarding the mechanism of peanut peptides using molecular simulation. The aim of this study was to obtain ACE inhibiting peptide from peanut protein and provide insight on the molecular mechanism of its ACE inhibiting action. Peanut peptides having ACE inhibitory activity were isolated through enzymatic hydrolysis and ultrafiltration. Further chromatographic fractionation was conducted to isolate a more potent peanut peptide and its antihypertensive activity was analyzed through in vitro ACE inhibitory tests and in vivo animal experiments. MALDI-TOF/TOF-MS was used to identify its amino acid sequence. Mechanism of ACE inhibition of P8 was analyzed using molecular docking and molecular dynamics simulation. A peanut peptide (P8) having Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence was obtained which had the highest ACE inhibiting activity of 85.77% (half maximal inhibitory concentration (IC50): 0.0052 mg/ml). This peanut peptide is a competitive inhibitor and show significant short term (12 h) and long term (28 days) antihypertensive activity. Dynamic tests illustrated that P8 can be successfully docked into the active pocket of ACE and can be combined with several amino acid residues. Hydrogen bond, electrostatic bond and Pi-bond were found to be the three main interaction contributing to the structural stability of ACE-peptide complex. In addition, zinc atom could form metal-carboxylic coordination bond with Tyr, Met residues of P8, resulting into its high ACE inhibiting activity. Our finding indicated that the peanut peptide (P8) having a Lys-Leu-Tyr-Met-Arg-Pro amino acid sequence can be a promising candidate for functional foods and prescription drug aimed at control of hypertension. PMID:25347076

  9. InverPep: A database of invertebrate antimicrobial peptides.

    PubMed

    Gómez, Esteban A; Giraldo, Paula; Orduz, Sergio

    2017-03-01

    The aim of this work was to construct InverPep, a database specialised in experimentally validated antimicrobial peptides (AMPs) from invertebrates. AMP data contained in InverPep were manually curated from other databases and the scientific literature. MySQL was integrated with the development platform Laravel; this framework allows to integrate programming in PHP with HTML and was used to design the InverPep web page's interface. InverPep contains 18 separated fields, including InverPep code, phylum and species source, peptide name, sequence, peptide length, secondary structure, molar mass, charge, isoelectric point, hydrophobicity, Boman index, aliphatic index and percentage of hydrophobic amino acids. CALCAMPI, an algorithm to calculate the physicochemical properties of multiple peptides simultaneously, was programmed in PERL language. To date, InverPep contains 702 experimentally validated AMPs from invertebrate species. All of the peptides contain information associated with their source, physicochemical properties, secondary structure, biological activity and links to external literature. Most AMPs in InverPep have a length between 10 and 50 amino acids, a positive charge, a Boman index between 0 and 2 kcal/mol, and 30-50% hydrophobic amino acids. InverPep includes 33 AMPs not reported in other databases. Besides, CALCAMPI and statistical analysis of InverPep data is presented. The InverPep database is available in English and Spanish. InverPep is a useful database to study invertebrate AMPs and its information could be used for the design of new peptides. The user-friendly interface of InverPep and its information can be freely accessed via a web-based browser at http://ciencias.medellin.unal.edu.co/gruposdeinvestigacion/prospeccionydisenobiomoleculas/InverPep/public/home_en. Copyright © 2016 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  10. Heat-enhanced peptide synthesis on Teflon-patterned paper.

    PubMed

    Deiss, Frédérique; Yang, Yang; Matochko, Wadim L; Derda, Ratmir

    2016-06-14

    In this report, we describe the methodology for 96 parallel organic syntheses of peptides on Teflon-patterned paper assisted by heating with an infra-red lamp. SPOT synthesis is an important technology for production of peptide arrays on a paper-based support for rapid identification of peptide ligands, epitope mapping, and identification of bio-conjugation reactions. The major drawback of the SPOT synthesis methodology published to-date is suboptimal reaction conversion due to mass transport limitations in the unmixed reaction spot. The technology developed in this report overcomes these problems by changing the environment of the reaction from static to dynamic (flow-through), and further accelerating the reaction by selective heating of the reaction support in contact with activated amino acids. Patterning paper with Teflon allows for droplets of organic solvents to be confined in a zone on the paper array and flow through the paper at a well-defined rate and provide a convenient, power-free setup for flow-through solid-phase synthesis and efficient assembly of peptide arrays. We employed an infra-red (IR) lamp to locally heat the cellulosic support during the flow-through delivery of the reagents to each zone of the paper-based array. We demonstrate that IR-heating in solid phase peptide synthesis shortened the reaction time necessary for amide bond formation down to 3 minutes; in some couplings of alpha amino acids, conversion rates increased up to fifteen folds. The IR-heating improved the assembly of difficult sequences, such as homo-oligomers of all 20 natural amino acids.

  11. Structural Biology of Non-Ribosomal Peptide Synthetases

    PubMed Central

    Miller, Bradley R.; Gulick, Andrew M.

    2016-01-01

    Summary The non-ribosomal peptide synthetases are modular enzymes that catalyze synthesis of important peptide products from a variety of standard and non-proteinogenic amino acid substrates. Within a single module are multiple catalytic domains that are responsible for incorporation of a single residue. After the amino acid is activated and covalently attached to an integrated carrier protein domain, the substrates and intermediates are delivered to neighboring catalytic domains for peptide bond formation or, in some modules, chemical modification. In the final module, the peptide is delivered to a terminal thioesterase domain that catalyzes release of the peptide product. This multi-domain modular architecture raises questions about the structural features that enable this assembly line synthesis in an efficient manner. The structures of the core component domains have been determined and demonstrate insights into the catalytic activity. More recently, multi-domain structures have been determined and are providing clues to the features of these enzyme systems that govern the functional interaction between multiple domains. This chapter describes the structures of NRPS proteins and the strategies that are being used to assist structural studies of these dynamic proteins, including careful consideration of domain boundaries for generation of truncated proteins and the use of mechanism-based inhibitors that trap interactions between the catalytic and carrier protein domains. PMID:26831698

  12. Electron-Transfer Ion/Ion Reactions of Doubly Protonated Peptides: Effect of Elevated Bath Gas Temperature

    PubMed Central

    Pitteri, Sharon J.; Chrisman, Paul A.; McLuckey, Scott A.

    2005-01-01

    In this study, the electron-transfer dissociation (ETD) behavior of cations derived from 27 different peptides (22 of which are tryptic peptides) has been studied in a 3D quadrupole ion trap mass spectrometer. Ion/ion reactions between peptide cations and nitrobenzene anions have been examined at both room temperature and in an elevated temperature bath gas environment to form ETD product ions. From the peptides studied, the ETD sequence coverage tends to be inversely related to peptide size. At room temperature, very high sequence coverage (~100%) was observed for small peptides (≤7 amino acids). For medium-sized peptides composed of 8–11 amino acids, the average sequence coverage was 46%. Larger peptides with 14 or more amino acids yielded an average sequence coverage of 23%. Elevated-temperature ETD provided increased sequence coverage over room-temperature experiments for the peptides of greater than 7 residues, giving an average of 67% for medium-sized peptides and 63% for larger peptides. Percent ETD, a measure of the extent of electron transfer, has also been calculated for the peptides and also shows an inverse relation with peptide size. Bath gas temperature does not have a consistent effect on percent ETD, however. For the tryptic peptides, fragmentation is localized at the ends of the peptides suggesting that the distribution of charge within the peptide may play an important role in determining fragmentation sites. A triply protonated peptide has also been studied and shows behavior similar to the doubly charged peptides. These preliminary results suggest that for a given charge state there is a maximum size for which high sequence coverage is obtained and that increasing the bath gas temperature can increase this maximum. PMID:16131079

  13. Peptide self-assembly: thermodynamics and kinetics.

    PubMed

    Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai

    2016-10-21

    Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

  14. A multiple multicomponent approach to chimeric peptide-peptoid podands.

    PubMed

    Rivera, Daniel G; León, Fredy; Concepción, Odette; Morales, Fidel E; Wessjohann, Ludger A

    2013-05-10

    The success of multi-armed, peptide-based receptors in supramolecular chemistry traditionally is not only based on the sequence but equally on an appropriate positioning of various peptidic chains to create a multivalent array of binding elements. As a faster, more versatile and alternative access toward (pseudo)peptidic receptors, a new approach based on multiple Ugi four-component reactions (Ugi-4CR) is proposed as a means of simultaneously incorporating several binding and catalytic elements into organizing scaffolds. By employing α-amino acids either as the amino or acid components of the Ugi-4CRs, this multiple multicomponent process allows for the one-pot assembly of podands bearing chimeric peptide-peptoid chains as appended arms. Tripodal, bowl-shaped, and concave polyfunctional skeletons are employed as topologically varied platforms for positioning the multiple peptidic chains formed by Ugi-4CRs. In a similar approach, steroidal building blocks with several axially-oriented isocyano groups are synthesized and utilized to align the chimeric chains with conformational constrains, thus providing an alternative to the classical peptido-steroidal receptors. The branched and hybrid peptide-peptoid appendages allow new possibilities for both rational design and combinatorial production of synthetic receptors. The concept is also expandable to other multicomponent reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. C-terminal Amidation of an Osteocalcin-derived Peptide Promotes Hydroxyapatite Crystallization*

    PubMed Central

    Hosseini, Samaneh; Naderi-Manesh, Hossein; Mountassif, Driss; Cerruti, Marta; Vali, Hojatollah; Faghihi, Shahab

    2013-01-01

    Genesis of natural biocomposite-based materials, such as bone, cartilage, and teeth, involves interactions between organic and inorganic systems. Natural biopolymers, such as peptide motif sequences, can be used as a template to direct the nucleation and crystallization of hydroxyapatite (HA). In this study, a natural motif sequence consisting of 13 amino acids present in the first helix of osteocalcin was selected based on its calcium binding ability and used as substrate for nucleation of HA crystals. The acidic (acidic osteocalcin-derived peptide (OSC)) and amidic (amidic osteocalcin-derived peptide (OSN)) forms of this sequence were synthesized to investigate the effects of different C termini on the process of biomineralization. Electron microscopy analyses show the formation of plate-like HA crystals with random size and shape in the presence of OSN. In contrast, spherical amorphous calcium phosphate is formed in the presence of OSC. Circular dichroism experiments indicate conformational changes of amidic peptide to an open and regular structure as a consequence of interaction with calcium and phosphate. There is no conformational change detectable in OSC. It is concluded that HA crystal formation, which only occurred in OSN, is attributable to C-terminal amidation of a natural peptide derived from osteocalcin. It is also proposed that natural peptides with the ability to promote biomineralization have the potential to be utilized in hard tissue regeneration. PMID:23362258

  16. Peptide-Based Molecular Hydrogels as Supramolecular Protein Mimics.

    PubMed

    Singh, Nishant; Kumar, Mohit; Miravet, Juan F; Ulijn, Rein V; Escuder, Beatriu

    2017-01-23

    This Minireview concerns recent advances in the design, synthesis, and application of low molecular-weight peptidic hydrogelators. The sequence-specific combinations of amino acid side chain functionalities combined with hydrogen bonding of amide backbones and hydrophobic (aromatic) capping groups give these peptidic molecules the intrinsic tendency to self-assemble. The most prevalent designs include N-capped amino acid residues, bolamphiphilic peptides, and amphipathic peptides. Factors such as hydrophobic effects, the Hofmeister effect, and tunable ionization influence their aggregation properties. The self-assembly of simple bio-inspired building blocks into higher organized structures allows comparisons to be drawn with proteins and their complex functionalities, providing preliminary insights into complex biological functions and also enabling their application in a wide range of fields including catalysis, biomedical applications, and mimicry of natural dissipative systems. The Minireview is concluded by a short summary and outlook, highlighting the advances and steps required to bridge the gaps in the understanding of such systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Gene delivery by a steroid-peptide nucleic acid conjugate.

    PubMed

    Rebuffat, Alexandre G; Nawrocki, Andrea R; Nielsen, Peter E; Bernasconi, Alessio G; Bernal-Mendez, Eloy; Frey, Brigitte M; Frey, Felix J

    2002-09-01

    We previously introduced a method called steroid-mediated gene delivery (SMGD), which uses steroid receptors as shuttles to facilitate the nuclear uptake of transfected DNA. Here, we describe a SMGD strategy with peptide nucleic acids (PNAs) that allowed linkage of a steroid molecule to a defined position in a plasmid without disturbing its gene expression. We synthesized and tested several bifunctional steroid derivatives [patent in process of nationalization] and finally selected the compound named DEX-bisPNA, a molecule consisting of a dexamethasone moiety linked to a PNA clamp (bisPNA) through a 30-atom chemical spacer. Dex-bisPNA binds to the glucocorticoid receptor (GR) as well as to reporter plasmids containing the corresponding PNA binding sites, translocates the GR from the cytoplasm into the nucleus, and increases the delivery of plasmid to the nucleus, resulting in enhanced GR-dependent expression of the reporter gene. The SMGD effect was more pronounced in growth-arrested cells than in proliferating cells. The specificity for the GR was shown by the reversion of the SMGD effect in the presence of dexamethasone as well as an enhanced expression in GR-positive cells but not in GR-negative cells. Thus, SMGD with PNA is a promising strategy for nonviral gene delivery into target tissues expressing specific steroid receptors.

  18. Peptide vaccine against canine parvovirus: identification of two neutralization subsites in the N terminus of VP2 and optimization of the amino acid sequence.

    PubMed Central

    Casal, J I; Langeveld, J P; Cortés, E; Schaaper, W W; van Dijk, E; Vela, C; Kamstrup, S; Meloen, R H

    1995-01-01

    The N-terminal domain of the major capsid protein VP2 of canine parvovirus was shown to be an excellent target for development of a synthetic peptide vaccine, but detailed information about number of epitopes, optimal length, sequence choice, and site of coupling to the carrier protein was lacking. Therefore, several overlapping peptides based on this N terminus were synthesized to establish conditions for optimal and reproducible induction of neutralizing antibodies in rabbits. The specificity and neutralizing ability of the antibody response for these peptides were determined. Within the N-terminal 23 residues of VP2, two subsites able to induce neutralizing antibodies and which overlapped by only two glycine residues at positions 10 and 11 could be discriminated. The shortest sequence sufficient for neutralization induction was nine residues. Peptides longer than 13 residues consistently induced neutralization, provided that their N termini were located between positions 1 and 11 of VP2. The orientation of the peptides at the carrier protein was also of importance, being more effective when coupled through the N terminus than through the C terminus to keyhole limpet hemocyanin. The results suggest that the presence of amino acid residues 2 to 21 (and probably 3 to 17) of VP2 in a single peptide is preferable for a synthetic peptide vaccine. PMID:7474152

  19. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  20. Designing Anticancer Peptides by Constructive Machine Learning.

