Science.gov

Sample records for acid pfos perfluorooctanoic

  1. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination from textiles.

    PubMed

    Supreeyasunthorn, Phenpimuk; Boontanon, Suwanna K; Boontanon, Narin

    2016-01-01

    The goals of this study were to determine the concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in textiles and to determine PFOS and PFOA contamination in textile washing water. Quantification analysis was performed by high performance liquid chromatography coupled with tandem mass spectrometry. Analysis of 32 textile samples by methanol extraction revealed that the average concentrations of PFOS and PFOA were 0.18 µg m(-2) (0.02 to 0.61 µg m(-2)) and 2.74 µg m(-2) (0.31 to 14.14 µg m(-2)), respectively. Although the average concentration of PFOS found in textile samples was below European Union (EU) Commission regulations (<1 µg m(-2)), the average concentration of PFOA was 2.74 µg m(-2), and 68.75% of textile samples had PFOA concentrations exceeding 1 µg m(-2). Thus, based on these results, the concentration of PFOA in products should also be regulated. Experiments on PFOS and PFOA leaching into washing water were conducted. The maximum concentrations of PFOS and PFOA were measured after the first washing; the concentrations gradually decreased with each subsequent washing. PFOS and PFOA migrated from textiles and were released into the environment, with disappearance percentages of 29.8% for PFOS and 99% for PFOA. The data presented in this study showed that textiles could be a significant direct and indirect source of PFOS and PFOA exposure for both humans and the environment.

  2. Extent of Sorption and Biodegradability of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) in Aquifer Sediment

    EPA Science Inventory

    Fluoropolymers such as Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) were used provide non-stick surfaces on cookware and waterproof, breathable clothing. PFOA is very persistent in the environment and is found at low concentrations in the environment and...

  3. Extent of Sorption and Biodegradation of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS) in Aquifer Sediment

    EPA Science Inventory

    Fluoropolymers such as Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) were used provide non-stick surfaces on cookware and waterproof, breathable clothing. PFOA is very persistent in the environment and is found at low concentrations in the environment and...

  4. Absorption and excretion of 14C-perfluorooctanoic acid (PFOA) and perfluorooctane aulfonate (PFOS) in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfluoroalkyl compounds such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are industrial chemicals that are environmentally persistent. Both PFOS and PFOA are found in biosolids, and the application of these contaminated biosolids to pastures has raised concerns about possi...

  5. Absorption and excretion of 14C-perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfluoroalkyl compounds such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are industrial chemicals that are environmentally persistent. Both PFOS and PFOA are found in biosolids, and the application of these contaminated biosolids to pastures has raised concerns about possi...

  6. Extent of Sorption and Biodegradability of Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) in Aquifer Sediment (Maryland)

    EPA Science Inventory

    Fluoropolymers such as Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic acid (PFOS) were used provide non-stick surfaces on cookware and waterproof, breathable clothing. PFOA is very persistent in the environment and is found at low concentrations in the environment and...

  7. Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs).

    PubMed

    Schaefer, Charles E; Andaya, Christina; Urtiaga, Ana; McKenzie, Erica R; Higgins, Christopher P

    2015-09-15

    Laboratory experiments were performed to evaluate the use of electrochemical treatment for the decomposition of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), as well as other perfluoroalkyl acids (PFAAs), in aqueous film forming foam (AFFF)-impacted groundwater collected from a former firefighter training area and PFAA-spiked synthetic groundwater. Using a commercially-produced Ti/RuO2 anode in a divided electrochemical cell, PFOA and PFOS decomposition was evaluated as a function of current density (0-20 mA/cm(2)). Decomposition of both PFOA and PFOS increased with increasing current density, although the decomposition of PFOS did not increase as the current density was increased above 2.5 mA/cm(2). At a current density of 10 mA/cm(2), the first-order rate constants, normalized for current density and treatment volume, for electrochemical treatment of both PFOA and PFOS were 46 × 10(-5) and 70 × 10(-5) [(min(-1)) (mA/cm(2))(-1) (L)], respectively. Defluorination was confirmed for both PFOA and PFOS, with 58% and 98% recovery as fluoride, respectively (based upon the mass of PFOA and PFOS degraded). Treatment of other PFAAs present in the groundwater also was observed, with shorter chain PFAAs generally being more recalcitrant. Results highlight the potential for electrochemical treatment of PFAAs, particularly PFOA and PFOS, in AFFF-impacted groundwater.

  8. ACTIVATION OF MOUSE AND HUMAN PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS (PPAR ALPHA, GAMMA, BETA DELTA) BY PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUOROOCTANE SULFONATE (PFOS)

    EPA Science Inventory

    This study evaluates the potential for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) to activate peroxisome proliferator-activated receptors (PPARs), using a transient transfection cell assay. Cos-1 cells were cultured in DMEM with fetal bovine serum (FBS) in ...

  9. Ecological risk assessment of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) in marine environment using Isochrysis galbana, Paracentrotus lividus, Siriella armata and Psetta maxima.

    PubMed

    Mhadhbi, Lazhar; Rial, Diego; Pérez, Sara; Beiras, Ricardo

    2012-05-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are anthropogenic substances classified as persistent bioaccumulative compounds and are found in various environmental compartments throughout the world, from industrialized regions to remote zones far from areas of production. In this study, we assessed the effects of PFOA and PFOS on early life stages of marine test species belonging to three different trophic levels: one microalga (Isochrysis galbana), a primary consumer (Paracentrotus lividus) and two secondary consumers (Siriella armata and Psetta maxima). Acute EC(50) values for PFOS were 0.11 mg L(-1) in P. maxima, 6.9 mg L(-1) in S. armata, 20 mg L(-1) in P. lividus and 37.5 mg L(-1) in I. galbana. In the case of PFOA, the toxicity was lower but the ranking was the same; 11.9 mg L(-1) in P. maxima, 15.5 mg L(-1) in S. armata, 110 mg L(-1) in P. lividus and 163.6 mg L(-1) in I. galbana. The Predicted No Effect Concentration (PNEC) for PFOS and PFOA in marine water derived from these acute toxicity values are 1.1 μg L(-1) for PFOS and 119 μg L(-1) for PFOA. This study established a baseline dataset of toxicity of PFOS and PFOA on saltwater organisms. The data obtained suggest that PFOA pose a minor risk to these organisms through direct exposure. In the perspective of risk assessment, early life stage (ELS) endpoints provide rapid, cost-effective and ecologically relevant information, and links should be sought between these short-term tests and effects of long-term exposures in more realistic scenarios.

  10. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in sewage treatment plants.

    PubMed

    Yu, Jing; Hu, Jiangyong; Tanaka, Shuhei; Fujii, Shigeo

    2009-05-01

    In this study, the concentrations of PFOS and PFOA in the biological units of various full-scale municipal sewage treatment plants were measured. Samples of influent, primary effluent, aeration tank effluent, final effluent and grab samples of primary, activated, secondary and anaerobically digested sludge were collected by 5 sampling events over one year. The two sewage treatment plants (STPs) selected for this study include plant A receiving 95% domestic wastewater and plant B receiving 60% industrial wastewater and 40% domestic wastewater. PFOS and PFOA were observed at higher concentration in aqueous and sludge samples in plant B than that of plant A. Mass flow of PFOS increased significantly (mean 94.6%) in conventional activated sludge process (CAS) of plant B, while it remained consistent after the secondary treatment in plant A. Mass flow of PFOA increased 41.6% (mean) in CAS of plants A and B and 76.6% in membrane biological reactor (MBR), while it remained unchanged after the treatment of liquid treatment module (LTM). Our results suggest that mass flow of these two compounds remains consistent after treatment of activated sludge process operating at short sludge retention time (SRT). Seasonal variations of PFOS in concentrations of raw sewage were found in plant A, while PFOA did not have significant seasonal variation in both plants A and B.

  11. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy.

    PubMed

    Squadrone, S; Ciccotelli, V; Prearo, M; Favaro, L; Scanzio, T; Foglini, C; Abete, M C

    2015-07-01

    Perfluoroalkylated substances (PFASs) are highly fluorinated aliphatic compounds with high thermal and chemical stability, used in a range of industrial applications. Extensive screening analyses in biota samples from all over the world have shown the bioaccumulation of PFAS into higher trophic levels in the food chain. Perfluorooctane sulfonic acid (PFOS) and perfluoroctanoic acid (PFOA) are potential reproductive and developmental toxicants and are considered to be emerging endocrine disrupters. Ingestion of fish and other seafood is considered the main source of exposure of these contaminants. Here, we quantified PFOS and PFOA by LC-MS/MS in muscle samples of European perch from Lake Varese, Italy. PFOS was detected in all samples with concentrations of up to 17.2 ng g(-1). Although the reported values were lower than the recommended total daily intake (TDI) proposed by the European Food Safety Authority (EFSA), fish from Lake Varese may be a significant source of dietary PFOS exposure.

  12. Carryover of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from soil to plant and distribution to the different plant compartments studied in cultures of carrots (Daucus carota ssp. Sativus), potatoes (Solanum tuberosum), and cucumbers (Cucumis Sativus).

    PubMed

    Lechner, Mareike; Knapp, Holger

    2011-10-26

    A vegetation study was carried out to investigate the carryover of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) from soil mixed with contaminated sewage sludge to potato, carrot, and cucumber plants. Analysis was done by liquid-extraction using acetonitrile with dispersive SPE cleanup and subsequent HPLC-MS/MS. In order to assess the transfer potential from soil, transfer factors (TF) were calculated for the different plant compartments: TF = [PFC](plant (wet substance))/[PFC](soil (dry weight)). The highest TF were found for the vegetative plant compartments with average values for PFOS below those for PFOA: cucumber, 0.17 (PFOS), 0.88 (PFOA); potato, 0.36 (PFOS), 0.40 (PFOA); carrot, 0.38 (PFOS), 0.53 (PFOA). Transfer of PFOA and PFOS into potato peelings (average values of TF: PFOA 0.03, PFOS 0.04) exceeded the carryover to the peeled tubers (PFOA 0.01, PFOS < 0.01). In carrots, this difference did not occur (average values of TF: PFOA 0.04, PFOS 0.04). Transfer of PFOS into the unpeeled cucumbers was low and comparable to that of peeled potatoes (TF < 0.01). For PFOA, it was higher (TF: 0.03).

  13. Gene Expression Profiling in the Liver and Lung of Perfluorooctane Sulfonate-Exposed Mouse Fetuses: Comparison to Changes Induced by Exposure to Perfluorooctanoic Acid

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmental contaminants found in the tissues of humans and wildlife. They are activators of peroxisome proliferator-activated receptor-alpha (PPARα) and exhibit hepatocarcinogenic potential in rats. PFOS...

  14. Isomer-Specific Binding Affinity of Perfluorooctanesulfonate (PFOS) and Perfluorooctanoate (PFOA) to Serum Proteins.

    PubMed

    Beesoon, Sanjay; Martin, Jonathan W

    2015-05-05

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are among the most prominent contaminants in human serum, and these were historically manufactured as technical mixtures of linear and branched isomers. The isomers display unique pharmacokinetics in humans and in animal models, but molecular mechanisms underlying isomer-specific PFOS and PFOA disposition have not previously been studied. Here, ultrafiltration devices were used to examine (i) the dissociation constants (Kd) of individual PFOS and PFOA isomers with human serum albumin (HSA) and (ii) relative binding affinity of isomers in technical mixtures spiked to whole calf serum and human serum. Measurement of HSA Kd's demonstrated that linear PFOS (Kd=8(±4)×10(-8) M) was much more tightly bound than branched PFOS isomers (Kd range from 8(±1)×10(-5) M to 4(±2)×10(-4) M). Similarly, linear PFOA (Kd=1(±0.9)×10(-4) M) was more strongly bound to HSA compared to branched PFOA isomers (Kd range from 4(±2)×10(-4) M to 3(±2)×10(-4) M). The higher binding affinities of linear PFOS and PFOA to total serum protein were confirmed when both calf serum and human serum were spiked with technical mixtures. Overall, these data provide a mechanistic explanation for the longer biological half-life of PFOS in humans, compared to PFOA, and for the higher transplacental transfer efficiencies and renal clearance of branched PFOS and PFOA isomers, compared to the respective linear isomer.

  15. Perfluorooctanoic acid and environmental risks

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids (PFAA) family of chemicals, which consist of a carbon backbone typically four to fourteen carbons in length and a charged functional moiety.

  16. Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals

    SciTech Connect

    Ehresman, David J.; Froehlich, John W.; Olsen, Geary W. . E-mail: gwolsen@mmm.com; Chang, Shu-Ching; Butenhoff, John L.

    2007-02-15

    Interest in human exposure to perfluorinated acids, including perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHS), perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) has led to their measurement in whole blood, plasma and serum. Comparison of measurements in these different blood-based matrices, however, has not been rigorously investigated to allow for across-matrix comparisons. This research evaluated concentrations of PFBS, PFHS, PFOS, and PFOA in whole blood collected in heparin (lithium) and ethylenediamine tetraacetic acid (EDTA), plasma samples collected in heparin and EDTA, and serum (from whole blood allowed to clot). Blood samples were collected from 18 voluntary participants employed at 3M Company. Solid phase extraction methods were used for all analytical sample preparations, and analyses were completed using high-pressure liquid chromatography/tandem mass spectrometry methods. Serum concentrations ranged from: limit of quantitation (LOQ, 5 ng/mL) to 25 ng/mL for PFBS; LOQ (5 ng/mL) to 75 ng/mL for PFHS; LOQ (5 ng/mL) to 880 ng/mL for PFOS; and LOQ (5 or 10 ng/mL) to 7320 ng/mL for PFOA. Values less than the LOQ were not included in the statistical analyses of the mean of the ratios of individual values for the matrices. PFBS was not quantifiable in most samples. Serum to plasma ratios for PFHS, PFOS, and PFOA were 1:1 and this ratio was independent of the level of concentrations measured. Serum or plasma to whole blood ratios, regardless of the anticoagulant used, approximated 2:1. The difference between plasma and serum and whole blood corresponded to volume displacement by red blood cells, suggesting that the fluorochemicals are not found intracellularly or attached to the red blood cells.

  17. Comparison of human whole blood, plasma, and serum matrices for the determination of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and other fluorochemicals.

    PubMed

    Ehresman, David J; Froehlich, John W; Olsen, Geary W; Chang, Shu-Ching; Butenhoff, John L

    2007-02-01

    Interest in human exposure to perfluorinated acids, including perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHS), perfluorooctanesulfonate (PFOS), and perfluorooctanoate (PFOA) has led to their measurement in whole blood, plasma and serum. Comparison of measurements in these different blood-based matrices, however, has not been rigorously investigated to allow for across-matrix comparisons. This research evaluated concentrations of PFBS, PFHS, PFOS, and PFOA in whole blood collected in heparin (lithium) and ethylenediamine tetraacetic acid (EDTA), plasma samples collected in heparin and EDTA, and serum (from whole blood allowed to clot). Blood samples were collected from 18 voluntary participants employed at 3M Company. Solid phase extraction methods were used for all analytical sample preparations, and analyses were completed using high-pressure liquid chromatography/tandem mass spectrometry methods. Serum concentrations ranged from: limit of quantitation (LOQ, 5 ng/mL) to 25 ng/mL for PFBS; LOQ (5 ng/mL) to 75 ng/mL for PFHS; LOQ (5 ng/mL) to 880 ng/mL for PFOS; and LOQ (5 or 10 ng/mL) to 7320 ng/mL for PFOA. Values less than the LOQ were not included in the statistical analyses of the mean of the ratios of individual values for the matrices. PFBS was not quantifiable in most samples. Serum to plasma ratios for PFHS, PFOS, and PFOA were 1:1 and this ratio was independent of the level of concentrations measured. Serum or plasma to whole blood ratios, regardless of the anticoagulant used, approximated 2:1. The difference between plasma and serum and whole blood corresponded to volume displacement by red blood cells, suggesting that the fluorochemicals are not found intracellularly or attached to the red blood cells.

  18. Perfluorooctane sulphonate and perfluorooctanoic acid in drinking and environmental waters.

    PubMed

    Rumsby, Paul C; McLaughlin, Clare L; Hall, Tom

    2009-10-13

    Perfluorooctane sulphonate (PFOS) and perfluorooctanoic acid (PFOA) are chemicals that have been used for many years as surfactants in a variety of industrial and consumer products. Owing to their persistent, bioaccumulative and toxic (PBT) characteristics, PFOS has been phased out by its principal producer and the use of PFOA has been reduced. This PBT potential and a number of pollution incidents have led in recent years to an increase in studies surveying the concentrations of PFOS and PFOA in environmental waters worldwide. This paper reviews the results of these studies, as well as the monitoring that was conducted after the pollution incidents. The results of surveys suggest that PFOS and PFOA are found in environmental waters worldwide at low levels. In general, these levels are below health-based values set by international authoritative bodies for drinking water. There have been limited measurements of these chemicals in drinking water, but again these are below health-based values, except in some cases following pollution incidents. Monitoring studies suggested that where PFOS and PFOA were detected, they were at similar levels in both source and drinking water, suggesting that drinking water treatment does not remove these chemicals. However, new data show that PFOS and PFOA are effectively removed by granular activated carbon absorbers in practice. Further research is required on the newer perfluorinated chemicals that appear to be safer, but their degradation products have not as yet been fully studied.

  19. Assessment of perfluorooctanoic acid and perfluorooctane sulfonate in surface water - Tamil Nadu, India.

    PubMed

    Sunantha, Ganesan; Vasudevan, Namasivayam

    2016-08-15

    As an emerging class of environmentally persistent organic pollutants, perfluorinated compounds (PFCs), particularly perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); have been universally found in the environment. Wastewater and untreated effluents are likely the major causes for the accumulation of PFCs in surface water. There are very few reports on the contamination of PFCs in the developing countries, particularly in India. This study reports the quantitative analysis of PFOA and PFOS in Noyyal, Cauvery, and also lakes in and around Chennai, using Ultra-Fast liquid chromatograph. The concentration of PFOA and PFOS ranged from 4 to 93ng/L and 3 to 29ng/L, respectively. The concentration of PFOS was below detectable limit in Cauvery River. A reliable concentration of PFOA was recorded at all sites of River Cauvery (5ng/L). The present study could be useful for the assessment of future monitoring programs of PFOA and PFOS in the surface water.

  20. Perfluorooctanoic Acid for Shotgun Proteomics

    PubMed Central

    Kadiyala, Chandra Sekhar Rao; Tomechko, Sara E.; Miyagi, Masaru

    2010-01-01

    Here, we describe the novel use of a volatile surfactant, perfluorooctanoic acid (PFOA), for shotgun proteomics. PFOA was found to solubilize membrane proteins as effectively as sodium dodecyl sulfate (SDS). PFOA concentrations up to 0.5% (w/v) did not significantly inhibit trypsin activity. The unique features of PFOA allowed us to develop a single-tube shotgun proteomics method that used all volatile chemicals that could easily be removed by evaporation prior to mass spectrometry analysis. The experimental procedures involved: 1) extraction of proteins in 2% PFOA; 2) reduction of cystine residues with triethyl phosphine and their S-alkylation with iodoethanol; 3) trypsin digestion of proteins in 0.5% PFOA; 4) removal of PFOA by evaporation; and 5) LC-MS/MS analysis of the resulting peptides. The general applicability of the method was demonstrated with the membrane preparation of photoreceptor outer segments. We identified 75 proteins from 1 µg of the tryptic peptides in a single, 1-hour, LC-MS/MS run. About 67% of the proteins identified were classified as membrane proteins. We also demonstrate that a proteolytic 18O labeling procedure can be incorporated after the PFOA removal step for quantitative proteomic experiments. The present method does not require sample clean-up devices such as solid-phase extractions and membrane filters, so no proteins/peptides are lost in any experimental steps. Thus, this single-tube shotgun proteomics method overcomes the major drawbacks of surfactant use in proteomic experiments. PMID:21209883

  1. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to plants and aquatic invertebrates.

    PubMed

    Li, Mei-Hui

    2009-02-01

    Acute toxicities of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were tested on four freshwater species and three plant species. PFOS was more toxic than PFOA for all species tested in this study. Similar time-response patterns of PFOS and PFOA toxicity were observed for each tested species. Values of the 48-h LC(50) of PFOS for all test species ranged from 27 to 233 mg/L and values of the 96-h LC(50) for three of the species ranged from 10 to 178 mg/L. Values of the 48-h LC(50) of PFOA for all test species ranged from 181 to 732 mg/L and values of the 96-h LC(50) for three of the species ranged from 337 to 672 mg/L. The most sensitive freshwater species to PFOS was green neon shrimp (Neocaridina denticulate) with a 96-h LC(50) of 10 mg/L. Of the aquatic organisms tested, the aquatic snail (Physa acuta) always has the highest resistance to PFOS or PFOA toxicity over each exposure period. Both PFOS and PFOA had no obvious adverse effect on seed germination for all three plant species. Five-day EC(50) of root elongation was more sensitive to LC(50) of seed germination in this study. Based on EC(10), EC(50), and NOECs, the 5-day root elongation sensitivity of test plants to both PFOS and PFOA was in the order of lettuce (Lactuca sativa) > pakchoi (Brassica rapa chinensis) > cucumber (Cucumis sativus). Based on the results of this study and other published literature, it is suggested that current PFOS and PFOA levels in freshwater may have no acute harmful ecological impact on the aquatic environment. However, more research on the long-term ecological effects of PFOS and PFOA on aquatic fauna are needed to provide important information to adequately assess ecological risk of PFOS and PFOA.

  2. Removal of emerging perfluorooctanoic acid and perfluorooctane sulfonate contaminants from lake water.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Sarker, Dipok Chandra; Suja, Fatihah

    2016-10-11

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are the major polyfluoroalkyl substances (PFASs) contaminating global water environment. This study investigated the efficiency of granular activated carbon (GAC), ultrafiltration (UF) and nanofiltration (NF) treatment for removing PFOS and PFOA contaminants from lake water. NF gave greater removal of all contaminant types (in terms of organic matter, PFOS and PFOA) than GAC treatment which in turn was greater than UF treatment. The lower removal by UF was due to larger pore size of the membrane compared to the size of the target contaminants. For all treatment processes, lower pH (4) in the feedwater showed greater rejection of the organics and selected PFASs. This was likely due to increase in the electrostatic repulsion between solute and sorbent. It could be observed that on increasing the concentration of organics in the feed solution, the rejection of PFOA/PFOS decreased which was due to competition between organics and PFOS/PFOA for binding sites on the membrane/activated carbon surface. It was also noted that protein content led to greater influence for lower rejection of the PFOA/PFOS than carbohydrate or DOC content. This study demonstrated the potential use of membrane processes for removing emerging persistent organic pollutant removal from lake water.

  3. Devopmental toxicity of perfluorooctane Sulfonate (PFOS) is not dependent on expression on peroxisome proliferator activated receptor-alpha (PPAR-alpha)in the mouse

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to t...

  4. Occurrence of Perfluorooctanoic Acid and Perfluorooctane Sulfonate in Milk and Yogurt and Their Risk Assessment

    PubMed Central

    Xing, Zhenni; Lu, Jianjiang; Liu, Zilong; Li, Shanman; Wang, Gehui; Wang, Xiaolong

    2016-01-01

    Although perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been identified in milk and dairy products in many regions, knowledge on their occurrence in Xinjiang (China) is rare. This study was conducted to measure the levels of PFOA and PFOS in milk and yogurt from Xinjiang and to investigate the average daily intake (ADI) of these two compounds. PFOA and PFOS levels were analyzed using ultrasonic extraction with methanol and solid-phase extraction followed by liquid chromatography–mass spectrometry. Retail milk and yogurt samples present higher detection rates (39.6% and 48.1%) and mean concentrations (24.5 and 31.8 ng/L) of PFOS than those of PFOA (33.0% and 37.0%; 16.2 and 22.6 ng/L, respectively). For raw milk samples, only PFOS was detected. The differences in the levels of the two compounds between samples from the north and south regions were observed, and northern regions showed higher pollution levels than southern regions. On the basis of the retail milk measurements and consumption data, the ADIs of PFOA and PFOS for Xinjiang adults were calculated to be 0.0211 and 0.0318 ng/kg/day, respectively. Furthermore, the estimated intakes of PFOA and PFOS varied among different groupings (age, area, gender, and race) and increased with increasing age. Relevant hazard ratios were found to be far less than 1.0, and this finding suggested that no imminent health damages were produced by PFOA and PFOS intake via milk and yogurt consumption in the Xinjiang population. PMID:27775680

  5. DEVELOPMENTAL TOXICOGENOMIC STUDIES OF PFOA AND PFOS IN MICE.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are developmentally toxic in rodents. To better understand the mechanism(s) associated with this toxicity, we have conducted transcript profiling in mice. In an initial study, pregnant animals were dosed througho...

  6. The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in plants grown in biosolids-amended soils.

    PubMed

    Wen, Bei; Wu, Yali; Zhang, Hongna; Liu, Yu; Hu, Xiaoyu; Huang, Honglin; Zhang, Shuzhen

    2016-09-01

    The roles of protein and lipid in the accumulation and distribution of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in seven species of plants from biosolids-amended soils were investigated. The PFOS and PFOA root concentration factors (Croot/Csoil) ranged from 1.37 to 4.68 and 1.69 to 10.3 (ng/groot)/(ng/gsoil), respectively, while the translocation factors (Cshoot/Croot) ranged from 0.055 to 0.16 and 0.093 to 1.8 (ng/gshoot)/(ng/groot), respectively. The PFOS and PFOA accumulations in roots correlated positively with root protein contents (P < 0.05), while negatively with root lipid contents (P < 0.05). These suggested the promotion effects of protein and inhibition effects of lipid on root uptake. The translocation factors correlated positively with the ratios between protein contents in shoots to those in roots (P < 0.05), showing the importance of protein on PFOS and PFOA translocation. This study is the first to reveal the different roles of protein and lipid in the accumulation and distribution of PFOS and PFOA in plants.

  7. Assessment of Perfluorooctane Sulfonate and Perfluorooctanoic Acid Exposure Through Fish Consumption in Italy

    PubMed Central

    Barbarossa, Andrea; Gazzotti, Teresa; Farabegoli, Federica; Mancini, Francesca R.; Zironi, Elisa; Busani, Luca; Pagliuca, Giampiero

    2016-01-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are pollutants of anthropic origin with possible side effects on human health. Diet, and in particular fish and seafood, is considered the major intake pathway for humans. The present study investigated the levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) contamination in twenty-five samples of fresh fillet of five widely consumed fish species purchased from large retailers in Italy, to be used for an estimation of the Italian population exposure to these contaminants. PFOS and PFOA were found in all samples, at concentrations up to 1896 (mean=627 ng/kg) and 487 ng/kg (mean = 75 ng/kg), respectively, confirming the role of fish as high contributor to human exposure. However, a remarkable inter-species variability was observed, and multiple factors were suggested as potentially responsible for such differences, suggesting that the preferential consumption of certain species could likely increase the intake, and thus the exposure. The exposure estimates for both average and high fish consumers resulted far below the tolerable daily intakes for PFOS and PFOA in all age groups, confirming the outcomes of EFSA’s scientific report. In particular, the calculated total dietary exposure for the 95th percentile consumers belonging to the toddler age class, the most exposed group, resulted equal to 9.72 ng/kg body weight (BW)/day for PFOS and 8.39 ng/kg BW/day for PFOA. PMID:28058243

  8. Human serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in Uyghurs from Sinkiang-Uighur Autonomous Region, China: background levels study.

    PubMed

    Zeng, Xiao-Wen; Qian, Zhengmin; Vaughn, Michael; Xian, Hong; Elder, Keith; Rodemich, Eugene; Bao, Jia; Jin, Yi-He; Dong, Guang-Hui

    2015-03-01

    Perfluorinated compounds (PFCs), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), are a family of commonly used industrial chemicals whose persistence and ubiquity in blood samples of humans and wildlife have become a growing concern. Despite PFOS and PFOA having been found in human blood and tissue samples from occupationally exposed workers and the general worldwide population, little systematic knowledge has accrued with respect to exposure levels in Uyghurs in the Sinkiang-Uighur Autonomous Region of China, which is predominantly agricultural and pastoral. Our goal was to provide background data for biological monitoring in the general population of this region. In this study, 110 self-reported healthy human serum samples were collected from nonoccupationally exposed Uyghurs volunteers and analyzed by microbore HPLC-electrospray tandem mass spectrometry. Among the 110 blood specimens, PFOS was detected in 102 samples (93%) and ranged from the lower limit of quantification of 0.01 to 22.63 μg/L with a median of 1.93 μg/L (interquartile range 1.00-3.43 μg/L). The median was higher among males (2.39 μg/L; interquartile range 1.23-4.40 μg/L) than that among females (1.20 μg/L; interquartile range 0.83-2.77 μg/L). No significant difference was observed with respect to age. The concentration of PFOA was lower than that of PFOS and was found only in seven samples (6%) at concentrations above the limit of quantification. This study is the first investigation to reveal serum PFOS and PFOA levels in the general population of Uyghurs. PFOS and PFOA concentrations found in the present investigation were lower than those found in recent studies consisting of subjects from different geographic locations (PFOS 5.0-44.7 μg/L, PFOA 1.5-10 μg/L).

  9. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a U.S. metropolitan area: migration and implications for human exposure.

    PubMed

    Xiao, Feng; Simcik, Matt F; Halbach, Thomas R; Gulliver, John S

    2015-04-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are emerging anthropogenic compounds that have recently become the target of global concern due to their ubiquitous presence in the environment, persistence, and bioaccumulative properties. This study was carried out to investigate the migration of PFOS and PFOA in soils and groundwater in a U.S. metropolitan area. We observed elevated levels in surface soils (median: 12.2 ng PFOS/g dw and 8.0 ng PFOA/g dw), which were much higher than the soil-screening levels for groundwater protection developed in this study. The measured levels in subsurface soils show a general increase with depth, suggesting a downward movement toward the groundwater table and a potential risk of aquifer contamination. Furthermore, concentrations of PFOS and PFOA in monitoring wells in the source zone varied insignificantly over 5 years (2009-2013), suggesting limited or no change in either the source or the magnitude of the source. The analysis also shows that natural processes of dispersion and dilution can significantly attenuate the groundwater contamination; the adsorption on aquifer solids, on the other hand, appears to have limited effects on the transport of PFOS and PFOA in the aquifer. The probabilistic exposure assessment indicates that ingestion of contaminated groundwater constitutes a much more important exposure route than ingestion of contaminated soil. Overall, the results suggest that (i) the transport of PFOS and PFOA is retarded in the vadose zone, but not in the aquifer; (ii) the groundwater contamination of PFOS and PFOA often follows their release to surface soils by years, if not decades; and (iii) the aquifer can be a major source of exposure for communities living near point sources.

  10. Transcriptional changes in steroidogenesis by perfluoroalkyl acids (PFOA and PFOS) regulate the synthesis of sex hormones in H295R cells.

    PubMed

    Kang, Jae Soon; Choi, Jin-Soo; Park, June-Woo

    2016-07-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are two of the most widely used perfluoroalkyl acids (PFAAs). Because of their strong persistence, they have become widely distributed throughout the environment and human bodies. PFOA and PFOS are suspected to disrupt the endocrine system based upon many in vivo studies, but the underlying mechanisms are currently unclear. In this study, we investigated the endocrine-related effects of PFOA and PFOS using in vitro estrogen receptor (ER) and androgen receptor (AR) transactivation assays and steroidogenesis assay. The results showed that PFOA and PFOS exhibited weak antagonistic ER transactivation but did not exhibit agonistic ER or AR transactivation. In the steroidogenesis assay, PFOA and PFOS induced 17β-estradiol (E2) level and reduced testosterone level, which would be caused by the induction of aromatase activity. The qPCR analysis of genes involved in steroidogenesis indicates that PFOA and PFOS associate with sex hormone synthesis by the transcriptional induction of two genes, cyp19 and 3β-hsd2. Moreover, the transcriptional induction of cyp11b2 by PFOS suggests that this chemical may underlie the disruption of several physiological functions related to aldosterone. The results of the current study suggest that PFOA and PFOS are potential endocrine disrupting chemicals (EDCs) and provide information for further studies on the molecular events that initiate the adverse endocrine effects.

  11. Gene expression profiling in the lung and liver of PFOS-exposed mouse fetuses

    EPA Science Inventory

    The industrial surfactants perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are persistent environmental contaminants commonly found in the tissues of humans and wildlife. Both compounds are agonists of peroxisome proliferator-activated receptor α (PPARα) and...

  12. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), a member of the perfluoroalkyl acids that have wide commercial applications, has recently been detected in humans and wildlife. The current study characterizes the developmental toxicity of PFOA in the mouse. Timed pregnant CD-1 mice were given 1,...

  13. EVALUATION OF PERFLUOROOCTANOIC ACID IMMUNOTOXICITY IN ADULT MICE.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is used in the manufacture of fluoropolymers and may be formed by metabolism or degradation of other perfluoroalkyl acids. Safety concerns led the U.S. EPA to conduct a risk assessment of PFOA and related compounds due to their environmental persist...

  14. Inverse association of colorectal cancer prevalence to serum levels of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in a large Appalachian population

    PubMed Central

    2014-01-01

    Background Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are persistent environmental contaminants that affect metabolic regulation, inflammation, and other factors implicated in the development and progression of colorectal cancer (CRC). However, the link between these compounds and CRC remains unknown. In this cross-sectional study, we investigated the association of CRC diagnosis to PFOA and PFOS blood levels in a large Appalachian population. Methods Participants were 47,359 adults ≥ 21 years of age and residing in six PFOA-contaminated water districts in the mid-Ohio Valley (N = 47,151 cancer-free adults, 208 cases of primary CRC). All participants completed a comprehensive health survey between 2005 and 2006; serum levels of PFOA, PFOS, and a range of other blood markers were also measured. Medical history was assessed via self report and cancer diagnosis confirmed via chart review. Results CRC showed a strong inverse, dose–response association with PFOS serum levels (odds ratio (OR) adjusted for potential confounders = 0.2, 95% confidence interval (CI) 0.2,0.3) for highest vs. lowest quartile of PFOS, P-trend < 0.00001) and a significant, but more modest inverse association with PFOA (adjusted OR = 0.6 (CI 0.4, 0.9) for highest vs. lowest quartile, P-trend = 0.001). These inverse associations were stronger in those diagnosed within the previous 6 years and resident in the same water district for a minimum of 10–15 years preceding assessment. The relationship between PFOA and CRC was also more pronounced in men and leaner adults, and showed a stronger linear trend at lower exposure levels. Conclusions In this large cross-sectional study, we found a strong, inverse association between PFOS and likelihood of CRC diagnosis and a significant, although more modest inverse association between PFOA and CRC. If confirmed in prospective investigations, these findings may aid in identifying new strategies for CRC

  15. Behavior and Fate of PFOA and PFOS in Sandy Aquifer Sediment (journal)

    EPA Science Inventory

    Microcosms were constructed with sediment from beneath a landfill that received waste containing PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate). The microcosms were amended with PFOA and PFOS, and sampled after 91, 210, 343, 463, 574, and 740 days of incubat...

  16. PHARMACOKINETIC PROFILES OF PERFLUOROOCTANOIC ACID IN MICE AFTER CHRONIC EXPOSURE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is highly persistent in humans, with serum half-life estimates of 2.3 to 3.8 years. In the mouse, elimination of PFOA appears to be first-order after a single oral administration, with serum half-life estimates of 16 days for females and 22 days for ...

  17. PHARMACOKINETIC EVALUATION OF PERFLUOROOCTANOIC ACID IN THE MOUSE

    EPA Science Inventory

    The poster is a collaboration between NHEERL and NERL. The NERL researchers developed methods for the analyses of Perfluorooctanoic Acids (PFOA) in various animal tissue isolates. The NHEERL researchers are developing an appropriate animal model to assess the distribution and de...

  18. EFFECTS OF PERFLUOROOCTANOIC ACID EXPOSURE DURING PREGNANCY IN THE MOUSE

    EPA Science Inventory


    Title:

    Effects Of Perfluorooctanoic Acid Exposure During Pregnancy In The Mouse

    Authors & affiliations:
    Lau, C., J.R. Thibodeaux*, R.G. Hanson* and J.M. Rogers. Reproductive Toxicology Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, NC
    Abstract:<...

  19. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis

    EPA Science Inventory

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskel...

  20. Analysis of perfluorooctane sulfonate and perfluorooctanoic acid with a mixed-mode coating-based solid-phase microextraction fiber.

    PubMed

    Chen, Chunyan; Wang, Jianping; Yang, Shaolei; Yan, Zhihong; Cai, Qingyun; Yao, Shouzhuo

    2013-09-30

    A novel mixed-mode coating-based solid-phase microextraction (SPME) fiber was prepared by chemical bonding dimethyloctadecyl [3-(trimethoxysilyl) propyl] ammonium chloride and 3-(trimethoxysilyl)-1-propanamine, the sol-gel precursors, on an anodized Ti wire, aiming to effectively adsorb perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). The anodized Ti wire with uniform TiO2 nanotube arrays provides high mechanical strength and strong adhesion to the mixed-mode coating. The prepared fiber shows excellent organic solvent stability due to the covalent bonding between the coating and the fiber, and significantly higher extraction efficiency than the commercial fibers, 100 μm polydimethylsiloxane and 85 μm polyacrylate fiber, due to the synergistic extraction effects of the coating functional groups. Good linearity (R(2)=0.9994 for PFOS, R(2)=0.9992 for PFOA) was obtained with detection limits of 2.5 and 7.5 pg mL(-1) for PFOS and PFOA, respectively. Recoveries were in the range of 88%-102%. The proposed method was successfully applied in the analysis of PFOS and PFOA in a local river with the results of 0.05 and 0.06 ng mL(-1), respectively.

  1. Polar herbicides, pharmaceutical products, perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA), and nonylphenol and its carboxylates and ethoxylates in surface and tap waters around Lake Maggiore in Northern Italy.

    PubMed

    Loos, Robert; Wollgast, Jan; Huber, Tania; Hanke, Georg

    2007-02-01

    A survey of contamination of surface and drinking waters around Lake Maggiore in Northern Italy with polar anthropogenic environmental pollutants has been conducted. The target analytes were polar herbicides, pharmaceuticals (including antibiotics), steroid estrogens, perfluorooctanesulfonate (PFOS), perfluoroalkyl carboxylates (including perfluorooctanoate PFOA), nonylphenol and its carboxylates and ethoxylates (NPEO surfactants), and triclosan, a bactericide used in personal-care products. Analysis of water samples was performed by solid-phase extraction (SPE) then liquid chromatography-triple-quadrupole (tandem) mass spectrometry (LC-MS-MS). By extraction of 1-L water samples and concentration of the extract to 100 microL, method detection limits (MDLs) as low as 0.05-0.1 ng L(-1) were achieved for most compounds. Lake-water samples from seven different locations in the Southern part of Lake Maggiore and eleven samples from different tributary rivers and creeks were investigated. Rain water was also analyzed to investigate atmospheric input of the contaminants. Compounds regularly detected at very low concentrations in the lake water included: caffeine (max. concentration 124 ng L(-1)), the herbicides terbutylazine (7 ng L(-1)), atrazine (5 ng L(-1)), simazine (16 ng L(-1)), diuron (11 ng L(-1)), and atrazine-desethyl (11 ng L(-1)), the pharmaceuticals carbamazepine (9 ng L(-1)), sulfamethoxazole (10 ng L(-1)), gemfibrozil (1.7 ng L(-1)), and benzafibrate (1.2 ng L(-1)), the surfactant metabolite nonylphenol (15 ng L(-1)), its carboxylates (NPE(1)C 120 ng L(-1), NPE(2)C 7 ng L(-1), NPE(3)C 15 ng L(-1)) and ethoxylates (NPE( n )Os, n = 3-17; 300 ng L(-1)), perfluorinated surfactants (PFOS 9 ng L(-1), PFOA 3 ng L(-1)), and estrone (0.4 ng L(-1)). Levels of these compounds in drinking water produced from Lake Maggiore were almost identical with those found in the lake itself, revealing the poor performance of sand filtration and chlorination applied by the local

  2. In vitro evaluation of the cytotoxicity and modulation of mechanisms associated with inflammation induced by perfluorooctanesulfonate and perfluorooctanoic acid in human colon myofibroblasts CCD-18Co.

    PubMed

    Giménez-Bastida, Juan Antonio; Surma, Magdalena; Zieliński, Henryk

    2015-10-01

    Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) are the most notable members of an emerging class of persistent organic pollutants (POPs), poly- and perfluoroalkyl acids (PFASs). In this study, the CCD-18Co myofibroblasts were selected as a cell model to investigate the cytotoxic effects of PFOS and PFOA. The aim was to perform an in vitro evaluation of the ability of these compounds to induce cytotoxicity and modulate mechanisms associated with inflammation as measured by (i) colon fibroblasts viability, (ii) colon fibroblasts proliferation, and (iii) IL-6 production. The data provided in this study suggest that PFOS and PFOA can have cytotoxic potential and modulate processes associated with intestinal inflammation such as myofibroblasts proliferation and IL-6 production at concentrations similar to those detected in vivo. Our results also highlight the influence of culture serum concentration in cytotoxic in vitro studies, which should be considered in future toxicity studies involving PFOS and PFOA. The results contribute to a better knowledge of the effects of PFOS and PFOA in human cells, a phenomenon still not fully examined.

  3. Behavior and Fate of PFOA and PFOS in Sandy Aquifer ...

    EPA Pesticide Factsheets

    Microcosms were constructed with sediment from beneath a landfill that received waste containing PFOA (perfluorooctanoic acid) and PFOS (perfluorooctane sulfonate). The microcosms were amended with PFOA and PFOS, and sampled after 91, 210, 343, 463, 574, and 740 days of incubation. After 740 days, selected microcosms were extracted to determine the mass of PFOA and PFOS remaining. There was no evidence for degradation of PFOA or PFOS. Over time, the aqueous concentrations of PFOA and PFOS increased in the microcosms, indicating that PFOA and PFOS that had originally sorbed to the sediment was desorbing. At the beginning of the experiment, the adsorption coefficient, Kd, averaged 0.27 L/kg for PFOA and 1.2 L/kg for PFOS. After 740 days of incubation, sorption of PFOA was not detectable and the Kd of PFOS was undetectable in two microcosms and was 0.08 L/kg in a third microcosm. During incubation, the pH of the pore water in the microcosms increased from pH 7.2 to pH ranging from 8.1 to 8.8 and the zeta potential of the sediment decreased with increasing pH. These observations suggest sorption of PFOA and PFOS was controlled by electrostatic sorption on ferric oxide minerals, and not by sorption to organic carbon. These observations suggest sorption of PFOA and PFOS was controlled by electrostatic sorption on ferric oxide minerals, and not by sorption to organic carbon.

  4. Perfluorooctanoic acid (PFOA) acts as a tumor promoter on Syrian hamster embryo (SHE) cells.

    PubMed

    Jacquet, N; Maire, M A; Rast, C; Bonnard, M; Vasseur, P

    2011-08-01

    Perfluorooctane sulfonate (PFOS) (C(8)F(17)SO(3)) and perfluorooctanoic acid (PFOA) (C(8)HF(15)O(2)) are synthetic chemicals widely used in industrial applications for their hydrophobic and oleophobic properties. They are persistent, bioaccumulative, and toxic to mammalian species. Their widespread distribution on earth and contamination of human serum raised concerns about long-term side effects. They are suspected to be carcinogenic through a nongenotoxic mode of action, a mechanism supported by recent findings that PFOS induced cell transformation but no genotoxicity in Syrian hamster embryo (SHE) cells. In the present study, we evaluated carcinogenic potential of PFOA using the cell transformation assay on SHE cells. The chemical was applied alone or in combination with a nontransformant concentration of benzo[a]pyrene (BaP, 0.4 μM) in order to detect PFOA ability to act as tumor initiator or tumor promoter. The results showed that PFOA tested alone in the range 3.7 × 10(-5) to 300 μM did not induce SHE cell transformation frequency in a 7-day treatment. On the other side, the combination BaP/PFOA induced cell transformation at all PFOA concentrations tested, which revealed synergistic effects. No genotoxicity of PFOA on SHE cells was detected using the comet assay after 5 and 24 h of exposure. No significant increase in DNA breakage was found in BaP-initiated cells exposed to PFOA in a 7-day treatment. The whole results showed that PFOA acts as a tumor promoter and a nongenotoxic carcinogen. Cell transformation in initiated cells was observed at concentrations equivalent to the ones found in human serum of nonoccupationally and occupationally exposed populations. An involvement of PFOA in increased incidence of cancer recorded in occupationally exposed population cannot be ruled out.

  5. Effects of perfluorooctanoic acid (PFOA) on expression of ...

    EPA Pesticide Factsheets

    PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARa is required for PFOA-induced developmental toxicity. In this study, pregnant CD-1 mice were dosed orally from GD1-17 with water or 5 mg PFO/kg to examine PPARa, PPARß, and PPARy expression and profile the effects of PFOA on PPAR-regulated genes. Prenatal and postnatal liver, heart, adrenal, kidney, intestine, stomach, lung, spleen, and thymus were collected at various developmental ages. RNA and protein were examined using qPCR and Western blot analysis. PPAR expression varied with age in all tissues, and in liver PPARa and PPARy expression correlated with nutritional changes as the pups matured. As early as GD14, PFOA affected expression of genes involved in lipid and glucose homeostatic control. The metabolic disruption produced by PFOA may contribute to poor postnatal survival and persistent weight deficits of neonates This paper represents the continuing efforts at ORD, in response to the call for assistance from OPPTS, to investigate the potential developmental toxicities of perfluoroalkyl acids (PFAA). Perfluorooctanoic acid (PFOA) is a compound which persists and is found ubiquitously in the environment, wildlife and humans. Studies in our laboratory using an in vitro transfected cell model showed that PFO

  6. Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines.

    PubMed

    Flores, Cintia; Ventura, Francesc; Martin-Alonso, Jordi; Caixach, Josep

    2013-09-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are two emerging contaminants that have been detected in all environmental compartments. However, while most of the studies in the literature deal with their presence or removal in wastewater treatment, few of them are devoted to their detection in treated drinking water and fate during drinking water treatment. In this study, analyses of PFOS and PFOA have been carried out in river water samples and in the different stages of a drinking water treatment plant (DWTP) which has recently improved its conventional treatment process by adding ultrafiltration and reverse osmosis in a parallel treatment line. Conventional and advanced treatments have been studied in several pilot plants and in the DWTP, which offers the opportunity to compare both treatments operating simultaneously. From the results obtained, neither preoxidation, sand filtration, nor ozonation, removed both perfluorinated compounds. As advanced treatments, reverse osmosis has proved more effective than reverse electrodialysis to remove PFOA and PFOS in the different configurations of pilot plants assayed. Granular activated carbon with an average elimination efficiency of 64±11% and 45±19% for PFOS and PFOA, respectively and especially reverse osmosis, which was able to remove ≥99% of both compounds, were the sole effective treatment steps. Trace levels of PFOS (3.0-21 ng/L) and PFOA (<4.2-5.5 ng/L) detected in treated drinking water were significantly lowered in comparison to those measured in precedent years. These concentrations represent overall removal efficiencies of 89±22% for PFOA and 86±7% for PFOS.

  7. Discotic liquid crystal derived from zinc tetraaminophthalocyanine and perfluorooctanoic acid

    NASA Astrophysics Data System (ADS)

    Meng, Fanbao; Zhou, Naiyu; Diao, Na; Du, Chang

    2013-12-01

    A novel kind of metallo-phthalocyanine derivative, zinc 2,9,16,23-tetraaminophthalocyanine perfluorooctanoate (Zn-APc-pFOA), was synthesized from zinc tetraaminophthalocyanine and perfluorooctanoic acid. The chemical structure, liquid crystalline behavior, and electrorheological properties were characterized by the use of various experimental techniques, methods, and instruments, including FT-IR and UV-vis spectroscopy, 1H-NMR, x-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, polarized optical microscopy, the four-point method, a relative permittivity test instrument, and a rotating viscometer. Zn-APc-pFOA shows a discotic hexagonal columnar mesophase over a wide temperature range. The dielectric constant and conductivity of Zn-APc-pFOA are 11.4 and 6.34 × 10-3 S cm-1, respectively. The 20 V% silicone oil-Zn-APc-pFOA fluid shows an electrorheological (ER) effect. Zn-APc-pFOA is a semiconductor with a high dielectric constant, causing a mismatch of conductivity and dielectric constant between the Zn-APc-pFOA and silicone oil. Furthermore, some synergistic effect could occur between the semiconducting property and the molecular orientation of the discotic liquid crystals in Zn-APc-pFOA suspensions, resulting in a high ER effect.

  8. Transfer of perfluorooctane sulfonic acid (PFOS) from contaminated feed to dairy milk.

    PubMed

    van Asselt, E D; Kowalczyk, J; van Eijkeren, J C H; Zeilmaker, M J; Ehlers, S; Fürst, P; Lahrssen-Wiederholt, M; van der Fels-Klerx, H J

    2013-11-15

    Dietary intake is the predominant route for human exposure to perfluorooctane sulfonic acid (PFOS). Single pollution events may thus affect human exposure if polluted ground and water is used to produce animal feed or food. In this study, a physiologically based pharmacokinetic (PBPK-) model is derived that describes the uptake of PFOS from contaminated feed by cows and its subsequent elimination through the cows' milk. Parameter values of the model were estimated by fitting to experimental data of a cow feeding trial. Model calculations showed that almost all PFOS ingested is excreted through the cows' milk. The elimination rate, however, was low as the estimated half-life in the cow was 56days and it may, thus, take a long time after an initial pollution event to produce PFOS-free milk. The derived model can be used to estimate the transfer of PFOS through the dairy food chain and can be used for comparison of various contamination routes.

  9. Devopmental toxicity of perfluorooctane Sulfonate (PFOS) is ...

    EPA Pesticide Factsheets

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of perfluorinated compounds. Both are environmentally persistent and found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in laboratory rodents. Exposure to these chemicals in utero delays development and reduces postnatal survival and growth. Exposure to PFOS on the last 4 days of gestation in the rat is sufficient to reduce neonatal survival. PFOS and PFOA are weak agonists of PPARα. The reduced postnatal survival of neonatal mice exposed to PFOA was recently shown to depend on expression of PPARα. This study used PPARα knockout (KO) and 129S1/SvlmJ wild type (WT) mice to determine if PPARα expression is required for the developmental toxicity of PFOS. After mating overnight, the next day was designated gestation day (GD) 0. WT females were weighed and dosed orally from GD15-18 with 0.5% Tween-20, 4.5, 6.5, 8.5, or 10.5 mg PFOS/kg/day. KO females were dosed with water, 8.5 or 10.5 mg PFOS/kg/day. Dams and pups were observed daily and pups were weighed on postnatal day (PND) 1 and PND15. Eye opening was recorded from PND12-15. Dams and pups were killed on PND15, body and liver weights recorded, and serum collected. PFOS did not affect maternal weight gain or body or liver weights of the dams on PND15. Neonatal survival (PND1-15) was significantly reduced by PFOS in both WT and KO litters at all doses. WT and KO pup birth weight and wei

  10. Alternative Fluoropolymers to Avoid the Challenges Associated with Perfluorooctanoic Acid

    SciTech Connect

    Guo,J.; Resnick, P.; Efimenko, K.; Genzer, J.; DeSimones, J.

    2008-01-01

    The degradation of stain-resistant coating materials leads to the release of biopersistent perfluorooctanoic acid (PFOA) to the environment. In order to find the environmentally friendly substitutes, we have designed and synthesized a series of nonbiopersistant fluorinated polymers containing perfluorobutyl groups in the side chains. The surface properties of the new coating materials were characterized by static and dynamic contact angle measurements. The new coating materials demonstrate promising hydrophobic and oleophobic properties with low surfaces tensions. The wetting properties and surface structure of the polymers were tuned by varying the 'spacer' structures between the polymer backbones and the perfluorinated groups of the side chains. The relationship between orientations of the fluorinated side chains and performances of polymer surfaces were further investigated by near-edge X-ray fine absorption structure (NEXAFS) experiments and differential scanning calorimetry (DSC).

  11. Developmental Toxicity of Perfluoroalkyl Acid Mixtures in CD-1 Mice

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS) and perfluorononanoic acid (PFNA) belong to a family of fluoro-organic compounds known as perfluoroalkyl acids (PFAAs). PFAAs have been widely used in industrial and commercial applications, and have been found to be...

  12. DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANOIC ACID (PFOA) AFTER CROSS FOSTER AND RESTRICTED GESTATIONAL EXPOSURES.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a compound which persists and is found ubiquitously in the environment, wildlife and humans. PFOA affects growth, development and viability of offspring of mice exposed during pregnancy. This study segregates the contributions of gestational and...

  13. Pharmacokinetic Modeling Of Perfluorooctanoic Acid During Gestation And Lactation In Mice

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is used industrially as a processing aid in the polymerization of commercially valuable fluoropolymers. Its widespread environmental distribution, presence in human serum, and adverse effects in animal toxicity studies have triggered attention to its...

  14. DOSE-RESPONSE OF PERFLUOROOCTANOIC ACID-INDUCED IMMUNOMODULATION IN ADULT C57BL/6 MICE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), used in fluoropolymer production, is environmentally persistent, present in the human population worldwide, and is associated with myriad health effects under laboratory conditions. A preliminary risk assessment by the US EPA identified immunosuppre...

  15. Pharmacokinetic Modeling of Perfluorooctanoic Acid During Gestation and Lactation in the Mouse

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a processing aid for the polymerization of commercially valuable fluoropolymers. Its widespread environmental distribution, presence in human blood, and adverse effects in animal toxicity studies have triggered attention to its potential adverse e...

  16. TOWARD A RISK ASSESSMENT OF PERFLUOROALKYL ACIDS

    EPA Science Inventory

    Perfluoroalkyl acids (PFAA) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS),and fluorotelomer alcoholsare surfactants that have wide applications in industrial and consumer products. Various fluorotelomer alcohols are known to be metabolized to perfluo...

  17. Temperature effect on photolysis decomposing of perfluorooctanoic acid.

    PubMed

    Zhang, Tiliang; Pan, Gang; Zhou, Qin

    2016-04-01

    Perfluorooctanoic acid (PFOA) is recalcitrant to degrade and mineralize. Here, the effect of temperature on the photolytic decomposition of PFOA was investigated. The decomposition of PFOA was enhanced from 34% to 99% in 60 min of exposure when the temperature was increased from 25 to 85°C under UV light (201-600 nm). The limited degree of decomposition at 25°C was due to low quantum yield, which was increased by a factor of 12 at 85°C. Under the imposed conditions, the defluorination ratio increased from 8% at 25°C to 50% at 85°C in 60 min. Production of perfluorinated carboxylic acids (PFCAs, C7-C5), PFCAs (C4-C3) and TFA (trifluoroacetic acid, C2) accelerated and attained a maximum within 30 to 90 min at 85°C. However, these reactions did not occur at 25°C despite extended irradiation to 180 min. PFOA was decomposed in a step-wise process by surrendering one CF2 unit. In each cyclical process, increased temperature enhanced the quantum yields of irradiation and reactions between water molecules and intermediates radicals. The energy consumption for removing each μmol of PFOA was reduced from 82.5 kJ at 25°C to 10.9 kJ at 85°C using photolysis. Photolysis coupled with heat achieved high rates of PFOA degradation and defluorination.

  18. Comparative hepatic effects of perfluorooctanoic acid and WY ...

    EPA Pesticide Factsheets

    Perfluorooctanoic acid (PFOA) is an environmentally persistent chemical commonly found in humans and wildlife. Induction of liver tumors by PFOA in rodents is thought to be mediated by PPARα activation, although hepatic hypertrophy persists in PPARα-null mice. This study evaluated hepatocyte proliferation, hypertrophy and inflammation in CD-1, SV/129 (WT) or PPARα knock-out (KO) mice after 7 daily treatments of PFOA-NH4+ (1, 3, or 10 mg/kg, p.o.) or the prototype PPARα-agonist Wyeth 14,643 (WY, 50 mg/kg). Tissues were examined by light and electron microscopy, and proliferation was quantified by PCNA labeling index (LI). PFOA produced hepatocyte hypertrophy and increased LI in WT mice dose-dependently; these changes were similar to those elicited by WY. Ultrastructural alterations (primarily peroxisome proliferation) were similar between WY- and PFOA-treated WT mice. WY-treated KO mice were not different from KO-controls. Dose-dependent increase in accumulation of large, clear cytoplasmic vacuoles was seen in PFOA-exposed KO mice, but no hepatic inflammation was indicated, while increased LI was detected only at the 10 mg/kg. These data suggest that PPARα is required for WY- and PFOA-induced alterations in WT mouse liver. Hepatic enlargement in PPAR KO mice may be, in part, due to an accumulation of cytoplasmic vacuoles that contain PFOA. Perflurooctanoic acid (PFOA) is a persistent compound in the environment that has raised human health concer

  19. Developmental toxicity of perfluorononanoic acid in the mouse.

    EPA Science Inventory

    Toxicology Curriculum, University of North Carolina, Chapel Hill, NC Perfluorononanoic acid (PFNA) is a persistent environmental contaminant. Although its levels in the environment are lower than those of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA), its pre...

  20. Cellular response of freshwater green algae to perfluorooctanoic acid toxicity.

    PubMed

    Xu, Dongmei; Li, Chandan; Chen, Hong; Shao, Bo

    2013-02-01

    Perfluorooctanoic acid (PFOA) is a kind of persistent organic pollutants and its aquatic eco-toxicity has attracted wide attention; however, the mechanism involved in its toxicity as well as the cell response against PFOA have not been well established. Herein, using single-celled green algae Chlorella pyrenoidosa and Selenastrum capricornutum at the logarithmic growth stage as test organisms, we studied the toxic effects of PFOA on the cell permeability, The 96 h-EC(50) values of PFOA for C. pyrenoidosa and S. capricornutum were 207.46 mg L(-1) and 190.99 mg L(-1), respectively, lower than the 96 h-EC(50) values reported in the literatures. After 96 h of PFOA exposure, the permeability of the cell membranes of both algae was significantly decreased, and the chlorophyll concentration mirrored the trends of algal growth. In both algal species, after a 192-h exposure to a low concentration of PFOA, the activities of superoxide dismutase and catalase were greater than those of the control. At higher concentrations of PFOA, activities of superoxide dismutase and catalase were strongly inhibited. These results indicate that long-term exposure to low levels of PFOA may induce excessive generation of reactive oxygen species in algal cells, causing oxidative damage to cells.

  1. PERFLUOROOCTANOIC ACID AND PERFLUORONONANOIC ACID IN FETAL AND NEONATAL MICE FOLLOWING IN UTERO EXPOSURE TO 8-2 FLUOROTELOMER ALCOHOL

    EPA Science Inventory

    8-2 fluorotelomer alcohol (FTOH) and its metabolites, perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA), are developmental toxicants, but metabolism and distribution during pregnancy is not known. To examine this, timed-pregnant mice received a single gavage dose (...

  2. Determination of perfluorooctanoic acid and perfluorooctane sulfonate in cooking oil and pig adipose tissue using reversed-phase liquid-liquid extraction followed by high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Tang, Caiming; Tan, Jianhua; Wang, Chunwei; Peng, Xianzhi

    2014-05-09

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are two perfluorinated compounds (PFCs) ubiquitously present in the environment, which could pose potential adverse effects on human health. Contamination and presence of PFOA and PFOS should be eliminated or rigidly restricted in food stuffs such as cooking oils and lard (from pig adipose tissue). This work describes a rapid, simple, reliable and sensitive method for quantitative analysis of PFOA and PFOS in cooking oils and pig adipose tissue with liquid chromatography tandem mass spectrometry (LC-MS/MS). The pretreatment mainly included a one-step reversed-phase liquid-liquid extraction using the mixture of basified water/methanol as the aqueous system, and dichloromethane (DCM) as the non-polar system. PFOA and PFOS can be successfully separated from the two lipid-rich matrices, i.e., cooking oil and adipose tissue, and extracted into the aqueous system, and then directly analyzed with LC-MS/MS. This method was validated in terms of accuracy (both intra- and inter-batch), precision, recovery, linearity, sensitivity and applicability. The intra-batch accuracies for PFOA and PFOS in cooking oil samples were within 93.9-101.9% with relative standard deviation (RSD) no more than 10.9%, and the inter-batch accuracies were 91.2-96.2% with RSD not exceeding 10.0%. The intra-batch accuracies of the analytes in pig adipose tissue samples were 102.9-113.0% with RSD of 8.8-13.1%. And the quantification ranges of PFOA and PFOS were 0.01-25ng/mL. This method has been applied to the analysis of PFOA and PFOS in real samples collected from local markets in Guangzhou, China.

  3. Exposure to Perfluorononanoic acid during pregnancy: Evaluations of rat and mice model

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a persistent environmental contaminant. Although its levels in the environment are lower than those of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA), its presence in humans is rising and is of concern. Previous studies have in...

  4. Examining Models for the Pharmacokinetics of Perfluorooctanoic Acid

    EPA Science Inventory

    Perfluorooctanoate (PFOA) is a man-made surfactant used in a variety of industrial and consumer applications. Because of its wide-spread environmental distribution and stability, PFOA is found in human blood from the general population (Calafat et al., 2007). PFOA displays compl...

  5. Evidence for the Involvement of Xenobiotic-responsive Nuclear Receptors in Transcriptional Effects Upon Perfluoroalkyl Acid Exposure in Diverse Species.

    EPA Science Inventory

    Humans and other species have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotypic effects similar to pe...

  6. Evidence for the Involvement of Xenobiotic-response Nuclear Receptors in Transcriptional Effects Upon Perfluroroalkyl Acid Exposure in Diverse Species

    EPA Science Inventory

    Humans and ecological species have been found to have detectable body burdens of a number of perfluorinated alkyl acids (PFAA) including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). In mouse and rat liver these compounds elicit transcriptional and phenotyp...

  7. HUMORAL AND CELL MEDIATED IMMUNE FUNCTION IN MICE EXPOSED TO PERFLUOROOCTANOIC ACID AS ADULTS

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is used in the manufacture of fluoropolymers, and may be formed by metabolism or degradation of other perfluoroalkyl acids and fluorotelomers. Safety concerns lead the U.S. EPA to conduct a risk assessment of PFOA and related compounds due to their ...

  8. PREGNANCY LOSS ASSOCIATED WITH EXPOSURE TO PERFLUOROOCTANOIC ACID IN THE MOUSE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acids that have unique surfactant properties and are widely used in industrial and consumer products. These chemicals are stable and persistent in the environment; recent bio-monitoring studies have indicated wide-sp...

  9. PREGNANCY LOSS ASSOCIATED WITH EXPOSURE TO PERFLUOROOCTANOIC ACID IN THE MOUSE

    EPA Science Inventory

    Pregnancy loss in the mouse due to perfluorooctanoic acids (PFOA) was investigated in this present study. Daily administration of PFOA (20 or 40 mg/kg) by oral gavage to pregnant CD-1 mice from GD 1-17 led to 75% and 100% incidence respectively, of total resorption at term with c...

  10. Modeling the Pharmacokinetics of Perfluorooctanoic Acid During Gestation and Lactation In Mice

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is used as a processing aid for the production of commercially valuable fluoropolymers and fluoroelastomers. It has been widely detected in biological organisms including humans whose estimated blood levels are in the low ppb levels for the general U...

  11. EFFECTS OF PERFLUOROOCTANOIC ACID (PFOA) ON MICE EXPOSED IN UTERO AT SPECIFIC GESTATIONAL STAGES

    EPA Science Inventory

    Perfluorooctanoic acid is developmentally toxic resulting in embryonic and postnatal deaths and growth retardation. Previous studies showed that dosing mice from gestation day (GD)2-18 with 5 mg PFOA/kg body weight impacts the growth and development of the fetus and newborns. The...

  12. Inventory development for perfluorooctane sulfonic acid (PFOS) in Turkey: challenges to control chemicals in articles and products.

    PubMed

    Korucu, M Kemal; Gedik, Kadir; Weber, Roland; Karademir, Aykan; Kurt-Karakus, Perihan Binnur

    2015-10-01

    Perfluorooctane sulfonic acid (PFOS) and related substances have been listed as persistent organic pollutants (POPs) in the Stockholm Convention. Countries which have ratified the Convention need to take appropriate actions to control PFOS use and release. This study compiles and enhances the findings of the first inventory of PFOS and related substances use in Turkey conducted within the frame of the Stockholm Convention National Implementation Plan (NIP) update. The specific Harmonized Commodity Description and Coding System (Harmonized System (HS)) codes of imported and exported goods that possibly contain PFOS and 165 of Chemical Abstracts Service (CAS) numbers of PFOS-related substances were assessed for acquiring information from customs and other authorities. However, with the current approaches available, no useful information could be compiled since HS codes are not specific enough and CAS numbers are not used by customs. Furthermore, the cut-off volume in chemical databases in Turkey and the reporting limit in the HS system (0.1 %) are too high for controlling PFOS. The attempt of modeling imported volumes by a Monte Carlo simulation did not also result in a satisfactory estimate, giving an upper-bound estimate above the global production volumes. The replies to questionnaires were not satisfactory, highlighting that an elaborated approach is needed in the communication with potentially PFOS-using stakeholders. The experience of the challenges of gathering information on PFOS in articles and products revealed the gaps of controlling highly hazardous substances in products and articles and the need of improvements.

  13. Identification of the source of PFOS and PFOA contamination at a military air base site.

    PubMed

    Arias E, Victor A; Mallavarapu, Megharaj; Naidu, Ravi

    2015-01-01

    Although the use of perfluorooctane sulfonic acid (PFOS)/perfluorooctanoic acid (PFOA)-based aqueous fire-fighting foams (AFFF) has been banned due to their persistence, bioaccumulation and toxicity to biota, PFOS and PFOA are still present at significant levels in the environment due to their past usage. This study investigated the reasons for detection of PFOS and PFOA in an evaporation pond used to collect the wastewater arising from fire-fighting exercises at a military air base despite the replacement of PFOS/PFOA-based foam with no PFOS/PFOA-foam about 6 years ago. Concentrations in the wastewater stored in this pond ranged from 3.6 to 9.7 mg/L for PFOS and between 0.6 and 1.7 mg/L for PFOA. The hypothesis tested in a laboratory study was that PFOS and PFOA have accumulated in the sediments of the pond and can be released into the main body of the water. Concentrations detected in the sediments were 38 and 0.3 mg/g for PFOS and PFOA, respectively. These values exceed the recently reported average global values for sediments (0.2-3.8 ng/g for PFOS and from 0.1 to 0.6 ng/g for PFOA) by a factor of several thousands. PFOS and PFOA distribution coefficients were derived for the organic content of the pond sediment (1.6%). Identification of the source of contamination and knowledge of the partition between soil and aqueous phases are vital first steps in developing a sustainable remediation technology to remove the source from the site. This study clearly suggests that unless the sediment is cleaned of PFOS/PFOA, these chemicals will continue to be detected for a long period in the pond water, with potential adverse impacts on the ecosystem.

  14. Immunotoxicity of perfluorooctanoic acid and perfluorooctane sulfonate and the role of peroxisome proliferator-activated receptor alpha

    EPA Science Inventory

    Peroxisome proliferators, including perfluorooctanoic acid (PFOA), are environmentally widespread and persistent and multiple toxicities have been reported in experimental animals and humans. These compounds trigger biological activity via activation of the alpha isotype of pero...

  15. Effects of Perfluorooctanoic Acid on Mouse Mammary Gland Development and Differentiation Resulting from Cross-Foster and Restricted Gestational Exposures

    EPA Science Inventory

    The adverse consequences of developmental exposures to perfluorooctanoic acid (PFOA) have been established, and include impaired development of the offspring mammary gland (MG). However, the relationship between the timing or route of exposure, and the phenotypic consequences in ...

  16. Mechanisms of perfluoroalkyl acid (PFAA) toxicity: Involvement of peroxisome proliferator activator receptor alpha (PPAR) molecular signals.

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are members of a family of environmentally persistent perfluorinated compounds and are found in the serum of wildlife and humans. PFOS and PFOA are developmentally toxic in rats and mice. Exposure in utero reduces...

  17. Photochemical decomposition of perfluorooctanoic acid mediated by iron in strongly acidic conditions.

    PubMed

    Ohno, Masaki; Ito, Masataka; Ohkura, Ryouichi; Mino A, Esteban R; Kose, Tomohiro; Okuda, Tetsuji; Nakai, Satoshi; Kawata, Kuniaki; Nishijima, Wataru

    2014-03-15

    The performance of a ferric ion mediated photochemical process for perfluorooctanoic acid (PFOA) decomposition in strongly acidic conditions of pH 2.0 was evaluated in comparison with those in weakly acidic conditions, pH 3.7 or pH 5.0, based on iron species composition and ferric ion regeneration. Complete decomposition of PFOA under UV irradiation was confirmed at pH 2.0, whereas perfluoroheptanoic acid (PFHpA) and other intermediates were accumulated in weakly acidic conditions. Iron states at each pH were evaluated using a chemical equilibrium model, Visual MINTEQ. The main iron species at pH 2.0 is Fe(3+) ion. Although Fe(3+) ion is consumed and is transformed to Fe(2+) ion by photochemical decomposition of PFOA and its intermediates, the produced Fe(2+) ion will change to Fe(3+) ion to restore chemical equilibrium. Continuous decomposition will occur at pH 2.0. However, half of the iron cannot be dissolved at pH 3.7. The main species of dissolved iron is Fe(OH)(2+). At pH 3.7 or higher pH, Fe(3+) ion will only be produced from the oxidation of Fe(2+) ion by hydroxyl radical produced by Fe(OH)(2+) under UV irradiation. These different mechanisms of Fe(3+) regeneration that prevail in strongly and weakly acidic conditions will engender different performances of the ferric ion.

