Science.gov

Sample records for acid phosphatase enzyme

  1. Crystal structures of a purple acid phosphatase, representing different steps of this enzyme's catalytic cycle

    PubMed Central

    Schenk, Gerhard; Elliott, Tristan W; Leung, Eleanor; Carrington, Lyle E; Mitić, Nataša; Gahan, Lawrence R; Guddat, Luke W

    2008-01-01

    Background Purple acid phosphatases belong to the family of binuclear metallohydrolases and are involved in a multitude of biological functions, ranging from bacterial killing and bone metabolism in animals to phosphate uptake in plants. Due to its role in bone resorption purple acid phosphatase has evolved into a promising target for the development of anti-osteoporotic chemotherapeutics. The design of specific and potent inhibitors for this enzyme is aided by detailed knowledge of its reaction mechanism. However, despite considerable effort in the last 10 years various aspects of the basic molecular mechanism of action are still not fully understood. Results Red kidney bean purple acid phosphatase is a heterovalent enzyme with an Fe(III)Zn(II) center in the active site. Two new structures with bound sulfate (2.4 Å) and fluoride (2.2 Å) provide insight into the pre-catalytic phase of its reaction cycle and phosphorolysis. The sulfate-bound structure illustrates the significance of an extensive hydrogen bonding network in the second coordination sphere in initial substrate binding and orientation prior to hydrolysis. Importantly, both metal ions are five-coordinate in this structure, with only one nucleophilic μ-hydroxide present in the metal-bridging position. The fluoride-bound structure provides visual support for an activation mechanism for this μ-hydroxide whereby substrate binding induces a shift of this bridging ligand towards the divalent metal ion, thus increasing its nucleophilicity. Conclusion In combination with kinetic, crystallographic and spectroscopic data these structures of red kidney bean purple acid phosphatase facilitate the proposal of a comprehensive eight-step model for the catalytic mechanism of purple acid phosphatases in general. PMID:18234116

  2. Lysosomal Acid Phosphatase Biosynthesis and Dysfunction: A Mini Review Focused on Lysosomal Enzyme Dysfunction in Brain.

    PubMed

    Ashtari, N; Jiao, X; Rahimi-Balaei, M; Amiri, S; Mehr, S E; Yeganeh, B; Marzban, H

    2016-01-01

    Lysosomes are membrane-bound organelles that are responsible for degrading and recycling macromolecules. Lysosomal dysfunction occurs in enzymatic and non-enzymatic deficiencies, which result in abnormal accumulation of materials. Although lysosomal storage disorders affect different organs, the central nervous system is the most vulnerable. Evidence shows the role of lysosomal dysfunction in different neurodegenerative diseases, such as Niemann-Pick Type C disease, juvenile neuronal ceroid lipofuscinosis, Alzheimer's disease and Parkinson's disease. Lysosomal enzymes such as lysosomal acid phosphatase 2 (Acp2) play a critical role in mannose-6-phosphate removal and Acp2 controls molecular and cellular functions in the brain during development and adulthood. Acp2 is essential in cerebellar development, and mutations in this gene cause severe cerebellar neurodevelopmental and neurodegenerative disorders. In this mini-review, we highlight lysosomal dysfunctions in the pathogenesis of neurodevelopmental and/or neurodegenerative diseases with special attention to Acp2 dysfunction. PMID:27132795

  3. Identification and physiological characterization of phosphatidic acid phosphatase enzymes involved in triacylglycerol biosynthesis in Streptomyces coelicolor

    PubMed Central

    2013-01-01

    Background Phosphatidic acid phosphatase (PAP, EC 3.1.3.4) catalyzes the dephosphorylation of phosphatidate yielding diacylglycerol (DAG), the lipid precursor for triacylglycerol (TAG) biosynthesis. Despite the importance of PAP activity in TAG producing bacteria, studies to establish its role in lipid metabolism have been so far restricted only to eukaryotes. Considering the increasing interest of bacterial TAG as a potential source of raw material for biofuel production, we have focused our studies on the identification and physiological characterization of the putative PAP present in the TAG producing bacterium Streptomyces coelicolor. Results We have identified two S. coelicolor genes, named lppα (SCO1102) and lppβ (SCO1753), encoding for functional PAP proteins. Both enzymes mediate, at least in part, the formation of DAG for neutral lipid biosynthesis. Heterologous expression of lppα and lppβ genes in E. coli resulted in enhanced PAP activity in the membrane fractions of the recombinant strains and concomitantly in higher levels of DAG. In addition, the expression of these genes in yeast complemented the temperature-sensitive growth phenotype of the PAP deficient strain GHY58 (dpp1lpp1pah1). In S. coelicolor, disruption of either lppα or lppβ had no effect on TAG accumulation; however, the simultaneous mutation of both genes provoked a drastic reduction in de novo TAG biosynthesis as well as in total TAG content. Consistently, overexpression of Lppα and Lppβ in the wild type strain of S. coelicolor led to a significant increase in TAG production. Conclusions The present study describes the identification of PAP enzymes in bacteria and provides further insights on the genetic basis for prokaryotic oiliness. Furthermore, this finding completes the whole set of enzymes required for de novo TAG biosynthesis pathway in S. coelicolor. Remarkably, the overexpression of these PAPs in Streptomyces bacteria contributes to a higher productivity of this single

  4. X-ray absorption studies of the purple acid phosphatase from red kidney beans (native enzyme, metal exchanged form)

    NASA Astrophysics Data System (ADS)

    Ahlers, F.; Zippel, F.; Klabunde, T.; Krebs, B.; Löcke, R.; Witzel, H.; Nolting, H.-F.

    1995-02-01

    Purple acid phosphatase from red kidney beans (KBP) catalyzes the hydrolysis of activated phosphoric acid monoesters and contains a heterodinuclear Fe(III)Zn(II) core in its active site. Iron K-edge X-ray absorption data have been obtained for the native enzyme and for a metal exchanged derivative, where Zn(II) was substituted by Fe(III). The environment of the native enzyme consists of 2.5 O/N at 1.91 Å, 3 O/N at 2.09 Å, and 1 Zn at 4.05 Å. For the metal exchanged form we obtained 2.5 O/N at 1.94 Å, 2.5 O/N at 2.09 Å, and 1 Fe at 3.79 Å.

  5. Relationship between extracellular enzymes and cell growth during the cell cycle of the fission yeast Schizosaccharomyces pombe: acid phosphatase.

    PubMed Central

    Miyata, M; Miyata, H

    1978-01-01

    By using the intact cells of the fission yeast Schizosaccharomyces pombe, the activity of acid phosphatase (EC 3.1.3.2) was compared through the cell cycle with the growth in cell length as a measure of cell growth. The cells of a growing asynchronous culture increased exponentially in number and in total enzyme activity, but remained constant in average length and in specific activity, In a synchronous culture prepared by selection or by induction, the specific activity was periodic in parallel with the increase in average cell length. When hydroxyurea was added to an asynchronous or a synchronous culture by selection, both specific and total activity followed the same continuous pattern as the growth in cell length after the stoppage of cell division. When oversized cells produced by a hydroxyurea pulse treatment to the culture previously syndronized by selection were transferred to a poor medium, they divided synchronously but could hardly grow in the total cell length. In this experimental situation, the total enzyme activity also scarcely increased through three division cycles. These results suggested that the increase in acid phosphatase in dependent on cell elongation. PMID:711673

  6. Unique structural features of red kidney bean purple acid phosphatase.

    PubMed

    Cashikar, A G; Rao, M N

    1995-06-01

    Purple acid phosphatase from red kidney beans (Phaseolus vulgaris) has been purified to homogeneity and characterized. The enzyme is a homodimer of 60 kDa subunits each containing one atom of zinc and iron in the active site. Circular dichroism spectral studies on the purified enzyme reveals that a large portion of the peptide backbone is in the unordered and beta-turn conformation. A unique feature of the red kidney bean acid phosphatase, which we have found, is that one of the two cysteines of each subunit is involved in the formation of an inter-subunit disulphide. The thiol group of the other cysteine is not necessary for the activity of the enzyme. Western blot analysis with antibodies raised against kidney bean acid phosphatase could not recognize acid phosphatases from other sources except from potato. This paper emphasizes the fact that acid phosphatases are functionally, but not structurally, conserved enzymes. PMID:7590853

  7. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    ERIC Educational Resources Information Center

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  8. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  9. Acid phosphatase deactivation by a series mechanism.

    PubMed

    Gianfreda, L; Marrucci, G; Grizzuti, N; Greco, G

    1984-05-01

    Acid phosphatase (E.C.3.1.3.2.) thermal deactivation at pH 3.77 has been investigated by monitoring the enzyme activity as a function of time in the hydrolysis of p-nitrophenyl phosphate. The experimental curves obtained show a two-slope behavior in a log (activity)versus-time plot, which indicates that deactivation occurs via a complex mechanism. From the dependence of the kinetic parameters on both deactivation and hydrolysis temperatures, it is inferred that the deactivation mechanism involves intermediate, temperature-dependent, less-active forms of the enzyme. This interpretation is confirmed by the results of additional tests in which the temperature was suddenly changed during the deactivation process. PMID:18553349

  10. Isolation of lysophosphatidic acid phosphatase from developing peanut cotyledons.

    PubMed

    Shekar, Sunil; Tumaney, Ajay W; Rao, T J V Sreenivasa; Rajasekharan, Ram

    2002-03-01

    The soluble fraction of immature peanut (Arachis hypogaea) was capable of dephosphorylating [(3)H]lysophosphatidic acid (LPA) to generate monoacylglycerol (MAG). The enzyme responsible for the generation of MAG, LPA phosphatase, has been identified in plants and purified by successive chromatography separations on octyl-Sepharose, Blue Sepharose, Superdex-75, and heparin-agarose to apparent homogeneity from developing peanuts. This enzyme was purified 5,048-fold to a final specific activity of 858 nmol min(-1) mg(-1). The enzyme has a native molecular mass of approximately 39 kD determined by gel filtration and migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit molecular mass of 39 +/- 1.5 kD. The K(m) values for oleoyl-, stearoyl-, and palmitoyl-sn-glycerol-3-phosphate were determined to be 28.6, 39.3, and 47.9 microM, respectively. The LPA phosphatase was specific to LPA and did not utilize any other substrate such as glycerol-3-phosphate, phosphatidic acid, or p-nitrophenylphosphate. The enzyme activity was stimulated by the low concentrations of detergents such as Triton X-100 and octylglucoside. Cations had no effect on the enzyme activity. Fatty acids, sphingosine, and sphingomyelin at low concentrations stimulated the enzyme activity. The identification of LPA phosphatase in plants demonstrates the existence of MAG biosynthetic machinery in plants. PMID:11891254

  11. Isolation of Lysophosphatidic Acid Phosphatase from Developing Peanut Cotyledons1

    PubMed Central

    Shekar, Sunil; Tumaney, Ajay W.; Rao, T.J.V. Sreenivasa; Rajasekharan, Ram

    2002-01-01

    The soluble fraction of immature peanut (Arachis hypogaea) was capable of dephosphorylating [3H]lysophosphatidic acid (LPA) to generate monoacylglycerol (MAG). The enzyme responsible for the generation of MAG, LPA phosphatase, has been identified in plants and purified by successive chromatography separations on octyl-Sepharose, Blue Sepharose, Superdex-75, and heparin-agarose to apparent homogeneity from developing peanuts. This enzyme was purified 5,048-fold to a final specific activity of 858 nmol min−1 mg−1. The enzyme has a native molecular mass of approximately 39 kD determined by gel filtration and migrates as a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a subunit molecular mass of 39 ± 1.5 kD. The Km values for oleoyl-, stearoyl-, and palmitoyl-sn-glycerol-3-phosphate were determined to be 28.6, 39.3, and 47.9 μm, respectively. The LPA phosphatase was specific to LPA and did not utilize any other substrate such as glycerol-3-phosphate, phosphatidic acid, or p-nitrophenylphosphate. The enzyme activity was stimulated by the low concentrations of detergents such as Triton X-100 and octylglucoside. Cations had no effect on the enzyme activity. Fatty acids, sphingosine, and sphingomyelin at low concentrations stimulated the enzyme activity. The identification of LPA phosphatase in plants demonstrates the existence of MAG biosynthetic machinery in plants. PMID:11891254

  12. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  13. Deactivation of free and stabilized acid phosphatase by urea.

    PubMed

    Gianfreda, L; Marrucci, G; Greco, G

    1986-11-01

    Tests on acid phosphatase (E.G. 3.1.3.2) deactivation by urea have been performed at two pH values. Two conditions have been used: native enzyme operating batch-wise in dilute solution and stabilized enzyme in continuous flow ultrafiltration membrane reactor. Stabilization is achieved by confining the enzyme within a concentrated solution of a linear chain polymer that forms a polarization layer over the membrane. The results provide significant information on the kinetics and thermodynamics of the complex phenomena taking place during deactivation. Deactivation by urea is also compared with thermal deactivation. PMID:18555278

  14. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

    PubMed Central

    Battistuzzi, G; Dietrich, M; Löcke, R; Witzel, H

    1997-01-01

    The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives. PMID:9169589

  15. A critical evaluation of a specific radioimmunoassay for prostatic acid phosphatase

    SciTech Connect

    Goldenberg, S.L.; Silver, H.K.; Sullivan, L.D.; Morse, M.J.; Archibald, E.L.

    1982-11-01

    A radioimmunoassay (RIA) method for acid phosphatase detection was compared to a standard enzyme assay using sera from 210 normal volunteers and 285 patients with prostatic disease. Statistical and clinical comparisons were made between defined subgroups. All 55 normal females had RIA detectable serum acid phosphatase, implying that this assay cannot be entirely specific for enzyme of prostatic origin. Urinary catheterization did not affect acid phosphatase levels. In all stages of carcinoma there were more acid phosphatase elevations by the RIA method than enzyme method, but neither assay could differentiate intercapsular cancer from benign prostatic hyperplasia. A small number of patients with biopsy proven negative nodules had marginally elevated values, suggesting an obligation for closer follow-up. The RIA method may be superior for monitoring patients with more advanced malignancy. Additional practical advantages of the RIA include relative simplicity and elimination of the special serum handling required for the enzyme assay.

  16. The effect of sorbitol on acid phosphatase deactivation.

    PubMed

    Gianfreda, L; Toscano, G; Pirozzi, D; Greco, G

    1991-12-01

    Acid phosphatase thermal deactivation follows a complex path: an initial decay toward an equilibrium distribution of at least two intermediate structures, mutually at the equilibrium, followed by a final breakdown toward a completely inactive enzyme configuration. The results obtained in the presence of sorbitol have been compared to those produced in the course of purely thermal deactivation of the native enzyme. For any sobitol concentration, an equivalent temperature is calculated that results in exactly the same activity-versus-time profile. This suggests enzyme deactivation to be controlled by a single, unchanging step. Immobilized enzyme runs have been performed, as well, by entrapping acid phosphates within a polymeric network formed onto the upstream surface of an ultrafiltration membrane. The stabilizing effect of entrapment cumulates with that produced by sorbitol. In this case, however, an equivalent temperature cannot be determined, thus indicating that a different deactivation mechanism is followed. PMID:18600710

  17. Golgi-mediated post-translational processing of secretory acid phosphatase by Leishmania donovani promastigotes.

    PubMed

    Bates, P A; Hermes, I; Dwyer, D M

    1990-03-01

    Monensin, an inhibitor of Golgi function, was used to investigate the role of this cell compartment in the glycosylation of Leishmania donovani promastigote secretory acid phosphatase (EC 3.1.3.2). Monensin-treated cells demonstrated morphological changes in the Golgi complex and secreted enzyme with an altered electrophoretic mobility: two discrete bands of approximately 95 and 110 kDa were found, as compared to the heterodisperse nature of the enzyme from untreated controls. Chemical deglycosylation by mild acid hydrolysis resulted in a similar effect on the electrophoretic mobility of purified extracellular enzyme. Acid phosphatase was also treated with N-glycosidase F (EC 3.5.1.52) to remove N-linked oligosaccharides. The altered lectin-binding properties of the enzyme after these two treatments demonstrated that an unusual type of galactose-containing acid-labile carbohydrate was present in secretory acid phosphatase in addition to the N-linked oligosaccharides. Further, experiments with 32P-labelled enzyme indicated that phosphodiester bonds were the structural component responsible for the sensitivity of this carbohydrate to mild acid hydrolysis. Cumulatively, these results demonstrated that a novel form of Golgi-mediated posttranslational modification had occurred to the secretory acid phosphatase presumably by the addition of an acid-labile phosphoglycan. PMID:2320058

  18. PURIFICATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE FROM SPIRODELA OLIGORRHIZA AND ITS AFFINITY FOR SELECTED ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography (FPLC) and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. SDS-PAGE electrophoresis of the pure acid phosphatase ...

  19. Lysophosphatidic acids are new substrates for the phosphatase domain of soluble epoxide hydrolase[S

    PubMed Central

    Oguro, Ami; Imaoka, Susumu

    2012-01-01

    Soluble epoxide hydrolase (sEH) is a bifunctional enzyme that has a C-terminus epoxide hydrolase domain and an N-terminus phosphatase domain. The endogenous substrates of epoxide hydrolase are known to be epoxyeicosatrienoic acids, but the endogenous substrates of the phosphatase activity are not well understood. In this study, to explore the substrates of sEH, we investigated the inhibition of the phosphatase activity of sEH toward 4-methylumbelliferyl phosphate by using lecithin and its hydrolyzed products. Although lecithin itself did not inhibit the phosphatase activity, the hydrolyzed lecithin significantly inhibited it, suggesting that lysophospholipid or fatty acid can inhibit it. Next, we investigated the inhibition of phosphatase activity by lysophosphatidyl choline, palmitoyl lysophosphatidic acid, monopalmitoyl glycerol, and palmitic acid. Palmitoyl lysophosphatidic acid and fatty acid efficiently inhibited phosphatase activity, suggesting that lysophosphatidic acids (LPAs) are substrates for the phosphatase activity of sEH. As expected, palmitoyl, stearoyl, oleoyl, and arachidonoyl LPAs were efficiently dephosphorylated by sEH (Km, 3–7 μM; Vmax, 150–193 nmol/min/mg). These results suggest that LPAs are substrates of sEH, which may regulate physiological functions of cells via their metabolism. PMID:22217705

  20. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    SciTech Connect

    Ishibe, M.; Rosier, R.N.; Puzas, J.E. )

    1991-10-01

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor.

  1. Follow-up on the Berg acid phosphatase test.

    PubMed

    Schiff, A F

    1998-03-01

    Approximately 42 years ago, the Berg acid phosphatase (AP) test (1) was accepted in most rape treatment centers nationally as the standard to determine whether sexual intercourse or related actions in any form had occurred. More specifically, the test was designed to determine the presence of a certain enzyme. In October 1969, I published an article making the test simpler (2) and reviewing the history of various tests for the detection of AP, an enzyme found in great abundance in seminal fluid. Both AP-impregnated material and refrigerated reagents had been saved along with a quantity of seminal fluid used in the original tests. The objectives of this study were to determine whether 25-year-old seminal fluid in any form can still be identified by the AP test and whether 25-year-old chemicals have remained stable and are still usable. PMID:9539395

  2. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    SciTech Connect

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  3. Lipophosphoglycan and secreted acid phosphatase of Leishmania tropica share species-specific epitopes.

    PubMed

    Jaffe, C L; Perez, L; Schnur, L F

    1990-06-01

    Several species-specific monoclonal antibodies (T11, T13-T15) which only react with Leishmania tropica, recognize phosphorlated carbohydrate epitopes on lipophosphoglycan and the structurally related molecule, phosphoglycan, which is shed by promastigotes into spent culture medium. During immunoaffinity isolation of [32P]orthophosphate-labeled phosphoglycan on monoclonal antibody T15 conjugated to Sepharose 4B, a high-Mr component (approx. 200,000) was co-purified. The latter material is metabolically labeled with [35S]methionine and [3H]glucosamine. This glycoprotein was separated from phosphoglycan by chromatography on lentil lectin resin. The glycoprotein exhibited a L-tatrate-sensitive acid phosphatase activity, typical of secreted acid phosphatase (EC 3.1.3.2) from Leishmania. Monospecific antibodies to Leishmania donovani-secreted acid phosphatase selectively precipitated the L. tropica enzyme from immunoaffinity purified mixtures of the two antigens, and monoclonal antibodies to lipophosphoglycan precipitate the pure enzyme. Species-specific monoclonal antibodies to L. major lipophosphoglycan also recognized both L. tropica antigens. Treatment of the acid phosphatase with periodate or phosphodiesterase I abolished binding by the monoclonal antibodies to the pure enzyme. These results demonstrate that the two major secreted glycoconjugates of Leishmania tropica, the lipophosphoglycan and the acid phosphatase, share species-specific phosphorylated carbohydrate epitope(s). PMID:1697935

  4. Assays to Measure PTEN Lipid Phosphatase Activity In Vitro from Purified Enzyme or Immunoprecipitates.

    PubMed

    Spinelli, Laura; Leslie, Nicholas R

    2016-01-01

    PTEN is a one of the most frequently mutated tumor suppressors in human cancers. It is essential for regulating diverse biological processes and through its lipid phosphatase activity regulates the PI 3-Kinase signaling pathway. Sensitive phosphatase assays are employed to study the catalytic activity of PTEN against phospholipid substrates. Here we describe protocols to assay PTEN lipid phosphatase activity using either purified enzyme (purified PTEN lipid phosphatase assay) or PTEN immunopurified from tissues or cultured cells (cellular IP PTEN lipid phosphatase assay) against vesicles containing radiolabeled PIP3 substrate. PMID:27514802

  5. Identification and enzymatic characterization of acid phosphatase from Burkholderia gladioli

    PubMed Central

    2014-01-01

    Background The genus Burkholderia is widespread in diverse ecological niches, the majority of known species are soil bacteria that exhibit different types of non-pathogenic interactions with plants. Burkholderia species are versatile organisms that solubilize insoluble minerals through the production of organic acids, which increase the availability of nutrients for the plant. Therefore these bacteria are promising candidates for biotechnological applications. Results Burkholderia sp. (R 3.25 isolate) was isolated from agricultural soil in Ponta Grossa-PR-Brazil and identified through analysis of the 16S rDNA as a strain classified as Burkholderia gladioli. The expression of membrane-bound acid phosphatase (MBAcP) was strictly regulated with optimal expression at a concentration of phosphorus 5 mM. The apparent optimum pH for the hydrolysis of p-nitrophenylphosphate (PNPP) was 6.0. The hydrolysis of PNPP by the enzyme exhibited a hyperbolic relationship with increasing concentration of substrate and no inhibition by excess of substrate was observed. Kinetic data revealed that the hydrolysis of PNPP exhibited cooperative kinetics with n = 1.3, Vm = 113.5 U/mg and K0.5 = 65 μM. The PNPPase activity was inhibited by vanadate, p-hydroxymercuribenzoate, arsenate and phosphate, however the activity was not inhibited by calcium, levamisole, sodium tartrate, EDTA, zinc, magnesium, cobalt, ouabain, oligomycin or pantoprazol. Conclusion The synthesis of membrane-bound non-specific acid phosphatase, strictly regulated by phosphate, and its properties suggest that this bacterium has a potential biotechnological application to solubilize phosphate in soils with low levels of this element, for specific crops. PMID:24713147

  6. Autosomal dominant aniridia: probable linkage to acid phosphatase-1 locus on chromosome 2.

    PubMed Central

    Ferrell, R E; Chakravarti, A; Hittner, H M; Riccardi, V M

    1980-01-01

    Maximum likelihood analysis for linkage between autosomal dominant aniridia and 12 biochemical and serological markers in a single large family showed a probable linkage between autosomal dominant aniridia and the enzyme acid phosphatase-1. The presence of an autosomal dominant aniridia gene linked to acid phosphatase-1 on chromosome arm 2p and the existence of an aniridia syndrome resulting from deletion of band 13 of the short arm of chromosome 11 establishes a chromosome basis for genetic heterogeneity of aniridia phenotypes. PMID:6929510

  7. Structure of Protein Phosphatase 2A Core Enzyme Bound to Tumor-Inducing Toxins

    SciTech Connect

    Xing,Y.; Xu, Y.; Chen, Y.; Jeffrey, P.; Chao, Y.; Lin, Z.; Li, Z.; Strack, S.; Stock, J.; Shi, Y.