    PubMed

    Grisoni, Francesca; Neuhaus, Claudia S; Gabernet, Gisela; Müller, Alex T; Hiss, Jan A; Schneider, Gisbert

    2018-04-21

    Constructive (generative) machine learning enables the automated generation of novel chemical structures without the need for explicit molecular design rules. This study presents the experimental application of such a deep machine learning model to design membranolytic anticancer peptides (ACPs) de novo. A recurrent neural network with long short-term memory cells was trained on α-helical cationic amphipathic peptide sequences and then fine-tuned with 26 known ACPs by transfer learning. This optimized model was used to generate unique and novel amino acid sequences. Twelve of the peptides were synthesized and tested for their activity on MCF7 human breast adenocarcinoma cells and selectivity against human erythrocytes. Ten of these peptides were active against cancer cells. Six of the active peptides killed MCF7 cancer cells without affecting human erythrocytes with at least threefold selectivity. These results advocate constructive machine learning for the automated design of peptides with desired biological activities. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Whey Peptide-Based Formulas With ω-3 Fatty Acids Are Protective in Lipopolysaccharide-Mediated Sepsis.

    PubMed

    Tsutsumi, Rie; Horikawa, Yousuke T; Kume, Katsuyoshi; Tanaka, Katsuya; Kasai, Asuka; Kadota, Takako; Tsutsumi, Yasuo M

    2015-07-01

    Sepsis and septic shock syndrome are among the leading causes of death in critically ill patients. Lipopolysaccharide (LPS) released by bacteria within the colon may translocate across a compromised epithelium, leading to oxidative stress, inflammation, sepsis, and eventually death. We examined the effects of a whey-based enteral formula high in cysteine (antioxidant precursor) and the addition of ω-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), against a mouse model of LPS-induced sepsis. Mice were fed either a whey-based diet with EPA-DHA (PAF), a whey-based diet without EPA-DHA (PSTD), or a casein-based control diet (CONT). Mice fed PAF or PSTD were protected against LPS-induced weight loss. Whey-based diets suppressed inflammatory cytokine release and oxidative stress damage. Furthermore, PAF and PSTD were able to inhibit autophagy, a mechanism in which the cell recycles damaged organelles. These anti-inflammatory and antioxidative effects of PSTD and PAF resulted in decreased liver inflammation and intestinal damage and promoted protective microbiota within the intestines. These data suggest a clinical role for whey peptide-based diets in promoting healing and recovery in critically ill patients. © 2014 American Society for Parenteral and Enteral Nutrition.

  2. Use of the 2-chlorotrityl chloride resin for microwave-assisted solid phase peptide synthesis.

    PubMed

    Ieronymaki, Matthaia; Androutsou, Maria Eleni; Pantelia, Anna; Friligou, Irene; Crisp, Molly; High, Kirsty; Penkman, Kirsty; Gatos, Dimitrios; Tselios, Theodore

    2015-09-01

    A fast and efficient microwave (MW)-assisted solid-phase peptide synthesis protocol using the 2-chlorotrityl chloride resin and the Fmoc/tBu methodology, has been developed. The established protocol combines the advantages of MW irradiation and the acid labile 2-chlorotrityl chloride resin. The effect of temperature during the MW irradiation, the degree of resin substitution during the coupling of the first amino acids and the rate of racemization for each amino acid were evaluated. The suggested solid phase methodology is applicable for orthogonal peptide synthesis and for the synthesis of cyclic peptides. © 2015 Wiley Periodicals, Inc.

  3. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex.

    PubMed

    Elliott, Tim; Williams, Anthony

    2005-10-01

    Major histocompatibility complex (MHC) class I complexes present peptides from both self and foreign intracellular proteins on the surface of most nucleated cells. The assembled heterotrimeric complexes consist of a polymorphic glycosylated heavy chain, non-polymorphic beta(2) microglobulin, and a peptide of typically nine amino acids in length. Assembly of the class I complexes occurs in the endoplasmic reticulum and is assisted by a number of chaperone molecules. A multimolecular unit termed the peptide-loading complex (PLC) is integral to this process. The PLC contains a peptide transporter (transporter associated with antigen processing), a thiooxido-reductase (ERp57), a glycoprotein chaperone (calreticulin), and tapasin, a class I-specific chaperone. We suggest that class I assembly involves a process of optimization where the peptide cargo of the complex is edited by the PLC. Furthermore, this selective peptide loading is biased toward peptides that have a longer off-rate from the assembled complex. We suggest that tapasin is the key chaperone that directs this action of the PLC with secondary contributions from calreticulin and possibly ERp57. We provide a framework model for how this may operate at the molecular level and draw parallels with the proposed mechanism of action of human leukocyte antigen-DM for MHC class II complex optimization.

  4. Proteome-wide inference of human endophilin 1-binding peptides.

    PubMed

    Wu, Gang; Zhang, Zeng-Li; Fu, Chun-Jiang; Lv, Feng-Lin; Tian, Fei-Fei

    2012-10-01

    Human endophilin 1 (hEndo1) is a multifunctional protein that was found to bind a wide spectrum of prolinerich endocytic proteins through its Src homology 3 (SH3) domain. In order to elucidate the unknown biological functions of hEndo1, it is essential to find out the cytoplasmic components that hEndo1 recognizes and binds. However, it is too time-consuming and expensive to synthesize all peptide candidates found in the human proteome and to perform hEndo1 SH3-peptide affinity assay to identify the hEndo1-binding partners. In the present work, we describe a structure/ sequence-hybrid approach to perform proteome-wide inference of human hEndo1-binding peptides using the information gained from both the primary sequence of affinity-known peptides and the interaction profile involved in hEndo1 SH3-peptide complex three-dimensional structures. Modeling results show that (i) different residue positions contribute distinctly to peptide affinity and specificity; P-1, P2 and P4 are most important, P1 and P3 are also effective, and P-3, P-2, P0, P5 and P6 are relatively insignificant, (ii) the consensus core PXXP motif is necessary but not sufficient for determining high affinity of peptides, and some other positions must be also essential in the hEndo1 SH3-peptide binding, and (iii) the alternating arrangement of polar and nonpolar amino acids along peptide sequence is critical for the high specificity of peptide recognition by hEndo1 SH3 domain. In addition, we also find that the residue type at a specific position of hEndo1-binding peptides is not stringently invariable; amino acids that possess similar polarity could replace each other without substantial influence on peptide affinity. In this way, hEndo1 presents a broad specificity in the peptide ligands that it binds.

  5. Effect of sequence and stereochemistry reversal on p53 peptide mimicry.

    PubMed

    Atzori, Alessio; Baker, Audrey E; Chiu, Mark; Bryce, Richard A; Bonnet, Pascal

    2013-01-01

    Peptidomimetics effective in modulating protein-protein interactions and resistant to proteolysis have potential in therapeutic applications. An appealing yet underperforming peptidomimetic strategy is to employ D-amino acids and reversed sequences to mimic a lead peptide conformation, either separately or as the combined retro-inverso peptide. In this work, we examine the conformations of inverse, reverse and retro-inverso peptides of p53(15-29) using implicit solvent molecular dynamics simulation and circular dichroism spectroscopy. In order to obtain converged ensembles for the peptides, we find enhanced sampling is required via the replica exchange molecular dynamics method. From these replica exchange simulations, the D-peptide analogues of p53(15-29) result in a predominantly left-handed helical conformation. When the parent sequence is reversed sequence as either the L-peptide and D-peptide, these peptides display a greater helical propensity, feature reflected by NMR and CD studies in TFE/water solvent. The simulations also indicate that, while approximately similar orientations of the side-chains are possible by the peptide analogues, their ability to mimic the parent peptide is severely compromised by backbone orientation (for D-amino acids) and side-chain orientation (for reversed sequences). A retro-inverso peptide is disadvantaged as a mimic in both aspects, and further chemical modification is required to enable this concept to be used fruitfully in peptidomimetic design. The replica exchange molecular simulation approach adopted here, with its ability to provide detailed conformational insights into modified peptides, has potential as a tool to guide structure-based design of new improved peptidomimetics.

  6. Hexagonally Ordered Arrays of α-Helical Bundles Formed from Peptide-Dendron Hybrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkley, Deborah A.; Rokhlenko, Yekaterina; Marine, Jeannette E.

    Combining monodisperse building blocks that have distinct folding properties serves as a modular strategy for controlling structural complexity in hierarchically organized materials. We combine an α-helical bundle-forming peptide with self-assembling dendrons to better control the arrangement of functional groups within cylindrical nanostructures. Site-specific grafting of dendrons to amino acid residues on the exterior of the α-helical bundle yields monodisperse macromolecules with programmable folding and self-assembly properties. The resulting hybrid biomaterials form thermotropic columnar hexagonal mesophases in which the peptides adopt an α-helical conformation. Bundling of the α-helical peptides accompanies self-assembly of the peptide-dendron hybrids into cylindrical nanostructures. The bundle stoichiometrymore » in the mesophase agrees well with the size found in solution for α-helical bundles of peptides with a similar amino acid sequence.« less

  7. Formation of specific amino acid sequences during carbodiimide-mediated condensation of amino acids in aqueous solution, and computer-simulated sequence generation

    NASA Astrophysics Data System (ADS)

    Hartmann, Jürgen; Nawroth, Thomas; Dose, Klaus

    1984-12-01

    Carbodiimide-mediated peptide synthesis in aqueous solution has been studied with respect to self-ordering of amino acids. The copolymerisation of amino acids in the presence of glutamic acid or pyroglutamic acid leads to short pyroglutamyl peptides. Without pyroglutamic acid the formation of higher polymers is favoured. The interactions of the amino acids and the peptides, however, are very complex. Therefore, the experimental results are rather difficult to explain. Some of the experimental results, however, can be explained with the aid of computer simulation programs. Regarding only the tripeptide fraction the copolymerisation of pyroGlu, Ala and Leu, as well as the simulated copolymerisation lead to pyroGlu-Ala-Leu as the main reaction product. The amino acid composition of the insoluble peptides formed during the copolymerisation of Ser, Gly, Ala, Val, Phe, Leu and Ile corresponds in part to the computer-simulated copolymerisation data.

  8. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  9. Precursors of vertebrate peptide antibiotics dermaseptin b and adenoregulin have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins.

    PubMed

    Amiche, M; Ducancel, F; Mor, A; Boulain, J C; Menez, A; Nicolas, P

    1994-07-08

    The dermaseptins are a family of broad spectrum antimicrobial peptides, 27-34 amino acids long, involved in the defense of the naked skin of frogs against microbial invasion. They are the first vertebrate peptides to show lethal effects against the filamentous fungi responsible for severe opportunistic infections accompanying immunodeficiency syndrome and the use of immunosuppressive agents. A cDNA library was constructed from skin poly(A+) RNA of the arboreal frog Phyllomedusa bicolor and screened with an oligonucleotide probe complementary to the COOH terminus of dermaseptin b. Several clones contained a full-length DNA copy of a 443-nucleotide mRNA that encoded a 78-residue dermaseptin b precursor protein. The deduced precursor contained a putative signal sequence at the NH2 terminus, a 20-residue spacer sequence extremely rich (60%) in glutamic and aspartic acids, and a single copy of a dermaseptin b progenitor sequence at the COOH terminus. One clone contained a complete copy of adenoregulin, a 33-residue peptide reported to enhance the binding of agonists to the A1 adenosine receptor. The mRNAs encoding adenoregulin and dermaseptin b were very similar: 70 and 75% nucleotide identities between the 5'- and 3'-untranslated regions, respectively; 91% amino acid identity between the signal peptides; 82% identity between the acidic spacer sequences; and 38% identity between adenoregulin and dermaseptin b. Because adenoregulin and dermaseptin b have similar precursor designs and antimicrobial spectra, adenoregulin should be considered as a new member of the dermaseptin family and alternatively named dermaseptin b II. Preprodermaseptin b and preproadenoregulin have considerable sequence identities to the precursors encoding the opioid heptapeptides dermorphin, dermenkephalin, and deltorphins. This similarity extended into the 5'-untranslated regions of the mRNAs. These findings suggest that the genes encoding the four preproproteins are all members of the same family

  10. Peptides derivatized with bicyclic quaternary ammonium ionization tags. Sequencing via tandem mass spectrometry.

    PubMed

    Setner, Bartosz; Rudowska, Magdalena; Klem, Ewelina; Cebrat, Marek; Szewczuk, Zbigniew

    2014-10-01

    Improving the sensitivity of detection and fragmentation of peptides to provide reliable sequencing of peptides is an important goal of mass spectrometric analysis. Peptides derivatized by bicyclic quaternary ammonium ionization tags: 1-azabicyclo[2.2.2]octane (ABCO) or 1,4-diazabicyclo[2.2.2]octane (DABCO), are characterized by an increased detection sensitivity in electrospray ionization mass spectrometry (ESI-MS) and longer retention times on the reverse-phase (RP) chromatography columns. The improvement of the detection limit was observed even for peptides dissolved in 10 mM NaCl. Collision-induced dissociation tandem mass spectrometry of quaternary ammonium salts derivatives of peptides showed dominant a- and b-type ions, allowing facile sequencing of peptides. The bicyclic ionization tags are stable in collision-induced dissociation experiments, and the resulted fragmentation pattern is not significantly influenced by either acidic or basic amino acid residues in the peptide sequence. Obtained results indicate the general usefulness of the bicyclic quaternary ammonium ionization tags for ESI-MS/MS sequencing of peptides. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Anionic magnetite nanoparticle conjugated with pyrrolidinyl peptide nucleic acid for DNA base discrimination

    NASA Astrophysics Data System (ADS)

    Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha

    2016-09-01

    Magnetite nanoparticles (MNPs) were surface modified with anionic poly( N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size ( D h) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV-visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.