  18. Perfluorooctanoic Acid Exposure Suppresses T-independent Antibody Responses

    EPA Science Inventory

    Exposure to  3.75mg/kg of perfluoroocatnoic acid (PFOA) for 15d suppresses T-dependent antibody responses (TDAR), suggesting that T helper cells and/or B cells/plasma cells may be impacted. This study evaluated effects of PFOA exposure on the T cell-independent antibody response...

  19. Gestational Exposure to Low Doses of Perfluorooctanoic Acid Increases Adiposity, but not Body Weight, of Adult Offspring

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) and other perfluoroalkyl acids have numerous industrial and consumer product applications. Studies in mice have demonstrated lower birth weight and higher neonatal mortality in mice after prenatal dosages exceeding 1 mg/kg/day. However, at dosages lo...

  20. PFOA y PFOS - PREGUNTAS Y RESPUESTAS

    EPA Pesticide Factsheets

    Preguntas y respuestas sobre la decisión de la EPA de publicar avisos de salud sobre el ácido perfluorooctanoico (PFOA) y el sulfonato de perfluorooctano (PFOS) para proporcionar información a los operadores de sistemas de agua potable y funcionarios estat

  1. Activated Persulfate Oxidation of Perfluorooctanoic Acid (PFOA) in Groundwater under Acidic Conditions

    PubMed Central

    Yin, Penghua; Hu, Zhihao; Song, Xin; Liu, Jianguo; Lin, Na

    2016-01-01

    Perfluorooctanoic acid (PFOA) is an emerging contaminant of concern due to its toxicity for human health and ecosystems. However, successful degradation of PFOA in aqueous solutions with a cost-effective method remains a challenge, especially for groundwater. In this study, the degradation of PFOA using activated persulfate under mild conditions was investigated. The impact of different factors on persulfate activity, including pH, temperature (25 °C–50 °C), persulfate dosage and reaction time, was evaluated under different experimental conditions. Contrary to the traditional alkaline-activated persulfate oxidation, it was found that PFOA can be effectively degraded using activated persulfate under acidic conditions, with the degradation kinetics following the pseudo-first-order decay model. Higher temperature, higher persulfate dosage and increased reaction time generally result in higher PFOA degradation efficiency. Experimental results show that a PFOA degradation efficiency of 89.9% can be achieved by activated persulfate at pH of 2.0, with the reaction temperature of 50 °C, molar ratio of PFOA to persulfate as 1:100, and a reaction time of 100 h. The corresponding defluorination ratio under these conditions was 23.9%, indicating that not all PFOA decomposed via fluorine removal. The electron paramagnetic resonance spectrometer analysis results indicate that both SO4−• and •OH contribute to the decomposition of PFOA. It is proposed that PFOA degradation occurs via a decarboxylation reaction triggered by SO4−•, followed by a HF elimination process aided by •OH, which produces one-CF2-unit-shortened perfluoroalkyl carboxylic acids (PFCAs, Cn−1F2n−1COOH). The decarboxylation and HF elimination processes would repeat and eventually lead to the complete mineralization all PFCAs. PMID:27322298

  2. Developmental toxicity of PFOS and PFOA in great cormorant (Phalacrocorax carbo sinensis), herring gull (Larus argentatus) and chicken (Gallus gallus domesticus).

    PubMed

    Nordén, Marcus; Berger, Urs; Engwall, Magnus

    2016-06-01

    Perfluoroalkyl acids (PFAAs) are found globally in environmental samples and have been studied in various species. In this study, we compare the sensitivity of three avian species to the toxic effects of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA). Eggs of great cormorant (Phalacrocorax carbo sinensis), herring gull (Larus argentatus) and the domestic White Leghorn chicken (Gallus gallus domesticus) were exposed in ovo by injection into the air sac. Effects on embryo survival were observed following exposure to PFOS and PFOA in chicken and herring gull. Chicken was found to be the most sensitive species with 50 % reduced embryo survival at 8.5 μg/g egg for PFOS and 2.5 μg/g egg for PFOA. Cormorant was shown to be the least sensitive species. The difference in sensitivity between chicken and herring gull was a factor of 2.7 for PFOS and 3.5 for PFOA. Between chicken and great cormorant, the sensitivity difference was 2.6 for PFOS and 8.2 for PFOA. Effects on embryo survival were seen at egg injection doses of PFOS close to levels found in environmental samples from wild birds, indicating that PFOS could be having effects in highly exposed populations of birds. This study also shows that there are differences in species sensitivity to PFOS and PFOA that should be taken into consideration in avian wildlife risk assessment.

  3. COMPARATIVE HEPATIC EFFECTS OF PERFLUOROOCTANOIC ACID AND WY 14,643 IN PPARÁ KNOCKED OUT AND WILD-TYPE MICE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a fluorinated organic chemical widely used in consumer and industrial products. Its persistence in the environment and presence in humans and wildlife have raised considerable concerns. PFOA induces liver tumors in rodents, which is thought to be ...

  4. COMPARATIVE DISTRIBUTION OF PERFLUOROOCTANOIC ACID IN MALE, FEMALE AND PREGNANT MICE FOLLOWING TREATMENT WITH 8-2 FLUOROTELOMER ALCOHOL (FTOH)

    EPA Science Inventory

    The global occurrence of perfluorooctanoic acid (PFOA) in environmental and mammalian matrices has spurred regulatory interest in potential sources of this stable compound. 8-2 fluorotelomer alcohol, a primary compound used in polymer synthesis, is found ubiquitously in the envi...

  5. PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA).

    PubMed

    Oliaei, Fardin; Kriens, Don; Weber, Roland; Watson, Alan

    2013-04-01

    Perfluorooctane sulfonate (PFOS) and PFOS-related substances have been listed as persistent organic pollutants in the Stockholm Convention. From August 2012, Parties to the Convention needed to address the use, storage, and disposal of PFOS-including production sites and sites where PFOS wastes have been deposited-in their national implementation plans. The paper describes the pollution in Minnesota (USA) caused by the 3M Company at one of the largest per/polyfluorinated chemical (PFC) production facilities. From early 1950s until the end of 2002, when 3M terminated PFOS and perfluorooctanoic acid (PFOA) production, PFOS, PFOA, and other PFC production wastes were disposed around the plant and in local disposal sites. Discharges from the site and releases from deposits caused widespread contamination of ground and surface waters including local drinking water wells. Fish in the river downstream were contaminated with PFOS to levels that led to fish consumption advisories. Human exposures resulted from ingesting contaminated drinking water, requiring installation of water treatment facilities and alternate water supplies. The critical evaluation of the assessments done revealed a range of gaps in particular of human exposure where relevant exposure pathways including the entire exposure via food have not been taken into consideration. Currently, the exposure assessment of vulnerable groups such as children or Hmong minorities is inadequate and needs to be improved/validated by epidemiological studies. The assessment methodology described for this site may serve-with highlighted improvements-as a model for assessment of other PFOS/PFC production sites in the Stockholm Convention implementation.

  6. Determination of energies and sites of binding of PFOA and PFOS to human serum albumin.

    PubMed

    Salvalaglio, Matteo; Muscionico, Isabella; Cavallotti, Carlo

    2010-11-25

    Structure and energies of the binding sites of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) to human serum albumin (HSA) were determined through molecular modeling. The calculations consisted of a compound approach based on docking, followed by molecular dynamics simulations and by the estimation of the free binding energies adopting WHAM-umbrella sampling and semiempirical methodologies. The binding sites so determined are common either to known HSA fatty acids sites or to other HSA sites known to bind to pharmaceutical compounds such as warfarin, thyroxine, indole, and benzodiazepin. Among the PFOA binding sites, five have interaction energies in excess of -6 kcal/mol, which become nine for PFOS. The calculated binding free energy of PFOA to the Trp 214 binding site is the highest among the PFOA complexes, -8.0 kcal/mol, in good agreement with literature experimental data. The PFOS binding site with the highest energy, -8.8 kcal/mol, is located near the Trp 214 binding site, thus partially affecting its activity. The maximum number of ligands that can be bound to HSA is 9 for PFOA and 11 for PFOS. The calculated data were adopted to predict the level of complexation of HSA as a function of the concentration of PFOA and PFOS found in human blood for different levels of exposition. The analysis of the factors contributing to the complex binding energy permitted to outline a set of guidelines for the rational design of alternative fluorinated surfactants with a lower bioaccumulation potential.

  7. Involvement of Oxidative Stress and Inflammation in Liver Injury Caused by Perfluorooctanoic Acid Exposure in Mice

    PubMed Central

    Yang, Bei; Zou, Weiying; Hu, Zhenzhen; Liu, Fangming; Zhou, Ling; Yang, Shulong; Kuang, Haibin; Wu, Lei; Wei, Jie; Wang, Jinglei; Zou, Ting; Zhang, Dalei

    2014-01-01

    Perfluorooctanoic acid (PFOA) is widely present in the environment and has been reported to induce hepatic toxicity in animals and humans. In this study, mice were orally administered different concentrations of PFOA (2.5, 5, or 10 mg/kg/day). Histological examination showed that the exposure to PFOA for 14 consecutive days led to serious hepatocellular injury and obvious inflammatory cell infiltration. In addition, malondialdehyde formation and hydrogen peroxide generation, indicators of oxidative stress, were significantly induced by PFOA treatment in the liver of mice. Furthermore, hepatic levels of interleukin-6, cyclooxygenase-2, and C-reactive protein, markers of inflammatory response, were markedly increased by exposure to PFOA in mice. These results demonstrated that PFOA-induced hepatic toxicity may be involved in oxidative stress and inflammatory response in mice. PMID:24724082

  8. Perfluorooctanoic Acid Degradation Using UV-Persulfate Process: Modeling of the Degradation and Chlorate Formation.

    PubMed

    Qian, Yajie; Guo, Xin; Zhang, Yalei; Peng, Yue; Sun, Peizhe; Huang, Ching-Hua; Niu, Junfeng; Zhou, Xuefei; Crittenden, John C

    2016-01-19

    In this study, we investigated the destruction and by-product formation of perfluorooctanoic acid (PFOA) using ultraviolet light and persulfate (UV-PS). Additionally, we developed a first-principles kinetic model to simulate both PFOA destruction and by-product and chlorate (ClO3(-)) formation in ultrapure water (UW), surface water (SW), and wastewater (WW). PFOA degradation was significantly suppressed in the presence of chloride and carbonate species and did not occur until all the chloride was converted to ClO3(-) in UW and for low DOC concentrations in SW. The model was able to simulate the PS decay, pH changes, radical concentrations, and ClO3(-) formation for UW and SW. However, our model was unable to simulate PFOA degradation well in WW, possibly from PS activation by NOM, which in turn produced sulfate radicals.

  9. Kinetics and Quantitative Structure—Activity Relationship Study on the Degradation Reaction from Perfluorooctanoic Acid to Trifluoroacetic Acid

    PubMed Central

    Gong, Chen; Sun, Xiaomin; Zhang, Chenxi; Zhang, Xue; Niu, Junfeng

    2014-01-01

    Investigation of the degradation kinetics of perfluorooctanoic acid (PFOA) has been carried out to calculate rate constants of the main elementary reactions using the multichannel Rice-Ramsperger-Kassel-Marcus theory and canonical variational transition state theory with small-curvature tunneling correction over a temperature range of 200~500 K. The Arrhenius equations of rate constants of elementary reactions are fitted. The decarboxylation is role step in the degradation mechanism of PFOA. For the perfluorinated carboxylic acids from perfluorooctanoic acid to trifluoroacetic acid, the quantitative structure–activity relationship of the decarboxylation was analyzed with the genetic function approximation method and the structure–activity model was constructed. The main parameters governing rate constants of the decarboxylation reaction from the eight-carbon chain to the two-carbon chain were obtained. As the structure–activity model shows, the bond length and energy of C1–C2 (RC1–C2 and EC1–C2) are positively correlated to rate constants, while the volume (V), the energy difference between EHOMO and ELUMO (ΔE), and the net atomic charges on atom C2 (QC2) are negatively correlated. PMID:25196516

  10. Effects of perfluorooctanoic acid (PFOA) on expression of peroxisome proliferator-activated receptors (PPAR) and nuclear receptor-regulated genes in fetal and postnatal mouse tissues.

    EPA Science Inventory

    PPARs regulate metabolism and can be activated by environmental contaminants such as perfluorooctanoic acid (PFOA). PFOA induces neonatal mortality, developmental delay, and growth deficits in mice. Studies in genetically altered mice showed that PPARa is required for PFOA-induce...

  11. Perfluorooctanoic acid effects on ovaries mediate its inhibition of peripubertal mammary gland development in Balb/c and C57Bl/6 mice

    EPA Science Inventory

    Exposure to perfluorooctanoic acid (PFOA), a synthetic perfluorinated compound and an agonist of peroxisomes proliferator-activated receptor α (PPARα), causes stunted mouse mammary gland development in various developmental stages. However, the underlying mechanisms remain poorly...

  12. Development of PBPK models for PFOA and PFOS for human pregnancy and lactation life stages.

    PubMed

    Loccisano, Anne E; Longnecker, Matthew P; Campbell, Jerry L; Andersen, Melvin E; Clewell, Harvey J

    2013-01-01

    Perfluoroalkyl acid carboxylates and sulfonates (PFAA) have many consumer and industrial applications. Developmental toxicity studies in animals have raised concern about potential reproductive/developmental effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS); however, in humans conflicting results have been reported for associations between maternal PFAA levels and these outcomes. Risk assessments and interpretation of available human data during gestation and lactation are hindered due to lack of a framework for understanding and estimating maternal, fetal, and neonatal pharmacokinetics (PK). Physiologically based pharmacokinetic (PBPK) models were developed for PFOA and PFOS for the gestation and lactation life stages in humans to understand how the physiological changes associated with development affect pharmacokinetics of these compounds in the mother, fetus, and infant. These models were derived from PBPK models for PFOA/PFOS that were previously developed for adult humans and rats during gestation and lactation and from existing human pregnancy and lactation models developed for other chemicals. The models simulated PFOA and PFOS concentrations in fetal, infant, and maternal plasma and milk, were compared to available data in humans, and also were used to estimate maternal exposure. The models reported here identified several research needs, which include (1) the identification of transporters involved in renal resorption to explain the multiyear half-lives of these compounds in humans, (2) factors affecting clearance of PFOA/PFOS during gestation and lactation, and (3) data to estimate clearance of PFOA/PFOS in infants. These models may help address concerns regarding possible adverse health effects due to PFOA/PFOS exposure in the fetus and infant and may be useful in comparing pharmacokinetics across life stages.

  13. Developmental Toxicity of Perfluoronanoic Acid in Mice

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a ubiquitous and persistent environmental contaminant. Although its levels in the environment and in humans are lower than those of perfluorooctane sulfonate(PFOS) or perfluorooctanoic acid (PFOA), a steady trend of increases in the general popula...

  14. Modeled Perfluorooctanoic Acid (PFOA) Exposure and Liver Function in a Mid-Ohio Valley Community

    PubMed Central

    Darrow, Lyndsey A.; Groth, Alyx C.; Winquist, Andrea; Shin, Hyeong-Moo; Bartell, Scott M.; Steenland, Kyle

    2016-01-01

    Background: Perfluorooctanoic acid (PFOA or C8) has hepatotoxic effects in animals. Cross-sectional epidemiologic studies suggest PFOA is associated with liver injury biomarkers. Objectives: We estimated associations between modeled historical PFOA exposures and liver injury biomarkers and medically validated liver disease. Methods: Participants completed surveys during 2008–2011 reporting demographic, medical, and residential history information. Self-reported liver disease, including hepatitis, fatty liver, enlarged liver and cirrhosis, was validated with healthcare providers. Alanine aminotransferase (ALT), γ-glutamyltransferase (GGT) and direct bilirubin, markers of liver toxicity, were obtained from blood samples collected in the C8 Health Project (2005–2006). Historically modeled PFOA exposure, estimated using environmental fate and transport models and participant residential histories, was analyzed in relation to liver biomarkers (n = 30,723, including 1,892 workers) and liver disease (n = 32,254, including 3,713 workers). Results: Modeled cumulative serum PFOA was positively associated with ALT levels (p for trend < 0.0001), indicating possible liver toxicity. An increase from the first to the fifth quintile of cumulative PFOA exposure was associated with a 6% increase in ALT levels (95% CI: 4, 8%) and a 16% increased odds of having above-normal ALT (95% CI: odds ratio: 1.02, 1.33%). There was no indication of association with either elevated direct bilirubin or GGT; however, PFOA was associated with decreased direct bilirubin. We observed no evidence of an effect of cumulative exposure (with or without a 10-year lag) on all liver disease (n = 647 cases), nor on enlarged liver, fatty liver, and cirrhosis only (n = 427 cases). Conclusion: Results are consistent with previous cross-sectional studies showing association between PFOA and ALT, a marker of hepatocellular damage. We did not observe evidence that PFOA increases the risk of clinically

  15. Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid.

    PubMed

    Qu, Yan; Zhang, Chao-Jie; Chen, Pei; Zhou, Qi; Zhang, Wei-Xian

    2014-07-01

    The effects of initial solution pH on the decomposition of perfluorooctanoic acid (PFOA) with hydrated electrons as reductant were investigated. The reductive decomposition of PFOA depends strongly on the solution pH. In the pH range of 5.0-10.0, the decomposition and defluorination rates of PFOA increased with the increase of the initial solution pH. The rate constant was 0.0295 min(-1) at pH 10.0, which was more than 49.0 times higher than that at pH 5.0. Higher pH also inhibits the generation of toxic intermediates during the PFOA decomposition. For example, the short-chain PFCAs reached a lower maximum concentration in shorter reaction time as pH increasing. The peak areas of accumulated fluorinated and iodinated hydrocarbons detected by GC/MS under acidic conditions were nearly 10-100 times more than those under alkaline conditions. In short, alkaline conditions were more favorable for photo-induced reduction of PFOA as high pH promoted the decomposition of PFOA and inhibited the accumulation of intermediate products. The concentration of hydrated electron, detected by laser flash photolysis, increased with the increase of the initial pH. This was the main reason why the decomposition of PFOA in the UV-KI system depended strongly on the initial pH.

  16. Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide.

    PubMed

    Estrellan, Carl Renan; Salim, Chris; Hinode, Hirofumi

    2010-07-15

    The photocatalytic decomposition of perfluorooctanoic acid (PFOA) in aqueous solution using Fe and Nb co-doped TiO(2) (Fe:Nb-TiO(2)) prepared by sol-gel method was investigated. The photocatalytic activity of Fe:Nb-TiO(2) towards PFOA degradation was compared to that of pure TiO(2) synthesized using the same method, and that of the commercially available TiO(2) photocatalyst, Aeroxide TiO(2) P25 (AO-TiO(2) P25). The photocatalysts were characterized by XRD, DRS, BET-N(2) adsorption isotherm, and SEM-EDX techniques and the data were correlated to the photocatalytic activity. Fe:Nb-TiO(2) showed the highest activity compared to the undoped TiO(2) and the commercially available TiO(2). Such activity was attributable to the effects of co-doping both on the physico-chemical properties and surface interfacial charge transfer mechanisms. Perfluorocarboxylic acids (PFCAs) with shorter carbon chain length and fluoride ions were identified as photocatalytic reaction intermediates and products.

  17. Influence of Perfluorooctanoic Acid on the Transport and Deposition Behaviors of Bacteria in Quartz Sand.

    PubMed

    Wu, Dan; Tong, Meiping; Kim, Hyunjung

    2016-03-01

    The significance of perfluorooctanoic acid (PFOA) on the transport and deposition behaviors of bacteria (Gram-negative Escherichia coli and Gram-positive Bacillus subtilis) in quartz sand is examined in both NaCl and CaCl2 solutions at pH 5.6 by comparing both breakthrough curves and retained profiles with PFOA in solutions versus those without PFOA. All test conditions are found to be highly unfavorable for cell deposition regardless of the presence of PFOA; however, 7%-46% cell deposition is observed depending on the conditions. The cell deposition may be attributed to micro- or nanoscale roughness and/or to chemical heterogeneity of the sand surface. The results show that, under all examined conditions, PFOA in suspensions increases cell transport and decreases cell deposition in porous media regardless of cell type, presence or absence of extracellular polymeric substances, ionic strength, and ion valence. We find that the additional repulsion between bacteria and quartz sand caused by both acid-base interaction and steric repulsion as well as the competition for deposition sites on quartz sand surfaces by PFOA are responsible for the enhanced transport and decreased deposition of bacteria with PFOA in solutions.

  18. Decomposition of perfluorooctanoic acid by ultraviolet light irradiation with Pb-modified titanium dioxide.

    PubMed

    Chen, Meng-Jia; Lo, Shang-Lien; Lee, Yu-Chi; Kuo, Jeff; Wu, Chung-Hsin

    2016-02-13

    Perfluorooctanoic acid (PFOA, C7H15COOH) is widely used in industrial and commercial applications. It has become a global concern due to its widespread occurrence in water bodies and adverse environmental impact. PFOA could not be effectively removed by the conventional UV/TiO2 system. This study synthesized Pb-modified TiO2 catalyst and used it as a catalyst with light irradiation for PFOA decomposition. It was found that the Pb-TiO2 catalyst could produce traps to capture photo-induced electrons or holes that lead to better photocatalytic efficiencies. Rate constant values for PFOA decomposition by the UV/TiO2 and UV/Pb-TiO2 systems were determined to be 0.0158 and 0.5136 h(-1), respectively. The PFOA decomposition in the UV/Pb-TiO2 system is 32.5 times faster than that in the UV/TiO2 system. The UV/Pb-TiO2 system yielded a better performance than those of the UV/Fe-TiO2 and UV/Cu-TiO2 systems. During the reaction, PFOA decomposed stepwisely into shorter-chain perfluorocarboxylic acids and F(-).

  19. Perfluorooctanoic acid exposure for 28 days affects glucose homeostasis and induces insulin hypersensitivity in mice

    NASA Astrophysics Data System (ADS)

    Yan, Shengmin; Zhang, Hongxia; Zheng, Fei; Sheng, Nan; Guo, Xuejiang; Dai, Jiayin

    2015-06-01

    Perfluoroalkyl acids (PFAAs) are widely used in many applications due to their unique physical and chemical characteristics. Because of the increasing prevalence of metabolic syndromes, including obesity, dyslipidemia and insulin resistance, concern has arisen about the roles of environmental pollutants in such diseases. Earlier epidemiologic studies showed a potential association between perfluorooctanoic acid (PFOA) and glucose metabolism, but how PFOA influences glucose homeostasis is still unknown. Here, we report on the modulation of the phosphatidylinositol 3-kinase-serine/threonine protein kinase (PI3K-AKT) signaling pathway in the livers of mice after 28 d of exposure to PFOA. Compared with normal mice, PFOA exposure significantly decreased the expression of the phosphatase and tensin homologue (PTEN) protein and affected the PI3K-AKT signaling pathway in the liver. Tolerance tests further indicated that PFOA exposure induced higher insulin sensitivity and glucose tolerance in mice. Biochemical analysis revealed that PFOA exposure reduced hepatic glycogen synthesis, which might be attributed to gluconeogenesis inhibition. The levels of several circulating proteins were altered after PFOA exposure, including proteins potentially related to diabetes and liver disease. Our results suggest that PFOA affected glucose metabolism and induced insulin hypersensitivity in mice.

  20. Toxic effect of perfluorooctanoic acid (PFOA) on germination and seedling growth of wheat (Triticum aestivum L.).

    PubMed

    Zhou, Lina; Xia, Mengjie; Wang, Li; Mao, Hui

    2016-09-01

    As a persistent organic pollutant in the environment, perfluorooctanoic acid (PFOA) has been extensively investigated. It can accumulate in food chains and in the human body. This work investigated the effect of PFOA on wheat (Triticum aestivum L.) germination and seedling growth by conducting a germination trial and a pot trial. A stimulatory effect of PFOA on seedling growth and root length of wheat was found at <0.2 mg kg(-1), while >800 mg kg(-1) PFOA inhibited germination rate, index, and root and shoot growth. In the pot trial, PFOA concentration in root was double that in the shoot. Soil and plant analyzer development (SPAD) and plant height of wheat seedling were inhibited by adding 200 mg kg(-1) PFOA. Proline content and POD activity in wheat seedlings increased as PFOA increased, while CAT activity decreased. Using logarithmic equations, proline content was selected as the most sensitive index by concentration for 50% of maximal effect (EC50). Hence, the tolerance of wheat seedlings to PFOA levels could be evaluated on the basis of the physiological index.

  1. Life cycle analysis of perfluorooctanoic acid (PFOA) and its salts in China.

    PubMed

    Meng, Jing; Lu, Yonglong; Wang, Tieyu; Wang, Pei; Giesy, John P; Sweetman, Andrew J; Li, Qifeng

    2017-03-15

    China has been the largest producer and emitter of perfluorooctanoic acid and its salts (PFOA/PFO). However, the flows of PFOA/PFO from manufacture and application to the environment are indistinct, especially flows from waste treatment sites to the environment. Here, a life cycle analysis of PFOA/PFO is conducted in which all major flows of PFOA/PFO have been characterized for 2012. Processes related to uses and possible releases of PFOA/PFO include manufacture and use, waste management, and environmental storage. During manufacture and use, emission from application was the most important (117.0 t), regardless of whether it flowed first to waste treatment facilities or was directly released to the environment, followed by manufacture of PFOA/PFO (3.9 t), while flows from the service life and end of life of consumer products were the lowest (1.2 t). Among five waste treatment routes, flows through wastewater treatment plants (WWTPs) were the highest (10.6 t), which resulted in 12.8 t of PFOA/PFO being emitted into the environment. Masses of PFOA/PFO emission were estimated to be 96.3 t to the hydrosphere, 25.6 t to the atmosphere, and 3.2 t to soils. Therefore, control over reduction of PFOA/PFO should focus on application of reliable alternatives and emission reduction from WWTPs using effective treatment techniques.

  2. Toxicity of perfluorooctanoic acid towards earthworm and enzymatic activities in soil.

    PubMed

    He, Wenxiang; Megharaj, Mallavarapu; Naidu, Ravi

    2016-07-01

    Perfluorooctanoic acid (PFOA) is a widespread persistent organic contaminant in the environment that has recently raised much of regulatory and public concern. Therefore, assessment of its ecological risk is a top priority research. Hence, this study investigated the toxicity of PFOA to beneficial microbial processes in the soil such as activities of dehydrogenase, urease and potential nitrification in addition to earthworm survival, weight loss and PFOA bioaccumulation in two contrasting soils. In general, PFOA caused inhibition of all the measured microbial processes in a dose-dependent manner and the inhibition was higher in Williamtown (WT) soil than Edinburgh (EB) soil. Thus, WT soil being sandy in nature with low clay content showed higher PFOA bioavailability and hence showed higher toxicity. There was no mortality in earthworms exposed up to 100 mg PFOA/kilogram soil in both the soils; however, there was a significant weight loss from 25 mg/kg onwards. This study clearly demonstrates that soil contamination of PFOA can lead to adverse effects on soil health.

  3. A Study of Reverse Causation: Examining the Associations of Perfluorooctanoic Acid Serum Levels with Two Outcomes

    PubMed Central

    Dhingra, Radhika; Winquist, Andrea; Darrow, Lyndsey A.; Klein, Mitchel; Steenland, Kyle

    2016-01-01

    Background: Impaired kidney function and earlier menopause were associated with perfluorooctanoic acid (PFOA) serum levels in previous cross-sectional studies. Reverse causation, whereby health outcomes increase serum PFOA, may underlie these associations.Background: Impaired kidney function and earlier menopause were associated with perfluorooctanoic acid (PFOA) serum levels in previous cross-sectional studies. Reverse causation, whereby health outcomes increase serum PFOA, may underlie these associations. Objective: We compared measured (subject to reverse causation) versus modeled (unaffected by reverse causation) serum PFOA in association with these outcomes to examine the possible role of reverse causation in these associations.Objective: We compared measured (subject to reverse causation) versus modeled (unaffected by reverse causation) serum PFOA in association with these outcomes to examine the possible role of reverse causation in these associations. Methods: In cross-sectional analyses, we analyzed PFOA in relation to self-reported menopause among women (n = 9,192) 30–65 years old and in relation to kidney function among adults > 20 years old (n = 29,499) in a highly exposed Mid-Ohio Valley cohort. Estimated glomerular filtration rate (eGFR, a marker of kidney function) and serum PFOA concentration were measured in blood samples collected during 2005–2006. Retrospective year-specific serum PFOA estimates were modeled independently of measured PFOA based on residential history and plant emissions. Using measured and modeled PFOA in 2005 or 2006 (predictor variables), cross-sectional associations were assessed for eGFR and menopause (yes/no). We also analyzed measured PFOA (dependent variable) in relation to the number of years since menopause.Methods: In cross-sectional analyses, we analyzed PFOA in relation to self-reported menopause among women (n = 9,192) 30–65 years old and in relation to kidney function among adults > 20 years old (n = 29

  4. An integrated metabonomics and transcriptomics approach to understanding metabolic pathway disturbance induced by perfluorooctanoic acid.

    PubMed

    Peng, Siyuan; Yan, Lijuan; Zhang, Jie; Wang, Zhanlin; Tian, Meiping; Shen, Heqing

    2013-12-01

    Perfluorooctanoic acid (PFOA) is one of the most representative perfluorinated compounds and liver is the major organ where PFOA is accumulated. Although the multiple toxicities had been reported, its toxicological profile remained unclear. In this study, a systems toxicology strategy integrating liquid chromatography/mass spectrometry-based metabonomics and transcriptomics analyses was applied for the first time to investigate the effects of PFOA on a representative Chinese normal human liver cell line L-02, with focusing on the metabolic disturbance. Fifteen potential biomarkers were identified on metabolic level and most observations were consistent with the altered levels of gene expression. Our results showed that PFOA induced the perturbations in various metabolic processes in L-02 cells, especially lipid metabolism-related pathways. The up-stream mitochondrial carnitine metabolism was proved to be influenced by PFOA treatment. The specific transformation from carnitine to acylcarnitines, which showed a dose-dependent effect, and the expression level of key genes involved in this pathway were observed to be altered correspondingly. Furthermore, the down-stream cholesterol biosynthesis was directly confirmed to be up-regulated by both increased cholesterol content and elevated expression level of key genes. The PFOA-induced lipid metabolism-related effects in L-02 cells started from the fatty acid catabolism in cytosol, fluctuated to the processes in mitochondria, extended to the cholesterol biosynthesis. Many other metabolic pathways like amino acid metabolism and tricarboxylic acid cycle might also be disturbed. The findings obtained from the systems biological research provide more details about metabolic disorders induced by PFOA in human liver.

  5. Toxicogenomic analysis of the hepatic effects of perfluorooctanoic acid on rare minnows (Gobiocypris rarus)

    SciTech Connect

    Wei Yanhong; Liu Yang; Wang Jianshe; Tao Yi; Dai Jiayin

    2008-02-01

    Perfluorooctanoic acid (PFOA) is a ubiquitous environmental contaminant that has been detected in a variety of terrestrial and aquatic organisms. To assess the effects of PFOA in fish and predict its potential mode of action, a toxicogenomic approach was applied to hepatic gene expression profile analysis in male and female rare minnows (Gobiocypris rarus) using a custom cDNA microarray containing 1773 unique genes. Rare minnows were treated with continuous flow-through exposure to PFOA at concentrations of 3, 10, and 30 mg/L for 28 days. Based on the observed histopathological changes, the livers from fish exposed to 10 mg/L PFOA were selected for further hepatic gene expression analysis. While 124 and 171 genes were significantly altered by PFOA in males and females, respectively, of which 43 genes were commonly regulated in both sexes. The affected genes are involved in multiple biological processes, including lipid metabolism and transport, hormone action, immune responses, and mitochondrial functions. PFOA exposure significantly suppressed genes involved in fatty acid biosynthesis and transport but induced genes associated with intracellular trafficking of cholesterol. Alterations in expression of genes associated with mitochondrial fatty acid {beta}-oxidation were only observed in female rare minnows. In addition, PFOA inhibited genes responsible for thyroid hormone biosynthesis and significantly induced estrogen-responsive genes. These findings implicate PFOA in endocrine disruption. This work contributes not only to the elucidation of the potential mode of toxicity of PFOA to aquatic organisms but also to the use of toxicogenomic approaches to address issues in environmental toxicology.

  6. Effect of potassium perfluorooctanesulfonate, perfluorooctanoate and octanesulfonate on the phase transition of dipalmitoylphosphatidylcholine (DPPC) bilayers

    PubMed Central

    Xie, W.; Kania-Korwel, I.; Bummer, P. M.; Lehmler, H.-J.

    2007-01-01

    Summary Perfluorooctanesulfonic acid (PFOS) is a persistent environmental pollutant that may cause adverse effects by inhibiting pulmonary surfactant. To gain further insights in this potential mechanism of toxicity, we investigated the interaction of PFOS potassium salt with dipalmitoylphosphatidylcholine (DPPC) – the major component of pulmonary surfactant – using steady-state fluorescence anisotropy spectroscopy and DSC (differential scanning calorimetry). In addition, we investigated the interactions of two structurally related compounds, perfluorooctanoic acid (PFOA) and octanesulfonic acid (OS) potassium salt, with DPPC. In the fluorescence experiments a linear depression of the main phase transition temperature of DPPC (Tm) and an increased peak width was observed with increasing concentration of all three compounds, both using 1,6-diphenyl-1,3,5-hexatriene (DPH) and 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene p-toluenesulfonate (TMA-DPH) as fluorescent probes. PFOS caused an effect on Tm and peak width at much lower concentrations because of its increased tendency to partition onto DPPC bilayers, i.e., the partition coefficients decrease in the K(PFOS) > K(PFOA) ≫ K(OS). Similar to the fluorescence anisotropy measurements, all three compounds caused a linear depression in the onset of the main phase transition temperature and a significant peak broadening in the DSC experiments, with PFOS having the most pronounced effect of the peak width. The effect of PFOS and other fluorinated surfactants on DPPC in both mono- and bilayers may be one mechanism by which these compounds causes adverse biological effects. PMID:17349969

  7. DISRUPTION OF THYROID HORMONE HOMEOSTASIS BY PERFLUROALKYL ACIDS

    EPA Science Inventory

    Perfluoroalkyl acids (PFAA) are man-made chemicals found ubiquitously in humans and wildlife; the major representatives of these are those with an 8-carbon chain (C-8, perfluorooctane sulfonate, PFOS and perfluorooctanoic acid, PFOA). Presently, we have investigated the effects o...

  8. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide.

    PubMed

    Chen, Meng-Jia; Lo, Shang-Lien; Lee, Yu-Chi; Huang, Chang-Chieh

    2015-05-15

    Transition-metal modified TiO₂ was used in a UV reactor to assist in decomposition of perfluorooctanoic acid (PFOA) in aqueous solutions. Comparing TiO₂ and two types of metal-modified TiO₂ (Fe-TiO₂ and Cu-TiO₂), Cu-TiO₂ exhibited the highest catalytic activity during PFOA decomposition and defluorination. After 12 h of reaction, the PFOA decomposition and defluorination efficiencies by the UV/Cu-TiO₂ system reached 91% and 19%, respectively. PFOA was decomposed into fluoride ions (F(-)) and shorter perfluorinated carboxylic acids (PFCAs) such as C₆ F₁₃COOH, C₅F₁₁COOH, C₄F₉COOH, C₃F₇COOH, C₂F₅COOH and CF₃COOH. The pseudo-first-order and pseudo-zero-order kinetics were used to model the decomposition and defluorination of PFOA, respectively. Rate constant values of PFOA decomposition for the UV/TiO₂, UV/Fe-TiO₂, and UV/Cu-TiO₂ systems were 0.0001, 0.0015, and 0.0031 min(-1), respectively, while rate constant values of PFOA defluorination for the UV/Fe-TiO₂, and UV/Cu-TiO₂ systems were 0.0048 and 0.0077 mg/L·min(-1), respectively. The photocatalysts were prepared by a photodeposition synthesis method and were characterized by scanning electron microscopy with energy-dispersive X-ray, X-ray diffraction and UV-vis spectrophotometry. The Fe-TiO₂ and Cu-TiO₂ catalysts exhibited considerably higher activities than that of TiO₂. The experimental results have demonstrated that the UV/Fe-TiO₂ and UV/Cu-TiO₂ systems could produce traps to capture photo-induced electrons, thereby reduce electron-hole recombination during photocatalytic reactions and consequently enhance the PFOA decomposition.

  9. Identify biosorption effects of Thiobacillus towards perfluorooctanoic acid (PFOA): Pilot study from field to laboratory.

    PubMed

    Li, Lei; Wang, Tieyu; Sun, Yajun; Wang, Pei; Yvette, Baninla; Meng, Jing; Li, Qifeng; Zhou, Yunqiao

    2017-03-01

    The concentration of Perfluoroalkyl acids (PFAAs) and the bacterial community composition along the Xiaoqing River were explored with HPLC-MS/MS and Illumina high-throughput sequencing in present study. The results showed that perfluorooctanoic acid (PFOA) was the predominant PFAAs in all sediment samples, and high level of PFOA could lead to an evident increase in the abundance of Thiobacillus. Thiobacillus was identified with the survival ability in high concentrations of PFOA accordingly. Therefore, Thiobacillus thioparus and Thiobacillus denitrificans were selected as receptors to design indoor biosorption experiment. The growth curves under different PFOA concentrations and residual rates of PFOA in the processes of cultivation were analyzed. The results showed that upwards concentrations of PFOA below 5000 ng/L led to an obvious increase in the growth rate of T. thioparus. Whereas PFOA promoted the growth of T. denitrificans in a relatively limited range of concentration, and the effect was not obvious. The addition of different concentrations of PFOA had no apparent effects on pH values in the media of both T. thioparus and T. denitrificans. The concentrations of PFOA in liquid media reduced after the process of bacteria culturing. The removal rates of T. thioparus and T. denitrificans to PFOA were 21.1-26.8% and 13.5-18.4%, respectively. The current findings indicated that T. thioparus could play a significant role as potential biosorbent with the ability to eliminate PFOA effectively in aquatic environment, which would provide novel information for PFOA ecological decontamination and remediation.

  10. [Photocatalytic degradation kinetics of perfluorooctanoic acid (PFOA) in TiO2 dispersion and its mechanism].

    PubMed

    Li, Ming-Jie; Yu, Ze-Bin; Chen, Ying; Wang, Li; Liu, Qing; Liu, Yu-Xin; He, Li-Li

    2014-07-01

    Decomposition of perfluorooctanoic acid (PFOA) is of prime importance since it is recognized as a persistent organic pollutant and is widespread in the environment. Heterogeneous photocatalytic decomposition of PFOA by TiO2 (P25) was investigated under 254 nm UV light. Experimental conditions including initial pH, TiO2 content and PFOA concentration, were varied to demonstrate their effects on the decomposition of PFOA. It was observed that the photocatalytic degradation kinetics of PFOA could be fitted to the quasi-first-order equation. The pH played a determinant role in the decomposition of PFOA and the presence of O2 increased the degradation rate. Optimal conditions for a complete removal were obtained using 1.5 g x L(-1) TiO2 at pH 3 in air atmosphere, with a rate constant of 0.420 6 h(-1). The contribution experiments of various reactive species produced during the photocatalysis were also investigated with the addition of different scavengers and it was found that photogenerated holes (h+) was the major reactive species which was responsible for 66.1% of the degradation rate, and the *OH was involved in PFOA degradation as well. In addition, the photocatalytic experiment with the addition of NaF indicated that the adsorption of PFOA was of primary importance for the photocatalytic decomposition. Perfluorocarboxylic acids (PFCAs) with shorter carbon chain length as intermediates and products were identified with UPLC-QTOF/MS, and a possible mechanism for PFOA decomposition was proposed.

  11. [Photocatalytic Degradation of Perfluorooctanoic Acid by Pd-TiO2 Photocatalyst].

    PubMed

    Liu, Qing; Yu, Ze-bin; Zhang, Rui-han; Li, Ming-jie; Chen, Ying; Wang, Li; Kuang, Yu; Zhang, Bo; Zhu, You-hui

    2015-06-01

    Perfluorooctanoic acid (PFOA) is a new persistent organic pollutant which has got global concern for its wide distribution, high bioaccumulation and strong biological toxicity. In present study, the photocatalytic degradation of PFOA using palladium doped TiO2 (Pd-TiO2) prepared by chemical reduction method was investigated. The photocatalysts were characterized by XRD, FESEM and UV-vis DRS and were used for PFOA degradation under 365 nm UV irradiation. The results indicated that the grain size of TiO2 was smaller while the specific surface area increased and the absorption of ultraviolet light also enhanced after using chemical reduction method, but all these changes had no influence on PFOA degradation. However, the degradation was significantly enhanced because of the deposition of Pd, the fluoride concentration of PFOA was 6.62 mg x L(-1) after 7 h irradiation which was 7.3 times higher than that of TiO2 (P25). Experiments with the addition of trapping agent and nitrogen indicated that *OH played an important role in PFOA degradation while the presence of O2 accelerated the degradation. The main intermediate products of photocatalytic degradation of PFOA were authenticated by an ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry systems (UPLC-QTOF-MS). The probable photocatalytic degradation mechanism involves h+ attacking the carboxyl of PFOA and resulting in decarboxylation. The produced *CnF(2n +1) was oxidized by *OH underwent defluorinetion to form shorter-chain perfluorinated carboxylic acids. The significant enhancement of PFOA degradation can be ascribed to the palladium deposits, acting as electron traps on the Pd-TiO2 surface, which facilitated the transfer of photogenerated electrons and retarded the accumulation of electrons.

  12. PBPK modeling for PFOS and PFOA: validation with human experimental data.

    PubMed

    Fàbrega, Francesc; Kumar, Vikas; Schuhmacher, Marta; Domingo, José L; Nadal, Martí

    2014-10-15

    In recent years, because of the potential human toxicity, concern on perfluoroalkyl substances (PFASs) has increased notably with special attention to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Unfortunately, there is currently an important knowledge gap on the burdens of these chemicals in most human tissues, as the reported studies have been mainly focused on plasma. In order to overcome these limitations, the use of physiologically-based pharmacokinetic (PBPK) models has been extended. The present study was aimed at testing an existing PBPK model for their predictability of PFOS and PFOA in a new case-study, and also to adapt it to estimate the PFAS content in human tissue compartments. Model validation was conducted by means of PFOA and PFOS concentrations in food and human drinking water from Tarragona County (Catalonia, Spain), and being the predicted results compared with those experimentally found in human tissues (blood, liver, kidney, liver and brain) of subjects from the same area of study. The use of human-derived partition coefficient (Pk) data was proven as more suitable for application to this PBPK model than rat-based Pk values. However, the uncertainty and variability of the data are still too high to get conclusive results. Consequently, further efforts should be carried out to reduce parametric uncertainty of PBPK models. More specifically, a deeper knowledge on the distribution of PFOA and PFOS within the human body should be obtained by enlarging the number of biological monitoring studies on PFASs.

  13. Occurrence and potential significance of perfluorooctanoic acid (PFOA) detected in New Jersey public drinking water systems.

    PubMed

    Post, Gloria B; Louis, Judith B; Cooper, Keith R; Boros-Russo, Betty Jane; Lippincott, R Lee

    2009-06-15

    After detection of perfluorooctanoic acid (PFOA) in two New Jersey (NJ) public water systems (PWS) at concentrations up to 0.19 microg/L, a study of PFOA in 23 other NJ PWS was conducted in 2006. PFOA was detected in 15 (65%) of the systems at concentrations ranging from 0.005 to 0.039 microg/L. To assess the significance of these data, the contribution of drinking water to human exposure to PFOA was evaluated, and a health-based drinking water concentration protective for lifetime exposure of 0.04 microg/L was developed through a risk assessment approach. Both the exposure assessment and the health-based drinking water concentrations are based on the previously reported 100:1 ratio between the concentration of PFOA in serum and drinking water in a community with highly contaminated drinking water. The applicability of this ratio to lower drinking water concentrations was confirmed using data on serum levels and water concentrations from other communities. The health-based concentration is based on toxicological end points identified by U.S. Environmental Protection Agency (USEPA) in its 2005 draft risk assessment Recent information on PFOA's toxicity not considered in the USEPA risk assessment urther supports the health-based concentration of 0.04 microg/L. In additional sampling of 18 PWS in 2007-2008, PFOA in most systems was below the health-based concentration. However, PFOA was detected above the health-based concentration in five systems, including one not previously sampled.

  14. Kinetics of the electrochemical mineralization of perfluorooctanoic acid on ultrananocrystalline boron doped conductive diamond electrodes.

    PubMed

    Urtiaga, Ane; Fernández-González, Carolina; Gómez-Lavín, Sonia; Ortiz, Inmaculada

    2015-06-01

    This work deals with the electrochemical degradation and mineralization of perfluorooctanoic acid (PFOA). Model aqueous solutions of PFOA (100mg/L) were electro-oxidized under galvanostatic conditions in a flow-by undivided cell provided with a tungsten cathode and an anode formed by a commercial ultrananocrystalline boron doped diamond (BDD) coating on a niobium substrate. A systematic experimental study was conducted in order to analyze the influence of the following operation variables: (i) the supporting electrolyte, NaClO4 (1.4 and 8.4g/L) and Na2SO4 (5g/L); (ii) the applied current density, japp, in the range 50-200 A/m(2) and (iii) the hydrodynamic conditions, in terms of flowrate in the range 0.4×10(-4)-1.7×10(-4)m(3)/s and temperature in the range 293-313K. After 6h of treatment and at japp 200A/m(2), PFOA removal was higher than 93% and the mineralization ratio, obtained from the decrease of the total organic carbon (TOC) was 95%. The electrochemical generation of hydroxyl radicals in the supporting electrolyte was experimentally measured based on their reaction with dimethyl sulfoxide. The enhanced formation of hydroxyl radicals at higher japp was related to the faster kinetics of PFOA removal. The fitting of experimental data to the proposed kinetic model provided the first order rate constants of PFOA degradation, kc(1) that moved from 2.06×10(-4) to 15.58×10(-4)s(-1), when japp varied from 50 to 200A/m(2).

  15. Genomic Profiling Reveals an Alternate Mechanism for Hepatic Tumor Promotion by Perfluorooctanoic Acid in Rainbow Trout

    PubMed Central

    Tilton, Susan C.; Orner, Gayle A.; Benninghoff, Abby D.; Carpenter, Hillary M.; Hendricks, Jerry D.; Pereira, Cliff B.; Williams, David E.

    2008-01-01

    Background Perfluorooctanoic acid (PFOA) is a potent hepatocarcinogen and peroxisome proliferator (PP) in rodents. Humans are not susceptible to peroxisome proliferation and are considered refractory to carcinogenesis by PPs. Previous studies with rainbow trout indicate they are also insensitive to peroxisome proliferation by the PP dehydroepiandrosterone (DHEA), but are still susceptible to enhanced hepatocarcinogenesis after chronic exposure. Objectives In this study, we used trout as a unique in vivo tumor model to study the potential for PFOA carcinogenesis in the absence of peroxisome proliferation compared with the structurally diverse PPs clofibrate (CLOF) and DHEA. Mechanisms of carcinogenesis were identified from hepatic gene expression profiles phenotypically anchored to tumor outcome. Methods We fed aflatoxin B1 or sham-initiated animals 200–1,800 ppm PFOA in the diet for 30 weeks for tumor analysis. We subsequently examined gene expression by cDNA array in animals fed PFOA, DHEA, CLOF, or 5 ppm 17β-estradiol (E2, a known tumor promoter) in the diet for 14 days. Results PFOA (1,800 ppm or 50 mg/kg/day) and DHEA treatments resulted in enhanced liver tumor incidence and multiplicity (p < 0.0001), whereas CLOF showed no effect. Carcinogenesis was independent of peroxisome proliferation, measured by lack of peroxisomal β-oxidation and catalase activity. Alternately, both tumor promoters, PFOA and DHEA, resulted in estrogenic gene signatures with strong correlation to E2 by Pearson correlation (R = 0.81 and 0.78, respectively), whereas CLOF regulated no genes in common with E2. Conclusions These data suggest that the tumor-promoting activities of PFOA in trout are due to novel mechanisms involving estrogenic signaling and are independent of peroxisome proliferation. PMID:18709148

  16. High perfluorooctanoic acid exposure induces autophagy blockage and disturbs intracellular vesicle fusion in the liver.

    PubMed

    Yan, Shengmin; Zhang, Hongxia; Guo, Xuejiang; Wang, Jianshe; Dai, Jiayin

    2017-01-01

    Perfluorooctanoic acid (PFOA) has been shown to cause hepatotoxicity and other toxicological effects. Though PPARα activation by PFOA in the liver has been well accepted as an important mechanism of PFOA-induced hepatotoxicity, several pieces of evidence have shown that the hepatotoxic effects of PFOA may not be fully explained by PPARα activation. In this study, we observed autophagosome accumulation in mouse livers as well as HepG2 cells after PFOA exposure. Further in vitro study revealed that the accumulation of autophagosomes was not caused by autophagic flux stimulation. In addition, we observed that PFOA exposure affected the proteolytic activity of HepG2 cells while significant dysfunction of lysosomes was not detected. Quantitative proteomic analysis of crude lysosomal fractions from HepG2 cells treated with PFOA revealed that 54 differentially expressed proteins were related to autophagy or vesicular trafficking and fusion. The proteomic results were further validated in the cells in vitro and livers in vivo after PFOA exposure, which implied potential dysfunction at the late stage of autophagy. However, in HepG2 cells, it seemed that further inhibition of autophagy did not significantly alter the effects of PFOA on cell viability. Although these findings demonstrate that PFOA blocked autophagy and disturbed intracellular vesicle fusion in the liver, the changes in autophagy were observed only at high cytotoxic concentrations of PFOA, suggesting that autophagy may not be a primary target or mode of toxicity. Furthermore, since altered liver autophagy was not observed at concentrations of PFOA associated with human exposures, the relevance of these findings must be questioned.

  17. EVALUATION OF PERFLUOROALKYL ACID ACTIVITY USING PRIMARY MOUSE AND HUMAN HEPATOCYTES

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is know about the biological activity of other environmental perfluoroalkyl acids (pFAAs). Using a transient transfection assay developed in COS-l cells, our group has previ...

  18. Evaluation of Perfluoroalkyl Acid Activity Using Primary Mouse and Human Hepatocytes.

    EPA Science Inventory

    While perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been studied at length, less is known about the biological activity of other perfluoroalkyl acids (PFAAs) in the environment. Using a transient transfection assay developed in COS-1 cells, our group h...

  19. Effect of PFOA/PFOS pre-exposure on the toxicity of the herbicides 2,4-D, Atrazine, Diuron and Paraquat to a model aquatic photosynthetic microorganism.

    PubMed

    Rodea-Palomares, Ismael; Makowski, Marcin; Gonzalo, Soledad; González-Pleiter, Miguel; Leganés, Francisco; Fernández-Piñas, Francisca

    2015-11-01

    Pre-exposure to the perfluorinated compounds (PFCs) perfluorooctano sulphonate (PFOS) or perfluorooctanoic acid (PFOA) on the toxicity of four herbicides of different types and modes of action towards the self-luminescent recombinant cyanobacterium Anabaena CPB4337 was evaluated. The rationale of the approach is that both PFOS and PFOA as surfactants are known to modify cell membrane properties and pre-exposure to them might alter herbicide toxicity towards the cyanobacterium. Anabaena CPB4337 was pre-exposed during 72h to PFOS or PFOA at a concentration below their no observed effect concentration (NOEC). After pre-exposure, cells were exposed to increasing concentrations of 2,4-D Atrazine, Diuron and Paraquat and the toxicity was compared to that of non-pre-exposed ones. The data clearly showed that PFCs pre-treatment significantly altered the toxicity of the tested herbicides. However the effects resulting from PFOA and PFOS pre-exposure were not homogeneous for all the herbicides. In general PFOA pre-exposure resulted in increased herbicide toxicity except for atrazine, while PFOS pre-exposure resulted in increased toxicity for paraquat and diuron, and reduced toxicity for atrazine with no significant effect on 2,4-D toxicity. The strongest modifying effect was found for paraquat whose toxicity doubled with PFOA pre-exposure. Further analysis of membrane properties by flow cytometry revealed that both PFOA and PFOS were able to modify membrane integrity and membrane potential of Anabaena CPB4337 at the concentrations used in the pre-exposure experiments. These results reveal relevant indirect effects of PFCs pollution with eco-toxicological implications.

  20. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for Involvement of the Nuclear Receptors PPARα and CAR

    EPA Science Inventory

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects related to liver carcinogenesis through the nucle...

  1. Toxicogenomic Dissection of the Perfluorooctanoic Acid Transcript Profile in Mouse Liver: Evidence for the Involvement of Nuclear Receptors PPARα and CAR

    EPA Science Inventory

    A number of perfluorinated alkyl acids including perfluorooctanoic acid (PFOA) elicit effects similar to peroxisome proliferator chemicals (PPC) in mouse and rat liver. There is strong evidence that PPC cause many of their effects linked to liver cancer through the nuclear recep...

  2. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARalpha and T- and B-cell targeting

    EPA Science Inventory

    T-cell-dependent antibody responses (TDAR) are suppressed in female C57BL/6N mice exposed to ≥3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days. To determine if suppression of humoral immunity by PFOA is peroxisome proliferator activated receptor alpha (PPARa)-dependent and...

  3. Comparative hepatic effects of perfluorooctanoic acid and WY 14,643 in PPARa-knocked out and wild-type mice.

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is an environmentally persistent chemical commonly found in humans and wildlife. Induction of liver tumors by PFOA in rodents is thought to be mediated by PPARα activation, although hepatic hypertrophy persists in PPARα-null mice. This study evalua...

  4. Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature.

    PubMed

    Post, Gloria B; Cohn, Perry D; Cooper, Keith R

    2012-07-01

    Perfluorooctanoic acid (PFOA) is an anthropogenic contaminant that differs in several ways from most other well-studied organic chemicals found in drinking water. PFOA is extremely resistant to environmental degradation processes and thus persists indefinitely. Unlike most other persistent and bioaccumulative organic pollutants, PFOA is water-soluble, does not bind well to soil or sediments, and bioaccumulates in serum rather than in fat. It has been detected in finished drinking water and drinking water sources impacted by releases from industrial facilities and waste water treatment plants, as well as in waters with no known point sources. However, the overall occurrence and population exposure from drinking water is not known. PFOA persists in humans with a half-life of several years and is found in the serum of almost all U.S. residents and in populations worldwide. Exposure sources include food, food packaging, consumer products, house dust, and drinking water. Continued exposure to even relatively low concentrations in drinking water can substantially increase total human exposure, with a serum:drinking water ratio of about 100:1. For example, ongoing exposures to drinking water concentrations of 10 ng/L, 40 ng/L, 100 ng/L, or 400 ng/L are expected to increase mean serum levels by about 25%, 100%, 250%, and 1000%, respectively, from the general population background serum level of about 4 ng/mL. Infants are potentially a sensitive subpopulation for PFOA's developmental effects, and their exposure through breast milk from mothers who use contaminated drinking water and/or from formula prepared with contaminated drinking water is higher than in adults exposed to the same drinking water concentration. Numerous health endpoints are associated with human PFOA exposure in the general population, communities with contaminated drinking water, and workers. As is the case for most such epidemiology studies, causality for these effects is not proven. Unlike most other

  5. A novel liquid plasma AOP device integrating microwaves and ultrasounds and its evaluation in defluorinating perfluorooctanoic acid in aqueous media.

    PubMed

    Horikoshi, Satoshi; Sato, Susumu; Abe, Masahiko; Serpone, Nick

    2011-09-01

    A simplified and energy-saving integrated device consisting of a microwave applicator and an ultrasonic homogenizer has been fabricated to generate liquid plasma in a medium possessing high dielectric factors, for example water. The microwave waveguide and the ultrasonic transducer were interconnected through a tungsten/titanium alloy stick acting both as the microwave antenna and as the horn of the ultrasonic homogenizer. Both microwaves and ultrasonic waves are simultaneously transmitted to the aqueous media through the tungsten tip of the antenna. The microwave discharge liquid plasma was easily generated in solution during ultrasonic cavitation. The simple device was evaluated by carrying out the degradation of the perfluorooctanoic acid (PFOA), a system highly recalcitrant to degradation by conventional advanced oxidation processes (AOPs). PFOA is 59% degraded in an aqueous medium after only 90 s of irradiation by the plasma. Intermediates were identified by electrospray mass spectral techniques in the negative ion mode.

  6. Equilibrium and kinetics study on the adsorption of perfluorooctanoic acid from aqueous solution onto powdered activated carbon.

    PubMed

    Qu, Yan; Zhang, Chaojie; Li, Fei; Bo, Xiaowen; Liu, Guangfu; Zhou, Qi

    2009-09-30

    Powdered activated carbon (PAC) was applied to remove perfluorooctanoic acid (PFOA) from the aqueous PFOA solution in this study. Contact time, adsorbent dose and temperature were analyzed as the effect factors in the adsorption reaction. The contact time of maximum PFOA uptake was around 1h while the sorption removal efficiency increased with the PAC concentrations. And the process of adsorption increased from 303 K to 313 K and then decreased from 313 K to 323 K. Among four applied models, the experimental isotherm data were discovered to follow Langmuir isotherm model more closely. Thermodynamically, adsorption was endothermic because enthalpy, entropy and Gibbs constants were 198.5 kJ/mol, 0.709 kJ/mol/K and negative, respectively, which also indicated that the adsorption process was spontaneous and feasible. From kinetic analysis, the adsorption was suggested to be pseudo-second-order model. The adsorption of PFOA on the PAC was mainly controlled by particle diffusion.

  7. Water dissociation in a radio-frequency electromagnetic field with ex situ electrodes—decomposition of perfluorooctanoic acid and tetrahydrofuran

    NASA Astrophysics Data System (ADS)

    Schneider, Jens; Holzer, Frank; Kraus, Markus; Kopinke, Frank-Dieter; Roland, Ulf

    2016-10-01

    The application of radio waves with a frequency of 13.56 MHz on electrolyte solutions in a capillary reactor led to the formation of reactive hydrogen and oxygen species and finally to molecular oxygen and hydrogen. This process of water splitting can be principally used for the elimination of hazardous chemicals in water. Two compounds, namely perfluorooctanoic acid (PFOA) and tetrahydrofuran, were converted using this process. Their main decomposition products were highly volatile and therefore transferred to a gas phase, where they could be identified by GC-MS analyses. It is remarkable that the chemical reactions could benefit from both the oxidizing and reducing species formed in the plasma process, which takes place in gas bubbles saturated with water vapor. The breaking of C-C and C-F bonds was proven in the case of PFOA, probably initiated by electron impacts and radical reactions.

  8. Perfluorooctanoic acid induces human Ishikawa endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling

    PubMed Central

    Li, Fujun; Wang, Yixong; Xu, Yang; Zhang, Mei; Zhang, Xiaoqian; Ying, Xiaoyan; Zhang, Xuesen

    2016-01-01

    Perfluorooctanoic acid (PFOA) is a common environmental pollutant that has been associated with various diseases, including cancer. We explored the molecular mechanisms underlying PFOA-induced endometrial cancer cell invasion and migration. PFOA treatment enhanced migration and invasion by human Ishikawa endometrial cancer cells, which correlated with decreased E-cadherin expression, a marker of epithelial-mesenchymal transition. PFOA also induced activation of ERK1/2/mTOR signaling. Treatment with rapamycin, an mTOR inhibitor, antagonized the effects of PFOA and reversed the effects of PFOA activation in a xenograft mouse model of endometrial cancer. Consistent with these results, pre-treatment with rapamycin abolished PFOA-induced down-regulation of E-cadherin expression. These results indicate that PFOA is a carcinogen that promotes endometrial cancer cell migration and invasion through activation of ERK/mTOR signaling. PMID:27589685

  9. Determination of perfluorooctanoate and perfluorooctanesulfonate in water matrices by inline matrix elimination liquid chromatography with reversed phase separation and suppressed conductivity detection.

    PubMed

    Subramanian, N Harihara; Manigandan, P; Wille, Andrea; Radhakrishnan, Ganga

    2011-09-01

    This work describes a new method for the determination of perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) in water matrices by suppressed conductivity detection. Separation was achieved by isocratic elution on a reversed-phase column thermostated at 45°C using an aqueous mobile phase containing boric acid and acetonitrile. The PFOA and PFOS content in the water matrix were quantified by a pre-concentration technique. For the concentration range of 1 to 15 ng/mL and 2 to 30 ng/mL, the linear calibration curve for PFOA and PFOS yielded coefficients of determination (R(2)) of 0.9995 and 0.9985, respectively. The relative standard deviations were smaller than 1.5% for PFOA and PFOS. The retention-time precision of four consecutive 12 h injections was smaller than 0.641% and 0.818%, respectively. The presence of common divalent cations, such as calcium, magnesium, and iron in water matrices impairs PFOS recovery. This drawback was overcome by applying inline matrix elimination method. The optimized method was successfully applied for drinking water, ground water, and seawater samples.

  10. Determination of perfluorooctane sulfonate and perfluorooctanoic acid in food packaging using liquid chromatography coupled with tandem mass spectrometry.

    PubMed

    Poothong, Somrutai; Boontanon, Suwanna Kitpati; Boontanon, Narin

    2012-02-29

    This research aimed to monitor the amounts of PFOS and PFOA in food packaging and study the migration of PFOS and PFOA from food packaging, using a saliva simulant and pressurized liquid extraction (PLE) technique. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was employed to determine residues of PFOS and PFOA by using a gradient reversed-phase method with ammonium acetate/acetonitrile buffer. A good linearity was established for PFOS and PFOA in a range of 0.05-10 μgL(-1), with R2 ≥ 0.9998. Of the samples extracted by methanol, the highest concentration of PFOS was found in fast-food container samples, at a level of 92.48 ng dm(-2). For PFOA, the highest concentration in samples extracted by methanol was found in ice cream cup samples, at a level of 16.91 ng dm(-2). The amounts of PFOS and PFOA that migrated from food packaging samples through contact with saliva simulant were 4.80 and 4.55 ng dm(-2), respectively. Saliva simulant could leach PFOS and PFOA from the group of the thickest paper samples (≤1 dm2 g(-1)) at levels of 7.01 and 6.41 ng dm(-2), respectively, indicating that paper with greater thickness and less area might release larger quantities of coated/added PFOS or PFOA.

  11. Hepatic mitochondrial alteration in CD1 mice associated with prenatal exposures to low doses of perfluorooctanoic acid (PFOA)

    PubMed Central

    Quist, Erin M.; Filgo, Adam J.; Cummings, Connie A.; Kissling, Grace E.; Hoenerhoff, Mark J.; Fenton, Suzanne E.

    2014-01-01

    Perfluorooctanoic acid (PFOA) is a perfluoroalkyl acid primarily used as an industrial surfactant. It persists in the environment and has been linked to potentially toxic and/or carcinogenic effects in animals and people. As a known activator of peroxisome proliferator-activated receptors (PPARs), PFOA exposure can induce defects in fatty acid oxidation, lipid transport, and inflammation. Here, pregnant CD-1 mice were orally gavaged with 0, 0.01, 0.1, 0.3 and 1 mg/kg of PFOA from gestation days (GD) 1 through 17. On postnatal day (PND) 21, histopathologic changes in the livers of offspring included hepatocellular hypertrophy and periportal inflammation that increased in severity by PND 91 in an apparent dose-dependent response. Transmission electron microscopy (TEM) of selected liver sections from PND 91 mice revealed PFOA-induced cellular damage and mitochondrial abnormalities with no evidence of peroxisome proliferation. Within hypertrophied hepatocytes, mitochondria were not only increased in number, but also exhibited altered morphologies suggestive of increased and/or uncontrolled fission and fusion reactions. These findings suggest that peroxisome proliferation is not a component of PFOA-induced hepatic toxicity in animals that are prenatally exposed to low doses of PFOA. PMID:25326589

  12. Comparative in vivo and in vitro analysis of possible estrogenic effects of perfluorooctanoic acid.

    PubMed

    Yao, Pei-Li; Ehresman, David J; Rae, Jessica M Caverly; Chang, Shu-Ching; Frame, Steven R; Butenhoff, John L; Kennedy, Gerald L; Peters, Jeffrey M

    2014-12-04

    Previous studies suggested that perfluorooctanoate (PFOA) could activate the estrogen receptor (ER). The present study examined the hypothesis that PFOA can activate ER using an in vivo uterotrophic assay in CD-1 mice and an in vitro reporter assay. Pre-pubertal female CD-1 mice fed an estrogen-free diet from postnatal day (PND)14 through weaning on PND18 were administered 0, 0.005, 0.01, 0.02, 0.05, 0.1, or 1mg/kg PFOA or 17β-estradiol (E2, 0.5mg/kg) from PND18-20. In contrast to E2, PFOA caused no changes in the relative uterine weight, the expression of ER target genes, or the morphology of the uterus/cervix and/or vagina on PND21. Treatment of a stable human cell line containing an ER-dependent luciferase reporter construct with a broad concentration range of PFOA caused no change in ER-dependent luciferase activity; whereas E2 caused a marked increase of ER-dependent luciferase activity. These data indicate that PFOA does not activate mouse or human ER.

  13. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARa and T- and B-cell targeting

    EPA Pesticide Factsheets

    Dosing information, body weights during exposure and immune system endpoints. This dataset is associated with the following publication:DeWitt, J., W. Williams , J. Creech, and R. Luebke. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARalpha and T- and B-cell targeting. JOURNAL OF IMMUNOTOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 13(1): 38-45, (2016).

  14. Highly efficient electrochemical degradation of perfluorooctanoic acid (PFOA) by F-doped Ti/SnO2 electrode.

    PubMed

    Yang, Bo; Jiang, Chaojin; Yu, Gang; Zhuo, Qiongfang; Deng, Shubo; Wu, Jinhua; Zhang, Hong

    2015-12-15

    The novel F-doped Ti/SnO2 electrode prepared by SnF4 as the single-source precursor was used for electrochemical degradation of aqueous perfluorooctanoic acid (PFOA). Higher oxidation reactivity and significantly longer service life were achieved for Ti/SnO2-F electrode than Ti/SnO2-X (X=Cl, Br, I, or Sb) electrode, which could decomposed over 99% of PFOA (50 mL of 100 mg L(-1)) within 30-min electrolysis. The property of Ti/SnO2-F electrode and its electrooxidation mechanism were investigated by XRD, SEM-EDX, EIS, LSV, and interfacial resistance measurements. We propose that the similar ionic radii of F and O as well as strong electronegativity of F caused its electrochemical stability with high oxygen evolution potential (OEP) and smooth surface to generate weakly adsorbed OH. The preparation conditions of electrode were also optimized including F doping amount, calcination temperature, and dip coating times, which revealed the formation process of electrode. Additionally, the major mineralization product, F(-), and low concentration of shorter chain perfluorocarboxylic acids (PFCAs) were detected in solution. So the reaction pathway of PFOA electrooxidation was proposed by intermediate analysis. These results demonstrate that Ti/SnO2-F electrode is promising for highly efficient treatment of PFOA in wastewater.

  15. Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?

    PubMed

    Johansson, Jana H; Berger, Urs; Cousins, Ian T

    2017-05-01

    Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.

  16. Photochemical defluorination of aqueous perfluorooctanoic acid (PFOA) by Fe(0)/GAC micro-electrolysis and VUV-Fenton photolysis.

    PubMed

    Zhang, Li-Hong; Cheng, Jian-Hua; You, Xia; Liang, Xiao-Yan; Hu, Yong-You

    2016-07-01

    Perfluorooctanoic acid (PFOA) is extremely persistent and bioaccumulative in the environment; thus, it is very urgent to investigate an effective and moderate technology to treat the pollution of PFOA. In this study, a process combined iron and granular activated carbon (Fe(0)/GAC) micro-electrolysis with VUV-Fenton system is employed for the remediation of PFOA. Approximately 50 % PFOA (10 mg L(-1)) could be efficiently defluorinated under the following conditions: pH 3.0, dosage of Fe 7.5 g L(-1), dosage of GAC 12.5 g L(-1), and concentration of H2O2 22.8 mmol L(-1). Meanwhile, during the process, evident defluorination was observed and the concentration of fluoride ion was eventually 3.23 mg L(-1). The intermediates including five shorter-chain perfluorinated carboxylic acids (PFCAs), i.e., C7, C6, C5, C4, and C3, were also analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC/MS/MS) and defluorination mechanisms of PFOA was proposed, which involved photochemical of OH·, direct photolysis (185-nm VUV), and photocatalytic degradation of PFOA in the presence of Fe(3+) (254-nm UV).