    2006-01-01

    The serine/threonine phosphatase protein phosphatase 2A (PP2A) plays an essential role in many aspects of cellular functions and has been shown to be an important tumor suppressor. The core enzyme of PP2A comprises a 65 kDa scaffolding subunit and a 36 kDa catalytic subunit. Here we report the crystal structures of the PP2A core enzyme bound to two of its inhibitors, the tumor-inducing agents okadaic acid and microcystin-LR, at 2.6 and 2.8 {angstrom} resolution, respectively. The catalytic subunit recognizes one end of the elongated scaffolding subunit by interacting with the conserved ridges of HEAT repeats 11-15. Formation of the core enzyme forces the scaffolding subunit to undergo pronounced structural rearrangement. The scaffolding subunit exhibits considerable conformational flexibility, which is proposed to play an essential role in PP2A function. These structures, together with biochemical analyses, reveal significant insights into PP2A function and serve as a framework for deciphering the diverse roles of PP2A in cellular physiology.

  8. Identification of a non-purple tartrate-resistant acid phosphatase: an evolutionary link to Ser/Thr protein phosphatases?

    PubMed Central

    Hadler, Kieran S; Huber, Thomas; Cassady, A Ian; Weber, Jane; Robinson, Jodie; Burrows, Allan; Kelly, Gregory; Guddat, Luke W; Hume, David A; Schenk, Gerhard; Flanagan, Jack U

    2008-01-01

    Background Tartrate-resistant acid phosphatases (TRAcPs), also known as purple acid phosphatases (PAPs), are a family of binuclear metallohydrolases that have been identified in plants, animals and fungi. The human enzyme is a major histochemical marker for the diagnosis of bone-related diseases. TRAcPs can occur as a small form possessing only the ~35 kDa catalytic domain, or a larger ~55 kDa form possessing both a catalytic domain and an additional N-terminal domain of unknown function. Due to its role in bone resorption the 35 kDa TRAcP has become a promising target for the development of anti-osteoporotic chemotherapeutics. Findings A new human gene product encoding a metallohydrolase distantly related to the ~55 kDa plant TRAcP was identified and characterised. The gene product is found in a number of animal species, and is present in all tissues sampled by the RIKEN mouse transcriptome project. Construction of a homology model illustrated that six of the seven metal-coordinating ligands in the active site are identical to that observed in the TRAcP family. However, the tyrosine ligand associated with the charge transfer transition and purple color of TRAcPs is replaced by a histidine. Conlusion The gene product identified here may represent an evolutionary link between TRAcPs and Ser/Thr protein phosphatases. Its biological function is currently unknown but is unlikely to be associated with bone metabolism. PMID:18771593

  9. Phosphorylcholine Phosphatase: A Peculiar Enzyme of Pseudomonas aeruginosa

    PubMed Central

    Domenech, Carlos Eduardo; Otero, Lisandro Horacio; Beassoni, Paola Rita; Lisa, Angela Teresita

    2011-01-01

    Pseudomonas aeruginosa synthesizes phosphorylcholine phosphatase (PchP) when grown on choline, betaine, dimethylglycine or carnitine. In the presence of Mg2+ or Zn2+, PchP catalyzes the hydrolysis of p-nitrophenylphosphate (p-NPP) or phosphorylcholine (Pcho). The regulation of pchP gene expression is under the control of GbdR and NtrC; dimethylglycine is likely the metabolite directly involved in the induction of PchP. Therefore, the regulation of choline metabolism and consequently PchP synthesis may reflect an adaptive response of P. aeruginosa to environmental conditions. Bioinformatic and biochemistry studies shown that PchP contains two sites for alkylammonium compounds (AACs): one in the catalytic site near the metal ion-phosphoester pocket, and another in an inhibitory site responsible for the binding of the alkylammonium moiety. Both sites could be close to each other and interact through the residues 42E, 43E and 82YYY84. Zn2+ is better activator than Mg2+ at pH 5.0 and it is more effective at alleviating the inhibition produced by the entry of Pcho or different AACs in the inhibitory site. We postulate that Zn2+ induces at pH 5.0 a conformational change in the active center that is communicated to the inhibitory site, producing a compact or closed structure. However, at pH 7.4, this effect is not observed because to the hydrolysis of the [Zn2+L2−1L20(H2O)2] complex, which causes a change from octahedral to tetrahedral in the metal coordination geometry. This enzyme is also present in P. fluorescens, P. putida, P. syringae, and other organisms. We have recently crystallized PchP and solved its structure. PMID:21915373

  10. Immunochemical detection of serum prostatic acid phosphatase. Methodology and clinical evaluation.

    PubMed

    Chu, T M; Wang, M C; Scott, W W; Gibbons, R P; Johnson, D E; Schmidt, J D; Loening, S A; Prout, G R; Murphy, G P

    1978-01-01

    An immunochemical method for detection of prostatic acid prosphatase is described. Purified acid phosphatase was isolated from cancerous human prostate. A specific antiserum to the purified enzyme was produced in rabbits. The antiserum to postatic acid phosphatase did not react with acid phosphatase originating from other tissues. A counter immunolectrophoresis, utilizing the specific antibodies and a chemical staining technique, has been developed and clinically evaluated. Sera from patients with prostatic carcinoma (6/20 of stage B, 27/49 of stage C, and 98/125 of stage D) gave positive results. Sera from 19 patients with benign prostatic hypertrophy, from 89 patients with other tumors, from 12 patients with Gaucher's disease, from 107 healthy volunteers, and from 50 normal age-matched men all gave negative results. The sensitivity of this method was 0.4 IU of enzyme activity or 20 ng per ml of prostatic acid phosphatase protein. Further clinical evaluation of patients in the early stage of prostatic cancer and of patients undergoing chemotherapy is in progress. PMID:75196

  11. Yeast Acid Phosphatase in a Student Laboratory.

    ERIC Educational Resources Information Center

    Barbaric, Sloeodan; Ries, Blanka

    1988-01-01

    Examines the influence of enzyme and substrate concentrations, pH, temperature, and inhibitors on catalytic activity. Follows the influence of different phosphate concentrations in the growth medium on enzyme activity. Studies regulation of enzyme synthesis by repression. Includes methodology for six experiments. (MVL)

  12. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme.

    PubMed

    Caselli, Anna; Paoli, Paolo; Santi, Alice; Mugnaioni, Camilla; Toti, Alessandra; Camici, Guido; Cirri, Paolo

    2016-10-01

    Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors. PMID:27421795

  13. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    SciTech Connect

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2. Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  14. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    SciTech Connect

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  15. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase.

    PubMed

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2010-12-10

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition. PMID:20934434

  16. Induction of a germination specific, low molecular weight, acid phosphatase isozyme with specific phosphotyrosine phosphatase activity in lentil (Lens esculenta) seeds.

    PubMed

    Bose, S K; Taneja, V

    1998-09-29

    A germination specific isozyme of acid phosphatase (EC 3.1.3.2) hydrolysing O-phospho-L-Tyrosine, pH optima 5.5 is induced in lentil seeds. When seeds at 0 h, 24 h and 36 h of germination are electrophorezed, native PAGE on specific enzyme staining shows several constitutive isozymes of acid phosphatases. At 48 h, an isozyme is induced which gradually decreases and then disappears at 108 h of germination. The short lived, induced isozyme is present in the embryo and seed-coat but not in the plumule and the radical. Induction of this isozyme is inhibited by cycloheximide and actinomycin-D and increased by plant growth regulators such as heteroauxin and gibbrellic acid treatment during germination. The induced isozyme is a single 30 kD polypeptide, with subunit molecular mass of 25 kD, shows activity for O-phospho-L-Tyrosine. It is strongly inhibited by vanadate (microM), molybdate, tungustate as also by iodoacetate, p-chloromercuribenzoate and diethylpyrocarbonate. This study shows for the first time that the germination induced low molecular weight Acid phosphatase is a Tyrosine phosphatase super family class IV enzyme, having a role in cellular differentiation and development during seed germination. PMID:9784397

  17. Serine/threonine protein phosphatases: multi-purpose enzymes in control of defense mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Serine/threonine protein phosphatases are a group of enzymes involved in the regulation of defense mechanisms in plants. This paper describes the effects of an inhibitor of these enzymes on the expression of all of the genes associated with these defense mechanisms. The results suggest that inhibi...

  18. Protein Tyrosine Phosphatases: From Housekeeping Enzymes to Master-Regulators of Signal Transduction

    PubMed Central

    Tonks, Nicholas K.

    2013-01-01

    There are many misconceptions surrounding the roles of protein phosphatases in the regulation of signal transduction, perhaps the most damaging of which is the erroneous view that these enzymes exert their effects merely as constitutively active housekeeping enzymes. On the contrary, the phosphatases are critical, specific regulators of signaling in their own right and serve an essential function, in a coordinated manner with the kinases, to determine the response to a physiological stimulus. This review is a personal perspective on the development of our understanding of the protein tyrosine phosphatase (PTP) family of enzymes. I have discussed various aspects of the structure, regulation and function of the PTP family, which I hope will illustrate the fundamental importance of these enzymes to the control of signal transduction. PMID:23176256

  19. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    PubMed Central

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2010-01-01

    Summary The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD+ utilization pathway by dephosphorylating NMN to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases, which are nonspecific 5′-, 3′-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with NMN, 5′-AMP, 3′-AMP, and 2′-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and hydrogen-bonding edge of the base. The span between the hydrophobic box and phosphoryl site is optimal for recognizing nucleoside monophosphates, which explains the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, which is consistent with observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5′- and 3′-nucleotides. These pockets minimize the enzyme’s direct interactions with the ribose and provide sufficient space to accommodate 5′ substrates in an anti conformation and 3′ substrates in a syn conformation. Finally, the structures suggest that class B and C acid phosphatases share a common strategy for nucleotide recognition. PMID:20934434

  20. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    SciTech Connect

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J.

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.

  1. Characterization of a Unique Class C Acid Phosphatase from Clostridium perfringens▿

    PubMed Central

    Reilly, Thomas J.; Chance, Deborah L.; Calcutt, Michael J.; Tanner, John J.; Felts, Richard L.; Waller, Stephen C.; Henzl, Michael T.; Mawhinney, Thomas P.; Ganjam, Irene K.; Fales, William H.

    2009-01-01

    Clostridium perfringens is a gram-positive anaerobe and a pathogen of medical importance. The detection of acid phosphatase activity is a powerful diagnostic indicator of the presence of C. perfringens among anaerobic isolates; however, characterization of the enzyme has not previously been reported. Provided here are details of the characterization of a soluble recombinant form of this cell-associated enzyme. The denatured enzyme was ∼31 kDa and a homodimer in solution. It catalyzed the hydrolysis of several substrates, including para-nitrophenyl phosphate, 4-methylumbelliferyl phosphate, and 3′ and 5′ nucleoside monophosphates at pH 6. Calculated Kms ranged from 0.2 to 0.6 mM with maximum velocity ranging from 0.8 to 1.6 μmol of Pi/s/mg. Activity was enhanced in the presence of some divalent cations but diminished in the presence of others. Wild-type enzyme was detected in all clinical C. perfringens isolates tested and found to be cell associated. The described enzyme belongs to nonspecific acid phosphatase class C but is devoid of lipid modification commonly attributed to this class. PMID:19363079

  2. Crystallization of recombinant Haemophilus influenzaee (P4) acid phosphatase

    SciTech Connect

    Ou, Zhonghui; Felts, Richard L.; Reilly, Thomas J.; Nix, Jay C.; Tanner, John J.

    2006-05-01

    Lipoprotein e (P4) is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. Haemophilus influenzae infects the upper respiratory tract of humans and can cause infections of the middle ear, sinuses and bronchi. The virulence of the pathogen is thought to involve a group of surface-localized macromolecular components that mediate interactions at the host–pathogen interface. One of these components is lipoprotein e (P4), which is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. The space group is P4{sub 2}2{sub 1}2, with unit-cell parameters a = 65.6, c = 101.4 Å, one protein molecule per asymmetric unit and 37% solvent content. This is the first report of the crystallization of a class C acid phosphatase.

  3. Chemiluminescence-based pesticide biosensor utilizing the intelligent evolved properties of the enzyme alkaline phosphatase

    SciTech Connect

    Ayyagari, M.; Kamtekar, S.; Pande, R.; Marx, K.; Kumar, J.

    1994-12-31

    A methodology is described for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer, poly(3-undecylthiophene-co-3- methanoithiophene). A streptavidin conjugate of alkaline phosphatase is used in this study. The biotinylated polymer is attached to the silanized glass surface via hydrophobic interactions and the enzyme is interfaced with the polymer through the classical biotin- streptavidin interaction. Alkaline phosphatase catalyzes the dephosphorylation of a macrocyclic compound, chloro-3-(4-methoxy spiro) (1,2 dioxetane-3-2`-tricyclo-) (3.3.1.1 )-(decani-4-yl) phenyl phosphate, to a species which emits energy by chemiluminescence. This chemiluminescence signal can be detected with a photomultiplier tube for enzymatic catalysis with the biocatalyst both in solution and immobilized on a glass surface. The signal generation is inhibited by the organophosphorus based insecticides such as paraoxon as well as nerve agents. We demonstrate in this study that a number of organophosphorus based insecticides inhibit the enzyme-mediated generation of chemiluminescence signal. This is true for the enzyme conjugate both free in solution and immobilized on a glass surface. In solution, the inhibition resembles the case of a partially uncompetitive system. By this type of inhibition we are able to detect pesticides down to about 50 ppb for the enzyme in solution. The pesticide detection limit of immobilized enzyme is currently being investigated. The enzyme is capable of a number of measurement cycles without significant loss of signal level.

  4. Fructose 1,6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme.

    PubMed

    Say, Rafael F; Fuchs, Georg

    2010-04-15

    Most archaeal groups and deeply branching bacterial lineages harbour thermophilic organisms with a chemolithoautotrophic metabolism. They live at high temperatures in volcanic habitats at the expense of inorganic substances, often under anoxic conditions. These autotrophic organisms use diverse carbon dioxide fixation mechanisms generating acetyl-coenzyme A, from which gluconeogenesis must start. Here we show that virtually all archaeal groups as well as the deeply branching bacterial lineages contain a bifunctional fructose 1,6-bisphosphate (FBP) aldolase/phosphatase with both FBP aldolase and FBP phosphatase activity. This enzyme is missing in most other Bacteria and in Eukaryota, and is heat-stabile even in mesophilic marine Crenarchaeota. Its bifunctionality ensures that heat-labile triosephosphates are quickly removed and trapped in stabile fructose 6-phosphate, rendering gluconeogenesis unidirectional. We propose that this highly conserved, heat-stabile and bifunctional FBP aldolase/phosphatase represents the pace-making ancestral gluconeogenic enzyme, and that in evolution gluconeogenesis preceded glycolysis. PMID:20348906

  5. Cytochemical characterization of yolk granule acid phosphatase during early development of the oyster Crassostrea gigas (Thunberg)

    NASA Astrophysics Data System (ADS)

    Wang, Yiyan; Sun, Hushan; Wang, Yanjie; Yan, Dongchun; Wang, Lei

    2015-03-01

    In this study, a cytochemical method and transmission electron microscopy was used to examine acid phosphatase activities of yolk granules throughout the early developmental stages of the Pacific oyster Crassostrea gigas. This study aimed to investigate the dynamic change of yolk granule acid phosphatase, and the mechanisms underlying its involvement in yolk degradation during the early developmental stages of molluscs. Three types of yolk granules (YGI, YGII, and YGIII) that differed in electron density and acid phosphatase reaction were identified in early cleavage, morula, blastula, gastrula, trochophore, and veliger stages. The morphological heterogeneities of the yolk granules were related to acid phosphatase activity and degrees of yolk degradation, indicating the association of acid phosphatase with yolk degradation in embryos and larvae of molluscs. Fusion of yolk granules was observed during embryogenesis and larval development of C. gigas. The fusion of YGI (free of acid phosphatase reaction) with YGII (rich in acid phosphatase reaction) could be the way by which yolk degradation is triggered.

  6. Crystal Structures of the Histidine Acid Phosphatase from Francisella tularensis Provide Insight into Substrate Recognition

    SciTech Connect

    Singh, Harkewal; Felts, Richard L.; Schuermann, Jonathan P.; Reilly, Thomas J.; Tanner, John J.

    2009-12-01

    Histidine acid phosphatases catalyze the transfer of a phosphoryl group from phosphomonoesters to water at acidic pH using an active-site histidine. The histidine acid phosphatase from the category A pathogen Francisella tularensis (FtHAP) has been implicated in intramacrophage survival and virulence, motivating interest in understanding the structure and mechanism of this enzyme. Here, we report a structure-based study of ligand recognition by FtHAP. The 1.70-{angstrom}-resolution structure of FtHAP complexed with the competitive inhibitor L(+)-tartrate was solved using single-wavelength anomalous diffraction phasing. Structures of the ligand-free enzyme and the complex with inorganic phosphate were determined at resolutions of 1.85 and 1.70 {angstrom}, respectively. The structure of the Asp261Ala mutant enzyme complexed with the substrate 3'-AMP was determined at 1.50 {angstrom} resolution to gain insight into substrate recognition. FtHAP exhibits a two-domain fold similar to that of human prostatic acid phosphatase, consisting of an {alpha}/{beta} core domain and a smaller domain that caps the core domain. The structures show that the core domain supplies the phosphoryl binding site, catalytic histidine (His17), and an aspartic acid residue (Asp261) that protonates the leaving group, while the cap domain contributes residues that enforce substrate preference. FtHAP and human prostatic acid phosphatase differ in the orientation of the crucial first helix of the cap domain, implying differences in the substrate preferences of the two enzymes. 3'-AMP binds in one end of a 15-{angstrom}-long tunnel, with the adenine clamped between Phe23 and Tyr135, and the ribose 2'-hydroxyl interacting with Gln132. The importance of the clamp is confirmed with site-directed mutagenesis; mutation of Phe23 and Tyr135 individually to Ala increases K{sub m} by factors of 7 and 10, respectively. The structural data are consistent with a role for FtHAP in scavenging phosphate from small

  7. Directed Evolution of Metabolic Pathways in Microbial Populations. I. Modification of the Acid Phosphatase Ph Optimum in S. CEREVISIAE

    PubMed Central

    Francis, J. C.; Hansche, P. E.

    1972-01-01

    An experimental system for directing the evolution of enzymes and metabolic pathways in microbial populations is proposed and an initial test of its power is provided.—The test involved an attempt to genetically enhance certain functional properties of the enzyme acid phosphatase in S. cerevisiae by constructing an environment in which the functional changes desired would be "adaptive". Naturally occurring mutations in a population of 109 cells were automatically and continuously screened, over 1,000 generations, for their effect on the efficiency (Km) and activity of acid phosphatase at pH 6, and for their effect on the efficiency of orthophosphate metabolism.—The first adaptation observed, M1, was due to a single mutational event that effected a 30% increase in the efficiency of orthophosphate metabolism. The second, M2, effected an adaptive shift in the pH optimum of acid phosphatase and an increase in its activity over a wide range of pH values (an increment of 60% at pH 6). M2 was shown to result from a single mutational event in the region of the acid phosphatase structural gene. The third, M3, effected cell clumping, an adaptation to the culture apparatus that had no effect on phosphate metabolism.—The power of this system for directing the evolution of enzymes and of metabolic pathways is discussed in terms of the kinetic properties of the experimental system and in terms of the results obtained. PMID:4552227

  8. Iron content and acid phosphatase activity in hepatic parenchymal lysosomes of patients with hemochromatosis before and after phlebotomy treatment

    SciTech Connect

    Cleton, M.I.; de Bruijn, W.C.; van Blokland, W.T.; Marx, J.J.; Roelofs, J.M.; Rademakers, L.H.

    1988-03-01

    Lysosomal structures in liver parenchymal cells of 3 patients with iron overload and of 3 subjects without iron-storage disorders were investigated. A combination of enzyme cytochemistry--with cerium as a captive ion to demonstrate lysosomal acid phosphatase activity--and electron probe X-ray microanalysis (EPMA) was used. We were able (1) to define and quantify lysosomal structures as lysosomes, siderosomes, or residual bodies, (2) to quantify the amount of iron and cerium simultaneously in these structures, and (3) to evaluate a possible relation between iron storage and enzyme activity. With histopathologically increased iron storage, the number of siderosomes had increased at the cost of lysosomes, with a corresponding increase in acid phosphatase activity in both organelles. In histopahtologically severe iron overload, however, acid phosphatase activity was low or not detectable and most of the iron was stored in residual bodies. After phlebotomy treatment, the number of siderosomes had decreased in favor of the lysosomes, approaching values obtained in control subjects, and acid phosphatase activity was present in all iron-containing structures. In this way a relationship between iron storage and enzyme activity was established. The iron content of the individual lysosomal structures per unit area had increased with histopathologically increased iron storage and had decreased after phlebotomy treatment. From this observation, it is concluded that the iron status of the patient is not only reflected by the amount of iron-containing hepatocytes but, as well, by the iron content lysosomal unit area.

  9. Testicular acid phosphatase induces odontoblast differentiation and mineralization.

    PubMed

    Choi, Hwajung; Kim, Tak-Heun; Yun, Chi-Young; Kim, Jung-Wook; Cho, Eui-Sic

    2016-04-01

    Odontoblasts differentiate from dental mesenchyme during dentin formation and mineralization. However, the molecular mechanisms controlling odontoblast differentiation remain poorly understood. Here, we show that expression of testicular acid phosphatase (ACPT) is restricted in the early stage of odontoblast differentiation in proliferating dental mesenchymal cells and secretory odontoblasts. ACPT is expressed earlier than tissue-nonspecific alkaline phosphatase (TNAP) and partly overlaps with TNAP in differentiating odontoblasts. In MDPC-23 odontoblastic cells, expression of ACPT appears simultaneously with a decrease in β-catenin activity and is abolished with the expression of Phex and Dsp. Knockdown of ACPT in MDPC-23 cells stimulates cell proliferation together with an increase in active β-catenin and cyclin D1. In contrast, the overexpression of ACPT suppresses cell proliferation with a decrease in active β-catenin and cyclin D1. Expression of TNAP, Osx, Phex and Dsp is reduced by knockdown of ACPT but is enhanced by ACPT overexpression. When ACPT is blocked with IgG, alkaline phosphatase activity is inhibited but cell proliferation is unchanged regardless of ACPT expression. These findings suggest that ACPT inhibits cell proliferation through β-catenin-mediated signaling in dental mesenchyme but elicits odontoblast differentiation and mineralization by supplying phosphate during dentin formation. Thus, ACPT might be a novel candidate for inducing odontoblast differentiation and mineralization for dentin regeneration. PMID:26547858

  10. Acid phosphatase localization in neurons of Bulla gouldiana (Gastropoda: Opisthobranchia.

    PubMed

    Robles, L J; Fisher, S K

    1975-01-01

    The organization of the ganglia and the ultrastructure of the neurons of Bulla gouldiana are similar to those described for other molluscs. Acid phosphatase positive reactions were found in the large pigmented granules, small dense bodies, multivesicular bodies, and Golgi lamellae and associated vesicles. The small dense bodies and multivesicular bodies may be stages in the formation of the larger pigmented granules which are interpreted as lysosomes. Comparison is made between the pigmented granules in Bulla and the lipofuscin bodies of vertebrate neurons. The possible involvement of these pigmented granules in the hyperpolarization of Bulla and Aplysia neurons to light is discussed. PMID:1122539

  11. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity.

    PubMed

    Smyth, Susan S; Sciorra, Vicki A; Sigal, Yury J; Pamuklar, Zehra; Wang, Zuncai; Xu, Yong; Prestwich, Glenn D; Morris, Andrew J

    2003-10-31

    Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production. PMID:12909631

  12. Members of a unique histidine acid phosphatase family are conserved amongst a group of primitive eukaryotic human pathogens.

    PubMed

    Shakarian, Alison M; Joshi, Manju B; Yamage, Mat; Ellis, Stephanie L; Debrabant, Alain; Dwyer, Dennis M

    2003-03-01

    Recently, we identified and characterized the genes encoding several distinct members of the histidine-acid phosphatase enzyme family from Leishmania donovani, a primitive protozoan pathogen of humans. These included genes encoding the heavily phosphorylated/glycosylated, tartrate-sensitive, secretory acid phosphatases (Ld SAcP-1 and Ld SAcP-2) and the unique, tartrate-resistant, externally-oriented, surface membrane-bound acid phosphatase (Ld MAcP) of this parasite. It had been previously suggested that these enzymes may play essential roles in the growth, development and survival of this organism. In this report, to further examine this hypothesis, we assessed whether members of the L. donovani histidine-acid phosphatase enzyme family were conserved amongst other pathogenic Leishmania and related trypanosomatid parasites. Such phylogenetic conservation would clearly indicate an evolutionary selection for this family of enzymes and strongly suggest and support an important functional role for acid phosphatases to the survival of these parasites. Results of pulsed field gel electrophoresis and Southern blotting showed that homologs of both the Ld SAcPs and Ld MAcP were present in each of the visceral and cutaneous Leishmania species examined (i.e. isolates of L. donovani, L. infantum, L. tropica, L. major and L. mexicana, respectively). Further, results of enzyme assays showed that all of these organisms expressed both tartrate-sensitive and tartrate-resistant acid phosphatase activities. In addition, homologs of both the Ld SAcPs and Ld MAcP genes and their corresponding enzyme activities were also identified in two Crithidia species (C. fasciculata and C. luciliae) and in Leptomonas seymouri. In contrast, Trypanosoma brucei, Trypanosoma cruzi and Phytomonas serpens had only very-low levels of such enzyme activities. Cumulatively, results of this study showed that homologs of the Ld SAcPs and Ld MAcP are conserved amongst all pathogenic Leishmania sps. suggesting

  13. Prostatic acid phosphatase is the main acid phosphatase with 5'-ectonucleotidase activity in the male mouse saliva and regulates salivation.