  12. On-resin conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) congeners.

    PubMed

    Mullen, Daniel G; Weigel, Benjamin; Barany, George; Distefano, Mark D

    2010-05-01

    The Acm protecting group for the thiol functionality of cysteine is removed under conditions (Hg(2+)) that are orthogonal to the acidic milieu used for global deprotection in Fmoc-based solid-phase peptide synthesis. This use of a toxic heavy metal for deprotection has limited the usefulness of Acm in peptide synthesis. The Acm group may be converted to the Scm derivative that can then be used as a reactive intermediate for unsymmetrical disulfide formation. It may also be removed by mild reductive conditions to generate unprotected cysteine. Conversion of Cys(Acm)-containing peptides to their corresponding Cys(Scm) derivatives in solution is often problematic because the sulfenyl chloride reagent used for this conversion may react with the sensitive amino acids tyrosine and tryptophan. In this protocol, we report a method for on-resin Acm to Scm conversion that allows the preparation of Cys(Scm)-containing peptides under conditions that do not modify other amino acids. (c) 2010 European Peptide Society and John Wiley & Sons, Ltd.

  13. Rapid Identification of Staphylococcus aureus and Methicillin Resistance by Flow Cytometry Using a Peptide Nucleic Acid Probe ▿

    PubMed Central

    Shrestha, Nabin K.; Scalera, Nikole M.; Wilson, Deborah A.; Brehm-Stecher, Byron; Procop, Gary W.

    2011-01-01

    A total of 56 Staphylococcus aureus isolates incubated for 2 h in the presence or absence of oxacillin were analyzed by flow cytometry after labeling with an S. aureus-specific peptide nucleic acid (PNA) probe. Two defined ratios, the paired signal count ratio (PSCR) and the gate signal count ratio (GSCR), differentiated methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) with sensitivities of 100% each and specificities of 96% and 100%, respectively. PMID:21795508

  14. Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen Erwinia amylovora.

    PubMed

    Patel, Ravi R; Sundin, George W; Yang, Ching-Hong; Wang, Jie; Huntley, Regan B; Yuan, Xiaochen; Zeng, Quan

    2017-01-01

    Erwinia amylovora is a Gram-negative bacterial plant pathogen in the family Enterobacteriaceae and is the causal agent of fire blight, a devastating disease of apple and pear. Fire blight is traditionally managed by the application of the antibiotic streptomycin during bloom, but this strategy has been challenged by the development and spread of streptomycin resistance. Thus, there is an urgent need for effective, specific, and sustainable control alternatives for fire blight. Antisense antimicrobials are oligomers of nucleic acid homologs with antisense sequence of essential genes in bacteria. The binding of these molecules to the mRNA of essential genes can result in translational repression and antimicrobial effect. Here, we explored the possibility of developing antisense antimicrobials against E. amylovora and using these compounds in fire blight control. We determined that a 10-nucleotide oligomer of peptide nucleic acid (PNA) targeting the start codon region of an essential gene acpP is able to cause complete growth inhibition of E. amylovora . We found that conjugation of cell penetrating peptide (CPP) to PNA is essential for the antimicrobial effect, with CPP1 [(KFF)3K] being the most effective against E. amylovora . The minimal inhibitory concentration (MIC) of anti- acpP -CPP1 (2.5 μM) is comparable to the MIC of streptomycin (2 μM). Examination of the antimicrobial mechanisms demonstrated that anti- acpP -CPP1 caused dose-dependent reduction of acpP mRNA in E. amylovora upon treatment and resulted in cell death (bactericidal effect). Anti- acpP -CPP1 (100 μM) is able to effectively limit the pathogen growth on stigmas of apple flowers, although less effective than streptomycin. Finally, unlike streptomycin that does not display any specificity in inhibiting pathogen growth, anti- acpP -CPP1 has more specific antimicrobial effect against E. amylovora . In summary, we demonstrated that PNA-CPP can cause an effective, specific antimicrobial effect

  15. Exploration of Using Antisense Peptide Nucleic Acid (PNA)-cell Penetrating Peptide (CPP) as a Novel Bactericide against Fire Blight Pathogen Erwinia amylovora

    PubMed Central

    Patel, Ravi R.; Sundin, George W.; Yang, Ching-Hong; Wang, Jie; Huntley, Regan B.; Yuan, Xiaochen; Zeng, Quan

    2017-01-01

    Erwinia amylovora is a Gram-negative bacterial plant pathogen in the family Enterobacteriaceae and is the causal agent of fire blight, a devastating disease of apple and pear. Fire blight is traditionally managed by the application of the antibiotic streptomycin during bloom, but this strategy has been challenged by the development and spread of streptomycin resistance. Thus, there is an urgent need for effective, specific, and sustainable control alternatives for fire blight. Antisense antimicrobials are oligomers of nucleic acid homologs with antisense sequence of essential genes in bacteria. The binding of these molecules to the mRNA of essential genes can result in translational repression and antimicrobial effect. Here, we explored the possibility of developing antisense antimicrobials against E. amylovora and using these compounds in fire blight control. We determined that a 10-nucleotide oligomer of peptide nucleic acid (PNA) targeting the start codon region of an essential gene acpP is able to cause complete growth inhibition of E. amylovora. We found that conjugation of cell penetrating peptide (CPP) to PNA is essential for the antimicrobial effect, with CPP1 [(KFF)3K] being the most effective against E. amylovora. The minimal inhibitory concentration (MIC) of anti-acpP-CPP1 (2.5 μM) is comparable to the MIC of streptomycin (2 μM). Examination of the antimicrobial mechanisms demonstrated that anti-acpP-CPP1 caused dose-dependent reduction of acpP mRNA in E. amylovora upon treatment and resulted in cell death (bactericidal effect). Anti-acpP-CPP1 (100 μM) is able to effectively limit the pathogen growth on stigmas of apple flowers, although less effective than streptomycin. Finally, unlike streptomycin that does not display any specificity in inhibiting pathogen growth, anti-acpP-CPP1 has more specific antimicrobial effect against E. amylovora. In summary, we demonstrated that PNA–CPP can cause an effective, specific antimicrobial effect against E

  16. The role of phosphorylation in dentin phosphoprotein peptide absorption to hydroxyapatite surfaces: a molecular dynamics study

    PubMed Central

    Villarreal-Ramirez, Eduardo; Garduño-Juarez, Ramon; Gericke, Arne; Boskey, Adele

    2015-01-01

    Dentin phosphoprotein (DPP) is a protein expressed mainly in dentin and to a lesser extent in bone. DPP has a disordered structure, rich in glutamic acid, aspartic acid and phosphorylated serine/threonine residues. It has a high capacity for binding to calcium ions and to hydroxyapatite (HA) crystal surfaces. We used molecular dynamics (MD) simulations as a method for virtually screening interactions between DPP motifs and HA. The goal was to determine which motifs are absorbed to HA surfaces. For these simulations, we considered five peptides from the human DPP sequence. All-atom MD simulations were performed using GROMACS, the peptides were oriented parallel to the {100} HA crystal surface, the distance between the HA and the peptide was 3 nm. The system was simulated for 20 ns. Preliminary results show that for the unphosphorylated peptides, the acidic amino acids present an electrostatic attraction where their side chains are oriented towards HA. This attraction, however, is slow to facilitate bulk transport to the crystal surface. On the other hand, the phosphorylated (PP) peptides are rapidly absorbed on the surface of the HA with their centers of mass closer to the HA surface. More importantly, the root mean square fluctuation (RMSF) indicates that the average structures of the phosphorylated peptides are very inflexible and elongate, while that of the unphosphorylated peptides are flexible. Radius of gyration (Rg) analysis showed the compactness of un-phosphorylated peptides is lower than phosphorylated peptides. Phosphorylation of the DPP peptides is necessary for binding to HA surfaces. PMID:25158198

  17. Pharmacokinetic properties of tandem d-peptides designed for treatment of Alzheimer's disease.

    PubMed

    Leithold, Leonie H E; Jiang, Nan; Post, Julia; Niemietz, Nicole; Schartmann, Elena; Ziehm, Tamar; Kutzsche, Janine; Shah, N Jon; Breitkreutz, Jörg; Langen, Karl-Josef; Willuweit, Antje; Willbold, Dieter

    2016-06-30

    Peptides are more and more considered for the development of drug candidates. However, they frequently exhibit severe disadvantages such as instability and unfavourable pharmacokinetic properties. Many peptides are rapidly cleared from the organism and oral bioavailabilities as well as in vivo half-lives often remain low. In contrast, some peptides consisting solely of d-enantiomeric amino acid residues were shown to combine promising therapeutic properties with high proteolytic stability and enhanced pharmacokinetic parameters. Recently, we have shown that D3 and RD2 have highly advantageous pharmacokinetic properties. Especially D3 has already proven promising properties suitable for treatment of Alzheimer's disease. Here, we analyse the pharmacokinetic profiles of D3D3 and RD2D3, which are head-to-tail tandem d-peptides built of D3 and its derivative RD2. Both D3D3 and RD2D3 show proteolytic stability in mouse plasma and organ homogenates for at least 24h and in murine and human liver microsomes for 4h. Notwithstanding their high affinity to plasma proteins, both peptides are taken up into the brain following i.v. as well as i.p. administration. Although both peptides contain identical d-amino acid residues, they are arranged in a different sequence order and the peptides show differences in pharmacokinetic properties. After i.p. administration RD2D3 exhibits lower plasma clearance and higher bioavailability than D3D3. We therefore concluded that the amino acid sequence of RD2 leads to more favourable pharmacokinetic properties within the tandem peptide, which underlines the importance of particular sequence motifs, even in short peptides, for the design of further therapeutic d-peptides. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Potent D-peptide inhibitors of HIV-1 entry

    PubMed Central

    Welch, Brett D.; VanDemark, Andrew P.; Heroux, Annie; Hill, Christopher P.; Kay, Michael S.

    2007-01-01

    During HIV-1 entry, the highly conserved gp41 N-trimer pocket region becomes transiently exposed and vulnerable to inhibition. Using mirror-image phage display and structure-assisted design, we have discovered protease-resistant D-amino acid peptides (D-peptides) that bind the N-trimer pocket with high affinity and potently inhibit viral entry. We also report high-resolution crystal structures of two of these D-peptides in complex with a pocket mimic that suggest sources of their high potency. A trimeric version of one of these peptides is the most potent pocket-specific entry inhibitor yet reported by three orders of magnitude (IC50 = 250 pM). These results are the first demonstration that D-peptides can form specific and high-affinity interactions with natural protein targets and strengthen their promise as therapeutic agents. The D-peptides described here address limitations associated with current L-peptide entry inhibitors and are promising leads for the prevention and treatment of HIV/AIDS. PMID:17942675

  19. How Membrane-Active Peptides Get into Lipid Membranes.

    PubMed

    Sani, Marc-Antoine; Separovic, Frances

    2016-06-21

    The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular

  20. Phage display peptide libraries: deviations from randomness and correctives

    PubMed Central

    Ryvkin, Arie; Ashkenazy, Haim; Weiss-Ottolenghi, Yael; Piller, Chen; Pupko, Tal; Gershoni, Jonathan M

    2018-01-01

    Abstract Peptide-expressing phage display libraries are widely used for the interrogation of antibodies. Affinity selected peptides are then analyzed to discover epitope mimetics, or are subjected to computational algorithms for epitope prediction. A critical assumption for these applications is the random representation of amino acids in the initial naïve peptide library. In a previous study, we implemented next generation sequencing to evaluate a naïve library and discovered severe deviations from randomness in UAG codon over-representation as well as in high G phosphoramidite abundance causing amino acid distribution biases. In this study, we demonstrate that the UAG over-representation can be attributed to the burden imposed on the phage upon the assembly of the recombinant Protein 8 subunits. This was corrected by constructing the libraries using supE44-containing bacteria which suppress the UAG driven abortive termination. We also demonstrate that the overabundance of G stems from variant synthesis-efficiency and can be corrected using compensating oligonucleotide-mixtures calibrated by mass spectroscopy. Construction of libraries implementing these correctives results in markedly improved libraries that display random distribution of amino acids, thus ensuring that enriched peptides obtained in biopanning represent a genuine selection event, a fundamental assumption for phage display applications. PMID:29420788

  1. A prebiotic template-directed peptide synthesis based on amyloids.

    PubMed

    Rout, Saroj K; Friedmann, Michael P; Riek, Roland; Greenwald, Jason

    2018-01-16

    The prebiotic replication of information-coding molecules is a central problem concerning life's origins. Here, we report that amyloids composed of short peptides can direct the sequence-selective, regioselective and stereoselective condensation of amino acids. The addition of activated DL-arginine and DL-phenylalanine to the peptide RFRFR-NH 2 in the presence of the complementary template peptide Ac-FEFEFEFE-NH 2 yields the isotactic product FRFRFRFR-NH 2 , 1 of 64 possible triple addition products, under conditions in which the absence of template yields only single and double additions of mixed stereochemistry. The templating mechanism appears to be general in that a different amyloid formed by (Orn)V(Orn)V(Orn)V(Orn)V-NH 2 and Ac-VDVDVDVDV-NH 2 is regioselective and stereoselective for N-terminal, L-amino-acid addition while the ornithine-valine peptide alone yields predominantly sidechain condensation products with little stereoselectivity. Furthermore, the templating reaction is stable over a wide range of pH (5.6-8.6), salt concentration (0-4 M NaCl), and temperature (25-90 °C), making the amyloid an attractive model for a prebiotic peptide replicating system.

  2. Regulation of Breast Carcinoma Growth and Neovascularization by Peptide Sequences in Thromospondin

    DTIC Science & Technology

    1999-10-01

    buffer [0.5 ml; containing 5 m guanidine thiocyanate, 25 Okadaic acid, TPA, fumonisin B I, herbimycin A, and sodium vanadate mM sodium citrate (pH 7.0...of okadaic acid, phorbol, promote cell adhesion, were used instead of free peptides in the herbimycin, fumonisin BI, or TPA on proliferation, the...KRFKQDGGWSHWSPWSSC-conj. (pM) /lM vanadate (narrow stripes), 5 nM okadaic acid (wide stripes), or 25 nM fumonisin B1 (D). The indicated peptides or

  3. Tumor-Triggered Geometrical Shape Switch of Chimeric Peptide for Enhanced in Vivo Tumor Internalization and Photodynamic Therapy.