  17. Influence of the uncertainty in the validation of PBPK models: A case-study for PFOS and PFOA.

    PubMed

    Fàbrega, Francesc; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Kumar, Vikas

    2016-06-01

    Physiologically-based pharmacokinetic (PBPK) models are mathematical representations of the human body aimed at describing the time course distribution of chemicals in human tissues. Since parameterization of PBPK models is based on empirical estimation and experimental data, simulation results may have high degree of uncertainty. As a consequence, the reliability of model validation is highly affected. In this study, the parametric uncertainty associated with PBPK models developed for perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) were analyzed and the different validation approaches were discussed for a case-study in Tarragona County (NE of Spain). Physicochemical parameters and dietary intake of PFOS and PFOA were estimated from previous investigations performed in Tarragona County. A sensitivity analysis (SA) was performed to understand the degree of influence of input parameters on the final outcomes. The uncertainty of the PBPK models' outcome was assessed by propagating the parametric uncertainty using the Latin Hypercube Sampling (LHS) technique. The elimination constants (Tm and Kt) as well as the Free fraction and the Intake, were the most influential parameters according to the SA results, being up to 83% for PFOS and 99.9% for PFOA. The validation of the PBPK model, which was performed using different approaches, showed clear discrepancies in the visual validation when compared with the statistical analysis.

  18. Estimating industrial and domestic environmental releases of perfluorooctanoic acid and its salts in China from 2004 to 2012.

    PubMed

    Li, Li; Zhai, Zihan; Liu, Jianguo; Hu, Jianxin

    2015-06-01

    China has been documented as one of the few remaining producers of perfluorooctanoic acid and its salts (PFOA/PFO) and the world's major contamination hotspot. However, limited information has been available for evaluating their environmental releases in China and the contribution to global PFOA/PFO burden. Here we present the first source-specific inventory for environmental releases of PFOA/PFO in China from 2004 to 2012, using a bottom-up approach for industrial sources and an inverse approach for domestic sources. Our results show that China became the current world's largest PFOA/PFO emitter, with cumulative environmental releases reaching 250tonnes (t) over the period of nine years. The eastern region was identified as the hotspot of environmental releases. Most of the national environmental releases were due to the activities of the fluorochemical industry (94.0%) rather than domestic use of PFOA/PFO-related consumer products (6.0%). Fluoropolymer manufacturing and processing, a dominating industrial source, contributed 83.7% of the national environmental releases. In contrast to the general decline trends in annual industrial environmental releases of PFOA/PFO in most industrialized countries, the trend increased in China because of the expansion of production as a result of the global geographical transition in fluorochemical industry. Based on these results, we recommend that the future reduction options are required in industrial sector in China.

  19. Effects of chronic perfluorooctanoic acid (PFOA) at low concentration on morphometrics, gene expression, and fecundity in zebrafish (Danio rerio).

    PubMed

    Jantzen, Carrie E; Toor, Fatima; Annunziato, Kate A; Cooper, Keith R

    2017-01-29

    Perfluorooctanoic acid (PFOA) is a persistent, toxic, anthropogenic chemical recalcitrant to biodegradation. Based on previous studies in lower and higher vertebrates, it was hypothesized that chronic, sub-lethal, embryonic exposure to PFOA in zebrafish (Danio rerio) would adversely impact fish development, survival, and fecundity. Zebrafish embryo/sac-fry were water exposed to 2.0 or 0nM PFOA from 3 to 120hpf, and juvenile to adult cohorts were fed spiked food (8 pM) until 6 months. After chronic exposure, PFOA exposed fish were significantly smaller in total weight and length. Gene expression analysis found a significant decrease of transporters slco2b1, slco4a1, slco3a1 and tgfb1a, and a significant increase of slco1d1 expression. PFOA exposed fish produced significantly fewer eggs with reduced viability and developmental stage delay in F1. Chronic, low-dose exposure of zebrafish to PFOA significantly altered normal development, survival and fecundity and would likely impact wild fish population fitness in watersheds chronically exposed to PFOA.

  20. Proteomic analysis of mouse testis reveals perfluorooctanoic acid-induced reproductive dysfunction via direct disturbance of testicular steroidogenic machinery.

    PubMed

    Zhang, Hongxia; Lu, Yin; Luo, Bin; Yan, Shengmin; Guo, Xuejiang; Dai, Jiayin

    2014-07-03

    Perfluorooctanoic acid (PFOA) is a ubiquitous environmental pollutant suspected of being an endocrine disruptor; however, mechanisms of male reproductive disorders induced by PFOA are poorly understood. In this study, male mice were exposed to 0, 0.31, 1.25, 5, and 20 mg PFOA/kg/day by oral gavage for 28 days. PFOA significantly damaged the seminiferous tubules and reduced testosterone and progesterone levels in the testis in a dose-dependent manner. Furthermore, PFOA exposure reduced sperm quality. We identified 93 differentially expressed proteins between the control and the 5 mg/kg/d PFOA treated mice using a quantitative proteomic approach. Among them, insulin like-factor 3 (INSL3) and cytochrome P450 cholesterol side-chain cleavage enzyme (CYP11A1) as Leydig-cell-specific markers were significantly decreased. We examined in detail the expression patterns of CYP11A1 and associated genes involved in steroidogenesis in the mouse testis. PFOA inhibited the mRNA and protein levels of CYP11A1 and the mRNA levels of 17β-hydroxysteroid dehydrogenase (17β-HSD) in a dose-dependent manner. Moreover, in vitro study showed the reduction in progesterone levels was accompanied by decreased expression of CYP11A1 in cAMP-stimulated mLTC-1 cells. Our findings indicate that PFOA exposure can impair male reproductive function, possibly by disturbing testosterone levels, and CPY11A1 may be a major steroidogenic enzyme targeted by PFOA.

  1. Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum.

    PubMed

    Bots, Jessica; De Bruyn, Luc; Snijkers, Tom; Van den Branden, Bert; Van Gossum, Hans

    2010-03-01

    We evaluated whether life-time exposure to PFOS affects egg development, hatching, larval development, survival, metamorphosis and body mass of Enallagma cyathigerum (Insecta: Odonata). Eggs and larvae were exposed to five concentrations ranging from 0 to 10000 microg/L. Our results show reduced egg hatching success, slower larval development, greater larval mortality, and decreased metamorphosis success with increasing PFOS concentration. PFOS had no effect on egg developmental time and hatching or on mass of adults. Eggs were the least sensitive stage (NOEC=10000 microg/L). Larval NOEC values were 1000 times smaller (10 microg/L). Successful metamorphosis was the most sensitive response trait studied (NOEC<10 microg/L). The NOEC value suggests that E. cyathigerum is amongst the most sensitive freshwater organisms tested. NOEC for metamorphosis is less than 10-times greater than the ordinary reported environmental concentrations in freshwater, but is more than 200-times smaller than the greatest concentrations measured after accidental releases.

  2. Avisos de salud sobre el PFOA y PFOS en el agua potable

    EPA Pesticide Factsheets

    La EPA estableció avisos de salud sobre el ácido perfluorooctanoico (PFOA) y el sulfonato de perfluorooctano (PFOS) para proporcionar información a los operadores de sistemas de agua potable y funcionarios estatales, tribales y locales sobre los riesgos de

  3. HOJA INFORMATIVA Presencia de PFOA y PFOS en el agua potable Avisos de salud

    EPA Pesticide Factsheets

    La EPA estableció avisos de salud sobre el ácido perfluorooctanoico (PFOA) y el sulfonato de perfluorooctano (PFOS) para proporcionar información a los operadores de sistemas de agua potable y funcionarios estatales y locales para que puedan adoptar las me

  4. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-Based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid.

    PubMed

    Chen, Sihua; Li, Aimin; Zhang, Lizhi; Gong, Jingming

    2015-10-08

    Driven by the urgent demand for the determination of low level perfluorooctanoic acid (PFOA) present in environment, a novel electrochemiluminescence (ECL) sensor has been first developed for the detection of PFOA using the molecularly imprinted polypyrrole modified two-dimensional ultrathin g-C3N4 (utg-C3N4) nanosheets as a cathodic ECL emitter with S2O8(2-) as coreactant. The prepared molecularly imprinted polymer (MIP) functionalized utg-C3N4 nanosheets (MIP@utg-C3N4) exhibit a stable and significantly amplified ECL signal. It is found that the targets of PFOA could be efficiently oxidized by the electro-generated strong oxidants of SO4(-) (from the reduction of coreactant S2O8(2-)), thus leading to a low yield of the excited utg-C3N4 (g-C3N4*) and finally a decrease in ECL signal. Based on this, a highly sensitive and selective MIP@utg-C3N4-based signal-off ECL sensor is developed for sensing PFOA. Such a newly designed ECL sensor exhibits highly linear over the PFOA concentration in two ranges, from 0.02 to 40.0 ng mL(-1) and 50.0-400.0 ng mL(-1). The detection limit (S/N = 3) is estimated to be 0.01 ng mL(-1) (i.e. 0.01 ppb), comparable to the results obtained by using well-established liquid chromatography-tandem mass spectrometry (LC-MS/MS). Toward practical applications, this low-cost and sensitive assay was successfully applied to measure PFOA in real water samples, showing fine applicability for the detection of PFOA in real samples.

  5. Perfluorooctanoic acid induces gene promoter hypermethylation of glutathione-S-transferase Pi in human liver L02 cells.

    PubMed

    Tian, Meiping; Peng, Siyuan; Martin, Francis L; Zhang, Jie; Liu, Liangpo; Wang, Zhanlin; Dong, Sijun; Shen, Heqing

    2012-06-14

    Perfluorooctanoic acid (PFOA) is one of the most commonly used perfluorinated compounds. Being a persistent environmental pollutant, it can accumulate in human tissues via various exposure routes. PFOA may interfere in a toxic fashion on the immune system, liver, development, and endocrine systems. In utero human exposure had been associated with cord serum global DNA hypomethylation. In light of this, we investigated possible PFOA-induced DNA methylation alterations in L02 cells in order to shed light into its epigenetic-mediated mechanisms of toxicity in human liver. L02 cells were exposed to 5, 10, 25, 50 or 100 mg/L PFOA for 72h. Global DNA methylation levels were determined by LC/ESI-MS, glutathione-S-transferase Pi (GSTP) gene promoter DNA methylation was investigated by methylation-specific polymerase chain reaction (PCR) with bisulfite sequencing, and consequent mRNA expression levels were measured with quantitative real-time reverse transcriptase PCR. A dose-related increase of GSTP promoter methylation at the transcription factor specificity protein 1 (SP1) binding site was observed. However, PFOA did not significantly influence global DNA methylation; nor did it markedly alter the promoter gene methylation of p16 (cyclin-dependent kinase inhibitor 2A), ERα (estrogen receptor α) or PRB (progesterone receptor B). In addition, PFOA significantly elevated mRNA transcript levels of DNMT3A (which mediates de novo DNA methylation), Acox (lipid metabolism) and p16 (cell apoptosis). Considering the role of GSTP in detoxification, aberrant methylation may be pivotal in PFOA-mediated toxicity response via the inhibition of SP1 binding to GSTP promoter.

  6. Metabolic Profiling of Chicken Embryos Exposed to Perfluorooctanoic Acid (PFOA) and Agonists to Peroxisome Proliferator-Activated Receptors

    PubMed Central

    Mattsson, Anna; Kärrman, Anna; Pinto, Rui; Brunström, Björn

    2015-01-01

    Untargeted metabolic profiling of body fluids in experimental animals and humans exposed to chemicals may reveal early signs of toxicity and indicate toxicity pathways. Avian embryos develop separately from their mothers, which gives unique possibilities to study effects of chemicals during embryo development with minimal confounding factors from the mother. In this study we explored blood plasma and allantoic fluid from chicken embryos as matrices for revealing metabolic changes caused by exposure to chemicals during embryonic development. Embryos were exposed via egg injection on day 7 to the environmental pollutant perfluorooctanoic acid (PFOA), and effects on the metabolic profile on day 12 were compared with those caused by GW7647 and rosiglitazone, which are selective agonists to peroxisome-proliferator activated receptor α (PPARα) and PPARγ, respectively. Analysis of the metabolite concentrations from allantoic fluid by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) showed clear separation between the embryos exposed to GW7647, rosiglitazone, and vehicle control, respectively. In blood plasma only GW7647 caused a significant effect on the metabolic profile. PFOA induced embryo mortality and increased relative liver weight at the highest dose. Sublethal doses of PFOA did not significantly affect the metabolic profile in either matrix, although single metabolites appeared to be altered. Neonatal mortality by PFOA in the mouse has been suggested to be mediated via activation of PPARα. However, we found no similarity in the metabolite profile of chicken embryos exposed to PFOA with those of embryos exposed to PPAR agonists. This indicates that PFOA does not activate PPAR pathways in our model at concentrations in eggs and embryos well above those found in wild birds. The present study suggests that allantoic fluid and plasma from chicken embryos are useful and complementary matrices for exploring effects on the metabolic profile resulting

  7. MEASUREMENT OF THYROID HORMONES IN THE RAT SERA CONTAINING PERFLUOROOCTANESULFONATE (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS), a persistent and bioaccumulative acid, is widely distributed in humans and wildlife. Prior studies with PFOS (rats and monkeys) have observed decreased total and free thyroid hormones (TH) in serum without a rise in thyrotropin (TSH). Measuremen...

  8. Isomers of perfluorooctanesulfonate (PFOS) in cord serum and birth outcomes in China: Guangzhou Birth Cohort Study.

    PubMed

    Li, Meng; Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Sauvé, Sébastien; Paul, Gunther; Lin, Shao; Lu, Long; Hu, Li-Wen; Yang, Bo-Yi; Zhou, Yang; Qin, Xiao-Di; Xu, Shu-Li; Bao, Wen-Wen; Zhang, Ya-Zhi; Yuan, Ping; Wang, Jia; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Xiao, Xiang; Fu, Chuanxi; Dong, Guang-Hui

    2017-03-12

    Prior investigations on the associations of polyfluoroalkyl substances (PFASs) with fetal growth are mixed. Moreover, little research has accrued pertaining to the association between isomers of PFASs with gestational age and birth weight. To address this gap and present novel information, we conducted a study including 321 pairs of mothers and their infants recruited from Guangzhou, China. High performance liquid chromatography-mass spectrometry was utilized to analyze isomers of perfluorooctanesulfonate (PFOS), perfluorooctanoate (PFOA) along with other PFAS levels in cord serum samples. Mothers' and infants' characteristics were gathered from medical records. The resulting data revealed that higher PFOS, PFOA and isomers of PFOS were associated with lower birth weight. Per ln-unit (ng/mL) increase in cord serum total branched PFOS isomers was associated with a 126.3g (95% CI: -195.9, -56.8) reduction in the weight of infants at birth, while an ln-unit (ng/mL) increase of serum linear PFOS isomers (n-PFOS) was associated with a 57.2g (95% CI: -103.1, -11.3) reduction in the weight of infants at birth upon the subsequent adjustment for potential confounding variables. Notably, the association between cord PFAS level and birth weight was more pronounced in male infants. Furthermore, a positive association among branched PFOS isomers (1m-PFOS and 3+4+5m-PFOS) and gestational age was found. No associations could be found among other PFASs in conjunction with gestational age or birth weight. In conclusion, this investigation suggests that higher PFAS concentrations are associated with lower birth weight, and branched PFOS isomers show greater impact on infant birth weight than linear PFOS.

  9. PFOS and PFOA in influents, effluents, and biosolids of Chinese wastewater treatment plants and effluent-receiving marine environments.

    PubMed

    Chen, Hong; Zhang, Can; Han, Jianbo; Yu, Yixuan; Zhang, Peng

    2012-11-01

    Concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in influents, effluents and sludges were investigated by analyzing the samples from twelve wastewater treatment plants (WWTPs) in China. The highest concentrations of PFOS and PFOA in influents were found to occur in municipal and industrial WWTPs, respectively. Relative to PFOS and PFOA concentrations in influents, elevated concentrations were observed in effluents from WWTPs applying anaerobic-anoxic-oxic wastewater treatment process. Importantly, application of previously reported organic carbon normalized partition coefficients (K(OC)) derived from sediment-based sorption experiments appear to underestimate the PFOS and PFOA levels in biosolids quantified in the current study. PFOS and PFOA levels in effluents were found to be approximately 27 and 2 times higher than those detected in the effluent-receiving seawater, respectively. However, their levels in this area of seawater haven't exceeded the provisional short-term health advisories in drinking water issued by U.S. EPA yet.

  10. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere.

    PubMed

    Watanabe, Nobuhisa; Takata, Mitsuyasu; Takemine, Shusuke; Yamamoto, Katsuya

    2015-09-11

    Waste disposal site is one of the important sinks of chemicals. A significant amount of perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), and perfluorohexanoic acid (PFHxA) have been brought into it. Because of their aqueous solubility, PFASs are released to landfill effluent waters, from which PFASs are efficiently collected by adsorption technique using granular activated carbon (GAC). The exhausted GAC is reactivated by heating processes. The mineralization of PFASs during the reactivation process was studied. Being thermally treated in N2 atmosphere, the recovery rate of mineralized fluorine and PFC homologues including short-chained perfluorocarboxylic acids was determined. If the reagent form of PFOA, PFHxA, and PFOS were treated at 700 °C, the recovery of mineralized fluorine was less than 30, 46, and 72 %, respectively. The rate increased to 51, 74, and 70 %, if PFASs were adsorbed onto GAC in advance; moreover, addition of excess sodium hydroxide (NaOH) improved the recovery to 74, 91, and 90 %. Residual PFAS homologue was less than 1 % of the original amount. Steamed condition did not affect destruction. The significant role of GAC was to suppress volatile release of PFASs from thermal ambient, whereas NaOH enhanced destruction and retained mineralized fluorine on the GAC surface. Comparing the recovery of mineralized fluorine, the degradability of PFOS was considered to be higher than PFOA and PFHxA. Whole mass balance missing 9~26 % of initial amount suggested formation of some volatile organofluoro compounds beyond analytical coverage.

  11. Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid.

    PubMed

    Wang, Yuan; Zhang, Pengyi

    2011-09-15

    Heterogeneous photocatalytic decomposition of perfluoroocatanoic acid (PFOA) by TiO(2) under 254 nm UV light was investigated. Adding oxalic acid as a hole-scavenger significantly accelerated PFOA decomposition under nitrogen atmosphere. Fluoride ion, formic acid and six shorter-chain perfluorinated carboxylic acids (PFCAs) bearing C(2)-C(7) were identified as intermediates. When using perchloric acid (HClO(4)) as a replacement of oxalic acid to maintain the same pH of the reaction solution, PFOA did not decomposition efficiently. Compared with oxalic acid, potassium iodide (KI, another hole-scavenger) also led to a slower PFOA decomposition, while the addition of an electron acceptor (potassium persulfate, K(2)S(2)O(8)) obviously inhibited PFOA decomposition. This suggested that oxalic acid played more than one role in PFOA decomposition rather than simply providing acidity and acting as a hole-scavenger. The electron paramagnetic resonance (EPR) measurements confirmed the existence of carboxyl anion radicals (CO(2)(-)) in the photocatalytic process, which was a result of the reaction between oxalic acid and photogenerated hole. These findings indicated that PFOA decomposition was primarily induced by CO(2)(-) radicals, although photogenerated electron was also conducive to PFOA decomposition. A possible mechanism for PFOA decomposition was proposed.

  12. Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter.

    PubMed

    Fagbayigbo, Bamidele Oladapo; Opeolu, Beatrice Olutoyin; Fatoki, Olalekan Siyanbola; Akenga, Terresa Ayuko; Olatunji, Olatunde Stephen

    2017-04-05

    The removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) from aqueous solutions using agro-waste biomass of Vitis vinifera (grape) leaf litter was studied. Activated carbons were produced from the biomass and chemical activation achieved by using phosphoric acid (H3PO4) and potassium hydroxide (KOH) for the modification of the carbons' surface morphology. Activated carbons were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and Brunauer-Emmett-Teller (BET) in order to understand removal mechanisms of the contaminants by activated carbons. The effect of solution concentration, pH, adsorbent dosage, contact time and temperature was evaluated to optimize the removal efficiency of activated carbons. Adsorption isotherm models were used to analyse the equilibrium data obtained, and kinetic models were applied to study sorption mechanisms. The results fitted well into Freundlich isotherm with both AC-KOH and AC-H3PO4 having high K f values. Maximum adsorption capacities for AC-H3PO4 were 78.90 and 75.13 mg/g for PFOA and PFOS, respectively. Equilibrium was reached before 60 min on both adsorbents, and thermodynamic studies indicated that the process was exothermic and spontaneous. Surface morphology showed the abundance of microspores (>60%) with BET total surface area of 295.488 and 158.67 m(2)/g for AC-H3PO4 and AC-KOH activated carbons, respectively. Removal efficiencies were 95 and 90% for PFOA using AC-H3PO4 and AC-KOH, respectively; corresponding values for PFOS were 94 and 88%. Adsorbents' removal capacities depended on the physicochemical characteristics of adsorbents.

  13. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    NASA Astrophysics Data System (ADS)

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-04-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects.

  14. Effects of Perfluorooctanoic Acid on Metabolic Profiles in Brain and Liver of Mouse Revealed by a High-throughput Targeted Metabolomics Approach

    PubMed Central

    Yu, Nanyang; Wei, Si; Li, Meiying; Yang, Jingping; Li, Kan; Jin, Ling; Xie, Yuwei; Giesy, John P.; Zhang, Xiaowei; Yu, Hongxia

    2016-01-01

    Perfluorooctanoic acid (PFOA), a perfluoroalkyl acid, can result in hepatotoxicity and neurobehavioral effects in animals. The metabolome, which serves as a connection among transcriptome, proteome and toxic effects, provides pathway-based insights into effects of PFOA. Since understanding of changes in the metabolic profile during hepatotoxicity and neurotoxicity were still incomplete, a high-throughput targeted metabolomics approach (278 metabolites) was used to investigate effects of exposure to PFOA for 28 d on brain and liver of male Balb/c mice. Results of multivariate statistical analysis indicated that PFOA caused alterations in metabolic pathways in exposed individuals. Pathway analysis suggested that PFOA affected metabolism of amino acids, lipids, carbohydrates and energetics. Ten and 18 metabolites were identified as potential unique biomarkers of exposure to PFOA in brain and liver, respectively. In brain, PFOA affected concentrations of neurotransmitters, including serotonin, dopamine, norepinephrine, and glutamate in brain, which provides novel insights into mechanisms of PFOA-induced neurobehavioral effects. In liver, profiles of lipids revealed involvement of β-oxidation and biosynthesis of saturated and unsaturated fatty acids in PFOA-induced hepatotoxicity, while alterations in metabolism of arachidonic acid suggesting potential of PFOA to cause inflammation response in liver. These results provide insight into the mechanism and biomarkers for PFOA-induced effects. PMID:27032815

  15. Concentrations and patterns of perfluoroalkyl acids in Georgia, USA surface waters near and distant to a major use source

    USGS Publications Warehouse

    Konwick, B.J.; Tomy, G.T.; Ismail, N.; Peterson, J.T.; Fauver, R.J.; Higginbotham, D.; Fisk, A.T.

    2008-01-01

    Perfluoroalkyl acids (PFAAs) are widespread contaminants emanating from, among other sources, the production/degradation of fluorinated chemicals used in surface repellant applications, such as carpet manufacturing. The goal of the present study was to assess the concentrations of PFAAs, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUA), and perfluorooctane sulfonamide (PFOSA), in surface waters both near a wastewater land application system (LAS) in Dalton (GA, USA), home to North America's largest carpet manufacturing site, and distant to this location (Altamaha River, GA, USA) to understand the fate of PFAAs in freshwater. Levels of PFAAs were high in the Conasauga River (GA, USA) downstream of the LAS (PFOA, 253-1,150 ng/L; PFOS, 192-318 ng/L; PFNA, 202-369 ng/L; PFDA, 30.1-113 ng/L; PFUA, 58.0-99.2 ng/L; PFOSA, 162-283 ng/L) and in streams and ponds in Dalton (PFOA, 49.9-299 ng/L; PFOS, 15.8-120 ng/L), and were among the highest measured at a nonspill or directrelease location. Perfluoroalkyl acids in the Altamaha River were much lower (PFOA, 3.0-3.1 ng/L; PFOS, 2.6-2.7 ng/L), but were a source of PFAAs to Georgia's estuaries. A preliminary hazard assessment indicated that concentrations of PFOS at two sites in the Conasauga River exceeded the threshold effect predicted for birds consuming aquatic organisms that are exposed continuously to the PFOS levels at these sites. Assuming that toxicity for all PFAAs quantified is equal to that of PFOS, the sum total PFAAs at two sites within the Conasauga River exceeded PFOS thresholds for aquatic and avian species, warranting additional research. ?? 2008 SETAC Printed in the USA.

  16. Derivation of a drinking water equivalent level (DWEL) related to the maximum contaminant level goal for perfluorooctanoic acid (PFOA), a persistent water soluble compound.

    PubMed

    Tardiff, Robert G; Carson, M Leigh; Sweeney, Lisa M; Kirman, Christopher R; Tan, Yu-Mei; Andersen, Melvin; Bevan, Christopher; Gargas, Michael L

    2009-10-01

    Water soluble compounds persistent in humans and the environment pose a challenge for estimating safe levels in tap water. A viable approach to estimate a drinking water equivalent level (DWEL) for perfluorooctanoic acid (PFOA) was applied to its extensive relevant information from human and laboratory animal studies. PFOA has been identified at 3.5 microg/L (mean) in tap water in proximity to a manufacturing facility; however, in most supplies, the levels were below 7.5 ng/L (usual limit of detection). PFOA has an average half-life in humans of 3.5years. From animal studies, PFOA is considered a possible hepatotoxicant and developmental toxicant for humans. Based on two chronic studies, PFOA was judged to be a possible human carcinogen, whose mode-of-action was likely to be related to receptor activation but not genotoxicity. The Benchmark Dose-Uncertainty Factor approach was selected for dose-response for noncancer and cancer. Based on internal dose of PFOA, the DWEL protective against cancer is 7.7 microgPFOA/L tap water, and the noncancer DWELs range from 0.88 to 2.4 microg/L. These DWELs can be considered a reliable, albeit conservative, basis to set a Maximum Concentration Level Goal under the US Safe Drinking Water Act.

  17. Application of Physiologically-Based Pharmacokinetic Modeling to Explore the Role of Kidney Transporters in Renal Reabsorption of Perfluorooctanoic Acid in the Rat

    PubMed Central

    Worley, Rachel Rogers; Fisher, Jeffrey

    2015-01-01

    Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in the male and female rat to explore the role of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both the male and female rat indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contributes to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. PMID:26522833

  18. Changes in the levels of l-carnitine, acetyl-l-carnitine and propionyl-l-carnitine are involved in perfluorooctanoic acid induced developmental cardiotoxicity in chicken embryo.

    PubMed

    Jiang, Qixiao; Wang, Chunbo; Xue, Chan; Xue, Lingfang; Wang, Meiting; Li, Changhao; Deng, Ziwen; Wang, Qian

    2016-12-01

    Perfluorooctanoic acid (PFOA), a persistent organic pollutant, is associated with developmental toxicity. This study investigated the mechanism of PFOA-induced developmental cardiotoxicity in chicken embryo, focusing on the interactions between developmental exposure to PFOA and the levels of l-carnitine (LC), acetyl-l-carnitine (ALC) and propionyl-l-carnitine (PLC) in the heart. To evaluate the developmental cardiotoxicity, fertile chicken eggs were exposed to 0.1, 0.5, 1, 2 or 5mg/kg PFOA via air cell injection. Furthermore, exposure to 2mg/kg PFOA, with or without 100mg/kg LC were applied to investigate the effects of LC supplement. The results of functional and morphological assessments confirmed PFOA induced developmental cardiotoxicity in chicken embryo, which could be alleviated by co-exposure to LC. LC-MS/MS results also revealed remarkable decrease in LC, ALC and PLC levels in embryonic day six (ED6) chicken embryo hearts as well as LC level in embryonic day fifteen (ED15) chicken embryo hearts following developmental exposure to 2mg/kg PFOA. Meanwhile, co-exposure to 100mg/kg LC significantly elevated the levels of LC, ALC and PLC in chicken embryo hearts. Significantly elevated expression level of carnitine acetyltransferase (CRAT) in PFOA-exposed ED6 chicken embryo hearts was observed via western blotting, while LC co-exposure counteracted such changes. In conclusion, changes in the levels of LC, ALC and PLC in early embryonic stages are associated with PFOA induced developmental cardiotoxicity in chicken embryos.

  19. Modeling the air-soil transport pathway of perfluorooctanoic acid in the mid-Ohio Valley using linked air dispersion and vadose zone models

    NASA Astrophysics Data System (ADS)

    Shin, Hyeong-Moo; Ryan, P. Barry; Vieira, Verónica M.; Bartell, Scott M.

    2012-05-01

    As part of an extensive modeling effort on the air-soil-groundwater transport pathway of perfluorooctanoic acid (PFOA), this study was designed to compare the performance of different air dispersion modeling systems (AERMOD vs. ISCST3), and different approaches to handling incomplete meteorological data using a data set with substantial soil measurements and a well characterized point source for air emissions. Two of the most commonly used EPA air dispersion models, AERMOD and ISCST3, were linked with the EPA vadose zone model PRZM-3. Predicted deposition rates from the air dispersion model were used as input values for the vadose zone model to estimate soil concentrations of PFOA at different depths. We applied 34 years of meteorological data including hourly surface measurements from Parkersburg Airport and 5 years of onsite wind direction and speed to the air dispersion models. We compared offsite measured soil concentrations to predictions made for the corresponding sampling depths, focusing on soil rather than air measurements because the offsite soil samples were less likely to be influenced by short-term variability in emission rates and meteorological conditions. PFOA concentrations in surface soil (0-30 cm depth) were under-predicted and those in subsurface soil (>30 cm depth) were over-predicted compared to observed concentrations by both linked air and vadose zone model. Overall, the simulated values from the linked modeling system were positively correlated with those observed in surface soil (Spearman's rho, Rsp = 0.59-0.70) and subsurface soil (Rsp = 0.46-0.48). This approach provides a useful modeling scheme for similar exposure and risk analyses where the air-soil-groundwater transport is a primary contamination pathway.

  20. Programming of metabolic effects in C57BL/6JxFVB mice by in utero and lactational exposure to perfluorooctanoic acid.

    PubMed

    van Esterik, J C J; Bastos Sales, L; Dollé, M E T; Håkansson, H; Herlin, M; Legler, J; van der Ven, L T M

    2016-03-01

    Perfluorooctanoic acid (PFOA) is known to cause developmental toxicity and is a suggested endocrine disrupting compound (EDC). Early life exposure to EDCs has been implicated in programming of the developing organism for chronic diseases later in life. Here we study perinatal metabolic programming by PFOA using an experimental design relevant for human exposure. C57BL/6JxFVB hybrid mice were exposed during gestation and lactation via maternal feed to seven low doses of PFOA at and below the NOAEL used for current risk assessment (3-3000 µg/kg body weight/day). After weaning, offspring were followed for 23-25 weeks without further exposure. Offspring showed a dose-dependent decrease in body weight from postnatal day 4 to adulthood. Growth under high fat diet in the last 4-6 weeks of follow-up was increased in male and decreased in female offspring. Both sexes showed increased liver weights, hepatic foci of cellular alterations and nuclear dysmorphology. In females, reductions in perigonadal and perirenal fat pad weights, serum triglycerides and cholesterol were also observed. Endocrine parameters, such as glucose tolerance, serum insulin and leptin, were not affected. In conclusion, our study with perinatal exposure to PFOA in mice produced metabolic effects in adult offspring. This is most likely due to disrupted programming of metabolic homeostasis, but the assayed endpoints did not provide a mechanistic explanation. The BMDL of the programming effects in our study is below the current point of departure used for calculation of the tolerable daily intake.

  1. A species difference in the peroxisome proliferator-activated receptor α-dependent response to the developmental effects of perfluorooctanoic acid.

    PubMed

    Albrecht, Prajakta P; Torsell, Nicole E; Krishnan, Prasad; Ehresman, David J; Frame, Steven R; Chang, Shu-Ching; Butenhoff, John L; Kennedy, Gerald L; Gonzalez, Frank J; Peters, Jeffrey M

    2013-02-01

    This study examined the effect of prenatal perfluorooctanoic acid (PFOA) administration on pre- and postnatal development using peroxisome proliferator-activated receptor α (PPARα)-humanized mice to determine if species differences in receptor activity might influence the developmental effects induced by PFOA. Pregnant mice were treated daily with water or PFOA (3mg/kg) by po gavage from gestation day 1 (GD1) until GD17 and then either euthanized on GD18 or allowed to give birth and then euthanized on postnatal day 20 (PND20). No changes in average fetal weight, crown-to-rump length, or placental weight were observed on GD18. Expression of mRNA encoding the PPARα target genes acyl CoA oxidase (Acox1) and cytochrome P450 4a10 (Cyp4a10) in maternal and fetal liver was increased on GD18 in wild-type and PPARα-humanized mice but not in Pparα-null mice. On PND20, relative liver weight was higher in wild-type mice but not in Pparα-null mice or PPARα-humanized mice. Hepatic expression of Acox1 and Cyp4a10 mRNA was higher in wild-type mice but not in Pparα-null mice or PPARα-humanized mice on PND20. The percentage of mice surviving postnatally was lower in wild-type litters but not in litters from Pparα-null mice or PPARα-humanized mice. No changes in pup weight gain, onset of eye opening, or mammary gland development were found in any genotype. Results from these studies demonstrate that the developmental/postnatal effects resulting from prenatal PFOA exposure in mice are differentially mediated by mouse and human PPARα.

  2. Increasing levels of long-chain perfluorocarboxylic acids (PFCAs) in Arctic and North Atlantic marine mammals, 1984-2009.

    PubMed

    Rotander, Anna; Kärrman, Anna; van Bavel, Bert; Polder, Anuschka; Rigét, Frank; Auðunsson, Guðjón Atli; Víkingsson, Gísli; Gabrielsen, Geir Wing; Bloch, Dorete; Dam, Maria

    2012-01-01

    Temporal variations in concentrations of perfluorinated carboxylic acids (PFCAs) and sulfonic acids (PFSAs), including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) structural isomers, were examined in livers of pilot whale (Globicephala melas), ringed seal (Phoca hisida), minke whale (Balaenoptera acutorostrata), harbor porpoise (Phocoena phocoena), hooded seal (Cystophora cristata), Atlantic white-sided dolphin (Lagenorhynchus acutus) and in muscle tissue of fin whales (Balaenoptera physalus). The sampling spanned over 20 years (1984-2009) and covered a large geographical area of the North Atlantic and West Greenland. Liver and muscle samples were homogenized, extracted with acetonitrile, cleaned up using hexane and solid phase extraction (SPE), and analyzed by liquid chromatography with negative electrospray tandem mass spectrometry (LC-MS/MS). In general, the levels of the long-chained PFCAs (C9-C12) increased whereas the levels of PFOS remained steady over the studied period. The PFOS isomer pattern in pilot whale liver was relatively constant over the sampling years. However, in ringed seals there seemed to be a decrease in linear PFOS (L-PFOS) with time, going from 91% in 1984 to 83% in 2006.

  3. PFOA and PFOS: Treatment and Analytics

    EPA Science Inventory

    PFOA and PFOS are not regulated by the USEPA. However, in 2016, USEPA established a Lifetime Drinking Water Health Advisory limit of 70 ng/L for the combined concentration of PFOA and PFOS. This presentation will cover the available technologies that can treat for PFOA and PFOS...

  4. [Adsorption of perfluorooctanesulfonate (PFOS) onto modified activated carbons].

    PubMed

    Tong, Xi-Zhen; Shi, Bao-You; Xie, Yue; Wang, Dong-Sheng

    2012-09-01

    Modified coal and coconut shell based powdered activated carbons (PACs) were prepared by FeCl3 and medium power microwave treatment, respectively. Batch experiments were carried out to evaluate the characteristics of adsorption equilibrium and kinetics of perfluorooctanesulfonate (PFOS) onto original and modified PACs. Based on pore structure and surface functional groups characterization, the adsorption behaviors of modified and original PACs were compared. The competitive adsorption of humic acid (HA) and PFOS on original and modified coconut shell PACs were also investigated. Results showed that both Fe3+ and medium power microwave treatments changed the pore structure and surface functional groups of coal and coconut shell PACs, but the changing effects were different. The adsorption of PFOS on two modified coconut shell-based PACs was significantly improved. While the adsorption of modified coal-based activated carbons declined. The adsorption kinetics of PFOS onto original and modified coconut shell-based activated carbons were the same, and the time of reaching adsorption equilibrium was about 6 hours. In the presence of HA, the adsorption of PFOS by modified PAC was reduced but still higher than that of the original.

  5. Suppression of antigen-specific antibody responses in mice exposed to perfluorooctanoic acid: Role of PPARα and T- and B-cell targeting.

    PubMed

    DeWitt, Jamie C; Williams, Wanda C; Creech, N Jonathan; Luebke, Robert W

    2016-01-01

    T-cell-dependent antibody responses (TDAR) are suppressed in female C57BL/6N mice exposed to ≥3.75 mg/kg of perfluorooctanoic acid (PFOA) for 15 days. To determine if suppression of humoral immunity by PFOA is peroxisome proliferator activated receptor alpha (PPARα)-dependent and if suppression is associated with specific targeting of T- or B-cells, three separate experiments were conducted: (1) female PPARα constitutive knockout (PPARα KO; B6.129S4-Ppar(tm1Gonz)N12) and wild-type controls (WT; C57BL/6-Tac) exposed to 0, 7.5, or 30 mg PFOA/kg for 15 days were immunized on Day 11 with a T-cell-dependent antigen and sera then collected for measures of antigen-specific IgM titers (TDAR) 5 days later; (2) female C57BL/6N WT mice exposed to 0, 0.94, 1.88, 3.75, or 7.5 mg PFOA/kg for 15 days were immunized with a T-cell-independent antigen on Day 11 and sera were then collected for analyses of antigen-specific IgM titers (TIAR) 7 days later; and (3) splenic lymphocyte phenotypes were assessed in unimmunized female C57BL/6N WT mice exposed to 0, 3.75, or 7.5 mg PFOA/kg for 10 days to investigate effects of PFOA in the absence of specific immunization. Separate groups of mice were immunized with a T-cell-dependent antigen after 11 days of exposure and splenic lymphocyte sub-populations were assessed after 13 or 15 days of exposure to assess numbers of stimulated cells. The results indicated that exposure to ≥1.88 mg PFOA/kg suppressed the TIAR; exposure to 30 mg PFOA/kg suppressed the TDAR in both PPARα KO and WT mice. The percentage of splenic B-cells was unchanged. Results obtained in the PPARα KO mice indicated that PPARα suppression of TDAR was independent of PPARα involvement. Suppression of the TIAR and the TDAR with minimal lymphocyte sub-population effects suggested that effects on humoral immunity are likely mediated by disruption of B-cell/plasma cell function.

  6. A critical review of perfluorooctanoate and perfluorooctanesulfonate exposure and immunological health conditions in humans

    PubMed Central

    Chang, Ellen T.; Adami, Hans-Olov; Boffetta, Paolo; Wedner, H. James; Mandel, Jack S.

    2016-01-01

    Abstract Whether perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS), two widely used and biopersistent synthetic chemicals, are immunotoxic in humans is unclear. Accordingly, this article systematically and critically reviews the epidemiologic evidence on the association between exposure to PFOA and PFOS and various immune-related health conditions in humans. Twenty-four epidemiologic studies have reported associations of PFOA and/or PFOS with immune-related health conditions, including ten studies of immune biomarker levels or gene expression patterns, ten studies of atopic or allergic disorders, five studies of infectious diseases, four studies of vaccine responses, and five studies of chronic inflammatory or autoimmune conditions (with several studies evaluating multiple endpoints). Asthma, the most commonly studied condition, was evaluated in seven studies. With few, often methodologically limited studies of any particular health condition, generally inconsistent results, and an inability to exclude confounding, bias, or chance as an explanation for observed associations, the available epidemiologic evidence is insufficient to reach a conclusion about a causal relationship between exposure to PFOA and PFOS and any immune-related health condition in humans. When interpreting such studies, an immunodeficiency should not be presumed to exist when there is no evidence of a clinical abnormality. Large, prospective studies with repeated exposure assessment in independent populations are needed to confirm some suggestive associations with certain endpoints. PMID:26761418

  7. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon.

    PubMed

    Deng, Shubo; Nie, Yao; Du, Ziwen; Huang, Qian; Meng, Pingping; Wang, Bin; Huang, Jun; Yu, Gang

    2015-01-23

    A bamboo-derived granular activated carbon with large pores was successfully prepared by KOH activation, and used to remove perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) from aqueous solution. The granular activated carbon prepared at the KOH/C mass ratio of 4 and activation temperature of 900°C had fast and high adsorption for PFOS and PFOA. Their adsorption equilibrium was achieved within 24h, which was attributed to their fast diffusion in the micron-sized pores of activated carbon. This granular activated carbon exhibited the maximum adsorbed amount of 2.32mmol/g for PFOS and 1.15mmol/g for PFOA at pH 5.0, much higher than other granular and powdered activated carbons reported. The activated carbon prepared under the severe activation condition contained many enlarged pores, favorable for the adsorption of PFOS and PFOA. In addition, the spent activated carbon was hardly regenerated in NaOH/NaCl solution, while the regeneration efficiency was significantly enhanced in hot water and methanol/ethanol solution, indicating that hydrophobic interaction was mainly responsible for the adsorption. The regeneration percent was up to 98% using 50% ethanol solution at 45°C.

  8. Perfluoroalkyl acids in the egg yolk of birds from Lake Shihwa, Korea.

    PubMed

    Yoo, Hoon; Kannan, Kurunthachalam; Kim, Seong Kyu; Lee, Kyu Tae; Newsted, John L; Giesy, John P

    2008-08-01

    Concentrations of perfluoroalkyl acids (PFAs) were measured in egg yolks of three species of birds, the little egret (Egretta garzetta), little ringed plover (Charadrius dubius), and parrot bill (Paradoxornis webbiana), collected in and around Lake Shihwa, Korea, which receives wastewaters from an adjacent industrial complex. Mean concentrations of perfluorooctanesulfonate (PFOS) ranged from 185 to 314 ng/g ww and were similar to those reported for bird eggs from other urban areas. Long-chain perfluorocarboxylic acids (PFCAs) were also found in egg yolks often at great concentrations. Mean concentrations of perfluoroundecanoic acid (PFUnA) ranged from 95 to 201 ng/g ww. Perfluorooctanoic acid was detected in 32 of 44 egg samples, but concentrations were 100-fold less than those of PFOS. Relative concentrations of PFAs in all three species were similar with the predominance of PFOS (45-50%). There was a statistically significant correlation between PFUnA and perfluorodecanoic acid in egg yolks (p < 0.05), suggesting a common source of PFCAs. Using measured egg concentrations and diet concentrations, the ecological risk of the PFOS and PFA mixture to birds in Lake Shihwa was evaluated using two different approaches. Estimated hazard quotients were similar between the two approaches. The concentration of PFOS associated with 90th centile in bird eggs was 100-fold less than the lowest observable adverse effect level determined for birds, and those concentrations were 4-fold less than the suggested toxicity reference values. On the basis of limited toxicological data, current concentrations of PFOS are less than what would be expected to have an adverse effect on birds in the Lake Shihwa region.

  9. A comparative study of coagulation, granular- and powdered-activated carbon for the removal of perfluorooctane sulfonate and perfluorooctanoate in drinking water treatment.

    PubMed

    Pramanik, Biplob Kumar; Pramanik, Sagor Kumar; Suja, Fatihah

    2015-01-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are persistent organic pollutants in the environment and their occurrence causes toxicological effects on humans. We examined different conventional coagulant treatments such as alum, ferric chloride and polyaluminium chloride in removing these compounds. These were then compared with a natural coagulant (Moringa oleifera). We also investigated the powdered-activated carbon (PAC) and granular-activated carbon (GAC) for removing these compounds. At an initial dose of 5 mg/L, polyaluminium chloride led to a higher reduction of PFOS/PFOA compared with alum which in turn was higher than ferric. The removal efficiency increased with the increase in coagulant dose and decrease in pH. M. oleifera was very effective in reducing PFOS and PFOA than conventional coagulants, with a reduction efficiencies of 65% and 72%, respectively, at a dose of 30 mg/L. Both PAC and GAC were very effective in reducing these compounds than coagulations. PAC led to a higher reduction in PFOS and PFOA than GAC due to its greater surface area and shorter internal diffusion distances. The addition of PAC (10 min contact time) with coagulation (at 5 mg/L dosage) significantly increased the removal efficiency, and the maximum removal efficiency was for M. oleifera with 98% and 94% for PFOS and PFOA, respectively. The reduction efficiency of PFOS/PFOA was reduced with the increase in dissolved organic concentration due to the adsorption competition between organic molecules and PFOS/PFOA.

  10. A national discharge load of perfluoroalkyl acids derived from industrial wastewater treatment plants in Korea.

    PubMed

    Kim, Hee-Young; Seok, Hyun-Woo; Kwon, Hye-Ok; Choi, Sung-Deuk; Seok, Kwang-Seol; Oh, Jeong Eun

    2016-09-01

    Levels of 11 perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), were measured in wastewater (influent and effluent) and sludge samples collected from 25 industrial wastewater treatment plants (I-WWTPs) in five industrial sectors (chemicals, electronics, metals, paper, and textiles) in South Korea. The highest ∑11PFAAs concentrations were detected in the influent and effluent from the paper (median: 411ng/L) and textile (median: 106ng/L) industries, and PFOA and PFOS were the predominant PFAAs (49-66%) in wastewater. Exceptionally high levels of PFAAs were detected in the sludge associated with the electronics (median: 91.0ng/g) and chemical (median: 81.5ng/g) industries with PFOS being the predominant PFAA. The discharge loads of 11 PFAAs from I-WWTP were calculated that total discharge loads for the five industries were 0.146ton/yr. The textile industry had the highest discharge load with 0.055ton/yr (PFOA: 0.039ton/yr, PFOS: 0.010ton/yr). Municipal wastewater contributed more to the overall discharge of PFAAs (0.489ton/yr) due to the very small industrial wastewater discharge compared to municipal wastewater discharge, but the contribution of PFAAs from I-WWTPs cannot be ignored.

  11. Perfluorooctane sulfonate (PFOS) exposure could modify the dopaminergic system in several limbic brain regions.

    PubMed

    Salgado, R; López-Doval, S; Pereiro, N; Lafuente, A

    2016-01-05

    Perfluorooctane sulfonate (PFOS) is the most representative of a rising class of persistent organic pollutants perfluorochemicals. In the present study, its neurotoxicity was examined using adult male rats orally treated with 0.5; 1.0; 3.0 and 6.0 mg of PFOS/kg/day for 28 days. At the end of the treatment, the dopamine concentration and its metabolism expressed like the ratio 3,4-dihydroxyphenylacetic acid (DOPAC)/dopamine and homovanillic acid (HVA)/dopamine were measured in the amygdala, prefrontal cortex and hippocampus. Gene and protein expression of the dopamine receptors D1 and D2 were also determined in these limbic areas. The obtained results suggest that: (1) PFOS can alter the dopamine system by modifying its neuronal activity and/or its D1 and D2 receptors in the studied brain regions; (2) the dopamine concentration and metabolism seem to be more sensitive against PFOS toxicity in the hippocampus than in the other analyzed brain areas; (3) the inhibited gene and protein expression of the D1 receptors induced by PFOS in the amygdala could be related to several changes in the HPA axis activity, and lastly; (4) the observed alterations on the dopamine system induced by PFOS could be a possible neurotoxicity mechanism of PFOS, leading to many neurological diseases.

  12. PFOA and PFOS: Analytics

    EPA Science Inventory

    EPA Method 537 was developed for the analysis of perfluoroalkyl acids (PFAAs) in drinking water to address the occurrence monitoring needs under EPA’s Unregulated Contaminant Monitoring Regulation (UCMR). The method employs solid-phase extraction with analysis by liquid chr...

  13. Perfluorooctane sulfonate (PFOS) induces reactive oxygen species (ROS) production in human microvascular endothelial cells: role in endothelial permeability

    PubMed Central

    Qian, Yong; Ducatman, Alan; Ward, Rebecca; Leonard, Steve; Bukowski, Valerie; Guo, Nancy Lan; Shi, Xianglin; Vallyathan, Val; Castranova, Vincent

    2011-01-01

    Perfluorooctane sulfonate (PFOS) is a member of perfluoroalkyl acids (PFAA) containing an 8-carbon backbone. PFOS is a man-made chemical with carbon-fluorine bonds that are one of the strongest in organic chemistry and widely used in industry. Human occupational and environmental exposure to PFOS occurs globally. PFOS is non-biodegradable and persistent in the human body and environment. In this study, data demonstrated that exposure of human microvascular endothelial cells (HMVEC) to PFOS induced the production of reactive oxygen species (ROS) at both high and low concentrations. Morphologically, it was found that exposure to PFOS induced actin filament remodeling and endothelial permeability changes in HMVEC. Furthermore, data demonstrated the production of ROS plays a regulatory role in PFOS-induced actin filament remodeling and the increase in endothelial permeability. Our results indicate that the generation of ROS may play a role in PFOS-induced aberrations of the endothelial permeability barrier. The results generated from this study may provide a new insight into the potential adverse effects of PFOS exposure on humans at the cellular level. PMID:20391123

  14. Simultaneous determination of bisphenol A, tetrabromobisphenol A, and perfluorooctanoic acid in small household electronics appliances of "Prohibition on Certain Hazardous Substances in Consumer Products" instruction using ultra-performance liquid chromatography-tandem mass spectrometry with accelerated solvent extraction.

    PubMed

    Guo, Qiaozhen; Du, Zhenxia; Zhang, Yun; Lu, Xiaoyu; Wang, Jinhua; Yu, Wenlian

    2013-02-01

    Simultaneous determination of bisphenol A, tetrabromobisphenol A, and perfluorooctanoic acid in small household electronics appliances by accelerated solvent extraction-ultra-performance liquid chromatography-tandem mass spectrometry was established. Samples, heated for 5 min, were extracted by toluene/methanol (10:1, v/v) under the pressure 1500 psi at 100°C, and were extracted 3 static cycles with 20 min per cycle. And then 15 mL extractant solvent was used to wash the samples, and at last the sample was purged by nitrogen for 100 s. The partial extractant (10 mL) was concentrated by nitrogen and re-dissolved with 1 mL methanol/water (1:1, v/v). The three compounds were separated by BEH C18 column effectively in 3 min and detected by electrospray ionization mode mass spectrometry. The linear ranges for bisphenol A, perfluorooctanoic acid, and tetrabromobisphenol A were 1-100, 10-1000 ng/mL, and 0.1-10 μg/mL, respectively. The correlation coefficient was greater than 0.996. The LOD and limit of quantitation for three compounds were 0.1, 10, 1 ng/mL, and 0.5, 50, 5 ng/mL, respectively. And the recoveries were 84-92, 76-82, and 72-74%, respectively, with RSD < 5%. The method was successfully used in determining the real samples. The method and the result were confirmed by liquid chromatography-ion trap-time of flight mass spectrometry.

  15. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  16. Perfluorooctane sulfonate (PFOS) depletion in beef cattle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfluorooctane sulfonate (PFOS) is an industrial chemical that is used as a surfactant in several manufactured consumer products but is also a breakdown product from other chemical surfactants. As a result of its extensive use, PFOS is ubiquitous in the environment and is often detected in biosoli...

  17. Human exposure to fluorotelomer alcohols, perfluorooctane sulfonate and perfluorooctanoate via house dust in Bavaria, Germany.

    PubMed

    Xu, Zhenlan; Fiedler, Stefan; Pfister, Gerd; Henkelmann, Bernhard; Mosch, Christine; Völkel, Wolfgang; Fromme, Hermann; Schramm, Karl-Werner

    2013-01-15

    This study aimed at investigating the presence and distribution of fluorotelomer alcohols (FTOHs), perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in house dust to evaluate human exposure to these compounds via dust ingestion. 31 house dust samples were collected from Bavaria, Germany and analyzed for 4:2, 6:2, 8:2 and 10:2 FTOH, PFOS and PFOA. PFOA was the dominant compound in 79% of the dust samples, followed by PFOS and 8:2 FTOH, while 4:2 FTOH was not detected in any samples. The total concentration of per- and polyfluorinated compounds (PFCs) varied from 32.2 to 2456 ng/g. In addition, the total ingestion rate for PFCs was 0.4-135 ng/d for adults and 5.1-246 ng/d for toddlers, and the highest 8:2 FTOH-based PFOA intake via indoor dust was 0.24 ng/d for adults and 0.44 ng/d for toddlers. Overall, the results of this study demonstrate that dust ingestion is a minor pathway for human exposure to these PFCs; the PFC ingestion via indoor dust is generally low, and only under a worst scenario high intakes have to be expected for toddlers.

  18. PERFLUOROOCTANOIC ACID (PFOA) AND PERFLUORONONANOIC ACID (PFNA) IN NEONATAL MICE FOLLOWING IN UTERO EXPOSURE TO 8-2 FLUOROTELOMER ALCOHOL (FTOH)

    EPA Science Inventory

    The fluorotelomer alcohols (FTOHs) are the probable precursors of a homologous series of perfluoroalkyl carboxylic acids (PFCAs) detected globally in both mammalian and environmental samples. Recently, 8-2 FTOH has been classified as a xenoestrogen and its derivatives, perfluoro...

  19. Metabolically inert perfluorinated fatty acids directly activate uncoupling protein 1 in brown-fat mitochondria.

    PubMed

    Shabalina, Irina G; Kalinovich, Anastasia V; Cannon, Barbara; Nedergaard, Jan

    2016-05-01

    The metabolically inert perfluorinated fatty acids perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) can display fatty acid-like activity in biological systems. The uncoupling protein 1 (UCP1) in brown adipose tissue is physiologically (re)activated by fatty acids, including octanoate. This leads to bioenergetically uncoupled energy dissipation (heat production, thermogenesis). We have examined here the possibility that PFOA/PFOS can directly (re)activate UCP1 in isolated mouse brown-fat mitochondria. In wild-type brown-fat mitochondria, PFOS and PFOA overcame GDP-inhibited thermogenesis, leading to increased oxygen consumption and dissipated membrane potential. The absence of this effect in brown-fat mitochondria from UCP1-ablated mice indicated that it occurred through activation of UCP1. A competitive type of inhibition by increased GDP concentrations indicated interaction with the same mechanistic site as that utilized by fatty acids. No effect was observed in heart mitochondria, i.e., in mitochondria without UCP1. The stimulatory effect of PFOA/PFOS was not secondary to non-specific mitochondrial membrane permeabilization or to ROS production. Thus, metabolic effects of perfluorinated fatty acids could include direct brown adipose tissue (UCP1) activation. The possibility that this may lead to unwarranted extra heat production and thus extra utilization of food resources, leading to decreased fitness in mammalian wildlife, is discussed, as well as possible negative effects in humans. However, a possibility to utilize PFOA-/PFOS-like substances for activating UCP1 therapeutically in obesity-prone humans may also be envisaged.

  20. Microbial toxicity and biodegradability of perfluorooctane sulfonate (PFOS) and shorter chain perfluoroalkyl and polyfluoroalkyl substances (PFASs).

    PubMed

    Ochoa-Herrera, Valeria; Field, Jim A; Luna-Velasco, Antonia; Sierra-Alvarez, Reyes

    2016-09-14

    Perfluorooctane sulfonate (PFOS) and related perfluoroalkyl and polyfluoroalkyl substances (PFASs) are emerging contaminants that have been widely applied in consumer and industrial applications for decades. However, PFOS has raised public concern due to its high bioaccumulative character, environmental persistence, and toxicity. Shorter PFASs such as perfluorobutane sulfonate (PFBS) and polyfluoroalkyl compounds have been proposed as alternatives to PFOS but it is unclear whether these fluorinated substances pose a risk for public health and the environment. The objective of this research was to investigate the microbial toxicity and the susceptibility to microbial degradation of PFOS and several related fluorinated compounds, i.e., short-chain perfluoroalkyl and polyfluoroalkyl sulfonic and carboxylic acids. None of the compounds tested were toxic to the methanogenic activity of anaerobic wastewater sludge even at very high concentrations (up to 500 mg L(-1)). All PFASs evaluated were highly resistant to microbial degradation. PFOS was not reductively dehalogenated by the anaerobic microbial consortium even after very long periods of incubation (3.4 years). Similarly, the tested short chain perfluoroalkyl substances (i.e., PFBS and trifluoroacetic acid) and a polyfluoroalkyl PFOS analogue, 6 : 2 fluorotelomer sulfonic acid (FTSA) were also resistant to anaerobic biodegradation. Likewise, no conclusive evidence of microbial degradation was observed under aerobic conditions for any of the short-chain perfluoroalkyl and polyfluoroalkyl carboxylic acids tested after 32 weeks of incubation. Collectively, these results indicate that PFOS and its alternatives such as short chain perfluoroalkyl sulfonates and carboxylates and their polyfluorinated homologues are highly resistant to microbial degradation.

  1. Initial study on the possible mechanisms involved in the effects of high doses of perfluorooctane sulfonate (PFOS) on prolactin secretion.

    PubMed

    Salgado, R; Pereiro, N; López-Doval, S; Lafuente, A

    2015-09-01

    Perfluorooctane sulfonate (PFOS) is a fluorinated organic compound. This chemical is neurotoxic and can alter the pituitary secretion. This is an initial study aimed at knowing the toxic effects of high doses of PFOS on prolactin secretion and the possible mechanisms involved in these alterations. For that, adult male rats were orally treated with 3.0 and 6.0 mg of PFOS/kg body weight (b.w.)/day for 28 days. At the end of the treatment, the serum levels of prolactin and estradiol as well as the concentration of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and gamma-aminobutyric acid (GABA) were quantified in the anterior and in the mediobasal hypothalamus. PFOS, at the administered doses, reduced prolactin and estradiol secretion, increased the concentration of dopamine and GABA in the anterior hypothalamus, and decreased the ratios DOPAC/dopamine and HVA/dopamine in this same hypothalamic area. The outcomes reported in this study suggest that (1) high doses of PFOS inhibit prolactin secretion in adult male rats; (2) only the periventricular-hypophysial dopaminergic (PHDA) neurons seem to be involved in this inhibitory effect but not the tuberoinfundibular dopaminergic (TIDA) and the tuberohypophysial dopaminergic (THDA) systems; (3) GABAergic cells from the paraventricular and supraoptic nuclei could be partially responsible for the PFOS action on prolactin secretion; and finally (4) estradiol might take part in the inhibition exerted by elevated concentration of PFOS on prolactin release.

  2. Perfluoroalkyl acids and their precursors in Swedish food: The relative importance of direct and indirect dietary exposure.

    PubMed

    Gebbink, Wouter A; Glynn, Anders; Darnerud, Per Ola; Berger, Urs

    2015-03-01

    We analyzed food market basket samples obtained in Sweden from 1999, 2005, and 2010 for perfluoroalkyl acids (PFAAs) and a range of precursor compounds. Perfluorooctane sulfonic acid (PFOS) precursors were detected in all food year pools with the highest concentrations in 1999. Six polyfluoroalkyl phosphate diesters (diPAPs, 4:2/6:2, 6:2/6:2, 6:2/8:2, 8:2/8:2, 6:2/10:2, and 10:2/10:2) were detected in the year pools with the highest ∑diPAP concentrations in 1999 and 2005. All precursors were predominantly found in meat, fish, and/or eggs based on analysis of individual food groups from 1999. Based on year pools, PFOS precursors contributed between 4 and 1% as an indirect source to total dietary PFOS intakes between 1999 and 2010. Perfluorohexanoic acid (PFHxA) exposure originated entirely from diPAPs, whereas for perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA), diPAPs contributed between 1 and 19% to total exposure. The lowest precursor contributions were generally seen in food samples from 2010.

  3. Comparative hepatotoxicity of 6:2 fluorotelomer carboxylic acid and 6:2 fluorotelomer sulfonic acid, two fluorinated alternatives to long-chain perfluoroalkyl acids, on adult male mice.

    PubMed

    Sheng, Nan; Zhou, Xiujuan; Zheng, Fei; Pan, Yitao; Guo, Xuejiang; Guo, Yong; Sun, Yan; Dai, Jiayin

    2016-12-28

    Due to their structural similarities, 6:2 fluorotelomer sulfonic acid (6:2 FTSA) and 6:2 fluorotelomer carboxylic acid (6:2 FTCA) are often used as alternatives to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), respectively. With limited health risk data and 6:2 FTSA detection in water and sludge, the toxicity of these chemicals is of growing concern. Here, adult male mice were exposed with 5 mg/kg/day of 6:2 FTCA or 6:2 FTSA for 28 days to investigate their hepatotoxicological effects. In contrast to 6:2 FTCA, 6:2 FTSA was detected at high and very high levels in serum and liver, respectively, demonstrating bioaccumulation potential and slow elimination. Furthermore, 6:2 FTSA induced liver weight increase, inflammation, and necrosis, whereas 6:2 FTCA caused no obvious liver injury, with fewer significantly altered genes detected compared with that of 6:2 FTSA (39 vs. 412). Although PFOA and PFOS commonly activate peroxisome proliferator-activated receptor α (PPARα), 6:2 FTSA induced an increase in PPARγ and related proteins, but not in lipid metabolism-related genes such as PPARα. Our results showed that 6:2 FTCA and 6:2 FTSA exhibited weak and moderate hepatotoxicity, respectively, compared with that reported for legacies PFOA and PFOS.

  4. Toxicokinetics of perfluorooctanoate (PFOA) in rainbow trout ...

    EPA Pesticide Factsheets

    Perfluoroalkyl acids (PFAAs) are widely used as stain resistant coatings for cloth, paper, and leather, and as surfactants, fire-fighting foams, and photographic developers. Individual PFAAs have been shown to accumulate in fish and wildlife; however, the extent of this accumulation varies widely. In general, the tendency of individual PFAAs to accumulate in fish is directly related to the length of a compound’s fluorinated carbon chain as well as the identity of the terminal group (sulfonate or carboxylate) which confers to the molecule its amphipathic character. Presently, however the mechanisms that underly these observations remain poorly understood. In the present study we investigated the kinetics of perfluorooctanoic acid (PFOA) in rainbow trout. PFOA is not accumulated by fish. We also know that it is eliminated by mammals in urine. Our hypothesis, therefore, was that renal elimination of PFOA limits its accumulation in fish. Trout injected with an intra-arterial dose of PFOA were sampled to obtain concentration time-course data for plasma, urine, and expired water. The data were then analyzed by compartmental modeling to estimate rates of renal and branchial clearance. Averaged across all animals, the renal clearance rate was about ten times higher than the branchial clearance rate, confirming our hypothesis. The results of this effort provide a clear explanation for the observed absence of PFOA accumulation in fish. Moreover, these results suggest th

  5. Perfluoroalkyl acids in the water cycle from a freshwater river basin to coastal waters in eastern China.

    PubMed

    Zhu, Xiaobin; Jin, Ling; Yang, Jingping; Wu, Jianfeng; Zhang, Beibei; Zhang, Xiaowei; Yu, Nanyang; Wei, Si; Wu, Jichun; Yu, Hongxia

    2017-02-01

    The distribution of perfluoroalkyl acids (PFAAs), one class of persistent organic pollutants, in groundwater, especially in confined aquifers remains poorly understood. In this study, we investigated the occurrence of 12 PFAAs through a water cycle from the Huai River Basin to the Yellow Sea, including confined aquifers, unconfined aquifers, rivers, and coastal waters. We found the ubiquity of PFAAs in all types of samples, including those from confined aquifers (2.7-6.8 ng/L). Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) were the major PFAAs in all samples, accounting for an average of 49.1% (0.8-84.8%) and 33.3% (6.3-92.2%) of total PFAAs, respectively. Comparing the concentration of PFOA with that of PFOS, we found a higher concentration of PFOA in rivers and a higher concentration of PFOS in confined aquifers. Short-chain perfluoropentanoic acid accounted for an average of 10.3% (1.9-24.6%) of total PFAAs in rivers and coastal waters. Branched isomers of both PFOA and PFOS were detected in most samples (36/42 and 39/42, respectively). One-way analysis of variance indicated a significant difference in the profiles of PFAAs among the different types of water samples. Principal component analysis suggested that rainwater and recent uses of PFAAs could be the major sources of PFAAs in confined aquifers, while recent and current uses of PFAAs could be the major source of PFAAs in unconfined aquifers, rivers and coastal waters. The risk quotients of PFOA and PFOS in groundwater and rivers were 2-3 orders of magnitude lower than unity, indicating no immediate risks via drinking water consumption.

  6. Occurrence of perfluorooctanoate and perfluorooctanesulfonate in the Korean water system: implication to water intake exposure.

    PubMed

    Kim, Seung-Kyu; Kho, Young Lim; Shoeib, Mahiba; Kim, Kyoung-Soo; Kim, Kyung-Ryul; Park, Jong-Eun; Shin, Yong-Seung

    2011-05-01

    Perfluorinated compounds (PFCs) measured in surface running waters indicated the existence of different emission sources in eight main city basins. The tap water reflected the contamination pattern and levels in their corresponding source water basins. The daily intakes through tap water consumption ranged from <0.01 to 0.73 ng kg(-1) d(-1) for perfluorooctanoate (PFOA) and <0.01 to 0.08 ng kg(-1) d(-1) for perfluorooctanesulfonate (PFOS). Tap water intake-derived exposure accounted for 8.6%-101% (for PFOA) and while <10% (for PFOS) of total daily exposure, which was estimated from Korean serum concentrations using a pharmacokinetic model. Our findings indicate that tap water intake could be an important contributor to PFOA exposure in Korean populations; accordingly, additional efforts are necessary to improve the removal efficiency of perfluorinated compounds (PFCs) in the water purification process. However, more fundamentally the aim would be to reduce the discharge of PFCs from potential sources within the basin.

  7. Biomonitoring of Perfluorinated Compounds in Children and Adults Exposed to Perfluorooctanoate-Contaminated Drinking Water

    PubMed Central

    Hölzer, Jürgen; Midasch, Oliver; Rauchfuss, Knut; Kraft, Martin; Reupert, Rolf; Angerer, Jürgen; Kleeschulte, Peter; Marschall, Nina; Wilhelm, Michael

    2008-01-01

    Objective 40,000 residents in Arnsberg, Germany, had been exposed to drinking water contaminated with perfluorinated compounds (PFCs). Internal exposure of the residents of Arnsberg to six PFCs was assessed in comparison with reference areas. Design and participants One hundred seventy children (5–6 years of age), 317 mothers (23–49 years), and 204 men (18–69 years) took part in the cross-sectional study. Measurements Individual consumption of drinking water and personal characteristics were assessed by questionnaire and interview. Perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS), perfluorohexanoate, perfluorohexanesulfonate (PFHxS), perfluoropentanoate, and perfluorobutanesulfonate (PFBS) in blood plasma and PFOA/PFOS in drinking water samples were measured by solid-phase extraction, high-performance liquid chromatrography, and tandem mass spectrometry detection. Results Of the various PFCs, PFOA was the main compound found in drinking water (500–640 ng/L). PFOA levels in blood plasma of residents living in Arnsberg were 4.5–8.3 times higher than those for the reference population (arithmetic means Arnsberg/controls: children 24.6/5.2 μg/L, mothers 26.7/3.2 μg/L, men 28.5/6.4 μg/L). Consumption of tap water at home was a significant predictor of PFOA blood concentrations in Arnsberg. PFHxS concentrations were significantly increased in Arnsberg compared with controls (p < 0.05). PFBS was detected in 33% of the children, 4% of the women, and 13% of the men in Arnsberg compared with 5%, 0.7%, and 3%, respectively, in the reference areas (p < 0.05). Regression analysis showed that age and male sex were significant predictors of PFOS, PFOA, and PFHxS; associations of other regressors (diet, body mass index) varied among PFCs. Conclusions PFC concentrations in blood plasma of children and adults exposed to PFC-contaminated drinking water were increased 4- to 8-fold compared with controls. PMID:18470314

  8. PFOA and PFOS: Treatment and Analytics | Science Inventory ...

    EPA Pesticide Factsheets

    PFOA and PFOS are not regulated by the USEPA. However, in 2016, USEPA established a Lifetime Drinking Water Health Advisory limit of 70 ng/L for the combined concentration of PFOA and PFOS. This presentation will cover the available technologies that can treat for PFOA and PFOS and discuss the costs of those treatments. It will also cover the implementation of EPA's Method 537 that can be used to analyze for PFOA and PFOS. To present on the available treatments a community could use to treat PFOA or PFOS, and the analytical technique to analyze them.