    PubMed

    Araujo, César L; Quintero, Ileana B; Kipar, Anja; Herrala, Annakaisa M; Pulkka, Anitta E; Saarinen, Lilli; Hautaniemi, Sampsa; Vihko, Pirkko

    2014-06-01

    We have previously shown that in addition to the well-known secreted isoform of prostatic acid phosphatase (sPAP), a transmembrane isoform exists (TMPAP) that interacts with snapin (a SNARE-associated protein) and regulates the endo-/exocytic pathways. We have also shown that PAP has 5'-ectonucleotidase and thiamine monophosphatase activity and elicits antinociceptive effects in mouse models of chronic inflammatory and neuropathic pain. Therefore, to determine the physiological role of PAP in a typical exocrine organ, we studied the submandibular salivary gland (SMG) of PAP(-/-) and wild-type C57BL/6J mice by microarray analyses, microRNA sequencing, activity tests, immunohistochemistry, and biochemical and physiological analyses of saliva. We show that PAP is the main acid phosphatase in the wild-type male mouse saliva, accounting for 50% of the total acid phosphatase activity, and that it is expressed only in the granular convoluted tubules of the SMGs, where it is the only 5'-ectonucleotidase. The lack of PAP in male PAP(-/-) mice was associated with a significant increase in the salivation volume under secretagogue stimulation, overexpression of genes related to cell proliferation (Mki67, Aurkb, Birc5) and immune response (Irf7, Cxcl9, Ccl3, Fpr2), and upregulation of miR-146a in SMGs. An increased and sustained acinar cell proliferation was detected without signs of glandular hyperplasia. Our results indicate that in PAP(-/-) mice, SMG homeostasis is maintained by an innate immune response. Additionally, we suggest that in male mice, PAP via its 5'-ectonucleotidase activity and production of adenosine can elicit analgesic effects when animals lick their wounds. PMID:24717577

  14. Inhibition kinetics of acid and alkaline phosphatases by atrazine and methomyl pesticides.

    PubMed

    El-Aswad, Ahmed F; Badawy, Mohamed E I

    2015-01-01

    The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive-non-competitive inhibition of the enzymes. The relationships between estimates of K(m) and V(max) calculated from the Michaelis-Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10(-3), 1.12 × 10(-2) and 1.07 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, K(i) were found to be 8.99 × 10(-3), 3.55 × 10(-2) and 1.36 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. PMID:25996812

  15. Purification and biochemical characterisation of acid phosphatase-I from seeds of Nelumbo nucifera.

    PubMed

    Khan, Sanaullah; Khan, Shahnaz; Batool, Sajida; Ahmed, Mushtaq

    2016-01-01

    Acid phosphatase-I (Apase-I) from seeds of Nelumbo nucifera was purified to electrophoretic homogeneity by combination of ammonium sulfate precipitation, size-exclusion and ion exchange chromatography. SDS-PAGE of purified Apase-I gave a single band with molecular mass of 80 kDa under reducing and non-reducing conditions, indicating that the enzyme was a monomer. The purified enzyme showed maximum activity at 50°C and at pH 5. The Km, Vmax and Kcat for p-nitrophenyl phosphate were 132 μM, 10 μmol/min/mg and 6.7/sec respectively. Apase-I activity was strongly inhibited by Zn(2+), W(2+); weakly inhibited by Cu(2+), Mo(2+) and Cr(6+) and moderately activated by Mg(2+). The enzyme was shown to be thermolabile as it lost 50% of its activity at 50°C after incubation for 1 hour. The amino acid analysis of enzyme revealed high proportion of acidic amino acids, which is very similar to that of tomato Apase-I and lower than potato Apase. PMID:25887488

  16. CONTROL OF ALKALINE PHOSPHATASE ACTIVITY IN C3H10T1/2 CELLS: ROLE OF RETINOIC ACID AND CELL DENSITY

    EPA Science Inventory

    The enzyme alkaline phosphatase (AP) has been shown to be lost or inappropriately expressed during carcinogenesis in some tissues. ecause retinoic acid (RA) appears to play a role in the normal regulation of the enzyme (RA up-regulates AP in a variety of cell types) we have sugge...

  17. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  18. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  19. Human Prostatic Acid Phosphatase: Structure, Function and Regulation

    PubMed Central

    Muniyan, Sakthivel; Chaturvedi, Nagendra K.; Dwyer, Jennifer G.; LaGrange, Chad A.; Chaney, William G.; Lin, Ming-Fong

    2013-01-01

    Human prostatic acid phosphatase (PAcP) is a 100 kDa glycoprotein composed of two subunits. Recent advances demonstrate that cellular PAcP (cPAcP) functions as a protein tyrosine phosphatase by dephosphorylating ErbB-2/Neu/HER-2 at the phosphotyrosine residues in prostate cancer (PCa) cells, which results in reduced tumorigenicity. Further, the interaction of cPAcP and ErbB-2 regulates androgen sensitivity of PCa cells. Knockdown of cPAcP expression allows androgen-sensitive PCa cells to develop the castration-resistant phenotype, where cells proliferate under an androgen-reduced condition. Thus, cPAcP has a significant influence on PCa cell growth. Interestingly, promoter analysis suggests that PAcP expression can be regulated by NF-κB, via a novel binding sequence in an androgen-independent manner. Further understanding of PAcP function and regulation of expression will have a significant impact on understanding PCa progression and therapy. PMID:23698773

  20. Prostatic Acid Phosphatase Is Required for the Antinociceptive Effects of Thiamine and Benfotiamine

    PubMed Central

    Hurt, Julie K.; Coleman, Jennifer L.; Fitzpatrick, Brendan J.; Taylor-Blake, Bonnie; Bridges, Arlene S.; Vihko, Pirkko; Zylka, Mark J.

    2012-01-01

    Thiamine (Vitamin B1) is an essential vitamin that must be obtained from the diet for proper neurological function. At higher doses, thiamine and benfotiamine (S-benzoylthiamine O-monophosphate, BT)–a phosphorylated derivative of thiamine–have antinociceptive effects in animals and humans, although how these compounds inhibit pain is unknown. Here, we found that Prostatic acid phosphatase (PAP, ACPP) can dephosphorylate BT in vitro, in dorsal root ganglia (DRG) neurons and in primary-afferent axon terminals in the dorsal spinal cord. The dephosphorylated product S-benzoylthiamine (S-BT) then decomposes to O-benzoylthiamine (O-BT) and to thiamine in a pH-dependent manner, independent of additional enzymes. This unique reaction mechanism reveals that BT only requires a phosphatase for conversion to thiamine. However, we found that the antinociceptive effects of BT, thiamine monophosphate (TMP) and thiamine–a compound that is not phosphorylated–were entirely dependent on PAP at the spinal level. Moreover, pharmacokinetic studies with wild-type and Pap−/− mice revealed that PAP is not required for the conversion of BT to thiamine in vivo. Taken together, our study highlights an obligatory role for PAP in the antinociceptive effects of thiamine and phosphorylated thiamine analogs, and suggests a novel phosphatase-independent function for PAP. PMID:23119057

  1. Is Protein Phosphatase Inhibition Responsible for the Toxic Effects of Okadaic Acid in Animals?

    PubMed Central

    Munday, Rex

    2013-01-01

    Okadaic acid (OA) and its derivatives, which are produced by dinoflagellates of the genera Prorocentrum and Dinophysis, are responsible for diarrhetic shellfish poisoning in humans. In laboratory animals, these toxins cause epithelial damage and fluid accumulation in the gastrointestinal tract, and at high doses, they cause death. These substances have also been shown to be tumour promoters, and when injected into the brains of rodents, OA induces neuronal damage reminiscent of that seen in Alzheimer’s disease. OA and certain of its derivatives are potent inhibitors of protein phosphatases, which play many roles in cellular metabolism. In 1990, it was suggested that inhibition of these enzymes was responsible for the diarrhetic effect of these toxins. It is now repeatedly stated in the literature that protein phosphatase inhibition is not only responsible for the intestinal effects of OA and derivatives, but also for their acute toxic effects, their tumour promoting activity and their neuronal toxicity. In the present review, the evidence for the involvement of protein phosphatase inhibition in the induction of the toxic effects of OA and its derivatives is examined, with the conclusion that the mechanism of toxicity of these substances requires re-evaluation. PMID:23381142

  2. Mechanistic studies of phosphoserine phosphatase, an enzyme related to P-type ATPases.

    PubMed

    Collet, J F; Stroobant, V; Van Schaftingen, E

    1999-11-26

    Phosphoserine phosphatase belongs to a new class of phosphotransferases forming an acylphosphate during catalysis and sharing three motifs with P-type ATPases and haloacid dehalogenases. The phosphorylated residue was identified as the first aspartate in the first motif (DXDXT) by mass spectrometry analysis of peptides derived from the phosphorylated enzyme treated with NaBH(4) or alkaline [(18)O]H(2)O. Incubation of native phosphoserine phosphatase with phosphoserine in [(18)O]H(2)O did not result in (18)O incorporation in residue Asp-20, indicating that the phosphoaspartate is hydrolyzed, as in P-type ATPases, by attack of the phosphorus atom. Mutagenesis studies bearing on conserved residues indicated that four conservative changes either did not affect (S109T) or caused a moderate decrease in activity (G178A, D179E, and D183E). Other mutations inactivated the enzyme by >80% (S109A and G180A) or even by >/=99% (D179N, D183N, K158A, and K158R). Mutations G178A and D179N decreased the affinity for phosphoserine, suggesting that these residues participate in the binding of the substrate. Mutations of Asp-179 decreased the affinity for Mg(2+), indicating that this residue interacts with the cation. Thus, investigated residues appear to play an important role in the reaction mechanism of phosphoserine phosphatase, as is known for equivalent residues in P-type ATPases and haloacid dehalogenases. PMID:10567362

  3. Ultrastructural localization of acid phosphatase in arbusculate coils of mycorrhizal Phoenix canariensis roots.

    PubMed

    Dreyer, Beatriz; Pérez-Gilabert, Manuela; Olmos, Enrique; Honrubia, Mario; Morte, Asunción

    2008-04-01

    Acid phosphatase (ACP) activity has been detected in roots of mycorrhizal and non-mycorrhizal Phoenix canariensis. This enzyme was ultrastructurally localized in arbusculate coils for the first time. This localization was carried out using a cerium-based method, which minimizes non-specific precipitation. The ACP was localized in inter- and intracellular hyphae, in the fungal cytoplasm as well as at the interface and the fungal cell wall and the periarbuscular membrane limiting it. The novel localization of an ACP in the arbuscular mycorrhizal (AM) interface of arbusculate coils suggests that this enzyme may be involved in the phosphorus efflux from the mycorrhizal fungus to the host. The results presented in this article indicate that the role played by ACP in AM symbiosis may be more important than was previously thought and that arbusculate coils are highly relevant when considering nutrient transfer through AM symbiosis. PMID:18334003

  4. Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement

    PubMed Central

    Farahani, Mohammad; Safavi, Seyed Mohammadreza; Dianat, Omid; Khoramian Tusi, Somayeh; Younessian, Farnaz

    2015-01-01

    Statement of the Problem The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. Purpose The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. Materials and Method An upper canines from twelve patients (mean age: 14±2 years) undergoing extraction orthodontic treatment for distal movement served as the test tooth (DC), and its contralateral (CC) and antagonist (AC) canines were used as controls. The CC was included in orthodontic appliance without orthodontic force; the AC was free from any orthodontic appliance. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance placement (T0), and 14 (T2) and 28 days (T3) after it and ALP and ACP concentration were determined spectrophotometrically. Results ALP concentration was elevated significantly in DC and CC groups at days 14 and 28 compared with the AC. In DC group, the ALP was significantly greater in mesial sites than distal site, while no significant changes were found between both sites of CC. The peak level of ALP was observed in mesial sites of DC at T2. Regarding ACP, significant elevation of this enzyme was seen in DC group both in mesial and distal sites at T2 and T3. The peak level of this enzyme was seen at T2. Conclusion Monitoring simultaneous changes of ALP and ACP levels in GCF can reflect the tissue responses occur in periodontium during bone formation and bone resorption during orthodontic tooth movement, respectively. PMID:26535403

  5. Phosphoglycosylation of a secreted acid phosphatase from Leishmania donovani.

    PubMed

    Lippert, D N; Dwyer, D W; Li, F; Olafson, R W

    1999-06-01

    The secreted acid phosphatase (SAcP) of L.donovani is a heterogeneous glycoprotein that displays a wide array of N- and O-linked glycosylations. The O-linked sugars are of particular interest due to their similarity to the phosphoglycan structures of the major lipophosphoglycan surface antigen and released phosphoglycan (Turco et al., 1987; Greis et al., 1992). This study describes a structural analysis of the SAcP O-linked glycosylations using mass spectroscopy, amino acid sequencing, and enzymatic carbohydrate sequencing. Analysis of glycan chain lengths and peptide glycosylation site distribution was performed, revealing that the average O-linked structure was approximately 32 repeat units in length. Amino acid sequence analysis of glycosylated peptides showed that phosphoglycosylations did not occur randomly but were localized to specific serine residues within an array of degenerate serine/threonine-rich repeat sequences localized in the C-terminus. No evidence was obtained for modification of threonine residues. The observed pattern suggested that a consensus sequence may exist for localization of phosphoglycan structures. PMID:10336996

  6. Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia.

    PubMed

    Wilkerson, Julia E R; Satriotomo, Irawan; Baker-Herman, Tracy L; Watters, Jyoti J; Mitchell, Gordon S

    2008-03-12

    Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting relevant protein phosphatases uniquely during IH and conferring pattern sensitivity to pLTF. We hypothesized that spinal protein phosphatase inhibition would relieve this braking action of protein phosphatases, thereby revealing pLTF after SH. Anesthetized rats received intrathecal (C4) okadaic acid (25 nm) before SH (25 min, 11% O(2)). Unlike (vehicle) control rats, SH induced a significant pLTF in okadaic acid-treated rats that was indistinguishable from rats exposed to IH (three 5 min episodes, 11% O(2)). IH and SH with okadaic acid may elicit pLTF by similar, serotonin-dependent mechanisms, because intravenous methysergide blocks pLTF in rats receiving IH or okadaic acid plus SH. Okadaic acid did not alter IH-induced pLTF. In summary, pattern sensitivity in pLTF may reflect differential regulation of okadaic acid-sensitive serine/threonine phosphatases; presumably, these phosphatases are less active during/after IH versus SH. The specific okadaic acid-sensitive phosphatase(s) constraining pLTF and their spatiotemporal dynamics during and/or after IH and SH remain to be determined. PMID:18337426

  7. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus.

    PubMed

    Wang, Jianyun; Si, Zaiyong; Li, Fang; Xiong, Xiaobo; Lei, Lei; Xie, Fuli; Chen, Dasong; Li, Yixing; Li, Youguo

    2015-08-01

    The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation. PMID:26105827

  8. Insights into the catalytic mechanism of PPM Ser/Thr phosphatases from the atomic resolution structures of a mycobacterial enzyme.

    PubMed

    Bellinzoni, Marco; Wehenkel, Annemarie; Shepard, William; Alzari, Pedro M

    2007-07-01

    Serine/threonine-specific phosphatases (PPs) represent, after protein tyrosine phosphatases, the second major class of enzymes that catalyze the dephosphorylation of proteins. They are classed in two large families, known as PPP and PPM, on the basis of sequence similarities, metal ion dependence, and inhibitor sensitivity. Despite their wide species distribution and broad physiological roles, the catalytic mechanism of PPM phosphatases has been primarily inferred from studies of a single enzyme, human PP2Calpha. Here, we report the biochemical characterization and the atomic resolution structures of a soluble PPM phosphatase from the saprophyte Mycobacterium smegmatis in complex with different ligands. The structures provide putative snapshots along the catalytic cycle, which support an associative reaction mechanism that differs in some important aspects from the currently accepted model and reinforces the hypothesis of convergent evolution in PPs. PMID:17637345

  9. Structure of Human Dual Specificity Protein Phosphatase 23, VHZ, Enzyme-Substrate/Product Complex

    SciTech Connect

    Agarwal,R.; Burley, S.; Swaminathan, S.

    2008-01-01

    Protein phosphorylation plays a crucial role in mitogenic signal transduction and regulation of cell growth and differentiation. Dual specificity protein phosphatase 23 (DUSP23) or VHZ mediates dephosphorylation of phospho-tyrosyl (pTyr) and phospho-seryl/threonyl (pSer/pThr) residues in specific proteins. In vitro, it can dephosphorylate p44ERK1 but not p54SAPK-{beta} and enhance activation of c-Jun N-terminal kinase (JNK) and p38. Human VHZ, the smallest of the catalytically active protein-tyrosine phosphatases (PTP) reported to date (150 residues), is a class I Cys-based PTP and bears the distinctive active site signature motif HCXXGXXRS(T). We present the crystal structure of VHZ determined at 1.93 angstrom resolution. The polypeptide chain adopts the typical a{beta}a PTP fold, giving rise to a shallow active site cleft that supports dual phosphorylated substrate specificity. Within our crystals, the Thr-135-Tyr-136 from a symmetry-related molecule bind in the active site with a malate ion, where they mimic the phosphorylated TY motif of the MAPK activation loop in an enzyme-substrate/product complex. Analyses of intermolecular interactions between the enzyme and this pseudo substrate/product along with functional analysis of Phe-66, Leu-97, and Phe-99 residues provide insights into the mechanism of substrate binding and catalysis in VHZ.

  10. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil.

    PubMed

    Jin, Hong-Hao; Jiang, Jian-Guo

    2015-04-01

    Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT. PMID:25672855

  11. The Leishmania donovani histidine acid ecto-phosphatase LdMAcP: insight into its structure and function

    PubMed Central

    Papadaki, Amalia; Politou, Anastasia S.; Smirlis, Despina; Kotini, Maria P.; Kourou, Konstadina; Papamarcaki, Thomais; Boleti, Haralabia

    2015-01-01

    Acid ecto-phosphatase activity has been implicated in Leishmania donovani promastigote virulence. In the present study, we report data contributing to the molecular/structural and functional characterization of the L. donovani LdMAcP (L. donovani membrane acid phosphatase), member of the histidine acid phosphatase (HAcP) family. LdMAcP is membrane-anchored and shares high sequence identity with the major secreted L. donovani acid phosphatases (LdSAcPs). Sequence comparison of the LdMAcP orthologues in Leishmania sp. revealed strain polymorphism and species specificity for the L. donovani complex, responsible for visceral leishmaniasis (Khala azar), proposing thus a potential value of LdMAcP as an epidemiological or diagnostic tool. The extracellular orientation of the LdMAcP catalytic domain was confirmed in L. donovani promastigotes, wild-type (wt) and transgenic overexpressing a recombinant LdMAcP–mRFP1 (monomeric RFP1) chimera, as well as in transiently transfected mammalian cells expressing rLdMAcP–His. For the first time it is demonstrated in the present study that LdMAcP confers tartrate resistant acid ecto-phosphatase activity in live L. donovani promastigotes. The latter confirmed the long sought molecular identity of at least one enzyme contributing to this activity. Interestingly, the L. donovani rLdMAcP–mRFP1 promastigotes generated in this study, showed significantly higher infectivity and virulence indexes than control parasites in the infection of J774 mouse macrophages highlighting thereby a role for LdMAcP in the parasite's virulence. PMID:25695743

  12. The Leishmania donovani histidine acid ecto-phosphatase LdMAcP: insight into its structure and function.

    PubMed

    Papadaki, Amalia; Politou, Anastasia S; Smirlis, Despina; Kotini, Maria P; Kourou, Konstadina; Papamarcaki, Thomais; Boleti, Haralabia

    2015-05-01

    Acid ecto-phosphatase activity has been implicated in Leishmania donovani promastigote virulence. In the present study, we report data contributing to the molecular/structural and functional characterization of the L. donovani LdMAcP (L. donovani membrane acid phosphatase), member of the histidine acid phosphatase (HAcP) family. LdMAcP is membrane-anchored and shares high sequence identity with the major secreted L. donovani acid phosphatases (LdSAcPs). Sequence comparison of the LdMAcP orthologues in Leishmania sp. revealed strain polymorphism and species specificity for the L. donovani complex, responsible for visceral leishmaniasis (Khala azar), proposing thus a potential value of LdMAcP as an epidemiological or diagnostic tool. The extracellular orientation of the LdMAcP catalytic domain was confirmed in L. donovani promastigotes, wild-type (wt) and transgenic overexpressing a recombinant LdMAcP-mRFP1 (monomeric RFP1) chimera, as well as in transiently transfected mammalian cells expressing rLdMAcP-His. For the first time it is demonstrated in the present study that LdMAcP confers tartrate resistant acid ecto-phosphatase activity in live L. donovani promastigotes. The latter confirmed the long sought molecular identity of at least one enzyme contributing to this activity. Interestingly, the L. donovani rLdMAcP-mRFP1 promastigotes generated in this study, showed significantly higher infectivity and virulence indexes than control parasites in the infection of J774 mouse macrophages highlighting thereby a role for LdMAcP in the parasite's virulence. PMID:25695743

  13. [Effect of aluminium and cAMP on acid phosphatase from the apoplast of barley and maize root cells].

    PubMed

    Fedorovskaia, M D; Tikhaia, N I

    2003-01-01

    Acid phosphatase activity inhibited by 1 mM sodium molybdate was detected at the surface of barley seedling roots and in the cell wall fraction isolated from barley and maize seedling roots. This enzyme hydrolyzed NPP, GP, and PPi at low pH (4.0 and below). NPP hydrolysis was stimulated by magnesium (but not calcium or manganese) ions, while PPi hydrolysis was independent of the presence of bivalent ions. The activity of phosphatase localized in the cell walls of the both crops increased in the presence of 100 microM AlCl3 or CuCl2. Stimulation of NPP hydrolysis by micromolar concentrations of aluminium and copper as well as by millimolar concentrations of magnesium decreased in the presence of 25 microM cAMP. This agrees with the previous data on the enzyme localized at the outer side of the properly oriented vesicles in the microscomal fraction of plasmalemma. The role of the root extracellular acid phosphatase loosely associated with various apoplast structures in plant adaptation to toxic effect of aluminium in the acidic soils as well as possible control of this process by cAMP secretion to the apoplast are discussed. PMID:12712579

  14. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  15. Trichomonas vaginalis: determination of acid phosphatase activity as a pharmacological screening procedure.

    PubMed

    Martínez-Grueiro, M M; Montero-Pereira, D; Giménez-Pardo, C; Nogal-Ruiz, J J; Escario, J A; Gómez-Barrio, A

    2003-10-01

    A simple method to screen trichomonacides, based on the quantification of acid phosphatase (AP) activity, has been designed. Using p-nitrophenyl phosphate as chromogenic substrate, we first determined the optimal conditions for enzyme reaction. After seeding, a linear correlation between number of trichomonads and optical densities at 405 nm was obtained at 24 hr but not at 48 hr. Then, the inhibitory effect of metronidazole was assessed both by microscope counts and by AP determination. Similar values for 50% inhibitory concentrations (2.6 microM), with 95% confidence limits of 1.91-3.33 for microscopic and 2.21-3.05 for colorimetric method, were obtained. We concluded that the colorimetric method described in this investigation is suitable for pharmacological studies and for the screening of new, potential antitrichomonal agents. PMID:14627165

  16. Estimation of biodiesel cytotoxicity by using acid phosphatase as a biomarker of lysosomal integrity.

    PubMed

    da Cruz, Andrea Cristina Santos; Leite, Maria Bernadete N L; Rodrigues, Luiz Erlon Araújo; Nascimento, Iracema Andrade

    2012-08-01

    Biodiesel is promoted as environmentally less harmful than diesel fuel. Nevertheless its water-soluble-fraction (WSF) may contain methanol, which appears by a reversion of the transesterification reaction, when biodiesel contacts water. This paper evaluated the loss of the lysosomal membrane integrity in liver homogenate of juvenils Tilapia exposed to biodiesels-WSF, through the increase of the acid phosphatase activity, as an evidence of citotoxicity. Differences in the enzyme activity levels (3.4, 2.3 and 0.8 mU mg(-1) total protein over the control value, which was 1.6 mU mg(-1) total protein), found for castor oil, waste cooking-oil and palm oil-biodiesels, respectively, were indicative of their toxicity according to this decreasing trend. WSF-chromatograms suggest the cytotoxicity as related to methanol. PMID:22717620

  17. Ser/Thr-rich repetitive motifs as targets for phosphoglycan modifications in Leishmania mexicana secreted acid phosphatase.