    PubMed

    Han, Kai; Zhang, Jin; Zhang, Weiyun; Wang, Shibo; Xu, Luming; Zhang, Chi; Zhang, Xianzheng; Han, Heyou

    2017-03-28

    Geometrical shape of nanoparticles plays an important role in cellular internalization. However, the applicability in tumor selective therapeutics is still scarcely reported. In this article, we designed a tumor extracellular acidity-responsive chimeric peptide with geometrical shape switch for enhanced tumor internalization and photodynamic therapy. This chimeric peptide could self-assemble into spherical nanoparticles at physiological condition. While at tumor extracellular acidic microenvironment, chimeric peptide underwent detachment of acidity-sensitive 2,3-dimethylmaleic anhydride groups. The subsequent recovery of ionic complementarity between chimeric peptides resulted in formation of rod-like nanoparticles. Both in vitro and in vivo studies demonstrated that this acidity-triggered geometrical shape switch endowed chimeric peptide with accelerated internalization in tumor cells, prolonged accumulation in tumor tissue, enhanced photodynamic therapy, and minimal side effects. Our results suggested that fusing tumor microenvironment with geometrical shape switch should be a promising strategy for targeted drug delivery.

  4. Synthesis and evaluation of amphiphilic peptides as nanostructures and drug delivery tools

    NASA Astrophysics Data System (ADS)

    Sayeh, Naser Ali

    Intracellular delivery of cell-impermeable compounds in a variety cells using delivery systems have been extensively studied in recent years. Obtaining desirable cellular uptake levels often requires the administration of high quantities of drugs to achieve the expected intracellular biological effect. Thus, improving the translocation process across the plasma membrane will significantly reduce the quantity of required administered drug and consequently minimize the side effects in most of the cases. Efficient delivery of these molecules to the cells and tissues is a difficult challenge. Compounds with low cellular permeability are commonly considered to be of limited therapeutic value. Over the past few decades, several biomedical carriers, such as polymers, nanospheres, nanocapsules, liposomes, micelles, peptides and dendrimers have been widely used to deliver therapeutic and diagnostic agents to the cells. Biomaterials generated from nano-scale compounds have shown some promising data for delivery of many compounds in a number of diseases, such as viral infections, cancer, and genetic disorders. Although much progress has been achieved in this field, many challenges still remain, such as toxicity and limited stability. Liposomes suffer from poor stability in the bloodstream and leakage during storage. They tend to aggregate and fuse with or leak entrapped drugs, especially highly hydrophilic small molecules. For solid lipid nanoparticles (SLNs), drug expulsion after polymorphic transition during storage, inadequate loading capacity, and relatively high water content of the dispersions have been observed. Poly(lactic-coglycolic acid (PLGA) degrades in the body producing its original monomers of lactic acid and glycolic acid, which are the by-products of various metabolic pathways. However, this acidic microenvironment that occurs during degradation could negatively affect the stability of the loaded compound. Dendrimers can carry drugs as complexes or as

  5. Signal enhancement for peptide analysis in liquid chromatography-electrospray ionization mass spectrometry with trifluoroacetic acid containing mobile phase by postcolumn electrophoretic mobility control.

    PubMed

    Wang, Nan-Hsuan; Lee, Wan-Li; Her, Guor-Rong

    2011-08-15

    A strategy based on postcolumn electrophoretic mobility control (EMC) was developed to alleviate the adverse effect of trifluoroacetic acid (TFA) on the liquid chromatography-mass spectrometry (LC-MS) analysis of peptides. The device created to achieve this goal consisted of a poly(dimethylsiloxane) (PDMS)-based junction reservoir, a short connecting capillary, and an electrospray ionization (ESI) sprayer connected to the outlet of the high-performance liquid chromatography (HPLC) column. By apply different voltages to the junction reservoir and the ESI emitter, an electric field was created across the connecting capillary. Due to the electric field, positively charged peptides migrated toward the ESI sprayer, whereas TFA anions remained in the junction reservoir and were removed from the ionization process. Because TFA did not enter the ESI source, ion suppression from TFA was alleviated. Operation of the postcolumn device was optimized using a peptide standard mixture. Under optimized conditions, signals for the peptides were enhanced 9-35-fold without a compromise in separation efficiency. The optimized conditions were also applied to the LC-MS analysis of a tryptic digest of bovine serum albumin.

  6. Adsorption and Conformation Change of Helical Peptides on Colloidal Silica

    NASA Astrophysics Data System (ADS)

    Read, Michael; Zhang, Shuguang; Mayes, Anne; Burkett, Sandra

    2001-03-01

    Helical conformations of short peptides in solution are partly stabilized by the pattern of electrostatic charge formed by the amino acid sequence. We have studied the role of electrostatics in the adsorption and helix-coil transition of peptides on oxide surfaces. Adsorption isotherms, along with a combination of spectroscopic techniques, show that this is a reversible equilibrium process. Strong electrostatic forces between ionic side chains and charged surface sites increase the adsorbed amount, and promote a loss of helicity in the adsorbed state qualitatively different from that observed upon thermal or chemical perturbation. The electrical dipole of the peptide, arising from the amino acid side chains, serves to orient the molecules on the surface. Effects of adsorption, orientation, and conformation change on the activity of peptides in model biological reactions, as well as the relevance of this simplified system to protein adsorption, are considered.

  7. A novel cysteine-rich antifungal peptide ToAMP4 from Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, Eugene A; Andreev, Yaroslav A; Odintsova, T I; Kozlov, S A; Grishin, Eugene V; Egorov, Tsezi A

    2013-09-01

    A novel peptide named ToAMP4 was isolated from Taraxacum officinale Wigg. flowers by a combination of acetic acid extraction and different types of chromatography: affinity, size-exclusion, and RP-HPLC. The amino acid sequence of ToAMP4 was determined by automated Edman degradation. The peptide is basic, consists of 41 amino acids, and incorporates three disulphide bonds. Due to the unusual cysteine spacing pattern, ToAMP4 does not belong to any known plant AMP family, but classifies together with two other antimicrobial peptides ToAMP1 and ToAMP2 previously isolated from the dandelion flowers. To study the biological activity of ToAMP4, it was successfully produced in a prokaryotic expression system as a fusion protein with thioredoxin. The recombinant peptide was shown to be identical to the native ToAMP4 by chromatographic behavior, molecular mass, and N-terminal amino acid sequence. The peptide displays broad-spectrum antifungal activity against important phytopathogens. Two ToAMP4-mediated inhibition strategies depending on the fungus were demonstrated. The results obtained add to our knowledge on the structural and functional diversity of AMPs in plants. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Effects on Polo-like Kinase 1 Polo-box Domain Binding Affinities of Peptides Incurred by Structural Variation at the Phosphoamino Acid Position

    PubMed Central

    Qian, Wenjian; Park, Jung-Eun; Liu, Fa; Lee, Kyung S.; Burke, Terrence R.

    2012-01-01

    Protein-protein interactions (PPIs) mediated by the polo-box domain (PBD) of polo-like kinase 1 (Plk1) serve important roles in cell proliferation. Critical elements in the high affinity recognition of peptides and proteins by PBD are derived from pThr/pSer-residues in the binding ligands. However, there has been little examination of pThr/pSer mimetics within a PBD context. Our current paper compares the abilities of a variety of amino acid residues and derivatives to serve as pThr/pSer replacements by exploring the role of methyl functionality at the pThr β–position and by replacing the phosphoryl group by phosphonic acid, sulfonic acid and carboxylic acids. This work sheds new light on structure activity relationships for PBD recognition of phosphoamino acid mimetics. PMID:22743087

  9. Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants

    PubMed Central

    Yaghmur, Anan; Laggner, Peter; Zhang, Shuguang; Rappolt, Michael

    2007-01-01

    This study reports the effect of loading four different charged designer lipid-like short anionic and cationic peptide surfactants on the fully hydrated monoolein (MO)-based Pn3m phase (Q224). The studied peptide surfactants comprise seven amino acid residues, namely A6D, DA6, A6K, and KA6. D (aspartic acid) bears two negative charges, K (lysine) bears one positive charge, and A (alanine) constitutes the hydrophobic tail. To elucidate the impact of these peptide surfactants, the ternary MO/peptide/water system has been investigated using small-angle X-ray scattering (SAXS), within a certain range of peptide concentrations (R≤0.2) and temperatures (25 to 70°C). We demonstrate that the bilayer curvature and the stability are modulated by: i) the peptide/lipid molar ratio, ii) the peptide molecular structure (the degree of hydrophobicity, the type of the hydrophilic amino acid, and the headgroup location), and iii) the temperature. The anionic peptide surfactants, A6D and DA6, exhibit the strongest surface activity. At low peptide concentrations (R = 0.01), the Pn3m structure is still preserved, but its lattice increases due to the strong electrostatic repulsion between the negatively charged peptide molecules, which are incorporated into the interface. This means that the anionic peptides have the effect of enlarging the water channels and thus they serve to enhance the accommodation of positively charged water-soluble active molecules in the Pn3m phase. At higher peptide concentration (R = 0.10), the lipid bilayers are destabilized and the structural transition from the Pn3m to the inverted hexagonal phase (H2) is induced. For the cationic peptides, our study illustrates how even minor modifications, such as changing the location of the headgroup (A6K vs. KA6), affects significantly the peptide's effectiveness. Only KA6 displays a propensity to promote the formation of H2, which suggests that KA6 molecules have a higher degree of incorporation in the

  10. Peptide synthesis on glass substrate using acoustic droplet ejector.

    PubMed

    Youngki Choe; Shih-Jui Chen; Eun Sok Kim

    2014-03-01

    This paper describes the synthesis of a 9-mers-long peptide ladder structure of glycine on a modified glass surface using a nanoliter droplet ejector. To synthesize peptide on a glass substrate, SPOT peptide synthesis protocol was followed with a nozzleless acoustic droplet ejector being used to eject about 300 droplets of preactivated amino acid solution to dispense 60 nL of the solution per mer. The coupling efficiency of each mer was measured with FITC fluorescent tag to be 96%, resulting in net 70% efficiency for the whole 9-mer-long peptide of glycine. Usage of a nanoliter droplet ejector for SPOT peptide synthesis increases the density of protein array on a chip.

  11. In-Source Reduction of Disulfide-Bonded Peptides Monitored by Ion Mobility Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Stocks, Bradley B.; Melanson, Jeremy E.

    2018-02-01

    Many peptides with antimicrobial activity and/or therapeutic potential contain disulfide bonds as a means to enhance stability, and their quantitation is often performed using electrospray ionization mass spectrometry (ESI-MS). Disulfides can be reduced during ESI under commonly used instrument conditions, which has the potential to hinder accurate peptide quantitation. We demonstrate that this in-source reduction (ISR) is predominantly observed for peptides infused from acidic solutions and subjected to elevated ESI voltages (3-4 kV). ISR is readily apparent in the mass spectrum of oxytocin—a small, single disulfide-containing peptide. However, subtle m/z shifts due to partial ISR of highly charged (z ≥ 3) peptides with multiple disulfide linkages may proceed unnoticed. Ion mobility (IM)-MS separates ions on the basis of charge and shape in the gas phase, and using insulin as a model system, we show that IM-MS arrival time distributions (ATDs) are particularly sensitive to partial ISR of large peptides. Isotope modeling allows for the relative quantitation of disulfide-intact and partially reduced states of the mobility-separated peptide conformers. Interestingly, hepcidin peptides ionized from acidic solutions at elevated ESI voltages undergo gas-phase compaction, ostensibly due to partial disulfide ISR. Our IM-MS results lead us to propose that residual acid is the likely cause of disparate ATDs recently measured for hepcidin from different suppliers [Anal. Bioanal. Chem. 409, 2559-2567 (2017)]. Overall, our results demonstrate the utility of IM-MS to detect partial ISR of disulfide-bonded peptides and reinforce the notion that peptide/protein measurements should be carried out using minimally activating instrument conditions. [Figure not available: see fulltext.

  12. Peptide Synthetase Gene in Trichoderma virens

    PubMed Central

    Wilhite, S. E.; Lumsden, R. D.; Straney, D. C.

    2001-01-01

    Trichoderma virens (synonym, Gliocladium virens), a deuteromycete fungus, suppresses soilborne plant diseases caused by a number of fungi and is used as a biocontrol agent. Several traits that may contribute to the antagonistic interactions of T. virens with disease-causing fungi involve the production of peptide metabolites (e.g., the antibiotic gliotoxin and siderophores used for iron acquisition). We cloned a 5,056-bp partial cDNA encoding a putative peptide synthetase (Psy1) from T. virens using conserved motifs found within the adenylate domain of peptide synthetases. Sequence similarities with conserved motifs of the adenylation domain, acyl transfer, and two condensation domains support identification of the Psy1 gene as a gene that encodes a peptide synthetase. Disruption of the native Psy1 gene through gene replacement was used to identify the function of this gene. Psy1 disruptants produced normal amounts of gliotoxin but grew poorly under low-iron conditions, suggesting that Psy1 plays a role in siderophore production. Psy1 disruptants cannot produce the major T. virens siderophore dimerum acid, a dipetide of acylated Nδ-hydroxyornithine. Biocontrol activity against damping-off diseases caused by Pythium ultimum and Rhizoctonia solani was not reduced by the Psy1 disruption, suggesting that iron competition through dimerum acid production does not contribute significantly to disease suppression activity under the conditions used. PMID:11679326

  13. Identification of chondrocyte-binding peptides by phage display.

    PubMed

    Cheung, Crystal S F; Lui, Julian C; Baron, Jeffrey

    2013-07-01

    As an initial step toward targeting cartilage tissue for potential therapeutic applications, we sought cartilage-binding peptides using phage display, a powerful technology for selection of peptides that bind to molecules of interest. A library of phage displaying random 12-amino acid peptides was iteratively incubated with cultured chondrocytes to select phage that bind cartilage. The resulting phage clones demonstrated increased affinity to chondrocytes by ELISA, when compared to a wild-type, insertless phage. Furthermore, the selected phage showed little preferential binding to other cell types, including primary skin fibroblast, myocyte and hepatocyte cultures, suggesting a tissue-specific interaction. Immunohistochemical staining revealed that the selected phage bound chondrocytes themselves and the surrounding extracellular matrix. FITC-tagged peptides were synthesized based on the sequence of cartilage-binding phage clones. These peptides, but not a random peptide, bound cultured chondrocytes, and extracelluar matrix. In conclusion, using phage display, we identified peptide sequences that specifically target chondrocytes. We anticipate that such peptides may be coupled to therapeutic molecules to provide targeted treatment for cartilage disorders. Copyright © 2013 Orthopaedic Research Society.