  9. Impact of treatment processes on the removal of perfluoroalkyl acids from the drinking water production chain.

    PubMed

    Eschauzier, Christian; Beerendonk, Erwin; Scholte-Veenendaal, Petra; De Voogt, Pim

    2012-02-07

    The behavior of polyfluoralkyl acids (PFAAs) from intake (raw source water) to finished drinking water was assessed by taking samples from influent and effluent of the several treatment steps used in a drinking water production chain. These consisted of intake, coagulation, rapid sand filtration, dune passage, aeration, rapid sand filtration, ozonation, pellet softening, granular activated carbon (GAC) filtration, slow sand filtration, and finished drinking water. In the intake water taken from the Lek canal (a tributary of the river Rhine), the most abundant PFAA were PFBA (perfluorobutanoic acid), PFBS (perfluorobutane sulfonate), PFOS (perfluorooctane sulfonate), and PFOA (perfluorooctanoic acid). During treatment, longer chain PFAA such as PFNA (perfluorononanoic acid) and PFOS were readily removed by the GAC treatment step and their GAC effluent concentrations were reduced to levels below the limits of quantitation (LOQ) (0.23 and 0.24 ng/L for PFOS and PFNA, respectively). However, more hydrophilic shorter chain PFAA (especially PFBA and PFBS) were not removed by GAC and their concentrations remained constant through treatment. A decreasing removal capacity of the GAC was observed with increasing carbon loading and with decreasing carbon chain length of the PFAAs. This study shows that none of the treatment steps, including softening processes, are effective for PFAA removal, except for GAC filtration. GAC can effectively remove certain PFAA from the drinking water cycle.The enrichment of branched PFOS and PFOA isomers relative to non branched isomers during GAC filtration was observed during treatment. The finished water contained 26 and 19 ng/L of PFBA and PFBS. Other PFAAs were present in concentrations below 4.2 ng/L The concentrations of PFAA observed in finished waters are no reason for concern for human health as margins to existing guidelines are sufficiently large.

  10. Detection of a cyclic perfluorinated acid, perfluoroethylcyclohexane sulfonate, in the Great Lakes of North America.

    PubMed

    De Silva, Amila O; Spencer, Christine; Scott, Brian F; Backus, Sean; Muir, Derek C G

    2011-10-01

    Perfluoroethylcyclohexanesulfonate (PFECHS) is a cyclic perfluorinated acid (PFA) mainly used as an erosion inhibitor in aircraft hydraulic fluids. It is expected to be as recalcitrant to environmental degradation as aliphatic PFAs including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). For the first time, PFECHS is reported in top predator fish (PFOS was the major aliphatic PFA in fish from the Great Lakes. Concentrations of most of the PFAs were not statistically different from previously reported 2004 trout data in Lake Ontario. Shorter chain perfluorocarboxylates were prevalent in surface waters of the Great Lakes, dominated by PFOA (0.65-5.5 ng/L). An impurity in the commercial PFECHS formulation, perfluoromethylcyclohexane sulfonate (PFMeCHS), was also detected in the dissolved phase but not above detection limits in fish tissue. Bioaccumulation factors (BAFs) were estimated by taking the ratio of fish to water concentrations. The mean log BAF values corresponded to 2.8 for PFECHS, 2.1 for PFOA, and 4.5 for PFOS. It is not certain whether the fish-water BAF for PFECHS is an overestimate due to the influence of precursor biotransformation. Further studies are recommended to understand the extent of PFECHS contamination.

  11. Mass balance of perfluoroalkyl acids in the Baltic Sea.

    PubMed

    Filipovic, Marko; Berger, Urs; McLachlan, Michael S

    2013-05-07

    A mass balance was assembled for perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDA), and perfluorooctanesulfonic acid (PFOS) in the Baltic Sea. Inputs (from riverine discharge, atmospheric deposition, coastal wastewater discharges, and the North Sea) and outputs (to sediment burial, transformation of the chemical, and the North Sea), as well as the inventory in the Baltic Sea, were estimated from recently published monitoring data. Formation of the chemicals in the water column from precursors was not considered. River inflow and atmospheric deposition were the dominant inputs, while wastewater treatment plant (WWTP) effluents made a minor contribution (<5%). A mass balance of the Oder River watershed was assembled to explore the sources of the perfluoroalkyl acids (PFAAs) in the river inflow. It indicated that WWTP effluents made only a moderate contribution to riverine discharge (21% for PFOA, 6% for PFOS), while atmospheric deposition to the watershed was 1-2 orders of magnitude greater than WWTP discharges. The input to the Baltic Sea exceeded the output for all four PFAAs, suggesting that inputs were higher during 2005-2010 than during the previous 20 years despite efforts to reduce emissions of PFAAs. One possible explanation is the retention and delayed release of PFAAs from atmospheric deposition in the soils and groundwater of the watershed.

  12. Enantiomer fractions of chiral Perfluorooctanesulfonate (PFOS) in human sera.

    PubMed

    Wang, Yuan; Beesoon, Sanjay; Benskin, Jonathan P; De Silva, Amila O; Genuis, Stephen J; Martin, Jonathan W

    2011-10-15

    Perfluorooctane sulfonate (PFOS) is the most prominent perfluoroalkyl contaminant in humans and wildlife, but there is great uncertainty in exposure pathways, particularly with respect to the importance of PFOS-precursors (PreFOS). We explored the hypothesis that nonracemic proportions of chiral PFOS in serum are qualitative and semiquantitative biomarkers of human PreFOS exposure. A new chiral HPLC-MS/MS method was developed for alpha-perfluoromethyl branched PFOS (1m-PFOS, typically 2-3% of total PFOS) and applied to enantiomer fraction (EF) analysis in biological samples. In blood and tissues of rodents exposed subchronically to electrochemical PFOS, 1m-PFOS was racemic (EF = 0.485-0.511) and no evidence for enantioselective excretion was found in this model mammal. 1m-PFOS in serum of pregnant women, from Edmonton, was significantly nonracemic, with a mean EF (±standard deviation) of 0.432 ± 0.009, similar to pooled North American serum. In a highly exposed Edmonton family (mother, father, and 5 children) living in a house where ScotchGard had been applied repeatedly to carpet and upholstery, EFs ranged from 0.35 to 0.43, significantly more nonracemic than in pregnant women. Semiquantitative estimates of % serum 1m-PFOS coming from 1m-PreFOS biotransformation in both subpopulations were in reasonable agreement with model predictions of human exposure to PFOS from PreFOS. The data were overall suggestive that the measured nonracemic EFs were influenced by the relative extent of exposure to PreFOS. The possibility of using 1m-PFOS EFs for assessing the relative contribution of 1m-PreFOS (or PreFOS in general) in biological samples requires further application before being fully validated, but could be a powerful tool for probing general sources of PFOS in environments where the importance of PreFOS is unknown.

  13. Differential expression of chicken hepatic genes responsive to PFOA and PFOS.

    PubMed

    Yeung, Leo W Y; Guruge, Keerthi S; Yamanaka, Noriko; Miyazaki, Shigeru; Lam, Paul K S

    2007-07-31

    The effects of PFOS and PFOA on the gene expression patterns of chickens that were exposed to either PFOS or PFOA at low doses were investigated with the use of microarray techniques. Twelve Genechip Chicken Genome Arrays were used to study hepatic gene expression in 6-week-old chickens (Gallus gallus) that were exposed to either PFOA (0.1, 0.5, or 5mg/mL), PFOS (0.02 or 0.1mg/mL), or a saline vehicle control (0.9% NaCl in Milli-Q water) via subcutaneous implantation of a 2mL osmotic pump for 4 weeks or for 4 weeks with a further 4 weeks of depuration. Over 240 and 480 genes were significantly affected by PFOS after 4 weeks of exposure and after 4 weeks of exposure with a further 4 weeks of depuration, respectively and over 290 and 320 genes were significantly affected by PFOA, correspondingly. For PFOS, the genes that were affected after 4 weeks of exposure were mainly related to the transport of electrons and oxygen, and the metabolism of lipids and fatty acids; while the genes that were affected after 4 weeks of exposure with a further 4 weeks of depuration were mainly related to the transport of electrons and ions, and protein amino acid phosphorylation and proteolysis. For PFOA, the genes that were affected after 4 weeks of exposure were related to the transport of ions, lipids, and electrons and cytochromes; while the genes that were affected after 4 weeks of exposure with a further 4 weeks of depuration were related to protein amino acid phosphorylation and proteolysis, the transport of ions, and the metabolism of fatty acids and lipids. The results also showed that the gene expression patterns between chickens that were treated with PFOS and those that were treated with PFOA were different, which points to the importance of the separate evaluation of the toxicities of PFOS and PFOA. Specifically, the gene expressions of CYP8B and NOV were studied.

  14. Perfluorinated acids in Arctic snow: new evidence for atmospheric formation.

    PubMed

    Young, Cora J; Furdui, Vasile I; Franklin, James; Koerner, Roy M; Muir, Derek C G; Mabury, Scott A

    2007-05-15

    Perfluorinated acids (PFAs) are ubiquitously found in water and biota, including remote regions such as the High Arctic. Under environmental conditions, PFAs exist mainly as anions and are not expected to be subject to long-range atmospheric transport in the gas phase. Fluorinated telomer alcohols (FTOHs) are volatile and can be atmospherically oxidized to form perfluorocarboxylic acids. Analogously, fluorosulfamido alcohols can be oxidized to form perfluorooctane sulfonate (PFOS). High Arctic ice caps experience contamination solely from atmospheric sources. By examining concentrations of PFAs in ice cap samples, it is possible to determine atmospheric fluxes to the Arctic. Ice samples were collected from high Arctic ice caps in the spring of 2005 and 2006. Samples were concentrated using solid-phase extraction and analyzed by LC-MS-MS. PFAs were observed in all samples, dating from 1996 to 2005. Concentrations were in the low-mid pg L(-1) range and exhibited seasonality, with maximum concentrations in the spring-summer. The presence of perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA) on the ice cap was indicative of atmospheric oxidation as a source. Ratios of PFAs to sodium concentrations were highly variable, signifying PFA concentrations on the ice cap were unrelated to marine chemistry. Fluxes of the PFAs were estimated to the area north of 65 degrees N for the 2005 season, which ranged from 114 to 587 kg year(-1) for perfluorooctanoic acid (PFOA), 73 to 860 kg year(-1) for perfluorononanoic acid (PFNA), 16 to 84 kg year(-1) for PFDA, 26 to 62 kg year(-1) for PFUnA, and 18 to 48 kg year(-1) for PFOS. The PFOA and PFNA fluxes agreed with FTOH modeling estimations. A decrease in PFOS concentrations through time was observed, suggesting a fast response to changes in production. These data suggest that atmospheric oxidation of volatile precursors is a primary source of PFAs to the Arctic.

  15. Perfluorinated acids as novel chemical tracers of global circulation of ocean waters.

    PubMed

    Yamashita, Nobuyoshi; Taniyasu, Sachi; Petrick, Gert; Wei, Si; Gamo, Toshitaka; Lam, Paul K S; Kannan, Kurunthachalam

    2008-01-01

    Perfluorinated acids (PFAs) such as perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are global environmental contaminants. The physicochemical properties of PFAs are unique in that they have high water solubilities despite the low reactivity of carbon-fluorine bond, which also imparts high stability in the environment. Because of the high water solubilities, the open-ocean water column is suggested to be the final sink for PFOS and PFOA. However, little is known on the distribution of PFAs in the oceans around the world. Here we describe the horizontal (spatial) and vertical distribution of PFAs in ocean waters worldwide. PFOS and PFOA concentrations in the North Atlantic Ocean ranged from 8.6 to 36pg l(-1) and from 52 to 338pg l(-1), respectively, whereas the corresponding concentrations in the Mid Atlantic Ocean were 13-73pg l(-1) and 67-439pg l(-1). These were completely different from the surface waters of the South Pacific Ocean and the Indian Ocean (overall range of <5-11pg l(-1) for PFOS and PFOA). Vertical profiles of PFAs in the marine water column were associated with the global ocean circulation theory. Vertical profiles of PFAs in water columns from the Labrador Sea reflected the influx of the North Atlantic Current in surface waters, the Labrador Current in subsurface waters, and the Denmark Strait Overflow Water in deep layers below 2000m. Striking differences in the vertical and spatial distribution of PFAs, depending on the oceans, suggest that these persistent acids can serve as useful chemical tracers to allow us to study oceanic transportation by major water currents. The results provide evidence that PFA concentrations and profiles in the oceans adhere to a pattern consistent with the global "Broecker's Conveyor Belt" theory of open ocean water circulation.

  16. The environmental photolysis of perfluorooctanesulfonate, perfluorooctanoate, and related fluorochemicals.

    PubMed

    Taniyasu, Sachi; Yamashita, Nobuyoshi; Yamazaki, Eriko; Petrick, Gert; Kannan, Kurunthachalam

    2013-02-01

    A field study on the photolysis of perfluoroalkyl substances (PFASs) was conducted at high altitudes in Mt. Mauna Kea (Hawaii, USA; 4200 m) and Mt. Tateyama (Toyama, Japan; 2500 m). Results of photolysis of PFASs in the field were further confirmed in laboratory studies. Perfluorooctanesulfonate (PFOS), which is perceived as a non-degradable chemical in the environment, can undergo photolysis. Long chain PFASs can be successively dealkylated to short chain compounds such as perfluorobutyric acid (PFBA) and perfluorobutane sulfonate (PFBS), but the short chain compounds were relatively more resistant to photodegradation. These results suggest that environmental levels of short chain PFASs would increase both due to their formation from photolysis of long chain PFASs and from direct releases. Earlier studies on photolysis of PFASs were focused on the formation of perfluorocarboxylic acids (PFCAs) and perfluorosulfonic acids (PFSAs) from precursor compounds (such as fluorotelomer alcohols) under laboratory conditions. Our study suggests that PFSAs and PFCAs themselves can undergo photodegradation in the environment.

  17. Perfluorooctane sulfonate (PFOS) induced embryotoxicity and disruption of cardiogenesis.

    PubMed

    Cheng, Wei; Yu, Zhuo; Feng, Lixin; Wang, Yan

    2013-08-01

    Prenatal exposure to perfluorooctane sulfonate (PFOS) is correlated with birth defects and adverse health effects. However, the mechanisms remain largely unknown. In current study, the embryonic stem cell test (EST) was performed to evaluate the embryotoxicity of PFOS, and embryonic stem cells (ESCs)-derived cardiomyocytes were used as a model of the early stages of heart development to determine the developmental toxicity of PFOS. One validated endpoint and three molecular endpoints were observed to ensure accurate evaluation of toxicity. According to the criteria of the EST, PFOS was classified as weak embryotoxic. In addition, a cascade of genes related to normal cardiac development was examined at three different time points to monitor cardiogenesis. We found that PFOS significantly interfered with gene expression during cardiogenesis, especially on Nkx2.5 and Myl4. Further, PFOS reduced ATP production in ESCs-derived cardiomyocytes, together with PFOS induced apoptosis, could explain the reduction in beating ability. PFOS-induced reactive oxygen species (ROS) accumulated within cells, which was accompanied by an interfering expression of apoptosis-related genes, ultimately leading to apoptosis. In conclusion, PFOS altered the expression of crucial genes, reduced ATP production, induced ROS, and stimulated apoptosis during the early stages of cardiogenesis; these effects may result in poor developmental outcomes.

  18. Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment.

    PubMed

    Guerra, P; Kim, M; Kinsman, L; Ng, T; Alaee, M; Smyth, S A

    2014-05-15

    This study examined the fate and behaviour of perfluoroalkyl acids (PFAAs) in liquid and solid samples from five different wastewater treatment types: facultative and aerated lagoons, chemically assisted primary treatment, secondary aerobic biological treatment, and advanced biological nutrient removal treatment. To the best of our knowledge, this is the largest data set from a single study available in the literature to date for PFAAs monitoring study in wastewater treatment. Perfluorooctanoic acid (PFOA) was the predominant PFAA in wastewater with levels from 2.2 to 150ng/L (influent) and 1.9 to 140ng/L (effluent). Perfluorooctanesulfonic acid (PFOS) was the predominant compound in primary sludge, waste biological sludge, and treated biosolids with concentrations from 6.4 to 2900ng/g dry weight (dw), 9.7 to 8200ng/gdw, and 2.1 to 17,000ng/gdw, respectively. PFAAs were formed during wastewater treatment and it was dependant on both process temperature and treatment type; with higher rates of formation in biological wastewater treatment plants (WWTPs) operating at longer hydraulic retention times and higher temperatures. PFAA removal by sorption was influenced by different sorption tendencies; median log values of the solid-liquid distribution coefficient estimated from wastewater biological sludge and final effluent were: PFOS (3.73)>PFDA (3.68)>PFNA (3.25)>PFOA (2.49)>PFHxA (1.93). Mass balances confirmed the formation of PFAAs, low PFAA removal by sorption, and high PFAA levels in effluents.

  19. Promotion of Hepatocarcinogenesis by Perfluoroalkyl Acids in Rainbow Trout

    PubMed Central

    Benninghoff, Abby D.; Orner, Gayle A.; Buchner, Clarissa H.; Hendricks, Jerry D.; Duffy, Aaron M.; Williams, David E.

    2012-01-01

    Previously, we reported that perfluorooctanoic acid (PFOA) promotes liver cancer in a manner similar to that of 17β-estradiol (E2) in rainbow trout. Also, other perfluoroalkyl acids (PFAAs) are weakly estrogenic in trout and bind the trout liver estrogen receptor. The primary objective of this study was to determine whether multiple PFAAs enhance hepatic tumorigenesis in trout, an animal model that represents human insensitivity to peroxisome proliferation. A two-stage chemical carcinogenesis model was employed in trout to evaluate PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (8:2FtOH) as complete carcinogens or promoters of aflatoxin B1 (AFB1)- and/or N-methyl-N′-nitro-N-nitrosoguanidine (MNNG)-induced liver cancer. A custom trout DNA microarray was used to assess hepatic transcriptional response to these dietary treatments in comparison with E2 and the classic peroxisome proliferator, clofibrate (CLOF). Incidence, multiplicity, and size of liver tumors in trout fed diets containing E2, PFOA, PFNA, and PFDA were significantly higher compared with AFB1-initiated animals fed control diet, whereas PFOS caused a minor increase in liver tumor incidence. E2 and PFOA also enhanced MNNG-initiated hepatocarcinogenesis. Pearson correlation analyses, unsupervised hierarchical clustering, and principal components analyses showed that the hepatic gene expression profiles for E2 and PFOA, PFNA, PFDA, and PFOS were overall highly similar, though distinct patterns of gene expression were evident for each treatment, particularly for PFNA. Overall, these data suggest that multiple PFAAs can promote liver cancer and that the mechanism of promotion may be similar to that of E2. PMID:21984479

  20. Promotion of hepatocarcinogenesis by perfluoroalkyl acids in rainbow trout.

    PubMed

    Benninghoff, Abby D; Orner, Gayle A; Buchner, Clarissa H; Hendricks, Jerry D; Duffy, Aaron M; Williams, David E

    2012-01-01

    Previously, we reported that perfluorooctanoic acid (PFOA) promotes liver cancer in a manner similar to that of 17β-estradiol (E2) in rainbow trout. Also, other perfluoroalkyl acids (PFAAs) are weakly estrogenic in trout and bind the trout liver estrogen receptor. The primary objective of this study was to determine whether multiple PFAAs enhance hepatic tumorigenesis in trout, an animal model that represents human insensitivity to peroxisome proliferation. A two-stage chemical carcinogenesis model was employed in trout to evaluate PFOA, perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorooctane sulfonate (PFOS), and 8:2 fluorotelomer alcohol (8:2FtOH) as complete carcinogens or promoters of aflatoxin B(1) (AFB(1))- and/or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG)-induced liver cancer. A custom trout DNA microarray was used to assess hepatic transcriptional response to these dietary treatments in comparison with E2 and the classic peroxisome proliferator, clofibrate (CLOF). Incidence, multiplicity, and size of liver tumors in trout fed diets containing E2, PFOA, PFNA, and PFDA were significantly higher compared with AFB(1)-initiated animals fed control diet, whereas PFOS caused a minor increase in liver tumor incidence. E2 and PFOA also enhanced MNNG-initiated hepatocarcinogenesis. Pearson correlation analyses, unsupervised hierarchical clustering, and principal components analyses showed that the hepatic gene expression profiles for E2 and PFOA, PFNA, PFDA, and PFOS were overall highly similar, though distinct patterns of gene expression were evident for each treatment, particularly for PFNA. Overall, these data suggest that multiple PFAAs can promote liver cancer and that the mechanism of promotion may be similar to that of E2.

  1. PERFLUOROOCTANE SULFONATE (PFOS) DISRUPTS THE THYROID STATUS IN LABORATORY RODENTS

    EPA Science Inventory

    PERFLUOROOCTANE SULFONATE (PFOS) DISRUPTS THE THYROID STATUS IN LABORATORY RODENTS. C. Lau, J.R. Thibodeaux, R.G. Hanson, B.E. Gray and J.M. Rogers. Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    PFOS is an environmental contaminant ubiquitously found in h...

  2. Decline in perfluorooctane sulfonate and perfluorooctanoate serum concentrations in an Australian population from 2002 to 2011

    PubMed Central

    Toms, L.-M.L.; Thompson, J.; Rotander, A.; Hobson, P.; Calafat, A.M.; Kato, K.; Ye, X.; Broomhall, S.; Harden, F.; Mueller, J.F.

    2016-01-01

    Some perfluoroalkyl and polyfluoroalkyl substances (PFASs) have become widespread pollutants detected in human and wildlife samples worldwide. The main objective of this study was to assess temporal trends of PFAS concentrations in human blood in Australia over the last decade (2002–2011), taking into consideration age and sex trends. Pooled human sera from 2002/03 (n = 26); 2008/09 (n = 24) and 2010/11 (n = 24) from South East Queensland, Australia were obtained from de-identified surplus pathology samples and compared with samples collected previously from 2006/07 (n = 84). A total of 9775 samples in 158 pools were available for an assessment of PFASs. Stratification criteria included sex and age: <16 years (2002/03 only); 0–4 (2006/07, 2008/09, 2010/11); 5–15 (2006/07, 2008/09, 2010/11); 16–30; 31–45; 46–60; and >60 years (all collection periods). Sera were analyzed using on-line solid-phase extraction coupled to high-performance liquid chromatography–isotope dilution-tandem mass spectrometry. Perfluorooctane sulfonate (PFOS) was detected in the highest concentrations ranging from 5.3–19.2 ng/ml (2008/09) to 4.4–17.4 ng/ml (2010/11). Perfluorooctanoate (PFOA) was detected in the next highest concentration ranging from 2.8–7.3 ng/ml (2008/09) to 3.1–6.5 ng/ml (2010/11). All other measured PFASs were detected at concentrations <1 ng/ml with the exception of perfluorohexane sulfonate which ranged from 1.2–5.7 ng/ml (08/09) and 1.4–5.4 ng/ml (10/11). The mean concentrations of both PFOS and PFOA in the 2010/11 period compared to 2002/03 were lower for all adult age groups by 56%. For 5–15 year olds, the decrease was 66% (PFOS) and 63% (PFOA) from 2002/03 to 2010/11. For 0–4 year olds the decrease from 2006/07 (when data were first available for this age group) was 50% (PFOS) and 22% (PFOA). This study provides strong evidence for decreasing serum PFOS and PFOA concentrations in an Australian population from 2002 through 2011. Age trends

  3. Perfluoroalkyl acids (PFAAs) in water and sediment from the coastal regions of Shandong peninsula, China.

    PubMed

    Wan, Yi; Wang, Shiliang; Cao, Xuezhi; Cao, Yuanxin; Zhang, Lu; Wang, Hui; Liu, Jinfeng

    2017-03-01

    Perfluoroalkyl acids (PFAAs) have been observed in various environmental matrices globally in recent years. In this study, the levels, spatial distribution tendencies, and partitioning characteristics of the target 12 PFAAs were investigated in water and sediment from the coastal regions of Shandong peninsula in China, and two sediment core samples were also collected to study the vertical and historical variation of PFAAs. The ranges (means) of total PFAA concentrations were 23.69-148.48 ng/L (76.11 ng/L) in the water and 1.30-11.17 ng/g (5.93 ng/g) in the surface sediment, respectively. Among the target 12 PFAAs, perfluorooctanoic acid (PFOA) was the dominant component in water, followed by perfluorooctane sulfonate (PFOS) and perfluorohexanoic acid (PFHxA). PFOS, perfluoroundecanoic acid, and PFOA were the dominant components in sediment. For their spatial distribution, higher levels of PFAAs were found at the locations close to much developed cities. The PFAA concentrations showed an overall decreasing tendency with depth increase in the two sediment cores, which indicates that the extent of PFAAs pollution is aggravating trend in recent years. Results of the partition coefficient (K d ) show that the compounds with longer carbon chains (C ≥ 7) generally had higher K d values, which suggest that long-chain PFAAs are prone to be adsorbed by sediment. In addition, the Log K d of PFHxA, PFOA, and PFOS were significantly and positively correlated to the salinity of the water. The results of risk assessment suggest appreciable risk of PFAAs to the local ecosystem.

  4. Footprints of Urban Micro-Pollution in Protected Areas: Investigating the Longitudinal Distribution of Perfluoroalkyl Acids in Wildlife Preserves

    PubMed Central

    Rodriguez-Jorquera, Ignacio A.; Silva-Sanchez, Cecilia; Strynar, Mark; Denslow, Nancy D.; Toor, Gurpal S.

    2016-01-01

    Current approaches to protect biodiversity by establishing protected areas usually gloss over water pollution as a threat. Our objective was to determine the longitudinal and seasonal distribution of perfluoroalkyl acids (PFAAs) in water column and sediments from a wastewater dominated stream that enters preservation areas. Water samples were collected along the longitudinal section (six sites, 1000 m away from each other) of the stream during the dry and wet seasons. Sediments were collected from three sites along the stream from three depths. Water and sediments were analyzed for PFAAs using high performance liquid chromatography-tandem mass spectrometry. Eleven PFAAs with 5 to 14 carbon atoms were detected in the water column at all sampling points, with a minor reduction at the last point suggesting a dilution effect. The most detected PFAAs was PFOS, followed by perfluorooctanoic acid (PFOA), and perfluorohexanoic acid (PFHxA). Seasonal differences in PFAAs concentrations suggested contribution of stormwater runoff during the wet season. All analyzed PFAAs in sediments were under the limit of quantification, likely due to the high proportion of sand and low organic matter. However, high concentrations of PFAAs were detected in the water column inside the protected areas, which includes PFOS in concentrations considered not safe for avian wildlife. Water samples appear to be more relevant than sediments to determine PFAAs micro-pollution in water bodies with sandy sediments. Inclusion of a management plans on micro-pollution research, monitoring, and mitigation is recommended for protected areas. PMID:26909512

  5. Footprints of Urban Micro-Pollution in Protected Areas: Investigating the Longitudinal Distribution of Perfluoroalkyl Acids in Wildlife Preserves.

    PubMed

    Rodriguez-Jorquera, Ignacio A; Silva-Sanchez, Cecilia; Strynar, Mark; Denslow, Nancy D; Toor, Gurpal S

    2016-01-01

    Current approaches to protect biodiversity by establishing protected areas usually gloss over water pollution as a threat. Our objective was to determine the longitudinal and seasonal distribution of perfluoroalkyl acids (PFAAs) in water column and sediments from a wastewater dominated stream that enters preservation areas. Water samples were collected along the longitudinal section (six sites, 1000 m away from each other) of the stream during the dry and wet seasons. Sediments were collected from three sites along the stream from three depths. Water and sediments were analyzed for PFAAs using high performance liquid chromatography-tandem mass spectrometry. Eleven PFAAs with 5 to 14 carbon atoms were detected in the water column at all sampling points, with a minor reduction at the last point suggesting a dilution effect. The most detected PFAAs was PFOS, followed by perfluorooctanoic acid (PFOA), and perfluorohexanoic acid (PFHxA). Seasonal differences in PFAAs concentrations suggested contribution of stormwater runoff during the wet season. All analyzed PFAAs in sediments were under the limit of quantification, likely due to the high proportion of sand and low organic matter. However, high concentrations of PFAAs were detected in the water column inside the protected areas, which includes PFOS in concentrations considered not safe for avian wildlife. Water samples appear to be more relevant than sediments to determine PFAAs micro-pollution in water bodies with sandy sediments. Inclusion of a management plans on micro-pollution research, monitoring, and mitigation is recommended for protected areas.

  6. Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China

    NASA Astrophysics Data System (ADS)

    Fu, Jianjie; Gao, Yan; Cui, Lin; Wang, Thanh; Liang, Yong; Qu, Guangbo; Yuan, Bo; Wang, Yawei; Zhang, Aiqian; Jiang, Guibin

    2016-12-01

    Paired serum and urine samples were collected from workers in a fluorochemical plant from 2008 to 2012 (n = 302) to investigate the level, temporal trends, and half-lives of PFAAs in workers of a fluorochemical plant. High levels of perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonate (PFOS) were detected in serum with median concentrations of 764, 427, and 1725 ng mL‑1, respectively. The half-lives of PFAAs in workers were estimated by daily clearance rates and annual decline rates of PFAAs in serum by a first-order model. The geometric mean and median value for PFHxS, PFOA, and PFOS were 14.7 and 11.7, 4.1 and 4.0, 32.6 and 21.6 years, respectively, by the daily clearance rates, and they were 3.6, 1.7, and 1.9 years estimated by annual decline rates. The half-lives estimated by the limited clearance route information could be considered as the upper limits for PFAAs, however, the huge difference between two estimated approaches indicated that there were other important elimination pathways of PFAAs other than renal clearance in human. The half-lives estimated by annual decline rates in the present study were the shortest values ever reported, and the intrinsic half-lives might even shorter due to the high levels of ongoing exposure to PFAAs.

  7. Occurrence, temporal trends, and half-lives of perfluoroalkyl acids (PFAAs) in occupational workers in China

    PubMed Central

    Fu, Jianjie; Gao, Yan; Cui, Lin; Wang, Thanh; Liang, Yong; Qu, Guangbo; Yuan, Bo; Wang, Yawei; Zhang, Aiqian; Jiang, Guibin

    2016-01-01

    Paired serum and urine samples were collected from workers in a fluorochemical plant from 2008 to 2012 (n = 302) to investigate the level, temporal trends, and half-lives of PFAAs in workers of a fluorochemical plant. High levels of perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonate (PFOS) were detected in serum with median concentrations of 764, 427, and 1725 ng mL−1, respectively. The half-lives of PFAAs in workers were estimated by daily clearance rates and annual decline rates of PFAAs in serum by a first-order model. The geometric mean and median value for PFHxS, PFOA, and PFOS were 14.7 and 11.7, 4.1 and 4.0, 32.6 and 21.6 years, respectively, by the daily clearance rates, and they were 3.6, 1.7, and 1.9 years estimated by annual decline rates. The half-lives estimated by the limited clearance route information could be considered as the upper limits for PFAAs, however, the huge difference between two estimated approaches indicated that there were other important elimination pathways of PFAAs other than renal clearance in human. The half-lives estimated by annual decline rates in the present study were the shortest values ever reported, and the intrinsic half-lives might even shorter due to the high levels of ongoing exposure to PFAAs. PMID:27905562

  8. Perfluoroalkyl Substances (PFASs) in Marine Mammals from the South China Sea and Their Temporal Changes 2002-2014: Concern for Alternatives of PFOS?

    PubMed

    Lam, James C W; Lyu, Jinling; Kwok, Karen Y; Lam, Paul K S

    2016-07-05

    Perfluorinated sulfonic acids (PFSAs) and perfluorinated carboxylic acids (PFCAs), as well as the replacement for the phase-out C8 PFSAs were determined in the liver samples of Indo-Pacific humpback dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from the South China Sea between 2002 and 2014. Levels of total perfluoroalkyl substances (PFASs) in samples ranged from 136-15,300 and 30.5-2,720 ng/g dw for dolphin and porpoise, respectively. Significant increasing trends of several individual PFCAs and perfluorobutane sulfonate (PFBS) were found in cetacean samples from 2002 to 2014, whereas no significant temporal trends of ∑PFASs appeared over the sampling period. This pattern may be attributed to the increasing usage of PFCAs and C4-based PFSAs following the restriction/voluntary withdrawal of the production and use of perfluorooctane sulfonate (PFOS) related products. In addition, significantly increasing temporal shifting trends of PFOS to PFBS were observed in the dolphin liver samples. This pattern may be attributed to the substitution of PFOS by its alternative, PFBS. The highest levels of PFOS were observed in the liver samples of dolphin as compared with other marine mammal studies published since 2006, indicating high contamination of PFAS in the South China region. An assessment of relatively high concentrations of C8-based PFASs in the liver samples of cetaceans predicted that concentrations of PFOS would be expected to affect some proportion of the cetacean populations studied, based on the toxicity thresholds derived.

  9. EFFECTS OF PRENATAL PERFLUOROOCTANE SULFONATE (PFOS) EXPOSURE ON LUNG MATURATION IN THE PERINATAL RAT

    EPA Science Inventory

    Background: Perfluorooctane sulfonate (PFOS), found widely in wildlife and humans, is environmentally and metabolically stable. Environmental PFOS may be from its use as a surfactant, hydrolysis of perfluorooctanesulfonyl fluoride, and degradation of N-alkyl-perfluorooctanesulfon...

  10. TOXICITY AND BIOACCUMULATION OF PFOS IN A PARTIAL LIFE CYCLE TEST WITH THE NORTHERN LEOPARD FROG

    EPA Science Inventory

    A number of recent monitoring studies have demonstrated elevated concentrations of perfluorooctane sulfonate (PFOS) in humans and wildlife throughout the world. Although no longer actively manufactured, the global distribution and relative persistence of PFOS indicates a need to...

  11. Spatial distribution and partition of perfluoroalkyl acids (PFAAs) in rivers of the Pearl River Delta, southern China.

    PubMed

    Liu, Baolin; Zhang, Hong; Xie, Liuwei; Li, Juying; Wang, Xinxuan; Zhao, Liang; Wang, Yanping; Yang, Bo

    2015-08-15

    This study investigated the occurrence of perfluoroalkyl acids (PFAAs) in surface water from 67 sampling sites along rivers of the Pearl River Delta in southern China. Sixteen PFAAs, including perfluoroalkyl carboxylic acids (PFCAs, C5-14, C16 and C18) and perfluoroalkyl sulfonic acids (PFSAs, C4, C6, C8 and C10) were determined by high performance liquid chromatography-negative electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS). Total PFAA concentrations (∑ PFAAs) in the surface water ranged from 1.53 to 33.5 ng·L(-1) with an average of 7.58 ng·L(-1). Perfluorobutane sulfonic acid (PFBS), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonic acid (PFOS) were the three most abundant PFAAs and on average accounted for 28%, 16% and 10% of ∑ PFAAs, respectively. Higher concentrations of ∑ PFAAs were found in the samples collected from Jiangmen section of Xijiang River, Dongguan section of Dongjiang River and the Pearl River flowing the cities which had very well-developed manufacturing industries. PCA model was employed to quantitatively calculate the contributions of extracted sources. Factor 1 (72.48% of the total variance) had high loading for perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), PFBS and PFOS. For factor 2 (10.93% of the total variance), perfluorononanoic acid (PFNA) and perfluoroundecanoic acid (PFUdA) got high loading. The sorption of PFCAs on suspended particulate matter (SPM) increased by approximately 0.1 log units for each additional CF2 moiety and that on sediment was approximately 0.8 log units lower than the SPM logKd values. In addition, the differences in the partition coefficients were influenced by the structure discrepancy of absorbents and influx of fresh river water. These data are essential for modeling the transport and environmental fate of PFAAs.

  12. Perfluoroalkyl acids: recent research highlights | Science ...

    EPA Pesticide Factsheets

    Perfluorinated compounds are organic chemicals in which all hydrogen molecules of the carbon-chain are substituted by fluorine molecules. Generally, there are two types of perfluorinated compounds, the perfluoroalkanes that are primarily used clinically for oxygenation and respiratory ventilation, and the perfluoroalkyl acids (PFAAs). Environmentally relevant PFAAs are a family of about 30 chemicals that consist of a carbon backbone typically 4-14 molecules in length and a charged functional group composed of either sulfonates, carboxylates or phosphonates (and to a lesser extent, phosphinates). While many (>100) derivatives ofPFAAs (such as alcohols, amides, esters and acids) are used for industrial and consumer applications, they can be degraded or metabolized to PFAAs as end-stage products. Thus, PFAAs, rather than their intermediates or derivatives, have drawn the most public attention and research interest. The most widely known PFAAs are the eight-carbon (C8) sulfonate (perfluorooctane sulfonate, PFOS) and carboxylate (perfluorooctanoic acid, PFOA), although the C4 (perfluorobutane) and C6 (perfluorohexane) sulfonates, as well as the C4, C6 and C9 (perfluorononanoic) carboxylates have also been used in commerce. The perfluoroalkyl phosphonates (PFPAs) are fairly new entities for this class ofchemicals. They are typically used as leveling and wetting agents, and defoaming additives in the production of pesticides. They were considered biologically inert by

  13. PPAR involvement in PFAA developmental toxicity

    EPA Science Inventory

    Perfluoroalkyl acids (PFAAs) are found in the environment and in serum of wildlife and humans. Perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonate (PFOS) are developmentally toxic in rodents. The effects of in utero exposure include increas...

  14. EVALUATION OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT BRAIN

    EPA Science Inventory

    This study examined whether there is a differential distribution of PFOS within the brain, and compares adult rats with neonatal rats at an age when formation of the blood-brain barrier is not yet complete (postnatal day 7). Male and female Sprague-Dawley rats (60-70 day old, 4/...

  15. DEVELOPMENTAL TOXICITY OF PFOS AND PFOA

    EPA Science Inventory

    Perfluoroalkyl acids (PFAA) are fully-fluorinated organic chemicals with a carbon backbone (typically varying from C-4 to C-14) and a functional group (usually carboxylic acid or sulfonic acid). These chemicals are man-made, exceptionally stable to metabolic and environmental de...

  16. PFOS or PreFOS? Are perfluorooctane sulfonate precursors (PreFOS) important determinants of human and environmental perfluorooctane sulfonate (PFOS) exposure?

    PubMed

    Martin, Jonathan W; Asher, Brian J; Beesoon, Sanjay; Benskin, Jonathan P; Ross, Matthew S

    2010-11-01

    The extent to which perfluorooctanesulfonate precursors (PreFOS) play a role in human or environmental exposure to perfluorooctanesulfonate (PFOS) is not well characterized. The diversity of manufactured PreFOS and its degradation products (e.g. C(8)F(17)SO(2)R and C(8)F(17)SO(2)NR'R'', where R is H or F, and R' and R'' are various) has made it difficult to track their fate. Temporal trends of PFOS in both humans and wildlife are discrepant, thus it is difficult to predict future exposure, and hypotheses about the role of PreFOS have been raised. Although abiotic degradation of commercially important PreFOS materials requires further research, current data suggest that the yield of PFOS is negligible or minor. On the other hand, in vivo biotransformation of PreFOS yields PFOS as the major metabolite, and >32% yields have been observed. In Canadians, exposure to PreFOS was equivalent or greater than direct PFOS exposure prior to 2002. In most ocean water, PFOS is dominant to PreFOS, but in the oceans east of Greenland there may be more PreFOS than PFOS, consistent with the fact that whales and humans in this region also show evidence of substantial PreFOS exposure. Quantitative assessments of PFOS body-burdens coming from PreFOS are complicated by the fact that PreFOS partitions to the cellular fraction of blood, thus biomonitoring in serum under predicts PreFOS relative to PFOS. Many unknowns exist that prevent accurate modelling, thus analytical methods that can distinguish directly manufactured PFOS, from PFOS that has been biotransformed from PreFOS, should be applied in future human and environmental monitoring. Two new source tracking principles are presented and applied to human serum.

  17. Occurrence of perfluoroalkyl acids in environmental waters in Vietnam.

    PubMed

    Duong, Hanh Thi; Kadokami, Kiwao; Shirasaka, Hanako; Hidaka, Rento; Chau, Hong Thi Cam; Kong, Lingxiao; Nguyen, Trung Quang; Nguyen, Thao Thanh

    2015-03-01

    This is the first nationwide study of perfluoroalkyl acids (PFAAs) in environmental waters in Vietnam. Twenty-eight river water and 22 groundwater samples collected in four major cities and 14 river water samples from the Red River were screened to investigate the occurrence and sources of 16 PFAAs. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) were the most prevalent of 11 detected PFAAs with maximum concentrations in urban river water of 5.3, 18 and 0.93ngL(-1), respectively, and in groundwater of 8.2, 4.5 and 0.45ngL(-1), respectively. PFAAs in the Red River water were detected at low levels. PFAA concentrations in river water were higher in the rainy season than in the dry season, possibly due to storm water runoff, a common phenomenon in Southeast Asian countries. The highest concentrations of PFAAs in river water were observed in samples from highly populated and industrialized areas, perhaps sourced from sewage. The PFAA concentrations observed were similar to those in other Southeast Asian countries, but lower than in developed nations. From the composition profiles of PFAAs, industrial products containing PFAAs imported from China and Japan might be one of the major sources of PFAAs in the Vietnamese aquatic environment. According to the health-based values and advisory issued by the United States Environmental Protection Agency (USEPA), the concentrations of detected PFAAs in this study do not pose an immediate health risk to humans and aquatic organisms.

  18. Impact of Microbial Growth on Subsurface Perfluoroalkyl Acid Transport

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Higgins, C. P.; Sharp, J.

    2014-12-01

    The fate and transport of poly and perfluoroalkyl substances (PFASs) in the presence of active microbial communities has not been widely investigated. These emerging contaminants are commonly utilized in aqueous film-forming foams (AFFF) and have often been detected in groundwater. This study explores the transport of a suite of perfluorocarboxylic acids and perfluoroalkylsulfonates, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), in microbially active settings. Single point organic carbon normalized sorption coefficients derived by exposing inactive cellular material to PFASs result in more than an order of magnitude increase in sorption compared to soil organic carbon sorption coefficients found in literature. For example, the sorption coefficients for PFOS are 4.05±0.07 L/kg and 2.80±0.08 L/kg for cellular organic carbon and soil organic carbon respectively. This increase in sorption, coupled with enhanced extracellular polymeric substance production observed during growth of a common hydrocarbon degrading soil microbe exposed to source-level concentrations of PFASs (10 mg/L of 11 analytes, 110 mg/L total) may result in PFAS retardation in situ. To address the upscaling of this phenomenon, flow-through columns packed with low-organic carbon sediment and biostimulated with 10 mg/L glucose were exposed to PFAS concentrations from 15 μg/L to 10 mg/L of each 11 analytes. Breakthrough and tailing of each analyte was measured and modeled with Hydrus-1D to explore sorption coefficients over time for microbially active columns.

  19. Perfluorinated Compounds in House Dust from Ohio and North Carolina, USA

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have come under increasing scrutiny due to their persistence in the environment, global distribution, and animal toxicity. Given that human exposure routes for these c...

  20. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  1. Evaluating the additivity of perfluoroalkyl acids in binary combinations on peroxisome proliferator-activated receptor-α activation.

    PubMed

    Wolf, Cynthia J; Rider, Cynthia V; Lau, Christopher; Abbott, Barbara D

    2014-02-28

    Perfluoroalkyl acids (PFAAs) are found globally in the environment, detected in humans and wildlife, and are typically present as mixtures of PFAA congeners. Mechanistic studies have found that responses to PFAAs are mediated in part by PPARα. Our previous studies showed that individual PFAAs activate PPARα transfected into COS-1 cells. The goal of the current study was to determine if binary combinations of perfluorooctanoic acid (PFOA) and another PFAA act in an additive fashion to activate PPARα in the mouse one-hybrid in vitro model. COS-1 cells were transiently transfected with mouse PPARα luciferase reporter construct and exposed to either vehicle control (0.1% DMSO or water), PPARα agonist (WY14643, 10 μM), PFOA at 1-128μM, perfluorononanoic acid (PFNA) at 1-128 μM, perfluorohexanoic acid (PFHxA) at 8-1024 μM, perfluorooctane sulfonate (PFOS) at 4-384 μM or perfluorohexane sulfonate (PFHxS) at 8-2048 μM to generate sigmoidal concentration-response curves. In addition, cells were exposed to binary combinations of PFOA+either PFNA, PFHxA, PFOS or PFHxS in an 8×8 factorial design. The concentration-response data for individual chemicals were fit to sigmoidal curves and analyzed with nonlinear regression to generate EC₅₀s and Hillslopes, which were used in response-addition and concentration-addition models to calculate predicted responses for mixtures in the same plate. All PFOA+PFAA combinations produced concentration-response curves that were closely aligned with the predicted curves for both response addition and concentration addition at low concentrations. However, at higher concentrations of all chemicals, the observed response curves deviated from the predicted models of additivity. We conclude that binary combinations of PFAAs behave additively at the lower concentration ranges in activating PPARα in this in vitro system.

  2. Dietary predictors and plasma concentrations of perfluorinated alkyl acids in a Singapore population.

    PubMed

    Liu, Yu; Su, Jin; van Dam, Rob M; Prem, Kiesha; Hoong, Joey Y S; Zou, Li; Lu, Yonghai; Ong, Choon Nam

    2017-03-01

    Perfluorinated alkyl acids (PFAAs), a family of man-made organofluorinated compounds, have drawn much attention due to their ubiquitous existence in the environment and their bioaccumulation potential. Here, we examined the plasma concentrations of thirteen PFAAs in a healthy population (N = 270) in Singapore, and investigated the association between major food groups and plasma PFAA concentrations. We detected eight types of PFAAs in more than 75% of all samples (N = 270), and their median concentrations ranged from 0.05 to 8.34 ng mL(-1). Age- and gender-related differences were observed for the three dominant PFAAs, i.e., perfluorooctanesulfonic acid (PFOS), perfluorohexane sulfonate (PFHxS) and perfluorooctanoate acid (PFOA), with concentrations being higher in men and older adults. Multiple linear regression analyses showed that fish, shellfish, red meat and poultry were associated with increased PFAAs concentrations in plasma, whereas grains and soy products showed inverse associations with PFAAs. Further, significant correlations were observed between various long-chain PFAAs and plasma concentrations of omega-3 fatty acids, suggesting seafood was a significant source of these PFAAs, within this population. Future studies on diet exposure to PFAAs are encouraged to focus more on the effects on diet pattern.

  3. Multi-Platform Metabolomic Analyses of Rat Urine Following Exposure to Perfluorinated Chemicals (PFCs)

    EPA Science Inventory

    Perfluorinated chemicals (PFCs), namely perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), represent an emerging class of persistent and bioaccumulative compounds. Global occurrence of these fluorochemicals, coupled with probable human exposure, has prompted inv...

  4. Application of WWTP Biosolids and Resulting Perfluorinated Compound Contamination of Surface and Well Water in Decatur, Alabama, USA

    EPA Science Inventory

    Perfluorinated chemicals (PFCs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been produced and used in a wide range of industrial and consumer products for many decades. Their resistance to degradation has led to their widespread distribution in...

  5. Determination of Ten Perfluorinated Compounds in Bluegill Sunfish (Lepomis macrochirus) Fillets

    EPA Science Inventory

    Limited information is known about the environmental distributions of the perfluorinated compounds (PFCs) such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), in part due to a lack of well characterized analytical methods that can be used to accurately mea...

  6. U.S. Domestic Cats as Sentinels for Perfluoroalkyl Substances: Possible Linkages with Housing, Obesity and Disease

    EPA Science Inventory

    Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) , are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely i...

  7. Estrogen-like activity of perfluoroalkyl acids in vivo and interaction with human and rainbow trout estrogen receptors in vitro.

    PubMed

    Benninghoff, Abby D; Bisson, William H; Koch, Daniel C; Ehresman, David J; Kolluri, Siva K; Williams, David E

    2011-03-01

    The objectives of this study were to determine the structural characteristics of perfluoroalkyl acids (PFAAs) that confer estrogen-like activity in vivo using juvenile rainbow trout (Oncorhynchus mykiss) as an animal model and to determine whether these chemicals interact directly with the estrogen receptor (ER) using in vitro and in silico species comparison approaches. Perfluorooctanoic (PFOA), perfluorononanoic (PFNA), perfluorodecanoic (PFDA), and perfluoroundecanoic (PFUnDA) acids were all potent inducers of the estrogen-responsive biomarker protein vitellogenin (Vtg) in vivo, although at fairly high dietary exposures. A structure-activity relationship for PFAAs was observed, where eight to ten fluorinated carbons and a carboxylic acid end group were optimal for maximal Vtg induction. These in vivo findings were corroborated by in vitro mechanistic assays for trout and human ER. All PFAAs tested weakly bound to trout liver ER with half maximal inhibitory concentration (IC(50)) values of 15.2-289 μM. Additionally, PFOA, PFNA, PFDA, PFUnDA, and perlfuorooctane sulfonate (PFOS) significantly enhanced human ERα-dependent transcriptional activation at concentrations ranging from 10-1000 nM. Finally, we employed an in silico computational model based upon the crystal structure for the human ERα ligand-binding domain complexed with E2 to structurally investigate binding of these putative ligands to human, mouse, and trout ERα. PFOA, PFNA, PFDA, and PFOS all efficiently docked with ERα from different species and formed a hydrogen bond at residue Arg394/398/407 (human/mouse/trout) in a manner similar to the environmental estrogens bisphenol A and nonylphenol. Overall, these data support the contention that several PFAAs are weak environmental xenoestrogens of potential concern.

  8. Estrogen-Like Activity of Perfluoroalkyl Acids In Vivo and Interaction with Human and Rainbow Trout Estrogen Receptors In Vitro

    PubMed Central

    Benninghoff, Abby D.; Bisson, William H.; Koch, Daniel C.; Ehresman, David J.; Kolluri, Siva K.; Williams, David E.

    2011-01-01

    The objectives of this study were to determine the structural characteristics of perfluoroalkyl acids (PFAAs) that confer estrogen-like activity in vivo using juvenile rainbow trout (Oncorhynchus mykiss) as an animal model and to determine whether these chemicals interact directly with the estrogen receptor (ER) using in vitro and in silico species comparison approaches. Perfluorooctanoic (PFOA), perfluorononanoic (PFNA), perfluorodecanoic (PFDA), and perfluoroundecanoic (PFUnDA) acids were all potent inducers of the estrogen-responsive biomarker protein vitellogenin (Vtg) in vivo, although at fairly high dietary exposures. A structure-activity relationship for PFAAs was observed, where eight to ten fluorinated carbons and a carboxylic acid end group were optimal for maximal Vtg induction. These in vivo findings were corroborated by in vitro mechanistic assays for trout and human ER. All PFAAs tested weakly bound to trout liver ER with half maximal inhibitory concentration (IC50) values of 15.2–289μM. Additionally, PFOA, PFNA, PFDA, PFUnDA, and perlfuorooctane sulfonate (PFOS) significantly enhanced human ERα-dependent transcriptional activation at concentrations ranging from 10–1000nM. Finally, we employed an in silico computational model based upon the crystal structure for the human ERα ligand-binding domain complexed with E2 to structurally investigate binding of these putative ligands to human, mouse, and trout ERα. PFOA, PFNA, PFDA, and PFOS all efficiently docked with ERα from different species and formed a hydrogen bond at residue Arg394/398/407 (human/mouse/trout) in a manner similar to the environmental estrogens bisphenol A and nonylphenol. Overall, these data support the contention that several PFAAs are weak environmental xenoestrogens of potential concern. PMID:21163906

  9. Distribution and excretion of perfluorooctane sulfonate (PFOS) in beef cattle (Bos taurus)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perfluorooctane sulfonate (PFOS), a perfluoroalkyl surfactant used in many industrial products, is present in industrial wastes and in wastewater treatment plant biosolids. Biosolids are commonly applied to pastures and crops used for animal feed; consequently, PFOS may accumulate in the edible tis...

  10. EFFECTS OF PRENATAL PERFLUOROOCTANESULFONATE (PFOS) EXPOSURE ON LUNG MATURATION IN THE PERINATAL RAT

    EPA Science Inventory

    PFOS is an environmentally stable compound that has been detected at 3 ppb -10 ppm in serum samples from the general public and occupationally exposed individuals. We have shown that exposing pregnant rats to PFOS (25, or 50 mg/kg/d on GD 19-20) induces neonatal death in the rat...

  11. Spatial distribution and importance of potential perfluoroalkyl acid precursors in urban rivers and sewage treatment plant effluent--case study of Tama River, Japan.

    PubMed

    Ye, Feng; Tokumura, Masahiro; Islam, Md Saiful; Zushi, Yasuyuki; Oh, Jungkeun; Masunaga, Shigeki

    2014-12-15

    Production and use of perfluorooctane sulfonate (PFOS) is regulated worldwide. However, numerous potential precursors that eventually decompose into PFOS and other perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) are still being used and have not been studied in detail. Therefore, knowledge about the levels and sources of the precursors is essential. We investigated the total concentration of potential PFAA precursors in the Tama River, which is one of the major rivers flowing into the Tokyo Bay, by converting all the perfluorinated carboxylic acid (PFCA) and perfluoroalkyl sulfonic acid (PFSA) precursors into PFCAs by chemical oxidation. The importance of controlling PFAA precursors was determined by calculating the ratios of PFCAs formed by oxidation to the PFAAs originally present (ΣΔ[PFCAC4-C12]/Σ[PFAAs]before oxidation) (average = 0.28 and 0.69 for main and tributary branch rivers, respectively). Higher total concentrations of Δ[PFCAs] were found in sewage treatment plant (STP) effluents. However, the ratios found in the effluents were lower (average = 0.21) than those found in the river water samples, which implies the decomposition of some precursors into PFAAs during the treatment process. On the other hand, higher ratios were observed in the upstream water samples and the existence of emission sources other than the STP effluents was indicated. This study showed that although the treatment process converting a part of the PFAA precursors into PFAAs, STPs were important sources of precursors to the Tama River. To reduce the levels of PFAAs in the aquatic environment, it is necessary to reduce the emission of the PFAA precursors as well.

  12. Covalent triazine-based framework: A promising adsorbent for removal of perfluoroalkyl acids from aqueous solution.

    PubMed

    Wang, Bingyu; Lee, Linda S; Wei, Chenhui; Fu, Heyun; Zheng, Shourong; Xu, Zhaoyi; Zhu, Dongqiang

    2016-09-01

    Perfluoroalkyl acids (PFAAs) are highly stable, persistent, and ubiquitous in the environment with significant concerns growing with regards to both human and ecosystem health. Due to the high stability to both biological and chemical attack, the only currently feasible approach for their removal from water is adsorbent technology. The main objective of this study was to assess a covalent triazine-based framework (CTF) adsorbent for removal from aqueous solutions of perfluoro C4, C6, and C8 carboxylates and sulfonates including the two C8s most commonly monitored, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Adsorption affinity and capacity were quantified and compared to three commonly used sorbents: pulverized microporous activated carbon, single-walled carbon nanotubes, and Amberlite IRA-400 anion-exchange resin. CTF adsorbent exhibited pronouncedly higher adsorption affinity and capacity of PFAAs than other test sorbents. The remarkably strong adsorption to CTF can be attributed to the favored electrostatic interaction between the protonated triazine groups on the inner wall of the hydrophobic CTF pore and the negatively charged head groups of the PFAAs intercalated between the CTF layers. The homogeneous, nanosized pores (1.2 nm) of CTF hindered adsorption of a large-sized dissolved humic acid, thus minimizing the suppression of PFAA adsorption. Additionally, regeneration of CTF was easily accomplished by simply raising pH > 11, which inhibited the electrostatic adsorptive interaction of PFAAs.

  13. Spatiotemporal distribution and potential sources of perfluoroalkyl acids in Huangpu River, Shanghai, China.

    PubMed

    Sun, Zhuyu; Zhang, Chaojie; Yan, Hong; Han, Changlai; Chen, Ling; Meng, Xiangzhou; Zhou, Qi

    2017-05-01

    Perfluoroalkyl acids (PFAAs) have been found to be ubiquitously disseminated in the environment due to their widespread use in recent decades. In this study, the occurrence and spatiotemporal distribution of PFAAs in the surface water of Huangpu River, Shanghai, China were investigated from 2012 to 2014. The total concentration of 14 PFAAs (ΣPFAAs) ranged from 39.8 to 596.2 ng L(-1), with a mean value of 226.3 ng L(-1). Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were dominant, with their mean concentrations of 139.6 and 46.5 ng L(-1), respectively. The concentration of ΣPFAAs increased greatly downstream especially in the lower reach of an industrial and urbanized area. Samples collected in different seasons were used to analyze the seasonal variation. The results showed that higher concentration of ΣPFAAs occurred in the wet season, especially downstream. Therefore, industrial discharges, municipal wastewater and surface runoff were identified as major potential sources. The annual discharge load of ΣPFAAs from Huangpu River to Yangtze River was estimated to be 2263.4 kg yr(-1). The hazard assessment suggested that the contamination of PFAAs in Huangpu River could pose risks to the aquatic environment and drinking water safety, which should draw more attention.

  14. PFOS Induces Behavioral Alterations, Including Spontaneous Hyperactivity That Is Corrected by Dexamfetamine in Zebrafish Larvae

    PubMed Central

    Spulber, Stefan; Kilian, Pascal; Wan Ibrahim, Wan Norhamidah; Onishchenko, Natalia; Ulhaq, Mazhar; Norrgren, Leif; Negri, Sara; Di Tuccio, Marcello; Ceccatelli, Sandra

    2014-01-01

    Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively) and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response), and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae. PMID:24740186

  15. Prenatal exposure to PFOS caused mitochondia-mediated apoptosis in heart of weaned rat.

    PubMed

    Zeng, Huai-Cai; He, Qing-Zhi; Li, Yuan-Yuan; Wu, Cheng-Qiu; Wu, Yi-Mou; Xu, Shun-Qing

    2015-09-01

    Perfluorooctanyl sulfonate (PFOS), a cardiac toxicity compound, has been widely detected in the environment and in organisms. However, the toxic mechanism is not clear. Our previous study indicated that prenatal PFOS exposure led to swollen mitochondrial with vacuolar structure and loss of cristae in offsping's heart. The purpose of this study was to investigate the effect of PFOS on the apoptosis in developing heart and mitochondria-mediated apoptosis pathway. Pregnant Sprague-Dawley (SD) rats were exposed to PFOS at doses of 0.1, 0.6, and 2.0 mg/kg-d and 0.05% Tween 80 as control by gavage from gestation day 2 (GD 2) to GD 21. Apoptosis, as well as expression of apoptosis related genes associated with mitochondrial-mediated apoptosis pathway, including p53, bcl-2, bax, cytochrome c, caspase-9, and caspase-3 were analyzed in heart tissues from weaned (postnatal day 21, PND 21) offspring. The results showed that prenatal PFOS exposure resulted in apoptosis in the offspring's heart. The mRNA and protein expression levels of p53, bax, cytochrome c, caspase-9, and caspase-3 in the offspring's heart were enhanced in various PFOS-treated groups, meanwhile, the bcl-2 expression levels were decreased. Our results indicated that prenatal PFOS exposure induced the apoptosis of weaned offspring rat heart tissue via mitochondria-mediated apoptotic pathway.

  16. Toxicity and DNA methylation changes induced by perfluorooctane sulfonate (PFOS) in sea urchin Glyptocidaris crenularis.

    PubMed

    Ding, Guanghui; Wang, Luyan; Zhang, Jing; Wei, Yuanyuan; Wei, Lie; Li, Yang; Shao, Mihua; Xiong, Deqi

    2015-06-01

    Perfluorooctane sulfonate (PFOS) is an ubiquitous persistent organic pollutant, which can be bioaccumulated and cause adverse effects on organisms. However, there is very limited information about the toxic effects of PFOS to marine organisms and its mechanisms. Therefore, in the present study, adult sea urchins Glyptocidaris crenularis were exposed to PFOS for 21 d, followed by a 7-d depuration period, in order to investigate the toxicity of PFOS to sea urchin and its potential epigenetic mechanisms. Sea urchins dropped spines, and lowered down the motor ability and feeding ability after the PFOS exposure. Superoxide dismutase activities in supernatant of coelomic fluid of sea urchin increased firstly and then dropped down, while the change of the catalase activity took an opposite trend during the exposure period. They both approached to the corresponding activity of the control after the depuration period. The DNA methylation polymorphism, methylation rate and demethylation rate in sea urchin gonad all increased following the prolonged exposure time, and then decreased after the depuration period. The demethylation rates were lower than the corresponding methylation rates, therefore methylation events were dominant during the whole experimental period. This might suggest that sea urchin have strong self-protection mechanisms and can survive from the PFOS exposure presented in this study. Further efforts are needed to more precisely investigate the DNA methylation effects of PFOS and the self-protection mechanism of sea urchin.

  17. Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures.

    PubMed

    Xia, Ji-Gang; Nie, Li-Juan; Mi, Xia-Mei; Wang, Wei-Zhen; Ma, Yi-Jie; Cao, Zhen-Dong; Fu, Shi-Jian

    2015-10-01

    The harmful effects of perfluorooctane sulfonate (PFOS) are of growing international concern. This paper aimed to gain an integrated understanding of fitness-related ecological end points, such as behavior, metabolism and swimming physiology, in juvenile Spinibarbus sinensis in response to PFOS toxicity at different temperatures. The fish were exposed to a range of PFOS concentrations (0, 0.32, 0.8, 2 and 5 mg/L) at different temperatures (18 and 28 °C) for 30 days. The effects on fish behavior, metabolic characteristics and aerobic swimming performance caused by PFOS at different temperatures were investigated. Our results showed that both PFOS and temperature had important influences on spontaneous swimming behavior, social interactions, routine metabolic rate (RMR), net energetic cost of transport (COTnet) and critical swimming speed (U crit) in fish. The lowest observed effect concentration for both U crit and RMR was 5 and 0.8 mg/L at 18 and 28 °C, respectively. We found that PFOS affected various behavioral and social end points and also appeared to affect metabolic rates and reduced U crit, likely as a result of increased COTnet, and that many of these effects also changed with respect to temperature. Our results further the understanding of the metabolic and behavioral toxicity of PFOS to aquatic organisms.

  18. Binding of PFOS to serum albumin and DNA: insight into the molecular toxicity of perfluorochemicals

    PubMed Central

    Zhang, Xian; Chen, Ling; Fei, Xun-Chang; Ma, Yin-Sheng; Gao, Hong-Wen

    2009-01-01

    Background Health risk from exposure of perfluorochemicals (PFCs) to wildlife and human has been a subject of great interest for understanding their molecular mechanism of toxicity. Although much work has been done, the toxigenicity of PFCs remains largely unknown. In this work, the non-covalent interactions between perfluorooctane sulfonate (PFOS) and serum albumin (SA) and DNA were investigated under normal physiological conditions, aiming to elucidate the toxigenicity of PFCs. Results In equilibrium dialysis assay, the bindings of PFOS to SA correspond to the Langmuir isothermal model with two-step sequence model. The saturation binding number of PFOS was 45 per molecule of SA and 1 per three base-pairs of DNA, respectively. ITC results showed that all the interactions were spontaneous driven by entropy change. Static quenching of the fluorescence of SA was observed when interacting with PFOS, indicating PFOS bound Trp residue of SA. CD spectra of SA and DNA changed obviously in the presence of PFOS. At normal physiological conditions, 1.2 mmol/l PFOS reduces the binding ratio of Vitamin B2 to SA by more than 30%. Conclusion The ion bond, van der Waals force and hydrophobic interaction contributed to PFOS binding to peptide chain of SA and to the groove bases of DNA duplex. The non-covalent interactions of PFOS with SA and DNA alter their secondary conformations, with the physiological function of SA to transport Vitamin B2 being inhibited consequently. This work provides a useful experimental method for further studying the toxigenicity of PFCs. PMID:19239717

  19. Estimation of PFOS emission from domestic sources in the eastern coastal region of China.

    PubMed

    Xie, Shuangwei; Lu, Yonglong; Wang, Tieyu; Liu, Shijie; Jones, Kevin; Sweetman, Andy

    2013-09-01

    Perfluorooctane sulfonate (PFOS) and related chemicals (collectively "PFOS equivalents") have been released to the environment through widespread consumer use and disposal of PFOS-containing products like carpet, leather, textiles, paper, food containers, household cleansers, etc. Accordingly, in addition to PFOS-related industries, domestic activities may also considerably contribute to the PFOS emissions in the eastern coastal region of China, which has been characterized by high industrial input. In the present study, domestic emissions of PFOS equivalents derived from municipal wastewater treatment plants were estimated at the county level, using a regression model of domestic emission density with population density and per capita disposable income as independent variables. The total emission load of PFOS equivalents from domestic sources in the eastern coastal region of China was 381kg in 2010, and large cities were prominent as the emission centers. The domestic emission density averaged 0.37g/km(2)·a for the entire study area. Generally, the Beijing-Tianjin area, Pearl River Delta and Yangtze River Delta, as the most populous and economically developed areas in China, showed significantly higher emission density. Geographical variations within individual provinces were noteworthy. The average per capita discharge load of PFOS equivalents arising from domestic activities was 1.91μg/day per capita in the eastern coastal region of China, which is consistent with previous estimates in Korea, but lower than those calculated for developed countries. In comparison, the spatial distributions of provincial PFOS emissions from domestic and industrial sources were similar to each other; however, the latter was much larger for all the provinces.

  20. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS)

    EPA Science Inventory

    Perfluorooctanesulfonate (PFOS) is widely distributed and persistent in humans and wildlife. Prior toxicological studies have reported decreased total and free thyroid hormones in serum without a major compensatory rise in thyrotropin (TSH) or altered thyroid gland histology. Alt...

  1. Evaluation of PFOS-mediated neurotoxicity in rat primary neurons and astrocytes cultured separately or in co-culture.

    PubMed

    Li, Zhenwei; Liu, Qi; Liu, Chang; Li, Chunna; Li, Yachen; Li, Shuangyue; Liu, Xiaohui; Shao, Jing

    2017-02-01

    Perfluorooctane sulfonate (PFOS) is a potential neurotoxicant reported by epidemiological investigations and experimental studies, while the underlying mechanisms are still unclear. Astrocytes not only support for the construction of neurons, but also conduct neuronal functions through glutamate-glutamine cycle in astrocyte-neuron crosstalk. In the present study, the effect of PFOS exposure on rat primary hippocampal neurons or cortex astrocytes was evaluated. Then the role of the astrocytes in PFOS-induced toxic effect on neurons was explored with astrocyte-neuron co-culture system. Exposure of rat primary hippocampal neurons to PFOS has led to oxidation-antioxidation imbalance, increased apoptosis and abnormal autophagy. The adverse effect of PFOS on rat primary cortex astrocytes manifested in the form of altered extracellular glutamate and glutamine concentrations, decreased glutamine synthase activity, as well as decreased gene expression of glutamine synthase, glutamate transporters and glutamine transporters in the glutamate-glutamine cycle. Especially, the alleviation of PFOS-inhibited neurite outgrowth in neurons could be observed in astrocyte-neuron co-culture system, though the ability of astrocytes in fostering neurite outgrowth was affected by PFOS. These results indicated that both astrocytes and neurons might be the targets of PFOS-induced neurotoxicity, and astrocytes could protect against PFOS-inhibited neurite outgrowth in primary cultured neurons. Our research might render some information in explaining the mechanisms of PFOS-induced neurotoxicity.

  2. Estimating the aquatic emissions and fate of perfluorooctane sulfonate (PFOS) into the river Rhine.

    PubMed

    Paul, Alexander G; Scheringer, Martin; Hungerbühler, Konrad; Loos, Robert; Jones, Kevin C; Sweetman, Andrew J

    2012-02-01

    The sources, distribution, levels and sinks of perfluorooctane sulfonate (PFOS) estimated to be released from areas of high population density, have been explored using the river Rhine as a case study. A comparison between modelled and measured data is presented, along with analysis of the importance of PFOS sorption in riverine systems. PFOS releases into the Rhine were estimated to be 325-690 kg/yr based on per capita emission rates of 27-57 μg day(-1) from a population of 33 million living within a 50 km zone either side of the river. Sorption of PFOS to suspended particles and sediments may alter its fate in the aquatic environment. Therefore available measured and modelled partitioning data was assessed, and K(d) values (sorption coefficient) of 7.5 and 20 were selected. This resulted in sediment-water ratios of 23-76 : 1, which are similar to ratios reported in the literature, and resulted in modelled estimates that <20% of the total PFOS entering the Rhine binds to sediments or suspended particles. The calculated discharge from the Rhine to the North Sea based on measured data was 420-2200 kg/yr; our model predictions are in good agreement with these estimates. Emission trends were accurately predicted, suggesting population density can be effectively used as a surrogate for diffuse PFOS emissions from product use, while predicted concentrations were a factor of 2-4 below measured data showing the importance of other sources. Transfer of PFOS to sediment is estimated to be minimal, and consequently discharges to the North Sea are roughly equal to PFOS releases to river water.