    PubMed

    Wiese, M; Ilg, T; Lottspeich, F; Overath, P

    1995-03-15

    The insect stage of the protozoan parasite Leishmania mexicana secretes a phosphomonoesterase in the form of a filamentous complex. The polypeptide subunits of this polymer are modified by phosphoglycans and/or oligomannosyl residues linked to phosphoserine. Based on peptide sequence data of a predominant 100 kDa protein of the filamentous complex, two tandemly arranged, single copy genes, lmsap1 and lmsap2, were cloned and sequenced. lmsap1 predicts a protein with features characteristic of acid phosphatases and a remarkable serine- and threonine-rich region of 32 amino acids close to the C-terminus. In the otherwise identical lmsap2 product, this region is extended to 383 amino acids and is composed of short Ser/Thr-rich repeats. Deletion analysis demonstrates that lmsap1 encodes the major 100 kDa protein of the complex while a minor 200 kDa component is derived from the lmsap2 gene. Null mutants of either gene retain the ability to secrete acid phosphatase filaments, while a deletion of both genes results in Leishmania defective in enzyme formation. The Ser/Thr-rich domains are the targets for phosphoglycan modifications as shown by the expression of secreted fusion proteins composed of these C-terminal regions and the N-terminal domain of a lysosomal acid phosphatase. PMID:7720697

  18. Expression of Prostatic Acid Phosphatase in Rat Circumvallate Papillae

    PubMed Central

    Nishida, Kentaro; Kubota, Teruyo; Matsumoto, Saki; Kato, Junki; Watanabe, Yu; Yamamoto, Atsuko; Furui, Mari; Ohishi, Akihiro; Nagasawa, Kazuki

    2016-01-01

    ATP and its metabolites are important for taste signaling in taste buds, and thus a clearance system for them would play critical roles in maintenance of gustatory function. A previous report revealed that mRNAs for ecto-5′-nucleotidase (NT5E) and prostatic acid phosphatase (PAP) were expressed by taste cells of taste buds, and NT5E-immunoreactivity was detected in taste cells. However, there was no information on PAP-immunoreactivity in taste buds. In this study, we examined the expression profile of PAP in rat taste buds. In the isolated rat taste buds, we detected expression of mRNA for PAP, but NT5E was not detected differing from the case of mouse ones (Dando et al., 2012, J Neuroscience). On immunohistochemical analysis, PAP-immunoreactivity was found predominantly in NTPDase2-positive type I and SNAP25-positive type III taste cells, while there were no apparent signals of it in PLC-β2-positive type II, α-gustducin-positive type II, AADC-positive type III and 5HT-positive type III ones. As for NT5E, we could not detect its immunoreactivity in rat taste buds, and co-localization of it with any taste cell markers, although mouse taste buds expressed NT5E as reported previously. These findings suggest that PAP expressed by type I and one of type III taste cells of rats may contribute to metabolic regulation of the extracellular levels of adenine nucleotides in the taste buds of circumvallate papillae, and the regulating mechanisms for adenine nucleotides in taste buds might be different between rats and mice. PMID:27348306

  19. Purification and Properties of Acid Phosphatase-1 from a Nematode Resistant Tomato Cultivar

    PubMed Central

    Paul, Elizabeth M.; Williamson, Valerie M.

    1987-01-01

    In tomato the acid phosphatase-1 isozyme (Apase-1) is inherited as a single locus linked to the nematode resistance gene (Mi). The Apase-11 electrophoretic variant has been purified from a tomato cell suspension culture using ion exchange and concanavalin A sepharose affinity chromatography. A cellulose acetate electrophoresis method was used to distinguish Apase-11 rapidly from other Apase isozymes in tomato. The subunit molecular weight of the purified enzyme was estimated to be 31,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native size of the enzyme, which is reported to be a dimer, was determined to be approximately 51,000 by high performance liquid chromatography gel filtration. Apase-11 has a lower pH optimum and a distinct substrate specificity as compared to Apases extracted from tomato fruit or from other plant species. The amino acid composition of Apase-11 is similar to that of a potato Apase. Images Fig. 1 Fig. 2 Fig. 4 PMID:16665451

  20. Distribution of acid phosphatase, beta-glucuronidase, n-acetyl-beta-d-glucosaminidase and beta-galactosidase in cornea of albino rabbit.

    PubMed

    Cejková, J; Lojda, Z; Havránková, E

    1975-09-29

    Activities of acid phosphatase, beta-glucuronidase, N-acethyl-beta-D-glucosaminidase and acid beta-galactosidase were investigated histochemically in rabbit corneas. Frozen sections after block fixation in cold 4% formaldehyde with 1% CaCl2 followed by washing in cold physiological saline as well as cold microtome sections of corneas quenched in petroleter chilled with acetone-dry ice mixture, transferred to nonprecooled slides or semipermeable membranes were used. Standard aqueous media were employed in the case of free-floating frozen sections of fixed corneas as well as of cold mictrotome sections (postfixed in cold 4% formaldehyde). Agar media were used in connection with the technic of semipermeable membranes. Gomori method (in the case of acid phosphatase), simultaneous azocoupling methods (substrates derivated of naphthol-AS-BI with hexazonium-p-rosanilin) in the case of acid phosphatase, beta-glucuronidase and N-acetyl-beta-D-glucosaminidase and the indigogenic method in the case of acid beta-galactosidase were applied. Enzyme activities in sections of fixed corneas were minimal in comparison with those in cold microtome sections of unfixed material revealed particularly with the technic of semipermeable membranes which is to be preferred. This technic is recommended in studies concerned with lysosomal enzymes in the cornea, particularly in keratocytes. All enzymes investigated were present in corneal epithelium, keratocytes and endothelium. Acid phosphatase displayed the highest activity followed by beta-glucuronidase and acetyl-beta-D-glucosaminidase. The activity of beta-galactosidase was the lowest. For the demonstration of activities in keratocytes sections parallel to the surface are very suitable. In these sections enzyme activities were demonstrated in small granules (apparently lysosomes) present in the central part of their cytoplasm as well as in projections. Diffuse staining was also seen, being the highest in the case of acid phosphatase. PMID

  1. Monoclonal antibodies directed against Leishmania secreted acid phosphatase and lipophosphoglycan. Partial characterization of private and public epitopes.

    PubMed

    Ilg, T; Harbecke, D; Wiese, M; Overath, P

    1993-10-15

    Leishmania promastigotes, the stage of the parasite characteristic for the sandfly vector, express an abundant glycoconjugate, called lipophosphoglycan, at their surface. Lipophosphoglycan consists of lysoalkyl-sn-glycerophosphoinositol linked to a phosphosaccharide core conserved in all species, which is connected to PO4-6Gal beta 1,4Man alpha 1 repeats with species-specific substitutions at the Gal residue; the repeats are capped by conserved and species-specific oligosaccharides. Most Leishmania species also secrete an acid phosphatase, which, in Leishmania mexicana, is a filamentous complex composed of a phosphorylated glycoprotein and non-covalently associated proteo-(high-molecular-mass)phosphoglycan. The secreted acid phosphatase complex was used as an antigen to derive a panel of monoclonal antibodies (mAbs). A total of 25 mAbs (17 novel and 8 previously described) were tested by different techniques for their specificity against lipophosphoglycan and secreted acid phosphatase from several Leishmania species. This comparison and the modification of the antigens by chemical or enzymic treatments allowed a classification of the mAbs into several groups. First, from 25 mAbs examined, 22 recognize lipophosphoglycan and the enzyme complex of L. mexicana; only three are specific for secreted acid phosphatase. Two of the latter group are also directed against carbohydrate structures, whereas the third mAb recognizes the 100-kDa polypeptide of the complex. The secreted acid-phosphatase-specific class detects antigen in the flagellar pocket of promastigotes while all anti-lipophosphoglycan mAbs bind to the cell surface. Second, all 15 anti-lipophosphoglycan mAbs investigated in detail appear to be directed against the phosphosaccharide repeats or the cap structure rather than the phosphosaccharide core. Two mAbs recognize terminal cap-structures containing Man alpha 1,2Man residues. Four antibodies are specific for L. mexicana and are probably directed against PO4

  2. Characterization of polynucleotide kinase/phosphatase enzymes from Mycobacteriophages omega and Cjw1 and vibriophage KVP40.

    PubMed

    Zhu, Hui; Yin, Shenmin; Shuman, Stewart

    2004-06-18

    Coliphage T4 Pnkp is a bifunctional polynucleotide 5'-kinase/3'-phosphatase that catalyzes the end-healing steps of a RNA repair pathway. Here we show that mycobacteriophages Omega and Cjw1 and vibriophage KVP40 also encode bifunctional Pnkp enzymes consisting of a proximal 5'-kinase module with an essential P-loop motif, GXGK(S/T), and a distal 3'-phosphatase module with an essential acyl-phosphatase motif, DX- DGT. Biochemical characterization of the viral Pnkp proteins reveals several shared features, including an alkaline pH optimum for the kinase component, an intrinsic RNA kinase activity, and a homotetrameric or homodimeric quaternary structure, that distinguish them from the monomeric DNA-specific phosphatase/kinase enzymes found in mammals and fission yeast. Whereas the phage 5'-kinases differ from each other in their preferences for phosphorylation of 5' overhangs, blunt ends, or recessed ends, none of them displays the preference for recessed ends reported for mammalian DNA kinase. We hypothesize that Pnkp provides phages that have it with a means to evade an RNA-damaging antiviral host response. Genetic complementation of the essential end-healing steps of yeast tRNA splicing by the Omega and Cjw1 Pnkp enzymes establishes their capacity to perform RNA repair reactions in vivo. A supportive correlation is that Omega and Cjw1, which are distinguished from other mycobacteriophages by their possession of a Pnkp enzyme, are also unique among the mycobacteriophages in their specification of putative RNA ligases. PMID:15056675

  3. Inhibition of acid, alkaline, and tyrosine (PTP1B) phosphatases by novel vanadium complexes.

    PubMed

    McLauchlan, Craig C; Hooker, Jaqueline D; Jones, Marjorie A; Dymon, Zaneta; Backhus, Emily A; Greiner, Bradley A; Dorner, Nicole A; Youkhana, Mary A; Manus, Lisa M

    2010-03-01

    In the course of our investigations of vanadium-containing complexes for use as insulin-enhancing agents, we have generated a series of novel vanadium coordination complexes with bidentate ligands. Specifically we have focused on two ligands: anthranilate (anc(-)), a natural metabolite of tryptophan, and imidizole-4-carboxylate (imc(-)), meant to mimic naturally occurring N-donor ligands. For each ligand, we have generated a series of complexes containing the V(III), V(IV), and V(V) oxidation states. Each complex was investigated using phosphatase inhibition studies of three different phosphatases (acid, alkaline, and tyrosine (PTP1B) phosphatase) as prima facia evidence for potential use as an insulin-enhancing agent. Using p-nitrophenyl phosphate as an artificial phosphatase substrate, the levels of inhibition were determined by measuring the absorbance of the product at 405nm using UV/vis spectroscopy. Under our experimental conditions, for instance, V(imc)(3) appears to be as potent an inhibitor of alkaline phosphatase as sodium orthovanadate when comparing the K(cat)/K(m) term. VO(anc)(2) is as potent an inhibitor of acid phosphatase and tyrosine phosphatase as the Na(3)VO(4). Thus, use of these complexes can increase our mechanistic understanding of the effects of vanadium in vivo. PMID:20071031

  4. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.

  5. Development of an efficient protein phosphatase-based colorimetric test for okadaic acid detection.

    PubMed

    Sassolas, Audrey; Catanante, Gaëlle; Hayat, Akhtar; Marty, Jean-Louis

    2011-09-30

    Okadaic acid (OA), responsible for gastrointestinal problems, inhibits protein phosphatase 2A (PP2A). Therefore, the inhibition exerted by the toxin on PP2A could be used to detect the presence of OA in aqueous solution and in shellfish sample. In this work, two commercial PP2As (from ZEU Immunotec and Millipore) and one produced by molecular engineering (from GTP Technology) were tested. Enzymes were used in solution and also immobilized within a polymeric gel. In solution, best performances were obtained using PP2A purchased from ZEU Immunotec (Spain). OA was detected in aqueous solution in concentration as low as 0.0124 μg L(-1) using the enzyme from ZEU Immunotec whereas the detection limits were 0.47 μg L(-1) and 0.123 μg L(-1) with PP2As from Millipore and GTP Technology, respectively. Considering that the immobilization step contributes to stabilize the PP2A activity, enzymes were entrapped within a photopolymer and an agarose gel. These different polymeric matrices were optimized, tested and compared. Agarose gel seems to be a good alternative to the photopolymer largely used in our group. For instance, the IC(50) value obtained with the test based on PP2A from ZEU Immunotec immobilized within an agarose gel was 1.98 μg L(-1). This value was 1.8-fold lower than those obtained with the photopolymer test using the same enzyme. The proposed test is sensitive, fast and does not require expensive equipment. To evaluate the efficiency of the assay, PP inhibition tests based on PP2A from ZEU Immunotec in solution or immobilized within a gel were used for OA detection in contaminated shellfish. PMID:21839207

  6. Comparative theoretical studies of the phosphomonoester hydrolysis mechanism by purple acid phosphatases.

    PubMed

    Retegan, M; Milet, A; Jamet, H

    2010-07-01

    We present here the first ONIOM (our own n-layered integrated molecular orbital + molecular mechanics method) studies of a purple acid phosphatase enzyme. Our study focused on the structures of the red kidney bean PAP (kbPAP) complexed with phosphate and with phenyl phosphate and on the mechanism of the phenyl phosphate hydrolysis by the enzyme. Density functional theory (DFT) calculations were also performed using models of different sizes for comparison purpose. Results show that the inclusion of three histidine residues, His202, His295, and His296, with their protein surrounding, is crucial to properly describe the coordination of the substrates. They induce a conformation with the substrate closer to the nucleophilic mu-hydroxyde bridge. In the mechanistic study, a transition state is stabilized by a strong hydrogen bond between His202 and the leaving group of the substrate. Consequently, a smaller value for the activation energy barrier is obtained from DFT calculations including this histidine to the same calculations without this histidine. Using the ONIOM method, this activation energy barrier is even more reduced. So the mechanism, which considers the hydroxo group bridging the two metal ions as nucleophile, becomes really convincing, contrary to the results obtained with a small model at the DFT level. PMID:20550096

  7. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment. PMID:27209386

  8. A single domain of human prostatic acid phosphatase shows antibody-mediated restoration of catalytic activity.

    PubMed Central

    Choe, B K; Dong, M K; Walz, D; Gleason, S; Rose, N R

    1982-01-01

    By limited proteolysis with mouse submaxillaris protease, human prostatic acid phosphatase (EC 3.1.3.2) was cleaved into three fragments, Sp1, Sp2, and Sp3, which individually had no enzymatic activity. One of the fragments, Sp3, regained enzymatic activity after interaction with rabbit antibody to prostatic acid phosphatase. The Sp3 fragment was purified and characterized as to its molecular weight, amino acid composition, and carbohydrate content. The Sp3 fragment behaved like the parent molecule in L(+)-tartrate affinity and in trapping of a phosphoryl intermediate. The same Sp3 fragment also bears the most prominent antigenic determinants. This evidence suggest that Sp3 is the enzymatically active domain of prostatic acid phosphatase. Images PMID:6193513

  9. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    PubMed

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants. PMID:25203006

  10. Characterization of a Soluble Phosphatidic Acid Phosphatase in Bitter Melon (Momordica charantia)

    PubMed Central

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C.; Ullah, Abul H. J.

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and Pi. PAPs are typically categorized into two subfamilies: Mg2+-dependent soluble PAP and Mg2+-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg2+-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53–60°C and unaffected by up to 0.3 mM MgCl2. The Km and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na3VO4, Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg2+-independent enzyme in plants. PMID:25203006

  11. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  12. Purification and properties of branched-chain alpha-keto acid dehydrogenase phosphatase from bovine kidney.

    PubMed Central

    Damuni, Z; Merryfield, M L; Humphreys, J S; Reed, L J

    1984-01-01

    Branched-chain alpha-keto acid dehydrogenase (BCKDH) phosphatase was purified about 8000-fold from extracts of bovine kidney mitochondria. The highly purified phosphatase exhibited a molecular weight of approximately 460,000, as estimated by gel-permeation chromatography. Another form of the phosphatase, with an apparent molecular weight of approximately 230,000, was also detected under conditions of high dilution. In contrast to pyruvate dehydrogenase phosphatase, BCKDH phosphatase was active in the absence of divalent cations. BCKDH phosphatase was inactive toward 32P-labeled phosphorylase a, but exhibited approximately 10% maximal activity with 32P-labeled pyruvate dehydrogenase complex. BCKDH phosphatase activity was inhibited by GTP, GDP, ATP, ADP, UTP, UDP, CTP, and CDP. Half-maximal inhibition occurred at about 60, 200, 200, 400, 100, 250, 250, and 400 microM, respectively. These inhibitions were reversed completely by 2 mM Mg2+. GTP was replaceable by guanosine 5'-(beta, gamma-imido)triphosphate. GMP, AMP, UMP, CMP, NAD, and NADH showed little effect, if any, on BCKDH phosphatase activity at concentrations up to 1 mM. Heparin showed half-maximal inhibition at 2 micrograms/ml. This inhibition was only partially (30%) reversed by 2 mM Mg2+. CoA and various acyl-CoA compounds exhibited half-maximal inhibition at 150-300 microM. These inhibitions were not reversed by 2 mM Mg2+. BCKDH phosphatase activity was stimulated 1.5- to 3-fold by protamine, poly(L-lysine), and poly(L-arginine) at 3.6 micrograms/ml. PMID:6589597

  13. Relationship between Salivary Alkaline Phosphatase Enzyme Activity and The Concentrations of Salivary Calcium and Phosphate Ions

    PubMed Central

    Jazaeri, Mina; Malekzadeh, Hosein; Abdolsamadi, Hamidreza; Rezaei-Soufi, Loghman; Samami, Mohammad

    2015-01-01

    Although salivary alkaline phosphatase (ALP) can balance deand remineralization processes of enamel, there is no evidence regarding its effects on the concentrations of calcium and phosphate in saliva. The present study aims to determine the relationship between salivary ALP activity and the concentrations of calcium and phosphate in saliva. In this cross-sectional study, we evaluated salivary markers in 120 males, ages 19 to 44 years. All participants provided 5 mL of unstimulated whole saliva and the level of enzyme activity as well as calcium and phosphate concentrations were measured using a colorimetric method. Data were gathered and analyzed by statistical package for social sciences (SPSS) 13.00 using Pearson correlation test. A p value of <0.05 was considered statistically significant. The mean age of participants in the present study was 32.95 ± 8.09 years. The mean pH of saliva was 6.65 ± 0.62. Salivary parameters included average ALP activity (5.04 ± 1.866 U/dL), calcium (4.77 ± 0.877 mg/dL) and phosphate (10.38 ± 2.301 mg/dL). Pearson correlation test showed no significant relationship between ALP activity and calcium and phosphate concentrations in saliva (p>0.05). According to the results of the present study, there was no significant relation between salivary ALP activity and calcium and phosphate concentrations in saliva. However, further research is highly recommended. PMID:25870846

  14. Relationship between Salivary Alkaline Phosphatase Enzyme Activity and The Concentrations of Salivary Calcium and Phosphate Ions.

    PubMed

    Jazaeri, Mina; Malekzadeh, Hosein; Abdolsamadi, Hamidreza; Rezaei-Soufi, Loghman; Samami, Mohammad

    2015-01-01

    Although salivary alkaline phosphatase (ALP) can balance deand remineralization processes of enamel, there is no evidence regarding its effects on the concentrations of calcium and phosphate in saliva. The present study aims to determine the relationship between salivary ALP activity and the concentrations of calcium and phosphate in saliva. In this cross-sectional study, we evaluated salivary markers in 120 males, ages 19 to 44 years. All participants provided 5 mL of unstimulated whole saliva and the level of enzyme activity as well as calcium and phosphate concentrations were measured using a colorimetric method. Data were gathered and analyzed by statistical package for social sciences (SPSS) 13.00 using Pearson correlation test. A p value of <0.05 was considered statistically significant. The mean age of participants in the present study was 32.95 ± 8.09 years. The mean pH of saliva was 6.65 ± 0.62. Salivary parameters included average ALP activity (5.04 ± 1.866 U/dL), calcium (4.77 ± 0.877 mg/dL) and phosphate (10.38 ± 2.301 mg/dL). Pearson correlation test showed no significant relationship between ALP activity and calcium and phosphate concentrations in saliva (p>0.05). According to the results of the present study, there was no significant relation between salivary ALP activity and calcium and phosphate concentrations in saliva. However, further research is highly recommended. PMID:25870846

  15. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  16. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.

    PubMed Central

    Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C

    2004-01-01

    An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286]. PMID:14521509

  17. An okadaic acid-sensitive phosphatase negatively controls the cyclin degradation pathway in amphibian eggs.

    PubMed Central

    Lorca, T; Fesquet, D; Zindy, F; Le Bouffant, F; Cerruti, M; Brechot, C; Devauchelle, G; Dorée, M

    1991-01-01

    Inhibition of okadaic acid-sensitive phosphatases released the cyclin degradation pathway from its inhibited state in extracts prepared from unfertilized Xenopus eggs arrested at the second meiotic metaphase. It also switched on cyclin protease activity in a permanent fashion in interphase extracts prepared from activated eggs. Even after cdc2 kinase inactivation, microinjection of okadaic acid-treated interphase extracts pushed G2-arrested recipient oocytes into the M phase, suggesting that the phosphatase inhibitor stabilizes the activity of an unidentified factor which shares in common with cdc2 kinase the maturation-promoting factor activity. Images PMID:1846666

  18. Prospecting for Unannotated Enzymes: Discovery of a 3′,5′-Nucleotide Bisphosphate Phosphatase within the Amidohydrolase Superfamily

    PubMed Central

    2015-01-01

    In bacteria, 3′,5′-adenosine bisphosphate (pAp) is generated from 3′-phosphoadenosine 5′-phosphosulfate in the sulfate assimilation pathway, and from coenzyme A by the transfer of the phosphopantetheine group to the acyl-carrier protein. pAp is subsequently hydrolyzed to 5′-AMP and orthophosphate, and this reaction has been shown to be important for superoxide stress tolerance. Herein, we report the discovery of the first instance of an enzyme from the amidohydrolase superfamily that is capable of hydrolyzing pAp. Crystal structures of Cv1693 from Chromobacterium violaceum have been determined to a resolution of 1.9 Å with AMP and orthophosphate bound in the active site. The enzyme has a trinuclear metal center in the active site with three Mn2+ ions. This enzyme (Cv1693) belongs to the Cluster of Orthologous Groups cog0613 from the polymerase and histidinol phosphatase family of enzymes. The values of kcat and kcat/Km for the hydrolysis of pAp are 22 s–1 and 1.4 × 106 M–1 s–1, respectively. The enzyme is promiscuous and is able to hydrolyze other 3′,5′-bisphosphonucleotides (pGp, pCp, pUp, and pIp) and 2′-deoxynucleotides with comparable catalytic efficiency. The enzyme is capable of hydrolyzing short oligonucleotides (pdA)5, albeit at rates much lower than that of pAp. Enzymes from two other enzyme families have previously been found to hydrolyze pAp at physiologically significant rates. These enzymes include CysQ from Escherichia coli (cog1218) and YtqI/NrnA from Bacillus subtilis (cog0618). Identification of the functional homologues to the experimentally verified pAp phosphatases from cog0613, cog1218, and cog0618 suggests that there is relatively little overlap of enzymes with this function in sequenced bacterial genomes. PMID:24401123

  19. Kinetic behaviour of acid phosphatase-albumin co-polymers in homogeneous phase and under gel-immobilized conditions.

    PubMed Central

    Cantarella, M; Remy, M H; Scardi, V; Alfani, F; Iorio, G; Greco, G

    1979-01-01

    1. An analysis of the kinetic behaviour of immobilized acid phosphatase (EC 3.1.3.2) layers, gelled on the active surface of an ultrafiltration membrane, was carried out. 2. Two possible forms of such immobilized-enzyme systems were dealt with, namely enzyme-polyalbumin co-gelation through an ultrafiltration process, and enzyme co-polymerization to the same albumin polymers and subsequent gelation. 3. A preliminary analysis was also performed on both the corresponding homogeneous-phase (soluble systems to provide reference kinetics. 4. The main conclusions drawn are: (i) the enzyme-albumin co-polymers show a decrease in specific activity compared with the corresponding free enzyme in both soluble and immobilized forms; (ii) in the homogeneous phase a slight increase in the apparent Michaelis constant was measured for the co-polymerized enzyme compared with the free one, which suggests a decrease in affinity towards substrate; (iii) the activation energy in the immobilized phase is halved, compared with that in the homogeneous phase, which indicates that the combined mass-transfer/reaction step is rate-controlling. PMID:475752

  20. Expression pattern and subcellular localization of Arabidopsis purple acid phosphatase AtPAP9.

    PubMed

    Zamani, Katayoun; Lohrasebi, Tahmineh; Sabet, Mohammad S; Malboobi, Mohammad A; Mousavi, Amir

    2014-01-01

    Purple acid phosphatase (PAP; EC 3.1.3.2) enzymes are metallophosphoesterases that hydrolysis phosphate ester bonds in a wide range of substrates. Twenty-nine PAP-encoding loci have been identified in the Arabidopsis genome, many of which have multiple transcript variants expressed in response to diverse environmental conditions. Having analyzed T-DNA insertion mutants, we have provided strong pieces of evidence that AtPAP9 locus encodes at least two types of transcripts, designated as AtPAP9-1 and AtPAP9-2. These transcript variants expressed distinctly during the course of growth in medium containing sufficient phosphate or none. Further histochemical analysis by the use of AtPAP9-1 promoter fused to β-glucuronidase reporter gene indicated the expression of this gene is regulated in a tissue-specific manner. AtPAP9-1 was highly expressed in stipule and vascular tissue, particularly in response to fungal infection. Subcellular localization of AtPAP9-1:green fluorescent fusion protein showed that it must be involved in plasma membrane and cell wall adhesion. PMID:24012521

  1. Root surface acid phosphatases and their role in phosphorus assimilation by Eriophorum vaginatum

    SciTech Connect

    Kroehler, C.J.; Linkins, A.E.