  14. A specific scenario for the origin of life and the genetic code based on peptide/oligonucleotide interdependence.

    PubMed

    Griffith, Robert W

    2009-12-01

    Among various scenarios that attempt to explain how life arose, the RNA world is currently the most widely accepted scientific hypothesis among biologists. However, the RNA world is logistically implausible and doesn't explain how translation arose and DNA became incorporated into living systems. Here I propose an alternative hypothesis for life's origin based on cooperation between simple nucleic acids, peptides and lipids. Organic matter that accumulated on the prebiotic Earth segregated into phases in the ocean based on density and solubility. Synthesis of complex organic monomers and polymerization reactions occurred within a surface hydrophilic layer and at its aqueous and atmospheric interfaces. Replication of nucleic acids and translation of peptides began at the emulsified interface between hydrophobic and aqueous layers. At the core of the protobiont was a family of short nucleic acids bearing arginine's codon and anticodon that added this amino acid to pre-formed peptides. In turn, the survival and replication of nucleic acid was aided by the peptides. The arginine-enriched peptides served to sequester and transfer phosphate bond energy and acted as cohesive agents, aggregating nucleic acids and keeping them at the interface.

  15. Cell-permeable, mitochondrial-targeted, peptide antioxidants.

    PubMed

    Szeto, Hazel H

    2006-04-21

    Cellular oxidative injury has been implicated in aging and a wide array of clinical disorders including ischemia-reperfusion injury; neurodegenerative diseases; diabetes; inflammatory diseases such as atherosclerosis, arthritis, and hepatitis; and drug-induced toxicity. However, available antioxidants have not proven to be particularly effective against many of these disorders. A possibility is that some of the antioxidants do not reach the relevant sites of free radical generation, especially if mitochondria are the primary source of reactive oxygen species (ROS). The SS (Szeto-Schiller) peptide antioxidants represent a novel approach with targeted delivery of antioxidants to the inner mitochondrial membrane. The structural motif of these SS peptides centers on alternating aromatic residues and basic amino acids (aromatic-cationic peptides). These SS peptides can scavenge hydrogen peroxide and peroxynitrite and inhibit lipid peroxidation. Their antioxidant action can be attributed to the tyrosine or dimethyltyrosine residue. By reducing mitochondrial ROS, these peptides inhibit mitochondrial permeability transition and cytochrome c release, thus preventing oxidant-induced cell death. Because these peptides concentrate >1000-fold in the inner mitochondrial membrane, they prevent oxidative cell death with EC50 in the nM range. Preclinical studies support their potential use for ischemia-reperfusion injury and neurodegenerative disorders. Although peptides have often been considered to be poor drug candidates, these small peptides have excellent "druggable" properties, making them promising agents for many diseases with unmet needs.

  16. Treating autoimmune disorders with venom-derived peptides.

    PubMed

    Shen, Bingzheng; Cao, Zhijian; Li, Wenxin; Sabatier, Jean-Marc; Wu, Yingliang

    2017-09-01

    The effective treatment of autoimmune diseases remains a challenge. Voltage-gated potassium Kv1.3 channels, which are expressed in lymphocytes, are a new therapeutic target for treating autoimmune disease. Consequently, Kv1.3 channel-inhibiting venom-derived peptides are a prospective resource for new drug discovery and clinical application. Area covered: Preclinical and clinical studies have produced a wealth of information on Kv1.3 channel-inhibiting venom-derived peptides, especially from venomous scorpions and sea anemones. This review highlights the advances in screening and design of these peptides with diverse structures and potencies. It focuses on representative strategies for improving peptide selectivity and discusses the preclinical research on those venom-derived peptides as well as their clinical developmental status. Expert opinion: Encouraging results indicate that peptides isolated from the venom of venomous animals are a large resource for discovering immunomodulators that act on Kv1.3 channels. Since the structural diversity of venom-derived peptides determines the variety of their pharmacological activities, the design and optimization of venom-peptides for improved Kv1.3 channel-specificity has been advanced through some representative strategies, such as peptide chemical modification, amino acid residue truncation and binding interface modulation. These advances should further accelerate research, development and the future clinical application of venom-derived peptides selectively targeting Kv1.3 channels.

  17. Lantibiotic engineering: molecular characterization and exploitation of lantibiotic-synthesizing enzymes for peptide engineering.

    PubMed

    Nagao, Jun-ichi; Aso, Yuji; Shioya, Kouki; Nakayama, Jiro; Sonomoto, Kenji

    2007-01-01

    Lanthionine-containing peptide antibiotics called lantibiotics are produced by a large number of Gram-positive bacteria. Nukacin ISK-1 produced by Staphylococcus warneri ISK-1 is type-A(II) lantibiotic. Ribosomally synthesized nukacin ISK-1 prepeptide (NukA) consists of an N-terminal leader peptide followed by a C-terminal propeptide moiety that undergoes several post-translational modification events including unusual amino acid formation by the modification enzyme NukM, cleavage of leader peptide and export by the dual functional ABC transporter NukT, finally yielding a biologically active peptide. Unusual amino acids in lantibiotics contribute to biological activity and also structural stability against proteases. Thus, lantibiotic-synthesizing enzymes have a high potentiality for peptide engineering by introduction of unusual amino acids into desired peptides with altering biological and physicochemical properties, e.g., activity and stability, termed lantibiotic engineering. We report the establishment of a heterologous expression of nukacin ISK-1 biosynthetic gene cluster by the nisin-controlled expression system and discuss our recent progress in understanding of the biosynthetic enzymes for nukacin ISK-1 such as localization, molecular interaction in biophysical and biochemical aspects. Substrate specificity of the lantibiotic-synthesizing enzymes was evaluated by complementation of the biosynthetic enzymes (LctM and LctT) of closely related lantibiotic lacticin 481 for nukacin ISK-1 biosynthesis. We further explored a rapid and powerful tool for introduction of unusual amino acids by co-expression of hexa-histidine-tagged NukA and NukM in Escherichia coli.

  18. A Peptide-Based Method for 13C Metabolic Flux Analysis in Microbial Communities

    PubMed Central

    Ghosh, Amit; Nilmeier, Jerome; Weaver, Daniel; Adams, Paul D.; Keasling, Jay D.; Mukhopadhyay, Aindrila; Petzold, Christopher J.; Martín, Héctor García

    2014-01-01

    The study of intracellular metabolic fluxes and inter-species metabolite exchange for microbial communities is of crucial importance to understand and predict their behaviour. The most authoritative method of measuring intracellular fluxes, 13C Metabolic Flux Analysis (13C MFA), uses the labeling pattern obtained from metabolites (typically amino acids) during 13C labeling experiments to derive intracellular fluxes. However, these metabolite labeling patterns cannot easily be obtained for each of the members of the community. Here we propose a new type of 13C MFA that infers fluxes based on peptide labeling, instead of amino acid labeling. The advantage of this method resides in the fact that the peptide sequence can be used to identify the microbial species it originates from and, simultaneously, the peptide labeling can be used to infer intracellular metabolic fluxes. Peptide identity and labeling patterns can be obtained in a high-throughput manner from modern proteomics techniques. We show that, using this method, it is theoretically possible to recover intracellular metabolic fluxes in the same way as through the standard amino acid based 13C MFA, and quantify the amount of information lost as a consequence of using peptides instead of amino acids. We show that by using a relatively small number of peptides we can counter this information loss. We computationally tested this method with a well-characterized simple microbial community consisting of two species. PMID:25188426

  19. Stability of peptides in high-temperature aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.

    1992-09-01

    Estimated standard molal thermodynamic properties of aqueous dipeptides and their constituent amino acids indicate that temperature increases correspond to increased stability of peptide bonds relative to hydrolysis reactions. Pressure increases cause slight decreases in peptide bond stability, which are generally offset by greater stability caused by temperature increases along geothermal gradients. These calculations suggest that peptides, polypeptides, and proteins may survive hydrothermal alteration of organic matter depending on the rates of the hydrolysis reactions. Extremely thermophilic organisms may be able to take advantage of the decreased energy required to form peptide bonds in order to maintain structural proteins and enzymes at elevated temperatures and pressures. As the rates of hydrolysis reactions increase with increasing temperature, formation of peptide bonds may become a facile process in hydrothermal systems and deep in sedimentary basins.

  20. Guiding principles for peptide nanotechnology through directed discovery.

    PubMed

    Lampel, A; Ulijn, R V; Tuttle, T

    2018-05-21

    Life's diverse molecular functions are largely based on only a small number of highly conserved building blocks - the twenty canonical amino acids. These building blocks are chemically simple, but when they are organized in three-dimensional structures of tremendous complexity, new properties emerge. This review explores recent efforts in the directed discovery of functional nanoscale systems and materials based on these same amino acids, but that are not guided by copying or editing biological systems. The review summarises insights obtained using three complementary approaches of searching the sequence space to explore sequence-structure relationships for assembly, reactivity and complexation, namely: (i) strategic editing of short peptide sequences; (ii) computational approaches to predicting and comparing assembly behaviours; (iii) dynamic peptide libraries that explore the free energy landscape. These approaches give rise to guiding principles on controlling order/disorder, complexation and reactivity by peptide sequence design.

  1. Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity.

    PubMed

    Bertenshaw, G P; Turk, B E; Hubbard, S J; Matters, G L; Bylander, J E; Crisman, J M; Cantley, L C; Bond, J S

    2001-04-20

    Meprin A and B are highly regulated, secreted, and cell-surface metalloendopeptidases that are abundantly expressed in the kidney and intestine. Meprin oligomers consist of evolutionarily related alpha and/or beta subunits. The work herein was carried out to identify bioactive peptides and proteins that are susceptible to hydrolysis by mouse meprins and kinetically characterize the hydrolysis. Gastrin-releasing peptide fragment 14-27 and gastrin 17, regulatory molecules of the gastrointestinal tract, were found to be the best peptide substrates for meprin A and B, respectively. Peptide libraries and a variety of naturally occurring peptides revealed that the meprin beta subunit has a clear preference for acidic amino acids in the P1 and P1' sites of substrates. The meprin alpha subunit selected for small (e.g. serine, alanine) or hydrophobic (e.g. phenylalanine) residues in the P1 and P1' sites, and proline was the most preferred amino acid at the P2' position. Thus, although the meprin alpha and beta subunits share 55% amino acid identity within the protease domain and are normally localized at the same tissue cell surfaces, they have very different substrate and peptide bond specificities indicating different functions. Homology models of the mouse meprin alpha and beta protease domains, based on the astacin crystal structure, revealed active site differences that can account for the marked differences in substrate specificity of the two subunits.

  2. Co-assembly of Peptide Amphiphiles and Lipids into Supramolecular Nanostructures Driven by Anion-π Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Zhilin; Erbas, Aykut; Tantakitti, Faifan

    Co-assembly of binary systems driven by specific non-covalent interactions can greatly expand the structural and functional space of supramolecular nanostructures. We report here on the self-assembly of peptide amphiphiles and fatty acids driven primarily by anion-π interactions. The peptide sequences investigated were functionalized with a perfluorinated phenylalanine residue to promote anion-π interactions with carboxylate headgroups in fatty acids. These interactions were verified here by NMR and circular dichroism experiments as well as investigated using atomistic simulations. Positioning the aromatic units close to the N-terminus of the peptide backbone near the hydrophobic core of cylindrical nanofibers leads to strong anion-π interactionsmore » between both components. With a low content of dodecanoic acid in this position, the cylindrical morphology is preserved. However, as the aromatic units are moved along the peptide backbone away from the hydrophobic core, the interactions with dodecanoic acid transform the cylindrical supramolecular morphology into ribbon-like structures. Increasing the ratio of dodecanoic acid to PA leads to either the formation of large vesicles in the binary systems where the anion-π interactions are strong, or a heterogeneous mixture of assemblies when the peptide amphiphiles associate weakly with dodecanoic acid. Our findings reveal how co-assembly involving designed specific interactions can drastically change supramolecular morphology and even cross from nano to micro scales.« less

  3. Designing of peptides with desired half-life in intestine-like environment.

    PubMed

    Sharma, Arun; Singla, Deepak; Rashid, Mamoon; Raghava, Gajendra Pal Singh

    2014-08-20

    In past, a number of peptides have been reported to possess highly diverse properties ranging from cell penetrating, tumor homing, anticancer, anti-hypertensive, antiviral to antimicrobials. Owing to their excellent specificity, low-toxicity, rich chemical diversity and availability from natural sources, FDA has successfully approved a number of peptide-based drugs and several are in various stages of drug development. Though peptides are proven good drug candidates, their usage is still hindered mainly because of their high susceptibility towards proteases degradation. We have developed an in silico method to predict the half-life of peptides in intestine-like environment and to design better peptides having optimized physicochemical properties and half-life. In this study, we have used 10mer (HL10) and 16mer (HL16) peptides dataset to develop prediction models for peptide half-life in intestine-like environment. First, SVM based models were developed on HL10 dataset which achieved maximum correlation R/R2 of 0.57/0.32, 0.68/0.46, and 0.69/0.47 using amino acid, dipeptide and tripeptide composition, respectively. Secondly, models developed on HL16 dataset showed maximum R/R2 of 0.91/0.82, 0.90/0.39, and 0.90/0.31 using amino acid, dipeptide and tripeptide composition, respectively. Furthermore, models that were developed on selected features, achieved a correlation (R) of 0.70 and 0.98 on HL10 and HL16 dataset, respectively. Preliminary analysis suggests the role of charged residue and amino acid size in peptide half-life/stability. Based on above models, we have developed a web server named HLP (Half Life Prediction), for predicting and designing peptides with desired half-life. The web server provides three facilities; i) half-life prediction, ii) physicochemical properties calculation and iii) designing mutant peptides. In summary, this study describes a web server 'HLP' that has been developed for assisting scientific community for predicting intestinal half

  4. A specific RAGE-binding peptide biopanning from phage display random peptide library that ameliorates symptoms in amyloid β peptide-mediated neuronal disorder.