  3. The partition behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanesulfonamide (FOSA) on microplastics.

    PubMed

    Wang, Fei; Shih, Kai Min; Li, Xiao Yan

    2015-01-01

    Microplastics have been recognized as transport vectors for heavy metals and organic pollutants to marine animals. Thus, the sorption behavior of contaminant on microplastic is crucial to their transport in marine system. In this study, the sorption behavior of PFOS and FOSA (two perfluorochemicals) on three kinds of microplastics (PE, PS, and PVC) are reported. The isotherm study showed that the sorption of PFOS and FOSA on microplastics is highly linear, and it indicated that partition by hydrophobic interaction is the predominant sorption mechanism. The Kd values of FOSA on three kinds of microplastics are all higher than those of PFOS, and the reason is attributed to their different functional groups. The Kd value of FOSA on three types of microplastics followed the order as: PE>PVC>PS. Such finding may indicate that the molecule composition and structure of microplastics play important roles in their sorption processes of organic pollutants. The PFOS sorption levels on PE and PS particles were increased with the increase of NaCl and CaCl2 concentrations, while the ion concentrations have no effect on FOSA sorption. The study on the pH effects on PFOS and FOSA sorption indicated FOSA could partition under various pH conditions on three types of microplastics while PFOS sorption on PE and PS were favored with lower pH.

  4. Phosphorus-containing fluorinated organics: polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluorophosphonates (PFPAs), and perfluorophosphinates (PFPIAs) in residential indoor dust.

    PubMed

    De Silva, Amila O; Allard, Cody N; Spencer, Christine; Webster, Glenys M; Shoeib, Mahiba

    2012-11-20

    Indoor dust is thought to be a source of human exposure to perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs), but exposures to emerging organofluorine compounds, including precursors to PFCAs and PFSAs via indoor dust, remain unknown. We report an analytical method for measuring several groups of emerging phosphorus-containing fluorinated compounds, including polyfluoroalkyl phosphoric acid diesters (diPAP), perfluorophosphonates (PFPA), and perfluorophosphinates (PFPIA), as well as perfluoroethylcyclohexane sulfonate (PFECHS) in indoor dust. This method was used to analyze diPAP, PFPA, and PFPIA levels in 102 residential dust samples collected in 2007-2008 from Vancouver, Canada. The results indicated a predominant and ubiquitous presence of diPAPs (frequency of detection 100%, mean and median ΣdiPAPs 7637 and 2215 ng/g). Previously measured median concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and fluorotelomer alcohols (FTOHs) in the same samples were 14-74 times lower than ΣdiPAP levels, i.e. 71 ng/g PFOS, 30 ng/g PFOA, and 152 ng/g ΣFTOHs. PFPAs and PFPIAs were detected in 62% and 85% of samples, respectively, at concentrations nearly 3 orders of magnitude lower than diPAPs (median 2.3 ng/g ΣPFPAs and 2.3 ng/g ΣPFPIAs). PFECHS was detected in only 8% of dust samples. To the best of our knowledge, this is the first report of these compounds in indoor dust. In this study, diPAP concentrations represented 98% ± 7% of the total measured analytes in the dust samples. Detection of diPAPs at such high concentrations in indoor dust may represent an important and as-yet unrecognized indirect source of PFCA exposure in humans, given the identified biotransformation pathways. Identifying the sources of diPAPs to the indoor environment is a priority for future research to improve air quality in households.

  5. Subchronic perfluorooctanesulfonate (PFOS) exposure induces elevated mutant frequency in an in vivo λ transgenic medaka mutation assay.

    PubMed

    Chen, Yuanhong; Hu, Wei; Huang, Changjiang; Hua, Shushan; Wei, Qihao; Bai, Chenglian; Chen, Jiangfei; Norris, Michelle B; Winn, Richard; Yang, Dongren; Dong, Qiaoxiang

    2016-12-08

    Perfluorooctanesulfonate (PFOS) has been widely detected in the environment, wildlife and humans, but few studies have ever examined its mutagenic effect in vivo. In the present study, we use a transgenic fish model, the λ transgenic medaka, to evaluate the potential mutagenicity of PFOS in vivo following a subchronic exposure of 30 days. The mutant frequency of cII target gene was 3.46 × 10(-5) in liver tissue from control fish, which increased by 1.4-fold to 4.86 × 10(-5) in fish exposed to 6.7 μg/L PFOS, 1.55-fold to 5.36 × 10(-5) in fish exposed to 27.6 μg/L PFOS, and 2.02-fold to 6.99 × 10(-5) in fish exposed to 87.6 μg/L PFOS. This dose-dependent increase of mutant frequency was also accompanied with mutational spectrum changes associated with PFOS exposure. In particular, PFOS-induced mutation was characterized by +1 frameshift mutations, which increased from 0% in control fish to 13.2% in fish exposed to 27.6 μg/L PFOS and 14.6% in fish exposed to 87.6 μg/L PFOS. Our findings provide the first evidence of PFOS's mutagenicity in an aquatic model system. Given the fact that most conventional mutagenic assays were negative for PFOS, we propose that PFOS-induced mutation in liver tissue of λ transgenic medaka may be mediated through compromised liver function.

  6. Antioxidative-related genes expression following perfluorooctane sulfonate (PFOS) exposure in the intertidal mud crab, Macrophthalmus japonicus

    NASA Astrophysics Data System (ADS)

    Park, Kiyun; Nikapitiya, Chamilani; Kwak, Tae-Soo; Kwak, Ihn-Sil

    2015-09-01

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant that is used as a surfactant in various industries and consumer products. The intertidal mud crab, Macrophthalmus japonicus, is one of the most abundant macrobenthic creatures. In this study, we have investigated the effect of PFOS on the molecular transcription of antioxidant and detoxification signaling in M. japonicus crab. The selected stress response genes were superoxide dismutases (CuZnSOD and MnSOD), catalase (CAT), glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx), peroxiredoxin (Prx), and thioredoxin reductase (TrxR). Significant up-regulation of SODs and CAT was observed after 24 and 96 h exposure to PFOS at different concentrations. The gene expression levels of GPx, PHGPx, and TrXR were significantly up-regulated after exposure to PFOS for 96 h. The transcript levels of CAT and PHGPx were induced in dose- and time-dependent manners after PFOS treatments. However, Prx gene expression was significantly up-regulated in M. japonicus crabs exposed to 10 and 30 μg L-1 PFOS for 96 h. Additionally, PFOS toxicity in M. japonicus induced reduced survival rates at relatively high concentrations of PFOS exposure. Our findings support the contention that exposures to PFOS induced the response of genes related to oxidative stress and detoxification in M. japonicus crabs.

  7. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo.

    PubMed

    Du, Guizhen; Hu, Jialei; Huang, Hongyu; Qin, Yufeng; Han, Xiumei; Wu, Di; Song, Ling; Xia, Yankai; Wang, Xinru

    2013-02-01

    Perfluorooctane sulfonate (PFOS) is a widespread and persistent chemical in the environment. We investigated the endocrine-disrupting effects of PFOS using a combination of in vitro and in vivo assays. Reporter gene assays were used to detect receptor-mediated (anti-)estrogenic, (anti-)androgenic, and (anti-)thyroid hormone activities. The effect of PFOS on steroidogenesis was assessed both at hormone levels in the supernatant and at expression levels of hormone-induced genes in the H295R cell. A zebrafish-based short-term screening method was developed to detect the effect of PFOS on endocrine function in vivo. The results indicate that PFOS can act as an estrogen receptor agonist and thyroid hormone receptor antagonist. Exposure to PFOS decreased supernatant testosterone (T), increased estradiol (E2) concentrations in H295R cell medium and altered the expression of several genes involved in steroidogenesis. In addition, PFOS increased early thyroid development gene (hhex and pax8) expression in a concentration-dependent manner, decreased steroidogenic enzyme gene (CYP17, CYP19a, CYP19b) expression, and changed the expression pattern of estrogen receptor production genes (esr1, esr2b) after 500 µg/L PFOS treatment in zebrafish embryos. These results indicate that PFOS has the ability to act as an endocrine disruptor both in vitro and in vivo by disrupting the function of nuclear hormone receptors, interfering with steroidogenesis, and altering the expression of endocrine-related genes in zebrafish embryo.

  8. Bioaccumulation of perfluoroalkyl acids including the isomers of perfluorooctane sulfonate in carp (Cyprinus carpio) in a sediment/water microcosm.

    PubMed

    Fang, Shuhong; Zhang, Yifeng; Zhao, Shuyan; Qiang, Liwen; Chen, Meng; Zhu, Lingyan

    2016-12-01

    Carp (Cyprinus carpio) were exposed to perfluoroalkyl acids (PFAAs) including perfluorooctane sulfonate (PFOS) isomers in an artificially contaminated sediment/water microcosm. The uptake constant of PFAAs increased with increasing carbon chain length, whereas the elimination coefficient displayed the opposite trend, suggesting that carbon chain length plays an important role in the bioaccumulation of PFAAs. When the contribution of suspended particulate matter was taken into account, the bioaccumulation factors (BAFs) became lower (3.61-600 L/kg) compared with BAFs derived from only considering the absorption from free PFAAs in water (3.85-97000 L/kg). The results indicate that suspended particulate matter in water constitutes an important source of exposure for aquatic organisms to long-chain PFAAs. Linear (n-)PFOS was preferentially accumulated compared with branched isomers in carp. Among the branched isomers, 1m-PFOS displayed the greatest bioaccumulation, whereas m2 -PFOS had the lowest. Linear PFOS displayed greater partitioning ability from blood to other tissues over branched PFOS (br-PFOS) isomers, leading to a relatively lower n-PFOS proportion in blood. In summary, suspended particulate matter made a contribution to the accumulation of long-chain PFAAs in aquatic organisms, and n-PFOS was preferentially accumulated compared with br-PFOS isomers. Environ Toxicol Chem 2016;35:3005-3013. © 2016 SETAC.

  9. Developmental toxicity in white leghorn chickens following in ovo exposure to perfluorooctane sulfonate (PFOS)

    USGS Publications Warehouse

    Peden-Adams, M. M.; Stuckey, Joyce E.; Gaworecki, K.M.; Berger-Ritchie, J.; Bryant, K.; Jodice, P.G.; Scott, T.R.; Ferrario, J.B.; Guan, B.; Vigo, C.; Boone, J.S.; McGuinn, W.D.; DeWitt, J.C.; Keil, D.E.

    2009-01-01

    Studies show that perfluorinated compounds cause various toxicological effects; nevertheless, effects on immune function and developmental endpoints have not been addressed at length. This study examined the effects of perfluorooctane sulfonate (PFOS) in white leghorn hatchlings on various developmental, immunological, and clinical health parameters. In addition, serum PFOS concentrations were determined by LC/MS/MS. Embryonic day (ED) 0 eggs were injected with either safflower oil/10% DMSO (control, 0 mg/kg egg wt) or PFOS in safflower oil/10% DMSO at 1, 2.5, or 5 mg/kg egg wt, and the chicks were grown to post-hatch day (PHD) 14. Treatment with PFOS did not affect hatch rate. Following in ovo exposure chicks exhibited increases in spleen mass at all treatment levels, in liver mass at 2.5 and 5 mg/kg egg wt, and in body length (crown-rump length) at the 5 mg/kg treatment. Right wings were shorter in all treatments compared to control. Increases in the frequency of brain asymmetry were evident in all treatment groups. SRBC-specific immunoglobulin (IgM and IgY combined) titers were decreased significantly at all treatment levels, while plasma lysozyme activity was increased at all treatment levels. The PHA skin test response decreased in relation to increasing PFOS dose. Serum concentrations where significant immunological, morphological, and neurological effects were observed at the lowest dose (1 mg/kg egg wt) averaged 154 ng PFOS/g serum. These concentrations fall within environmental ranges reported in blood samples from wild caught avian species; thereby, verifying that the environmental egg concentrations used for the injections do indeed relate to serum levels in hatchlings that are also environmentally relevant. These data indicate that immune alterations and brain asymmetry can occur in birds following in ovo exposure to environmentally relevant concentrations of PFOS and demonstrates the need for further research on the developmental effects of

  10. In vitro PFOS exposure on immune endpoints in bottlenose dolphins (Tursiops truncatus) and mice.

    PubMed

    Wirth, Jena R; Peden-Adams, Margie M; White, Natasha D; Bossart, Gregory D; Fair, Patricia A

    2014-06-01

    Previous studies in our lab have shown that perfluorooctane sulfonate (PFOS) modulates immune function in mice and correlates with many immune parameters in bottlenose dolphins (Tursiops truncatus). In this study, bottlenose dolphin peripheral blood leukocytes (PBLs) and adult female B6C3F1 mouse splenocytes were exposed to environmentally relevant PFOS concentrations (0-5 µg ml(-1)) in vitro; and natural killer (NK) cell activity and lymphocyte proliferation (T and B cell) were assessed using the parallelogram approach for risk assessment. The objectives were: to corroborate results from the correlative studies in bottlenose dolphins with in vitro PFOS exposures; to evaluate the sensitivity of the mouse model as compared with bottlenose dolphins; and to assess risk using the parallelogram approach. In mouse cells, NK cell activity was decreased at in vitro doses of 0.01, 0.5, 0.1, 0.5 and 1 µg PFOS ml(-1) and increased at 5 µg ml(-1). Additionally, B cell proliferation was not altered, but T cell proliferation was decreased at all in vitro PFOS exposures. In dolphin cells, NK cell activity and T cell proliferation were not altered by in vitro PFOS exposure, but B cell proliferation exhibited a positive association in relation to PFOS dose. Overall, the data indicates that: the in vitro exposures of bottlenose dolphin PBLs exhibited results similar to reported correlative fields studies; that mice were generally more sensitive (for these selected endpoints) than were dolphins; and that the parallelogram approach could be used two-thirds of the time to predict the effects in bottlenose dolphins.

  11. Effect of perfluorooctane sulfonate on the conformation of wheat germ acid phosphatase.

    PubMed

    Xu, Dongmei; Jin, Jianchang; Shen, Tong; Wang, Yanhua

    2013-11-01

    Fluorescence spectroscopy was used to study the quenching mechanism, the type of force and the binding sites of perfluorooctane sulfonate (PFOS) on wheat germ acid phosphatase (ACPase). The results showed that the quenching effect of PFOS on ACPase was mainly due to a static quenching mechanism that occurred via the formation of hydrogen bonds and van der Waals forces. The results from synchronous fluorescence spectroscopy demonstrated that PFOS interacts with ACPase close to the tryptophan residues. In addition, synchronous fluorescence spectroscopy also showed that PFOS increases the hydrophobicity of the microenvironment of the tyrosine residues, hence decreasing the local polarity.

  12. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS

    SciTech Connect

    Shi Xiongjie; Du Yongbing; Lam, Paul K.S.; Wu, Rudolf S.S.; Zhou Bingsheng

    2008-07-01

    Perfluorooctanesulfonate (PFOS) is a persistent organic pollutant, the potential toxicity of which is causing great concern. In the present study, we employed zebrafish embryos to investigate the developmental toxicity of this compound. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to 0.1, 0.5, 1, 3 and 5 mg/L PFOS. Hatching was delayed and hatching rates as well as larval survivorship were significantly reduced after the embryos were exposed to 1, 3 and 5 mg/L PFOS until 132 hpf. The fry displayed gross developmental malformations, including epiboly deformities, hypopigmentation, yolk sac edema, tail and heart malformations and spinal curvature upon exposure to PFOS concentrations of 1 mg/L or greater. Growth (body length) was significantly reduced in the 3 and 5 mg/L PFOS-treated groups. To test whether developmental malformation was mediated via apoptosis, flow cytometry analysis of DNA content, acridine orange staining and TUNEL assay was used. These techniques indicated that more apoptotic cells were present in the PFOS-treated embryos than in the control embryos. Certain genes related to cell apoptosis, p53 and Bax, were both significantly up-regulated upon exposure to all the concentrations tested. In addition, we investigated the effects of PFOS on marker genes related to early thyroid development (hhex and pax8) and genes regulating the balance of androgens and estrogens (cyp19a and cyp19b). For thyroid development, the expression of hhex was significantly up-regulated at all concentrations tested, whereas pax8 expression was significantly up-regulated only upon exposure to lower concentrations of PFOS (0.1, 0.5, 1 mg/L). The expression of cyp19a and of cyp19b was significantly down-regulated at all exposure concentrations. The overall results indicated that zebrafish embryos constitute a reliable model for testing the developmental toxicity of PFOS, and the gene expression patterns in the embryos were able to reveal some potential

  13. PFOS affects posterior swim bladder chamber inflation and swimming performance of zebrafish larvae.

    PubMed

    Hagenaars, A; Stinckens, E; Vergauwen, L; Bervoets, L; Knapen, D

    2014-12-01

    Perfluorooctane sulphonate (PFOS) is one of the most commonly detected perfluorinated alkylated substances in the aquatic environment due to its persistence and the degradation of less stable compounds to PFOS. PFOS is known to cause developmental effects in fish. The main effect of PFOS in zebrafish larvae is an uninflated swim bladder. As no previous studies have focused on the effect of PFOS on zebrafish swim bladder inflation, the exact mechanisms leading to this effect are currently unknown. The objective of this study was to determine the exposure windows during early zebrafish development that are sensitive to PFOS exposure and result in impaired swim bladder inflation in order to specify the mechanisms by which this effect might be caused. Seven different time windows of exposure (1-48, 1-72, 1-120, 1-144, 48-144, 72-144, 120-144h post fertilization (hpf)) were tested based on the different developmental stages of the swim bladder. These seven time windows were tested for four concentrations corresponding to the EC-values of 1, 10, 80 and 95% impaired swim bladder inflation (EC1=0.70 mg L(-1), EC10=1.14 mg L(-1), EC80=3.07 mg L(-1) and EC95=4.28 mg L(-1)). At 6 days post fertilization, effects on survival, hatching, swim bladder inflation and size, larval length and swimming performance were assessed. For 0.70 mg L(-1), no significant effects were found for the tested parameters while 1.14 mg L(-1) resulted in a reduction of larval length. For 3.07 and 4.28 mg L(-1), the number of larvae affected and the severity of effects caused by PFOS were dependent on the time window of exposure. Exposure for 3 days or more resulted in significant reductions of swim bladder size, larval length and swimming speed with increasing severity of effects when the duration of exposure was longer, suggesting a possible effect of accumulated dose. Larvae that were only exposed early (1-48 hpf) or late (120-144 hpf) during development showed no effects on the studied endpoints

  14. Perfluorooctane sulfonate (PFOS) contamination of fish in urban lakes: a prioritization methodology for lake management.

    PubMed

    Xiao, Feng; Gulliver, John S; Simcik, Matt F

    2013-12-15

    The contamination of urban lakes by anthropogenic pollutants such as perfluorooctane sulfonate (PFOS) is a worldwide environmental problem. Large-scale, long-term monitoring of urban lakes requires careful prioritization of available resources, focusing efforts on potentially impaired lakes. Herein, a database of PFOS concentrations in 304 fish caught from 28 urban lakes was used for development of an urban-lake prioritization framework by means of exploratory data analysis (EDA) with the aid of a geographical information system. The prioritization scheme consists of three main tiers: preliminary classification, carried out by hierarchical cluster analysis; predictor screening, fulfilled by a regression tree method; and model development by means of a neural network. The predictive performance of the newly developed model was assessed using a training/validation splitting method and determined by an external validation set. The application of the model in the U.S. state of Minnesota identified 40 urban lakes that may contain elevated levels of PFOS; these lakes were not previously considered in PFOS monitoring programs. The model results also highlight ongoing industrial/commercial activities as a principal determinant of PFOS pollution in urban lakes, and suggest vehicular traffic as an important source and surface runoff as a primary pollution carrier. In addition, the EDA approach was further compared to a spatial interpolation method (kriging), and their advantages and disadvantages were discussed.

  15. Toxicogenomic profiling of perfluorononanoic acid in wild-type and PPARa-null mice

    EPA Science Inventory

    Perfluorononanoic acid (PFNA) is a ubiquitous environmental contaminant and a developmental toxicant in laboratory animals. Like other perfluoroalkyl acids (PFAAs) such as perfluorooctane sulfonate (PFOA) and perfluoroalkyl acid (PFOS), PFNA is a known activator ofperoxisome prol...

  16. Hepatic miRNA profiles and thyroid hormone homeostasis in rats exposed to dietary potassium perfluorooctanesulfonate (PFOS).

    PubMed

    Dong, Hongyan; Curran, Ivan; Williams, Andrew; Bondy, Genevieve; Yauk, Carole L; Wade, Michael G

    2016-01-01

    Perfluorooctanesulfonate (PFOS) has been widely used in a variety of industrial and commercial applications as a surfactant and stain repellent. PFOS causes liver damage (including liver tumors) in experimental animals, primarily via interaction with PPARα and CAR/PXR. We investigated the involvement of microRNAs (miRNAs) in PFOS-induced hepatotoxicity, and mechanisms involved in abnormal thyroid hormone (TH) homeostasis, in the livers of adult male rats exposed in feed to 50mg PFOS/kg diet for 28 days. PFOS-treated rats exhibited expected histopathological and clinical chemistry changes, and global gene expression changes consistent with the involvement of PPARα and CAR/PXR. Thirty-eight miRNAs were significantly altered. Three members of the miR-200 family were the most increased, while miR-122-5p and miR-21-5p were the most decreased, in PFOS-treated rats. Expression of the miR-23b-3p/27b-3p/24-3p cluster also decreased in PFOS-treated animals. Pathway analysis of miRNAs and associated gene expression changes suggests involvement of epithelial to mesenchymal transition (EMT), which is a primary process of tumor cell motility and cancer metastasis. Our analysis also revealed transcripts that may mediate PFOS-induced effects on TH homeostasis including: activation of the CAR/PXR pathway, phase II/III enzymes, and deiodinase. These changes are consistent with low serum TH due to enhanced metabolic clearance of TH. However, most TH hepatic target genes were not altered in a manner consistent with reduced TH signaling, suggesting that PFOS exposure did not induce functional hypothyroidism. Collectively, the study suggests an important role for miRNAs in PFOS-induced hepatotoxicity and provides insight into the effects of PFOS on TH homeostasis.

  17. Subchronic perfluorooctanesulfonate (PFOS) exposure induces elevated mutant frequency in an in vivo λ transgenic medaka mutation assay

    PubMed Central

    Chen, Yuanhong; Hu, Wei; Huang, Changjiang; Hua, Shushan; Wei, Qihao; Bai, Chenglian; Chen, Jiangfei; Norris, Michelle B.; Winn, Richard; Yang, Dongren; Dong, Qiaoxiang

    2016-01-01

    Perfluorooctanesulfonate (PFOS) has been widely detected in the environment, wildlife and humans, but few studies have ever examined its mutagenic effect in vivo. In the present study, we use a transgenic fish model, the λ transgenic medaka, to evaluate the potential mutagenicity of PFOS in vivo following a subchronic exposure of 30 days. The mutant frequency of cII target gene was 3.46 × 10−5 in liver tissue from control fish, which increased by 1.4-fold to 4.86 × 10−5 in fish exposed to 6.7 μg/L PFOS, 1.55-fold to 5.36 × 10−5 in fish exposed to 27.6 μg/L PFOS, and 2.02-fold to 6.99 × 10−5 in fish exposed to 87.6 μg/L PFOS. This dose-dependent increase of mutant frequency was also accompanied with mutational spectrum changes associated with PFOS exposure. In particular, PFOS-induced mutation was characterized by +1 frameshift mutations, which increased from 0% in control fish to 13.2% in fish exposed to 27.6 μg/L PFOS and 14.6% in fish exposed to 87.6 μg/L PFOS. Our findings provide the first evidence of PFOS’s mutagenicity in an aquatic model system. Given the fact that most conventional mutagenic assays were negative for PFOS, we propose that PFOS-induced mutation in liver tissue of λ transgenic medaka may be mediated through compromised liver function. PMID:27929129

  18. Subchronic perfluorooctanesulfonate (PFOS) exposure induces elevated mutant frequency in an in vivo λ transgenic medaka mutation assay

    NASA Astrophysics Data System (ADS)

    Chen, Yuanhong; Hu, Wei; Huang, Changjiang; Hua, Shushan; Wei, Qihao; Bai, Chenglian; Chen, Jiangfei; Norris, Michelle B.; Winn, Richard; Yang, Dongren; Dong, Qiaoxiang

    2016-12-01

    Perfluorooctanesulfonate (PFOS) has been widely detected in the environment, wildlife and humans, but few studies have ever examined its mutagenic effect in vivo. In the present study, we use a transgenic fish model, the λ transgenic medaka, to evaluate the potential mutagenicity of PFOS in vivo following a subchronic exposure of 30 days. The mutant frequency of cII target gene was 3.46 × 10‑5 in liver tissue from control fish, which increased by 1.4-fold to 4.86 × 10‑5 in fish exposed to 6.7 μg/L PFOS, 1.55-fold to 5.36 × 10‑5 in fish exposed to 27.6 μg/L PFOS, and 2.02-fold to 6.99 × 10‑5 in fish exposed to 87.6 μg/L PFOS. This dose-dependent increase of mutant frequency was also accompanied with mutational spectrum changes associated with PFOS exposure. In particular, PFOS-induced mutation was characterized by +1 frameshift mutations, which increased from 0% in control fish to 13.2% in fish exposed to 27.6 μg/L PFOS and 14.6% in fish exposed to 87.6 μg/L PFOS. Our findings provide the first evidence of PFOS’s mutagenicity in an aquatic model system. Given the fact that most conventional mutagenic assays were negative for PFOS, we propose that PFOS-induced mutation in liver tissue of λ transgenic medaka may be mediated through compromised liver function.

  19. Intensification of sonochemical degradation of ammonium perfluorooctanoate by persulfate oxidant.

    PubMed

    Hao, Feifei; Guo, Weilin; Wang, Anqi; Leng, Yanqiu; Li, Helian

    2014-03-01

    Ammonium perfluorooctanoate (APFO) is an emerging environmental pollutant attracting significant attention due to its global distribution, high persistence, and bioaccumulation properties. The decomposition of APFO in aqueous solution with a combination of persulfate oxidant and ultrasonic irradiation was investigated. The effects of operating parameters, such as ultrasonic power, persulfate concentration, APFO concentration, and initial media pH on APFO degradation were discussed. In the absence of persulfate, 35.5% of initial APFO in 46.4 μmol/L solution under ultrasound irradiation, was decomposed rapidly after 120 min with the defluorination ratio reaching 6.73%. In contrast, when 10 mmol/L persulfate was used, 51.2% of initial APFO (46.4 μmol/L) was decomposed and the defluorination ratio reached 11.15% within 120 min reaction time. Enhancement of the decomposition of APFO can be explained by acceleration of substrate decarboxylation, induced by sulfate radical anions formed from the persulfate during ultrasonic irradiation. The SO4(-•)/APFO reactions at the bubble-water interface appear to be the primary pathway for the sonochemical degradation of the perfluorinated surfactants.

  20. PARTIAL LIFE-CYCLE TOXICITY AND BIOCONCENTRATION MODELLING OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE NORTHERN LEOPARD FROG (RANA PIPIENS)

    EPA Science Inventory

    A number of recent monitoring studies have demonstrated elevated concentrations of perfluorooctane sulfonate (PFOS) in humans and wildlife throughout the world. Although no longer manufactured in the U.S., the global distribution and relative persistence of PFOS indicates a need ...

  1. Linear and branched perfluorooctane sulfonate (PFOS) isomer patterns differ among several tissues and blood of polar bears.

    PubMed

    Greaves, Alana K; Letcher, Robert J

    2013-09-01

    Perfluorooctane sulfonate (PFOS) is a globally distributed persistent organic pollutant that has been found to bioaccumulate and biomagnify in aquatic food webs. Although principally in its linear isomeric configuration, 21-35% of the PFOS manufactured via electrochemical fluorination is produced as a branched structural isomer. PFOS isomer patterns were investigated in multiple tissues of polar bears (Ursus maritimus) from East Greenland. The liver (n = 9), blood (n = 19), brain (n = 16), muscle (n = 5), and adipose (n = 5) were analyzed for linear PFOS (n-PFOS), as well as multiple mono- and di-trifluoromethyl-substituted branched isomers. n-PFOS accounted for 93.0 ± 0.5% of Σ-PFOS isomer concentrations in the liver, whereas the proportion was significantly lower (p<0.05) in the blood (85.4 ± 0.5%). Branched isomers were quantifiable in the liver and blood, but not in the brain, muscle, or adipose. In both the liver and blood, 6-perfluoromethylheptane sulfonate (P6MHpS) was the dominant branched isomer (2.61 ± 0.10%, and 3.26 ± 0.13% of Σ-PFOS concentrations, respectively). No di-trifluoromethyl-substituted isomers were detectable in any of the tissues analyzed. These tissue-specific isomer patterns suggest isomer-specific pharmacokinetics, perhaps due to differences in protein affinities, and thus differences in protein interactions, as well transport, absorption, and/or metabolism in the body.

  2. Mineralization behavior of fluorine in perfluorooctanesulfonate (PFOS) during thermal treatment of lime-conditioned sludge.

    PubMed

    Wang, Fei; Shih, Kaimin; Lu, Xingwen; Liu, Chengshuai

    2013-03-19

    The fate and transport of the fluorine in perfluorooctanesulfonate (PFOS) during the thermal treatment of lime-conditioned sludge were observed using both qualitative and quantitative X-ray diffraction techniques. Two main fluorine mineralization mechanisms leading to the substantial formation of CaF2 and Ca5(PO4)3F phases were observed. They had a close relationship with the thermal treatment condition and the PFOS content of the sludge. At low temperatures (300-600 °C), CaF2 dominated in the product and increases in treatment time and temperature generally enhanced the fluorine transformation. However, at higher temperatures (700-900 °C), increases in treatment time and temperature had a negative effect on the overall efficiency of the fluorine crystallization. The results suggest that in the high temperature environment there were greater losses of gaseous products such as HF and SiF4 in the transformation of CaF2 to Ca5(PO4)3F, the hydrolysis of CaF2, and the reaction with SiO2. The quantitative analysis also showed that when treating sludge with low PFOS content at high temperatures, the formation of Ca5(PO4)3F may be the primary mechanism for the mineralization of the fluorine in PFOS. The overall results clearly indicate the variations in the fate and transport of fluorine in PFOS when the sludge is subject to different PFOS contents and treatment types, such as heat drying or incineration.

  3. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    NASA Astrophysics Data System (ADS)

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-04-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins.

  4. PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion

    PubMed Central

    Wang, Ling; Wang, Yu; Liang, Yong; Li, Jia; Liu, Yuchen; Zhang, Jie; Zhang, Aiqian; Fu, Jianjie; Jiang, Guibin

    2014-01-01

    Male BALB/c mice fed with either a regular or high fat diet were exposed to 0, 5 or 20 mg/kg perfluorooctane sulfonate (PFOS) for 14 days. Increased body weight, serum glucose, cholesterol and lipoprotein levels were observed in mice given a high fat diet. However, all PFOS-treated mice got reduced levels of serum lipid and lipoprotein. Decreasing liver glycogen content was also observed, accompanied by reduced serum glucose levels. Histological and ultrastructural examination detected more lipid droplets accumulated in hepatocytes after PFOS exposure. Moreover, transcripitonal activity of lipid metabolism related genes suggests that PFOS toxicity is probably unrelevant to PPARα's transcription. The present study demonstrates a lipid disturbance caused by PFOS and thus point to its role in inhibiting the secretion and normal function of low density lipoproteins. PMID:24694979

  5. Exploring the fate, transport and risk of Perfluorooctane Sulfonate (PFOS) in a coastal region of China using a multimedia model.

    PubMed

    Liu, Shijie; Lu, Yonglong; Xie, Shuangwei; Wang, Tieyu; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    Perfluorooctane Sulfonate (PFOS) and related substances have been widely applied in both industrial processes and domestic products in China. Exploring the environmental fate and transport of PFOS using modeling methods provides an important link between emission and multimedia diffusion which forms a vital part in the human health risk assessment and chemical management for these substances. In this study, the gridded fugacity based BETR model was modified to make it more suitable to model transfer processes of PFOS in a coastal region, including changes to PFOS partition coefficients to reflect the influence of water salinity on its sorption behavior. The fate and transport of PFOS in the Bohai coastal region of China were simulated under steady state with the modified version of the model. Spatially distributed emissions of PFOS and related substances in 2010 were estimated and used in these simulations. Four different emission scenarios were investigated, in which a range of half-lives for PFOS related substances were considered. Concentrations of PFOS in air, vegetation, soil, fresh water, fresh water sediment and coastal water were derived from the model under the steady-state assumption. The median modeled PFOS concentrations in fresh water, fresh water sediment and soil were 7.20ng/L, 0.39ng/g and 0.21ng/g, respectively, under Emission Scenario 2 (which assumed all PFOS related substances immediately degrade to PFOS) for the whole region, while the maximum concentrations were 47.10ng/L, 4.98ng/g and 2.49ng/g, respectively. Measured concentration data for PFOS in the Bohai coastal region around the year of 2010 were collected from the literature. The reliability of the model results was evaluated by comparing the range of modeled concentrations with the measured data, which generally matched well for the main compartments. Fate and transfer fluxes were derived from the model based on the calculated inventory within the compartments, transfer fluxes between

  6. Getting on with persistent pollutants: Decreasing trends of perfluoroalkyl acids (PFAAs) in sewage sludge.

    PubMed

    Ulrich, Hanna; Freier, Korbinian P; Gierig, Michael

    2016-10-01

    Sewage sludge can be a relevant source of perfluoroalkyl acids (PFAAs) for the environment. In order to reduce emissions from this source, Bavarian authorities enforced in 2008 an analysis of PFAAs from sewage sludge derived from municipal wastewater treatment plants (WWTPs). 4981 sludge samples from 1165 different WWTPs were analyzed between 2008 and 2013 for 11 PFAAs compounds. During this period, 71 WWTPs exceeded the precautionary limit of 125 μg kg(-1) dm of total PFAAs in sludge samples at least once with a decreasing tendency. The yearly exceedances of the investigated WWTPs decreased from 6% in 2008 to 0.8% in 2013. At the same time, the percentage of uncontaminated WWTPs increased from 33% to 65%. Perfluorooctane sulfonic acid (PFOS) was the predominant compound found in 41% of all sludge samples. Perfluorodecanoic acid (PFDA) was detected in 19% and Perfluorooctanoic acid (PFOA) in 7%. Very high PFAAs concentrations (>500 μg kg(-1) dm) in sewage sludge were generally caused by firefighting foams containing PFAAs or emissions from PFAAs-using industries including metal plating, textile, leather or paper industries. Trend analyses of the six year period show that PFAAs contamination in sewage sludge clearly decreased for 47% of the WWTPs. However, for 16% of the WWTPs an increasing trend was detected, even though the concentration levels were below the precautionary limit. During the six years of investigation the load of total PFAAs in sewage sludge was reduced by more than 90%, from 17 t a(-1) in 2008 to 1.5 t a(-1) in 2013.

  7. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON THYROID HORMONE STATUS IN ADULT AND NEONATAL RATS. M.N. Logan1, J.R. Thibodeaux2, R.G. Hanson2, C. Lau2. 1North Carolina Central University, Durham, NC, 2Reprod. Tox. Div. NHEERL, US EPA, Research Triangle Park, NC.

    Perfluor...

  8. HEPATIC GENE EXPRESSION PROFILES OF RATS EXPOSED TO PERFLUOROOCTANE SULFONATE (PFOS) IN UTERO

    EPA Science Inventory

    Hepatic Gene Expression Profiles of Rats Exposed to Perfluorooctanesulfonate (PFOS) in utero.
    J.A. Bjork1, J.M. Berthiaume1, C. Lau2, J. L. Butenhoff3, and K.B. Wallace1

    1Department of Biochemistry & Molecular Biology, University of Minnesota School of Medicine, Dulut...

  9. Multigenerational effect of perfluorooctane sulfonate (PFOS) on the individual fitness and population growth of Daphnia magna.

    PubMed

    Jeong, Tae-Yong; Yuk, Min-Su; Jeon, Junho; Kim, Sang Don

    2016-11-01

    We investigated the multigenerational effect of PFOS to individual fitness (e.g., body weight, acetylcholinesterase and glutathione S-transferase) and population growth (e.g., offspring number and time to first brood) of Daphnia magna during continuous and discontinuous exposures. The intrinsic rate of population growth was also calculated. In the continuous exposure, population growth-related adverse effects were detected during all test periods, and the adverse effect tended to be weaker in later generations. On the other hand, individual fitness-related adverse effects were observed from F1 not in F0 and deteriorated as the generation number increased. These results imply that individual fitness worsens although the population growth is restored in later generations. Upon discontinuous exposure, a few but significant adverse effects were observed during the non-exposure period and highest effects were detected during the re-exposure period. This encourages the study of different exposure scenarios, which may result in unexpected and higher PFOS toxicity. Consequently, this study confirms adverse effects of PFOS to Daphnia magna in multigenerational period and supports reasons for studies linking individual fitness changes to population dynamics and covering diverse exposure scenarios to evaluate the risk of PFOS in a water environment.

  10. MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE MOUSE

    EPA Science Inventory

    MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE MOUSE. J.R. Thibodeaux1, R.G. Hanson1, B.E. Grey1, B.D. Barbee1, J.H. Richards2, J.L. Butenhoff3, J.M. Rogers1, C. Lau1. 1Reprod. Tox. Div., 2Exp. Tox. Div., NHEERL, ORD, US EPA, Research Triangle Pa...

  11. EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON MATERNAL AND DEVELOPMENTAL THYROID STATUS IN THE RAT

    EPA Science Inventory

    EFFECTS OF PERFLUOROOCTANE SULFONATE (PFOS) ON MATERNAL AND DEVELOPMENTAL THYROID STATUS IN THE RAT. JR Thibodeaux1, R Hanson1, B Grey1, JM Rogers1, ME Stanton2, and C Lau1. 1Reproductive Toxicology Division; 2Neurotoxicology Division, NHEERL, ORD, US EPA, Research Triangle P...

  12. MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCATANE SULFONATE (PFOS) IN THE RAT

    EPA Science Inventory

    MATERNAL AND DEVELOPMENTAL TOXICITY OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE RAT. C. Lau1, J.M. Rogers1, J.R. Thibodeaux1, R.G. Hanson1, B.E. Grey1, B.D. Barbee1, J.H. Richards2, J.L. Butenoff3. 1Reprod. Tox. Div., 2Exp. Tox. Div., NHEERL, USEPA, Research Triangle Park, NC, 3...

  13. GC AND LC CHROMATOGRAPHIC AND EI, CE, +/- CI, AND ES MASS SPECTRAL CHARACTERISTICS OF SALTS AND AMIDES OF PERFLUOROOCTANESULFONIC ACID

    EPA Science Inventory

    In 1976, fluorine in human blood serum was thought to be present as perfluorooctanic acid; however, in the 1990s it was correctly identified by LC/MS as perfluorooctanesulfonate (PFOS). PFOS was both a commercial product and an end-stage metabolite of numerous substituted amides ...

  14. Rescue of perfluorooctanesulfonate (PFOS)-mediated Sertoli cell injury by overexpression of gap junction protein connexin 43

    NASA Astrophysics Data System (ADS)

    Li, Nan; Mruk, Dolores D.; Chen, Haiqi; Wong, Chris K. C.; Lee, Will M.; Cheng, C. Yan

    2016-07-01

    Perfluorooctanesulfonate (PFOS) is an environmental toxicant used in developing countries, including China, as a stain repellent for clothing, carpets and draperies, but it has been banned in the U.S. and Canada since the late 2000s. PFOS perturbed the Sertoli cell tight junction (TJ)-permeability barrier, causing disruption of actin microfilaments in cell cytosol, perturbing the localization of cell junction proteins (e.g., occluden-ZO-1, N-cadherin-ß-catenin). These changes destabilized Sertoli cell blood-testis barrier (BTB) integrity. These findings suggest that human exposure to PFOS might induce BTB dysfunction and infertility. Interestingly, PFOS-induced Sertoli cell injury associated with a down-regulation of the gap junction (GJ) protein connexin43 (Cx43). We next investigated if overexpression of Cx43 in Sertoli cells could rescue the PFOS-induced cell injury. Indeed, overexpression of Cx43 in Sertoli cells with an established TJ-barrier blocked the disruption in PFOS-induced GJ-intercellular communication, resulting in the re-organization of actin microfilaments, which rendered them similar to those in control cells. Furthermore, cell adhesion proteins that utilized F-actin for attachment became properly distributed at the cell-cell interface, resealing the disrupted TJ-barrier. In summary, Cx43 is a good target that might be used to manage PFOS-induced reproductive dysfunction.

  15. Perfluorooctanoate: Placental and lactational transport pharmacokinetics in rats.

    SciTech Connect

    Hinderliter, Paul M.; Mylchreest, E.; Gannon, S. A.; Butenhoff, J. L.; Kennedy, G.L., Jr.

    2005-07-01

    This study was conducted to develop a quantitative understanding of the potential for gestational and lactational transfer of perfluorooctanoate (PFOA) in the rat. Time-mated female rats were dosed by oral gavage once daily at concentrations of 3, 10, or 30 mg/kg/day of the ammonium salt of PFOA (APFO) starting on gestation (G) day 4 and continuing until sacrifice. On days 10, 15, and 21G, five rats per dose level were sacrificed and blood samples were collected 2h post-dose. Embryos were collected on day 10G, amniotic fluid, placentas, and embryos/fetuses were collected on days 15 and 21G, and fetal blood samples were collected on day 21G. Five rats per dose level were allowed to deliver and nurse their litters, and on days 3, 7, 14, and 21 post-partum (PP) milk and blood samples of maternal and pup were collected 2h post-dose. All samples were analyzed by high-performance liquid chromatography-mass spectrometry (HPLC-MS) for PFOA concentration. Concentrations of PFOA in maternal plasma and milk attained steady state during the sampling interval. The steady-state concentrations in maternal plasma were 10-15, 25-30, and 60-75 microg/mL in rats receiving 3, 10, and 30 mg/kg, respectively. Steady-state concentrations in milk were approximately 10 times less than those in maternal plasma. The concentration of PFOA in fetal plasma on day 21G was approximately half the steady-state concentration in maternal plasma. The milk concentrations appeared to be generally comparable to the concentrations in pup plasma. Pup plasma concentrations decreased from day 3PP to day 7PP, and were similar on days 7, 14, and 21PP at all dose levels. PFOA was detected in placenta (days 15 and 21G), amniotic fluid (days 15 and 21G), embryo (days 10 and 15G), and fetus (day 21G). These pharmacokinetics allow estimation of the dose to developing and nursing rat offspring following maternal exposure.

  16. Characterisation of perfluorooctane sulfonate (PFOS) in a terrestrial ecosystem near a fluorochemical plant in Flanders, Belgium.

    PubMed

    D'Hollander, Wendy; De Bruyn, Luc; Hagenaars, An; de Voogt, Pim; Bervoets, Lieven

    2014-10-01

    Bioaccumulation of perfluorooctane sulfonate (PFOS) in a restricted terrestrial food chain was investigated with the omnivorous wood mouse (Apodemus sylvaticus) on top of the studied food chain. The levels detected are very high compared with literature as a result of the presence of fluorochemical plant in the immediate vicinity of the study area. Soil, surface water, fruits of European elder and common blackberry, invertebrates, bank vole and wood mouse were collected at two sites, e.g. Blokkersdijk, adjacent to the fluorochemical plant, and Galgenweel, a reference site 2 km further away. In wood mouse, the highest PFOS concentrations were found in the liver followed by the pancreas, lungs and kidneys, with the spleen having the lowest levels. In the liver, the concentrations ranged from 787 to 22,355 ng/g ww at Blokkersdijk and these were significantly correlated with those detected in the kidneys (13.7-4,226 ng/g ww). If current results are compared to the findings of a previous study conducted in 2002 at the same sites, a significant decrease of PFOS in livers of wood mouse is observed. To the best of our knowledge, so far no studies reported levels of PFOS in terrestrial invertebrates under field conditions. At Blokkersdijk, PFOS was detected in all invertebrate species ranging from 28 to 9,000 ng/g. Soil and water were also contaminated with levels of respectively 68 ng/g and 22 ng/L. Biota-to-soil accumulation factors ranged from 0.11 to 68 for earthworms. Biomagnification factors (BMFs) of liver wood mouse/berries were as high as 302. BMFs for invertebrates were remarkably lower (up to 2).

  17. Efficient treatment of perfluorohexanoic acid by nanofiltration followed by electrochemical degradation of the NF concentrate.

    PubMed

    Soriano, Álvaro; Gorri, Daniel; Urtiaga, Ane

    2017-04-01

    The present study was aimed at the development of a strategy for removing and degrading perfluorohexanoic acid (PFHxA) from industrial process waters at concentrations in the range 60-200 mg L(-1). The treatment train consisted of nanofiltration (NF) separation followed by electrochemical degradation of the NF concentrate. Using a laboratory-scale system and working in the total recirculation mode, the DowFilm NF270 membrane provided PFHxA rejections that varied in the range 96.6-99.4% as the operating pressure was increased from 2.5 to 20 bar. The NF operation in concentration mode enabled a volume reduction factor of 5 and increased the PFHxA concentration in the retentate to 870 mg L(-1). Results showed that the increase in PFHxA concentration and the presence of calcium sulfate salts did not induce irreversible membrane fouling. The NF retentate was treated in a commercial undivided electrochemical cell provided with two parallel flow-by compartments separated by bipolar boron doped diamond (BDD) electrode, BDD counter anode, and counter cathode. Current densities ranging from 20 to 100 A m(-2) were examined. The electrochemical degradation rate of PFHxA reached 98% and was accompanied by its efficient mineralization, as the reduction of total organic carbon was higher than 95%. Energy consumption, which was 15.2 kWh m(-3) of treated NF concentrate, was minimized by selecting operation at 50 A m(-2). While most of the previous research on the treatment of perfluoroalkyl substances (PFASs) focused on the removal of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), these compounds have been phased out by chemical manufacturers. Our findings are relevant for the treatment of PFHxA, which appears to be one of the present alternatives to long-chain PFASs thanks to its lower bioaccumulative potential than PFOA and PFOS. However, PFHxA also behaves as a persistent pollutant. Moreover, our results highlight the potential of combining

  18. PEFLUOROOCTANOIC ACID-INDUCED IMMUNOMODULATION IN C57BL/6 FEMALE MICE

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA), used in fluoropolymer production, is environmentally persistent, present in human and wildlife populations worldwide, and associated with myriad health effects in laboratory animals. A preliminary risk assessment by the US EPA identified immunosuppr...

  19. TOXICOGENOMIC DISSECTION OF RODENT LIVER TRANSCRIPT PROFILES AFTER EXPOSURE TO PERFLUOROALKYL ACIDS

    EPA Science Inventory

    Exposure to peroxisome proliferator chemicals (PPC) leads to alterations in the balance between hepatocyte growth and apoptosis, increases in liver to body weight ratios and liver tumors. The perfluoroalkyl acids including perfluorooctanoate (PFOA) and perfluorooctane sulfonate (...

  20. Isomers/enantiomers of perfluorocarboxylic acids: Method development and detection in environmental samples

    EPA Science Inventory

    Perfluoroalkyl substances are globally distributed in both urban and remote settings, and routinely are detected in wildlife, humans, and the environment. One of the most prominent and routinely detected perfluoroalkyl substances is perfluorooctanoic acid (PFOA), which has been s...

  1. Perfluorooctane sulfonate (PFOS) distribution and effect factors in the water and sediment of the Yellow River Estuary, China.

    PubMed

    Wang, Shiliang; Wang, Hui; Deng, Wenjing

    2013-10-01

    The distribution of perfluorooctane sulfonate (PFOS) was investigated in a total of 15 water and sediment samples from the Yellow River Estuary, China in April 2011. The results indicated that the concentrations of PFOS in the water and sediment samples averaged 157.5 ng/L and 198.8 ng/g and ranged from 82.30 to 261.8 ng/L and 75.48 to 457.0 ng/g, respectively. The concentrations of PFOS in the sediment column increased from 45.32 to 379.98 ng/g with the decrease of the sampling depth, which showed that the increased PFOS pollution in the sediment appeared in this region in over recent years. The distribution coefficient (K d) of PFOS between water and sediment linearly increased from 0.37 to 4.80 L/g as the salinity (S‰) increased from 0.18 to 4.47. Correlation analysis revealed that K d was significantly and positively correlated to the contents of total organic carbon and clay of the sediment, and salinity. Therefore, salinity was an important parameter in controlling the sediment-water interactions and the fate or transport of PFOS in the aquatic environment. The results of this study showed that the estuary was an important sink for PFOS and suggested that PFOS might be carried with the river water and transported for long distances before it reached to the sea and largely scavenged to the sediment in the estuaries due to the change in salinity.

  2. Investigating sources and pathways of perfluoroalkyl acids (PFAAs) in aquifers in Tokyo using multiple tracers.

    PubMed

    Kuroda, Keisuke; Murakami, Michio; Oguma, Kumiko; Takada, Hideshige; Takizawa, Satoshi

    2014-08-01

    We employed a multi-tracer approach to investigate sources and pathways of perfluoroalkyl acids (PFAAs) in urban groundwater, based on 53 groundwater samples taken from confined aquifers and unconfined aquifers in Tokyo. While the median concentrations of groundwater PFAAs were several ng/L, the maximum concentrations of perfluorooctane sulfonate (PFOS, 990 ng/L), perfluorooctanoate (PFOA, 1800 ng/L) and perfluorononanoate (PFNA, 620 ng/L) in groundwater were several times higher than those of wastewater and street runoff reported in the literature. PFAAs were more frequently detected than sewage tracers (carbamazepine and crotamiton), presumably owing to the higher persistence of PFAAs, the multiple sources of PFAAs beyond sewage (e.g., surface runoff, point sources) and the formation of PFAAs from their precursors. Use of multiple methods of source apportionment including principal component analysis-multiple linear regression (PCA-MLR) and perfluoroalkyl carboxylic acid ratio analysis highlighted sewage and point sources as the primary sources of PFAAs in the most severely polluted groundwater samples, with street runoff being a minor source (44.6% sewage, 45.7% point sources and 9.7% street runoff, by PCA-MLR). Tritium analysis indicated that, while young groundwater (recharged during or after the 1970s, when PFAAs were already in commercial use) in shallow aquifers (<50 m depth) was naturally highly vulnerable to PFAA pollution, PFAAs were also found in old groundwater (recharged before the 1950s, when PFAAs were not in use) in deep aquifers (50-500 m depth). This study demonstrated the utility of multiple uses of tracers (pharmaceuticals and personal care products; PPCPs, tritium) and source apportionment methods in investigating sources and pathways of PFAAs in multiple aquifer systems.

  3. Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: A comparative study.

    PubMed

    Gao, Yanxin; Deng, Shubo; Du, Ziwen; Liu, Kai; Yu, Gang

    2017-02-05

    Chrome plating is an important emission source of perfluorinated compounds (PFCs) industrial uses in China, where two commercial products potassium 2-(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyloxy) (F-53B) and perfluorooctane sulfonate (PFOS) are applied as mist suppressant, causing non-negligible environmental risk. In this paper, anion-exchange resin IRA67 was evaluated for F-53B and PFOS removal from simulated and actual wastewater. Adsorption kinetics exhibited higher adsorption velocity and capacity of IRA67 for PFOS than F-53B due to their difference in molecular structures. Adsorption isotherms demonstrated the adsorption capacity of F-53B and PFOS on IRA67 was 4.2mmol/g and 5.5mmol/g, respectively. Because of the deprotonating of amine groups, solution pH had significant effect on IRA67 at pH>10. The results indicated that besides anion exchange other interactions including hydrophobic interaction and the formation of micelles or hemi-micelles were all involved in adsorption process. Coexisting sulfate and chromate in wastewater decreased adsorption capacities of F-53B and PFOS. The spent resin could be regenerated by the NaCl/NaOH and methanol mixed solution. In the mixed system and actual wastewater IRA67 can simultaneously remove F-53B and PFOS without obvious preference but the removal percent can be affected by competitive effect.

  4. Assembling structures and dynamics properties of perfluorooctane sulfonate (PFOS) at water-titanium oxide interfaces.

    PubMed

    He, Guangzhi; Pan, Gang; Zhang, Meiyi

    2013-09-01

    The surface-associated structures and growth modes of perfluorooctane sulfonate (PFOS) at water-rutile TiO2 interfaces were defined by molecular dynamics (MD) simulations. The results showed that a compact PFOS layer was generated at the rutile surfaces, and the assembling structures and dynamic profiles were crystal-face-dependent. PFOS molecules were attached to the (110) and (001) surfaces mainly by the sulfonate headgroups. A well-defined monolayer was formed on the (110) surface with the perfluorinated alkyl chains nearly perpendicular to the substrate, whereas the C-F chains were inclined at an angle (30-75°) and formed a hemicylinder-like configuration on the (001) surface. On the other hand, the perfluorinated amphiphiles interacted with the (100) plane through both the sulfonate headgroups (relatively strong electrostatic attraction) and the C-F tailgroups (weak van der Waals forces) and yielded an irregular assembling pattern. Water molecules were mostly concentrated more than 17.0 Å away from the solid surfaces and formed a continuous solvent layer, suggesting the super hydrophobicity of perfluorinated alkyl chains. A counterion-bridging mechanism suggested in surfactant adsorption was observed at the molecular scale, where the sulfonate headgroups were linked together by the potassium ions at the surfaces and caused the formation of surface aggregates.

  5. Contribution of diffuse inputs to the aqueous mass load of perfluoroalkyl acids in river and stream catchments in Korea.

    PubMed

    Kim, Seung-Kyu; Li, Dong-Hao; Shoeib, Mahiba; Zoh, Kyung-Duk

    2014-02-01

    Recent studies disagree regarding the contributions of point versus non-point sources to the aqueous mass loads of perfluoroalkyl acids (PFAAs). This study investigated the longitudinal change in PFAA mass load from upstream to downstream stations along rivers and/or streams to assess the relative contributions of point versus nonpoint inputs. With concentrations 10 to 100 times higher than running water, point sources such as wastewater treatment plants (WWTPs) effluent and airport ditch-outlet (ADO) water were separated from neighboring upstream and downstream running waters using principal component analysis. Source waters were characterized by certain predominant components [e.g., perfluorobutylsulfonate (PFBS) and perfluorooctanoic acid (PFOA) in WWTP effluent and perfluorohexylsulfonate (PFHxS) and perfluorooctylsulfonate (PFOS) in ADO water], which were minor components of running water. From a mass balance assessment of PFAA mass load, certain compounds such as PFOA and PFBS dominated the contribution of point sources to the mass load in the running water at downstream stations or in small catchment basins with high levels of industrial activity. Most of the mass load in the investigated catchments was attributable to upstream running water with a minor influence from industrial, commercial, and domestic human activities. Furthermore, the negative relationship of per capita emission factors (hereafter, EFs) with population density and a lower contribution of PFAA from WWTPs (~30% on average) compared to the running water-derived mass load at the national level indicated that diffuse inputs were more important contributors to aqueous PFAA contamination in each catchment basin as well as the entire watershed of the country (Korea). Volatile precursor compounds, which are readily dispersed to neighboring basins and transformed to PFAAs in the ambient environment, can be an important source of these diffuse inputs and will become more significant over time.

  6. Perfluoroalkyl acids in selected wastewater treatment plants and their discharge load within the Lake Victoria basin in Kenya.

    PubMed

    Chirikona, Florah; Filipovic, Marko; Ooko, Seline; Orata, Francis

    2015-05-01

    A major ecological challenge facing Lake Victoria basin is the influx of chemical contaminants from domestic, hospital, and industrial effluents. Determined levels of perfluoroalkyl acids (PFAAs) in wastewater and sludge from selected wastewater treatment plants (WWTPs) in Kenya are presented and their daily discharge loads calculated for the first time within the Lake Victoria basin. Samples were extracted and separated using solid-phase extraction and ultra-performance liquid chromatography (UPLC)-MS/MS or LC-MS/MS methodology. All sewage sludge and wastewater samples obtained from the WWTPs contained detectable levels of PFAAs in picogram per gram dry weight (d.w.) and in nanogram per liter, respectively. There was variability in distribution of PFAAs in domestic, hospital, and industrial waste with domestic WWPTs observed to contain higher levels. Almost all PFAA homologues of chain length C-6 and above were detected in samples analyzed, with long-chain PFAAs (C-8 and above chain length) being dominant. The discharge from hospital contributes significantly to the amounts of PFAAs released to the municipal water systems and the lake catchment. Using the average output of wastewater from the five WWTPs, a mass load of 1013 mg day(-1) PFAAs per day discharged has been calculated, with the highest discharge obtained at Kisumu City (656 mg day(-1)). The concentration range of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in wastewater was 1.3-28 and 0.9-9.8 ng L(-1) and in sludge samples were 117-673 and 98-683 pg g(-1), respectively.

  7. Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S. Adults: Variation According to TPOAb and Iodine Status (NHANES 2007–2008)

    PubMed Central

    Webster, Glenys M.; Rauch, Stephen A.; Marie, Nathalie Ste; Mattman, Andre; Lanphear, Bruce P.; Venners, Scott A.

    2015-01-01

    Background: Perfluoroalkyl acids (PFASs) are suspected thyroid toxicants, but results from epidemiological studies are inconsistent. Objectives: We examined associations between serum PFASs and thyroid hormones (THs) in a representative, cross-sectional sample of U.S. adults. We hypothesized that people with high thyroid peroxidase antibodies and low iodine would be more susceptible to PFAS-induced thyroid disruption. Methods: Our sample included 1,525 adults (≥ 18 years) from the 2007–2008 NHANES study with available serum PFASs and THs. We examined associations between four serum PFASs [perfluorohexane sulfonate (PFHxS), perfluorononanoate (PFNA), perfluorooctanoate (PFOA), and perfluorooctane sulfonate (PFOS)], and serum THs [free triiodothyronine (fT3), free thyroxine (fT4), fT3/fT4, thyroid-stimulating hormone (TSH), total T3 (TT3), and total T4 (TT4)] using multivariable linear regression. We stratified subjects into four groups by two indicators of thyroid “stress”: thyroid peroxidase antibody (TPOAb ≥ 9 IU/mL) and iodine status (< 100 μg/L urine). Results: Of 1,525 participants, 400 (26%) had low iodine only (T0I1), 87 (6%) had high TPOAb only (T1I0), and 26 (2%) had both high TPOAb and low iodine (T1I1). In general, associations were similar among participants in the groups with neither (T0I0) or only one thyroid stressor (T0I1 or T1I0), suggesting that PFAS–TH associations were not modified by high TPOAb or low iodine alone. However, PFHxS and PFOS were negatively associated (p < 0.05) with fT4, and all four PFASs were positively associated (p < 0.05) with fT3, fT3/fT4, TSH, and TT3 in the group with joint exposure to high TPOAb and low iodine (T1I1). Conclusions: We found evidence of PFAS-associated thyroid disruption in a subset of U.S. adults with high TPOAb (a marker of autoimmune hypothyroidism) and low iodine status, who may represent a vulnerable subgroup. However, the small sample size, cross-sectional design, and possibility of

  8. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats.

    PubMed

    López-Doval, S; Salgado, R; Lafuente, A

    2016-07-01

    This study was undertaken to evaluate the possible role of several reproductive hormone receptors on the disruption of the hypothalamic-pituitary-testis (HPT) axis activity induced by perfluorooctane sulfonate (PFOS). The studied receptors are the gonadotropin-releasing hormone receptor (GnRHr), luteinizing hormone receptor (LHr), follicle-stimulating hormone receptor (FSHr), and the androgen receptor (Ar). Adult male rats were orally treated with 1.0; 3.0 and 6.0 mg of PFOS kg(-1) d(-1) for 28 days. In general terms, PFOS can modify the relative gene and protein expressions of these receptors in several tissues of the reproductive axis. At the testicular level, apart from the expected inhibition of both gene and protein expressions of FSHr and Ar, PFOS also stimulates the GnRHr protein and the LHr gene expression. The receptors of the main hormones involved in the HPT axis may have an important role in the disruption exerted by PFOS on this axis.

  9. Phenotypic Dichotomy Following Developmental Exposure to Perfluorooctanic Acid (PFOA) Exposure in CD-1 Mice: Low Doses Induce Elevated Serum, Leptin, Insulin, and Overweight in Mid-Life.

    EPA Science Inventory

    The synthetic surfactant, perfluorooctanoic acid (PFOA) is a proven developmental toxicant in mice, causing prenatal pregnancy loss, increased neonatal mortality, delayed eye opening, and abnormal mammary gland growth in animals exposed during fetal life. PFOA is found in the ser...

  10. Toxicokinetics of perfluorooctanoate (PFOA) in rainbow trout(Oncorhynchus mykiss)

    EPA Science Inventory

    Perfluoroalkyl acids (PFAAs) are widely used as stain resistant coatings for cloth, paper, and leather, and as surfactants, fire-fighting foams, and photographic developers. Individual PFAAs have been shown to accumulate in fish and wildlife; however, the extent of this accumulat...

  11. AROMATASE-B (CYP 19B) EXPRESSION IN FATHEAD MINNOWS (PIMEPHALES PROMELAS) EXPOSED TO PERFLUOROOCTANE (PFOS) AND THE AROMATASE INHIBITOR FADROZOLE

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) is a fluorinated organic contaminant that is globally distributed in both humans and wildlife. PFOS belongs to a family of perfluorinated sulfonates that are highly persistent in the environment and have been commercially produced for over 40 year...

  12. Is Ongoing Sulfluramid Use in South America a Significant Source of Perfluorooctanesulfonate (PFOS)? Production Inventories, Environmental Fate, and Local Occurrence.

    PubMed

    Löfstedt Gilljam, John; Leonel, Juliana; Cousins, Ian T; Benskin, Jonathan P

    2016-01-19

    Despite international phase-out initiatives, production and use of perfluorooctanesulfonate (PFOS) and related substances continues in some countries. In Brazil, the PFOS-precursor N-ethyl perfluorooctane sulfonamide (EtFOSA) is used in Sulfluramid, a pesticide for controlling leaf-cutting ants. New data on production, environmental fate, and occurrence of Brazilian Sulfluramid are reported herein. From 2003 to 2013, Brazilian Sulfluramid manufacturing increased from 30 to 60 tonnes yr(-1) EtFOSA. During this time <1.3 tonnes yr(-1) were imported, while exports increased from ∼0.3 to 2 tonnes yr(-1). From 2004 to 2015, most EtFOSA was exported to Argentina (7.2 tonnes), Colombia (2.07 tonnes), Costa Rica (1.13 tonnes), Equador (2.16 tonnes), and Venezuela (2.4 tonnes). Within Brazil, sales occurred primarily in the states of Minas Gerais, São Paulo, Mato Grosso do Sul, Espírito Santo, and Bahia. Model simulations predict EtFOSA will partition to soils, while transformation products perfluorooctane sulfonamide (FOSA) and PFOS are sufficiently mobile to leach into surface waters. In support of these predictions, up to 3400 pg L(-1) of FOSA and up to 1100 pg L(-1) of PFOS were measured in Brazilian surface water, while EtFOSA was not detected. The high FOSA/PFOS ratio observed here (up to 14:1) is unprecedented in the scientific literature to our knowledge. Depending on the extent of conversion of EtFOSA, cumulative Brazilian Sulfluramid production and import from 2004 to 2015 may contribute between 167 and 487 tonnes of PFOS/FOSA to the environment. These levels are clearly nontrivial and of concern since production is continuing unabated.

  13. Guest Comment: Polyfluorinated Compounds Focus Issue

    EPA Science Inventory

    Over the past decade, a great deal has been learned about the perfluoroalkyl acids (PFAAs), a new class of environmental contaminants that includes the now well-known perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and many other related compounds. These mater...

  14. Adsorption of perfluoroalkyl acids by carbonaceous adsorbents: Effect of carbon surface chemistry.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2015-07-01

    Adsorption by carbonaceous sorbents is among the most feasible processes to remove perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) from drinking and ground waters. However, carbon surface chemistry, which has long been recognized essential for dictating performance of such sorbents, has never been considered for PFOS and PFOA adsorption. Thus, the role of surface chemistry was systematically investigated using sorbents with a wide range in precursor material, pore structure, and surface chemistry. Sorbent surface chemistry overwhelmed physical properties in controlling the extent of uptake. The adsorption affinity was positively correlated carbon surface basicity, suggesting that high acid neutralizing or anion exchange capacity was critical for substantial uptake of PFOS and PFOA. Carbon polarity or hydrophobicity had insignificant impact on the extent of adsorption. Synthetic polymer-based Ambersorb and activated carbon fibers were more effective than activated carbon made of natural materials in removing PFOS and PFOA from aqueous solutions.

  15. Association between thyroid profile and perfluoroalkyl acids: Data from NHNAES 2007–2008

    SciTech Connect

    Jain, Ram B.

    2013-10-15

    The effect of six perfluoroalkyl acids (PFAAs), namely, perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorodecanoic acid (PFDE), perfluorohexane sulfonic acid (PFHxS), 2-(N-methyl-perfluorooctane sulfonamide) acetic acid (MPAH), and perfluorononanoic acid (PFNA) on the levels of six thyroid function variables, namely, thyroid stimulating hormone (TSH), free and total thyroxine (FT4, TT4), free and total triiodothyronine (FT3, TT3), and thyroglobulin (TGN) was evaluated. Data from National Health and Nutrition Examination Survey for the years 2007–2008 were used for this evaluation. TSH levels increased with increase in levels of PFOA (p<0.01). There were no statistically significant associations between the levels of FT3, and FT4 with the levels of any of the six PFAAs. Levels of TT3 were found to increase with the levels of PFOA (p=0.01) and TT4 levels were found to increase with increase in PFHxS levels (p<0.01). Males had statistically significantly higher levels of FT3 than females and females had statistically significantly higher levels of TT4 than males. As compared to non-Hispanics whites and Hispanics, non-Hispanic blacks had lower levels of TSH, FT3, TT3, and TT4 but Hispanics had the lowest levels of TGN. Age was negatively associated with FT3 and TT3 but positively associated with FT4 and TT4. Non-smokers had higher levels of TSH and TT4 than smokers and smokers had higher levels of FT3 and TGN than non-smokers. Iodine deficiency was associated with increased levels of TSH, TT3, TT4, and TGN. -- Highlights: • Levels of total triiodothyronine were found to increase with the levels of PFOA. • Total thyroxine increased with increase in levels of perfluorohexane sulfonic acid. • There was a positive association between the levels of PFOA and TSH. • Iodine deficiency was associated with elevated levels of TSH, total T3 and T4. • Iodine deficiency was associated with elevated levels of thyroglobulin.

  16. Induction of p53-mediated apoptosis in splenocytes and thymocytes of C57BL/6 mice exposed to perfluorooctane sulfonate (PFOS)

    SciTech Connect

    Dong, Guang-Hui; Wang, Jing; Zhang, Ying-Hua; Liu, Miao-Miao; Wang, Da; Zheng, Li; Jin, Yi-He

    2012-10-15

    Perfluorooctane sulfonate (PFOS) is a persistent environmental contaminant found in human and wildlife tissues. It has been reported that PFOS can cause atrophy of the immune organs and apoptosis of immunocytes in rodents. However, the mechanism behind such cause is still unclear. To understand the model of cell death and its mechanism on lymphoid cells in vivo, we conducted a dose/response experiment in which 4 groups of male adult C57BL/6 mice (12 mice per group) were dosed daily by oral gavage with PFOS at 0, 0.0167, 0.0833, or 0.8333 mg/kg/day, yielding targeted Total Administered Dose (TAD) of 0, 1, 5, or 50 mg PFOS/kg, respectively, over 60 days. The results showed that spleen and thymus weight were significantly reduced in the highest PFOS-dose-group (TAD 50 mg PFOS/kg) compared to the control group, whereas liver weight was significantly increased. We analyzed the cell death via apoptosis with an annexin-V/propidium iodide assay by flow cytometry, and observed that both the percentage of apoptosis and the expression of the pro-apoptotic proteins p53 in splenocytes and thymocytes increased in a dose-related manner after PFOS treatment. We also observed that PFOS induced p53-dependent apoptosis through the cooperation between the Bcl-xl down regulation without changing the Bcl-2 and Bax expression. The down regulation of Bcl-xl was strongly indicating mitochondrial involvement in apoptosis. It is confirmed by the release of cytochrome c and activation of caspase-3. All of these findings establish an important role of p53 and mitochondrial function in PFOS induced toxic environment in the host. -- Highlights: ► PFOS immunotoxicity is caused by induction of apoptosis via the p53 activation. ► PFOS exposure can induce down regulation of Bcl-xl. ► Mitochondria are involved in PFOS-induced apoptosis. ► PFOS exposure can cause the release of cytochrome c and activation of caspase-3.

  17. Perfluorooctanesulfonate (PFOS) Conversion from N-Ethyl-N-(2-hydroxyethyl)-perfluorooctanesulfonamide (EtFOSE) in male Sprague Dawley rats after inhalation exposure.