    1988-01-01

    Eriophorum vaginatum is a dominant plant in much of the arctic tundra ecosystem where phosphorus is frequently a limiting nutrient. The mineralization of this organic phosphorus was thought to be principally controlled by microbial respiration, however, more recent work shows that extracellular soil phosphatases are the principal regulators. The existence of plant root and mycorrhizal surface phosphatases which are capable of hydrolyzing organic phosphorus compounds, suggests that soil organic phosphorus may be directly utilized by plants. Since E. vaginatum is a tussock forming sedge with a very dense annually produced rooting system which can exploit most of the tussock soil volume, its surface phosphatases may play a dominant role in organic phosphorus hydrolysis into inorganic phosphorus. Of equal significance would be the potential for this activity to contribute to the phosphorus nutrition through the coupling of phosphorus hydrolysis on the root and root uptake of the resultant inorganic phosphorus. Phosphatase activity was investigated and found to be uniformly distributed along the surface of the root. Kinetic analysis of the enzyme gave estimates of 9.23 mM for the apparent Km and 1.61 * 10/sup -3/ ..mu..moles mm-2 hr/sup -1/ for the apparent Vmax. Saturation values for E. vaginatum phosphatases are about 3 times higher than average soil solution organic phosphorus concentrations. 12 refs., 4 figs.

  2. Enhanced cell adhesion on bioinert ceramics mediated by the osteogenic cell membrane enzyme alkaline phosphatase.

    PubMed

    Aminian, Alieh; Shirzadi, Bahareh; Azizi, Zahra; Maedler, Kathrin; Volkmann, Eike; Hildebrand, Nils; Maas, Michael; Treccani, Laura; Rezwan, Kurosch

    2016-12-01

    Functional bone and dental implant materials are required to guide cell response, offering cues that provide specific instructions to cells at the implant/tissue interface while maintaining full biocompatibility as well as the desired structural requirements and functions. In this work we investigate the influence of covalently immobilized alkaline phosphatase (ALP), an enzyme involved in bone mineralization, on the first contact and initial cell adhesion. To this end, ALP is covalently immobilized by carbodiimide-mediated chemoligation on two highly bioinert ceramics, alpha-alumina (Al2O3) and yttria-stabilized zirconia (Y-TZP) that are well-established for load-bearing applications. The physicochemical surface properties are evaluated by profilometry, zeta potential and water contact angle measurements. The initial cell adhesion of human osteoblasts (HOBs), human osteoblast-like cells (MG-63) and mesenchymal stromal cells (hMSCs) was investigated. Cell adhesion was assessed at serum free condition via quantification of percentage of adherent cells, adhesion area and staining of the focal adhesion protein vinculin. Our findings show that after ALP immobilization, the Al2O3 and Y-TZP surfaces gained a negative charge and their hydrophilicity was increased. In the presence of surface-immobilized ALP, a higher cell adhesion, more pronounced cell spreading and a higher number of focal contact points were found. Thereby, this work gives evidence that surface functionalization with ALP can be utilized to modify inert materials for biological conversion and faster bone regeneration on inert and potentially load-bearing implant materials. PMID:27612703

  3. Dynamic Evolution of the LPS-Detoxifying Enzyme Intestinal Alkaline Phosphatase in Zebrafish and Other Vertebrates

    PubMed Central

    Yang, Ye; Wandler, Anica M.; Postlethwait, John H.; Guillemin, Karen

    2012-01-01

    Alkaline phosphatases (Alps) are well-studied enzymes that remove phosphates from a variety of substrates. Alps function in diverse biological processes, including modulating host-bacterial interactions by dephosphorylating the Gram-negative bacterial cell wall component lipopolysaccharide (LPS). In animals, Alps are encoded by multiple genes characterized by either ubiquitous expression (named Alpls for their liver expression, but a key to proper bone mineralization), or their tissue-specific expression, for example in the intestine (Alpi). We previously characterized a zebrafish alpi gene (renamed here alpi.1) that is regulated by Myd88-dependent innate immune signaling and that is required to prevent a host’s excessive inflammatory reactions to its resident microbiota. Here we report the characterization of two new alp genes in zebrafish, alpi.2 and alp3. To understand their origins, we investigated the phylogenetic history of Alp genes in animals. We find that vertebrate Alp genes are organized in three clades with one of these clades missing from the mammals. We present evidence that these three clades originated during the two vertebrate genome duplications. We show that alpl is ubiquitously expressed in zebrafish, as it is in mammals, whereas the other three alps are specific to the intestine. Our phylogenetic analysis reveals that in contrast to Alpl, which has been stably maintained as a single gene throughout the vertebrates, the Alpis have been lost and duplicated multiple times independently in vertebrate lineages, likely reflecting the rapid and dynamic evolution of vertebrate gut morphologies, driven by changes in bacterial associations and diet. PMID:23091474

  4. Estimation of the rate constants associated with the inhibitory effect of okadaic acid on type 2A protein phosphatase by time-course analysis.

    PubMed Central

    Takai, A; Ohno, Y; Yasumoto, T; Mieskes, G

    1992-01-01

    As is often the case with tightly binding inhibitors, okadaic acid produces its inhibitory effect on type 2A protein phosphatase (PP2A) in a time-dependent manner. We measured the rate constants associated with the binding of okadaic acid to PP2A by analysing the time-course of the reduction of the p-nitrophenyl phosphate (pNPP) phosphatase activity of the enzyme after application of okadaic acid. The rate constants for dissociation of okadaic acid from PP2A were also estimated from the time-course of the recovery of the activity from inhibition by okadaic acid after addition of a mouse IgG1 monoclonal antibody raised against the inhibitor. Our results show that the rate constants for the binding of okadaic acid and PP2A are of the order of 10(7) M-1.s-1, a typical value for reactions involving relatively large molecules, whereas those for their dissociation are in the range 10(-4)-10(-3) s-1. The very low values of the latter seems to be the determining factor for the exceedingly high affinity of okadaic acid for PP2A. The dissociation constants for the interaction of okadaic acid with the free enzyme and the enzyme-substrate complex, estimated as the ratio of the rate constants, are both in the range 30-40 pM, in agreement with the results of previous dose-inhibition analyses. PMID:1329723

  5. A Mechanistic Study of Protein Phosphatase-1 (PP1), A Catalytically Promiscuous Enzyme

    PubMed Central

    McWhirter, Claire; Lund, Elizabeth A.; Tanifum, Eric A.; Feng, Guoqiang; Sheikh, Qaiser; Hengge, Alvan C.; Williams, Nicholas H.

    2009-01-01

    The reaction catalyzed by the protein phosphatase-1 (PP1) has been examined by linear free energy relationships and kinetic isotope effects. With the substrate 4-nitrophenyl phosphate (4NPP), the reaction exhibits a bell-shaped pH-rate profile for kcat/KM indicative of catalysis by both acidic and basic residues, with kinetic pKas of 6.0 and 7.2. The enzymatic hydrolysis of a series of aryl monoester substrates yields a Brønsted βlg of -0.32, considerably less negative than that of the uncatalyzed hydrolysis of monoester dianions (-1.23). Kinetic isotope effects in the leaving group with the substrate 4NPP are 18(V/K)bridge = 1.0170 and 15(V/K) = 1.0010 which, compared against other enzymatic KIEs with and without general acid catalysis, are consistent with a loose transition state with partial neutralization of the leaving group. PP1 also efficiently catalyzes the hydrolysis of 4-nitrophenyl methylphosphonate (4NPMP). The enzymatic hydrolysis of a series of aryl methylphosphonate substrates yields a Brønsted βlg of -0.30, smaller than the alkaline hydrolysis (-0.69) and similar to the βlg measured for monoester substrates, indicative of similar transition states. The KIEs and the βlg data point to a transition state for the alkaline hydrolysis of 4NPMP that is similar to that of diesters with the same leaving group. For the enzymatic reaction of 4NPMP, the KIEs are indicative of a transition state that is somewhat looser than the alkaline hydrolysis reaction, and similar to the PP1-catalyzed monoester reaction. The data cumulatively point to enzymatic transition states for aryl phosphate monoester and aryl methylphosphonate hydrolysis reactions that are much more similar to one another than the nonenzymatic hydrolysis reactions of the two substrates. PMID:18798625

  6. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  7. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  8. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  9. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  10. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  11. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  12. ISOLATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE ACTIVITY FROM SPIRODELA OLIGORHIZA

    EPA Science Inventory

    An acid phosphatase activity from the aquatic plant Spirodela oligorhiza (duckweed) was isolated and partially characterized. S. oligorhiza was grown in a hydroponic growth medium, harvested, and ground up in liquid nitrogen. The ground plant material was added to a biological ...

  13. A single-molecule digital enzyme assay using alkaline phosphatase with a cumarin-based fluorogenic substrate.

    PubMed

    Obayashi, Yusuke; Iino, Ryota; Noji, Hiroyuki

    2015-08-01

    Digitalization of fluorogenic enzymatic assays through the use of femtoliter chamber array technology is an emerging approach to realizing highly quantitative bioassays with single-molecule sensitivity. However, only a few digital fluorogenic enzyme assays have been reported, and the variations of the digital enzyme assays are basically limited to fluorescein- and resorufin-based fluorogenic assays. This limitation hampers the realization of a multiplex digital enzyme assay such as a digital enzyme-linked immunosorbent assay (ELISA). In this study, after optimization of buffer conditions, we achieved a single-molecule digital enzyme alkaline phosphatase (ALP) assay with a cumarin-based fluorogenic substrate, 4-methylunbelliferyl phosphate (4-MUP). When ALP molecules were encapsulated in a 44-femtoliter chamber array at a low ratio of less than 1 molecule per chamber, each chamber showed a discrete fluorescence signal in an all-or-none manner, allowing the digital counting of the number of active enzyme molecules. The fraction of fluorescent chambers linearly decreased with the enzyme concentration, obeying the Poisson distribution as expected. We also demonstrated a dual-color digital enzyme assay with a ALP/4-MUP and β-galactosidase (β-gal)/resorufin-β-d-galactopyranoside combination. The activities of single ALP and β-gal molecules were clearly detected simultaneously. The method developed in this study will enable us to carry out a parallelized, multiplex digital ELISA. PMID:26101788

  14. A study on the effects of linker flexibility on acid phosphatase PhoC-GFP fusion protein using a novel linker library.

    PubMed

    Huang, Ziliang; Li, Gang; Zhang, Chong; Xing, Xin-Hui

    2016-02-01

    Fusion strategy has been widely used to construct artificial multifunction proteins. The flexibility or rigidity of linkers between two fused partners is an important parameter that affects the function of fusion proteins. By combining the flexible unit GGGGS (F) and rigid unit EAAAK (R), ten linkers consisting of five elementary units that cover the fully rigid RRRRR linker to the fully flexible FFFFF linker were used to construct acid phosphatase-green fluorescence protein fusion protein (PhoC-GFP). By varying the linker flexibility in PhoC-GFPs, the relative specific activity of phosphotransferase and phosphatase varied from ∼19.0% to 100% and ∼9.35% to 100%, respectively. There exists an optimal linker capable of achieving the highest phosphotransferase/phosphatase activity and GFP fluorescence intensity. We found that the highest activities were achieved neither with the rigid RRRRR linker nor with the flexible FFFFF linker, but with the FFFRR linker. Linker flexibility could adjust the activity ratio between phosphotransferase and phosphatase and varied between ∼30% to 100%. PhoC-GFP with FRRRR linker achieved the highest relative specific phosphotransferase activity/relative specific phosphatase activity (T/P) value. Our results show that applying a linker library with controllable flexibility to the fusion proteins will be an efficient way to adjust the function of fusion enzymes. PMID:26777244

  15. Which one of the two common reporter systems is more suitable for chemiluminescent enzyme immunoassay: alkaline phosphatase or horseradish peroxidase?

    PubMed

    Yu, Songcheng; Yu, Fei; Liu, Lie; Zhang, Hongquan; Zhang, Zhenzhong; Qu, Lingbo; Wu, Yongjun

    2016-05-01

    Alkaline phosphatase and horseradish peroxidase are the most commonly used reporter systems in chemiluminescent enzyme immunoassay (CLEIA). Which one, therefore, would be better when establishing a CLEIA method for a new target substance? There was no standard answer. In this study, both reporters were compared systematically including luminescence kinetics, conjugation methods, optimal condition and detection performance, using two common drugs, SD-methoxy-pyrimidine and enrofloxacin, as determination objects. The results revealed that there was much difference between the luminescence kinetics of the two systems. However, there was little difference between these systems when detecting the same substance, including in optimal conditions and determination of performance. Both reporters were suitable for establishing chemiluminescent enzyme immunoassays. Therefore, the choice of alkaline phosphatase or horseradish peroxidase as the reporter system in chemiluminescent enzyme immunoassays depends on availability. Conversely, these two report systems could be applied in simultaneous analysis of multicomponents due to their different optical behaviors and similar performances. But attention should be paid to conjugation method and coating buffer, which affected the luminescent intensity of different determination targets. PMID:26552992

  16. Atomistic details of the Catalytic Mechanism of Fe(III)-Zn(II) Purple Acid Phosphatase.

    PubMed

    Alberto, Marta E; Marino, Tiziana; Ramos, Maria J; Russo, Nino

    2010-08-10

    In the present work, we performed a theoretical investigation of the reaction mechanism of the Fe(III)-Zn(II) purple acid phosphatase from red kidney beans (rkbPAP), using the hybrid density functional theory and employing different exchange-correlation potentials. Characterization of the transition states and intermediates involved and the potential energy profiles for the reaction in different environments (gas phase, protein environment, and water) are reported. Our results show that the Fe(III)-Zn(II)PAP catalyzes the hydrolysis of methylphosphate via direct attack by a bridging metals-coordinated hydroxide leading to the cleavage of the ester bond. From our study emerges that the rate-limiting step of the reaction is the nucleophilic attack followed by the less energetically demanding release of the leaving group. Furthermore, we provide insights into some important points of contention concerning the precatalytic complex and the substrate coordination mode into the active site prior to hydrolysis. In particular: (i) Two models of enzyme-substrate with different orientations of the substrate into the active site were tested to evaluate the possible roles played by the conserved histidine residues (His 202 and His 296); (ii) Different protonation states of the substrate were taken into account in order to reproduce different pH values and to verify its influence on the catalytic efficiency and on the substrate binding mode; (iii) The metals role in each step of the catalytic mechanism was elucidated. We were also able to ascertain that the activation of the leaving group by the protonated His 296 is decisive to reach an optimal catalytic efficiency, while the bond scission without activation requires higher energy to occur. PMID:26613496

  17. Bacterial and plant HAD enzymes catalyse a missing phosphatase step in thiamin diphosphate biosynthesis.

    PubMed

    Hasnain, Ghulam; Roje, Sanja; Sa, Na; Zallot, Rémi; Ziemak, Michael J; de Crécy-Lagard, Valérie; Gregory, Jesse F; Hanson, Andrew D

    2016-01-15

    The penultimate step of thiamin diphosphate (ThDP) synthesis in plants and many bacteria is dephosphorylation of thiamin monophosphate (ThMP). Non-specific phosphatases have been thought to mediate this step and no genes encoding specific ThMP phosphatases (ThMPases) are known. Comparative genomic analysis uncovered bacterial haloacid dehalogenase (HAD) phosphatase family genes (from subfamilies IA and IB) that cluster on the chromosome with, or are fused to, thiamin synthesis genes and are thus candidates for the missing phosphatase (ThMPase). Three typical candidates (from Anaerotruncus colihominis, Dorea longicatena and Syntrophomonas wolfei) were shown to have efficient in vivo ThMPase activity by expressing them in an Escherichia coli strain engineered to require an active ThMPase for growth. In vitro assays confirmed that these candidates all preferred ThMP to any of 45 other phosphate ester substrates tested. An Arabidopsis thaliana ThMPase homologue (At4g29530) of unknown function whose expression pattern and compartmentation fit with a role in ThDP synthesis was shown to have in vivo ThMPase activity in E. coli and to prefer ThMP to any other substrate tested. However, insertional inactivation of the At4g29530 gene did not affect growth or the levels of thiamin or its phosphates, indicating that Arabidopsis has at least one other ThMPase gene. The Zea mays orthologue of At4g29530 (GRMZM2G035134) was also shown to have ThMPase activity. These data identify HAD genes specifying the elusive ThMPase activity, indicate that ThMPases are substrate-specific rather than general phosphatases and suggest that different evolutionary lineages have recruited ThMPases independently from different branches of the HAD family. PMID:26537753

  18. Enzyme immunoassay for carminic acid in foods.

    PubMed

    Yoshida, A; Takagaki, Y; Nishimune, T

    1995-01-01

    A competitive enzyme immunoassay (EIA) for carminic acid was investigated. Monoclonal anticarminic acid antibody was obtained from A/J mice immunized with carminic acid-human immunoglobulin G (IgG) conjugate. Carminic acid was extracted with distilled water from beverage, jelly, candy, pasta sauce, yogurt, or ice cream samples. Ham or fish paste samples were digested with pronase, then carminic acid was extracted from samples with sodium hydroxide solution. The extract was diluted more than 10-fold with 1% gelatin in borate buffer solution. Microtiter plates were coated with carminic acid-bovine serum albumin (BSA) conjugate or just BSA. Goat anti-mouse IgG(H+L)-peroxidase complex was used as a second antibody, and 3,3',5,5'-tetramethylbenzidine was used as a substrate for the peroxidase. The working range for quantitative analysis was 0.3-10 ng/mL, and the detection limit was 0.2 micrograms/g original sample. Recoveries of carminic acid by this assay were > 95% for milk beverage and jelly, and > 85% for yogurt and fish paste. Carminic acid was detected in 7 of 26 red-colored commercial food products and ranged from 3.5 to 356 micrograms/g. This EIA system also responded to the structural analogue of carminic acid, laccaic acid. PMID:7756895

  19. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants.

    PubMed

    Truong, Ngoc Thanh; Naseri, Joseph Itor; Vogel, Andreas; Rompel, Annette; Krebs, B

    2005-08-01

    Purple acid phosphatases are binuclear metalloenzymes, which catalyze the conversion of orthophosphoric monoesters to alcohol and orthophosphate. The enzyme from red kidney beans is characterized with a Fe(III)-Zn(II) active center. So far, the reaction mechanisms postulated for PAPs assume the essentiality of two amino acids, residing near the bimetallic active site. Based on the amino acid sequence of kidney bean PAP (kbPAP), residues H296 and H202 are believed to be essential for catalytic function of the enzyme. In the present study, the role of residue H202 has been elucidated. Mutants H202A and H202R were prepared by site-directed mutagenesis and expressed in baculovirus-infected insect cells. Based on kinetic studies, residue H202 is assumed to play a role in stabilizing the transition state, particularly in charge compensation, steric positioning of the substrate, and facilitating the release of the product by protonating the substrate leaving groups. The study confirmed the essentiality and elucidates the functional role of H202 in the catalytic mechanism of kbPAP. PMID:16009331

  20. The prostatic acid phosphatase (ACPP) gene is localized to human chromosome 3q21-q23

    SciTech Connect

    Li, S.S.L.; Sharief, F.S. )

    1993-09-01

    Human prostatic acid phosphatase (ACPP) has been used as a diagnostic marker for prostate cancer. It is synthesized under androgen regulation and secreted by the epithelial cells of the prostate gland. The authors have confirmed the previous assignment of the ACPP gene to chromosome 3 by probing a panel of 25 human-Chinese hamster somatic cell hybrids, and they have further localized the ACPP gene to chromosome 3q21-q23 by fluorescence in situ hybridization. 10 refs., 1 fig.

  1. Purification and properties of catalytic subunit of branched-chain -keto acid dehydrogenase phosphatase

    SciTech Connect

    Reed, L.J.; Damuni, Z.

    1987-05-01

    The catalytic subunit of the branched-chain -keto acid dehydrogenase (BCKDH) phosphatase has been purified over 50,000-fold from extracts of bovine kidney mitochondria. The apparently homogeneous protein consists of a single polypeptide chain with an apparent M/sub r/ of about 33,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. BCKDH phosphatase, with apparent M/sub r/ of 460,000 was dissociated to its catalytic subunit, with no apparent change in activity, at an early stage in the purification procedure by treatment with 6 M urea. The specific activity of the catalytic subunit was 1500-2500 units/mg. The catalytic subunit exhibited approx.10% maximal activity with TSP-labeled pyruvate dehydrogenase complex, but was inactive with phosphorylase a and with p-nitrophenyl phosphate. The catalytic subunit, like the M/sub r/ 460,000 species, was inhibited by nanomolar concentrations of BCKDH phosphatase inhibitor protein, was unaffected by protein phosphatase inhibitor 1 and inhibitor 2, and was inhibited by nucleoside tri- and diphosphates, but not by nucleoside monophosphates.

  2. The influence of age on intestinal dipeptidyl peptidase IV (DPP IV/CD26), disaccharidases, and alkaline phosphatase enzyme activity in C57BL/6 mice.