    PubMed

    Cai, Cuizan; Dai, Xiaoyong; Zhu, Yujie; Lian, Mengyang; Xiao, Fei; Dong, Fangyuan; Zhang, Qihao; Huang, Yadong; Zheng, Qing

    2016-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder in which amyloid β (Aβ) peptide accumulates in the brain. The receptor for advanced glycation end product (RAGE) is a cellular binding site for Aβ peptide and mediates amyloid β-induced perturbations in cerebral vessels, neurons, and microglia in AD. Here, we identified a specific high-affinity RAGE inhibitor (APDTKTQ named RP-1) from a phage display library. RP-1 bound to RAGE and inhibited Aβ peptide-induced cellular stress in human neuroblastoma SH-SYSY cells in vitro. Three amino acids in RP-1 are identical to those in the Aβ peptide. RP-1 shows high homology to the 16-23 (KLVFFAED) regions in Aβ peptide and high-affinity RAGE. Functional analyses indicated that RP-1 significantly reduced the level of reactive oxygen species (ROS) and ROS products and that it enhanced catalase and glutathione peroxidase (GPx) activity. Furthermore, it inactivated caspase3 and caspase9 and inhibited the upregulation of RAGE, nuclear factor-κB (NF-κB), and beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) protein expression. In addition, RP-1 activated the PI3K/AKT signaling pathway, inhibiting the interaction between Bax and Bcl-2. Our data suggest that RP-1 is a potent RAGE blocker that effectively controls the progression of Aβ peptide-mediated brain disorders and that it may have potential as a disease-modifying agent for AD.

  5. Novel peptides from adrenomedullary chromaffin vesicles.

    PubMed Central

    Sigafoos, J; Chestnut, W G; Merrill, B M; Taylor, L C; Diliberto, E J; Viveros, O H

    1993-01-01

    The adrenal medulla chromaffin vesicle (CV) contains, on a weight basis, as much soluble protein and peptide as catecholamine. The bulk of the protein is accounted for by chromogranins (Cgr) A, B and C. Additionally, a large variety of neuropeptides and their precursor proteins have been found recently within these vesicles. Nevertheless, fractionation of CV lysates indicates the presence of many more peptides than previously reported. In the hope of finding novel bioactive peptides, we initiated a systematic isolation and characterisation of CV peptides. Bovine CV pellets were prepared by sucrose gradient centrifugation and immediately boiled in water to avoid degradation of native proteins and peptides. The water lysates were fractionated through a battery of reversed-phase and ion-exchange high-performance chromatographic steps. We fully or partially characterised a substantial number of novel peptides derived from CgrA and CgrB. A tetradecapeptide and a 13 kDa extended peptide were derived from the bovine homologue of rat secretogranin III. Peptides corresponding to C-terminal fragments of 7B2 and proteoglycan II were also found. Additionally, several sequences had no known precursors. Of the sequences derived from known precursors some corresponded to fragments bracketed by pairs of basic amino acids, but others were preceded or followed by single basic residues or by unusual putative cleavage sites. Some of these peptides were postranslationally modified (pyroglutamylation, glycosylation, phosphorylation, amidation). A significant degree of structural conservation of some of these peptides across species suggests that they may exert biological effects when cosecreted with catecholamines during splanchnic stimulation. PMID:8300415

  6. D-Amino Acids in Living Higher Organisms

    NASA Astrophysics Data System (ADS)

    Fujii, Noriko

    2002-04-01

    The homochirality of biological amino acids (L-amino acids) and of the RNA/DNA backbone (D-ribose) might have become established before the origin of life. It has been considered that D-amino acids and L-sugars were eliminated on the primitive Earth. Therefore, the presence and function of D-amino acids in living organisms have not been studied except for D-amino acids in the cell walls of microorganisms. However, D-amino acids were recently found in various living higher organisms in the form of free amino acids, peptides, and proteins. Free D-aspartate and D-serine are present and may have important physiological functions in mammals. D-amino acids in peptides are well known as opioid peptides and neuropeptides. In protein, D-aspartate residues increase during aging. This review deals with recent advances in the study of D-amino acids in higher organisms.

  7. Surfactant protein B: lipid interactions of synthetic peptides representing the amino-terminal amphipathic domain.

    PubMed Central

    Bruni, R; Taeusch, H W; Waring, A J

    1991-01-01

    The mechanisms by which pulmonary surfactant protein B (SP-B) affects the surface activity of surfactant lipids are unclear. We have studied the peptide/lipid interactions of the amino-terminal amphipathic domain of SP-B by comparing the secondary conformations and surface activities of a family of synthetic peptides based on the native human SP-B sequence, modified by site-specific amino acid substitutions. Circular dichroism measurements show an alpha-helical structure correlating with the ability of the peptides to interact with lipids and with the surface activity of peptide/lipid dispersions. Amino acid substitutions altering either the charge or the hydrophobicity of the residues lowered the helical content and reduced the association of the aminoterminal segment with lipid dispersions. Surface activity of peptide/lipid mixtures was maximally altered by reversal of charge in synthetic peptides. These observations indicate that electrostatic interactions and hydrophobicity are important factors in determining optimal structure and function of surfactant peptides in lipid dispersions. Images PMID:1871144

  8. Decoding the Effect of Isobaric Substitutions on Identifying Missing Proteins and Variant Peptides in Human Proteome.

    PubMed

    Choong, Wai-Kok; Lih, Tung-Shing Mamie; Chen, Yu-Ju; Sung, Ting-Yi

    2017-12-01

    To confirm the existence of missing proteins, we need to identify at least two unique peptides with length of 9-40 amino acids of a missing protein in bottom-up mass-spectrometry-based proteomic experiments. However, an identified unique peptide of the missing protein, even identified with high level of confidence, could possibly coincide with a peptide of a commonly observed protein due to isobaric substitutions, mass modifications, alternative splice isoforms, or single amino acid variants (SAAVs). Besides unique peptides of missing proteins, identified variant peptides (SAAV-containing peptides) could also alternatively map to peptides of other proteins due to the aforementioned issues. Therefore, we conducted a thorough comparative analysis on data sets in PeptideAtlas Tiered Human Integrated Search Proteome (THISP, 2017-03 release), including neXtProt (2017-01 release), to systematically investigate the possibility of unique peptides in missing proteins (PE2-4), unique peptides in dubious proteins, and variant peptides affected by isobaric substitutions, causing doubtful identification results. In this study, we considered 11 isobaric substitutions. From our analysis, we found <5% of the unique peptides of missing proteins and >6% of variant peptides became shared with peptides of PE1 proteins after isobaric substitutions.

  9. A gastrin releasing peptide from the porcine nonantral gastric tissue.

    PubMed

    McDonald, T J; Nilsson, G; Vagne, M; Ghatei, M; Bloom, S R; Mutt, V

    1978-09-01

    This paper presents evidence for the existence in extracts from porcine non-antral gastric tissue of a peptide capable of causing substantial rises of plasma immunoreactive gastrin levels in a dose dependent manner and of stimulation of gastric acid and pepsin secretion. Obtained data show that the peptide is basic and that its gastrin releasing properties are at least partially resistant to atropinisation and beta-receptor blockade. Antrectomy almost eliminates the rise in plasma IRGa when the peptide is administered. The possible relationship of this peptide to amphibian bombesin is discussed.

  10. A gastrin releasing peptide from the porcine nonantral gastric tissue.

    PubMed Central

    McDonald, T J; Nilsson, G; Vagne, M; Ghatei, M; Bloom, S R; Mutt, V

    1978-01-01

    This paper presents evidence for the existence in extracts from porcine non-antral gastric tissue of a peptide capable of causing substantial rises of plasma immunoreactive gastrin levels in a dose dependent manner and of stimulation of gastric acid and pepsin secretion. Obtained data show that the peptide is basic and that its gastrin releasing properties are at least partially resistant to atropinisation and beta-receptor blockade. Antrectomy almost eliminates the rise in plasma IRGa when the peptide is administered. The possible relationship of this peptide to amphibian bombesin is discussed. PMID:361511

  11. Effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of 111In-labeled lactam bridge-cyclized alpha-MSH peptides.

    PubMed

    Guo, Haixun; Yang, Jianquan; Gallazzi, Fabio; Miao, Yubin

    2011-04-01

    The purpose of this study was to examine the profound effects of the amino acid linkers on the melanoma-targeting and pharmacokinetic properties of (111)In-labeled lactam bridge-cyclized DOTA-[X]-CycMSH(hex) {1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid-[X]-c[Asp-His-dPhe-Arg-Trp-Lys]-CONH(2); X = GGNle, GENle, or NleGE; GG = -Gly-Gly- and GE = -Gly-Glu-} peptides. Three novel peptides (DOTA-GGNle-CycMSH(hex), DOTA-GENle-CycMSH(hex), and DOTA-NleGE-CycMSH(hex)) were designed and synthesized. The melanocortin-1 (MC1) receptor-binding affinities of the peptides were determined in B16/F1 melanoma cells. The melanoma-targeting and pharmacokinetic properties of (111)In-DOTA-GGNle-CycMSH(hex) and (111)In-DOTA-GENle-CycMSH(hex) were determined in B16/F1 melanoma-bearing C57 mice. DOTA-GGNle-CycMSH(hex) and DOTA-GENle-CycMSH(hex) displayed 2.1 and 11.5 nM MC1 receptor-binding affinities, whereas DOTA-NleGE-CycMSH(hex) showed 873.4 nM MC1 receptor-binding affinity. The introduction of the -GG- linker maintained high melanoma uptake while decreasing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex). The tumor uptake of (111)In-DOTA-GGNle-CycMSH(hex) was 19.05 ± 5.04 and 18.6 ± 3.56 percentage injected dose per gram at 2 and 4 h after injection, respectively. (111)In-DOTA-GGNle-CycMSH(hex) exhibited 28%, 32%, and 42% less kidney uptake than (111)In-DOTA-Nle-CycMSH(hex) we reported previously, and 61%, 65%, and 68% less liver uptake than (111)In-DOTA-Nle-CycMSH(hex) at 2, 4, and 24 h after injection, respectively. The amino acid linkers exhibited profound effects on the melanoma-targeting and pharmacokinetic properties of the (111)In-labeled lactam bridge-cyclized α-melanocyte-stimulating hormone peptides. Introduction of the -GG- linker maintained high melanoma uptake while reducing kidney and liver uptake of (111)In-DOTA-GGNle-CycMSH(hex), highlighting its potential as an effective imaging probe for melanoma detection, as well as a therapeutic peptide

  12. Direct and selective immobilization of proteins by means of an inorganic material-binding peptide: discussion on functionalization in the elongation to material-binding peptide.

    PubMed

    Yokoo, Nozomi; Togashi, Takanari; Umetsu, Mitsuo; Tsumoto, Kouhei; Hattori, Takamitsu; Nakanishi, Takeshi; Ohara, Satoshi; Takami, Seiichi; Naka, Takashi; Abe, Hiroya; Kumagai, Izumi; Adschiri, Tadafumi

    2010-01-14

    Using an artificial peptide library, we have identified a peptide with affinity for ZnO materials that could be used to selectively accumulate ZnO particles on polypropylene-gold plates. In this study, we fused recombinant green fluorescent protein (GFP) with this ZnO-binding peptide (ZnOBP) and then selectively immobilized the fused protein on ZnO particles. We determined an appropriate condition for selective immobilization of recombinant GFP, and the ZnO-binding function of ZnOBP-fused GFP was examined by elongating the ZnOBP tag from a single amino acid to the intact sequence. The fusion of ZnOBP with GFP enabled specific adsorption of GFP on ZnO substrates in an appropriate solution, and thermodynamic studies showed a predominantly enthalpy-dependent electrostatic interaction between ZnOBP and the ZnO surface. The ZnOBP's binding affinity for the ZnO surface increased first in terms of material selectivity and then in terms of high affinity as the GFP-fused peptide was elongated from a single amino acid to intact ZnOBP. We concluded that the enthalpy-dependent interaction between ZnOBP and ZnO was influenced by the presence of not only charged amino acids but also their surrounding residues in the ZnOBP sequence.

  13. Encoded libraries of chemically modified peptides.

    PubMed

    Heinis, Christian; Winter, Greg

    2015-06-01

    The use of powerful technologies for generating and screening DNA-encoded protein libraries has helped drive the development of proteins as pharmaceutical ligands. However the development of peptides as pharmaceutical ligands has been more limited. Although encoded peptide libraries are typically several orders of magnitude larger than classical chemical libraries, can be more readily screened, and can give rise to higher affinity ligands, their use as pharmaceutical ligands is limited by their intrinsic properties. Two of the intrinsic limitations include the rotational flexibility of the peptide backbone and the limited number (20) of natural amino acids. However these limitations can be overcome by use of chemical modification. For example, the libraries can be modified to introduce topological constraints such as cyclization linkers, or to introduce new chemical entities such as small molecule ligands, fluorophores and photo-switchable compounds. This article reviews the chemistry involved, the properties of the peptide ligands, and the new opportunities offered by chemical modification of DNA-encoded peptide libraries. Copyright © 2015. Published by Elsevier Ltd.

  14. Enriching Peptide Libraries for Binding Affinity and Specificity Through Computationally Directed Library Design.

    PubMed

    Foight, Glenna Wink; Chen, T Scott; Richman, Daniel; Keating, Amy E

    2017-01-01

    Peptide reagents with high affinity or specificity for their target protein interaction partner are of utility for many important applications. Optimization of peptide binding by screening large libraries is a proven and powerful approach. Libraries designed to be enriched in peptide sequences that are predicted to have desired affinity or specificity characteristics are more likely to yield success than random mutagenesis. We present a library optimization method in which the choice of amino acids to encode at each peptide position can be guided by available experimental data or structure-based predictions. We discuss how to use analysis of predicted library performance to inform rounds of library design. Finally, we include protocols for more complex library design procedures that consider the chemical diversity of the amino acids at each peptide position and optimize a library score based on a user-specified input model.

  15. Bioorthogonal Diversification of Peptides through Selective Ruthenium(II)-Catalyzed C-H Activation.

    PubMed

    Schischko, Alexandra; Ren, Hongjun; Kaplaneris, Nikolaos; Ackermann, Lutz

    2017-02-01

    Methods for the chemoselective modification of amino acids and peptides are powerful techniques in biomolecular chemistry. Among other applications, they enable the total synthesis of artificial peptides. In recent years, significant momentum has been gained by exploiting palladium-catalyzed cross-coupling for peptide modification. Despite major advances, the prefunctionalization elements on the coupling partners translate into undesired byproduct formation and lengthy synthetic operations. In sharp contrast, we herein illustrate the unprecedented use of versatile ruthenium(II)carboxylate catalysis for the step-economical late-stage diversification of α- and β-amino acids, as well as peptides, through chemo-selective C-H arylation under racemization-free reaction conditions. The ligand-accelerated C-H activation strategy proved water-tolerant and set the stage for direct fluorescence labelling as well as various modes of peptide ligation with excellent levels of positional selectivity in a bioorthogonal fashion. The synthetic utility of our approach is further demonstrated by twofold C-H arylations for the complexity-increasing assembly of artificial peptides within a multicatalytic C-H activation manifold. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Practical multipeptide synthesis: dedicated software for the definition of multiple, overlapping peptides covering polypeptide sequences.