    PubMed

    Chang, Sue; Mader, Brian T; Lindstrom, Kent R; Lange, Cleston C; Hart, Jill A; Kestner, Thomas A; Schulz, Jay F; Ehresman, David J; Butenhoff, John L

    2017-05-01

    Ethyl-N-(2-hydroxyethyl)-perfluorooctanesulfonamide (EtFOSE) was one of the key building blocks for many of the perfluorooctanesulfonyl-based chemistry and laboratory studies have shown that EtFOSE can metabolically degrade to perfluorooctanesulfonate (PFOS). Non-occupational contribution sources to PFOS are thought to occur in general population via diets, drinking water, air and dust. For workers, however, the exposure route was mostly airborne and the exposure source was predominantly to precursor compounds such as EtFOSE. We undertook this study to investigate how much EtFOSE was converted to PFOS in the serum for male rats after 6h of exposure to EtFOSE vapor (whole body) at ambient temperature, which simulated a work place exposure scenario. There were no abnormal clinical observations and all rats gained weight during study. Interim tail-vein blood samples, collected up to 21 days after exposure, were analyzed for Et-FOSE and PFOS concentrations by LC-MS/MS. Upon inhalation exposure, the biotransformation of EtFOSE to PFOS in serum in the male rats was rapid and very little EtFOSE was detected in the serum within 24h after EtFOSE exposure. The highest conversion to PFOS in serum after exposure to EtFOSE vapor appeared to occur between Day 8-14 post exposure. Considering the potential surface and fur adsorption of test compound in the whole-body exposure system, our data would support that at least 10% of the inhaled EtFOSE was biotransformed to PFOS in the serum based on the range of lower 95% CI (confidence interval) values. This information is valuable because it quantitatively translates EtFOSE exposure into serum PFOS concentration, which serves as a matrix for internal dosimetry (of PFOS exposure) that can be used as an anchor across species as well as between different exposure routes.

  18. PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  19. (CHINA) PERFLUORINATED ORGANIC COMPOUND EXPOSURE ASSESSMENT RESEARCH

    EPA Science Inventory

    A wide range of perfluorinated organic compounds (PFCs) has been used in a variety of industrial processes and consumer products. The most commonly studied PFCs include perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), but there are many more compounds in this c...

  20. PERFLUORINATED COMPOUNDS IN THE CAPE FEAR DRAINAGE BASIN IN NORTH CAROLINA

    EPA Science Inventory

    Concern over perfluorinated organic compounds (PFCs), e.g., perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), is due to a number of recent studies which show that the PFCs are persistent, bioaccumulative, and toxic. Despite sustained interest in this topic, lit...

  1. Evaluation of biochemical effects related to perfluorooctane sulfonic acid exposure in organohalogen-contaminated great tit (Parus major) and blue tit (Parus caeruleus) nestlings.

    PubMed

    Hoff, Philippe Tony; Van de Vijver, Kristin; Dauwe, Tom; Covaci, Adrian; Maervoet, Johan; Eens, Marcel; Blust, Ronny; De Coen, Wim

    2005-12-01

    A perfluorooctane sulfonic acid (PFOS) biomonitoring survey was conducted on great tit (Parus major) and blue tit (Parus caeruleus) nestlings from Blokkersdijk, a bird reserve in the proximity of a fluorochemical plant in Antwerp (Belgium) and Fort IV, a control area. PFOS, together with 11 organochlorine pesticides, 20 polychlorinated biphenyl congeners and 7 polybrominated diphenyl ethers were measured in liver tissue. The hepatic PFOS concentrations at Blokkersdijk (86-2788 and 317-3322 ng/g wet weight (ww) for great and blue tit, respectively) were among the highest ever measured and were significantly higher than at the control area (17-206 and 69-514 ng/g ww for great and blue tit, respectively). The hepatic PFOS concentration was species- and sex-independent and correlated significantly and positively with the serum alanine aminotransferase activity and negatively with the serum cholesterol and triglyceride levels in both species but did not correlate with condition or serum protein concentration. In the great tit, a significant positive correlation was observed between the liver PFOS concentration and the relative liver weight. In the blue tit, the hepatic PFOS concentration correlated positively and significantly with hematocrite values. None of the investigated organohalogen pollutants except for PFOS were suggested to be involved in the observed biological alterations.

  2. Developmental retardation, reduced fecundity, and modulated expression of the defensome in the intertidal copepod Tigriopus japonicus exposed to BDE-47 and PFOS.

    PubMed

    Han, Jeonghoon; Won, Eun-Ji; Lee, Min-Chul; Seo, Jung Soo; Lee, Su-Jae; Lee, Jae-Seong

    2015-08-01

    2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and perfluorooctane sulfonate (PFOS) are widely dispersed persistent organic pollutants (POPs) in the marine ecosystem. However, their toxic effects on marine organisms are still poorly understood. In this study, we investigated the effects of BDE-47 and PFOS on development and reproduction at the organismal level and reactive oxygen species (ROS) production and gene expression patterns of the defensome at the cellular level in the intertidal copepod Tigriopus japonicus. In copepods exposed to BDE-47 and PFOS, we observed developmental retardation and reduced fecundity, suggesting repercussions on in vivo endpoints through alterations to the normal molting and reproduction system of T. japonicus. BDE-47 and PFOS increased levels of ROS in T. japonicus in a concentration-dependent manner, indicating that POPs can induce oxidative stress through the generation of ROS. Additionally, transcript profiles of genes related to detoxification (e.g., CYPs), antioxidant functions (e.g., GST- sigma, catalase, MnSOD), apoptosis (e.g., p53, Rb), and cellular proliferation (e.g., PCNA) were modulated over 72h in response to BDE-47 (120μg/L) and PFOS (1000μg/L). These findings indicate that BDE-47 and PFOS can induce oxidative stress-mediated DNA damage repair systems with transcriptional regulation of detoxification, antioxidant, and apoptosis-related genes, resulting in developmental retardation and reduced fecundity in the copepod T. japonicus.

  3. Modeling the Pharmacokinetics of Perfluorooctanoic Acid (PFOA) During Gestation and Lactation in Mice

    EPA Science Inventory

    To address the pharmacokinetics of PFOA during gestation and lactation, a biologically supported dynamic model was developed. A two compartment system linked via placental blood flow described gestation, while milk production linked the dam to a pup litter compartment during lact...

  4. An Evaluation of Gestational Exposure to Perfluorooctanoic Acid (PFOA): Effects on Body Composition and Physiological Factors

    EPA Science Inventory

    Exposure to environmental pollutants can be a factor for induction of metabolic disorders. This study examined if exposure to PFOA during development could alter body composition and other physiological outcomes. Study 1: Pregnant CD-1 mice were gavaged with PFOA at 0,0.001,0.01,...

  5. Disposition of Perfluorooctanoic Acid (PFOA) in Pregnant and Lactating CD-1 Mice and Their Pups

    EPA Science Inventory

    Previous studies in mice prenatally-exposed to PFOA demonstrate growth and developmental effects, including impaired body weight gain and mammary gland development, delayed eye opening, and increased mortality. Those dose dependent effects appeared to worsen if offspring exposed ...

  6. Testing the Uterotrophic Activity of Perfluorooctanoic Acid (PFOA) in the Immature CD-1 Mouse

    EPA Science Inventory

    The uterotrophic assay is an in vivo screening tool used to determine the estrogenic or anti-estrogenic potential of an exogenously administered compound. Recent studies reported that PFOA increased activity of estrogen-responsive genes in fish, some in association with liver tum...

  7. Combined effects of perfluorooctane sulfonate (PFOS) and maternal restraint stress on hypothalamus adrenal axis (HPA) function in the offspring of mice

    SciTech Connect

    Ribes, Diana; Fuentes, Silvia; Torrente, Margarita; Colomina, M. Teresa; Domingo, Jose L.

    2010-02-15

    Although it is known that prenatal exposure to perfluorooctane sulfonate (PFOS) can cause developmental adverse effects in mammals, the disruptive effects of this compound on hormonal systems are still controversial. Information concerning the effects of PFOS on hypothalamus adrenal (HPA) axis response to stress and corticosterone levels is not currently available. On the other hand, it is well established that stress can enhance the developmental toxicity of some chemicals. In the present study, we assessed the combined effects of maternal restraint stress and PFOS on HPA axis function in the offspring of mice. Twenty plug-positive female mice were divided in two groups. Animals were given by gavage 0 and 6 mg PFOS/kg/day on gestation days 12-18. One half of the animals in each group were also subjected to restraint stress (30 min/session, 3 sessions/day) during the same period. Five plug-positive females were also included as non-manipulated controls. At 3 months of age, activity in an open-field and the stress response were evaluated in male and female mice by exposing them to 30 min of restraint stress. Male and female offspring were subsequently sacrificed and blood samples were collected to measure changes in corticosterone levels at four different moments related to stress exposure conditions: before stress exposure, immediately after 30 min of stress exposure, and recuperation levels at 60 and 90 min after stress exposure. Results indicate corticosterone levels were lower in mice prenatally exposed to restraint. In general terms, PFOS exposure decreased corticosterone levels, although this effect was only significant in females. The recuperation pattern of corticosterone was mainly affected by prenatal stress. Interactive effects between PFOS and maternal stress were sex dependent. The current results suggest that prenatal PFOS exposure induced long-lasting effects in mice.

  8. Changes in morphometry and association between whole-body fatty acids and steroid hormone profiles in relation to bioaccumulation patterns in salmon larvae exposed to perfluorooctane sulfonic or perfluorooctane carboxylic acids.

    PubMed

    Arukwe, Augustine; Cangialosi, Maria V; Letcher, Robert J; Rocha, Eduardo; Mortensen, Anne S

    2013-04-15

    In the present study, we have used salmon embryos whose continuous exposure to waterborne PFOA or PFOS at 100 μg/L started as freshly fertilized eggs, and lasted for a total of 52 days. PFOS and PFOA were dissolved in methanol (carrier vehicle) whose concentration never exceeded 0.01% of total tank volume. Samples were collected at day 21, 28, 35, 52, 49 and 56 after the start of the exposure. Note that days 49 and 56 represent end of exposure and 1 week after a recovery period, respectively. Tissue bioaccumulations were determined by HPLC/MS/MS, steroid hormones, fatty acids (FAs) and lipids were determined by GC-MS, while mRNA expression levels of genes were determined by qPCR in whole body homogenate. We observed that PFOS and PFOA showed a steady increase in whole body burden during the exposure period, with a slight decrease after the recovery period. Calculated somatic indexes showed that PFOA produced increases in heart-, thymus-, liver- and kidney somatic indexes (HSI, TSI, LSI and KSI). PFOA and PFOS exposure produced significant decreases in whole body dehydroepiandrosterone (DHEA), estrone and testosterone at sampling day 21 and a strong increase of cortisol and cholesterol at the end of recovery period (day 56). PFOA and PFOS effects differed with DHEA and estrone. While PFOS decreased DHEA levels, PFOA produced an increase at day 49, and while PFOS decreased estrone, PFOA produced a slight increase at day 56. We observed changes in FA composition that predominantly involved increases in FA methyl esters (FAMEs), mono- and poly-unsaturated FA (MUFA and PUFA) and a decrease in n-3/n-6 PUFA ratio by both PFOA and PFOS. Particularly, an increase in - pentadecenoic MUFA (15:1), two n-3 PUFAs α-linolenic acid [ALA: 18:3 n3] and eicosapentaenoic acid [EPA: 20:5 n-3] and n-6 PUFA: arachidonic acid [ARA: 20:4 n6], docosapentaenoic acid (DPA) by PFOA and PFOS were observed. These effects were associated with changes in mRNA expression of FA elongase (FAE), Δ5

  9. Critical Role of PPAR-α in Perfluorooctanoic Acid– and Perfluorodecanoic Acid–Induced Downregulation of Oatp Uptake Transporters in Mouse Livers

    PubMed Central

    Cheng, Xingguo; Klaassen, Curtis D.

    2008-01-01

    Perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) have been detected globally in wildlife and humans. Data from a gene array indicate that PFOA decreases organic anion transporting polypeptides (Oatps) in liver. Na+-taurocholate cotransporting polypeptide (Ntcp) and Oatp1a1, 1a4, and 1b2 are major transporters responsible for uptake of bile acids (BAs) and other organic compounds into liver. The purpose of the present study was to determine the effects of two perfluorinated fatty acids, PFOA and PFDA, on mRNA and protein expression of hepatic uptake transporters Oatps and Ntcp, and to determine the underlying regulatory mechanisms by using peroxisome proliferator-activated receptor alpha (PPAR-α), constitutive androstane receptor, pregnane-X receptor, NF-E2–related factor 2, and farnesoid X receptor-null mouse models. After 2 days following a single i.p. administration, PFOA did not alter serum BA concentrations, but PFDA increased serum BA concentrations 300%. Furthermore, PFOA decreased mRNA and protein expression of Oatp1a1, 1a4, and 1b2, but not Ntcp in mouse liver. In contrast, PFDA decreased mRNA and protein expression of all four transporters, and decreased the mRNA expression in a dose-dependent manner, with the decrease of Oatp1a4 occurring at lower doses than the other three transporters. Multiple mechanisms are likely involved in the down-regulation of mouse Oatps and Ntcp by PFDA. By using the various transcription factor-null mice, PPAR-α was shown to play a central role in the down-regulation of Oatp1a1, 1a4, 1b2, and Ntcp by PFDA. The current studies provide important insight into understanding the mechanisms by which PFDA regulate the expression of hepatic uptake transporters. In conclusion, PFOA and PFDA decrease mouse liver uptake transporters primarily via activation of PPAR-α. PMID:18703564

  10. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in Chicken Embryos and Hatchlings

    EPA Science Inventory

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxi...

  11. Pathology Working Group review and evaluation of proliferative lesions of mammary gland tissues in female rats fed ammonium perfluorooctanoate (APFO) in the diet for 2 years.

    PubMed

    Hardisty, Jerry F; Willson, Gabrielle A; Brown, W Ray; McConnell, Ernest E; Frame, Steven R; Gaylor, David W; Kennedy, Gerald L; Butenhoff, John L

    2010-04-01

    Perfluorooctanoate (PFO) is a perfluorinated carboxylate that is widely distributed in the environment. A 2-year chronic study was conducted in rats fed either 30 or 300 ppm of ammonium perfluorooctanoate (APFO). To investigate the possible relationship of APFO exposure to proliferative mammary lesions, a Pathology Working Group (PWG) review of the original slides was performed. The consensus reached by the PWG was that the incidence of mammary-gland neoplasms was not affected by chronic dietary administration of APFO. Therefore, feeding female rats up to 300 ppm of APFO resulted in no increase in proliferative lesions of the mammary tissue.

  12. Occurrence of perfluoroalkyl surfactants in water, fish, and birds from New York State.

    PubMed

    Sinclair, Ewan; Mayack, David T; Roblee, Kenneth; Yamashita, Nobuyoshi; Kannan, Kurunthachalam

    2006-04-01

    Concentrations of perfluorooctanesulfonate (PFOS) and several other perfluoroalkyl surfactants (PASs) were determined in nine major water bodies (n = 51) of New York State (NYS). These PASs were also measured in the livers of two species of sport fish (n = 66) from 20 inland lakes in NYS. Finally, perfluorinated compounds were measured in the livers of 10 species of waterfowl (n = 87) from the Niagara River region in NYS. PFOS, perfluorooctanoic acid (PFOA), and perfluorohexanesulfonate (PFHS) were ubiquitous in NYS waters. PFOA was typically found at higher concentrations than were PFOS and PFHS. Elevated concentrations of PFOS were found in surface waters of Lake Onondaga, and elevated concentrations of PFOA were found in the Hudson River. PFOS was the most abundant perfluorinated compound in all fish and bird samples. PFOS concentrations in the livers of fishes ranged from 9 to 315 ng/g wet weight. PFOS, PFOA, and PFOSA (perfluorooctanesulfonamide) concentrations in smallmouth and largemouth bass (taken together) caught in remote mountain lakes with no known point sources of PAS contamination were 14 to 207, < 1.5 to 6.1, and < 1.5 to 9.8 ng/g wet weight, respectively. PFOS concentrations in the livers of birds ranged from 11 to 882 ng/g wet weight. PFOS concentrations were 2.5-fold greater (p = 0.001) in piscivorous birds than in non-piscivorous birds. However, PFOA, PFOSA, and PFHS were not found in bird livers. Overall, average concentrations of PFOS in fish were 8850-fold greater than those in surface water. An average biomagnification factor of 8.9 was estimated for PFOS in common merganser relative to that in fish. This study highlights the significance of dietary fish in PFOS accumulation in the food chain. Furthermore, our results provide information on the distribution of PASs in natural waters, fish, and several bird species in NYS.

  13. Perfluorinated acid isomer profiling in water and quantitative assessment of manufacturing source.

    PubMed

    Benskin, Jonathan P; Yeung, Leo W Y; Yamashita, Nobuyoshi; Taniyasu, Sachi; Lam, Paul K S; Martin, Jonathan W

    2010-12-01

    A method for isomer profiling of perfluorinated compounds (PFCs) in water was developed and applied to quantitatively assess the contributions from electrochemical (ECF) and telomer manufacturing processes around source regions of North America, Asia, and Europe. With the exception of 3 sites in Japan, over 80% of total perfluorooctanoate (PFOA, C(7)F(15)COO(-)) was from ECF, with the balance attributable to strictly linear (presumably telomer) manufacturing source(s). Comparing PFOA isomer profiles in samples from China, with PFOA obtained from a local Chinese manufacturer, indicated <3% difference in overall branched isomer content; thus, exclusive contribution from local ECF production cannot be ruled out. In Tokyo Bay, ECF, linear-telomer, and isopropyl-telomer sources contributed to 33%, 53%, and 14% of total PFOA, respectively. Perfluorooctane sulfonate (PFOS, C(8)F(17)SO(3)(-)) isomer profiles were enriched in branched content (i.e., >50% branched) in the Mississippi River but in all other locations were similar or only slightly enriched in branched content relative to historical ECF PFOS. Isomer profiles of other PFCs are also reported. Overall, these data suggest that, with the exception of Tokyo Bay, ECF manufacturing has contributed to the bulk of contamination around these source regions, but other sources are significant, and remote sites should be monitored.

  14. Association between perfluorinated compounds and pathological conditions in southern sea otters

    USGS Publications Warehouse

    Kannan, K.; Perrotta, E.; Thomas, N.J.

    2006-01-01

    Concentrations of four perfluorinated contaminants, including perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), were measured in liver tissue from 80 adult female sea otters collected from the California coast during 1992a??2002. Concentrations of PFOS and PFOA were in the ranges of <1a??884 and <5a??147 ng/g, wet wt, respectively. Concentrations of PFOA in the livers of these sea otters were among the highest values reported for marine mammals to date. Liver tissue from 6 male sea otters also was analyzed and contained significantly higher concentrations of PFOS than did tissues from female otters. To examine the association between exposures and potential effects, concentrations of PFOS and PFOA were compared among the adult female otters that died from infectious diseases, noninfectious causes, and from apparent emaciation. Concentrations of both PFOA and PFOS were significantly higher in sea otters in the infectious disease category than in the noninfectious category. Concentrations of PFOS and PFOA were not significantly different between noninfectious and emaciated otters, suggesting that the poor nutritive (body) status of emaciated otters did not affect the concentrations of perfluorochemicals in livers. Concentrations of PFOA increased significantly from 1992 to 2002, whereas PFOS concentrations increased from 1992 to 1998 and then decreased after 2000. Significant association between infectious diseases and elevated concentrations of PFOS/PFOA in the livers of sea otters is a cause for concern and suggests the need for further studies.

  15. Association between perfluorinated compounds and pathological conditions in southern sea otters.

    PubMed

    Kannan, Kurunthachalam; Perrotta, Emily; Thomas, Nancy J

    2006-08-15

    Concentrations of four perfluorinated contaminants, including perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA), were measured in liver tissue from 80 adult female sea otters collected from the California coast during 1992-2002. Concentrations of PFOS and PFOA were in the ranges of <1-884 and <5-147 ng/g, wet wt, respectively. Concentrations of PFOA in the livers of these sea otters were among the highest values reported for marine mammals to date. Liver tissue from 6 male sea otters also was analyzed and contained significantly higher concentrations of PFOS than did tissues from female otters. To examine the association between exposures and potential effects, concentrations of PFOS and PFOA were compared among the adult female otters that died from infectious diseases, noninfectious causes, and from apparent emaciation. Concentrations of both PFOA and PFOS were significantly higher in sea otters in the infectious disease category than in the noninfectious category. Concentrations of PFOS and PFOA were not significantly different between noninfectious and emaciated otters, suggesting that the poor nutritive (body) status of emaciated otters did not affectthe concentrations of perfluorochemicals in livers. Concentrations of PFOA increased significantly from 1992 to 2002, whereas PFOS concentrations increased from 1992to 1998 and then decreased after 2000. Significant association between infectious diseases and elevated concentrations of PFOS/PFOA in the livers of sea otters is a cause for concern and suggests the need for further studies.

  16. Temporal trends of perfluoroalkane sulfonic acids and their sulfonamide-based precursors in herring from the Swedish west coast 1991-2011 including isomer-specific considerations.

    PubMed

    Ullah, Shahid; Huber, Sandra; Bignert, Anders; Berger, Urs

    2014-04-01

    A method was developed for simultaneous analysis of perfluoroalkane sulfonic acids (PFSAs) and their sulfonamide-based precursors (perfluoroalkane sulfonamidoacetic acids (FASAAs), sulfonamides (FASAs), and sulfonamidoethanols (FASEs)) in fish muscle. Extraction was performed with acetonitrile followed by a clean-up and fractionation step and instrumental analysis by UPLC/MS/MS and GC/MS. Time trends of PFSAs and their precursors in herring muscle samples originating from the Kattegat at the west coast of Sweden were investigated covering the years 1991-2011. The following analytes were detected, all with decreasing or unchanged trends between 1991 and 2011: Perfluorobutane sulfonic acid (PFBS, below the method detection limit (acid (PFHxS, 9-38pg/g), perfluorooctane sulfonic acid (PFOS, 240-930pg/g), perfluorodecane sulfonic acid (PFDS, acid (MeFOSAA and EtFOSAA, 2-39 and 2-31pg/g, respectively) and perfluorooctane sulfonamide (FOSA, 78-920pg/g). The highest concentrations were found for PFOS and FOSA around the turn of the century. Shorter disappearance half-lives were observed for precursors compared to PFSAs. Assuming that these trend differences are representative for fish consumed by the general Swedish population, this observation suggests that the relative contribution of precursors to total human exposure to PFOS via fish intake has decreased in Sweden over the study period. PFOS precursors in fish may have constituted a significant indirect exposure pathway for PFOS in the 1990s. Isomer-specific analysis of PFOS and FOSA revealed <10% relative contributions of branched isomers to total PFOS and total FOSA. Furthermore, the percentage branched isomers decreased over time for both compounds. These findings are contrary to patterns and temporal trends of PFOS isomers commonly found in human serum. In combination with literature data on isomer patterns

  17. More signs of neurotoxicity of surfactants and flame retardants - Neonatal PFOS and PBDE 99 cause transcriptional alterations in cholinergic genes in the mouse CNS.

    PubMed

    Hallgren, Stefan; Fredriksson, Anders; Viberg, Henrik

    2015-09-01

    Maternally and lactionally transferred persistent organic pollutants may interfere with CNS development. Here, 10-day-old male mice were exposed to single oral doses of PFOS (perflourooctanosulphonate) or PBDE 99 (2,2',4,4',5-penta-bromodiphenyl ether), and examined for changes in cholinergic gene transcription in the CNS 24h and 7 weeks later. 24h after exposure qPCR analyses revealed decreased transcription of nAChR-β2 and AChE in cortex, and increased mAChR-5 in hippocampus of PFOS treated mice. Neonatal PFOS treatment altered spontaneous behaviour at 2 months of age but did not affect gene transcription in adults. At 2 months of age neonatally PBDE 99 treated mice had altered spontaneous behaviour, and cortical transcription of AChE, nAChR-α4, nAChR-β2 and mAChR-5 were elevated. Our results indicate that PFOS and PBDE 99 affects the developing central cholinergic system by altering gene transcription in cortex and hippocampus, which may in part account for mechanisms causing changes in spontaneous behaviour.

  18. Supression of humoral immunity by perfluorooctanic acid is independent of elevated serum corticosterone concentration in mice

    EPA Science Inventory

    The T-cell-dependent antibody response is suppressed in mice exposed to 3.75, 7.5, 15, and 30 mg PFOA (perfluorooctanoic acid)/kg body weight (bw). Reduced bw accompanied immunosuppression at 15 and 30 mg/kg. We investigated the hypothesis that the observed immunosuppression is s...

  19. Alterations in gene expression levels provide early indicators of chemical stress during Xenopus laevis embryo development: A case study with perfluorooctane sulfonate (PFOS).

    PubMed

    San-Segundo, Laura; Guimarães, Laura; Fernández Torija, Carlos; Beltrán, Eulalia M; Guilhermino, Lúcia; Pablos, María Victoria

    2016-05-01

    In the present study, Xenopus laevis embryos were exposed to a range of perfluorooctane sulfonate (PFOS) concentrations (0, 0.5, 6, 12, 24, 48 and 96mg/L) for 96h in laboratorial conditions to establish toxicity along with possible gene expression changes. Mortality and deformities were monitored daily and head-tail length was measured at the end of the assay as an indicator of growth. At 24 and 96h post-exposure (hpe), the mRNA expression levels of the genetic markers involved in general stress responses (hsp70, hsp47, crh-a and ucn1), oxidative stress (cat.2 and sod), lipid metabolism (ppard) and apoptosis (tp53 and bax) were analyzed by RT-qPCR. Malformations were significantly higher in the embryos exposed to the highest PFOS concentration (41.8% to 56.4%) compared to controls (5.5%) at 48, 72 and 96hpe. Growth inhibition was observed in the embryos exposed to PFOS concentrations≥48mg/L. At 24 hpe, a statistically significant up-regulation of genes hsp70, hsp47, ppard, tp53 and bax in relation to controls was found. Similar responses were found for genes hsp70, hsp47, crh-a, ucn1, sod and ppard at 96 hpe. Alterations in the mRNA expression levels indicated both a stress response to PFOS exposure during X. laevis embryo development, and alterations in the regulation of oxidative stress, apoptosis, and differentiation. These molecular alterations were detected at an earlier exposure time or at lower concentrations than those producing developmental toxicity. Therefore, these sensitive warning signals could be used together with other biomarkers to supplement alternative methods (i.e. the frog embryo test) for developmental toxicity safety evaluations, and as tools in amphibian risk assessments for PFOS and its potential substitutes.

  20. Aquatic predicted no-effect-concentration derivation for perfluorooctane sulfonic acid.

    PubMed

    Qi, Ping; Wang, Ying; Mu, Jingli; Wang, Juying

    2011-04-01

    Perfluorooctane sulfonic acid (PFOS), a representative perfluorinated surfactant, is an anthropogenic pollutant detected in various environmental and biological matrices. Some laboratory and field work has been conducted to assess the aquatic toxicity of PFOS, but little is known regarding its toxicity threshold to the aquatic ecosystem. In the present study, predicted no-effect concentrations (PNECs) were derived by four different approaches. The interspecies correlation estimation (ICE) program and final acute-to-chronic ratio (FACR) were applied to the development of PNEC based on the toxic mode of action (MOA) of PFOS. By comparison of the different PNECs, the recommended aquatic toxicity thresholds for PFOS are in the range of 0.61 to 6.66 µg/L. Based on comparison of PNEC values, microcosm results, and reported environmental concentrations, PFOS appears not to pose a serious threat to aquatic organisms. The present results demonstrate that MOA is an important consideration for the derivation of reliable PNECs; moreover, the ICE-based species sensitivity distribution (SSD) method can be used to derive PNECs when toxicological data are limited. The application of MOA and ICE for deriving PNEC values in the present study may facilitate studies on using a combination of quantitative structure-activity relationship (QSAR) models and ICE to estimate PNECs.

  1. Thermodynamic stability of neutral and anionic PFOS: a gas-phase, n-octanol, and water theoretical study.

    PubMed

    Montero-Campillo, M Merced; Mora-Diez, Nelaine; Lamsabhi, Al Mokhtar

    2010-09-23

    The thermodynamic stability of the 89 isomers of the eight-carbon-atom compound perfluorooctane sulfonate (PFOS) in their neutral and anionic forms has been studied in the gas phase, n-octanol, and water using density functional theory (B3LYP/6-311+G(d,p)). The gas-phase calculations are compared with previous semiempirical and partial ab initio studies; the calculations in water and n-octanol are reported for the first time. The results obtained indicate that the thermodynamic stability assessment of this family of persistent organic pollutants is independent of the environment and type of species (neutral or anionic) considered and that it is important to consider other PFOSs outside of the 83-89 set, which is the most frequently studied.

  2. Surface modification of activated carbon for enhanced adsorption of perfluoroalkyl acids from aqueous solutions.

    PubMed

    Zhi, Yue; Liu, Jinxia

    2016-02-01

    The objective of the research was to examine the effect of increasing carbon surface basicity on uptake of perfluorooctane sulfonic (PFOS) and carboxylic acids (PFOA) by activated carbon. Granular activated carbons made from coal, coconut shell, wood, and phenolic-polymer-based activated carbon fibers were modified through high-temperature and ammonia gas treatments to facilitate systematical evaluation of the impact of basicity of different origins. Comparison of adsorption isotherms and adsorption distribution coefficients showed that the ammonia gas treatment was more effective than the high-temperature treatment in enhancing surface basicity. The resultant higher point of zero charges and total basicity (measured by total HCl uptake) correlated with improved adsorption affinity for PFOS and PFOA. The effectiveness of surface modification to enhance adsorption varied with carbon raw material. Wood-based carbons and activated carbon fibers showed enhancement by one to three orders of magnitudes while other materials could experience reduction in adsorption towards either PFOS or PFOA.

  3. Impact of Exposure Uncertainty on the Association between Perfluorooctanoate and Preeclampsia in the C8 Health Project Population

    PubMed Central

    Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Verónica M.; Savitz, David A.; Bartell, Scott M.

    2015-01-01

    Background Uncertainty in exposure estimates from models can result in exposure measurement error and can potentially affect the validity of epidemiological studies. We recently used a suite of environmental models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations and assess the association with preeclampsia from 1990 through 2006 for the C8 Health Project participants. Objectives The aims of the current study are to evaluate impact of uncertainty in estimated PFOA drinking-water concentrations on estimated serum concentrations and their reported epidemiological association with preeclampsia. Methods For each individual public water district, we used Monte Carlo simulations to vary the year-by-year PFOA drinking-water concentration by randomly sampling from lognormal distributions for random error in the yearly public water district PFOA concentrations, systematic error specific to each water district, and global systematic error in the release assessment (using the estimated concentrations from the original fate and transport model as medians and a range of 2-, 5-, and 10-fold uncertainty). Results Uncertainty in PFOA water concentrations could cause major changes in estimated serum PFOA concentrations among participants. However, there is relatively little impact on the resulting epidemiological association in our simulations. The contribution of exposure uncertainty to the total uncertainty (including regression parameter variance) ranged from 5% to 31%, and bias was negligible. Conclusions We found that correlated exposure uncertainty can substantially change estimated PFOA serum concentrations, but results in only minor impacts on the epidemiological association between PFOA and preeclampsia. Citation Avanasi R, Shin HM, Vieira VM, Savitz DA, Bartell SM. 2016. Impact of exposure uncertainty on the association between perfluorooctanoate and preeclampsia in the C8 Health Project population

  4. Effects of perfluorooctane sulfuric acid on placental PRL-family hormone production and fetal growth retardation in mice.

    PubMed

    Lee, Chae Kwan; Kang, Sung Goo; Lee, Jong Tae; Lee, Soo-Woong; Kim, Jeong Ho; Kim, Dae Hwan; Son, Byung Chul; Kim, Kun Hyung; Suh, Chun Hui; Kim, Se Yeong; Park, Yeong Beom

    2015-02-05

    Perfluorooctane sulfuric acid (PFOS) is a persistent organic pollutant, causes fetal growth retardation but the mechanism is still unclear. This study focused on PFOS-induced toxicity such as placental trophoblast cell histopathological changes, endocrine function (i.e., prolactin (PRL)-family hormone production) and subsequent fetal growth retardation in mice. Maternal body weight gain, placental and fetal weights were significantly decreased in proportion to PFOS dosage. Placental efficiency (fetal weight/placental weight) was significantly reduced dose-dependently. Necrotic changes were observed in PFOS-treated placental tissues, and the area of injury increased dose-dependently. Finally, mRNA levels and maternal serum concentrations of the PRL-family hormones (mPL-II, mPLP-Cα, mPLP-K) were significantly reduced dose-dependently. In addition, the changing pattern between PRL-family hormone concentrations and fetal body weight was positively correlated. These results suggest that gestational PFOS treatment induces placental histopathological changes and disruption of endocrine function, finally may lead to fetal growth retardation in mice.

  5. Facile preparation of magnetic separable powdered-activated-carbon/Ni adsorbent and its application in removal of perfluorooctane sulfonate (PFOS) from aqueous solution.

    PubMed

    Liang, Xuanqi; Gondal, Mohammed A; Chang, Xiaofeng; Yamani, Zain H; Li, Nianwu; Lu, Hongling; Ji, Guangbin

    2011-01-01

    The main aim of this study was to synthesize magnetic separable Nickel/powdered activated carbon (Ni/PAC) and its application as an adsorbent for removal of PFOS from aqueous solution. In this work, the synthesized adsorbent using simple method was characterized by using X-ray diffractionometer (XRD), surface area and pore size analyzer, vibrating sample magnetometer (VSM), and high resolution transmission electron microscope (HRTEM). The surface area, pore volume and pore size of synthesized PAC was 1521.8 m(2)g(-1), 0.96 cm(3)g(-1), 2.54 nm, respectively. Different kinetic models: the pseudo-first-order model, the pseudo-second-order model, and three adsorption isotherms--Langmuir, Freundlich and Temkin--were applied to study the sorption kinetics and isothermal behavior of PFOS onto the surface of an as-prepared adsorbent. The rate constant using the pseudo-second-order model for removal of 150 ppm PFOS was estimated as 8.82×10(-5) and 1.64×10(-4) for PAC and 40% Ni/PAC, respectively. Our results demonstrated that the composite adsorbents exhibited a clear magnetic hysteretic behavior, indicating the potential practical application in magnetic separation of adsorbents from aqueous solution phase as well.

  6. Organic Anion Transporting Polypeptides Contribute to the Disposition of Perfluoroalkyl Acids in Humans and Rats.

    PubMed

    Zhao, Wen; Zitzow, Jeremiah D; Weaver, Yi; Ehresman, David J; Chang, Shu-Ching; Butenhoff, John L; Hagenbuch, Bruno

    2016-12-24

    Perfluoroalkyl sulfonates (PFSAs) such as perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) have very long serum elimination half-lives in humans, and preferentially distribute to serum and liver. The enterohepatic circulation of PFHxS and PFOS likely contributes to their extended elimination half-lives. We previously demonstrated that perfluorobutane sulfonate (PFBS), PFHxS, and PFOS are transported into hepatocytes both in a sodium-dependent and a sodium-independent manner. We identified Na(+)/taurocholate cotransporting polypeptide (NTCP) as the responsible sodium-dependent transporter. Furthermore, we demonstrated that the human apical sodium-dependent bile salt transporter (ASBT) contributes to the intestinal reabsorption of PFOS. However, so far no sodium-independent uptake transporters for PFSAs have been identified in human hepatocytes or enterocytes. In addition, perfluoroalkyl carboxylates (PFCAs) with 8 and 9 carbons were shown to preferentially distribute to the liver of rodents; however, no rat or human liver uptake transporters are known to transport these PFCAs. Therefore, we tested whether PFBS, PFHxS, PFOS, and PFCAs with 7-10 carbons are substrates of organic anion transporting polypeptides (OATPs). We used CHO and HEK293 cells to demonstrate that human OATP1B1, OATP1B3, and OATP2B1 can transport PFBS, PFHxS, PFOS, and the 2 PFCAs (C8 and C9). In addition, we show that rat OATP1A1, OATP1A5, OATP1B2, and OATP2B1 transport all 3 PFSAs. In conclusion, our results suggest that besides NTCP and ASBT, OATPs also are capable of contributing to the enterohepatic circulation and extended human serum elimination half-lives of the tested perfluoroalkyl acids.

  7. THE DEVELOPMENT OF AN IN VITRO ASSAY FOR EVALUATING THE BINDING OF PERFLUOROALKYL ACIDS (PFAAS) TO THE PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS (PPARS)

    EPA Science Inventory

    The purpose of this work was to evaluate the binding of PFAAs to PPAR receptors and determine the potential for activation or antagonism of the pathway during embryonic development. Activation of mouse and human PPAR isoforms by perfluorooctanoic acid (PFOA) and perfluorooctanes...

  8. Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects.

    PubMed

    Hoff, Philippe Tony; Van Campenhout, Karen; Van de Vijver, Kristin; Covaci, Adrian; Bervoets, Lieven; Moens, Lotte; Huyskens, Geert; Goemans, Geert; Belpaire, Claude; Blust, Ronny; De Coen, Wim

    2005-09-01

    A perfluorooctane sulfonic acid (PFOS) assessment was conducted on gibel carp (Carassius auratus gibelio), carp (Cyprinus carpio), and eel (Anguilla anguilla) in Flanders (Belgium). The liver PFOS concentrations in fish from the Ieperlee canal (Boezinge, 250-9031 ng/g wet weight, respectively) and the Blokkersdijk pond (Antwerp, 633-1822 ng/g wet weight) were higher than at the Zuun basin (Sint-Pieters-Leeuw, 11.2-162 ng/g wet weight) and among the highest in feral fish worldwide. Eel from the Oude Maas pond (Dilsen-Stokkem) and Watersportbaan basin (Ghent) had PFOS concentrations ranging between 212 and 857 ng/g wet weight. The hepatic PFOS concentration was significantly and positively related with the serum alanine aminotransferase activity, and negatively with the serum protein content in eel and carp. The hepatic PFOS concentration in carp correlated significantly and negatively with the serum electrolyte concentrations whereas a significant positive relation was found with the hematocrit in eel. Although 13 organochlorine pesticides, 22 polychlorinated biphenyl (PCB) congeners and 7 polybrominated diphenyl ethers (PBDEs) were also measured in the liver tissue, only PCB 28, PCB 74, gamma-hexachlorocyclohexane (gamma-HCH) and hexachlorobenzene (HCB) were suggested to contribute to the observed serological alterations in eel.

  9. A nuclear magnetic resonance study of the dynamics of organofluorine interactions with a dissolved humic acid.

    PubMed

    Longstaffe, James G; Courtier-Murias, Denis; Simpson, Andre J

    2016-02-01

    A quantitative understanding of the dynamics of the interactions between organofluorine compounds and humic acids will contribute to an improved understanding of the role that Natural Organic Matter plays as a mediator in the fate, transport and distribution of these contaminants in the environment. Here, Nuclear Magnetic Resonance (NMR) spectroscopy-based diffusion measurements are used to estimate the association dynamics between dissolved humic acid and selected organofluorine compounds: pentafluoroaniline, pentafluorophenol, potassium perfluorooctane sulfonate, and perfluorooctanoic acid. Under the conditions used here, the strength of the association with humic acid increases linearly as temperature decreases for all compounds except for perfluorooctanoic acid, which exhibits divergent behavior with a non-linear decrease in the extent of interaction as temperature decreases. A general interaction mechanism controlled largely by desolvation effects is suggested for all compounds examined here except for perfluorooctanoic acid, which exhibits a specific mode of interaction consistent with a proteinaceous binding site. Reverse Heteronuclear Saturation Transfer Difference NMR is used to confirm the identity and nature of the humic acid binding sites.

  10. High levels, partitioning and fish consumption based water guidelines of perfluoroalkyl acids downstream of a former firefighting training facility in Canada.

    PubMed

    Bhavsar, Satyendra P; Fowler, Craig; Day, Sarah; Petro, Steve; Gandhi, Nilima; Gewurtz, Sarah B; Hao, Chunyan; Zhao, Xiaoming; Drouillard, Ken G; Morse, Dave

    2016-09-01

    High levels of perfluoroalkyl acids (PFAAs), especially perfluorooctane sulfonic acid (PFOS), have been observed at locations in/around/downstream of the sites where PFOS-based firefighting foam was used repeatedly for a prolonged period. In this study, we conducted a detailed investigation of PFAA contamination in the Lake Niapenco area in Ontario, Canada, where among the highest ever reported levels of PFOS were recently measured in amphipods, fish and snapping turtle plasma. Levels and distribution of PFAAs in water, sediment and fish samples collected from the area varied widely. An upstream pond beside a former firefighting training area (FFTA) was confirmed as the source of PFAAs even 20years after the last use of the foam at the FFTA. Recent PFOS concentration in water (~60ng/L) at Lake Niapenco, about 14km downstream of the pond, was still 3-7× higher than the background levels. For PFOS, Log KD ranged 1.3-2.5 (mean±SE: 1.7±0.1), Log BAFs ranged 2.4-4.7 (3.4±0.05), and Log BSAFs ranged 0.7-2.9 (1.7±0.05). Some fish species-specific differences in BAF and BSAF were observed. At Log BAF of 4.7, fish PFOS levels at Lake Niapenco could reach 15,000ng/g, 100× greater than a "do not eat" advisory benchmark, without exceeding the current drinking water guideline of 300ng/L. A fish consumption based water guideline was estimated at 1-15ng/L, which is likely applicable worldwide given that the Log BAFs observed in this study were comparable to those previously reported in the literature. It appears that PFAA in the downstream waters increased between 2011 and 2015; however, further monitoring is required to confirm this trend.

  11. Variation in perfluoroalkyl acids in the American alligator (Alligator mississippiensis) at Merritt Island National Wildlife Refuge.

    PubMed

    Bangma, Jacqueline T; Reiner, Jessica L; Jones, Martin; Lowers, Russell H; Nilsen, Frances; Rainwater, Thomas R; Somerville, Stephen; Guillette, Louis J; Bowden, John A

    2017-01-01

    This study aimed to quantify concentrations of fifteen perfluoroalkyl acids (PFAAs) in the plasma of American alligators (Alligator mississippiensis) inhabiting wetlands surrounding the Kennedy Space Center (KSC) in Florida, USA located at Merritt Island National Wildlife Refuge (MINWR). Approximately 10 male and 10 female alligators (ntotal = 229) were sampled each month during 2008 and 2009 to determine if seasonal or spatial trends existed with PFAA burden. PFOS represented the highest plasma burden (median 185 ng/g) and PFHxS the second highest (median 7.96 ng/g). While no significant seasonal trends were observed, unique spatial trends emerged. Many of the measured PFAAs co-varied strongly together and similar trends were observed for PFOS, PFDA, PFUnA, and PFDoA, as well as for PFOA, PFHxS, PFNA, PFTriA, and PFTA, suggesting more than one source of PFAAs at MINWR. Higher concentrations of PFOS and the PFAAs that co-varied with PFOS were collected from animals around sites that included the Shuttle Landing Facility (SLF) fire house and the Neil Armstrong Operations and Checkout (O&C) retention pond, while higher concentrations of PFOA and the PFAA that co-varied with PFOA were sampled from animals near the gun range and the old fire training facility. Sex-based differences and snout-vent length (SVL) correlations with PFAA burden were also investigated.

  12. Perfluorinated Alkyl Acids in Plasma of American Alligators (Alligator Mississippiensis) from Florida and South Carolina

    NASA Technical Reports Server (NTRS)

    Bangma, Jacqueline T.; Bowden, John A.; Brunell, Arnold M.; Christie, Ian; Finnell, Brendan; Guillette, Matthew P.; Jones, Martin; Lowers, Russell H.; Rainwater, Thomas R.; Reiner, Jessica L.; Wilkinson, Philip M.; Guillette, Louis J., Jr.

    2016-01-01

    This study aimed to quantitate fourteen perfluoroalkyl acids (PFAAs) in 125 adult American alligators at twelve sites across the southeastern US. Of those fourteen PFAAs, nine were detected in 65% - 100% of the samples: PFOA, PFNA, PFDA, PFUnA, PFDoA, PFTriA, PFTA, PFHxS, and PFOS. Males (across all sites) showed significantly higher concentrations of four PFAAs: PFOS (p = 0.01), PFDA (p = 0.0003), PFUnA (p = 0.021), and PFTriA (p = 0.021). Concentrations of PFOS, PFHxS, and PFDA in plasma were significantly different among the sites in each sex. Alligators at Merritt Island National Wildlife Refuge and Kiawah Nature Conservancy both exhibited some of the highest PFOS concentrations (medians 99.5 ng/g and 55.8 ng/g respectively) in plasma measured to date in a crocodilian species. A number of positive correlations between PFAAs and snout-vent length (SVL) were observed in both sexes suggesting PFAA body burdens increase with increasing size. In addition, several significant correlations among PFAAs in alligator plasma may suggest conserved sources of PFAAs at each site throughout the greater study area. This study is the first to report PFAAs in American alligators, reveals potential PFAA hot spots in Florida and South Carolina, and provides and additional contaminant of concern when assessing anthropogenic impacts on ecosystem health.

  13. Male reproductive system parameters in a two-generation reproduction study of ammonium perfluorooctanoate in rats and human relevance.

    PubMed

    York, Raymond G; Kennedy, Gerald L; Olsen, Geary W; Butenhoff, John L

    2010-04-30

    Ammonium perfluorooctanoate (ammonium PFOA) is an industrial surfactant that has been used primarily as a processing aid in the manufacture of fluoropolymers. The environmental and metabolic stability of PFOA together with its presence in human blood and long elimination half-life have led to extensive toxicological studies in laboratory animals. Two recent publications based on observations from the Danish general population have reported: (1) a negative association between serum concentrations of PFOA in young adult males and their sperm counts and (2) a positive association among women with time to pregnancy. A two-generation reproduction study in rats was previously published (2004) in which no effects on functional reproduction were observed at doses up to 30mg ammonium PFOA/kg body weight. The article contained the simple statement: "In males, fertility was normal as were all sperm parameters". In order to place the recent human epidemiological data in perspective, herein we provide the detailed male reproductive parameters from that study, including sperm quality and testicular histopathology. Sperm parameters in rats from the two-generation study in all ammonium PFOA treatment groups were unaffected by treatment with ammonium PFOA. These observations reflected the normal fertility observations in these males. No evidence of altered testicular and sperm structure and function was observed in ammonium PFOA-treated rats whose mean group serum PFOA concentrations ranged up to approximately 50,000ng/mL. Given that median serum PFOA in the Danish cohorts was approximately 5ng/mL, it seems unlikely that concentrations observed in the general population, including those recently reported in Danish general population, could be associated causally with a real decrement in sperm number and quality.

  14. Isomer-Specific Distribution of Perfluoroalkyl Substances in Blood.

    PubMed

    Jin, Hangbiao; Zhang, Yifeng; Jiang, Weiwei; Zhu, Lingyan; Martin, Jonathan W

    2016-07-19

    Perfluoroalkyl substances (PFASs) such as perfluorohexanesulfonate (PFHxS), perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and PFOS-precursors are routinely measured in human plasma and serum, but their relative abundance in the blood cell fraction has not been carefully examined, particularly at the isomer-specific level. Human plasma and whole blood were collected and partitioning behaviors of PFASs and their isomers between plasma and blood cells were investigated. In human samples, mass fraction in plasma (Fp) for PFASs increased among perfluoroalkyl carboxylates as the carbon chain length increased from C6 (mean 0.24) to C11 (0.87), indicating preference for the plasma fraction with increasing chain length. However, among perfluoroalkyl sulfonates, PFHxS (mean 0.87) had a slightly higher Fp than PFOS (0.85). In vitro assays with spiked Sprague-Dawley rat blood were also conducted, and the results showed that PFOS-precursors had lower Fp values than perfluoroalkyl acids, with perfluoroctanesulfonamide having the lowest Fp (mean 0.24). Consistently, linear isomers of PFOS and PFOS-precursors had lower mean Fp than their corresponding total branched isomers. Multiplying by a factor of 2 is not a reasonable method to convert from whole blood to plasma PFAS concentrations, and current ratios could be used as more accurate conversion factors.

  15. 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos.

    PubMed

    Shi, Guohui; Cui, Qianqian; Pan, Yitao; Sheng, Nan; Sun, Sujie; Guo, Yong; Dai, Jiayin

    2017-04-01

    As an alternative to perfluorooctanesulfonate (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (commercial name: F-53B) has been used as a mist suppressant in Chinese electroplating industries for over 30 years. It has been found in the environment and fish, and one acute assay indicated F-53B was moderately toxic. However, the toxicological information on this compound was incomplete and insufficient for assessment of their environment impact. The object of this study was to examine the developmental toxicity of F-53B using zebrafish embryos. Zebrafish embryos were incubated in 6-well plates with various concentrations of F-53B (1.5, 3, 6, and 12mg/L) from 6 to 132h post fertilization (hpf). Results showed that F-53B exposure induced developmental toxicity, including delayed hatching, increased occurrence of malformations, and reduced survival. Malformations, including pericardial and yolk sac edemas, abnormal spines, bent tails, and uninflated swim bladders, appeared at 84 hpf, and increased with time course and dose. A decrease in survival percentages was noted in the 6 and 12mg/L F-53B-treated groups at 132 hpf. Continuous exposure to 3mg/L F-53B resulted in high accumulation levels in zebrafish embryos, suggesting an inability for embryos to eliminate this compound and a high cumulative risk to fish. We also examined the cardiac function of embryos at specific developmental stages following exposure to different concentrations, and found that F-53B induced cardiac toxicity and reduced heart rate. Even under low F-53B concentration, o-dianisidine staining results showed significant decrease of relative erythrocyte number at 72 hpf before the appearance of observed effects of F-53B on the heart. To elucidate the underlying molecular changes, genes involved in normal cardiac development were analyzed using real-time qPCR in the whole-body of zebrafish embryos. F-53B inhibited the mRNA expression of β-catenin (ctnnb2) and wnt3a. The mRNA levels of

  16. Analysis of perfluorinated phosponic acids and perfluorooctane sulfonic acid in water, sludge and sediment by LC-MS/MS.

    PubMed

    Esparza, X; Moyano, E; de Boer, J; Galceran, M T; van Leeuwen, S P J

    2011-10-30

    Residues of perfluorinated phosphonic acids (PFPAs) and perfluorooctane sulfonic acid (PFOS) were investigated in various Dutch surface waters, sludge and sediments. For this purpose, a liquid chromatographic (LC) method was optimized by testing several columns with different mobile phases. Atmospheric pressure chemical ionization (APCI) was chosen for the LC tandem mass spectrometry (MS/MS) analysis. An ion-pair reagent was added to the injection solvent to improve peak shape. Different solvents were studied for the extraction from solid samples. For clean-up and pre-concentration, weak anion-exchange solid-phase extraction cartridges were used. Water samples were extracted using the same cartridges. The method was used for screening PFPAs in the Dutch aquatic environment. PFPAs were not observed in sediment or sludge samples. PFOPA was found at 1 ng L(-1) in one surface water sample. PFOS was found at levels between 0.07 ng g(-1) and 48 ng g(-1) (dry weight) in sediments and sewage sludge samples. PFOS concentrations in surface water ranged from 3.3 ng L(-1) to 25.4 ng L(-1).

  17. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    SciTech Connect

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  18. Perfluoroalkyl and polyfluoroalkyl substances in entire clutches of Audouin's gulls from the Ebro Delta.

    PubMed

    Vicente, Joana; Sanpera, Carola; García-Tarrasón, Manuel; Pérez, Alba; Lacorte, Silvia

    2015-01-01

    The aim of the present study was to determine the distribution of per- and polyfluoroalkyl substances (PFASs) in three-egg clutches of Audouin's gull (Larus audouinii) breeding in Ebro Delta's colony according to the laying order (a, b and c eggs). Five PFASs were analyzed in 30 eggs (yolk and albumen separately), corresponding to 10 three-egg clutches. Carbon and nitrogen stable isotopes were measured as dietary tracers. PFASs were not detected in albumen. In egg yolks, perfluorooctane sulfonate (PFOS) was the main compound detected followed by perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHS) and perfluorooctanoic acid (PFOA). Perfluorooctane sulfonate (PFBS) was not detected. Mean ΣPFASs for a-eggs was of 236±57 ng g(-1) yolk wet weight (ww), for b-eggs was of 140±56 ng g(-1) yolk ww and for c-eggs, 133±54 ng g(-1) yolk ww. PFOS concentration decreased according to the laying order of the eggs, showing significant differences between consecutive eggs. In addition, significant correlation (rs2=0.7-0.9) was observed for PFOS concentration within the eggs from the same clutch. No relationship was found between PFOS levels and stable isotopes signatures. Capsule: In Audouin gull's eggs, PFOS was the main PFASs detected and its concentration decreased according to the laying sequence.

  19. Sorption of perfluoroalkyl substances to two types of minerals.

    PubMed

    Hellsing, Maja S; Josefsson, Sarah; Hughes, Arwel V; Ahrens, Lutz

    2016-09-01

    The sorption of perfluoroalkyl substances (PFASs) was investigated for two model soil mineral surfaces, alumina (Al2O3) and silica (SiO2), on molecular level using neutron scattering. The PFASs were selected (i.e. perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorooctane sulfonic acid (PFOS)) to examine the role of hydrophobic chain length and hydrophilic functional group on their sorption behaviour. All four PFASs were found to sorb to alumina surface (positively charged) forming a hydrated layer consisting of 50% PFASs. The PFAS solubility limit, which decrease with chain length, was found to strongly influence the sorption behaviour. The sorbed PFAS layer could easily be removed by gentle rinsing with water, indicating release upon rainfall in the environment. No sorption was observed for PFOA and PFOS at silica surface (negatively charged), showing electrostatic interaction being the driving force in the sorption process.

  20. Survey of perfluoroalkyl acids (PFAAs) and their precursors present in Japanese consumer products.

    PubMed

    Ye, Feng; Zushi, Yasuyuki; Masunaga, Shigeki

    2015-05-01

    Perfluoroalkyl acids (PFAAs) and their precursors have been used in various consumer products. However, limited information regarding their occurrence and concentration levels in products is available. In this study, we investigated 18 PFAAs and 14 PFAA precursors in various categories of consumer products purchased in Japan. Relatively high total concentrations of PFAAs and their precursors were found in sprays for fabrics and textiles (acid (PFOS), N-methyl perfluorooctane sulfonamidoethanol (MeFOSE) was detected in a higher frequency (8%) and in greater concentrations (PFOS (frequency 4%; concentrationsPFOS precursors in consumer products is required. Furthermore, the amount of PFAAs emitted from consumer products may be underestimated if the occurrence of PFAA precursors is not considered. In addition to PFAA precursors, long chain perfluoroalkyl carboxylic acids (PFCAs) (carbon chain length⩾7) were also detected in greater concentrations than short chain PFCAs (⩽6). This result suggests that consumer products are one of the important sources of long-chain PFCAs in the environment.

  1. Perfluorinated alkyl acids in the plasma of South African crocodiles (Crocodylus niloticus).

    PubMed

    Christie, Ian; Reiner, Jessica L; Bowden, John A; Botha, Hannes; Cantu, Theresa M; Govender, Danny; Guillette, Matthew P; Lowers, Russell H; Luus-Powell, Wilmien J; Pienaar, Danie; Smit, Willem J; Guillette, Louis J

    2016-07-01

    Perfluorinated alkyl acids (PFAAs) are environmental contaminants that have been used in many products for over 50 years. Interest and concern has grown since 2000 on the widespread presence of PFAAs, when it was discovered that PFAAs were present in wildlife samples around the northern hemisphere. Since then, several studies have reported PFAAs in wildlife from many locations, including the remote regions of Antarctica and the Arctic. Although there are a multitude of studies, few have reported PFAA concentrations in reptiles and wildlife in the Southern Hemisphere. This study investigated the presence of PFAAs in the plasma of Nile crocodiles (Crocodylus niloticus) from South Africa. Crocodiles were captured from five sites in and around the Kruger National Park, South Africa, and plasma samples examined for PFAAs. Perfluorooctane sulfonate (PFOS) was the most frequent PFAA detected; with median values of 13.5 ng/g wet mass in crocodiles. In addition to PFOS, long chain perfluorinated carboxylic acids were also detected. Correlations between total length and PFAA load were investigated, as were differences in PFAA accumulation between sexes. No correlations were seen between crocodile size, nor were there sex-related differences. Spatial differences were examined and significant differences were observed in samples collected from the different sites (p < 0.05). Flag Boshielo Dam had the highest PFOS measurements, with a median concentration of 50.3 ng/g wet mass, when compared to the other sites (median concentrations at other sites below 14.0 ng/g wet mass). This suggests a point source of PFOS in this area.

  2. Increasing concentrations of perfluoroalkyl acids in Scandinavian otters (Lutra lutra) between 1972 and 2011: a new threat to the otter population?

    PubMed

    Roos, Anna; Berger, Urs; Järnberg, Ulf; van Dijk, Jiska; Bignert, Anders

    2013-10-15

    Liver samples from 140 otters (Lutra lutra) from Sweden and Norway were analyzed for 10 perfluoroalkyl carboxylic acids (PFCAs; C6-C15), 4 perfluoroalkane sulfonic acids (PFSAs; C4,C6,C8,C10) and perfluorooctane sulfonamide (FOSA). Perfluorooctane sulfonic acid (PFOS) was the dominant compound accounting for approximately 80% of the fluorinated contaminants and showing concentrations up to 16 μg/g wet weight. Perfluorononanoic acid (PFNA) was the dominant PFCA (up to 640 ng/g wet weight) closely followed by the C10 and C11 homologues. A spatial comparison between otters from southwestern Norway, southern and northern Sweden sampled between 2005 and 2011 revealed that the samples from southern Sweden had generally the largest contaminant load, but two PFCAs and FOSA were higher concentrated in the Norwegian samples. A temporal trend study was performed on otters from southern Sweden collected between 1972 and 2011. Seven PFCAs (C8-C14), PFOS and perfluorodecane sulfonic acid (PFDS) showed significantly increasing trends with doubling times between 5.5 and 13 years. The PFCAs also showed significantly increasing trends over the period 2002 to 2011. These findings together with the exceptionally high liver concentrations of PFOS are of great concern for the Scandinavian otter populations.

  3. Distribution, source characterization and inventory of perfluoroalkyl substances in Taihu Lake, China.

    PubMed

    Guo, Changsheng; Zhang, Yuan; Zhao, Xin; Du, Ping; Liu, Sisi; Lv, Jiapei; Xu, Fengxia; Meng, Wei; Xu, Jian

    2015-05-01

    The levels, distribution, possible sources, and inventory of perfluoroalkyl acids (PFAAs) in the eutrophic freshwater Taihu Lake, East China were investigated in this study. Among the target 11 PFAAs, perfluorooctanoic acid (PFOA) (2.15-73.9 ng L(-1)) and perfluorohexanoic acid (PFHxA) (acid (PFOS) with the maximum concentration of 10.5 ng L(-1). PFOS was also dominant (0.13-6.95 ng g(-1) dw) in the sediments, accounting for 15-85% of ΣPFAAs concentrations in 70% of the sediment samples. Sediment-water partitioning coefficients showed that logKOC increased linearly with the increasing chain length, with the logKOC values increased by 0.1-0.4 log unit with each CF2 moiety from C8 to C12 perfluorinated carboxylic acids. Three specific molecular ratios, PFOS/PFOA, PFOA/PFNA and PFHpA/PFOA were used to characterize the potential sources. It indicated that the majority of pollutants was from direct emissions from manufacturing processes. The PFOA/PFNA ratios between 1.7 and 56.8 in surface water suggested the influence of secondary sources such as the degradation of volatile precursor substances. Given the high ratios of PFHpA/PFOA (0.05-7.93), it also indicated the influence from atmospheric deposition to the epilimnion. The predicted environmental concentrations were calculated from European Union system for the evaluation of substances model (EUSES). As expected, the predicted environmental concentration (PEC) of PFOS in sediment fit well to the monitored level of PFOS in this region, and the inventory of ΣPFCA and PFOS were estimated to be 989 kg and 646 kg in Taihu Lake.

  4. Polyfluoroalkyl Chemicals in the Serum and Milk of ...

    EPA Pesticide Factsheets

    Polyfluoroalkyl chemicals (PFCs) comprise a group of man-made organic compounds, some of which are persistent contaminants with developmental toxicity shown in laboratory animals. There is a paucity of human perinatal exposure data. The US EPA conducted a pilot study (Methods Advancement in Milk Analysis) including 34 breastfeeding women in North Carolina. Milk and serum samples were collected at 2-7 weeks and 3-4 months postpartum; 9 PFCs were assessed in milk and 7 in serum. Perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) were found in nearly 100% of the serum samples. PFOS and PFOA were found at the highest concentrations. PFCs were below the limit of detection in most milk samples. Serum concentrations of PFOS, PFOA and PFHxS were lower (p<0.01) at the second visit compared to the first visit, and living in North Carolina 10 years or longer was related to elevated PFOS, PFOA and PFNA (p<0.03). These pilot data support the need to further explore perinatal PFC exposures and potentially related health effects, as planned in the upcoming National Children’s Study which provided the framework for this investigation. These data demonstrate very low transfer of perfluorinated chemicals (PFCs) to breast milk, even though PFCs are readily detected in the sera of lactating NC women. Our data correlation statistics suggest that there is an elevation of average serum PFCs i

  5. Perfluoroalkylated Substance Effects in Xenopus laevis A6 Kidney Epithelial Cells Determined by ATR-FTIR Spectroscopy and Chemometric Analysis

    PubMed Central

    2016-01-01

    The effects of four perfluoroalkylated substances (PFASs), namely, perfluorobutanesulfonate (PFBS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonate (PFOS), and perfluorononanoic acid (PFNA) were assessed in Xenopus laevis A6 kidney epithelial cells by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy and chemometric analysis. Principal component analysis–linear discriminant analysis (PCA-LDA) was used to visualize wavenumber-related alterations and ANOVA-simultaneous component analysis (ASCA) allowed data processing considering the underlying experimental design. Both analyses evidenced a higher impact of low-dose PFAS-treatments (10–9 M) on A6 cells forming monolayers, while there was a larger influence of high-dose PFAS-treatments (10–5 M) on A6 cells differentiated into dome structures. The observed dose–response PFAS-induced effects were to some extent related to their cytotoxicity: the EC50-values of most influential PFAS-treatments increased (PFOS < PFNA < PFOA ≪ PFBS), and higher-doses of these chemicals induced a larger impact. Major spectral alterations were mainly attributed to DNA/RNA, secondary protein structure, lipids, and fatty acids. Finally, PFOS and PFOA caused a decrease in A6 cell numbers compared to controls, whereas PFBS and PFNA did not significantly change cell population levels. Overall, this work highlights the ability of PFASs to alter A6 cells, whether forming monolayers or differentiated into dome structures, and the potential of PFOS and PFOA to induce cell death. PMID:27078751

  6. A method for the low-level (ng g(-1)) determination of perfluorooctanoate in paper and textile by liquid chromatography with tandem mass spectrometry.

    PubMed

    Stadalius, Marilyn; Connolly, Paul; L'Empereur, Karen; Flaherty, John M; Isemura, Tsuguhide; Kaiser, Mary A; Knaup, Wolfgang; Noguchi, Masahiro

    2006-08-04

    The determination of perfluorooctanoate (PFO) in articles of commerce has become increasingly important to understand if treated products are a possible source of PFO. An LC-MS/MS method for the determination of PFO in paper and textile using a dual labeled 13C-PFOA internal standard was successfully developed and validated. Residues of PFO were determined using an isocratic, reversed-phase high-performance liquid chromatography (HPLC) method with an ammonium acetate/methanol buffer. Ions monitored were 413 (parent) and 369 (daughter) for PFO and 415 (parent) and 370 (daughter) for dual labeled 13C-PFOA internal standard. As a precaution against ubiquitous PFO that occasionally occurs in mobile phase or instrument components, two Hypercarb cartridges (4 mm) were placed before the HPLC injector. Any PFO that was captured by the cartridges was removed before each injection by flushing the system with 100% methanol prior to equilibration with the isocratic mobile phase. Overall recovery and standard deviation over a 3 day validation regimen for samples (n=54-55) fortified with PFOA at 5, 50, and 200 ng g(-1) were 114+/-4.9% for textile and 110+/-7.6% for paper. The results also established a limit of detection (LOD) of 1 ng g(-1) in textile and 2 ng g(-1) in paper based upon S/N of the 5.0 ng g(-1) fortification versus the untreated paper and textile.

  7. A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)?

    PubMed

    Wang, Zhanyun; DeWitt, Jamie C; Higgins, Christopher P; Cousins, Ian T

    2017-02-22

    More than 3000 per- and polyfluoroalkyl substances (PFASs) are, or have been, on the global market, yet most research and regulation continues to focus on a limited selection of rather well-known long-chain PFASs, particularly perfluorooctanesulfonate (PFOS), perfluorooctanoic acid (PFOA) and their precursors. Continuing to overlook the vast majority of other PFASs is a major concern for society. We provide recommendations for how to proceed with research and cooperation to tackle the vast number of PFASs on the market and in the environment.

  8. Spatio-temporal trends and monitoring design of perfluoroalkyl acids in the eggs of gull (Larid) species from across Canada and parts of the United States.

    PubMed

    Gewurtz, Sarah B; Martin, Pamela A; Letcher, Robert J; Burgess, Neil M; Champoux, Louise; Elliott, John E; Weseloh, D V Chip

    2016-09-15

    A large spatial dataset of perfluoroalkyl acid (PFAA) concentrations in eggs of herring gulls (Larus argentatus or congeneric species) collected from late April to early June between 2009 and 2014 from 28 colonies across Canada and parts of the Unites States was used to evaluate location-specific patterns in chemical concentrations and to generate hypotheses on the major sources affecting PFAA distributions. The highly bioaccumulative perfluorooctane sulfonic acid (PFOS) as well as other perfluoroalkyl sulfonic acids (PFSAs) showed the greatest concentrations in eggs from the lower Great Lakes of southern Ontario as well as from the St. Lawrence River. Despite the 2000 to 2002 phase-out of PFOS and related C8 chemistry by the major manufacturer at the time, ongoing losses from consumer products during use and disposal in urban/industrial locations continue to be major sources to the environment and are influencing the spatial trends of PFOS in Canada. In comparison to PFOS, perfluoroalkyl carboxylic acids (PFCAs) were not as concentrated in eggs in close proximity to urbanized/industrialized centers, but had surprisingly elevated levels in relatively remote regions such as Great Slave Lake, NT and East Bay in Hudson Bay, NU. The present results support the hypothesis that atmospheric transport and degradation of precursor chemicals, such as the fluorotelomer alcohols 8:2 FTOH and 10:2 FTOH, are influencing the spatial trends of PFCAs in Canada. A power analysis conducted on a representative urbanized/industrialized colony in the Toronto Harbour, ON, and a relatively remote colony in Lake Superior, emphasized the importance of consistent and long-term data collection in order to detect the anticipated changes in PFAA concentrations in Canadian gull eggs.

  9. Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean.

    PubMed

    Tao, Lin; Kannan, Kurunthachalam; Kajiwara, Natsuko; Costa, Monica M; Fillmann, Gilberto; Takahashi, Shin; Tanabe, Shinsuke

    2006-12-15

    Perfluorinated chemicals (PFCs) have been used as surfactants in industrial and commercial products for over 50 years. Earlier studies of the geographical distribution of PFCs focused primarily on the Northern Hemisphere, while little attention was paid to the Southern Hemisphere. In this study, livers from eight species of albatrosses, blood from elephant seal, and blood and eggs from penguins and polar skua collected from the Southern Ocean and the Antarctic during 1995-2005 were analyzed for 10 PFCs. In addition, for comparison with the Southern Ocean samples, we analyzed liver, sera, and eggs from two species of albatrosses from Midway Atoll in the North Pacific Ocean. Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) were found in livers of albatrosses from the Southern Ocean. PFOS was the major contaminant, although the concentrations were <5 ng/g, wet wt, in 92% of the albatross livers analyzed. PFOA was detected in 30% of the albatross livers, with a concentration range of <0.6-2.45 ng/g,wet wt. Other PFCs, including long-chain perfluorocarboxylates (PFCAs), were below the limits of quantitation in livers of albatrosses from the Southern Ocean. In liver, sera, and eggs of albatrosses from the North Pacific Ocean, long-chain PFCAs (perfluorononanoate, perfluorodecanoate, perfluoroundecanoate, and perfluorododecanoate) were found at concentrations similar to those of PFOS and PFOA. The mean concentration of PFOS in livers of Laysan albatrosses from the North Pacific Ocean (5.1 ng/g, wet wt) was higher than that in several species of albatrosses from the Southern Ocean (2.2 ng/g, wetwt). Species-specific differences in the concentrations of PFOS were noted among Southern Ocean albatrosses, whereas geographical differences in PFOS concentrations among the Indian Ocean, South Pacific Ocean, and South Atlantic Ocean were insignificant. Concentrations of PFOS and PFOA were, respectively, 2- and 17-fold higher in liver than in sera of Laysan

  10. U.S. domestic cats as sentinels for perfluoroalkyl substances: Possible linkages with housing, obesity, and disease.

    PubMed

    Bost, Phillip C; Strynar, Mark J; Reiner, Jessica L; Zweigenbaum, Jerry A; Secoura, Patricia L; Lindstrom, Andrew B; Dye, Janice A

    2016-11-01

    Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely important since many consumer products have been treated with different PFAS, and people spend much of their lives indoors. Herein, domestic cats were used as sentinels to investigate potential exposure and health linkages. PFAS in serum samples of 72 pet and feral cats, including 11 healthy and 61 with one or more primary disease diagnoses, were quantitated using high-resolution time-of-flight mass spectroscopy. All but one sample had detectable PFAS, with PFOS and perfluorohexane sulfonate (PFHxS) ranging from

  11. Historical trends of inorganic and organic fluorine in sediments of Lake Michigan.

    PubMed

    Codling, Garry; Vogt, Anja; Jones, Paul D; Wang, Tieyu; Wang, Pei; Lu, Y-L; Corcoran, Margaret; Bonina, Solidea; Li, An; Sturchio, Neil C; Rockne, Karl J; Ji, Kyunghee; Khim, Jong-Seong; Naile, Jonathan E; Giesy, John P

    2014-11-01

    Total fluorine (TF), extractable organic fluorine (EOF) and poly- and per-fluorinated compounds (PFCs) were measured in eight dated cores of sediment taken along with 27 surface sediments from Lake Michigan in 2010. Based on rates of sedimentation, total concentrations of PFCs (∑PFCs) reached a maximum in the later 1990s and early 2000s. This result is consistent with rapid changes in production and subsequent sedimentation. Perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) are still the predominant PFCs in the cores, but in surface sediments, concentrations of perfluorobutane sulfonate (PFBS) and perfluorobutanoic acid (PFBA) are now occurring at concentrations comparable to those of PFOS and PFOA. This observation is consistent with shifts in patterns of production and use in the US and Canada. Concentrations of TF in sediments were greater than those of EOF. This result is consistent with a larger proportion of un-extractable fluorinated material in both surface sediments and in cores.