    PubMed

    Detel, Dijana; Baticic, Lara; Varljen, Jadranka

    2008-01-01

    The objective of this study was to determine and describe the age-related changes in intestinal brush border membrane enzyme activities that occur in C57Bl/6 mice. Specifically, jejunal, duodenal, and ileal dipeptidyl peptidase IV/CD26, disaccharidase (lactase, sucrase, and maltase), and alkaline phosphatase activities were determined. A significant correlation between analyzed intestinal brush border membrane enzyme activities and animal age was found. Our study revealed that intestinal dipeptidyl peptidase IV/CD26, lactase, sucrase, maltase, and alkaline phosphatase activities decline significantly with age (p < .05). Nevertheless, the horizontal (duodenum to ileum) enzyme activity patterns are not affected by age. PMID:18189167

  3. Impacts of simulated acid rain on soil enzyme activities in a latosol.

    PubMed

    Ling, Da-Jiong; Huang, Qian-Chun; Ouyang, Ying

    2010-11-01

    Acid rain pollution is a serious environmental problem in the world. This study investigated impacts of simulated acid rain (SAR) upon four types of soil enzymes, namely the catalase, acid phosphatase, urease, and amylase, in a latosol. Latosol is an acidic red soil and forms in the tropical rainforest biome. Laboratory experiments were performed by spraying the soil columns with the SAR at pH levels of 2.5, 3.0, 3.5., 4.0, 4.5, 5.0, and 7.0 (control) over a 20-day period. Mixed results were obtained in enzyme activities for different kinds of enzymes under the influences of the SAR. The catalase activities increased rapidly from day 0 to 5, then decreased slightly from day 5 to 15, and finally decreased sharply to the end of the experiments, whereas the acid phosphatase activities decreased rapidly from day 0 to 5, then increased slightly from day 5 to 15, and finally decreased dramatically to the end of the experiments. A decrease in urease activities was observed at all of the SAR pH levels for the entire experimental period, while an increase from day 0 to 5 and then a decrease from day 5 to 20 in amylase activities were observed at all of the SAR pH levels. In general, the catalase, acid phosphatase, and urease activities increased with the SAR pH levels. However, the maximum amylase activity was found at pH 4.0 and decreased as the SAR pH increased from 4.0 to 5.0 or decreased from 4.0 to 2.5. It is apparent that acid rain had adverse environmental impacts on soil enzyme activities in the latosol. Our study further revealed that impacts of the SAR upon soil enzyme activities were in the following order: amylase>catalase>acid phosphatase>urease. These findings provide useful information on better understanding and managing soil biological processes in the nature under the influence of acid rains. PMID:20701974

  4. Cloning, purification and crystallization of Bacillus anthracis class C acid phosphatase

    SciTech Connect

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-07-01

    Crystallization of a surface-localized acid phosphatase from Bacillus anthracis is reported. Flash annealing increased the high-resolution limit of usable data from 1.8 to 1.6 Å. Cloning, expression, purification and crystallization studies of a recombinant class C acid phosphatase from the Category A pathogen Bacillus anthracis are reported. Large diffraction-quality crystals were grown in the presence of HEPES and Jeffamine ED-2001 at pH 7.0. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.4, b = 90.1, c = 104.2 Å. The asymmetric unit is predicted to contain two protein molecules with a solvent content of 38%. Two native data sets were collected from the same crystal before and after flash-annealing. The first data set had a mosaicity of 1.6° and a high-resolution limit of 1.8 Å. After flash-annealing, the apparent mosaicity decreased to 0.9° and the high-resolution limit of usable data increased to 1.6 Å. This crystal form is currently being used to determine the structure of B. anthracis class C acid phosphatase with experimental phasing techniques.

  5. Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors.

    PubMed

    Fialho, Eliane; Nakamura, Angelica; Juliano, Luiz; Masuda, Hatisaburo; Silva-Neto, Mário A C

    2005-04-15

    Vitellin (VT) is a lipoglycophosphoprotein stored inside the eggs of every oviparous organism during oogenesis. In the blood-sucking bug Rhodnius prolixus, VT is deposited inside growing oocytes together with two acid hydrolases: acid phosphatase (AP) and cathepsin D (CD). Egg fertilization triggers AP activity and VT proteolysis in vivo [Insect Biochem. Mol. Biol. 2002 (32) 847]. Here, we show that CD is the main protease targeting VT proteolysis during egg development. CD activity in total egg homogenates is blocked by the classical aspartyl protease inhibitor, pepstatin A. Surprisingly, AP inhibitors such as NaF, Na+/K+ tartrate, and inorganic phosphate also block VT proteolysis, whereas this effect is not observed when tyrosine phosphatase inhibitors such as vanadate and phenylarsine oxide or an inhibitor of alkaline phosphatases such as levamisole are used in a VT proteolysis assay. NaF concentrations that block isolated AP activity do not affect the activity of partially purified CD. Therefore, a specific repressor of VT proteolysis must be dephosphorylated by AP in vivo. In conclusion, these results demonstrate for the first time that acid hydrolases act cooperatively to promote yolk degradation during egg development in arthropods. PMID:15797237

  6. The Role of DmCatD, a Cathepsin D-Like Peptidase, and Acid Phosphatase in the Process of Follicular Atresia in Dipetalogaster maxima (Hemiptera: Reduviidae), a Vector of Chagas' Disease

    PubMed Central

    Leyria, Jimena; Fruttero, Leonardo L.; Nazar, Magalí; Canavoso, Lilián E.

    2015-01-01

    In this work, we have investigated the involvement of DmCatD, a cathepsin D-like peptidase, and acid phosphatase in the process of follicular atresia of Dipetalogaster maxima, a hematophagous insect vector of Chagas’ disease. For the studies, fat bodies, ovaries and hemolymph were sampled from anautogenous females at representative days of the reproductive cycle: pre-vitellogenesis, vitellogenesis as well as early and late atresia. Real time PCR (qPCR) and western blot assays showed that DmCatD was expressed in fat bodies and ovaries at all reproductive stages, being the expression of its active form significantly higher at the atretic stages. In hemolymph samples, only the immunoreactive band compatible with pro-DmCatD was observed by western blot. Acid phosphatase activity in ovarian tissues significantly increased during follicular atresia in comparison to pre-vitellogenesis and vitellogenesis. A further enzyme characterization with inhibitors showed that the high levels of acid phosphatase activity in atretic ovaries corresponded mainly to a tyrosine phosphatase. Immunofluorescence assays demonstrated that DmCatD and tyrosine phosphatase were associated with yolk bodies in vitellogenic follicles, while in atretic stages they displayed a different cellular distribution. DmCatD and tyrosine phosphatase partially co-localized with vitellin. Moreover, their interaction was supported by FRET analysis. In vitro assays using homogenates of atretic ovaries as the enzyme source and enzyme inhibitors demonstrated that DmCatD, together with a tyrosine phosphatase, were necessary to promote the degradation of vitellin. Taken together, the results strongly suggested that both acid hydrolases play a central role in early vitellin proteolysis during the process of follicular atresia. PMID:26091289

  7. Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin.

    PubMed

    Miller, S S; Liu, J; Allan, D L; Menzhuber, C J; Fedorova, M; Vance, C P

    2001-10-01

    White lupin (Lupinus albus) grown under P deficiency displays a suite of highly coordinated adaptive responses. Included among these is secretion of copious amounts of acid phosphatase (APase). Although numerous reports document that plants secrete APases in response to P deficiency, little is known of the biochemical and molecular events involved in this process. Here we characterize the secreted APase protein, cDNA, and gene from white lupin. The secreted APase enzyme is a glycoprotein with broad substrate specificity. It is synthesized as a preprotein with a deduced M(r) of 52,000 containing a 31-amino acid presequence. Analysis of the presequence predicts that the protein is targeted to outside the cell. The processed protein has a predicted M(r) of 49,000 but migrates as a protein with M(r) of 70,000 on sodium dodecyl sulfate gels. This is likely due to glycosylation. Enhanced expression is fairly specific to proteoid roots of P-stressed plants and involves enhanced synthesis of both enzyme protein and mRNA. Secreted APase appears to be encoded by a single gene containing seven exons interrupted by six introns. The 5'-upstream putative promoter of the white lupin-secreted APase contains a 50-base pair region having 72% identity to an Arabidopsis APase promoter that is responsive to P deficiency. The white lupin-secreted APase promoter and targeting sequence may be useful tools for genetically engineering important proteins from plant roots. PMID:11598233

  8. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Reilly, Thomas J; Tanner, John J

    2015-11-01

    Histidine acid phosphatases (HAPs) utilize a nucleophilic histidine residue to catalyze the transfer of a phosphoryl group from phosphomonoesters to water. HAPs function as protein phosphatases and pain suppressors in mammals, are essential for Giardia lamblia excystation, and contribute to virulence of the category A pathogen Francisella tularensis. Herein we report the first crystal structure and steady-state kinetics measurements of the HAP from Legionella pneumophila (LpHAP), also known as Legionella major acid phosphatase. The structure of LpHAP complexed with the inhibitor l(+)-tartrate was determined at 2.0 Å resolution. Kinetics assays show that l(+)-tartrate is a 50-fold more potent inhibitor of LpHAP than of other HAPs. Electrostatic potential calculations provide insight into the basis for the enhanced tartrate potency: the tartrate pocket of LpHAP is more positive than other HAPs because of the absence of an ion pair partner for the second Arg of the conserved RHGXRXP HAP signature sequence. The structure also reveals that LpHAP has an atypically expansive active site entrance and lacks the nucleotide substrate base clamp found in other HAPs. These features imply that nucleoside monophosphates may not be preferred substrates. Kinetics measurements confirm that AMP is a relatively inefficient in vitro substrate of LpHAP. PMID:26380880

  9. Biochemical Characterization and Subcellular Localization of the Red Kidney Bean Purple Acid Phosphatase.

    PubMed Central

    Cashikar, A. G.; Kumaresan, R.; Rao, N. M.

    1997-01-01

    Phosphatases are known to play a crucial role in phosphate turnover in plants. However, the exact role of acid phosphatases in plants has been elusive because of insufficient knowledge of their in vivo substrate and subcellular localization. We investigated the biochemical properties of a purple acid phosphatase isolated from red kidney bean (Phaseolus vulgaris) (KBPAP) with respect to its substrate and inhibitor profiles. The kinetic parameters were estimated for five substrates. We used 31P nuclear magnetic resonance to investigate the in vivo substrate of KBPAP. Chemical and enzymological estimation of polyphosphates and ATP, respectively, indicated the absence of polyphosphates and the presence of ATP in trace amounts in the seed extracts. Immunolocalization using antibodies raised against KBPAP was unsuccessful because of the non-specificity of the antiserum toward glycoproteins. Using histoenzymological methods with ATP as a substrate, we could localize KBPAP exclusively in the cell walls of the peripheral two to three rows of cells in the cotyledons. KBPAP activity was not detected in the embryo. In vitro experiments indicated that pectin, a major component of the cell wall, significantly altered the kinetic properties of KBPAP. The substrate profile and localization suggest that KBPAP may have a role in mobilizing organic phosphates in the soil during germination. PMID:12223752

  10. Differential therapeutic responses of thiol compounds in the reversal of methylmercury inhibited acid phosphatase and cathepsin E in the central nervous system of rat

    SciTech Connect

    Vinay, S.D.; Raghu, K.G.; Sood, P.P.

    1992-07-01

    Though considerable headway has been made in elucidating the effect of methylmercury on the biochemical machinery of nervous system, the studies on the alterations in the levels of acid hydrolases received less attention. Being a lysosomal marker, acid phosphatase is one of the most extensively studies enzymes amongst the acid hydrolases. Its significance in various key physiological as well as pathological processes is well preserved in literature. Cathepsin E, an aspartic proteinase, has been demonstrated in a number of cells and tissues within the human body, rat, E. coli where its role is implicated in a number of important metabolic processes. In the present paper, we report the results of the differential levels of inhibition of these enzymes with methylmercury as well as their differential recoveries with two thiols (N-acetyl-DL-homocysteine thiolactone and glutathione) in various neuroanatomical areas (olfactory bulbs, cerebral hemispheres, cerebellum, medulla oblongata and spinal cord) of rat. 22 refs., 5 figs.

  11. Potential Role for Purple Acid Phosphatase in the Dephosphorylation of Wall Proteins in Tobacco Cells1[W

    PubMed Central

    Kaida, Rumi; Serada, Satoshi; Norioka, Naoko; Norioka, Shigemi; Neumetzler, Lutz; Pauly, Markus; Sampedro, Javier; Zarra, Ignacio; Hayashi, Takahisa; Kaneko, Takako S.

    2010-01-01

    It is not yet known whether dephosphorylation of proteins catalyzed by phosphatases occurs in the apoplastic space. In this study, we found that tobacco (Nicotiana tabacum) purple acid phosphatase could dephosphorylate the phosphoryl residues of three apoplastic proteins, two of which were identified as α-xylosidase and β-glucosidase. The dephosphorylation and phosphorylation of recombinant α-xylosidase resulted in a decrease and an increase in its activity, respectively, when xyloglucan heptasaccharide was used as a substrate. Attempted overexpression of the tobacco purple acid phosphatase NtPAP12 in tobacco cells not only decreased the activity levels of the glycosidases but also increased levels of xyloglucan oligosaccharides and cello-oligosaccharides in the apoplast during the exponential phase. We suggest that purple acid phosphatase controls the activity of α-xylosidase and β-glucosidase, which are responsible for the degradation of xyloglucan oligosaccharides and cello-oligosaccharides in the cell walls. PMID:20357138

  12. Hydroxyindole Carboxylic Acid-Based Inhibitors for Receptor-Type Protein Tyrosine Protein Phosphatase Beta

    PubMed Central

    Zeng, Li-Fan; Zhang, Ruo-Yu; Bai, Yunpeng; Wu, Li; Gunawan, Andrea M.

    2014-01-01

    Abstract Aims: Protein tyrosine phosphatases (PTPs) play an important role in regulating a wide range of cellular processes. Understanding the role of PTPs within these processes has been hampered by a lack of potent and selective PTP inhibitors. Generating potent and selective probes for PTPs remains a significant challenge because of the highly conserved and positively charged PTP active site that also harbors a redox-sensitive Cys residue. Results: We describe a facile method that uses an appropriate hydroxyindole carboxylic acid to anchor the inhibitor to the PTP active site and relies on the secondary binding elements introduced through an amide-focused library to enhance binding affinity for the target PTP and to impart selectivity against off-target phosphatases. Here, we disclose a novel series of hydroxyindole carboxylic acid-based inhibitors for receptor-type tyrosine protein phosphatase beta (RPTPβ), a potential target that is implicated in blood vessel development. The representative RPTPβ inhibitor 8b-1 (L87B44) has an IC50 of 0.38 μM and at least 14-fold selectivity for RPTPβ over a large panel of PTPs. Moreover, 8b-1 also exhibits excellent cellular activity and augments growth factor signaling in HEK293, MDA-MB-468, and human umbilical vein endothelial cells. Innovation: The bicyclic salicylic acid pharmacophore-based focused library approach may provide a potential solution to overcome the bioavailability issue that has plagued the PTP drug discovery field for many years. Conclusion: A novel method is described for the development of bioavailable PTP inhibitors that utilizes bicyclic salicylic acid to anchor the inhibitors to the active site and peripheral site interactions to enhance binding affinity and selectivity. Antioxid. Redox Signal. 20, 2130–2140. PMID:24180557

  13. Stabilization of Different Types of Transition States in a Single Enzyme Active Site: QM/MM Analysis of Enzymes in the Alkaline Phosphatase Superfamily

    PubMed Central

    Hou, Guanhua; Cui, Qiang

    2013-01-01

    The first step for the hydrolysis of a phosphate monoester (pNPP2−) in enzymes of the alkaline phosphatase (AP) superfamily, R166S AP and wild type NPP, is studied using QM/MM simulations based on an approximate density functional theory (SCC-DFTBPR) and a recently introduced QM/MM interaction Hamiltonian. The calculations suggest that similar loose transition states are involved in both enzymes, despite the fact that phosphate monoesters are the cognate substrates for AP but promiscuous substrates for NPP. The computed loose transition states are clearly different from the more synchronous ones previously calculated for diester reactions in the same AP enzymes. Therefore, our results explicitly support the proposal that AP enzymes are able to recognize and stabilize different types of transition states in a single active site. Analysis of the structural features of computed transition states indicates that the plastic nature of the bi-metallic site plays a minor role in accommodating multiple types of transition states, and that the high degree of solvent accessibility of the AP active site also contributes to its ability to stabilize diverse transition state structures without the need of causing large structural distortions of the bimetallic motif. The binding mode of the leaving group in the transition state highlights that vanadate may not always be an ideal transition state analog for loose phosphoryl transfer transition states. PMID:23786365

  14. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    ERIC Educational Resources Information Center

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  15. Cytochemical localisation of lysosomal enzymes and acidic mucopolysaccharides in the salivary glands of Aplysia depilans (Opisthobranchia).

    PubMed

    Lobo-da-Cunha, A

    2002-04-01

    Three types of secretory cells were reported in the salivary glands of Aplysia depilans: granular cells, vacuolated cells and mucocytes. To improve the characterisation of these cells, cytochemical methods for the detection of lysosomal enzymes and acidic mucopolysaccharides were applied. In granular cells, acid phosphatase and arylsulphatase were present in small lysosomes and in some secretory granules. The secretory granules could have received these enzymes after fusion with the small lysosomes that were frequently found very close to them. These cells were not stained with colloidal iron because they do not contain acidic mucopolysaccharides. In vacuolated cells, acid phosphatase and arylsulphatase were detected in lysosomes but not in the secretory vacuoles. Colloidal iron staining revealed the presence of acidic mucopolysaccharides in the vacuoles and in the Golgi apparatus of these cells. In mucocytes, lysosomes were very rare, but the secretion of these cells was very rich in acidic mucopolysaccharides. The filamentous network within the secretory vesicles was completely covered with iron particles, but practically no particles were observed over the granular masses attached to the membrane of the vesicles. Iron particles were also found in the trans-face cisternae of the U-shaped Golgi stacks, but were not seen in the cis-face cisternae or in the rough endoplasmic reticulum. PMID:12117284

  16. A study of acid phosphatase locus 1 in women with high fat content and normal body mass index.

    PubMed

    De Lorenzo, Antonino; Di Renzo, Laura; Puja, Alberto; Saccucci, Patrizia; Gloria-Bottini, Fulvia; Bottini, Egidio

    2009-03-01

    De Lorenzo and coworkers have recently described a class of women with normal body mass index (BMI) and high fat content (normal weight obese syndrome [NWO]). This observation prompted us to study the possible role of acid phosphatase locus 1 (ACP(1)) in the differentiation of this special class of obese subjects. Acid phosphatase locus 1 is a polymorphic gene associated with severe obesity and with total cholesterol and triglycerides levels. The enzyme is composed by 2 isoforms--F and S--that have different biochemical properties and probably different functions. The sample study was composed of 130 white women from the population of Rome. Total fat mass and percentage of fat mass were measured by dual-energy x-ray absorptiometry. Thirty-six women had a BMI less than 25 and percentage of fat mass greater than 30 (high fat, normal BMI [HFHB]), and 94 women showed a BMI greater than 25 and a percentage of fat mass greater than 30 (high fat, high BMI [HFHB]). In the whole sample, the proportion of low-activity ACP(1) genotypes (*A/*A and *B/*A) was higher than in controls. However, whereas HFNB showed a very high frequency of ACP(1) *A/*A genotype, high-fat, high-BMI women showed an increase of *B/*A genotype. These 2 genotypes differ in the concentration of F isoform and the F/S ratio, which are lower in ACP(1)*A/*A genotype than in ACP(1)*B/*A genotype. The genetic differentiation of the class of women with normal BMI and high fat content from the class showing a concordant level of the 2 parameters supports the hypothesis that HFNB class represents a special cluster of obese subjects not revealed by BMI evaluation. Because ACP(1) is present in adipocytes, the present observation suggests that F isoform may have a specific role in the regulation of quantity of adipose tissue. PMID:19217450

  17. Acid phosphatase complex from the freshwater snail Viviparus viviparus L. under standard conditions and intoxication by cadmium ions.

    PubMed

    Tsvetkov, I L; Popov, A P; Konichev, A S

    2003-12-01

    Acid phosphatases differing in both subcellular localization and substrate specificity were isolated for the first time from the liver of the freshwater snail Viviparus viviparus L. by preparative isoelectrofocusing. One of five characterized phosphatases is highly specific to ADP and the others can hydrolyze (at variable rate) a series of natural substrates. A scheme is proposed for the involvement of the studied phosphatases in carbohydrate metabolism. We have also studied some peculiarities of the effect of Cd2+ in vitro and in vivo on the activities of individual components of the acid phosphatase complex and corresponding changes in metabolism of the freshwater snail as a new test-object allowing the estimation of toxicity in water. PMID:14756629

  18. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1.

    PubMed

    Harris, Thurl E; Huffman, Todd A; Chi, An; Shabanowitz, Jeffrey; Hunt, Donald F; Kumar, Anil; Lawrence, John C

    2007-01-01

    Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg(2+)-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld(2j) (Gly(84) --> Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser(106). In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity. PMID:17105729

  19. Structure of thermotoga maritima stationary phase survival protein SurE : a novel acid phosphatase.

    SciTech Connect

    Zhang, R.-G; Skarina, T.; Katz, J. E.; Khachatryan, A; Vyas, S.; Arrowsmith, C. H.; Clarke, S.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Biosciences Division; Univ. of Toronto; Univ. of California; Clinical Genomics Centre /Proteomics, Univ. Health Network

    2001-11-01

    Background: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase {sigma} subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. Results: The structure of SurE from Thermotoga maritima was determined at 2.0 Angstroms. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. Conclusions: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.

  20. Acid phosphatase activity and intracellular collagen degradation by fibroblasts in vitro.

    PubMed

    Yajima, T

    1986-01-01

    Human gingival fibroblasts were cultured with collagen fibrils. The precise process of collagen phagocytosis and the relationship between acid phosphatase activity and intracellular degradation of collagen were investigated by cytochemical methods at the ultrastructural level. The collagen fibrils were first engulfed at one end by cellular processes, or the cell membrane wrapped itself around the middle of the fibrils. Collagen phagocytosis induced acid phosphatase activity in the fibroblast Golgi-endoplasmic reticulum-lysosome system. By application of the tracer lanthanum, deposits were observed in the intercellular spaces and along the fibrils being phagocytosed. At this stage, primary lysosomes were seen in close proximity to the collagen being engulfed, but no signs of fusion were observed. When the fibrils had been interiorized in whole or in part, they ultimately became enclosed within phagosomes, and no tracer was observed along the interiorized portion of the fibrils. Primary lysosomes then fused with these collagen-containing phagosomes to form phagolysosomes. Collagen degradation occurred within these bodies even though the end of a fibril might have protruded outside of the cell. These results suggest that selective and controlled phagocytosis of collagen and intracellular digestion of it may play a central role in the physiological remodeling and metabolic breakdown of the collagen of connective tissues. PMID:3742560

  1. Ultrastructure and cytochemical localization of acid phosphatase of laticifers in Euphorbia kansui Liou.

    PubMed

    Cai, Xia; Li, Wei; Yin, Lingfang

    2009-12-01

    Acid phosphatase (AcPase) activities are involved in the degeneration process of cytoplasm in plants. In this study, acid phosphatase was detected by the method of lead nitrate and cytochemical electron microscopy during the development of nonarticulated laticifers in Euphorbia kansui Liou. The most important feature in the differentiation of the laticifers in E. kansui is that the development of small vacuoles arises from endoplasmic reticulum (ER). The mature laticifers possess a thin layer of electron-dense peripheral cytoplasm in which the organelle cannot be distinguished and a large central vacuole filled with latex particles. AcPase cytochemistry studies show AcPase reaction products congregated into heaps are distributed along the tonoplast of central vacuole and around the mitochondria and plastids. Some small vacuoles which develop at later developmental stages of laticifers contain AcPase reaction products. As a result, the central vacuole is formed by cellular autophagy and fusion of small vacuoles which apparently arises from ER. PMID:19649693

  2. Mannose 6 Dephosphorylation of Lysosomal Proteins Mediated by Acid Phosphatases Acp2 and Acp5

    PubMed Central

    Makrypidi, Georgia; Damme, Markus; Müller-Loennies, Sven; Trusch, Maria; Schmidt, Bernhard; Schlüter, Hartmut; Heeren, Joerg; Lübke, Torben; Saftig, Paul

    2012-01-01

    Mannose 6-phosphate (Man6P) residues represent a recognition signal required for efficient receptor-dependent transport of soluble lysosomal proteins to lysosomes. Upon arrival, the proteins are rapidly dephosphorylated. We used mice deficient for the lysosomal acid phosphatase Acp2 or Acp5 or lacking both phosphatases (Acp2/Acp5−/−) to examine their role in dephosphorylation of Man6P-containing proteins. Two-dimensional (2D) Man6P immunoblot analyses of tyloxapol-purified lysosomal fractions revealed an important role of Acp5 acting in concert with Acp2 for complete dephosphorylation of lysosomal proteins. The most abundant lysosomal substrates of Acp2 and Acp5 were identified by Man6P affinity chromatography and mass spectrometry. Depending on the presence of Acp2 or Acp5, the isoelectric point of the lysosomal cholesterol-binding protein Npc2 ranged between 7.0 and 5.4 and may thus regulate its interaction with negatively charged lysosomal membranes at acidic pH. Correspondingly, unesterified cholesterol was found to accumulate in lysosomes of cultured hepatocytes of Acp2/Acp5−/− mice. The data demonstrate that dephosphorylation of Man6P-containing lysosomal proteins requires the concerted action of Acp2 and Acp5 and is needed for hydrolysis and removal of degradation products. PMID:22158965

  3. Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production

    PubMed Central

    2013-01-01

    Background Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans. Results Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA::GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathway induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810). CreA::GFP localisation and the restoration of endocellulase activity via the introduction of the ∆creA mutation, was assessed in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose. Conclusions Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and

  4. The Protein Phosphatases of Synechocystis sp. Strain PCC 6803: Open Reading Frames sll1033 and sll1387 Encode Enzymes That Exhibit both Protein-Serine and Protein-Tyrosine Phosphatase Activity In Vitro.