    PubMed

    Heegaard, P M; Holm, A; Hagerup, M

    1993-01-01

    A personal computer program for the conversion of linear amino acid sequences to multiple, small, overlapping peptide sequences has been developed. Peptide lengths and "jumps" (the distance between two consecutive overlapping peptides) are defined by the user. To facilitate the use of the program for parallel solid-phase chemical peptide syntheses for the synchronous production of multiple peptides, amino acids at each acylation step are laid out by the program in a convenient standard multi-well setup. Also, the total number of equivalents, as well as the derived amount in milligrams (depend-ending on user-defined equivalent weights and molar surplus), of each amino acid are given. The program facilitates the implementation of multipeptide synthesis, e.g., for the elucidation of polypeptide structure-function relationships, and greatly reduces the risk of introducing mistakes at the planning step. It is written in Pascal and runs on any DOS-based personal computer. No special graphic display is needed.

  17. Antimicrobial Peptides from Plants

    PubMed Central

    Tam, James P.; Wang, Shujing; Wong, Ka H.; Tan, Wei Liang

    2015-01-01

    Plant antimicrobial peptides (AMPs) have evolved differently from AMPs from other life forms. They are generally rich in cysteine residues which form multiple disulfides. In turn, the disulfides cross-braced plant AMPs as cystine-rich peptides to confer them with extraordinary high chemical, thermal and proteolytic stability. The cystine-rich or commonly known as cysteine-rich peptides (CRPs) of plant AMPs are classified into families based on their sequence similarity, cysteine motifs that determine their distinctive disulfide bond patterns and tertiary structure fold. Cystine-rich plant AMP families include thionins, defensins, hevein-like peptides, knottin-type peptides (linear and cyclic), lipid transfer proteins, α-hairpinin and snakins family. In addition, there are AMPs which are rich in other amino acids. The ability of plant AMPs to organize into specific families with conserved structural folds that enable sequence variation of non-Cys residues encased in the same scaffold within a particular family to play multiple functions. Furthermore, the ability of plant AMPs to tolerate hypervariable sequences using a conserved scaffold provides diversity to recognize different targets by varying the sequence of the non-cysteine residues. These properties bode well for developing plant AMPs as potential therapeutics and for protection of crops through transgenic methods. This review provides an overview of the major families of plant AMPs, including their structures, functions, and putative mechanisms. PMID:26580629

  18. α/β-Peptide Foldamers Targeting Intracellular Protein-Protein Interactions with Activity in Living Cells.

    PubMed

    Checco, James W; Lee, Erinna F; Evangelista, Marco; Sleebs, Nerida J; Rogers, Kelly; Pettikiriarachchi, Anne; Kershaw, Nadia J; Eddinger, Geoffrey A; Belair, David G; Wilson, Julia L; Eller, Chelcie H; Raines, Ronald T; Murphy, William L; Smith, Brian J; Gellman, Samuel H; Fairlie, W Douglas

    2015-09-09

    Peptides can be developed as effective antagonists of protein-protein interactions, but conventional peptides (i.e., oligomers of l-α-amino acids) suffer from significant limitations in vivo. Short half-lives due to rapid proteolytic degradation and an inability to cross cell membranes often preclude biological applications of peptides. Oligomers that contain both α- and β-amino acid residues ("α/β-peptides") manifest decreased susceptibility to proteolytic degradation, and when properly designed these unnatural oligomers can mimic the protein-recognition properties of analogous "α-peptides". This report documents an extension of the α/β-peptide approach to target intracellular protein-protein interactions. Specifically, we have generated α/β-peptides based on a "stapled" Bim BH3 α-peptide, which contains a hydrocarbon cross-link to enhance α-helix stability. We show that a stapled α/β-peptide can structurally and functionally mimic the parent stapled α-peptide in its ability to enter certain types of cells and block protein-protein interactions associated with apoptotic signaling. However, the α/β-peptide is nearly 100-fold more resistant to proteolysis than is the parent stapled α-peptide. These results show that backbone modification, a strategy that has received relatively little attention in terms of peptide engineering for biomedical applications, can be combined with more commonly deployed peripheral modifications such as side chain cross-linking to produce synergistic benefits.

  19. Radiohybridization PET imaging of KRAS G12D mRNA expression in human pancreas cancer xenografts with [(64)Cu]DO3A-peptide nucleic acid-peptide nanoparticles.

    PubMed

    Chakrabarti, A; Zhang, K; Aruva, M R; Cardi, C A; Opitz, A W; Wagner, N J; Thakur, M L; Wickstrom, E

    2007-06-01

    There is a compelling need to image pancreas cancer at an early stage. Human pancreas cancer cells display elevated levels of KRAS protein due to high copy numbers of KRAS mRNA, and elevated levels of insulin-like growth factor 1 receptor (IGF1R) due to overexpression of IGF1R mRNA. Therefore we hypothesized that pancreas cancer could be detected in vivo with a single probe that targets both KRAS mRNA and IGF1R. Because positron emission tomography (PET) is a sensitive imaging technique, we designed a probe incorporating the positron-emitting nuclide (64)Cu. The KRAS-specific hybridization probe consisted of 1,4,7-tris(carboxymethylaza)cyclododecane-10-aza-acetyl (DO3A) on the N-terminus of a peptide nucleic acid (PNA) hybridization sequence (GCCATCAGCTCC) linked to a cyclized IGF1 peptide analog (d-Cys-Ser-Lys-Cys) on the C-terminus, for IGF1R-mediated endocytosis. A series of such KRAS radiohybridization probes with 0, 1, 2 or 3 mismatches to KRAS G12D mRNA, including exact matches to wild type KRAS mRNA and KRAS G12V mRNA, along with a double d(Ala) replacement IGF1 peptide control, were assembled by continuous solid phase synthesis. To test the hypothesis that KRAS-IGF1 dual probes could specifically image KRAS mRNA expression noninvasively in human IGF1R-overexpressing AsPC1 pancreas cancer xenografts in immunocompromised mice, [(64)Cu]PNA radiohybridization probes and controls were administered by tail vein. The [(64)Cu]KRAS-IGF1 radiohybridization probe yielded strong tumor contrast in PET images, 8.6 +/- 1.4-fold more intense in the center of human pancreas cancer xenografts than in the contralateral muscle at 4 h post-injection. Control experiments with single base KRASmismatches, an IGF1 peptide mismatch, and a breast cancer xenograft lacking KRAS activation yielded weak tumor contrast images. These experiments are consistent with our hypothesis for noninvasive PET imaging of KRAS oncogene expression in pancreas cancer xenografts. Imaging oncogene m

  20. Double quick, double click reversible peptide "stapling".

    PubMed

    Grison, Claire M; Burslem, George M; Miles, Jennifer A; Pilsl, Ludwig K A; Yeo, David J; Imani, Zeynab; Warriner, Stuart L; Webb, Michael E; Wilson, Andrew J

    2017-07-01

    The development of constrained peptides for inhibition of protein-protein interactions is an emerging strategy in chemical biology and drug discovery. This manuscript introduces a versatile, rapid and reversible approach to constrain peptides in a bioactive helical conformation using BID and RNase S peptides as models. Dibromomaleimide is used to constrain BID and RNase S peptide sequence variants bearing cysteine (Cys) or homocysteine ( h Cys) amino acids spaced at i and i + 4 positions by double substitution. The constraint can be readily removed by displacement of the maleimide using excess thiol. This new constraining methodology results in enhanced α-helical conformation (BID and RNase S peptide) as demonstrated by circular dichroism and molecular dynamics simulations, resistance to proteolysis (BID) as demonstrated by trypsin proteolysis experiments and retained or enhanced potency of inhibition for Bcl-2 family protein-protein interactions (BID), or greater capability to restore the hydrolytic activity of the RNAse S protein (RNase S peptide). Finally, use of a dibromomaleimide functionalized with an alkyne permits further divergent functionalization through alkyne-azide cycloaddition chemistry on the constrained peptide with fluorescein, oligoethylene glycol or biotin groups to facilitate biophysical and cellular analyses. Hence this methodology may extend the scope and accessibility of peptide stapling.

  1. An In Vitro Translation, Selection, and Amplification System for Peptide Nucleic Acids

    PubMed Central

    Brudno, Yevgeny; Birnbaum, Michael E.; Kleiner, Ralph E.; Liu, David R.

    2009-01-01

    Methods to evolve synthetic, rather than biological, polymers could significantly expand the functional potential of polymers that emerge from in vitro evolution. Requirements for synthetic polymer evolution include: (i) sequence-specific polymerization of synthetic building blocks on an amplifiable template; (ii) display of the newly translated polymer strand in a manner that allows it to adopt folded structures; (iii) selection of synthetic polymer libraries for desired binding or catalytic properties; and (iv) amplification of template sequences surviving selection in a manner that allows subsequent translation. Here we report the development of such a system for peptide nucleic acids (PNAs) using a set of twelve PNA pentamer building blocks. We validated the system by performing six iterated cycles of translation, selection, and amplification on a library of 4.3 × 108 PNA-encoding DNA templates and observed >1,000,000-fold overall enrichment of a template encoding a biotinylated (streptavidin-binding) PNA. These results collectively provide an experimental foundation for PNA evolution in the laboratory. PMID:20081830

  2. Peptide fragments of a beta-defensin derivative with potent bactericidal activity.

    PubMed

    Reynolds, Natalie L; De Cecco, Martin; Taylor, Karen; Stanton, Chloe; Kilanowski, Fiona; Kalapothakis, Jason; Seo, Emily; Uhrin, Dusan; Campopiano, Dominic; Govan, John; Macmillan, Derek; Barran, Perdita; Dorin, Julia R

    2010-05-01

    Beta-defensins are known to be both antimicrobial and able to chemoattract various immune cells. Although the sequences of paralogous genes are not highly conserved, the core defensin structure is retained. Defb14-1C(V) has bactericidal activity similar to that of its parent peptide (murine beta-defensin Defb14) despite all but one of the canonical six cysteines being replaced with alanines. The 23-amino-acid N-terminal half of Defb14-1C(V) is a potent antimicrobial while the C-terminal half is not. Here, we use a library of peptide derivatives to demonstrate that the antimicrobial activity can be localized to a particular region. Overlapping fragments of the N-terminal region were tested for their ability to kill Gram-positive and Gram-negative bacteria. We demonstrate that the most N-terminal fragments (amino acids 1 to 10 and 6 to 17) are potent antimicrobials against Gram-negative bacteria whereas fragments based on sequence more C terminal than amino acid 13 have very poor activity against both Gram-positive and -negative types. We further test a series of N-terminal deletion peptides in both their monomeric and dimeric forms. We find that bactericidal activity is lost against both Gram types as the deletion region increases, with the point at which this occurs varying between bacterial strains. The dimeric form of the peptides is more resistant to the peptide deletions, but this is not due just to increased charge. Our results indicate that the primary sequence, together with structure, is essential in the bactericidal action of this beta-defensin derivative peptide and importantly identifies a short fragment from the peptide that is a potent bactericide.

  3. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparisonmore » to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.« less

  4. Surfactant-induced assembly of enzymatically-stable peptide hydrogels

    DOE PAGES

    Jones, Brad H.; Martinez, Alina M.; Wheeler, Jill S.; ...

    2015-04-07

    The secondary structure of peptides in the presence of interacting additives is an important topic of study, having implications in the application of peptide science to a broad range of modern technologies. Surfactants constitute a class of biologically relevant compounds that are known to influence both peptide conformation and aggregation or assembly. In addition, we have characterized the secondary structure of a linear nonapeptide composed of a hydrophobic alanine/phenylalanine core flanked by hydrophilic acid/amine units. We show that the anionic surfactant sodium dodecyl sulfate (SDS) induces the formation of β-sheets and macroscopic gelation in this otherwise unstructured peptide. Through comparisonmore » to related additives, we propose that SDS-induced secondary structure formation is the result of amphiphilicity created by electrostatic binding of SDS to the peptide. In addition, we demonstrate a novel utility of surfactants in manipulating and stabilizing peptide nanostructures. SDS is used to simultaneously induce secondary structure in a peptide and to inhibit the activity of a model enzyme, resulting in a peptide hydrogel that is impervious to enzymatic degradation. These results complement our understanding of the behavior of peptides in the presence of interacting secondary molecules and provide new potential pathways for programmable organization of peptides by the addition of such components.« less

  5. Convergent balancing selection on an antimicrobial peptide in Drosophila

    PubMed Central

    Unckless, Robert L.; Howick, Virginia M.; Lazzaro, Brian P.

    2015-01-01

    Summary Genes of the immune system often evolve rapidly and adaptively, presumably driven by antagonistic interactions with pathogens [1–4]. Those genes encoding secreted antimicrobial peptides (AMPs), however, have failed to exhibit conventional signatures of strong adaptive evolution, especially in arthropods (e.g., [5, 6]) and often segregate for null alleles and gene deletions [3, 4, 7, 8]. Furthermore, quantitative genetic studies have failed to associate naturally occurring polymorphism in AMP genes with variation in resistance to infection [9–11]. Both the lack of signatures of positive selection in AMPs and lack of association between genotype and immune phenotypes have yielded an interpretation that AMP genes evolve under relaxed evolutionary constraint, with enough functional redundancy that variation in, or even loss of, any particular peptide would have little effect on overall resistance [12, 13]. In stark contrast to the current paradigm, we identified a naturally occurring amino acid polymorphism in the antimicrobial peptide, Diptericin, that is highly predictive of resistance to bacterial infection in Drosophila melanogaster [13]. The identical amino acid polymorphism arose in parallel in the sister species D. simulans, by independent mutation with equivalent phenotypic effect. Convergent substitutions to arginine at the same amino acid residue have evolved at least five times across the Drosophila genus. We hypothesize that the alternative alleles are maintained by balancing selection through context-dependent or fluctuating selection. This pattern of evolution appears to be common in antimicrobial peptides, but is invisible to conventional screens for adaptive evolution that are predicated on elevated rates of amino acid divergence. PMID:26776733

  6. Structure, synthesis, and molecular cloning of dermaseptins B, a family of skin peptide antibiotics.

    PubMed

    Charpentier, S; Amiche, M; Mester, J; Vouille, V; Le Caer, J P; Nicolas, P; Delfour, A

    1998-06-12

    Analysis of antimicrobial activities that are present in the skin secretions of the South American frog Phyllomedusa bicolor revealed six polycationic (lysine-rich) and amphipathic alpha-helical peptides, 24-33 residues long, termed dermaseptins B1 to B6, respectively. Prepro-dermaseptins B all contain an almost identical signal peptide, which is followed by a conserved acidic propiece, a processing signal Lys-Arg, and a dermaseptin progenitor sequence. The 22-residue signal peptide plus the first 3 residues of the acidic propiece are encoded by conserved nucleotides encompassed by the first coding exon of the dermaseptin genes. The 25-residue amino-terminal region of prepro-dermaseptins B shares 50% identity with the corresponding region of precursors for D-amino acid containing opioid peptides or for antimicrobial peptides originating from the skin of distantly related frog species. The remarkable similarity found between prepro-proteins that encode end products with strikingly different sequences, conformations, biological activities and modes of action suggests that the corresponding genes have evolved through dissemination of a conserved "secretory cassette" exon.