  12. Recent experimental results of effects of perfluoroalkyl substances in laboratory animals - Relation to current regulations and guidance values.

    PubMed

    Lilienthal, Hellmuth; Dieter, Hermann H; Hölzer, Jürgen; Wilhelm, Michael

    2017-03-02

    The detection of perfluoroalkyl substances (PFAS) in surface and drinking water from various countries raised the attention to the presence of these chemicals in environmental probes and led to several regulatory actions to limit exposure in human beings. There was particular concern about perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), due to their former wide-spread use. Recently, several institutions published revisions of former regulatory or recommended maximum concentrations in drinking water and food, which are markedly lower than the former values. The present short overview describes the current regulations for PFAS and compares them with the outcome of several experimental studies in laboratory animals at low-level exposure to PFOA and PFOS. In addition, regulations for short-chain PFAS are presented which, due to lack of toxicological information, are evaluated according to the concepts of Threshold of Toxicological Concern (TTC) or the Health-related Indication Values (HRIV).

  13. First report of perfluoroalkyl substances in South African Odonata.

    PubMed

    Lesch, Velesia; Bouwman, Hindrik; Kinoshita, Ayako; Shibata, Yasuyuki

    2017-05-01

    Perfluorinated substances are global and ubiquitous pollutants. However, very little is known about these substances in invertebrates, and even less in terrestrial invertebrates in particular. We analysed adult male dragonflies from six sites in South Africa for perfluoroalkyl substances (PFASs), including perfluorooctanesulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluro-n-undecanoic acid (PFUnA), perfluoro-n-dodecanoic acid (PFDoA), perfluorohexanoic acid (PFHxA), and perfluorohexane sulfonic acid (PFHxS). PFOS was detected in all individuals, with less quantifiable occurrences of the other substances. The dragonflies from the three northern sites located in farming areas had significantly lower ΣPFASs concentrations than the southern sites located closer to industrial areas (median ΣPFASs of 0.32 ng/g wm (wet mass) for North, and 9.3 ng/g wm for South). All substances except PFOS occurred at similar concentrations at all six sites when quantifiable, but PFOS dominated in the Southern sites. The highest median concentration was from Bloemhof Dam (ΣPFASs = 21 ng/g wm), which is known to be polluted by PFOS. Perfluorinated substances are not known to be manufactured in South Africa, therefore the residues detected are likely to have been derived from imported products. Odonata play a significant role in freshwater ecology. Any impacts on these aquatic and aerial predators are likely to have effects on aquatic and associated ecosystems. Further studies are required over a much larger geographic region and to investigate sources.

  14. Accumulation of Perfluoroalkylated Substances in Oceanic Plankton.

    PubMed

    Casal, Paulo; González-Gaya, Belén; Zhang, Yifeng; Reardon, Anthony J F; Martin, Jonathan W; Jiménez, Begoña; Dachs, Jordi

    2017-03-07

    The bioaccumulation of perfluoroalkylated substances (PFASs) in plankton has previously been evaluated only in freshwater and regional seas, but not for the large oligotrophic global oceans. Plankton samples from the tropical and subtropical Pacific, Atlantic and Indian Oceans were collected during the Malaspina 2010 circumnavigation expedition, and analyzed for 14 ionizable PFASs, including perfluorooctanoate (PFOA), perfluorooctanesulfonate (PFOS) and their respective linear and branched isomers. PFOA and PFOS concentrations in plankton ranged from 0.1 to 43 ng gdw(-1) and from 0.5 to 6.7 ng gdw(-1), respectively. The relative abundance of branched PFOA in the northern hemisphere was correlated with distance to North America, consistent with the historical production and coherent with previously reported patterns in seawater. The plankton samples showing the highest PFOS concentrations also presented the largest relative abundances of branched PFOS, suggesting a selective cycling/fractionation of branched PFOS in the surface ocean mediated by plankton. Bioaccumulation factors (BAFs) for plankton were calculated for six PFASs, including short chain PFASs. PFASs Log BAFs (wet weight) ranged from 2.6 ± 0.8 for perfluorohexanesulfonic acid (PFHxS), to 4.4 ± 0.6 for perfluoroheptanoic acid (PFHpA). The vertical transport of PFASs due to the settling of organic matter bound PFAS (biological pump) was estimated from an organic matter settling fluxes climatology and the PFAS concentrations in plankton. The global average sinking fluxes were 0.8 ± 1.3 ng m(-2)d(-1) for PFOA, and 1.1 ± 2.1 ng m(-2)d(-1) for PFOS. The residence times of PFAS in the surface ocean, assuming the biological pump as the unique sink, showed a wide range of variability, from few years to millennia, depending on the sampling site and individual compound. Further process-based studies are needed to constrain the oceanic sink of PFAS.

  15. Highly efficient and stable Zr-doped nanocrystalline PbO2 electrode for mineralization of perfluorooctanoic acid in a sequential treatment system.

    PubMed

    Xu, Zesheng; Yu, Yanxin; Liu, Han; Niu, Junfeng

    2017-02-01

    Zr-doped nanocrystalline PbO2 (Zr-PbO2) film electrodes were prepared at different bath temperatures. The Zr-PbO2 electrode doped at 75°C (75-Zr-PbO2) featured high oxygen evolution overpotential, large effective area and good electrocatalytic performance. The oxygen evolution potential and the effective area of 75-Zr-PbO2 achieved 1.91V (vs. SCE) and 9.1cm(2), respectively. The removal efficiency and the defluorination ratio of PFOA reached 97.0% and 88.1% after 90min electrolysis. The primary mineralization products (i.e., F(-) and intermediates) and their change trends were determined. The 75-Zr-PbO2 electrode was introduced to sequentially treat the PFOA wastewater. In an 116h of 75-Zr-PbO2 electrocatalysis sequential process, the PFOA, PFHpA, PFHxA, PFPeA, PFBA, PFPrA, TFA, and TOC concentrations were reduced to below 30, 2.5, 1.3, 1.0, 0.5, 0.2, 0.1, and 9mgL(-1), respectively, demonstrating the promising application of the sequential treatment system for the treatment of PFOA wastewater.

  16. Perfluorooctanoic acid (PFOA)-induced developmental toxicity in the mouse is dependent on expression of peroxisome proliferator activated receptor-alpha (PPAR-α)

    EPA Science Inventory

    PFOA is a member of a family of perfluorinated chemicals that have a variety of applications. PFOA persists in the environment and is found in wildlife and humans. In mice, PFOA is developmentally toxic producing mortality, delayed eye opening, growth deficits, and altered puber...

  17. Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands.

    PubMed

    Eriksson, Ulrika; Kärrman, Anna; Rotander, Anna; Mikkelsen, Bjørg; Dam, Maria

    2013-11-01

    Diet and drinking water are suggested to be major exposure pathways for perfluoroalkyl substances (PFASs). In this study, food items and water from Faroe Islands sampled in 2011/2012 were analyzed for 11 perfluoroalkyl carboxylic acids (PFCAs) and 4 perfluoroalkane sulfonic acids (PFSAs). The food samples included milk, yoghurt, crème fraiche, potatoes, fish, and fish feed, and the water samples included surface water and purified drinking water. In total, nine PFCAs and four PFSAs were detected. Generally, the levels of PFAS were in the lower picogram per gram range. Perfluorobutanoic acid was a major contributor to the total PFASs concentration in water samples and had a mean concentration of 750 pg/L. Perfluoroundecanoic acid (PFUnDA) was predominating in milk and wild fish with mean concentrations of 170 pg/g. Perfluorooctane sulfonic acid (PFOS) was most frequently detected in food items followed by PFUnDA, perfluorononanoic acid, and perfluorooctanoic acid (PFOA). Levels of PFUnDA and PFOA exceeded those of PFOS in milk and fish samples. Prevalence of long-chain PFCAs in Faroese food items and water is confirming earlier observations of their increase in Arctic biota. Predominance of short-chain and long-chain homologues indicates exposure from PFOS and PFOA replacement compounds.

  18. Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers’ serum

    PubMed Central

    Fraser, Alicia J; Webster, Thomas F; Watkins, Deborah J; Strynar, Mark J; Kato, Kayoko; Calafat, Antonia M; Vieira, Verónica M; McClean, Michael D

    2013-01-01

    We aimed to characterize levels of polyfluorinated compounds (PFCs) in indoor dust from offices, homes, and vehicles; to investigate factors that may affect PFC levels in dust; and to examine the associations between PFCs in dust and office workers’ serum. Dust samples were collected in 2009 from offices, homes, and vehicles of 31 individuals in Boston, MA and analyzed for nineteen PFCs, including perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), fluorotelomer alcohols (FTOHs), and sulfonamidoethanols (FOSEs). Serum was collected from each participant and analyzed for eight PFCs including PFOA and PFOS. Perfluorononanoate, PFOA, perfluoroheptanoate, perfluorohexanoate, PFOS and 8:2 FTOH had detection frequencies >50% in dust from all three microenvironments. The highest geometric mean concentration in office dust was for 8:2 FTOH (309 ng/g), while PFOS was highest in homes (26.9 ng/g) and vehicles (15.8 ng/g). Overall, offices had the highest PFC concentrations, particularly for longer-chain carboxylic acids and FTOHs. Perfluorobutyrate was prevalent in homes and vehicles, but not offices. PFOA serum concentrations were not associated with PFC dust levels after adjusting for PFC concentrations in office air. Dust concentrations of most PFCs are higher in offices than in homes and vehicles. However, indoor dust may not be a significant source of exposure to PFCs for office workers. This finding suggests that our previously published observation of an association between FTOH concentrations in office air and PFOA concentrations in office workers was not due to confounding by PFCs in dust. PMID:24041736

  19. Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization.

    PubMed

    Deng, Shubo; Niu, Li; Bei, Yue; Wang, Bin; Huang, Jun; Yu, Gang

    2013-04-01

    Adsorption is considered as an effective method to remove perfluorinated compounds (PFCs) from aqueous solution. In this study, an aminated rice husk (RH) adsorbent was successfully prepared through surface-initiated atom transfer radical polymerization (ATRP) and subsequent amination reaction, and it was used to remove perfluorooctanoate (PFOA), perfluorobutanoic acid (PFBA) and perfluorooctane sulfonate (PFOS) from aqueous solution. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) analysis verified the presence of grafted polymer brushes and amine groups on the RH surface. The zero point of zeta potential of aminated RH was 8.5, which facilitated the sorption of anionic PFCs on the positively charged adsorbent at pH below 8.5. The sorption equilibria of PFOA, PFBA and PFOS were achieved within 5 h, 3 h and 9 h, respectively, faster than the reported porous adsorbents. Sorption isotherms showed that the adsorption capacities of PFOA, PFBA and PFOS on the aminated RH at pH 5.0 were 2.49, 1.70 and 2.65 mmol g(-1), respectively. Sorption behavior and X-ray photoelectron spectroscopy (XPS) analysis confirmed that the electrostatic and hydrophobic interactions were involved in the sorption process, and the micelles and hemi-micelles of PFOA and PFOS may form on the adsorbent surface.

  20. Determination of perfluorinated compounds (PFCs) in solid and liquid phase river water samples in Chao Phraya River, Thailand.

    PubMed

    Kunacheva, Chinagarn; Tanaka, Shuhei; Fujii, Shigeo; Boontanon, Suwanna Kitpati; Musirat, Chanatip; Wongwattana, Thana

    2011-01-01

    Perfluorinated compounds (PFCs), especially perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), are fully fluorinated organic compounds, which have been used in many industrial applications. These chemicals have contaminated surface water all over the world even in developing countries like Thailand. The previous study showed the contamination in Chao Phraya River in 2006 and 2007. The purposes of this field study were to determine the solid and liquid phase of PFCs contamination in Chao Phraya River and to compare the changes of PFC concentration in 2008. Surveys were conducted in the lower reach of Chao Phraya River in the industrialized area. A solid phase extraction (SPE) coupled with HPLC-ESI-MS/MS were used for the analysis for ten PFCs. Ten PFCs were analyzed to identify the contamination in both solid and liquid phases. PFCs were detected in both the solid and liquid phase in every sample. PFOA was the most dominant PFC while PFPA and PFOS were also highly detected in most samples. The average loadings of PFPA, PFOA and PFOS in Chao Phraya River were 94.3, 284.6 and 93.4 g/d, respectively. PFOS concentrations did not show differences between 2006 and 2008. However, PFOA concentrations were higher in 2008/5/26, while comparing other samplings. The ratio of solid:liquid PFPA (2.1:1.0) [(ng/g)/(ng/L)] was lower than PFOA (13.9:1.0) [(ng/g)/(ng/L)] and PFOS (17.6:1.0) [(ng/g)/(ng/L)]. The shorter chain (more hydrophilic) PFC was better to dissolve in water rather than adsorb onto suspended solids. PFOS also showed more potential to attach in the suspended solids than PFOA.

  1. Ecological effect and risk towards aquatic plants induced by perfluoroalkyl substances: Bridging natural to culturing flora.

    PubMed

    Zhou, Yunqiao; Wang, Tieyu; Jiang, Zhaoze; Kong, Xiaoxiao; Li, Qifeng; Sun, Yajun; Wang, Pei; Liu, Zhaoyang

    2017-01-01

    In the present study, the concentrations and proportions of perfluoroalkyl substances (PFASs) in water and sediments (in different seasons) from the Qing River were investigated. The highest concentration of PFASs in water (207.59 ng L(-1)) was found in summer. The composition of PFASs in water changed with time, perfluorobutane sulfonate (PFBS) was the predominant compound in spring and summer, while long-chain PFASs, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), started to increase in autumn and winter. The PFASs concentration in sediments ranged from 0.96 to 4.05 ng g(-1) dw. The proportion of long-chain PFASs was higher than that of short-chain PFASs in sediments, the dominant component in sediments was PFOA with a contribution of 24.6-75.4% to total PFASs in sediments, followed by PFOS. The concentrations of PFASs in roots of emergent plants were relatively higher than those in submerged plants. However, the translocation effect of PFASs was not remarkable. Bioaccumulation factors (BAFs) of the aquatic plants indicated the absorption of PFASs were effective. BAFs in submerged plants basically increased with increasing chain length accordingly. In general, aquatic plants had the absorption preference for long-chain PFASs, especially PFOS, which was the predominant compounds in both submerged and emergent plants. Based on the results above, hornworts were selected to be cultivated indoor in the nutrient solution spiked gradient concentrations of PFOS to assess the general ecological risk. The results revealed that hornworts were resistant to PFOS and might be used as remediation flora to eliminate PFOS contamination.

  2. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean.

    PubMed

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X

    2015-11-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties.

  3. Perfluoroalkyl Sulfonates and Carboxylic Acids in Liver, Muscle and Adipose Tissues of Black-Footed Albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean

    PubMed Central

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J.; Li, Qing X.

    2015-01-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g-1 wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g-1 ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and C16 PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817

  4. Variability and epistemic uncertainty in water ingestion rates and pharmacokinetic parameters, and impact on the association between perfluorooctanoate and preeclampsia in the C8 Health Project population.

    PubMed

    Avanasi, Raghavendhran; Shin, Hyeong-Moo; Vieira, Veronica M; Bartell, Scott M

    2016-04-01

    We recently utilized a suite of environmental fate and transport models and an integrated exposure and pharmacokinetic model to estimate individual perfluorooctanoate (PFOA) serum concentrations, and also assessed the association of those concentrations with preeclampsia for participants in the C8 Health Project (a cross-sectional study of over 69,000 people who were environmentally exposed to PFOA near a major U.S. fluoropolymer production facility located in West Virginia). However, the exposure estimates from this integrated model relied on default values for key independent exposure parameters including water ingestion rates, the serum PFOA half-life, and the volume of distribution for PFOA. The aim of the present study is to assess the impact of inter-individual variability and epistemic uncertainty in these parameters on the exposure estimates and subsequently, the epidemiological association between PFOA exposure and preeclampsia. We used Monte Carlo simulation to propagate inter-individual variability/epistemic uncertainty in the exposure assessment and reanalyzed the epidemiological association. Inter-individual variability in these parameters mildly impacted the serum PFOA concentration predictions (the lowest mean rank correlation between the estimated serum concentrations in our study and the original predicted serum concentrations was 0.95) and there was a negligible impact on the epidemiological association with preeclampsia (no change in the mean adjusted odds ratio (AOR) and the contribution of exposure uncertainty to the total uncertainty including sampling variability was 7%). However, when epistemic uncertainty was added along with the inter-individual variability, serum PFOA concentration predictions and their association with preeclampsia were moderately impacted (the mean AOR of preeclampsia occurrence was reduced from 1.12 to 1.09, and the contribution of exposure uncertainty to the total uncertainty was increased up to 33%). In conclusion

  5. A Mixture of Persistent Organic Pollutants and Perfluorooctanesulfonic Acid Induces Similar Behavioural Responses, but Different Gene Expression Profiles in Zebrafish Larvae

    PubMed Central

    Khezri, Abdolrahman; Fraser, Thomas W. K.; Nourizadeh-Lillabadi, Rasoul; Kamstra, Jorke H.; Berg, Vidar; Zimmer, Karin E.; Ropstad, Erik

    2017-01-01

    Persistent organic pollutants (POPs) are widespread in the environment and some may be neurotoxic. As we are exposed to complex mixtures of POPs, we aimed to investigate how a POP mixture based on Scandinavian human blood data affects behaviour and neurodevelopment during early life in zebrafish. Embryos/larvae were exposed to a series of sub-lethal doses and behaviour was examined at 96 h post fertilization (hpf). In order to determine the sensitivity window to the POP mixture, exposure models of 6 to 48 and 48 to 96 hpf were used. The expression of genes related to neurological development was also assessed. Results indicate that the POP mixture increases the swimming speed of larval zebrafish following exposure between 48 to 96 hpf. This behavioural effect was associated with the perfluorinated compounds, and more specifically with perfluorooctanesulfonic acid (PFOS). The expression of genes related to the stress response, GABAergic, dopaminergic, histaminergic, serotoninergic, cholinergic systems and neuronal maintenance, were altered. However, there was little overlap in those genes that were significantly altered by the POP mixture and PFOS. Our findings show that the POP mixture and PFOS can have a similar effect on behaviour, yet alter the expression of genes relevant to neurological development differently. PMID:28146072

  6. Toxicokinetics of seven perfluoroalkyl sulfonic and carboxylic acids in pigs fed a contaminated diet.

    PubMed

    Numata, Jorge; Kowalczyk, Janine; Adolphs, Julian; Ehlers, Susan; Schafft, Helmut; Fuerst, Peter; Müller-Graf, Christine; Lahrssen-Wiederholt, Monika; Greiner, Matthias

    2014-07-16

    The transfer of a mixture of perfluoroalkyl acids (PFAAs) from contaminated feed into the edible tissues of 24 fattening pigs was investigated. Four perfluoroalkyl sulfonic (PFSAs) and three perfluoroalkyl carboxylic acids (PFCAs) were quantifiable in feed, plasma, edible tissues, and urine. As percentages of unexcreted PFAA, the substances accumulated in plasma (up to 51%), fat, and muscle tissues (collectively, meat 40-49%), liver (under 7%), and kidney (under 2%) for most substances. An exception was perfluorooctanesulfonic acid (PFOS), with lower affinity for plasma (23%) and higher for liver (35%). A toxicokinetic model is developed to quantify the absorption, distribution, and excretion of PFAAs and to calculate elimination half-lives. Perfluorohexanoic acid (PFHxA), a PFCA, had the shortest half-life at 4.1 days. PFSAs are eliminated more slowly (e.g., half-life of 634 days for PFOS). PFAAs in pigs exhibit longer elimination half-lives than in most organisms reported in the literature, but still shorter than in humans.

  7. Perfluorinated compounds differentially affect steroidogenesis and viability in the human adrenocortical carcinoma (H295R) in vitro cell assay.

    PubMed

    Kraugerud, Marianne; Zimmer, Karin E; Ropstad, Erik; Verhaegen, Steven

    2011-08-10

    Perfluorinated compounds (PFCs) comprise a large class of man-made chemicals of which some are persistent and present throughout the ecosystem. This raises concerns about potential harmful effects of such PFCs on humans and the environment. In order to investigate the effects of potentially harmful PFCs on steroid hormone production, human adrenocortical H295R cells were exposed to three persistent PFCs including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorononanoic acid (PFNA) at six different concentrations (6nM to 600μM) for 48h. Exposure to 600μM PFOS resulted in a dose-responsive increase in oestradiol as well as a smaller dose-responsive increase in progesterone and testosterone secretion measured using radioimmunoassay. The aromatase activity was not significantly altered by PFOS. Only small changes in hormone secretion were detected following exposure to PFOA and PFNA. Gene expression of CYP11A, quantified using qRT-PCR was decreased by all exposure doses of PFOA, whereas HMGR expression was decreased by 60nM PFNA. The viability markedly decreased by exposure to 600μM of PFOA or PFNA, but not PFOS. Flow cytometric analysis demonstrated a significant increase in apoptosis following exposure to PFNA at the highest concentration. We conclude that PFOS is capable of altering steroidogenesis in the H295R in vitro model by a mechanism other than changes in gene expression or activity of aromatase. Additionally, PFCs appear to differentially affect cell viability with induction of cell death via apoptosis at high doses of PFNA.

  8. In silico approach to investigating the adsorption mechanisms of short chain perfluorinated sulfonic acids and perfluorooctane sulfonic acid on hydrated hematite surface.

    PubMed

    Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian

    2017-05-01

    Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants.

  9. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method.

    PubMed

    Chen, Jingnan; Cai, Danqian; Zhang, Yu

    2016-11-15

    A novel method is developed to rapidly analyze lipid peroxidation in edible oils and fatty foods at room temperature, which is called the pyridoxamine-participating ferrous oxidation-sulfosalicylic acid (PFOS) method. The PFOS method evaluates the lipid peroxide value colorimetrically via detecting the pyridoxamine-mediated pigment produced by 5-sulfosalicylic acid and Fe(3+) at 500nm, while the latter is converted from Fe(2+) in the presence of lipid peroxides. The optimized formulation was ethanol (70%, v/v), Fe(2+) (4mmol/L), 5-sulfosalicylic acid (40mmol/L) and pyridoxamine (18mmol/L). The limit of quantitation is 0.087mmol Fe(3+)/L with acceptable reproducibility. In addition, current method has a significant linear correlation with both conventional thiobarbituric acid (R(2)=0.9999) and ferric thiocyanate assays (R(2)=0.9675). This method offers a rapid technique for evaluating lipid peroxidation without heating and sophisticated instrumental procedures. Besides, current method provides a new option to evaluate the lipid peroxidation state and improve the reproducibility of ferrous-oxidation.

  10. Effects of perfluorinated chemicals on adipocyte development ...

    EPA Pesticide Factsheets

    Obesity is a growing concern in the US population. Current interest is high in the role played by environmental factors called obesogens that may contribute to obesity through developmental exposure. One class of potential obesogens is the family of perfluorinated chemicals used as surfactants in a variety of industrial applications. Given the importance of understanding the role these compounds play in lipid homeostasis we used pre-adipocyte 3T3-L1 mouse fibroblast cells (Zen-Bio, RTP NC) to study their effects on adipogenesis and lipid accumulation. These cells differentiate into adipocytes accumulating large lipid droplets. Cultures were treated with perfluorooctanoic acid (PFOA) (1-200uM), perfluorononanoic acid (PFNA) (5-lOOuM), perfluorooctane sulfonate (PFOS) (5O-300uM), and perfluorohexane sulfonate (PFHxS) (40- 250uM). Cell size number, and lipid content were assessed using morphomeiric analysis. All four compounds decreased cell size compared to control, and PFNA was most potent, in terms of lowest observed effect concentration (LOEC), whereas PFOA was least potent. Cell number increased for all perfluorinated chemicals tested, most potently for PFNA and least for PFOS. Interestingly, average lipid area per cell for all four chemicals decreased compared to control, but PFOS and PFHxS had increased total lipid area. Additionally, significant increases in total triglyceride were noted for all compounds compared to controls. PFOA and PFNA increased trigly

  11. Perfluoroalkyl substances and endometriosis in US women in NHANES 2003-2006.

    PubMed

    Campbell, Stephanie; Raza, Masooma; Pollack, Anna Z

    2016-10-01

    Exposure to endocrine-active perfluoroalkyl substances (PFASs), is nearly ubiquitous, but data on the association between PFASs and endometriosis diagnosis are limited. We aimed to examine the relationship between PFASs and endometriosis. Women aged 20-50 years from the National Health and Nutrition Examination Survey (2003-2006) were selected (n=753). Serum PFAS levels were measured and endometriosis status was determined by self-report of doctor diagnosis. Weighted survey sampling logistic regression was used. Women reporting endometriosis were older (39.4 vs. 33.7 years), and more likely to be non-Hispanic white. Geometric mean levels of perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) were significantly higher among women reporting endometriosis. Endometriosis was associated with select quartiles of PFOA, PFNA, and PFOS. Sensitivity analyses had similar results but wider confidence intervals. These findings suggest that PFOA, PFNA, and PFOS may be of interest in future studies with improved endometriosis diagnostic criteria and prospectively measured exposure.

  12. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America.

    PubMed

    Karásková, Pavlína; Venier, Marta; Melymuk, Lisa; Bečanová, Jitka; Vojta, Šimon; Prokeš, Roman; Diamond, Miriam L; Klánová, Jana

    2016-09-01

    Concentrations of 20 perfluorinated alkyl substances (PFASs) were measured in dust samples from 41 homes in Canada, the Czech Republic, and United States in the spring-summer of 2013. The most frequently detected compounds were perfluorohexanoic acid (PFHxA) and perfluorooctane sulfonate (PFOS). PFOS and perfluorooctanoic acid (PFOA) had the highest concentrations of PFASs in all countries. PFOS median concentrations for the three countries were between 9.1 and 14.1ng/g, and PFOA medians ranged between 8.2 and 9.3ng/g. In general, concentrations in North America were higher than in the Czech Republic, which is consistent with usage patterns. No differences were found for perfluorooctane sulfonamides/sulfonamidoethanols (FOSA/Es) levels due to the low number of detections. Homologue profiles suggest that the shift from longer to shorter chain PFASs is more advanced in North America than in Europe. Significant relationships were found among individual homologues and between PFAS concentrations in dust and type of floor, number of people living in the house, and building age.

  13. Human placental transfer of perfluoroalkyl acid precursors: Levels and profiles in paired maternal and cord serum.

    PubMed

    Yang, Lin; Wang, Zhen; Shi, Yu; Li, Jingguang; Wang, Yuxin; Zhao, Yunfeng; Wu, Yongning; Cai, Zongwei

    2016-02-01

    Perfluoroalkyl acids (PFAAs) precursors, the indirect source of PFAA exposure, have been observed in environmental and human samples. However, the maternal-fetal transfer of these chemicals has not been well examined. In this study, 50 paired maternal and cord serum samples collected in Jiangsu province of China were analyzed for fifteen PFAA precursors. Among the detected PFAAs, 6:2 fluorotelomer sulfonate (6:2 FTS), N-methyl- and N-ethyl-perfluorooctanesulfonamidoacetates had comparable detection rate in both maternal and cord sera, while the mean concentrations and detection rates of 8:2 FTS and perfluorooctane sulfonamide (PFOSA) were higher in maternal sera compared to cord sera (Mann-Whitney U test, P < 0.05). Analysis of variance and least significant difference tests showed that the youngest maternal age group (21-24 years old) had the highest concentration of 6:2 FTS in cord sera. Maternal serum PFOSA was found significantly correlated with the cord serum perfluorooctanesulfonate (PFOS) (Spearman test, r = 0.361, P = 0.010), indicating that maternal serum PFOSA might be an indirect source of PFOS in fetuses. The obtained results suggested the potential prenatal exposure and human placental transfer of perfluoroalkyl acid precursors.

  14. Perfluorinated chemicals: differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells.

    PubMed

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet; Casas, Josefina; Lacorte, Sílvia; Porte, Cinta

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs--PFOS, PFDoA, PFNA, PFOA--showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA>PFOS≫PFNA>PFOA>PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57-80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells.

  15. Occurrence and source characterization of perfluorochemicals in an urban watershed.

    PubMed

    Nguyen, Viet Tung; Reinhard, Martin; Karina, Gin Yew-Hoong

    2011-02-01

    Perfluorochemicals (PFCs) are used in numerous applications, mainly as surfactants, and occur ubiquitously in the environment as complex mixtures. This study was undertaken to characterize the occurrence and sources of commonly detected PFC compounds in surface waters of the Marina catchment, a watershed that drains an urbanized section of Singapore. Of the 19 target PFCs, 13 were detected with perfluorooctanoic acid (PFOA) (5-31 ng L(-1)) and perfluorooctane sulfonate (PFOS) (1-156 ng L(-1)) being the dominant components. Other compounds detected included perfluoroalkyl carboxylates (C7-C12) and perfluoroalkyl sulfonates (C6 and C8). Sulfonamide compounds detected 2-(N-ethylperfluorooctanesulfonamido) acetic acid (N-EtFOSAA), 2-(N-methylperfluorooctanesulfonamido) acetic acid (N-MeFOSAA), perfluorooctanesulfonamido acetic acid (FOSAA) and perfluorooctanesulfonamide (FOSA) were putative transformation products of N-EtFOSE and N-MeFOSE, the N-ethylated and N-methylated ethyl alcohol derivatives, respectively. Surface water concentrations were generally higher during dry weather than during storm water flow: the median concentrations of total PFCs in dry and wet weather were 57 and 138 ng L(-1) compared to 42 and 79 ng L(-1), respectively, at Stamford and Alexandra canal, suggesting the presence of a continuous source(s) which is subject to dilution during storm events. In rain water, median concentrations were 6.4 ng L(-1), suggesting rain contributed from 12-25% to the total PFC load for non-point source sites. The longitudinal concentration profile along one of the canals revealed a point source of sulfonated PFCs (PFOS), believed to originate from aqueous film-forming foam (AFFF). Sources were characterized using principal component analysis (PCA) and by plotting PFHxS/PFOA against PFOS/PFOA. Typical surface waters exhibit PFOS/PFOA and PFHxS/PFOA ratios below 0.9 and 0.5, respectively. PCA plots reveal waters impacted by "non-typical" PFC sources in Alexandra

  16. Determination of perfluorinated compounds in packaging materials and textiles using pressurized liquid extraction with gas chromatography-mass spectrometry.

    PubMed

    Lv, Gang; Wang, Libing; Liu, Shaocong; Li, Shufen

    2009-03-01

    A simultaneous determination method of trace amounts of perfluorinated compounds, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) in packaging materials and textiles, has been developed, using pressurized liquid extraction (PLE) with gas chromatography-mass spectrometry (GC/MS). The perfluorinated compounds were primarily extracted from the samples by a PLE procedure, in which the parameters were optimized by response surface methodology. The solvent was then removed by blowing nitrogen and a silylation step was carried out with N,N-bis(trimethylsilyl)trifluoroacetamide. The silylated compounds were identified and quantified by GC/MS. The proposed method was applied to determine the PFOA and PFOS in polytetrafluoroethylene packaging materials and textiles, where the detection limits of the two compounds were 1.6 and 13.9 ng mL(-1), respectively. The results showed that the concentrations of PFOA and PFOS in the packaging materials and textiles ranged from 17.5 to 45.9 and 33.7 to 81.3 ng g(-1), respectively.

  17. Spatial and temporal patterns in concentrations of perfluorinated compounds in bald eagle nestlings in the upper Midwestern United States.

    PubMed

    Route, William T; Russell, Robin E; Lindstrom, Andrew B; Strynar, Mark J; Key, Rebecca L

    2014-06-17

    Perfluorinated chemicals (PFCs) are of concern due to their widespread use, persistence in the environment, tendency to accumulate in animal tissues, and growing evidence of toxicity. Between 2006 and 2011 we collected blood plasma from 261 bald eagle nestlings in six study areas from the upper Midwestern United States. Samples were assessed for levels of 16 different PFCs. We used regression analysis in a Bayesian framework to evaluate spatial and temporal trends for these analytes. We found levels as high as 7370 ng/mL for the sum of all 16 PFCs (∑PFCs). Perfluorooctanesulfonate (PFOS) and perfluorodecanesulfonate (PFDS) were the most abundant analytes, making up 67% and 23% of the PFC burden, respectively. Levels of ∑PFC, PFOS, and PFDS were highest in more urban and industrial areas, moderate on Lake Superior, and low on the remote upper St. Croix River watershed. We found evidence of declines in ∑PFCs and seven analytes, including PFOS, PFDS, and perfluorooctanoic acid (PFOA); no trend in two analytes; and increases in two analytes. We argue that PFDS, a long-chained PFC with potential for high bioaccumulation and toxicity, should be considered for future animal and human studies.

  18. Spatial and temporal patterns in concentrations of perfluorinated compounds in bald eagle nestlings in the Upper Midwestern United States

    USGS Publications Warehouse

    Route, William T.; Russell, Robin E.; Lindstrom, Andrew B.; Strynor, Mark J.; Key, Rebecca L.

    2014-01-01

    Perfluorinated chemicals (PFCs) are of concern due to their widespread use, persistence in the environment, tendency to accumulate in animal tissues, and growing evidence of toxicity. Between 2006 and 2011 we collected blood plasma from 261 bald eagle nestlings in six study areas from the upper Midwestern United States. Samples were assessed for levels of 16 different PFCs. We used regression analysis in a Bayesian framework to evaluate spatial and temporal trends for these analytes. We found levels as high as 7370 ng/mL for the sum of all 16 PFCs (∑PFCs). Perfluorooctanesulfonate (PFOS) and perfluorodecanesulfonate (PFDS) were the most abundant analytes, making up 67% and 23% of the PFC burden, respectively. Levels of ∑PFC, PFOS, and PFDS were highest in more urban and industrial areas, moderate on Lake Superior, and low on the remote upper St. Croix River watershed. We found evidence of declines in ∑PFCs and seven analytes, including PFOS, PFDS, and perfluorooctanoic acid (PFOA); no trend in two analytes; and increases in two analytes. We argue that PFDS, a long-chained PFC with potential for high bioaccumulation and toxicity, should be considered for future animal and human studies.

  19. Perfluorinated chemicals in blood serum of inhabitants in central Poland in relation to gender and age.

    PubMed

    Góralczyk, Katarzyna; Pachocki, Krzysztof A; Hernik, Agnieszka; Struciński, Paweł; Czaja, Katarzyna; Lindh, Christian H; Jönsson, Bo A G; Lenters, Virissa; Korcz, Wojciech; Minorczyk, Maria; Matuszak, Małgorzata; Ludwicki, Jan K

    2015-11-01

    The goal of this paper is to determine concentrations of seven selected perfluoroalkylated substances (PFASs): perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonic acid (PFHxS), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA) in the blood serum of men and women of reproductive age from the central region of Poland. The relation between sex of tested subjects and the levels of compounds in blood serum of humans will also be considered and analysed as an element of the risk assessment. The study was made on the blood serum samples collected from 253 women and 176 men of reproductive age between 20 and 44 years from Warsaw and surrounding areas. Higher concentrations of five (PFOS, PFOA, PFNA, PFDA, PFUnDA) from among seven selected PFASs were observed in men in comparison to women from the same populations. Only the concentrations of PFHxS and PFDoDA were slightly higher in women than in men. These differences were statistically significant in all cases, except for PFUnDA. The hypothesis that the concentrations of said compounds increase with age of the test subjects, regardless of gender has not been confirmed.

  20. Perfluorinated compounds in human blood, water, edible freshwater fish, and seafood in China: daily intake and regional differences in human exposures.

    PubMed

    Zhang, Tao; Sun, Hongwen; Lin, Yan; Wang, Lei; Zhang, Xianzhong; Liu, Ya; Geng, Xia; Zhao, Lijie; Li, Fasong; Kannan, Kurunthachalam

    2011-10-26

    Despite the growing public interest in perfluorinated compounds (PFCs), very few studies have reported the sources and pathways of human exposure to these compounds in China. In this study, concentrations of 10 PFCs were measured in human blood, water (tap water and surface water), freshwater fish, and seafood samples collected from China. On the basis of the data, we calculated daily intakes of PFCs, regional differences in human exposures, and potential risks associated with ingestion of PFCs from diet, drinking water, and indoor dust for the Chinese population. Perfluorooctane sulfonate (PFOS) was the most predominant PFC found with a mean concentration of 12.5 ng/mL in human blood from Tianjin and 0.92 ng/g wet wt in freshwater fish and seafood; perfluorooctanoic acid (PFOA) was the major PFC found in drinking water at a concentration range of 0.10 to 0.92 ng/L. The estimated daily intake of PFOS and PFOA via fish and seafood consumption (EDI(fish&seafood)) ranged from 0.10 to 2.51 and 0.13 to 0.38 ng/kg bw/day, respectively, for different age groups (i.e., toddlers, adolescents and children, and adults) from selected locations (i.e., Tianjin, Nanchang, Wuhan, and Shenyang). The EDI(fish&seafood) of PFCs decreased (p < 0.05) with age. The estimated daily intake of PFOS and PFOA via drinking water consumption (EDI(drinking water)) ranged from 0.006 to 0.014 and 0.010 to 0.159 ng/kg bw/day, respectively. Comparison of EDI(fish&seafood) and EDI(drinking water) values with those of the modeled total dietary intake (TDI) of PFCs by adults from Tianjin, Nanchang, Wuhan, and Shenyang showed that contributions of fish and seafood to TDI of PFOS varied depending on the location. Fish and seafood accounted for 7%, 24%, 80%, and 84% of PFOS intake in Nanchang, Shenyang, Wuhan, and Tianjin, respectively, suggesting regional differences in human exposure to PFOS. Drinking water was a minor source of PFOS (<1%) exposure in adults from all the study locations.

  1. Transcriptome of the Antarctic amphipod Gondogeneia antarctica and its response to pollutant exposure.

    PubMed

    Kang, Seunghyun; Kim, Sanghee; Park, Hyun

    2015-12-01

    Gondogeneia antarctica is widely distributed off the western Antarctic Peninsula and is a key species in the Antarctic food web. In this study, we performed Illumina sequencing to produce a total of 4,599,079,601 (4.6Gb) nucleotides and a comprehensive transcript dataset for G. antarctica. Over 46 million total reads were assembled into 20,749 contigs, and 12,461 annotated genes were predicted by Blastx. The RNA-seq results after exposure to three pollutants showed that 658, 169 and 367 genes that were potential biomarkers of responses to pollutants for this species were specifically upregulated after exposure to PCBs (Polychlorinated biphenyls), PFOS (Perfluorooctanesulfonic acid) and PFOA (Perfluorooctanoic acid), respectively. These data represent the first transcriptome resource for the Antarctic amphipod G. antarctica and provide a useful resource for studying Antarctic marine species.

  2. Shorter duration of breastfeeding at elevated exposures to perfluoroalkyl substances.

    PubMed

    Timmermann, Clara Amalie Gade; Budtz-Jørgensen, Esben; Petersen, Maria Skaalum; Weihe, Pál; Steuerwald, Ulrike; Nielsen, Flemming; Jensen, Tina Kold; Grandjean, Philippe

    2017-03-01

    The aim of this study was to determine whether maternal exposure to persistent perfluoroalkyl substances (PFASs) affect the capability to breastfeed. In two Faroese birth cohorts (N=1130), concentrations of five PFASs were measured in maternal serum during pregnancy or two weeks after term. Duration of breastfeeding was assessed by questionnaire and clinical interview. In adjusted linear regression models, a doubling of maternal serum PFASs was associated with a reduction in duration of both total and exclusive breastfeeding, most pronounced for perfluorooctane sulfonic acid (PFOS) where a doubling was associated with a reduction in total breastfeeding of 1.4 (95% CI: 0.6; 2.1) months and perfluorooctanoic acid (PFOA) where a doubling was associated with a reduction in exclusive breastfeeding of 0.5 (0.3; 0.7) months. The associations were evident among both primiparous and multiparous women, and thus cannot be explained by confounding from previous breastfeeding.

  3. Perfluorinated compounds in surface waters and WWTPs in Shenyang, China: mass flows and source analysis.

    PubMed

    Sun, Hongwen; Li, Fasong; Zhang, Tao; Zhang, Xianzhong; He, Na; Song, Qi; Zhao, Lijie; Sun, Lina; Sun, Tieheng

    2011-10-01

    Concentrations of 10 perfluorinated chemicals (PFCs) were investigated in the Hun River (HR), four canals, ten lakes, and influents and effluents from four main municipal wastewater treatment plants (WWTPs) in Shenyang, China. Mass flows of four main PFCs were calculated to elucidate the contribution from different sections of the HR. Overall, perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA) were the major PFCs in the HR, with ranges of 2.68-9.13 ng/L, and 2.12-11.3 ng/L, respectively, while perfluorooctane sulfonate (PFOS) was detected at lower levels, ranging from 0.40 to 3.32 ng/L. The PFC concentrations in the HR increased after the river passes through two cities (Shenyang and Fushun), indicating cities are an important contributor for PFCs. Mass flow analysis in the HR revealed that PFC mass flows from Fushun are 1.65-5.50 kg/year for C6-C8 perfluorinated acids (PFCAs) and 1.29 kg/year for PFOS, while Shenyang contributed 2.83-5.18 kg C6-C8 PFCAs/year, and 3.65 kg PFOS/year. The concentrations of PFCs in four urban canals were higher than those in the HR, with the maximum total PFCs of 240 ng/L. PFOA and PFOS showed different trends along these canals, suggesting different sources for the two PFCs. Total PFCs in ten lakes from Shenyang were at low levels, with the greatest concentration (56.2 ng/L) detected in a heavily industrialized area. The PFC levels in WWTP effluents were higher than those in surface waters with concentrations ranging from 18.4 to 41.1 ng/L for PFOA, and 1.69-3.85 ng/L for PFOS. Similar PFC profiles between effluents from WWTPs and urban surface waters were found. These results indicate that WWTPs are an important PFC source in surface water. Finally, we found that the composition profiles of PFCs in surface waters were similar to those in tap water, but not consistent with those in adult blood from Shenyang. The calculation on total daily intake of PFOS by adults from Shenyang showed that the contribution of

  4. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities.

    PubMed

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Fu, Yaning; Zhu, Zhaoyun; Liu, Shijie; Xie, Shuangwei; Xiao, Yang; Giesy, John P

    2014-07-01

    Perfluoroalkyl acids (PFAAs) are emerging contaminants that have raised great concern in recent years. While PFAAs manufacturing becomes regulated in developed countries, production has been partly shifted to China. Eight fluoropolymer manufacturing facilities located in the South Bohai coastal region, one of the most populated areas of China, have been used to manufacture PFAA-related substances since 2001. The environmental consequence of the intensive production of PFAAs in this region remains largely unknown. We analyzed 17 PFAAs in twelve coastal rivers of this region, and found staggeringly high concentrations of perfluorooctanoic acid (PFOA) ranging from 0.96 to 4534.41 ng/L. The highest concentration was observed in the Xiaoqing River which received effluents from certain fluoropolymer facilities. Principal component analysis indicated similar sources of several perfluoroalkyl carboxylic acids (PFCAs) in all rivers, which indicated that atmospheric transport, wastewater treatment and surface runoff also acted as important supplements to direct discharge to surface water.

  5. Poly- and perfluoroalkyl substances (PFASs) in raw and drinking water - current situation in Sweden, Denmark and Germany

    NASA Astrophysics Data System (ADS)

    Banzhaf, Stefan; Bester, Kai; Filipovic, Marko; Lewis, Jeffrey; Licha, Tobias; Sparrenbom, Charlotte; Barthel, Roland

    2016-04-01

    Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic environmental pollutants which have been used and produced for more than 60 years. PFASs are used for multiple industrial purposes, e.g. as water repellent on clothing, leather, and paper and as firefighting foam. The most well studied PFASs subgroup are perfluoroalkyl acids (PFAA). Two PFAAs of particular interest are perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA). These are the most studied homologues which are ubiquitously detected in the aquatic environment, wildlife and humans. Some PFASs are recognized as being potentially toxic for both animals and humans (e.g. PFOS), whereas the majority has not been thoroughly studied yet regarding their toxicity. PFAAs are highly mobile once present in the aquatic environment. Currently, they are not eliminated during conventional wastewater or drinking water treatment and therefore pose a severe threat for drinking water supply. We reviewed the current occurrence of PFAAs in the surface and groundwater and legal situation of PFAAs in Sweden, Denmark and Germany. Although first detections of PFAAs were reported in the early 2000s, PFASs only recently attracted huge media attention raising public concern. In Sweden, for instance, several public waterworks needed to cease operation due to high PFASs concentrations in drinking water. Moreover, threshold values for drinking water are under discussion and a first preliminary guiding value for PFOS was recently presented as a first step (Pettersson et al., 2015). Germany only defined a guiding value for the sum of PFOS and PFOA in drinking water so far (Dieter, 2011). Limits of 0.3 μg/L PFOA and 0.1 μg/L PFOS and PFOSA each have been suggested in Denmark (MST, 2015). In summary, none of the three countries has defined a clear threshold value for any PFAS compound in drinking water so far. This is of huge concern as PFASs are detected at increasing rates while it remains unclear when

  6. Perflurooctanoic Acid Induces Developmental Cardiotoxicity in ...

    EPA Pesticide Factsheets

    Perfluorooctanoic acid (PFOA) is a widespread environmental contaminant that is detectable in serum of the general U.S. population. PFOA is a known developmental toxicant that induces mortality in mammalian embryos and is thought to induce toxicity via interaction with the peroxisome proliferator activated receptor alpha (PPAR_). As the cardiovascular system is crucial for embryonic survival, PFOA-induced effects on the heart may partially explain embryonic mortality. To assess impacts of PFOA exposure on the developing heart in an avian model, we used histopathology and immunohistochemical staining for myosin to assess morphological alterations in 19-day-old chicken embryo hearts after PFOA exposure. Additionally, echocardiography and cardiac myofibril ATPase activity assays were used to assess functional alterations in 1-day-old hatchling chickens following developmental PFOA exposure. Overall thinning and thinning of a dense layer of myosin in the right ventricular wall were observed in PFOA-exposed chicken embryo hearts. Alteration of multiple cardiac structural and functional parameters, including left ventricular wall thickness, left ventricular volume, heart rate, stroke volume, and ejection fraction were detected with echocardiography in the exposed hatchling chickens. Assessment of ATPase activity indicated that the ratio of cardiac myofibril calcium-independent ATPase activity to calcium-dependent ATPase activity was not affected, which suggests that d

  7. Perfluoroalkyl acid distribution in various plant compartments ...

    EPA Pesticide Factsheets

    Crop uptake of perfluoroalkyl acids (PFAAs) from biosolids-amended soil has been identified as a potential pathway for PFAA entry into the terrestrial food chain. This study compared the uptake of PFAAs in greenhouse-grown radish (Raphanus sativus), celery (Apium graveolens var.dulce), tomato (Lycopersicon lycopersicum), and sugar snap pea (Pisum sativum var. macrocarpon) from an industrially impacted biosolids-amended soil, a municipal biosolids­ amended soil, and a control soil. Individual concentrations of PFAAs, on a dry weight basis, in mature, edible portions of crops grown in soil amended with PFAA industrially impacted biosolids were highest for perfluorooctanoate (PFOA; 67 ng/g) in radish root, perfluorobutanoate (PFBA;232 ng/g) in celery shoot, and PFBA (150 ng/g) in pea fruit. Comparatively, PFAA concentrations in edible compartments of crops grown in the municipal biosolids-amended soil and in the control soil were less than 25 ng/g. Bioaccumulation factors (BAFs) were calculated for the root, shoot, and fruit compartments (as applicable) of all crops grown in the industrially impacted soil. BAFs were highest for PFBA in the shoots of all crops, as well as in the fruit compartment of pea. Root­ soil concentration factors (RCFs) for tomato and pea were independent of PFAA chain length, while radish and celery RCFs showed a slight decrease with increasing chain length. Shoot-soil concentration factors (SCFs) for all crops showed a decrease with incre

  8. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    PubMed Central

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-01-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively. PMID:26947748

  9. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    NASA Astrophysics Data System (ADS)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-03-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively.

  10. Semiautomated solid-phase extraction followed by derivatisation and gas chromatography–mass spectrometry for determination of perfluoroalkyl acids in water.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2013-11-29

    This paper describes a sensitive approach for the determination of 6 perfluoroalkyl carboxylic acids and perfluorooctane sulfonic acid in water. Samples were preconcentrated using an automatic solid-phase extraction module and then manually derivatised and determined by gas chromatography–mass spectrometry. The analytes were derivatised with a isobutyl chloroformate/isobutanol mixture, using 3% N,N-dicyclohexylcarbodiimide in pyridine as the catalyst. From a systematic comparison of several reversed-phase and anion-exchange sorbent materials for the retention of perfluoroalkyl acids, the high-est retention efficiencies (∼100%) were achieved with LiChrolut EN and Discovery DSC-SAX columns.LiChrolut EN was the sorbent selected due to several advantages (sample pH ∼1; sample flow rate,5.5 mL/min; breakthrough volume, 300 mL) over Discovery DSC-SAX (sample pH ∼6; sample flow rate,3.0 mL/min; breakthrough volume, 45 mL), for the retention of the studied compounds. Detection and quantification limits within the range of 0.1–0.5 ng/L and 0.4–1.7 ng/L, respectively, were obtained for a sorbent column of 70 mg of LiChrolut EN and 250 mL of sample, the relative standard deviation being lower than 7%. The method was applied both to the analysis of water collected at the intake (raw) and atthe exit (treated) of two drinking water treatment plants, as well as to various types of water. Few samples were positive for perfluoroalkyl acids and only one acid (perfluoroheptanoic or perfluorooctanoic) was found in each treatment plant. The highest number and concentration of analytes (perfluoroheptanoic,perfluorooctanoic and perfluorodecanoic acid) were found in one wastewater.

  11. Oxidative conversion as a means of detecting precursors to perfluoroalkyl acids in urban runoff.

    PubMed

    Houtz, Erika F; Sedlak, David L

    2012-09-04

    A new method was developed to quantify concentrations of difficult-to-measure and unidentified precursors of perfluoroalkyl carboxylic (PFCA) and sulfonic (PFSA) acids in urban runoff. Samples were exposed to hydroxyl radicals generated by thermolysis of persulfate under basic pH conditions and perfluoroalkyl acid (PFAA) precursors were transformed to PFCAs of related perfluorinated chain length. By comparing PFCA concentrations before and after oxidation, the concentrations of total PFAA precursors were inferred. Analysis of 33 urban runoff samples collected from locations around the San Francisco Bay, CA indicated that PFOS (2.6-26 ng/L), PFOA (2.1-16 ng/L), and PFHxA (0.9-9.7 ng/L) were the predominant perfluorinated compounds detected prior to sample treatment. Following oxidative treatment, the total concentrations of PFCAs with 5-12 membered perfluoroalkyl chains increased by a median of 69%, or between 2.8 and 56 ng/L. Precursors that produced PFHxA and PFPeA upon oxidation were more prevalent in runoff samples than those that produced PFOA, despite lower concentrations of their corresponding perfluorinated acids prior to oxidation. Direct measurements of several common precursors to PFOS and PFOA (e.g., perfluorooctanesulfonamide and 8:2 fluorotelomer sulfonate) accounted for less than 25% of the observed increase in PFOA, which increased by a median value of 37%. Exposure of urban runoff to sunlight, advanced oxidation processes, or microbes could result in modest, but measurable, increases in concentrations of PFCAs and PFSAs.

  12. Concentrations and trends of perfluorinated chemicals in potential indoor sources from 2007 through 2011 in the US.

    PubMed

    Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Pope, Robert H; Roache, Nancy F

    2014-03-01

    Certain perfluorinated chemicals (PFCs) in consumer products used indoors are potential indoor PFCs sources and have been associated with developmental toxicity and other adverse health effects in laboratory animals (Lao et al., 2007). The concentrations of selected PFCs including perfluorooctanoic acid (PFOA) and other perfluorocarboxylic acids (PFCAs), in 35 selected consumer products that are commonly used in indoors were measured from the year of 2007 through 2011. The products collected included carpet, commercial carpet-care liquids, household carpet/fabric-care liquids, treated apparel, treated home textiles, treated non-woven medical garments, floor waxes, food-contact paper, membranes for apparel, and thread-sealant tapes. They were purchased from retail outlets in the United States between March 2007 and September 2011. The perfluorocarboxylic acid (PFCA) contents in the products have shown an overall downward trend. However, PFOA (C8) could still be detected in many products that we analyzed. Reductions of PFCAs were shown in both short-chain PFCAs (sum of C4 to C7) and long-chain PFCAs (sum of C8 to C12) over the study period. There were no significant changes observed between short-chain PFCAs and long-chain PFCAs. Fourteen products were analyzed to determine the amounts of perfluoroalkyl sulfonates (PFASs) they contained. These limited data show the pronounced increase of perfluoro-butane sulfonate (PFBS), an alternative to perfluorooctanoic sulfonate (PFOS), in the samples. A longer and wider range of study will be required to confirm this observed trend.

  13. Are levels of perfluoroalkyl substances in soil related to urbanization in rapidly developing coastal areas in North China?

    PubMed

    Meng, Jing; Wang, Tieyu; Wang, Pei; Zhang, Yueqing; Li, Qifeng; Lu, Yonglong; Giesy, John P

    2015-04-01

    Concentrations of 13 perfluoroalkyl substances (PFASs) were quantified in 79 surface soil samples from 17 coastal cities in three provinces and one municipality along the Bohai and Yellow Seas. The ∑PFASs concentrations ranged from less than limitation of quantification (LOQ) to 13.97 ng/g dry weight (dw), with a mean of 0.98 ng/g dw. The highest concentration was observed along the Xiaoqing River from Shandong province, followed by that from the Haihe River in Tianjin (10.62 ng/g dw). Among four regions, ∑PFASs concentrations decreased in the order of Tianjin, Shandong, Liaoning and Hebei, which was consistent with levels of urbanization. Fluorine chemical industries allocated in Shandong and Liaoning played important roles in terms of point emission and contamination of PFASs, dominated by perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Intensive anthropogenic activities involved in urbanization possibly resulted in increasing releases of PFASs from industrial and domestic sources.

  14. [Residue characteristics and distributions of perfluorinated compounds in surface seawater along Shenzhen coastline].

    PubMed

    Chen, Qing-Wu; Zhang, Hong; Chai, Zhi-Fang; Shen, Jin-Can; Yang, Bo

    2012-06-01

    In order to explore the residue characteristics and distributions of 15 perfluorinated compounds (PFCs) in 18 surface seawater samples along Shenzhen coastline, high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) combined with solid phase extraction enrichment was applied in this research. The results indicated that residue level of PFCs in coastal surface seawater samples was significantly affected by human activities. Sigma PFCs residue levels in surface seawater from Shenzhen west coast, which locates below the estuary of Pearl River and Donghao River, are much higher than those from the east coast, which has low development and sparse population (P<0.05). Under natural conditions, sigma PFCs residue levels in coastal surface seawater samples from Shenzhen Bays are higher than those out of bays. The major residue species in surface seawater samples along Shenzhen coast were medium- and short-chain PFCs, including perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexanoic acid and perfluoropentanoic acid. Their similar environmental behavior (P<0.05, P<0.01) is likely associated with the production process of PFCs-related products. Furthermore, cluster analysis results show that PFOS (R2 = 0.4092) level can be used as a representative parameter for evaluating PFCs contamination status in surface seawater along Shenzhen coast.

  15. The Effects of Perfluorinated Chemicals on Adipoctye ...

    EPA Pesticide Factsheets

    The 3T3-L1 preadipocyte culture system has been used to examine numerous compounds that influence adipocyte differentiation or function. The perfluoroalkyl acids (PFAAs), used as surfactants in a variety of industrial applications, are of concern as environmental contaminants that are detected worldwide in human serum and animal tissues. This study was designed to evaluate the potential for PFAAs to affect adipocyte differentiation and lipid accumulation using mouse 3T3-L1 cells. Cells were treated with perfluorooctanoic acid (PFOA) (5-100 IJM), perfluorononanoic acid (PFNA) (5-100 1JM), perfluorooctane sulfonate (PFOS) (50-300 IJM}, perfluorohexane sulfonate (PFHxS) (40-250 IJM), the peroxisome proliferator activated receptor (PPAR) PPARa agonist Wyeth-14,643 (WY-14,643), and the PPARy agonist rosiglitazone. The PPARy agonist was included as a positive control as this pathway is critical to adipocyte differentiation. The PPARa agonist was included as the PFAA compounds are known activators of this pathway. Cells were assessed morphometrically and biochemically for number, size, and lipid content. RNA was extracted for qPCR analysis of 13 genes selected for their importance in adipocyte differentiation and lipid metabolism. There was a significant concentration-related increase in cell number and decreased cell size after exposure to PFOA, PFHxS, PFOS, and PFNA. All four PFAA treatments produced a concentration-related decrease in the calculated average area oc

  16. Trends of perfluorochemicals in Greenland ringed seals and polar bears: indications of shifts to decreasing trends.

    PubMed

    Rigét, Frank; Bossi, Rossana; Sonne, Christian; Vorkamp, Katrin; Dietz, Rune

    2013-11-01

    Time-series of perfluorinated alkylated substances (PFASs) in East Greenland polar bears and East and West Greenland ringed seals were updated in order to deduce whether a response to the major reduction in perfluoroalkyl production in the early 2000s had occurred. Previous studies had documented an exponential increase of perfluorooctane sulphonate (PFOS) in liver tissue from both species. In the present study, PFOS was still the far most dominant compound constituting 92% (West Greenland ringed seals), 88% (East Greenland ringed seals) and 85% (East Greenland polar bears). The PFOS concentrations increased up to 2006 with doubling times of approximately 6 years for the ringed seal populations and 14 years in case of polar bears. Since then a rapid decrease has occurred with clearing half-lives of approximately 1, 2 and 4 years, respectively. In polar bears perfluorohexane sulphonate (PFHxS) and perfluorooctane sulphonamide (PFOSA) also showed decreasing trends in recent years as do perfluorodecanoic acid (PFDA) and perfluoroundecanoic acid (PFUnA). For the West Greenland ringed seal population perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), PFDA and PFUnA peaked in the mid 2000s, whereas PFNA, PFDA and PFUnA in the East Greenland population have been stable or increasing in recent years. The peak of PFASs in Greenland ringed seals and polar bears occurred at a later time than in Canadian seals and polar bears and considerably later than observed in seal species from more southern latitudes. We suggest that this could be explained by the distance to emission hot-spots and differences in long-range transport to the Arctic.

  17. Perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China: Spatial distribution, sources and health risk assessment.

    PubMed

    Liu, Baolin; Zhang, Hong; Yao, Dan; Li, Juying; Xie, Liuwei; Wang, Xinxuan; Wang, Yanping; Liu, Guoqing; Yang, Bo

    2015-11-01

    This study investigated the occurrence of perfluorinated compounds (PFCs) in the atmosphere of Shenzhen, China. 11 PFCs, including two perfluoroalkyl sulfonic acids (PFSAs, C6 and C8) and perfluoroalkyl carboxylic acids (PFCAs, C4-12) were determined by high performance liquid chromatography-negative electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS). Total PFC concentrations (∑ PFCs) in the atmospheric samples ranged from 3.4 to 34 pg m(-3) with an average of 15 pg m(-3). Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were the two most abundant PFCs and on average accounted for 35% and 22% of ∑ PFCs, respectively. ∑ PFCs and total PFCA concentrations (∑ PFCAs) showed a tendency of low-lying East West, while the distribution of total PFSA concentrations (∑ PFSAs) was uniform. Higher concentrations of ∑ PFCs were found in Bao'an District which had very well-developed manufacturing industries. PCA model was employed to quantitatively calculate the contributions of sources. The results showed that PFOA-factor, long chain PFCs-factor and PFOS-factor were the three main source categories for PFCs in the atmosphere. Meanwhile, long-distance transport of pollutants from southeastern coastal areas might be another source of PFCs in Shenzhen atmosphere. PFCs in the atmosphere were more positively correlated with the levels PM10 than PM2.5, which indicated PFCs were more likely to adhere to particles with relatively large sizes. The hazard ratios of noncancer risk through breathing based on PFOS and PFOA concentrations were calculated and were less than unity, suggesting that PFCs concentrations may pose no or immediate threat to the residents in Shenzhen.

  18. Isomer-specific trophic transfer of perfluorocarboxylic acids in the marine food web of Liaodong Bay, North China.

    PubMed

    Zhang, Zhong; Peng, Hui; Wan, Yi; Hu, Jianying

    2015-02-03

    Trophic transfers of perfluorocarboxylic acids (PFCAs) have been well studied in aquatic food webs; however, most studies examined PFCAs as single compounds without differentiating isomers. In this study, an in-port derivatization GC-MS method was used to determine PFCA (perfluorooctanoic acid, PFOA; perfluorononanoic acid, PFNA; perfluorodecanoate acid, PFDA; perfluoroundecanoate acid, PFUnDA; perfluorododecanoate acid, PFDoDA; perfluorotridecanoate acid, PFTriDA, and perfluorotetradecanoate acid, PFTeDA) structural isomers in 11 marine species including benthic invertebrates, fishes, and gulls collected in November 2006 from Liaodong Bay in China. The total concentrations of linear PFCAs were 0.35-1.10, 0.93-2.61, and 2.13-2.69 ng/g ww, and the corresponding percentages of branched PFCAs to linear PFCAs were 6.6-15.5%, 4.2-9.9%, and 4.5-6.0% in invertebrates, fishes, and birds, respectively. Except for linear PFOA, significant positive relationships were found between the concentrations of all the target linear PFCAs and trophic levels, and the trophic magnification factors (TMFs) ranged from 1.90 to 4.88. Positive correlations between the concentrations of branched PFCAs isomers and trophic levels were also observed but were without statistical significance. The relatively high biomagnification of linear isomers of PFCAs would lead to low percentages of branched PFCAs to total PFCAs in organisms at high trophic levels. This study for the first time clarified isomer-specific trophic transfers of PFCAs in a marine food web.

  19. High levels of perfluoroalkyl acids in eggs and embryo livers of great cormorant (Phalacrocorax carbo sinensis) and herring gull (Larus argentatus) from Lake Vänern, Sweden.

    PubMed

    Nordén, Marcus; Berger, Urs; Engwall, Magnus

    2013-11-01

    In the eggs and developing chick livers in the two wild bird species, great cormorant and herring gull, the concentrations of a range of 15 perfluoroalkyl acids (PFAAs) were determined. Eggs of the two species were collected from Lake Vänern, Sweden, and analysed either as undeveloped egg (whole egg or separated into yolk and albumen) or incubated until start of the hatching process when the chick liver was removed and analysed. High levels of PFAAs were found in all matrixes except albumen. The predominant PFAA was perfluorooctane sulfonate (PFOS), which was found in the μg/g wet weight (ww) range in some samples of cormorant whole egg, yolk and liver and herring gull egg yolk and liver. The average concentration in yolk was 1,506 ng/g ww in cormorant and 589 ng/g ww in herring gull. The average liver concentrations of PFOS were 583 ng/g ww in cormorant and 508 ng/g ww in herring gull. At these concentrations, biochemical effects in the developing embryo or effects on embryo survival cannot be ruled out. For perfluoroalkyl carboxylates (PFCAs), the liver/egg and liver/yolk concentration ratios increased with PFCA chain length in cormorant but not in herring gull, indicating that chain length could possibly affect egg-to-liver transfer of PFCAs and that species differences may exist.

  20. Ecotoxicological assessment of surfactants in the aquatic environment: combined toxicity of docusate sodium with chlorinated pollutants.

    PubMed

    Rosal, Roberto; Rodea-Palomares, Ismael; Boltes, Karina; Fernández-Piñas, Francisca; Leganés, Francisco; Petre, Alice

    2010-09-01

    The toxicity of perfluorinated surfactants perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorobutane sulfonate (PFBS) and PF-656 as well as the sulfosuccinate surfactant docusate sodium has been examined using two bioluminescence inhibition assays based on the marine bacterium Vibrio fischeri and the self-luminescent cyanobacterial recombinant strain Anabaena CPB4337. We also determined multigenerational toxicity towards the growth of the algae Pseudokirchneriella subcapitata. With EC(50) values in the 43-75 mg/L range, docusate sodium exhibited a higher toxicity towards the three organisms than PFOS, PFOA, PF-656 and PFBS. We investigated the toxicological interactions of the most toxic surfactant, docusate sodium, with two chlorinated compounds, triclosan and 2,4,6-trichlorophenol (TCP), in their binary and ternary mixtures using the method of the combination index based on the median-effect equation. In general, the binary mixture of the chlorinated compounds triclosan and TCP exhibited antagonism, which was stronger for the growth test using P. subcapitata. Except for the green alga, the binary mixtures of docusate sodium with TCP or triclosan showed synergism at medium to high effect levels; the synergistic behaviour predominating in the ternary mixture and in the three tested species. This result highlights the potential toxicological risk associated with the co-occurrence of this surfactant with other pollutants.

  1. Distribution of antifouling biocides and perfluoroalkyl compounds in sediments from selected locations in Indonesian coastal waters.

    PubMed

    Harino, Hiroya; Arifin, Zainal; Rumengan, Inneke F M; Arai, Takaomi; Ohji, Madoka; Miyazaki, Nobuyuki

    2012-07-01

    Coastal marine environments are considered to be the most sensitive areas for the accumulation of organotin (OT) compounds and other emerging new pollutants, such as perfluoroalkyl compounds. Contamination by these compounds is a matter of great concern due to their accumulation and possible negative impact on the coastal environment and organisms. The concentrations of tributyltin (TBT) compounds were greater in Indonesia, i.e., on the order of Bitung > Manado > Jakarta Bay > Gangga Island, and TBT in sediment from Bitung and Manado was the dominant species among butyltin (BT) compounds. Sea Nine 211, diuron, and irgarol 1051 were detected among alternative biocides in Bitung, Manado, and Gangga Island and irgarol 1051 was detected in Jakarta Bay. Perfluorooctanoic acid (PFOA) and perfluorosulfonic acid (PFOS) in Jakarta Bay were detected at 0.25 to 6.1 μg kg(-1) dry weight (dw) and 0.58 to 3.7 μg kg(-1) dw, respectively, and the concentrations of PFOS at most sampling sites were greater than those of PFOA. Thus, coastal waters from Indonesia have already been contaminated by antifouling biocides and perfluoroalkyl compounds.

  2. Distribution and long-range transport of polyfluoroalkyl substances in the Arctic, Atlantic Ocean and Antarctic coast.

    PubMed

    Zhao, Zhen; Xie, Zhiyong; Möller, Axel; Sturm, Renate; Tang, Jianhui; Zhang, Gan; Ebinghaus, Ralf

    2012-11-01

    The global distribution and long-range transport of polyfluoroalkyl substances (PFASs) were investigated using seawater samples collected from the Greenland Sea, East Atlantic Ocean and the Southern Ocean in 2009-2010. Elevated levels of ΣPFASs were detected in the North Atlantic Ocean with the concentrations ranging from 130 to 650 pg/L. In the Greenland Sea, the ΣPFASs concentrations ranged from 45 to 280 pg/L, and five most frequently detected compounds were perfluorooctanoic acid (PFOA), perfluorohexanesulfonate (PFHxS), perfluorohexanoic acid (PFHxA), perfluorooctane sulfonate (PFOS) and perfluorobutane sulfonate (PFBS). PFOA (15 pg/L) and PFOS (25-45 pg/L) were occasionally found in the Southern Ocean. In the Atlantic Ocean, the ΣPFASs concentration decreased from 2007 to 2010. The elevated PFOA level that resulted from melting snow and ice in Greenland Sea implies that the Arctic may have been driven by climate change and turned to be a source of PFASs for the marine ecosystem.