    SciTech Connect

    Li, Ruiliang; Potters, M B.; Shi, Liang; Kennelly, Peter J.

    2005-09-01

    The open reading frames (ORFs) encoding two potential protein-serine/threonine phosphatases from the cyanobacterium Synechocystis sp. strain PCC 6803 were cloned and their protein products expressed in Escherichia coli cells. The product of ORF sll1033, SynPPM3, is a homologue of the PPM family of protein-serine/threonine phosphatases found in all eukaryotes as well as many members of the Bacteria. Surprisingly, the recombinant protein phosphatase dephosphorylated phosphotyrosine- as well as phosphoserine-containing proteins in vitro. While kinetic analyses indicate that the enzyme was more efficient at dephosphorylating the latter, replacement of Asp(608) by asparagine enhanced activity toward a phosphotyrosine-containing protein fourfold. The product of ORF sll1387, SynPPP1, is the sole homolog of the PPP family of protein phosphatases encoded by the genome of Synechocystis sp. strain PCC 6803. Like many other bacterial PPPs, the enzyme dephosphorylated phosphoserine- and phosphotyrosine-containing proteins with comparable efficiencies. However, while previously described PPPs from prokaryotic organisms required the addition of exogenous metal ion cofactors, such as Mg(2+) or Mn(2+), for activity, recombinantly produced SynPPP1 displayed near-maximal activity in the absence of added metals. Inductively coupled plasma mass spectrometry indicated that recombinant SynPPP1 contained significant quantities, 0.32 to 0.44 mol/mole total, of Mg and Mn. In this respect, the cyanobacterial enzyme resembled eukaryotic members of the PPP family, which are metalloproteins. mRNA encoding SynPPP1 or SynPPM3 could be detected in cells grown under many, but not all, environmental conditions.

  5. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs).

    PubMed

    Bernhardt, Paul V; Bosch, Simone; Comba, Peter; Gahan, Lawrence R; Hanson, Graeme R; Mereacre, Valeriu; Noble, Christopher J; Powell, Annie K; Schenk, Gerhard; Wadepohl, Hubert

    2015-08-01

    The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe(III)2 and Fe(III)Fe(II)), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mössbauer spectroscopy, and the solution structural and electronic properties, investigated by mass spectrometry, electronic, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and Mössbauer spectroscopies and electrochemistry, are discussed in detail in order to understand the structures and relative stabilities in solution. In particular, with one of the ligands, a heterovalent Fe(III)Fe(II) species has been produced by chemical oxidation of the Fe(II)2 precursor. The phosphatase reactivities of the complexes, in particular, also of the heterovalent complex, are reported. These studies include pH-dependent as well as substrate concentration dependent studies, leading to pH profiles, catalytic efficiencies and turnover numbers, and indicate that the heterovalent diiron complex discussed here is an accurate PAP model system. PMID:26196255

  6. Immobilization of BSA, enzymes and cells of Bacillus stearothermophilus onto cellulose polygalacturonic acid and starch based graft copolymers containing maleic arhydride

    SciTech Connect

    Beddows, C.G.; Gil, M.H.; Guthrie, J.T.

    1986-01-01

    Poly(maleic anhydride styrene) graft copolymers of cellulose, pectin polygalacturonic acid salt, calcium polygalacturonate, and starch were prepared and used to immobilize proteins. The cellulose grafts coupled quite appreciable quantities of acid phosphatase, glucose oxidase, and trypsin. However, the general retention of activity was somewhat disappointing. Further investigation with acid phosphatase showed that the amount of enzyme immobilized increased as the amount of anhydride in the graft copolymer increased but no such relationship existed for the enzymic activity. The cellulose graft copolymers were hydrolyzed and it appeared that the carboxyl group aided adsorption of the enzyme. Attempts to couple acid phosphatase using CMC through the free carboxyl groups, created by hydrolysis, gave only a small increase in the extent of protein coupling. However, the unhydrolyzed system gave a useful degree of immobilization of cells of Bacillus stearothermophilus, as did a poly(maleic anhydride/styrene)-cocellulose system. Attempts to improve the activity by using grafts based on other polysaccharide supports met with mixed success. Pectin products were soluble. Polygalacturonic acid products were partially soluble and extremely high levels of enzymic activity were obtained. This was probably due in part to the hydrophilic nature of the system, which also encouraged absorption of the enzyme. Attempts were made to reduce the solubility by using the calcium pectinate salt. Immobilization of acid phosphatase and trypsin resulted in increased protein coupling but relatively poor activities were attained. Calcium polygalacturonate was used to prepare an insoluble graft copolymeric system containing acrylonitrile-comaleic anhydride. The resulting gels gave excellent coupling with acid phosphatase which had a very good retention of activity.

  7. [Secretory acid phosphatase of Mycobacterium tuberculosis inhibits the autophagy of murine macrophages].

    PubMed

    Hu, Dong; Wang, Wan; Zhao, Runpeng; Xu, Xuewei; Xing, Yingru; Xu, Congjing; Zhang, Rongbo; Wu, Jing

    2016-06-01

    Objective To investigate the effect of secretory acid phosphatase as a virulence factor of Mycobacterium tuberculosis (SapM) on the autophagy of murine macrophages. Methods GFP-LC3-Raw264.7 cells were treated with SapM, wortmannin, or starvation. Then the formation of autophagosomes was observed under a fluorescence microscope. The level of microtubule-associated protein 1 light chain 3 (LC3) II was detected using Western blotting. After chloroquine was added in the SapM-treated cells, LC3II level was again tested by Western blotting. Results Both starvation and SapM increased the number of GFP-LC3 puncta and the level of LC3 II. There was no further increase of LC3 II level in SapM-treated cells after chloroquine addition. Conclusion SapM can block autophagosome-lysosome fusion and inhibit autophagy of murine macrophages. PMID:27371835

  8. Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase 1 [corrected].

    PubMed

    Takemiya, Atsushi; Shimazaki, Ken-ichiro

    2010-08-01

    Stomata open in response to blue light under a background of red light. The plant hormone abscisic acid (ABA) inhibits blue light-dependent stomatal opening, an effect essential for promoting stomatal closure in the daytime to prevent water loss. However, the mechanisms and molecular targets of this inhibition in the blue light signaling pathway remain unknown. Here, we report that phosphatidic acid (PA), a phospholipid second messenger produced by ABA in guard cells, inhibits protein phosphatase 1 (PP1), a positive regulator of blue light signaling, and PA plays a role in stimulating stomatal closure in Vicia faba. Biochemical analysis revealed that PA directly inhibited the phosphatase activity of the catalytic subunit of V. faba PP1 (PP1c) in vitro. PA inhibited blue light-dependent stomatal opening but did not affect red light- or fusicoccin-induced stomatal opening. PA also inhibited blue light-dependent H(+) pumping and phosphorylation of the plasma membrane H(+)-ATPase. However, PA did not inhibit the autophosphorylation of phototropins, blue light receptors for stomatal opening. Furthermore, 1-butanol, a selective inhibitor of phospholipase D, which produces PA via hydrolysis of phospholipids, diminished the ABA-induced inhibition of blue light-dependent stomatal opening and H(+) pumping. We also show that hydrogen peroxide and nitric oxide, which are intermediates in ABA signaling, inhibited the blue light responses of stomata and that 1-butanol diminished these inhibitions. From these results, we conclude that PA inhibits blue light signaling in guard cells by PP1c inhibition, accelerating stomatal closure, and that PP1 is a cross talk point between blue light and ABA signaling pathways in guard cells. PMID:20498335

  9. Homogeneous time-resolved fluorescence assays for the detection of activity and inhibition of phosphatase enzymes employing phosphorescently labeled peptide substrates.

    PubMed

    O'Shea, Desmond J; O'Riordan, Tomás C; O'Sullivan, Paul J; Papkovsky, Dmitri B

    2007-02-01

    A rapid, homogenous, antibody-free assay for phosphatase enzymes was developed using the phosphorescent platinum (II)-coproporphyrin label (PtCP) and time-resolved fluorescent detection. An internally quenched decameric peptide substrate containing a phospho-tyrosine residue, labeled with PtCP-maleimide and dabcyl-NHS at its termini was designed. Phosphatase catalysed dephosphorylation of the substrate resulted in a minor increase in PtCP signal, while subsequent cleavage by chymotrypsin at the dephosphorylated Tyr-Leu site provided a 3.5 fold enhancement of PtCP phosphorescence. This phosphorescence phosphatase enhancement assay was optimized to a 96 well plate format with detection on a commercial TR-F plate reader, and applied to measure the activity and inhibition of alkaline phosphatase, recombinant human CD45, and tyrosine phosphatases in Jurkat cell lysates within 40 min. Parameters of these enzymatic reactions such as Km's, limits of detection (L.O.D's) and IC50 values for the non-specific inhibitor sodium orthovanadate were also determined. PMID:17386566

  10. Pyridoxamine-5-phosphate enzyme-linked immune mass spectrometric assay substrate for linear absolute quantification of alkaline phosphatase to the yoctomole range applied to prostate specific antigen.

    PubMed

    Florentinus-Mefailoski, Angelique; Marshall, John G

    2014-11-01

    There is a need to measure proteins that are present in concentrations below the detection limits of existing colorimetric approaches with enzyme-linked immunoabsorbent assays (ELISA). The powerful enzyme alkaline phosphatase conjugated to the highly specific bacterial protein streptavidin binds to biotinylated macromolecules like proteins, antibodies, or other ligands and receptors with a high affinity. The binding of the biotinylated detection antibody, with resulting amplification of the signal by the catalytic production of reporter molecules, is key to the sensitivity of ELISA. The specificity and amplification of the signal by the enzyme alkaline phosphatase in ELISA together with the sensitivity of liquid chromatography electrospray ionization and mass spectrometry (LC-ESI-MS) to detect femtomole to picomole amounts of reporter molecules results in an ultrasensitive enzyme-linked immune mass spectrometric assay (ELIMSA). The novel ELIMSA substrate pyridoxamine-5-phosphate (PA5P) is cleaved by the enzyme alkaline phosphatase to yield the basic and hydrophilic product pyridoxamine (PA) that elutes rapidly with symmetrical peaks and a flat baseline. Pyridoxamine (PA) and (13)C PA were both observed to show a linear relationship between log ion intensity and quantity from picomole to femtomole amounts by liquid chromatography-electrospray ionization and mass spectrometry. Four independent methods, (i) internal (13)C isotope PA dilution curves, (ii) internal (13)C isotope one-point calibration, (iii) external PA standard curve, and (iv) external (13)C PA standard curve, all agreed within 1 digit in the same order of magnitude on the linear quantification of PA. Hence, a mass spectrometer can be used to robustly detect 526 ymol of the alkaline phosphatase streptavidin probe and accurately quantify zeptomole amounts of PSA against log linear absolute standard by micro electrospray on a simple ion trap. PMID:25259405

  11. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells.

    PubMed Central

    Kuo, A; Cappelluti, S; Cervantes-Cervantes, M; Rodriguez, M; Bush, D S

    1996-01-01

    The cereal aleurone functions during germination by secreting hydrolases, mainly alpha-amylase, into the starchy endosperm. Multiple signal transduction pathways exist in cereal aleurone cells that enable them to modulate hydrolase production in response to both hormonal and environmental stimuli. Gibberellic acid (GA) promotes hydrolase production, whereas abscisic acid (ABA), hypoxia, and osmotic stress reduce amylase production. In an effort to identify the components of transduction pathways in aleurone cells, we have investigated the effect of okadaic acid (OA), a protein phosphatase inhibitor, on stimulus-response coupling for GA, ABA, and hypoxia. We found that OA (100 nM) completely inhibited all the GA responses that we measured, from rapid changes in cytosolic Ca2+ through changes in gene expression and accelerated cell death. OA (100 nM) partially inhibited ABA responses, as measured by changes in the level of PHAV1, a cDNA for an ABA-induced mRNA in barley. In contrast, OA had no effect on the response to hypoxia, as measured by changes in cytosolic Ca2+ and by changes in enzyme activity and RNA levels of alcohol dehydrogenase. Our data indicate that OA-sensitive protein phosphatases act early in the transduction pathway of GA but are not involved in the response to hypoxia. These data provide a basis for a model of multiple transduction pathways in which the level of cytosolic Ca2+ is a key point of convergence controlling changes in stimulus-response coupling. PMID:8742711

  12. Effect of gingival application of melatonin on alkaline and acid phosphatase, osteopontin and osteocalcin in patients with diabetes and periodontal disease

    PubMed Central

    López-Valverde, Antonio; Gómez-de-Diego, Rafel; Arias-Santiago, Salvador; de Vicente-Jiménez, Joaquín

    2013-01-01

    Objectives: To assess the effect of topical application of melatonin to the gingiva on salivary fluid concentrations of acid phosphatase, alkaline phosphatase, osteopontin, and osteocalcin. Study Design: Cross-sectional study of 30 patients with diabetes and periodontal disease and 30 healthy subjects. Diabetic patients were treated with topical application of melatonin (1% orabase cream formula) once daily for 20 days and controls with a placebo formulation. Results: Before treatment with melatonin, diabetic patients showed significantly higher mean salivary levels of alkaline and acid phosphatase, osteopontin and osteocalcin than healthy subjects (P < 0.01). After treatment with melatonin, there was a statistically significant decrease of the gingival index (15.84± 10.3 vs 5.6 ± 5.1) and pocket depth (28.3 ± 19.5 vs 11.9 ± 9.0) (P < 0.001). Also, use of melatonin was associated with a significant reduction of the four biomarkers. Changes of salivary acid phosphatase and osteopontin correlated significantly with changes in the gingival index, whereas changes of alkaline phosphatase and osteopontin correlated significantly with changes in the pocket depth. Conclusions: Treatment with topical melatonin was associated with an improvement in the gingival index and pocket depth, a reduction in salivary concentrations of acid phosphatase, alkaline phosphatase, osteopontin and osteocalcin. Key words:Melatonin, diabetes mellitus, alkaline phosphatase, acid phosphatase, osteopontin, osteocalcin. PMID:23524437

  13. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening.

    PubMed

    Xu, Yongqian; Li, Benhao; Xiao, Liangliang; Ouyang, Jia; Sun, Shiguo; Pang, Yi

    2014-08-14

    A dual-channel including a colorimetric and fluorescent probe based on the aggregation-caused quenching (ACQ) and enzymolysis approach has been presented to screen acid phosphatase (ACP) and its inhibitor. Moreover, the ACP activity was determined by real time assay. PMID:24957006

  14. Immobilization of enzymes on alginic acid-polyacrylamide copolymers

    SciTech Connect

    Kumaraswamy, M.D.K.; Panduranga R.K.; Thomas J.K.; Santappa, M.

    1981-08-01

    In this report, the authors present initial results and limitations of a polymeric system for the immobilization of enzymes. Enzymes attached to insoluble polymers of natural and synthetic origin are gaining importance in many industrial and biomedical applications. Graft copolymers are used as enzyme supports and in this study a novel polymeric system of alginic acid-polyacrylamide graft copolymer is described which was used for immobilizing enzymes. (Refs. 4).

  15. Phosphorylation of Lipin 1 and Charge on the Phosphatidic Acid Head Group Control Its Phosphatidic Acid Phosphatase Activity and Membrane Association*

    PubMed Central

    Eaton, James M.; Mullins, Garrett R.; Brindley, David N.; Harris, Thurl E.

    2013-01-01

    The lipin gene family encodes a class of Mg2+-dependent phosphatidic acid phosphatases involved in the de novo synthesis of phospholipids and triglycerides. Unlike other enzymes in the Kennedy pathway, lipins are not integral membrane proteins, and they need to translocate from the cytosol to intracellular membranes to participate in glycerolipid synthesis. The movement of lipin 1 within the cell is closely associated with its phosphorylation status. Although cellular analyses have demonstrated that highly phosphorylated lipin 1 is enriched in the cytosol and dephosphorylated lipin 1 is found on membranes, the effects of phosphorylation on lipin 1 activity and binding to membranes has not been recapitulated in vitro. Herein we describe a new biochemical assay for lipin 1 using mixtures of phosphatidic acid (PA) and phosphatidylethanolamine that reflects its physiological activity and membrane interaction. This depends on our observation that lipin 1 binding to PA in membranes is highly responsive to the electrostatic charge of PA. The studies presented here demonstrate that phosphorylation regulates the ability of the polybasic domain of lipin 1 to recognize di-anionic PA and identify mTOR as a crucial upstream signaling component regulating lipin 1 phosphorylation. These results demonstrate how phosphorylation of lipin 1 together with pH and membrane phospholipid composition play important roles in the membrane association of lipin 1 and thus the regulation of its enzymatic activity. PMID:23426360

  16. The extended human PTPome: a growing tyrosine phosphatase family.

    PubMed

    Alonso, Andrés; Pulido, Rafael

    2016-04-01

    Tyr phosphatases are, by definition, enzymes that dephosphorylate phospho-Tyr (pTyr) from proteins. This activity is found in several structurally diverse protein families, including the protein Tyr phosphatase (PTP), arsenate reductase, rhodanese, haloacid dehalogenase (HAD) and His phosphatase (HP) families. Most of these families include members with substrate specificity for non-pTyr substrates, such as phospho-Ser/phospho-Thr, phosphoinositides, phosphorylated carbohydrates, mRNAs, or inorganic moieties. A Cys is essential for catalysis in PTPs, rhodanese and arsenate reductase enzymes, whereas this work is performed by an Asp in HAD phosphatases and by a His in HPs, via a catalytic mechanism shared by all of the different families. The category that contains most Tyr phosphatases is the PTP family, which, although it received its name from this activity, includes Ser, Thr, inositide, carbohydrate and RNA phosphatases, as well as some inactive pseudophosphatase proteins. Here, we propose an extended collection of human Tyr phosphatases, which we call the extended human PTPome. The addition of new members (SACs, paladin, INPP4s, TMEM55s, SSU72, and acid phosphatases) to the currently categorized PTP group of enzymes means that the extended human PTPome contains up to 125 proteins, of which ~ 40 are selective for pTyr. We set criteria to ascribe proteins to the extended PTPome, and summarize the more important features of the new PTPome members in the context of their phosphatase activity and their relationship with human disease. PMID:26573778

  17. The Jasper Ridge elevated CO{sub 2} experiment: Root acid phosphatase activity in Bromus hordeaceus and Avena barbata remains unchanged under elevated [CO{sub 2}

    SciTech Connect

    Cardon, Z.G.; Jackson, R.

    1995-06-01

    Root acid phosphatase activity increases phosphate available to plants by cleaving phosphate esters in soil organic matter. Because of increased plant growth potential under elevated [CO{sub 2}], we hypothesized that high [CO{sub 2}]-grown plants might exhibit higher phosphatase activity than low [CO{sub 2}]-grown plants. We assayed phosphatase activity in two species grown on two substrates (Bromus on serpentine soil and Bromus and Avena on sandstone soil) under high and low [CO{sub 2}] and under several nutrient treatments. Phosphatase activity was expressed per gram fresh weight of roots. Phosphatase activity of Bromus roots (on sandstone) was first assayed in treatments where only P and K, or only N, were added to soil. Bromus roots in this case showed strong induction of phosphatase activity when N only had been added to soil, indicating that Bromus regulated its phosphatase activity in response to phosphate availability. Both Bromus and Avena growing in sandstone, and Bromus growing in serpentine, showed enhanced phosphatase activity at high nutrient (N, P, and K) levels over that at low nutrient levels, but no differences between phosphatase activity were apparent between [CO{sub 2}] treatments. The increased phosphatase activity at high N, P, and K may indicate enhanced {open_quotes}growth demand{close_quotes} (reflected in higher biomass) in both Avena and Bromus. In contrast, though Bromus {open_quotes}growth demand{close_quotes} (biomass) increased under high [CO{sub 2}] on sandstone, phosphatase activity did not increase.

  18. Tunable phosphatase-sensitive stable prodrugs of 5-aminolevulinic acid for tumor fluorescence photodetection.

    PubMed

    Babič, Andrej; Herceg, Viktorija; Ateb, Imène; Allémann, Eric; Lange, Norbert

    2016-08-10

    5-Aminolevulinic acid (5-ALA) has been at the forefront of small molecule based fluorescence-guided tumor resection and photodynamic therapy. 5-ALA and two of its esters received marketing authorization but suffer from several major limitations, namely low stability and poor pharmacokinetic profile. Here, we present a new class of 5-ALA derivatives aiming at the stabilization of 5-ALA by incorporating a phosphatase sensitive group, with or without self-cleavable linker. Compared to 5-ALA hexyl ester (5-ALA-Hex), these compounds display an excellent stability under acidic, basic and physiological conditions. The activation and conversion into the 5-ALA is controlled and can be structure-tailored. The prodrugs display reduced acute toxicity compared to 5-ALA-Hex with superior dose response profiles of protoporphyrin IX synthesis and fluorescence intensity in human glioblastoma cells in vitro. Clinically relevant fluorescence kinetics in vivo shown in U87MG glioblastoma spheroid tumor model in chick embryos provide a solid basis for their further development and translation to clinical fluorescence guided tumor resection and photodynamic therapy. PMID:27235981

  19. Co-detection of PTH/PTHrP receptor and tartrate resistant acid phosphatase in osteoclasts.

    PubMed

    Gay, Carol V; Zheng, Betty; Gilman, Virginia R

    2003-08-01

    Serial sections of rat metaphyses were prepared from paraffin embedded tissue blocks and analyzed in sets of three. The central section was stained for tartrate resistant acid phosphatase (TRAP) in order to identify osteoclasts, one adjacent section was immunostained with an affinity purified antibody to a 15 amino acid sequence unique to rat PTH/PTHrP receptor, and the other adjacent section in the set served as an immunostaining control. This allowed each of the 110 osteoclasts examined to be identified by TRAP and to be tested for the presence or absence of PTH/PTHrP receptor. All antibody solutions and rinses contained 1% donkey serum and 0.5% Tween 20 to ensure antibody integrity and good rinsing procedure. Confocal microscopy was used to evaluate fluorescence intensity of the immunostained osteoclasts. Pixel intensities of 58 osteoclasts from young (4 month) rats and 52 osteoclasts from old (15 month) rats were obtained. Pixel intensities were similar (P = 0.89) for both young and old animals. However, the number of PTH/PTHrP receptor deficient osteoclasts was greater for the older animals (14.29% vs. 7.24%). This provides direct evidence of PTH/PTHrP receptors in osteoclasts. PMID:12874824

  20. Linear quantification of a streptavidin-alkaline phosphatase probe for enzyme-linked immuno mass spectrometric assay.

    PubMed

    Florentinus-Mefailoski, Angelique; Marshall, John G

    2016-06-15

    The alkaline phosphatase-streptavidin (AP-SA) probe released adenosine (∼267.2 Da) from the substrate adenosine monophosphate (AMP), where a signal may be detected from as little as 0.5 μl of a 0.1-pg/ml dilution of the probe (2.6 × 10(-22) mol). The signal from the AP-SA probe was linear from 1 to 50 pg/ml by monitoring adenosine release at 268 m/z (M + H) with liquid chromatography, electrospray ionization, and quadrupole mass spectrometry (LC-ESI-MS). The safe limit of detection and quantification of the AP-SA probe was approximately 0.5 pg/well or 5 pg/ml. Enzyme-linked immuno mass spectrometric assay (ELIMSA) using the AP-SA probe provided a linear signal response for prostate-specific antigen (PSA) against external standards from 1 to 500 pg/ml. The ELIMSA showed a safe limit of detection and quantification at 5 pg PSA/well or 50 pg/ml (false positive detection rate P ≤ 0.01). Female samples of 100 μl plasma/well were read against standards and blanks made in normal female plasma, and the lowest sample quantified was approximately 9.8 pg/well or 98 pg/ml. Here ELIMSA was applied to measure PSA in plasma from female, normal male, prostatectomy patient, and cancer patient samples that showed significant differences by analysis of variance (ANOVA). PMID:26944413

  1. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase.