  7. Aggregation of peptides in the tube model with correlated sidechain orientations

    NASA Astrophysics Data System (ADS)

    Hung, Nguyen Ba; Hoang, Trinh Xuan

    2015-06-01

    The ability of proteins and peptides to aggregate and form toxic amyloid fibrils is associated with a range of diseases including BSE (or mad cow), Alzheimer's and Parkinson's Diseases. In this study, we investigate the the role of amino acid sequence in the aggregation propensity by using a modified tube model with a new procedure for hydrophobic interaction. In this model, the amino acid sidechains are not considered explicitly, but their orientations are taken into account in the formation of hydrophobic contact. Extensive Monte Carlo simulations for systems of short peptides are carried out with the use of parallel tempering technique. Our results show that the propensity to form and the structures of the aggregates strongly depend on the amino acid sequence and the number of peptides. Some sequences may not aggregate at all at a presumable physiological temperature while other can easily form fibril-like, β-sheet struture. Our study provides an insight into the principles of how the formation of amyloid can be governed by amino acid sequence.

  8. Insights into Antimicrobial Peptides from Spiders and Scorpions

    PubMed Central

    Wang, Xiuqing; Wang, Guangshun

    2015-01-01

    The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider’s and 63 scorpion’s AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses. PMID:27165405

  9. Tailoring peptide amphiphiles and their assemblies for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lin, Brian

    Peptide amphiphiles (PAs) are molecules composed of a peptide conjugated to a hydrophobic moiety, commonly a fatty acid. They closely resemble the structure of naturally occurring lipopeptides, produced by microbes as signaling and antimicrobial agents. The amphiphilic nature of PAs in concert with the large number of discovered functional peptides inspired scientists to exploit this molecular architecture for producing synthetic self-assembled bioactive materials. PA assemblies are sought after for a wide breadth of applications including disease therapy, regenerative medicine, and catalysis. However, with PAs, the peptide chemistry is a double-edged sword. The peptide component contributes significantly to both the activity and self-assembly. The physiochemical properties of different PAs lead to unique aggregation stability and morphological characteristics which are unpredictable, a priori. Therefore it is challenging to design bioactive PAs and control their self-assembly, simultaneously. This limitation slows the development of PAs for medical use. In this dissertation, methods to control the self-assembly of PAs and the effects of acylating a functional peptide will be discussed. In one part, efforts to direct the self-assembly of PAs into small spherical aggregates, a morphology infrequently observed, will be described. In another section, a strategy to control the stability of PA assemblies will be discussed. In the last section, a pH-responsive membrane perturbing peptide was modified with fatty acid tails and the properties of the resulting PAs will be presented. This dissertation provides some fundamental insight for the use and design of PA self-assemblies.

  10. Antimicrobial Peptides from Marine Proteobacteria

    PubMed Central

    Desriac, Florie; Jégou, Camille; Balnois, Eric; Brillet, Benjamin; Le Chevalier, Patrick; Fleury, Yannick

    2013-01-01

    After years of inadequate use and the emergence of multidrug resistant (MDR) strains, the efficiency of “classical” antibiotics has decreased significantly. New drugs to fight MDR strains are urgently needed. Bacteria hold much promise as a source of unusual bioactive metabolites. However, the potential of marine bacteria, except for Actinomycetes and Cyanobacteria, has been largely underexplored. In the past two decades, the structures of several antimicrobial compounds have been elucidated in marine Proteobacteria. Of these compounds, polyketides (PKs), synthesised by condensation of malonyl-coenzyme A and/or acetyl-coenzyme A, and non-ribosomal peptides (NRPs), obtained through the linkage of (unusual) amino acids, have recently generated particular interest. NRPs are good examples of naturally modified peptides. Here, we review and compile the data on the antimicrobial peptides isolated from marine Proteobacteria, especially NRPs. PMID:24084784

  11. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    PubMed

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  12. Cyclic azole-homologated peptides from Marine sponges.

    PubMed

    Molinski, Tadeusz F

    2017-12-19

    This review discusses the chemistry of cyclic azole-homologated peptides (AHPs) from the marine sponges, Theonella swinhoei, other Theonella species, Calyx spp. and Plakina jamaicensis. The origin, distribution of AHPs and molecular structure elucidations of AHPs are described followed by their biosynthesis, bioactivity, and synthetic efforts towards their total synthesis. Reports of partial and total synthesis of AHPs extend beyond peptide coupling reactions and include creative construction of the non-proteinogenic amino acid components, mainly the homologated heteroaromatic and α-keto-β-amino acids. A useful conclusion is drawn regarding AHPs: despite their rarity, exotic structures and the potent protease inhibitory properties of some members, their synthesis is under-developed and beckons solutions for outstanding problems towards their efficient assembly.

  13. Synthesis of peptide nucleic acids containing pyridazine derivatives as cytosine and thymine analogs, and their duplexes with complementary oligodeoxynucleotides.

    PubMed

    Tomori, Takahito; Miyatake, Yuya; Sato, Yuta; Kanamori, Takashi; Masaki, Yoshiaki; Ohkubo, Akihiro; Sekine, Mitsuo; Seio, Kohji

    2015-03-20

    Synthesis of peptide nucleic acids (PNAs) is reported with new pyridazine-type nucleobases: 3-aminopyridazine (aPz) and 1-aminophthalazine (aPh) as cytosine analogs, and pyridazin-3-one (Pz(O)) and phthalazin-1-one (Ph(O)) as thymine analogs. The PNAs having an aPz or a Pz(O) formed duplexes with each complementary oligodeoxynucleotide forming a base pair with G or A, respectively, as evaluated by using UV melting analyses and circular dichroism (CD) spectra.

  14. A method for the 32P labeling of peptides or peptide nucleic acid oligomers

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Nielsen, P. E.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    1998-01-01

    A novel approach to the radioactive labeling of peptides and PNA oligomers is described. It is based on the conjugation of a deoxynucleoside 3'-phosphate with the terminal amine of the substrate, followed by phosphorylation of the 5'-hydroxyl group of the nucleotide using T4 polynucleotide kinase and [gamma-32P]ATP.

  15. Cloning and characterization of cDNAs encoding human gastrin-releasing peptide.

    PubMed Central

    Spindel, E R; Chin, W W; Price, J; Rees, L H; Besser, G M; Habener, J F

    1984-01-01

    We have prepared and cloned cDNAs derived from poly(A)+ RNA from a human pulmonary carcinoid tumor rich in immunoreactivity to gastrin-releasing peptide, a peptide closely related in structure to amphibian bombesin. Mixtures of synthetic oligodeoxyribonucleotides corresponding to amphibian bombesin were used as hybridization probes to screen a cDNA library prepared from the tumor RNA. Sequencing of the recombinant plasmids shows that human gastrin-releasing peptide (hGRP) mRNA encodes a precursor of 148 amino acids containing a typical signal sequence, hGRP consisting of 27 or 28 amino acids, and a carboxyl-terminal extension peptide. hGRP is flanked at its carboxyl terminus by two basic amino acids, following a glycine used for amidation of the carboxyl-terminal methionine. RNA blot analyses of tumor RNA show a major mRNA of 900 bases and a minor mRNA of 850 bases. Blot hybridization analyses using human genomic DNA are consistent with a single hGRP-encoding gene. The presence of two mRNAs encoding the hGRP precursor protein in the face of a single hGRP gene raises the possibility of alternative processing of the single RNA transcript. Images PMID:6207529

  16. A novel antifungal peptide from leaves of the weed Stellaria media L.

    PubMed

    Rogozhin, Eugene A; Slezina, Marina P; Slavokhotova, Anna A; Istomina, Ekaterina A; Korostyleva, Tatyana V; Smirnov, Alexey N; Grishin, Eugene V; Egorov, Tsezi A; Odintsova, Tatyana I

    2015-09-01

    A novel peptide named SmAMP3 was isolated from leaves of common chickweed (Stellaria media L.) by a combination of acidic extraction and a single-step reversed-phase HPLC and sequenced. The peptide is basic and cysteine-rich, consists of 35 amino acids, and contains three disulphide bridges. Homology search revealed that SmAMP3 belongs to the family of hevein-like antimicrobial peptides carrying a conserved chitin-binding site. Efficient binding of chitin by SmAMP3 was proved by in vitro assays. Molecular modeling confirmed conservation of the chitin-binding module in SmAMP3 locating the variable amino acid residues to the solvent-exposed loops of the molecule. The peptide exhibits potent antifungal activity against important plant pathogens in the micromolar range, although it is devoid of antibacterial activity at concentrations below 10 μM. As judged by chromatographic behavior and mass spectrometric data, the peptide is constitutively expressed in above-ground organs and seeds of S. media plants, thus representing an important player in the preformed branch of the plant immune system. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  17. Pilot study on peptide purity—synthetic human C-peptide

    NASA Astrophysics Data System (ADS)

    Josephs, R. D.; Li, M.; Song, D.; Daireaux, A.; Choteau, T.; Stoppacher, N.; Westwood, S.; Wielgosz, R.; Xiao, P.; Liu, Y.; Gao, X.; Zhang, C.; Zhang, T.; Mi, W.; Quan, C.; Huang, T.; Li, H.; Melanson, J. E.; Ün, I.; Gören, A. C.; Quaglia, M.; Warren, J.

    2017-01-01

    Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P55.2, was coordinated by the Bureau International des Poids et Mesures (BIPM) and the Chinese National Institute of Metrology (NIM). Four Metrology Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of human C-peptide (hCP) present as the main component in the comparison sample for CCQM-P55.2. The comparison samples were prepared from synthetic human hCP purchased from a commercial supplier and used as provided without further treatment or purification. hCP was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of short (up to 5 kDa), non-cross-linked synthetic peptides/proteins. It was anticipated to provide an analytical measurement challenge representative for the value-assignment of compounds of broadly similar structural characteristics. The majority of participants used a quantitative nuclear magnetic resonance spectroscopy (qNMR) corrected for peptide impurities. Other participants provided results obtained by peptide impurity corrected amino acid analysis (PICAA) or elemental analysis (PICCHN). It was decided to assign reference values based on the KCRVs of CCQM-K115 for both the hCP mass fraction and the mass fraction of the peptide related impurities as indispensable contributor regardless of the use of PICAA, mass balance or any other approach to determine the hCP purity. This allowed participants to demonstrate the efficacy of their implementation of the approaches used to determine the hCP mass fraction. In particular it allows participants to demonstrate the efficacy of their implementation of peptide related impurity identification and quantification. The assessment of the mass fraction of peptide impurities is based on the assumption that only the most exhaustive and

  18. Lipopolysaccharide interactions of C-terminal peptides from human thrombin.

    PubMed

    Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin

    2013-05-13

    Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.

  19. [Transduction peptides, the useful face of a new signaling mechanism].

    PubMed

    Joliot, Alain; Prochiantz, Alain

    2005-03-01

    Transduction peptides that cross the plasma membrane of live cells are commonly used for the in vitro and in vivo targeting of hydrophilic drugs into the cell interior. Although this family of peptides has recently increased and will probably continue to do so, the two mainly used peptides are derived from transcription factors. Indeed, TAT is a 12 amino acid long arginine-rich peptide present in the HIV transcription factor, and penetratin - or its variants - corresponds to 16 amino acids that define the highly conserved third helix of the DNA-binding domain (homeodomain) of homeoprotein transcription factors. In this review, we shall recall the different steps that have led to the discovery of transduction peptides and present the most likely hypotheses concerning the mechanisms involved in their internalization. At the risk of being incomplete or, even, biased, we shall concentrate on penetratins and TAT. The reason is that these peptides have been studied for over ten years leading to the edification of robust knowledge regarding their properties. This attitude will not preclude comparisons with other peptides, if necessary. Our goal is to describe the mode of action of these transduction peptides, their range of activity in term of cell types that accept them and cargoes that they can transport, and, also, some of the limitations that one can encounter in their use. Finally, based on the idea that peptide transduction is the technological face of a physiological property of some transcription factors, we shall discuss the putative physiological function of homeoprotein transduction, and, as a consequence, the possibility to use these factors as therapeutic proteins.

  20. Short peptides allowing preferential detection of Candida albicans hyphae.

    PubMed

    Kaba, Hani E J; Pölderl, Antonia; Bilitewski, Ursula

    2015-09-01

    Whereas the detection of pathogens via recognition of surface structures by specific antibodies and various types of antibody mimics is frequently described, the applicability of short linear peptides as sensor molecules or diagnostic tools is less well-known. We selected peptides which were previously reported to bind to recombinant S. cerevisiae cells, expressing members of the C. albicans Agglutinin-Like-Sequence (ALS) cell wall protein family. We slightly modified amino acid sequences to evaluate peptide sequence properties influencing binding to C. albicans cells. Among the selected peptides, decamer peptides with an "AP"-N-terminus were superior to shorter peptides. The new decamer peptide FBP4 stained viable C. albicans cells more efficiently in their mature hyphal form than in their yeast form. Moreover, it allowed distinction of C. albicans from other related Candida spp. and could thus be the basis for the development of a useful tool for the diagnosis of invasive candidiasis.