  3. Temporal trends of perfluoroalkyl substances (PFAS) in eggs of coastal and offshore birds: Increasing PFAS levels associated with offshore bird species breeding on the Pacific coast of Canada and wintering near Asia.

    PubMed

    Miller, Aroha; Elliott, John E; Elliott, Kyle H; Lee, Sandi; Cyr, Francois

    2015-08-01

    Perfluoroalkyl substances (PFAS) such as perfluoroalkyl carboxylates (PFCAs) and perfluoroalkyl sulfonates (PFSAs) have become virtually ubiquitous throughout the environment, and, based on laboratory studies, have known toxicological consequences. Various national and international voluntary phase-outs and restrictions on these compounds have been implemented over the last 10 to 15 years. In the present study, we examine trends (1990/1991-2010/2011) in aquatic birds (ancient murrelet, Synthliboramphus antiquus [2009 only]; Leach's storm-petrels, Oceanodroma leucorhoa; rhinoceros auklets, Cerorhinca monocerata; double-crested cormorants, Phalacrocorax auritus; and great blue herons, Ardea herodias). The PFCA, PFSA, and stable isotope (δ(15) N and δ(13) C) data collected from these species from the Pacific coast of Canada, ranging over 20 to 30 years, were used to investigate temporal changes in PFAS coupled to dietary changes. Perfluorooctane sulfonic acid (PFOS), the dominant PFSA compound in all 4 species, increased and subsequently decreased in auklet and cormorant eggs in line with the manufacturing phase-out of PFOS and perfluorooctanoic acid (PFOA), but concentrations continuously increased in petrel eggs and remained largely unchanged in heron eggs. Dominant PFCA compounds varied between the offshore and coastal species, with increases seen in the offshore species and little or variable changes seen in the coastal species. Little temporal change was seen in stable isotope values, indicating that diet alone is not driving observed PFAS concentrations.

  4. Determination of perfluorinated compounds in fish fillet homogenates: method validation and application to fillet homogenates from the Mississippi River.

    PubMed

    Malinsky, Michelle Duval; Jacoby, Cliffton B; Reagen, William K

    2011-01-10

    We report herein a simple protein precipitation extraction-liquid chromatography tandem mass spectrometry (LC/MS/MS) method, validation, and application for the analysis of perfluorinated carboxylic acids (C7-C12), perfluorinated sulfonic acids (C4, C6, and C8), and perfluorooctane sulfonamide (FOSA) in fish fillet tissue. The method combines a rapid homogenization and protein precipitation tissue extraction procedure using stable-isotope internal standard (IS) calibration. Method validation in bluegill (Lepomis macrochirus) fillet tissue evaluated the following: (1) method accuracy and precision in both extracted matrix-matched calibration and solvent (unextracted) calibration, (2) quantitation of mixed branched and linear isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) with linear isomer calibration, (3) quantitation of low level (ppb) perfluorinated compounds (PFCs) in the presence of high level (ppm) PFOS, and (4) specificity from matrix interferences. Both calibration techniques produced method accuracy of at least 100±13% with a precision (%RSD) ≤18% for all target analytes. Method accuracy and precision results for fillet samples from nine different fish species taken from the Mississippi River in 2008 and 2009 are also presented.

  5. Accumulation of perfluorinated compounds in captive Bengal tigers (Panthera tigris tigris) and African lions (Panthera leo Linnaeus) in China.

    PubMed

    Li, Xuemei; Yeung, Leo Wai Yin; Taniyasu, Sachi; Lam, Paul K S; Yamashita, Nobuyoshi; Xu, Muqi; Dai, Jiayin

    2008-11-01

    The accumulation of perfluorinated compounds (PFCs) in the sera of captive wildlife species Bengal tigers (Panthera tigris tigris) and African lions (Panthera leo Linnaeus) from Harbin Wildlife Park, Heilongjiang Province, in China were analyzed by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Perfluorooctanesulfonate (PFOS) was the predominant contaminant with a mean serum concentration of 1.18 ng mL(-1) in tigers and 2.69 ng mL(-1) in lions. Perfluorononanoic acid (PFNA) was the second most prevalent contaminant in both species. The composition profiles of the tested PFCs differed between tigers and lions, and the percentages of perfluorooctanoic acid (PFOA) were greater in lions than in tigers, indicating different exposures and/or metabolic capabilities between the two species. Assessments of the risk of PFC contamination to the two species were obtained by comparing measured concentrations to points of departure or toxicity reference values (TRVs). Results suggest no risk of PFOS exposure or toxicity for the two species.

  6. PPARα, PPARβ, and PPARγ expression in prenatal and postnatal mouse tissues and an evaluation of the effects of perfluorooctanoic acid (PFOA) on peroxisome proliferator-activated receptor (PPAR) expression.

    EPA Science Inventory

    PFOA is developmentally toxic, reducing in utero and neonatal survival, and altering development and growth in mice. PFOA activates PPARα and studies in PPARα knockout mice showed that PPARα signaling is required to produce these effects. This study examines the expression of PPA...

  7. Serum levels of perfluoroalkyl compounds in human maternal and umbilical cord blood samples

    SciTech Connect

    Monroy, Rocio; Morrison, Katherine; Teo, Koon; Atkinson, Stephanie; Kubwabo, Cariton; Stewart, Brian; Foster, Warren G.

    2008-09-15

    Perfluoroalkyl compounds (PFCs) are end-stage metabolic products from industrial flourochemicals used in the manufacture of plastics, textiles, and electronics that are widely distributed in the environment. The objective of the present study was to quantify exposure to perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorodecanoic acid (PFDeA), perfluorohexane sulfonate (PFHxS), perfluoroheptanoic acid (PFHpA), and perfluorononanoic acid (PFNA) in serum samples collected from pregnant women and the umbilical cord at delivery. Pregnant women (n=101) presenting for second trimester ultrasound were recruited and PFC residue levels were quantified in maternal serum at 24-28 weeks of pregnancy, at delivery, and in umbilical cord blood (UCB; n=105) by liquid chromatography-mass spectrometry. Paired t-test and multiple regression analysis were performed to determine the relationship between the concentrations of each analyte at different sample collection time points. PFOA and PFOS were detectable in all serum samples analyzed including the UCB. PFOS serum levels (mean{+-}S.D.) were significantly higher (p<0.001) in second trimester maternal serum (18.1{+-}10.9 ng/mL) than maternal serum levels at delivery (16.2{+-}10.4 ng/mL), which were higher than the levels found in UCB (7.3{+-}5.8 ng/mL; p<0.001). PFHxS was quantifiable in 46/101 (45.5%) maternal and 21/105 (20%) UCB samples with a mean concentration of 4.05{+-}12.3 and 5.05{+-}12.9 ng/mL, respectively. There was no association between serum PFCs at any time point studied and birth weight. Taken together our data demonstrate that although there is widespread exposure to PFCs during development, these exposures do not affect birth weight.

  8. Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market.

    PubMed

    Zafeiraki, Effrosyni; Costopoulou, Danae; Vassiliadou, Irene; Bakeas, Evangelos; Leondiadis, Leondios

    2014-01-01

    Perfluorinated compounds (PFCs) are used in food packaging materials as coatings/additives for oil and moisture resistance. In the current study, foodstuff-packaging materials collected from the Greek market, made of paper, paperboard or aluminum foil were analyzed for the determination of PFCs. For the analysis of the samples, pressurized liquid extraction (PLE), liquid chromatography–tandem mass spectrometry (LC–MS/MS) and isotope dilution method were applied to develop a specific and sensitive method of analysis for the quantification of 12 PFCs: perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoA), perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) and the qualitative detection of 5 more: perfluorotridecanoic acid (PFTrDA), perfluorotetradecanoic acid (PFTeDA), perflyohexadecanoic acid (PFHxDA), perfluorooctadecanoic acid (PFODA) and perfluorodecane sulfonate (PFDS). No PFCs were quantified in aluminum foil wrappers, baking paper materials or beverage cups. PFTrDA, PFTeDA and PFHxDA were detected in fast food boxes. In the ice cream cup sample only PFHxA was found. On the other hand, several PFCs were quantified and detected in fast food wrappers, while the highest levels of PFCs were found in the microwave popcorn bag. PFOA and PFOS were not detected in any of the samples. Compared to other studies from different countries, very low concentrations of PFCs were detected in the packaging materials analyzed. Our results suggest that probably no serious danger for consumers’ health can be associated with PFCs contamination of packaging materials used in Greece.

  9. An Evaluation of Gestational Exposure to Perfluorooctanoic ...

    EPA Pesticide Factsheets

    Exposure to environmental pollutants can be a factor for induction of metabolic disorders. This study examined if exposure to PFOA during development could alter body composition and other physiological outcomes. Study 1: Pregnant CD-1 mice were gavaged with PFOA at 0,0.001,0.01, 0.1, or 0.3 mg/kg body weight (bw) from gestation day (GD) 1 — 17. At weaning, pups were fed a high fat (HFD) or control (CD) diet. Body composition, blood pressure (bp), and gene expression in tissues of offspring were examined. Male- BW increased, in 0 mg PFOA+HFD vs 0 m PFOA+CD and 0.01 mg PFOA+HFD vs 0.01 mg PFOA+CD. In HFD, bw decreased in 0.3 vs 0 mg PFOA. There were no effects on percent of body fat. At postnatal day (PND) 90, diastolic bp was decreased in 0.1 and 0.3 mg PFOA+HFD vs 0 mg PFOA+HFD and increased in 0.3 mg PFOA+HFD vs 0.3 mg PFOA+CD. The bp effects of 0.1 mg PFOA+HFD persisted to PND 180. Female- At 0 and 0.001 mg PFOA+HFD had increased weight gain vs CD. The %fat increased in 0.001 vs 0 mg PFOA+HFD. At PND 180, diastolic bp decreased in 0.01 and 0.3 mg PFOA+CD vs 0 mg PFOA+CD. Differential gene regulation was produced by HFD and PFOA in white fat and liver at 52 weeks of age. At 0.001 mg PFOA+HFD vs 0.001 mg PFOA+CD, 3 genes in white fat and liver were under-expressed while 14 genes in white fat and 19 in liver were over expressed. At 0.01 mg PFOA+HFD vs 0.01 mg PFOA+CD, 3 genes in white fat and 4 genes in liver were under-expressed while 14 genes in white fat an

  10. Assessment and management of the first German case of a contamination with perfluorinated compounds (PFC) in the Region Sauerland, North Rhine-Westphalia.

    PubMed

    Wilhelm, Michael; Kraft, Martin; Rauchfuss, Knut; Hölzer, Jürgen

    2008-01-01

    In May 2006 the first serious German perfluorinated compounds (PFC) case of contamination became evident. Industrial waste with high concentrations of PFC was manufactured into a soil improver by a recycling company and spread by farmers on agricultural land of the rural area Sauerland, and led to substantial environmental pollution. In parts of the affected area, perfluorooctanoic acid (PFOA) concentrations in drinking water were > 0.5 microg/L. The German Drinking Water Commission assessed PFC in drinking water and set a health-based guidance value for safe lifelong exposure of all population groups at 0.3 microg/L (sum of perfluorooctane sulfonate [PFOS] and PFOA). The Ministry of Environment together with regional institutions initiated monitoring measurements and actions to minimize further contamination. A human biomonitoring study with mother-child pairs and men revealed that increased PFOA exposure via drinking water led to about four- to eightfold higher PFOA levels in plasma compared to nonexposed groups. Analysis of PFC in breast milk showed comparatively low levels, which seemed not to pose a risk for lactating infants. Due to high levels of PFOS in fish from contaminated lakes and rivers, recommendations for anglers to reduce fish consumption were initiated. Remediation of the affected area is ongoing and PFC levels in various matrices are still above background levels.

  11. Polybrominated diphenyl ethers, perfluorinated compounds and chlorinated pesticides in swordfish (Xiphias gladius) from the Mediterranean Sea.

    PubMed

    Corsolini, Simonetta; Guerranti, Cristiana; Perra, Guido; Focardi, Silvano

    2008-06-15

    The relative isolation of the Mediterranean population, their feeding habits, and the widespread use of their fillets for human consumption make the Mediterranean swordfish, Xiphias gladius, an interesting species from an ecotoxicological and commercial point of views. High resolution gas chromatography and tandem mass spectrometry detected 19 PBDE congeners, perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA), hexachlorobenzene (HCB), p,p' and o,p' isomers of DDT, DDE, and DDD in all samples. The presence of PBDEs was reported for the first time in Mediterranean swordfish from the South Tyrrhenian Sea; total PBDE concentrations were 2218 +/- 3291 and 612 +/- 598 pg/g wet wt in the liver and in the muscle, respectively. Significant correlations were identified between BDE47 and sigmaPBDE liver concentrations versus sex and sexual maturity of specimens. The lipid-normalized concentrations ratio BDEn(liver)/BDEn(muscle+liver) suggested that this species mostly accumulates POPs in the liver. PFOS and PFOA were below the LOD (1.5 and 3 ng/g wet wt, respectively) in all the samples. The sigmaDDTs was 155 +/- 125 and 309 +/- 273 ng/g wet wt in the muscle and the liver, respectively. The estimated daily ingestion of PBDEs and DDTs through diet was lower than the acceptable weekly intakes proposed by the World Health Organization.

  12. Prenatal Perfluoroalkyl Substance Exposure and Child Adiposity at 8 Years of Age: The HOME Study

    PubMed Central

    Braun, Joseph M.; Chen, Aimin; Romano, Megan E.; Calafat, Antonia M.; Webster, Glenys M.; Yolton, Kimberly; Lanphear, Bruce P.

    2015-01-01

    Objective To examine relationships between prenatal perfluoroalkyl substance (PFAS) exposure and adiposity in children born to women who lived downstream from a fluoropolymer manufacturing plant. Methods Data are from a prospective cohort in Cincinnati, OH (HOME Study). We measured perfluorooctanoic (PFOA), perfluorooctane sulfonic (PFOS), perfluorononanoic (PFNA), and perfluorohexane sulfonic (PFHxS) acids in prenatal serum samples. We estimated differences in body mass index z-scores (BMI), waist circumference, and body fat at 8 years of age (n=204) and BMI between 2–8 years of age (n=285) according to PFAS concentrations. Results Children born to women in the top two PFOA terciles had greater adiposity at 8 years than children in the 1st tercile. For example, waist circumference (cm) was higher among children in the 2nd (4.3; 95% CI:1.7, 6.9) and 3rd tercile (2.2; 95% CI:−0.5, 4.9) compared to children in the 1st tercile. Children in the top two PFOA terciles also had greater BMI gains from 2–8 years compared to children in the 1st tercile (p<0.05). PFOS, PFNA and PFHxS were not associated with adiposity. Conclusions In this cohort, higher prenatal serum PFOA concentrations were associated with greater adiposity at 8 years and a more rapid increase in BMI between 2–8 years. PMID:26554535

  13. Exposure to Endocrine Disruptors and Nuclear Receptors Gene Expression in Infertile and Fertile Men from Italian Areas with Different Environmental Features

    PubMed Central

    La Rocca, Cinzia; Tait, Sabrina; Guerranti, Cristiana; Busani, Luca; Ciardo, Francesca; Bergamasco, Bruno; Perra, Guido; Mancini, Francesca Romana; Marci, Roberto; Bordi, Giulia; Caserta, Donatella; Focardi, Silvano; Moscarini, Massimo; Mantovani, Alberto

    2015-01-01

    Internal levels of selected endocrine disruptors (EDs) (i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), di-2-ethylhexyl-phthalate (DEHP), mono-(2-ethylhexyl)-phthalate (MEHP), and bisphenol A (BPA)) were analyzed in blood/serum of infertile and fertile men from metropolitan, urban and rural Italian areas. PFOS and PFOA levels were also evaluated in seminal plasma. In peripheral blood mononuclear cells (PBMCs) of same subjects, gene expression levels of a panel of nuclear receptors (NRs), namely estrogen receptor α (ERα) estrogen receptor β (ERβ), androgen receptor (AR), aryl hydrocarbon receptor (AhR), peroxisome proliferator-activated receptor γ (PPARγ) and pregnane X receptor (PXR) were also assessed. Infertile men from the metropolitan area had significantly higher levels of BPA and gene expression of all NRs, except PPARγ, compared to subjects from other areas. Subjects from urban areas had significantly higher levels of MEHP, whereas subjects from rural area had higher levels of PFOA in both blood and seminal plasma. Interestingly, ERα, ERβ, AR, PXR and AhR expression is directly correlated with BPA and inversely correlated with PFOA serum levels. Our study indicates the relevance of the living environment when investigating the exposure to specific EDs. Moreover, the NRs panel in PBMCs demonstrated to be a potential biomarker of effect to assess the EDs impact on reproductive health. PMID:26445054

  14. US Domestic Cats as Sentinels for Perfluoroalkyl Substances ...

    EPA Pesticide Factsheets

    Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) , are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely important since many consumer products have been treated with different PFAS, and people spend much of their lives indoors. Herein, domestic cats were used as sentinels to investigate potential exposure and health linkages. PFAS in serum samples of 72 pet and feral cats, including 11 healthy and 61 with one or more primary disease diagnoses, were quantitated using high-resolution time-of-flight mass spectroscopy. All but one sample had detectable PFAS, with PFOS and perfluorohexane sulfonate (PFHxS) ranging from

  15. Understanding Potential Exposure Sources of Perfluorinated Carboxylic Acids in the Workplace

    PubMed Central

    Kaiser, Mary A.; Dawson, Barbara J.; Barton, Catherine A.; Botelho, Miguel A.

    2010-01-01

    This paper integrates perspectives from analytical chemistry, environmental engineering, and industrial hygiene to better understand how workers may be exposed to perfluorinated carboxylic acids when handling them in the workplace in order to identify appropriate exposure controls. Due to the dramatic difference in physical properties of the protonated acid form and the anionic form, this family of chemicals provides unique industrial hygiene challenges. Workplace monitoring, experimental data, and modeling results were used to ascertain the most probable workplace exposure sources and transport mechanisms for perfluorooctanoic acid (PFOA) and its ammonium salt (APFO). PFOA is biopersistent and its measurement in the blood has been used to assess human exposure since it integrates exposure from all routes of entry. Monitoring suggests that inhalation of airborne material may be an important exposure route. Transport studies indicated that, under low pH conditions, PFOA, the undissociated (acid) species, actively partitions from water into air. In addition, solid-phase PFOA and APFO may also sublime into the air. Modeling studies determined that contributions from surface sublimation and loss from low pH aqueous solutions can be significant potential sources of workplace exposure. These findings suggest that keeping surfaces clean, preventing accumulation of material in unventilated areas, removing solids from waste trenches and sumps, and maintaining neutral pH in sumps can lower workplace exposures. PMID:20974675

  16. Effects of chain length and pH on the uptake and distribution of perfluoroalkyl substances in maize (Zea mays).

    PubMed

    Krippner, Johanna; Brunn, Hubertus; Falk, Sandy; Georgii, Sebastian; Schubert, Sven; Stahl, Thorsten

    2014-01-01

    Maize is the most important grain crop grown for human nutrition, animal fodder and biogas production worldwide. Nonetheless, no systematic studies have been undertaken on these plants to examine the uptake mechanisms for perfluoroalkyl substances (PFASs) dependent upon chain length and pH value. The aim of the present study was therefore to determine the influence of chain length (C4 to C10) and pH value (pH 5, pH 6, pH 7) on the uptake and distribution of seven perfluoroalkyl carboxylic acids (PFCAs) and three perfluoroalkane sulfonic acids (PFSAs) by maize in nutrient solution experiments under controlled conditions in a climate chamber. A pH-dependent uptake was observed for perfluorodecanoic acid (PFDA) with an uptake rate of 2.51 μg g(-1) at pH 5 compared to 1.52 μg g(-1) root dry weight (DW) per day (d) at pH 7. Perfluorobutanoic acid (PFBA) had the highest uptake rate within the group of PFCAs with an average of 2.46 μg g(-1) root DWd(-1) and perfluorooctane sulfonic acid (PFOS) had the highest uptake rate (3.63 μg g(-1) root DWd(-1)) within the group of PFSAs. The shoot:root ratio for shorter-chain PFCAs (≤ C7) and PFBS (C4) was >2.0, which indicates that shorter-chain PFASs are transferred predominantly and at higher concentrations to the shoot. In contrast, long-chain PFCAs such as perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) as well as the PFASs perfluorohexane sulfonic acid (PFHxS) and perfluorooctane sulfonic acid (PFOS) accumulated at higher concentrations in the roots of maize plants with a shoot:root ratio of <1.0.

  17. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea.

    PubMed

    So, M K; Taniyasu, S; Yamashita, N; Giesy, J P; Zheng, J; Fang, Z; Im, S H; Lam, Paul K S

    2004-08-01

    Perfluorinated compounds (PFCs), such as perfluorooctanesulfonate (PFOS) and related compounds, have recently been identified in the environment. PFOS, the terminal degradation product of many of the PFCs, has been found globally in many wildlife species, as well as open ocean waters, even in remote regions far from sources. In this study, a solid-phase extraction procedure coupled with high-performance liquid chromatography interfaced to high-resolution mass spectrometry was used to isolate, identify, and quantify small concentrations of PFCs in seawater. These techniques were applied to investigate the local sources of PFCs in several industrialized areas of Asia and provide information on how the PFCs are circulated by coastal currents. Ranges of concentrations of PFOS in coastal seawaters of Hong Kong, the Pearl River Delta, including the South China Sea, and Korea were 0.09-3.1, 0.02-12, and 0.04-730 pg/mL, respectively, while those of perfluorooctanoic acid (PFOA) were 0.73-5.5, 0.24-16, and 0.24-320 pg/mL, respectively. Potential sources of PFCs include major industrialized areas along the Pearl River Delta of southern China and major cities of Korea, which are several of the fastest growing industrial and economic regions in the world. Detectable concentrations of PFOS and PFOA in waters of southern China were similar to those in the coastal marine environment of Japan and certain regions in Korea. Concentrations of PFCs in several locations in Korean waters were 10-100-fold greater than those in the other locations on which we report here. The spatial and seasonal variations in PFC concentrations in surface seawaters in the Pearl River Delta and South China Sea indicate the strong influence of the Pearl River discharge on the magnitude and extent of PFC contamination in southern China. All of the concentrations of PFOS were less than those that would be expected to cause adverse effects to aquatic organisms or their predators except for one location in

  18. Occurrence of eight household micropollutants in urban wastewater and their fate in a wastewater treatment plant. Statistical evaluation.

    PubMed

    Pasquini, Laure; Munoz, Jean-François; Pons, Marie-Noëlle; Yvon, Jacques; Dauchy, Xavier; France, Xavier; Le, Nang Dinh; France-Lanord, Christian; Görner, Tatiana

    2014-05-15

    The occurrence in urban wastewater of eight micropollutants (erythromycin, ibuprofen, 4-nonylphenol (4-NP), ofloxacin, sucralose, triclosan, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS)) originating from household activities and their fate in a biological wastewater treatment plant (WWTP) were investigated. Their concentrations were assessed in the liquid and solid phases (sewage particulate matter and wasted activated sludge (WAS)) by liquid chromatography-tandem mass spectrometry. The analysis of sewage from two different urban catchments connected to the WWTP showed a specific use of ofloxacin in the mixed catchment due to the presence of a hospital, and higher concentrations of sucralose in the residential area. The WWTP process removed over 90% of ibuprofen and triclosan from wastewater, while only 25% of ofloxacin was eliminated. Erythromycin, sucralose and PFOA were not removed from wastewater, the influent and effluent concentrations remaining at about 0.7 μg/L, 3 μg/L and 10 ng/L respectively. The behavior of PFOS and 4-nonylphenol was singular, as concentrations were higher at the WWTP outlet than at its inlet. This was probably related to the degradation of some of their precursors (such as alkylphenol ethoxylates and polyfluorinated compounds resulting in 4-NP and PFOS, respectively) during biological treatment. 4-NP, ofloxacin, triclosan and perfluorinated compounds were found adsorbed on WAS (from 5 ng/kg for PFOA to 1.0mg/kg for triclosan). The statistical methods (principal component analysis and multiple linear regressions) were applied to examine relationships among the concentrations of micropollutants and macropollutants (COD, ammonium, turbidity) entering and leaving the WWTP. A strong relationship with ammonium indicated that some micropollutants enter wastewater via human urine. A statistical analysis of WWTP operation gave a model for estimating micropollutant output from the WWTP based on a measurement of

  19. Bioconcentration of perfluoroalkyl substances by Chironomus plumosus larvae in water with different types of dissolved organic matters.

    PubMed

    Wen, Wu; Xia, Xinghui; Chen, Xi; Wang, Haotian; Zhu, Baotong; Li, Husheng; Li, Yang

    2016-06-01

    The effects of four types of dissolved organic matters (DOM) on the bioconcentration of perfluoroalkyl substances (PFASs) in Chironomus plumosus larvae have been studied. The PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnA), and perfluorododecanoic acid (PFDoA). The DOM included humic acid (HA), fulvic acid (FA), tannic acid (TA), and a protein, peptone (PEP), and their concentrations ranged from 0 to 50 mg L(-1). The results showed that, upon bioconcentration equilibrium, the body burdens of longer perfluoroalkyl chain PFASs (PFOS, PFDA, PFUnA and PFDoA) decreased with PEP and HA concentrations while increased with FA and TA concentrations. When FA and TA concentrations increased from 0 to 50 mg L(-1), body burdens of these PFASs increased by 7.5%-148.8% and 5.7%-37.1%, respectively. However, the DOM had no significant impact on the body burdens of shorter perfluoroalkyl chain PFASs (PFOA and PFNA). All of the four types of DOM lowered not only the uptake rate constants (ku) of PFASs due to the decrease of freely dissolved PFAS concentrations, but also the elimination rate constants (ke) due to the inhibition effect of DOM on the PFAS elimination from the larvae. The reduction in the two constants varied with both DOM and PFAS types. In the presence of PEP and HA with larger molecular weights, the ku values decreased more than ke, leading to the decreased body burdens of longer perfluoroalkyl chain PFASs. As for FA and TA with smaller molecular weights, the ke values decreased more than ku, resulting in increased body burdens of longer perfluoroalkyl chain PFASs. This study suggests that the effects of DOM on PFAS bioconcentration depend not only on the concentration but also on the molecule weight of DOM, which should be considered in the bioavailability assessment of PFASs.

  20. Trophic magnification and isomer fractionation of perfluoroalkyl substances in the food web of Taihu Lake, China.

    PubMed

    Fang, Shuhong; Chen, Xinwei; Zhao, Shuyan; Zhang, Yifeng; Jiang, Weiwei; Yang, Liping; Zhu, Lingyan

    2014-02-18

    Biomagnification of perfluoroalkyl substances (PFASs) are well studied in marine food webs, but related information in fresh water ecosystem and knowledge on fractionation of their isomers along the food web are limited. The distribution, bioaccumulation, magnification, and isomer fractionation of PFASs were investigated in a food web of Taihu Lake, China. Perfluorooctanesulfonate (PFOS) and perfluorocarboxylates (PFCAs) with longer carbon chain lengths, such as perfluorodecanoate (PFDA) and perfluoroundecanoate (PFUnA), were predominant in organisms, while perfluorohexanoate (PFHxA) and perfluorooctanoate (∑PFOA) contributed more in the water phase. The consistent profile signature of PFOA isomers in water phase with 3M electrochemical fluorination (ECF) products suggests that ECF production of PFOA still exists in China. Linear proportions of PFOA, PFOS and perfluorooctane sulfonamide (PFOSA) in the biota were in the range of 91.9-100%, 78.6-95.5%, and 72.2-95.5%, respectively, indicating preferential bioaccumulation of linear isomers in biota. Trophic magnification factors (TMFs) were estimated for PFDA (2.43), perfluorododecanoate (PFDoA) (2.68) and PFOS (3.46) when all biota were included, suggesting that PFOS and long-chained PFCAs are biomagnified in the fresh water food web. The TMF of PFOS isomers descended in the order: n-PFOS (3.86) > 3+5m-PFOS (3.35) > 4m-PFOS (3.32) > 1m-PFOS (2.92) > m2-PFOS (2.67) > iso-PFOS (2.59), which is roughly identical to their elution order on a FluoroSep-RP Octyl column, suggesting that hydrophobicity may be an important contributor for isomer discrimination in biota.

  1. Wild game consumption habits among Italian shooters: relevance for intakes of cadmium, perfluorooctanesulphonic acid, and (137)cesium as priority contaminants.

    PubMed

    Ferri, Mauro; Baldi, Loredana; Cavallo, Stefania; Pellicanò, Roberta; Brambilla, Gianfranco

    2017-03-08

    The consumption habits of 766 Italian shooters (96% males, 4% females), on average 52 years old, have been investigated, in Italy, through the distribution of questionnaires delivered during shooters' attendance to training and teaching courses, in compliance with 853/2004/EC Regulation provisions on food hygiene. The most consumed wild species recorded were pheasant > woodcock > choke among feathered animals, and wild boar > hare > roe deer among mammals, respectively. An average of 100-200 g game per serving (four servings per month) was consumed, with highest intakes of 3000 g per month; meat, liver, and heart were the preferred food items. Mammalian and feathered game was regularly consumed with friends and relatives in 83% and in 60% of cases, respectively. Accounting for an inventoried population of 751,876 shooters in Italy, it is estimated that there is regular consumption of wild game in around the 3% of the Italian population. More than 80% of responders were aware of health risks related to game handling and to food safety issues. Due to the occurrence in wild boar meat and liver of the heavy metal cadmium (Cd), the persistent organic pollutant perfluorooctan sulphonic acid (PFOS), and the radionuclide (137)cesium ((137)Cs), it was possible to demonstrate the usefulness of such a food consumption database for intake assessment in this sensitive group of consumers. In high consumers of wild boar, threshold concentrations for intakes have been estimated in the ranges of 48-93 ng g(-1) for Cd, 35-67 ng g(-1) for PFOS and 0.20-0.34 Bq kg(-1) for (137)Cs.

  2. Comparing humic substance and protein compound effects on the bioaccumulation of perfluoroalkyl substances by Daphnia magna in water.

    PubMed

    Xia, Xinghui; Dai, Zhineng; Rabearisoa, Andry Harinaina; Zhao, Pujun; Jiang, Xiaoman

    2015-01-01

    The influence of humic substances and protein compounds on the bioaccumulation of six types of perfluoroalkyl substances (PFASs) in Daphnia magna was compared. The humic substances included humic acid (HA) and fulvic acid (FA), the protein compounds included chicken egg albumin (albumin) and peptone, and the PFASs included perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid, perfluoroundecanoic acid, and perfluorododecanoic acid. Four concentrations (0, 1, 10, and 20 mg L(-1)) of the four dissolved organic matter (DOM) types were investigated. At the 1 mg L(-1) level, HA and albumin enhanced all tested PFAS bioaccumulation, whereas FA and peptone only enhanced the bioaccumulation of shorter-chain PFASs (PFOS, PFOA, and PFNA). However, all four DOM types decreased all tested PFAS bioaccumulation at the 20 mg L(-1) level, and the decreasing ratios of bioaccumulation factors caused by FA, HA, albumin, and peptone were 1-49%, 23-77%, 17-58%, and 8-56%, respectively compared with those without DOM. This is because DOM not only reduced the bioavailable concentrations and uptake rates of PFASs but also lowered the elimination rates of PFASs in D. magna, and these opposite effects would change with different DOM types and concentrations. Although the partition coefficients (L kg(-1)) of PFASs between HA and water (10(4.21)-10(4.98)) were much lower than those between albumin and water (10(4.92)-10(5.86)), their effects on PFAS bioaccumulation were comparable. This study suggests that although PFASs are a type of proteinophilic compounds, humic substances also have important effects on their bioavailability and bioaccumulation in aquatic organisms.

  3. GENE EXPRESSION PROFILING IN WILD-TYPE AND PPARa-NULL MICE EXPOSED TO PERFLUOROOCTANE SULFONATE REVEALS PPARa-INDEPENDENT EFFECTS

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) is a perfluoroalky1 acid (PFAA) and a persistent environmental contaminant found in the tissues of humans and wildlife. Although blood levels of PFOS have begun to decline, health concerns remain because of the long half-life of PFOS in humans. Li...

  4. Identification of protein tyrosine phosphatase SHP-2 as a new target of perfluoroalkyl acids in HepG2 cells.

    PubMed

    Yang, Yu; Lv, Qi-Yan; Guo, Liang-Hong; Wan, Bin; Ren, Xiao-Min; Shi, Ya-Li; Cai, Ya-Qi

    2016-08-29

    Perfluoroalkyl acids (PFAAs) are widespread environmental contaminants which have been detected in humans and linked to adverse health effects. Previous toxicological studies mostly focused on nuclear receptor-mediated pathways and did not support the observed toxic effects. In this study, we aimed to investigate the molecular mechanisms of PFAA toxicities by identifying their biological targets in cells. Using a novel electrochemical biosensor, 16 PFAAs were evaluated for inhibition of protein tyrosine phosphatase SHP-2 activity. Their potency increased with PFAA chain length, with perfluorooctadecanoic acid (PFODA) showing the strongest inhibition. Three selected PFAAs, 25 μM perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid, and PFODA, also inhibited SHP-2 activity in HepG2 cells and increased paxillin phosphorylation level. PFOA was detected in the immunoprecipitated SHP-2 from the cells exposed to 250 μM PFOA, providing unequivocal evidence for the direct binding of PFOA with SHP-2 in the cell. Molecular docking rationalized the formation of PFAA/SHP-2 complex and chain length-dependent inhibition potency. Our results have established SHP-2 as a new cellular target of PFAAs.

  5. Dietary exposure to perfluoroalkyl acids of specific French adult sub-populations: high seafood consumers, high freshwater fish consumers and pregnant women.

    PubMed

    Yamada, A; Bemrah, N; Veyrand, B; Pollono, C; Merlo, M; Desvignes, V; Sirot, V; Marchand, P; Berrebi, A; Cariou, R; Antignac, J P; Le Bizec, B; Leblanc, J C

    2014-09-01

    Perfluoroalkyl acids (PFAAs) are globally found in various media, including food and especially fishery products. In the present study, the dietary exposure to 15 perfluoroalkyl acids was assessed for 3 French adult populations, namely high seafood consumers, high freshwater fish consumers, and pregnant women. Purified food extracts were analysed by LC-MS/MS and PFBA, PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFTeDA, PFBS, PFHxS, PFHpS, PFOS and PFDS were monitored and quantified according to the isotope dilution principle. Under lower bound (LB) hypothesis (i.e. contamination valuesPFOS (7.5 ng.kg(-1) bw.d(-1)), PFUnA (1.3 ng.kg(-1) bw.d(-1)), PFDA (0.4 ng.kg(-1) bw.d(-1)) and PFHpS (0.03 ng.kg(-1) bw.d(-1)) while high seafood consumers appear as the most exposed to PFOA (1.2 ng.kg(-1) bw.d(-1)), PFNA (0.2 ng.kg(-1) bw.d(-1)) and PFHxS (0.06 ng.kg(-1) bw.d(-1)). For all considered populations, the major exposure contributors are fish, seafood and water under LB hypothesis, while dairy products, bread and crispbread are the main contributors under upper bound (UB) hypothesis. Besides this food exposure assessment, further studies are needed to assess the more global PFAA exposure, taking into account indoor and outdoor air, dust and cutaneous contact, which could be other important contributors for this particular class of chemicals.

  6. Occurrence of perfluorinated compounds in raw water from New Jersey public drinking water systems.

    PubMed

    Post, Gloria B; Louis, Judith B; Lippincott, R Lee; Procopio, Nicholas A

    2013-01-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were previously detected (≥ 4 ng/L) in 65% and 30%, respectively, of 23 New Jersey (NJ) public drinking water systems (PWS) sampled in 2006. We now report on a 2009 study of the occurrence of PFOA, PFOS, and eight other perfluorinated compounds (PFCs) in raw water samples from 30 intakes (18 groundwater and 12 surface water) from 29 additional NJ PWS. Between 1 and 8 PFCs were detected (≥ 5 ng/L) in 21 (70%) of 30 PWS samples at total PFC concentrations of 5-174 ng/L. Although PFOA was the most commonly detected PFC (57% of samples) and was found at the highest maximum concentration (100 ng/L), some of the higher levels of other PFCs were at sites with little or no PFOA. Perfluorononanoic acid was detected more frequently (30%) and at higher concentrations (up to 96 ng/L) than in raw or finished drinking water elsewhere, and it was found at several sites as the sole or predominant PFC, a pattern not reported in other drinking water studies. PFOS, perfluoropentanoic acid, and perfluorohexanoic acid were each detected in more than 20% of samples, while perfluoroheptanoic acid, perfluorobutane sulfonic acid, and perfluorohexane sulfonic acid were detected less frequently. Perfluorobutanoic acid was found only once (6 ng/L), and perfluorodecanoic acid was not detected. Total PFCs were highest in two reservoirs near an airfield; these were also the only sites with total perfluorosulfonic acids higher than total perfluorocarboxylic acids (PFCAs). PFC levels in raw and finished water from the same source were similar at those sites where both were tested. Five wells of two additional NJ PWS known to be contaminated with PFOA were also each sampled 4-9 times in 2010-13 for nine of the same PFCs. Total PFCs (almost completely PFCAs) at one of these PWS located near an industrial source of PFCs were higher than in any other PWS tested (up to 330 ng/L). These results show that multiple PFCs are

  7. Promoted degradation of perfluorooctanic acid by persulfate when adding activated carbon.

    PubMed

    Lee, Yu-Chi; Lo, Shang-Lien; Kuo, Jeff; Huang, Chin-Pao

    2013-10-15

    Treatment of persistent perfluorooctanoic acid (PFOA) in water using persulfate (PS) oxidation typically requires an elevated temperature or UV irradiation, which is energy-consuming. Under relatively low temperatures of 25-45°C, activated carbon (AC) activated PS oxidation of PFOA was evaluated for its potential of practical applications. With presence of AC in PS oxidation, PFOA removal efficiency at 25°C reached 682% with a high defluorination efficiency of 549% after 12h and few intermediates of short-chain perfluorinated carboxylic acids (PFCAs) were found. The removal and defluorination rates with the combined AC/PS system were approximately 12 and 19 times higher than those of the PS-only system, respectively. Activated carbon not only removes PFOA through adsorption, but also activates PS to form sulfate radicals that accelerate the decomposition and mineralization of PFOA. The activation energy for PS oxidation of PFOA was reduced from 668 to 261kJ/mol by the catalytic effect of AC, which implies a lower reaction temperature and a shorter reaction time would suffice. A 2-cycle schematic reaction mechanism was used to describe PS oxidation of PFOA with the generation of various intermediates and end-products.

  8. High-resolution atmospheric modeling of fluorotelomer alcohols and perfluorocarboxylic acids in the North American troposphere.

    PubMed

    Yarwood, Greg; Kemball-Cook, Susan; Keinath, Michael; Waterland, Robert L; Korzeniowski, Stephen H; Buck, Robert C; Russell, Mark H; Washburn, Stephen T

    2007-08-15

    A high spatial and temporal resolution atmospheric model is used to evaluate the potential contribution of fluorotelomer alcohol (FTOH) and perfluorocarboxylate (PFCA) emissions associated with the manufacture, use, and disposal of DuPont fluorotelomer-based products in North America to air concentrations of FTOH, perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in North America and the Canadian Arctic. A bottom-up emission inventory for PFCAs and FTOHs was developed from sales and product composition data. A detailed FTOH atmospheric degradation mechanism was developed to simulate FTOH degradation to PFCAs and model atmospheric transport of PFCAs and FTOHs. Modeled PFCA yields from FTOH degradation agree with experimental smog-chamber results supporting the degradation mechanism used. Estimated PFCA and FTOH air concentrations and PFCA deposition fluxes are compared to monitoring data and previous global modeling. Predicted FTOH air concentrations are generally in agreement with available monitoring data. Overall emissions from the global fluorotelomer industry are estimated to contribute approximately 1-2% of the PFCAs in North American rainfall, consistent with previous global emissions estimates. Emission calculations and modeling results indicate that atmospheric inputs of PFCAs in North America from fluorotelomer-based products will decline by an order of magnitude in the near future as a result of current industry commitments to reduce manufacturing emissions and lower the residual fluorotelomer alcohol raw material and trace PFCA product content.

  9. An ultra-sensitive method for the analysis of perfluorinated alkyl acids in drinking water using a column switching high-performance liquid chromatography tandem mass spectrometry.

    PubMed

    Dasu, Kavitha; Nakayama, Shoji F; Yoshikane, Mitsuha; Mills, Marc A; Wright, J Michael; Ehrlich, Shelley

    2017-04-21

    In epidemiological research, it has become increasingly important to assess subjects' exposure to different classes of chemicals in multiple environmental media. It is a common practice to aliquot limited volumes of samples into smaller quantities for specific trace level chemical analyses. A novel method was developed for the determination of 14 perfluorinated alkyl acids (PFAAs) in small volumes (10mL) of drinking water using off-line solid phase extraction (SPE) pre-treatment followed by on-line pre-concentration on a WAX column before analysis on column-switching high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS). In general, large volumes (100-1000mL) have been used for the analysis of PFAAs in drinking water. The current method requires approximately 10mL of drinking water concentrated by using an SPE cartridge and eluted with methanol. A large volume injection of the extract was introduced on to a column-switching HPLC-MS/MS using a mix-mode SPE column for the trace level analysis of PFAAs in water. The recoveries for most of the analytes in the fortified laboratory blanks ranged from 73±14% to 128±5%. The lowest concentration minimum reporting levels (LCMRL) for the 14 PFAAs ranged from 0.59 to 3.4ng/L. The optimized method was applied to a pilot-scale analysis of a subset of drinking water samples from an epidemiological study. These samples were collected directly from the taps in the households of Ohio and Northern Kentucky, United States and the sources of drinking water samples are both surface water and ground water, and supplied by different water distribution facilities. Only five PFAAs, perfluoro-1-butanesulfonic acid (PFBS), perfluoro-1- -hexanesulfonic acid (PFHxS), perfluoro-1-octanesulfonic acid (PFOS), perfluoro-n-heptanoic acid (PFHpA) and perfluoro-n-octanoic acid (PFOA) are detected above the LCMRL values. The median concentrations of these five PFAAs detected in the samples was ≤4.1ng/L with PFOS at 7.6ng

  10. Aspartic acid

    MedlinePlus

    ... also called asparaginic acid. Aspartic acid helps every cell in the body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as ...

  11. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  12. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  13. Ion-pair sorptive extraction of perfluorinated compounds from water with low-cost polymeric materials: polyethersulfone vs polydimethylsiloxane.

    PubMed

    Villaverde-de-Sáa, Eugenia; Racamonde, Inés; Quintana, José Benito; Rodil, Rosario; Cela, Rafael

    2012-08-31

    A method for the determination of seven perfluorinated carboxylic acids and perfluorooctane sulphonate (PFOS) in aqueous samples using low-cost polymeric sorptive extraction as sample preparation technique, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) determination has been developed and validated. Simplicity of the analytical procedure, low volume of solvent and sample required, low global price and a good selectivity providing cleaner extracts are the main advantages of this extraction technique. Polydimethylsiloxane (PDMS) and polyethersulfone (PES) materials were evaluated and compared to achieve the best extraction efficiencies. Hence, different variables have been optimized, viz.: sample pH, concentration of an ion-pairing agent (tetrabutylammonium), ionic strength, sample volume, extraction time, desorption solvent volume, desorption time and the need for auxiliary desorption techniques (sonication). Overall, PES leaded to a better sensitivity than PDMS, particularly for the most polar compounds, reaching detection limits (LODs) in the 0.2-20 ng L(-1) range. The precision of the method, expressed as relative standard deviation (RSD), was lower than 16%. Finally, the PES material was employed for the analysis of sea, sewage and fresh water samples. Perfluoroheptanoic acid (PFHpA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA) were detected in all the analyzed influent samples reaching levels of up to 401 ng L(-1). In surface water, perfluorohexanoic acid (PFHxA) exhibited the highest concentrations, up to 137 ng L(-1).

  14. Perfluoroalkyl substances and food allergies in adolescents.

    PubMed

    Buser, Melanie C; Scinicariello, Franco

    2016-03-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are a class of organic compounds that are persistent in the environment due to their stable carbon-fluorine backbone, which is not susceptible to degradation. Research suggests these chemicals may exert an immunotoxic effect. The aim of this study is to investigate the associations between four PFASs - perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS) - with food sensitization and food allergies in adolescent participants (ages 12-19years) in the National Health and Nutrition Examination Survey (NHANES) 2005-2006 and 2007-2010, respectively. We performed multivariate logistic regression to analyze the association between individual PFASs with food sensitization (defined as having at least 1 food-specific IgE level≥0.35kU/L) in NHANES 2005-2006 and food allergies (self-reported) in NHANES 2007-2010. Serum PFOA, PFOS, and PFHxS were statistically significantly associated with higher odds to have self-reported food allergies in NHANES 2007-2010. When using IgE levels as a marker of food sensitization, we found that serum PFNA was inversely associated with food sensitization (NHANES 2005-2006). In conclusion, we found that serum levels of PFASs were associated with higher odds to have self-reported food allergies. Conversely, adolescents with higher serum PFNA were less likely to be sensitized to food allergens. These results, along with previous studies, warrant further investigation, such as well-designed longitudinal studies.

  15. Accumulation of perfluoroalkyl compounds in tibetan mountain snow: temporal patterns from 1980 to 2010.

    PubMed

    Wang, Xiaoping; Halsall, Crispin; Codling, Garry; Xie, Zhiyong; Xu, Baiqing; Zhao, Zhen; Xue, Yonggang; Ebinghaus, Ralf; Jones, Kevin C

    2014-01-01

    The use of snow and ice cores as recorders of environmental contamination is particularly relevant for per- and polyfluoroalky substances (PFASs) given their production history, differing source regions and varied mechanisms driving their global distribution. In a unique study perfluoroalkyl acids (PFAAs) were analyzed in dated snow-cores obtained from high mountain glaciers on the Tibetan Plateau (TP). One snow core was obtained from the Mt Muztagata glacier (accumulation period of 1980-1999), located in western Tibet and a second core from Mt. Zuoqiupo (accumulation period: 1996-2007) located in southeastern Tibet, with fresh surface snow collected near Lake Namco in 2010 (southern Tibet). The higher concentrations of ∑PFAAs were observed in the older Mt Muztagata core and dominated by perfluorooctanesulfonic acid (PFOS) (61.4-346 pg/L) and perfluorooctanoic acid (PFOA) (40.8-243 pg/L), whereas in the Mt Zuoqiupu core the concentrations were lower (e.g., PFOA: 37.8-183 pg/L) with PFOS below detection limits. These differences in PFAA concentrations and composition profile likely reflect the upwind sources affecting the respective sites (e.g., European/central Asian sources for Mt Muztagata and India sources for Mt Zuoqiupu). Perfluorobutanoic acid (PFBA) dominated the recent surface snowpack of Lake Namco which is mainly associated with India sources where the shorter chain volatile PFASs precursors predominate. The use of snow cores in different parts of Tibet provides useful recorders to examine the influence of different PFASs source regions and reflect changing PFAS production/use in the Northern Hemisphere.

  16. Generation of Perfluoroalkyl Acids from Aerobic Biotransformation of Quaternary Ammonium Polyfluoroalkyl Surfactants.

    PubMed

    Mejia-Avendaño, Sandra; Vo Duy, Sung; Sauvé, Sébastien; Liu, Jinxia

    2016-09-20

    The aerobic biotransformation over 180 days of two cationic quaternary ammonium compounds (QACs) with perfluoroalkyl chains was determined in soil microcosms, and biotransformation pathways were proposed. This is the first time that polyfluoroalkyl cationic surfactants used in aqueous film-forming foam (AFFF) formulations were studied for their environmental fate. The biotransformation of perfluorooctaneamido quaternary ammonium salt (PFOAAmS) was characterized by a DT50 value (time necessary to consume half of the initial mass) of 142 days and significant generation of perfluoroalkyl carboxylic acid (PFOA) at a yield of 30 mol % by day 180. The biotransformation of perfluorooctane sulfonamide quaternary ammonium salt (PFOSAmS) was very slow with unobservable change of the spiked mass; yet the generation of perfluorooctanesulfonate (PFOS) at a yield of 0.3 mol % confirmed the biotransformation of PFOSAmS. Three novel biotransformation intermediates were identified for PFOAAmS and three products including perfluorooctane sulfonamide (FOSA) for PFOSAmS through high-resolution mass spectrometry (MS) analysis and t-MS(2) fragmentation. The significantly slower PFOSAmS biotransformation is hypothesized to be due to its stronger sorption to soil owing to a longer perfluoroalkyl chain and a bulkier sulfonyl group, when compared to PFOAAmS. This study has demonstrated that despite overall high stability of QACs and their biocide nature, the ones with perfluoroalkyl chains can be substantially biotransformed into perfluoroalkyl acids in aerobic soil.

  17. Acid Rain

    USGS Publications Warehouse

    Bricker, Owen P.; Rice, Karen C.

    1995-01-01

    Although acid rain is fading as a political issue in the United States and funds for research in this area have largely disappeared, the acidity of rain in the Eastern United States has not changed significantly over the last decade, and it continues to be a serious environmental problem. Acid deposition (commonly called acid rain) is a term applied to all forms of atmospheric deposition of acidic substances - rain, snow, fog, acidic dry particulates, aerosols, and acid-forming gases. Water in the atmosphere reacts with certain atmospheric gases to become acidic. For example, water reacts with carbon dioxide in the atmosphere to produce a solution with a pH of about 5.6. Gases that produce acids in the presence of water in the atmosphere include carbon dioxide (which converts to carbonic acid), oxides of sulfur and nitrogen (which convert to sulfuric and nitric acids}, and hydrogen chloride (which converts to hydrochloric acid). These acid-producing gases are released to the atmosphere through natural processes, such as volcanic emissions, lightning, forest fires, and decay of organic matter. Accordingly, precipitation is slightly acidic, with a pH of 5.0 to 5.7 even in undeveloped areas. In industrialized areas, most of the acid-producing gases are released to the atmosphere from burning fossil fuels. Major emitters of acid-producing gases include power plants, industrial operations, and motor vehicles. Acid-producing gases can be transported through the atmosphere for hundreds of miles before being converted to acids and deposited as acid rain. Because acids tend to build up in the atmosphere between storms, the most acidic rain falls at the beginning of a storm, and as the rain continues, the acids "wash out" of the atmosphere.

  18. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  19. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    PubMed Central

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-01-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids. PMID:25791573

  20. Elevated levels of perfluoroalkyl acids in family members of occupationally exposed workers: the importance of dust transfer

    NASA Astrophysics Data System (ADS)

    Fu, Jianjie; Gao, Yan; Wang, Thanh; Liang, Yong; Zhang, Aiqian; Wang, Yawei; Jiang, Guibin

    2015-03-01

    The exposure pathways of perfluoroalkyl acids (PFAAs) to humans are still not clear because of the complex living environment, and few studies have simultaneously investigated the bioaccumulative behaviour of different PFAAs in humans. In this study, serum, dust, duplicate diet, and other matrices were collected around a manufacturing plant in China, and homologous series of PFAAs were analysed. PFAA levels in dust and serum of local residents in this area were considerably higher than those in non-polluted area. Although dietary intake was the major exposure pathway in the present study, dust ingestion played an important role in this case. Serum PFAAs in local residents was significantly correlated with dust PFAAs levels in their living or working microenvironment. Serum PFAAs and dust PFAAs were significantly higher in family members of occupational workers (FM) than in ordinary residents (OR) (p < 0.01). After a careful analysis of the PFAAs exposure pathway, a potential pathway in addition to direct dust ingestion was suggested: PFAAs might transferred from occupational worker's clothes to dinners via cooking processes. The bioaccumulative potential of PFHxS and PFOS were higher than other PFAAs, which suggested a substantial difference between the bioaccumulative ability of perfluorinated sulfonic acids and perfluorinated carboxylic acids.

  1. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility.

    PubMed

    Armstrong, Dana L; Lozano, Nuria; Rice, Clifford P; Ramirez, Mark; Torrents, Alba

    2016-01-01

    While the recycling of wastewater biosolids via land-application is a sustainable practice for nutrient recovery and soil reclamation that has become increasingly common worldwide, concerns remain that this practice may become a source of toxic, persistent organic pollutants to the environment. This study concentrates on assessing the presence and the temporal trends of 12 perfluoroalkyl substances (PFASs), pollutants of global consequence, in limed Class B biosolids from a municipal water resource recovery facility (WRRF), also know as a wastewater treatment plant. PFASs are of significant concern due to their extensive presence and persistence in environmental and biotic samples worldwide, most notably human blood samples. Class B biosolids were collected from the WRRF, prior to land-application, approximately every two to three months, from 2005 to 2013. Overall, this study found that concentrations of the 7 detectable PFAS compounds remained unchanged over the 8-year period, a result that is consistent with other temporal studies of these compounds in sewage sludges. From these analyzed compounds, the highest mean concentrations observed over the study period were 25.1 ng/g dw, 23.5 ng/g dw, and 22.5 ng/g dw for perfluorononanoic acid (PFNA), perfluorooctanoic acid (PFOA), and perfluorooctanesulfonic acid (PFOS), respectively, and these compounds were detected at concentrations 2.5-5 times higher than the remaining, detectable PFASs. Furthermore, it was observed that PFOS, while demonstrating no overall change during the study, exhibited a visible spike in concentration from late 2006 to early 2007. This study indicates that concentrations of PFASs in WRRFs have been stagnant over time, despite regulation. This study also demonstrates that the use of glass jars with polytetrafluoroethylene-lined lids, a common storage method for environmental samples, will not influence PFOA and PFNA concentrations in archived biosolids samples.

  2. Quantifying diffuse and point inputs of perfluoroalkyl acids in a nonindustrial river catchment.

    PubMed

    Müller, Claudia E; Spiess, Nora; Gerecke, Andreas C; Scheringer, Martin; Hungerbühler, Konrad

    2011-12-01

    Recently, the role of diffuse inputs of perfluoroalkyl acids (PFAAs) into surface waters has been investigated. It has been observed that river loads increased during rain and that street runoff contained considerable loads of PFAAs. This study aims at quantifying these diffuse inputs and identifying the initial sources in a small nonindustrial river catchment. The river was sampled in three distinct subcatchments (rural, urban, and wastewater treatment plant) at high temporal resolution during two rain events and samples were analyzed for perfluorocarboxylates and perfluorosulfonates. Additionally, rain, stormwater runoff, wastewater effluent, and drinking water were sampled. PFAA concentrations in river water were all low (e.g., < 10 ng/L for perfluorooctanoate, PFOA), but increased during rainfall. PFAA concentrations and water discharge data were integrated into a mass balance assessment that shows that 30-60% of PFAA loads can be attributed to diffuse inputs. Rain contributed 10-50% of the overall loads, mobilization of dry deposition and outdoor release of PFAA from products with 20-60%. We estimated that within a year 2.5-5 g of PFOA originating from rain and surface runoff are emitted into this small catchment (6 km(2), 12,500 persons).

  3. Perfluoroalkyl acids in aqueous samples from Germany and Kenya.

    PubMed

    Shafique, Umer; Schulze, Stefanie; Slawik, Christian; Böhme, Alexander; Paschke, Albrecht; Schüürmann, Gerrit

    2016-06-22

    Continuous monitoring of chemicals in the environment is important to control their fate and to protect human health, flora, and fauna. Perfluoroalkyl acids (PFAAs) have been detected frequently in different environmental compartments during the last 15 years and have drawn much attention because of their environmental persistence, omnipresence, and bioaccumulation potential. Water is an important source of their transport. In the present study, distributions of PFAAs in river water, wastewater treatment plant (WWTP) effluent, and tap water from eastern part of Germany and western part of Kenya were investigated. Eleven perfluorocarboxylic acids (PFCAs) and five perfluorosulfonic acids (PFSAs) were analyzed using liquid chromatography/tandem mass spectrometry. Sum of mean concentrations of eight PFAAs detected in drinking tap water from Leipzig was 11.5 ng L(-1), dominated by perfluorooctanoic acid (PFOA, 6.2 ng L(-1)). Sums of mean riverine concentrations of PFAAs detected in Pleiße/White Elster, Saale, and Elbe (Germany) were 24.8, 54.3, and 26.8 ng L(-1), respectively. Annual flux of PFAAs from River Saale was estimated to be 164 ± 23 kg a(-1). The effluent of WWTP in Halle was found to contain four times higher levels of PFAAs than river water and was dominated by perfluorobutane sulfonate (PFBS) with 32 times higher concentration than the riverine level. It advocates that WWTPs are the point source of contaminating water bodies with PFAAs, and short-chain PFAAs are substituting long-chain homologues. Sums of mean riverine concentrations of PFAAs in Sosiani (Kenya) in samples from sparsely populated and densely populated areas were 58.8 and 109.4 ng L(-1), respectively, indicating that population directly affected the emissions of PFAAs to surface waters. The discussion includes thorough review and comparison of recently published literature reporting occurrence of PFAAs in aqueous matrices. Graphical abstract Perfluoroalkyl acids in aqueous

  4. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes.

    PubMed

    Kim, Seung-Kyu; Kannan, Kurunthachalam

    2007-12-15

    Concentrations of perfluorinated acids (PFAs) were measured in various environmental matrices (air, rain, snow, surface runoff water, and lake water) in an urban area, to enable identification of sources and pathways of PFAs to urban water bodies. Total PFA concentrations ranged from 8.28 to 16.0 pg/ m3 (mean 11.3) in bulk air (sum of vapor and particulate phases), 0.91 to 13.2 ng/L (6.19) in rainwater, 0.91 to 23.9 ng/L (7.98) in snow, 1.11-81.8 ng/L (15.1 ng/L) in surface runoff water (SRW), and 9.49 to 35.9 ng/L (21.8) in lake water. Perfluorooctanoic acid (PFOA) was the predominant compound, accounting for > 35% of the total PFA concentrations, in all environmental matrices analyzed. Concentrations and relative compositions of PFAs in SRW were similar to those found for urban lakes. SRW contributes to contamination by PFOA in urban lakes. The measured concentration ratios of FTOH to PFOA in air were 1-2 orders of magnitude lower than the ratios calculated based on an assumption of exclusive atmospheric oxidation of FTOHs. Nevertheless, the mass balance analysis suggested the presence of an unknown input pathway that could contribute to a significant amount of total PFOA loadings to the lake. Flux estimates of PFOA at the air-water interface in the urban lake suggest net volatilization from water.

  5. A micellar electrokinetic chromatography-mass spectrometry approach using in-capillary diastereomeric derivatization for fully automatized chiral analysis of amino acids.

    PubMed

    Moldovan, Radu-Cristian; Bodoki, Ede; Kacsó, Timea; Servais, Anne-Catherine; Crommen, Jacques; Oprean, Radu; Fillet, Marianne

    2016-10-07

    In the context of bioanalytical method development, process automatization is nowadays a necessity in order to save time, improve method reliability and reduce costs. For the first time, a fully automatized micellar electrokinetic chromatography-mass spectrometry (MEKC-MS) method with in-capillary derivatization was developed for the chiral analysis of d- and l-amino acids using (-)-1-(9-fluorenyl) ethyl chloroformate (FLEC) as labeling reagent. The derivatization procedure was optimized using an experimental design approach leading to the following conditions: sample and FLEC plugs in a 2:1 ratio (15s, 30mbar: 7.5s, 30mbar) followed by 15min of mixing using a voltage of 0.1kV. The formed diastereomers were then separated using a background electrolyte (BGE) consisting of 150mM ammonium perfluorooctanoate (APFO) (pH=9.5) and detected by mass spectrometry (MS). Complete chiral resolution was obtained for 8 amino acids, while partial separation was achieved for 6 other amino acid pairs. The method showed good reproducibility and linearity in the low micromolar concentration range. The applicability of the method to biological samples was tested by analyzing artificial cerebrospinal fluid (aCSF) samples.

  6. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  7. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  8. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  9. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  10. Ascorbic Acid

    MedlinePlus

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  11. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  12. Amino acids

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  13. Biomagnification and tissue distribution of perfluoroalkyl substances (PFASs) in market-size rainbow trout (Oncorhynchus mykiss).

    PubMed

    Goeritz, Ina; Falk, Sandy; Stahl, Thorsten; Schäfers, Christoph; Schlechtriem, Christian

    2013-09-01

    The present study investigated the biomagnification potential as well as the substance and tissue-specific distribution of perfluoroalkyl substances (PFASs) in market-size rainbow trout (Oncorhynchus mykiss). Rainbow trout with an average body weight of 314 ± 21 g were exposed to perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) in the diet for 28 d. The accumulation phase was followed by a 28-d depuration phase, in which the test animals were fed with nonspiked trout feed. On days 0, 7, 14, 28, 31, 35, 42, and 56 of the present study, fish were sampled from the test basin for PFAS analysis. Biomagnification factors (BMFs) for all test compounds were determined based on a kinetic approach. Distribution factors were calculated for each test compound to illustrate the disposition of PFASs in rainbow trout after 28 d of exposure. Dietary exposure of market-size rainbow trout to PFASs did not result in biomagnification; BMF values were calculated as 0.42 for PFOS, >0.23 for PFNA, >0.18 for PFHxS, >0.04 for PFOA, and >0.02 for PFBS, which are below the biomagnification threshold of 1. Liver, blood, kidney, and skin were identified as the main target tissues for PFASs in market-size rainbow trout. Evidence was shown that despite relative low PFAS contamination, the edible parts of the fish (the fillet and skin) can significantly contribute to the whole-body burden.

  14. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China.

    PubMed

    Pan, Chang-Gui; Ying, Guang-Guo; Liu, You-Sheng; Zhang, Qian-Qian; Chen, Zhi-Feng; Peng, Feng-Jiao; Huang, Guo-Yong

    2014-11-01

    A survey on contamination profiles of eighteen perfluoroalkyl substances (PFASs) was performed via high performance liquid chromatography-tandem mass spectrometry for surface water and sediments from five typical rivers of the Pearl River Delta region, South China in summer and winter in 2012. The total concentrations of the PFASs in the water phase of the five rivers ranged from 0.14 to 346.72 ng L(-1). The PFAS concentrations in the water phase were correlated positively to some selected water quality parameters such as chemical oxygen demand (COD) (0.7913) and conductivity (0.5642). The monitoring results for the water samples showed significant seasonal variations, while those for the sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctane sulfonic acid (PFOS) was the dominant PFAS compound both in water and sediment for two seasons with its maximum concentration of 320.5 ng L(-1) in water and 11.4 ng g(-1) dry weight (dw) in sediment, followed by perfluorooctanoic acid (PFOA) with its maximum concentration of 26.48 ng L(-1) in water and 0.99 ng g(-1) dw in sediment. PFOS and PFOA were found at relatively higher concentrations in the Shima River and Danshui River than in the other three rivers (Xizhijiang River, Dongjiang River and Shahe River). The principal component analysis for the PFASs concentrations in water and sediment separated the sampling sites into two groups: rural and agricultural area, and urban and industrial area, suggesting the PFASs in the riverine environment were mainly originated from industrial and urban activities in the region.

  15. Perfluoroalkyl and polyfluoroalkyl substances in cord blood of newborns in Shanghai, China: Implications for risk assessment.

    PubMed

    Wang, Bin; Chen, Qian; Shen, Lixiao; Zhao, Shasha; Pang, Weiyi; Zhang, Jun

    2016-12-01

    Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are commonly used in industrial applications and consumer products, and their potential health impacts are of concern, especially for vulnerable population like fetuses. However, in utero exposure to PFASs and health implications are far from fully characterized in China. To fill in the gap, we analyzed 10 PFASs in cord plasma samples (N=687) collected in Shanghai between 2011 and 2012, one of the regions widely polluted with PFASs in China. A questionnaire survey on maternal and diet-related factors was conducted. Except for perfluoroheptanoic acid (PFHpA) and perfluorooctane sulfonamide (PFOSA), all other PFASs were detected in ˃90% of the samples. Perfluorooctanoic acid (PFOA) was the most predominant PFAS (median value: 6.96ng/mL), followed by perfluorooctane sulfonate (PFOS) (2.48ng/mL). PFOA and PFOS combined contributed to 80% of the total PFASs. The final multiple regression models showed that maternal factors including maternal age, body mass index, gestational age, economic status and educational level as well as consumption of fish and wheat were significantly related with concentrations of PFASs in cord blood. The risk assessment using the hazard quotients (HQs) approach on the basis of plasma PFAS levels indicated no potential concern for developmental toxicity in the local newborns. The results demonstrate the unique profiles of local prenatal exposure to PFASs, suggesting that PFOA has been the primary human exposure due to its widespread use and pollution. Special attention to high PFOA exposure and confirmation of potential determinants should be taken as a priority in the future plan for risk management and actions in this area.

  16. Perfluorinated alkylated substances in the aquatic environment: an Austrian case study.

    PubMed

    Clara, M; Gans, O; Weiss, S; Sanz-Escribano, D; Scharf, S; Scheffknecht, C

    2009-10-01

    Perfluorinated alkylated substances (PFAS) are of global interest due to their occurrence and persistency in the environment. This study includes surface waters and sediments for the analysis of eleven PFAS. The PFAS studied can be grouped in perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates (PFS) and perfluoroalkyl sulfonamides (PFSA). The two most important compounds are perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS). These two substances showed the most significant values for surface water samples with maximum concentrations of 21 ng l(-1) for PFOA and 37 ng l(-1) for PFOS. Sediment samples from seven Austrian lakes and the river Danube were studied. Whereas PFSA and PFS were not detected in any sediment sample PFCAs were detected in most of the lake samples in concentrations up to 1.7 microg kg(-1) dry wt. PFOA, perfluorohexanoic acid (PFHxA) and perfluoroheptanoic acid (PFHpA) were detected in all Danube river sediment samples in concentrations varying from 0.1 up to 5.1 microg kg(-1) dry wt. For the various sampling points the proportional mass flows deriving from wastewater discharges were calculated. Whereas only up to 10% of the average flow is discharged wastewater up to more than 50% of the PFAS mass flows in the rivers can be attributed to wastewater discharges. Besides wastewater different other pathways as emissions from point sources, further degradation of precursor products, runoff from contaminated sites or surface runoff as well as dry and wet deposition have to be considered as relevant sources for PFAS contamination in surface waters.

  17. Valproic Acid

    MedlinePlus

    Valproic acid is used alone or with other medications to treat certain types of seizures. Valproic acid is also used to treat mania (episodes of ... to relieve headaches that have already begun. Valproic acid is in a class of medications called anticonvulsants. ...

  18. Bioaccumulation characteristics of perfluoroalkyl acids (PFAAs) in coastal organisms from the west coast of South Korea.

    PubMed

    Hong, Seongjin; Khim, Jong Seong; Wang, Tieyu; Naile, Jonathan E; Park, Jinsoon; Kwon, Bong-Oh; Song, Sung Joon; Ryu, Jongseong; Codling, Garry; Jones, Paul D; Lu, Yonglong; Giesy, John P

    2015-06-01

    Year-round monitoring for perfluoroalkyl acids (PFAAs) along the west coast of South Korea targeting long-term changes in water and coastal organisms has been conducted since 2008. In this study, we present the most recent 5-years of accumulated data and scrutinize the relationship between concentrations in water and biota highlighting bioaccumulation characteristics. Twelve individual PFAAs in samples of water (n=43) and biota (n=59) were quantified by use of HPLC-MS/MS after solid phase extraction. In recent years, concentrations of PFAAs in water have been generally decreasing, but profiles of relative concentrations of individual PFAAs vary among location and year. Bioaccumulation of PFAAs in various organisms including fishes, bivalves, crabs, gastropods, shrimps, starfish, and polychaetes varied among species. However, overall bioaccumulation of PFAAs was dependent on corresponding concentrations of PFAAs in water within an area. In organ-specific distributions of PFAAs, greater concentrations of PFAAs were found in intestine of fish (green eel goby). This result suggests that PFAAs are mainly accumulated via dietary exposure, while greater concentrations were found in gill and intestine of bivalve (oyster) which suggests both waterborne and dietary exposures to these organisms. Concentrations of PFAAs in biota did not decrease over time (2008-2010), indicating that continuing bioaccumulation followed by slow degradation or excretion of PFAAs accumulated in biota. Overall, spatio-temporal distributions of PFAAs in water and bioaccumulation characteristics seemed to be associated with recent restrictions of PFOS-based products and uses of PFBS-based substitutes.

  19. Perfluorinated alkylated acids in groundwater and drinking water: identification, origin and mobility.