    PubMed

    Feng, Jie; Yuan, Fenghua; Gao, Yin; Liang, Chenggang; Xu, Jin; Zhang, Changling; He, Liyuan

    2003-12-01

    The nucleotide and amino acids sequences for AP(1) will appear in the GenBank(R) and NCBI databases under accession number AY297449. A novel antimicrobial protein (AP(1)) was purified from leaves of the potato ( Solanum tuberosum, variety MS-42.3) with a procedure involving ammonium sulphate fractionation, molecular sieve chromatography with Sephacryl S-200 and hydrophobic chromatography with Butyl-Sepharose using a FPLC system. The inhibition spectrum investigation showed that AP(1) had good inhibition activity against five different strains of Ralstonia solanacearum from potato or other crops, and two fungal pathogens, Rhizoctonia solani and Alternaria solani from potato. The full-length cDNA encoding AP(1) has been successfully cloned by screening a cDNA expression library of potato with an anti-AP(1) antibody and RACE (rapid amplification of cDNA ends) PCR. Determination of the nucleotide sequences revealed the presence of an open reading frame encoding 343 amino acids. At the C-terminus of AP(1) there is an ATP-binding domain, and the N-terminus exhibits 58% identity with an/the acid phosphatase from Mesorhizobium loti. SDS/PAGE and Western blotting analysis suggested that the AP(1) gene can be successfully expressed in Escherichia coli and recognized by an antibody against AP(1). Also the expressed protein showed an inhibition activity the same as original AP(1) protein isolated from potato. We suggest that AP(1) most likely belongs to a new group of proteins with antimicrobial characteristics in vitro and functions in relation to phosphorylation and energy metabolism of plants. PMID:12927022

  2. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  3. Affinity labelling enzymes with esters of aromatic sulfonic acids

    DOEpatents

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  4. The Acid Phosphatase-Encoding Gene GmACP1 Contributes to Soybean Tolerance to Low-Phosphorus Stress

    PubMed Central

    Hao, Derong; Wang, Hui; Kan, Guizhen; Jin, Hangxia; Yu, Deyue

    2014-01-01

    Phosphorus (P) is essential for all living cells and organisms, and low-P stress is a major factor constraining plant growth and yield worldwide. In plants, P efficiency is a complex quantitative trait involving multiple genes, and the mechanisms underlying P efficiency are largely unknown. Combining linkage analysis, genome-wide and candidate-gene association analyses, and plant transformation, we identified a soybean gene related to P efficiency, determined its favorable haplotypes and developed valuable functional markers. First, six major genomic regions associated with P efficiency were detected by performing genome-wide associations (GWAs) in various environments. A highly significant region located on chromosome 8, qPE8, was identified by both GWAs and linkage mapping and explained 41% of the phenotypic variation. Then, a regional mapping study was performed with 40 surrounding markers in 192 diverse soybean accessions. A strongly associated haplotype (P = 10−7) consisting of the markers Sat_233 and BARC-039899-07603 was identified, and qPE8 was located in a region of approximately 250 kb, which contained a candidate gene GmACP1 that encoded an acid phosphatase. GmACP1 overexpression in soybean hairy roots increased P efficiency by 11–20% relative to the control. A candidate-gene association analysis indicated that six natural GmACP1 polymorphisms explained 33% of the phenotypic variation. The favorable alleles and haplotypes of GmACP1 associated with increased transcript expression correlated with higher enzyme activity. The discovery of the optimal haplotype of GmACP1 will now enable the accurate selection of soybeans with higher P efficiencies and improve our understanding of the molecular mechanisms underlying P efficiency in plants. PMID:24391523

  5. Regulation of acid phosphatase activity in human promyelocytic leukemic cells induced to differentiate in culture

    PubMed Central

    1979-01-01

    Induction of differentiation of a human promyelocytic leukemic cell line (HL60) in culture is accompanied by changes in acid phosphatase (Acpase) activity. The increase in activity is less than twofold when the leukemic cells are stimulated by dimethylsulfoxide (DMSO) to differentiate into metamyelocytes and granulocytes but is eightfold when the cells are stimulated by the tumor-promoting agent 12-0- tetradecanoylphorbol 13-acetate (TPA) to differentiate into macrophage- like cells. Five different isozymes of Acpase were separated by acrylamide gel electrophoresis. Isozyme 1, the most anodal isozyme, was found to be present in undifferentiated, DMSO-treated and TPA-treated cells; isozyme 2 was a very faint band observed both in DMSO- and TPA- treated cells, the isoenzymes 3a and 3b were present only in TPA- induced cells; and isozyme 4, the most cathodal isozyme, was present both in TPA- and DMSO-induced cells. A time sequence study on the appearance of the various forms after TPA treatment indicated that the expression of the isozymes is regulated in an uncoordinated fashion. Acpase activity has been shown by ultrastructural cytochemistry to be localized in the entire rough endoplasmic reticulum (RER) and in areas of the smooth endoplasmic reticulum (SER) located near the Golgi complex in differentiating cells but to be extremely weak, if at all detectable, in undifferentiated promyelocytes. PMID:291600

  6. Mice Deficient in Transmembrane Prostatic Acid Phosphatase Display Increased GABAergic Transmission and Neurological Alterations

    PubMed Central

    Myöhänen, Timo T.; Voikar, Vootele; Mijatovic, Jelena; Segerstråle, Mikael; Herrala, Annakaisa M.; Kulesskaya, Natalia; Pulkka, Anitta E.; Kivinummi, Tanja; Abo-Ramadan, Usama; Taira, Tomi; Piepponen, T. Petteri; Rauvala, Heikki; Vihko, Pirkko

    2014-01-01

    Prostatic acid phosphatase (PAP), the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG), but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP) in the brain by utilizing mice deficient in TMPAP (PAP−/− mice). Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype. PMID:24846136

  7. Hydrolysis of phosphodiesters by diiron complexes: design of nonequivalent iron sites in purple acid phosphatase models.

    PubMed

    Verge, François; Lebrun, Colette; Fontecave, Marc; Ménage, Stéphane

    2003-01-27

    New mu-oxo-diferric complexes have been designed for hydrolysis of phosphodiesters. To mimic the diiron active site of purple acid phosphatase, a combinatorial method has been used to select complexes containing two distinct iron coordination spheres. The introduction of a bidentate ligand, a substituted phenanthroline (L) into complex 1, [Fe2O(bipy)4(OH2)2](NO3)4, generates in solution the complex [Fe2O(bipy)3(L)(OH2)2](NO3)4 as shown by ESI/MS and 1H NMR studies. The latter complex was found to be 20-fold more active than complex 1. On the basis of kinetic studies, we demonstrated that the complex [Fe2O(bipy)3(L)(OH)(OH2)](NO3)3 was the active species and the reaction proceeded through the formation of a ternary complex in which one iron binds a hydroxide and the second, the substrate. At nonsaturating concentrations of the substrate, the increased activity with increased methyl substituents in L was due to an increased affinity of the complex for the substrate. The activity of [Fe2O(bipy)3(33'44'Me2-Phen)(OH2)2](NO3)4 [33'44'Me2Phen = 3,3',4,4'-dimethyl-1,10-phenanthroline] was found to be comparable to that reported for Co(III) or Ce(IV) complexes. PMID:12693232

  8. Association of Tartrate-Resistant Acid Phosphatase-Expressed Macrophages and Metastatic Breast Cancer Progression.

    PubMed

    Chen, Yu-Guang; Janckila, Anthony; Chao, Tsu-Yi; Yeh, Ren-Hua; Gao, Hong-Wei; Lee, Su-Huei; Yu, Jyh-Cherng; Liao, Guo-Shiou; Dai, Ming-Shen

    2015-12-01

    Infiltrating neutrophils, lymphocytes, macrophages, and cytokines constitute a state of chronic inflammation within the tumor microenvironment. Tartrate-resistant acid phosphatase 5a (TRACP5a) protein, a novel product of activated macrophage, is postulated to be a biomarker for systemic inflammatory burden in states of chronic inflammation. We aimed to investigate the clinical significance of TRACP5a expression in tumor-infiltrating macrophages and serum TRACP5a in patients with metastatic breast cancer (BC). We retrospectively analyzed the clinical data from 34 BC patients with confirmed skeletal/visceral metastasis upon or during first-line palliative treatment. Patients were stratified into 3 groups based on the therapeutic responses and follow-up disease course. The association of TRACP5a protein with other inflammatory and cancer biomarkers was assessed among the clinically distinct group of patients. Higher TRACP5a protein was significantly correlated with earlier disease progression and survival (P = 0.0045) in comparison to other inflammatory markers, CRP or IL-6. Patients with higher serum TRACP5a level and shorter survival and treatment refractoriness also had more TRACP+ tumor-infiltrating macrophages. Our data support a hypothesis that serum TRACP5a protein can potentially be a predictive and prognostic marker to evaluate disease progression and therapeutic response in BC patients with bone/visceral metastasis. The associations between overall survival and TRACP expression by macrophages require further prospective investigation. PMID:26632898

  9. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  10. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  11. [The cellular acid phosphatase activity in yeast-like fungi of the genus Candida exposed to ultrasound, polyene antibiotics and dyes].

    PubMed

    Sergeev, P V; Romanenko, I M; Ukhina, T V

    1993-09-01

    The activity of one of the lysosomal membrane marker enzymes--acid phosphatase from the Candida yeast fungi on their exposure to ultrasound (US), polyenic antibiotics (amphotericin B and nystatin) dye antiseptics (ethacridine lactate, methylene blue), and their combinations was assayed. The impact of US and the drugs, in particular their combination, was found to be followed by activation of the fungal lysosomal apparatus function and increases in their catabolic processes. The highest rise in lysosomal catabolic activity was found when the polyenic antibiotics were used in combination with US, which reflects the higher damaging effect of this combination against Candida lysosomal membranes than the dyes and of these antibiotics and US alone. The studies provide strong evidence for the preference of the combined use of US and the polyenic antibiotics in candidiasis as a factor enhancing their fungicidal effect against Candida yeast fungi. PMID:8118000

  12. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes.

    PubMed

    Liu, Pan-Dao; Xue, Ying-Bin; Chen, Zhi-Jian; Liu, Guo-Dao; Tian, Jiang

    2016-07-01

    Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26 Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Fine-stem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo. PMID:27194738

  13. Three-dimensional structure of mannosyl-3-phosphoglycerate phosphatase from Thermus thermophilus HB27: a new member of the haloalcanoic acid dehalogenase superfamily.

    PubMed

    Gonçalves, Susana; Esteves, Ana M; Santos, Helena; Borges, Nuno; Matias, Pedro M

    2011-11-01

    Mannosyl-3-phosphoglycerate phosphatase (MpgP) is a key mediator in the physiological response to thermal and osmotic stresses, catalyzing the hydrolysis of mannosyl-3-phosphoglycerate (MPG) to the final product, α-mannosylglycerate. MpgP is a metal-dependent haloalcanoic acid dehalogenase-like (HAD-like) phosphatase, preserving the catalytic motifs I-IV of the HAD core domain, and classified as a Cof-type MPGP (HAD-IIB-MPGP family; SCOP [117505]) on the basis of its C2B cap insertion module. Herein, the crystallographic structures of Thermus thermophilus HB27 MpgP in its apo form and in complex with substrates, substrate analogues, and inhibitors are reported. Two distinct enzyme conformations, open and closed, are catalytically relevant. Apo-MpgP is primarily found in the open state, while holo-MpgP, in complex with the reaction products, is found in the closed state. Enzyme activation entails a structural rearrangement of motifs I and IV with concomitant binding of the cocatalytic Mg(2+) ion. The closure motion of the C2B domain is subsequently triggered by the anchoring of the phosphoryl group to the cocatalytic metal center, and by Arg167 fixing the mannosyl moiety inside the catalytic pocket. The results led to the proposal that in T. thermophilus HB27 MpgP the phosphoryl transfer employs a concerted D(N)S(N) mechanism with assistance of proton transfer from the general acid Asp8, forming a short-lived PO(3)(-) intermediate that is attacked by a nucleophilic water molecule. These results provide new insights into a possible continuum of phosphoryl transfer mechanisms, ranging between those purely associative and dissociative, as well as a picture of the main mechanistic aspects of phosphoryl monoester transfer catalysis, common to other members of the HAD superfamily. PMID:21961705

  14. Method for Enzyme Design with Genetically Encoded Unnatural Amino Acids.

    PubMed

    Hu, C; Wang, J

    2016-01-01

    We describe the methodologies for the design of artificial enzymes with genetically encoded unnatural amino acids. Genetically encoded unnatural amino acids offer great promise for constructing artificial enzymes with novel activities. In our studies, the designs of artificial enzyme were divided into two steps. First, we considered the unnatural amino acids and the protein scaffold separately. The scaffold is designed by traditional protein design methods. The unnatural amino acids are inspired by natural structure and organic chemistry methods, and synthesized by either organic chemistry methods or enzymatic conversion. With the increasing number of published unnatural amino acids with various functions, we described an unnatural amino acids toolkit containing metal chelators, redox mediators, and click chemistry reagents. These efforts enable a researcher to search the toolkit for appropriate unnatural amino acids for the study, rather than design and synthesize the unnatural amino acids from the beginning. After the first step, the model enzyme was optimized by computational methods and directed evolution. Lastly, we describe a general method for evolving aminoacyl-tRNA synthetase and expressing unnatural amino acids incorporated into a protein. PMID:27586330

  15. Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor

    PubMed Central

    Muniyan, Sakthivel; Ingersoll, Matthew A.; Batra, Surinder K.; Lin, Ming-Fong

    2014-01-01

    The inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative. As such, the search for organ-specific TSGs has emerged as a major strategy in cancer research. Prostate cancer (PCa) has the highest incidence in solid tumors in US males. Cellular prostatic acid phosphatase (cPAcP) is a prostate-specific differentiation antigen. Despite intensive studies over the past several decades on PAcP as a PCa biomarker, the role of cPAcP as a PCa-specific tumor suppressor has only recently been emerged and validated. The mechanism underlying the pivotal role of cPAcP as a prostate-specific TSG is, in part, due to its function as a protein tyrosine phosphatase (PTP) as well as a phosphoinositide phosphatase (PIP), an apparent functional homologue to Phosphatase and tensin homolog (PTEN) in PCa cells. This review is focused on discussing the function of this authentic prostate-specific tumor suppressor and the mechanism behind the loss of cPAcP expression leading to prostate carcinogenesis. We review other phosphatases’ roles as TSGs which regulate oncogenic PI3K signaling in PCa and discuss the functional similarity between cPAcP and PTEN in prostate carcinogenesis. PMID:24747769

  16. Contribution of chlorogenic acids to the inhibition of human hepatic glucose-6-phosphatase activity in vitro by Svetol, a standardized decaffeinated green coffee extract.

    PubMed

    Henry-Vitrac, Caroline; Ibarra, Alvin; Roller, Marc; Mérillon, Jean-Michel; Vitrac, Xavier

    2010-04-14

    Glucose-6-phosphatase (Glc-6-Pase) is a multicomponent system that exists primarily in the liver and catalyzes the terminal step in gluconeogenesis and glycogenolysis. Several studies have attempted to identify synthetic or natural compounds that inhibit this enzyme complex for therapeutic use in regulating blood glucose and type 2 diabetes. For this paper an in vitro structure-activity relationship study of several natural chlorogenic acids was conducted, and the active components of the natural decaffeinated green coffee extract Svetol were identified. Glucose-6-phosphate (Glc-6-P) hydrolysis was measured in the presence of Svetol or chlorogenic acids in intact human liver microsomes. Svetol significantly inhibited Glc-6-P hydrolysis in intact human liver microsomes in a competitive manner, and it was determined that chlorogenic acids (caffeoylquinic acids and dicaffeoylquinic acids) were the chief compounds mediating this activity. In addition, the structure-activity analysis showed that variation in the position of the caffeoyl residue is an important determinant of inhibition of Glc-6-P hydrolysis. This inhibition by Svetol contributes to its antidiabetic, glucose-lowering effects by reducing hepatic glucose production. PMID:20302380

  17. The Roles of Acids and Bases in Enzyme Catalysis

    ERIC Educational Resources Information Center

    Weiss, Hilton M.

    2007-01-01

    Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…

  18. Determining soil enzyme activities for the assessment of fungi and citric acid-assisted phytoextraction under cadmium and lead contamination.

    PubMed

    Mao, Liang; Tang, Dong; Feng, Haiwei; Gao, Yang; Zhou, Pei; Xu, Lurong; Wang, Lumei

    2015-12-01

    Microorganism or chelate-assisted phytoextraction is an effective remediation tool for heavy metal polluted soil, but investigations into its impact on soil microbial activity are rarely reported. Consequently, cadmium (Cd)- and lead (Pb)-resistant fungi and citric acid (CA) were introduced to enhance phytoextraction by Solanum nigrum L. under varied Cd and Pb pollution levels in a greenhouse pot experiment. We then determined accumulation of Cd and Pb in S. nigrum and the soil enzyme activities of dehydrogenase, phosphatase, urease, catalase, sucrase, and amylase. Detrended canonical correspondence analysis (DCCA) was applied to assess the interactions between remediation strategies and soil enzyme activities. Results indicated that the addition of fungi, CA, or their combination enhanced the root biomass of S. nigrum, especially at the high-pollution level. The combined treatment of CA and fungi enhanced accumulation of Cd about 22-47 % and of Pb about 13-105 % in S. nigrum compared with the phytoextraction alone. However, S. nigrum was not shown to be a hyperaccumulator for Pb. Most enzyme activities were enhanced after remediation. The DCCA ordination graph showed increasing enzyme activity improvement by remediation in the order of phosphatase, amylase, catalase, dehydrogenase, and urease. Responses of soil enzyme activities were similar for both the addition of fungi and that of CA. In summary, results suggest that fungi and CA-assisted phytoextraction is a promising approach to restoring heavy metal polluted soil. PMID:26286803

  19. [Clinical significance of tumor markers in prostatic carcinoma--comparative study of prostatic acid phosphatase, prostate specific antigen and gamma-seminoprotein].

    PubMed

    Yoshiki, T; Okada, K; Oishi, K; Yoshida, O

    1987-12-01

    We measured the prostatic acid phosphatase (PAP), gamma-Seminoprotein (gamma-Sm) and prostate specific antigen (PA) in the serum of 862 patients with various urologic diseases including 89 patients with prostatic cancer. We used a PAP radioimmunoassay kit, gamma-Sm enzyme immunoassay kit, Markit-F-PA enzyme immunoassay kit and PA test Wako enzyme immunoassay kit. Serum PA level in advanced prostatic carcinoma (stage C, D) tended to be higher than that in early stage cancer (stage A, B). The Wako kit gave a higher PA than the Markit-F in each stage. The sensitivity rate of Wako PA test was the highest (81%) of all kits. The specificity rate of PAP was the highest (83%), and the accuracy rate of Markit-F PA was the highest (79%). The positive rate in the combined assay of PAP, gamma-Sm and PA in prostatic cancer was higher than that in the single assay of each tumor marker. We regarded PAP, gamma-Sm and PA as clinically different tumor markers, because their serum level did not correlate definitely. No apparent correlation was found between histopathological grade and the level of each tumor marker. The level of PAP, gamma-Sm and PA in the reactivated patients was significantly higher than that of the well-controlled patients. In the reactivated patients, the positive rate of Markit-F PA was the highest (89%) of all the kits. PMID:2452559

  20. A Novel Phosphatidic Acid-Protein-tyrosine Phosphatase D2 Axis Is Essential for ERBB2 Signaling in Mammary Epithelial Cells*

    PubMed Central

    Ramesh, Mathangi; Krishnan, Navasona; Muthuswamy, Senthil K.; Tonks, Nicholas K.

    2015-01-01

    We used a loss-of-function screen to investigate the role of classical protein-tyrosine phosphatases (PTPs) in three-dimensional mammary epithelial cell morphogenesis and ERBB2 signaling. The study revealed a novel role for PTPD2 as a positive regulator of ERBB2 signaling. Suppression of PTPD2 attenuated the ERBB2-induced multiacinar phenotype in three-dimensional cultures specifically by inhibiting ERBB2-mediated loss of polarity and lumen filling. In contrast, overexpression of PTPD2 enhanced the ERBB2 phenotype. We also found that a lipid second messenger, phosphatidic acid, bound PTPD2 in vitro and enhanced its catalytic activity. Small molecule inhibitors of phospholipase D (PLD), an enzyme that produces phosphatidic acid in cells, also attenuated the ERBB2 phenotype. Exogenously added phosphatidic acid rescued the PLD-inhibition phenotype, but only when PTPD2 was present. These findings illustrate a novel pathway involving PTPD2 and the lipid second messenger phosphatidic acid that promotes ERBB2 function. PMID:25681440

  1. A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN

    PubMed Central

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-01-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways. PMID:25318938

  2. Exploiting Acid Phosphatases in the Synthesis of Phosphorylated Monoalcohols and Diols

    PubMed Central

    Tasnádi, Gábor; Lukesch, Michael; Zechner, Michaela; Jud, Wolfgang; Hall, Mélanie; Ditrich, Klaus; Baldenius, Kai; Hartog, Aloysius F.; Wever, Ron

    2015-01-01

    Abstract A set of phosphatases was evaluated for their potential to catalyze the regio‐ and stereoselective phosphorylation of alcohols using a high‐energy inorganic phosphate donor, such as di‐, tri‐ and polyphosphate. Parameters such as type and amount of phosphate donor and pH of the reaction were investigated in order to minimize the thermodynamically favored hydrolysis of the phosphate donor and the formed phosphate ester. Diols were monophosphorylated with high selectivities. This biocatalytic phosphorylation method provides selectively activated and/or protected synthetic intermediates for further chemical and/or enzymatic transformations and is applicable to a large scale (6.86 g) in a flow setup with immobilized phosphatase.

  3. Betulinic Acid Suppresses STAT3 Activation Pathway Through Induction of Protein Tyrosine Phosphatase SHP-1 in Human Multiple Myeloma Cells

    PubMed Central

    Pandey, Manoj K.; Sung, Bokyung; Aggarwal, Bharat B.

    2009-01-01

    STAT3 activation has been associated with survival, proliferation and invasion of various human cancers. Whether betulinic acid, a pentacyclic triterpene, can modulates the STAT3 pathway, was investigated in human multiple myeloma (MM) cells. We found that betulinic acid inhibited constitutive activation of STAT3, Src kinase, JAK1 and JAK2. Pervanadate reversed the betulinic acid -induced down regulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase (PTP). Furthermore, betulinic acid induced the expression of the PTP SHP-1 and silencing of the SHP-1 gene abolished the ability of betulinic acid to inhibit STAT3 activation and rescues betulinic acid-induced cell death. Betulinic acid also downregulated the expression of STAT3-regulated gene products such as bcl-xL, bcl-2, cyclin D1, and survivin. This correlated with an increase in apoptosis as indicated by an increase in the sub-G1 cell population and an increase in caspase-3–induced PARP cleavage. Consistent with these results, over expression of constitutive active STAT3 significantly reduced the betulinic acid-induced apoptosis. Betulinic acid also enhanced the apoptosis induced by thalidomide (from 10% to 55%) and bortezomib (from 5% to 70%) in MM cells. Overall, our results suggest that betulinic acid down regulates STAT3 activation through upregulation of SHP-1 and this may have potential in sensitization of STAT3 over expressing tumors to chemotherapeutic agents. PMID:19937797

  4. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes. PMID:25785438

  5. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    PubMed Central

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  6. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA.

    PubMed

    Hoang, Ky Van; Chen, Carolyn G; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E; Gunn, John S

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  7. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA

    PubMed Central

    Hoang, Ky Van; Chen, Carolyn G.; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E.; Gunn, John S.

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  8. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Díaz, Leila Milena; Villanueva, Claudia Añazco; Heyser, Wolfgang; Boeckx, Pascal

    2012-01-01

    Acid phosphatase (ACP) enzymes are involved in the mobilization of soil phosphorus (P) and polyphosphate accumulated in the fungal tissues of ectomycorrhizal roots, thereby influencing the amounts of P that are stored in the fungus and transferred to the host plant. This study evaluated the effects of ectomycorrhizal morphotype and soil fertility on ACP activity in the extraradical mycelium (ACP(myc)), the mantle (ACP(mantle)) and the Hartig net region (ACP(Hartig)) of ectomycorrhizal Nothofagus obliqua seedlings. ACP activity was quantified in vivo using enzyme-labelled fluorescence-97 (ELF-97) substrate, confocal laser microscopy and digital image processing routines. There was a significant effect of ectomycorrhizal morphotype on ACP(myc), ACP(mantle) and ACP(Hartig), while soil fertility had a significant effect on ACP(myc) and ACP(Hartig). The relative contribution of the mantle and the Hartig net region to the ACP activity on the ectomycorrhizal root was significantly affected by ectomycorrhizal morphotype and soil fertility. A positive correlation between ACP(Hartig) and the shoot P concentration was found, providing evidence that ACP activity at the fungus:root interface is involved in P transfer from the fungus to the host. It is concluded that the spatial distribution of ACP in ectomycorrhizas varies as a function of soil fertility and colonizing fungus. PMID:21902696

  9. High Uric Acid (UA) Negatively Affects Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b) Immunoassay

    PubMed Central

    Wu, Zhi-Qi; Zhang, Yan; Xie, Erfu; Song, Wei-Juan; Yang, Rui-Xia; Yan, Cheng-Jing; Zhang, Bing-Feng; Xu, Hua-Guo

    2016-01-01

    Background Bone metastases often occur in the majority of patients with advanced cancer, such as prostate cancer, lung cancer and breast cancer. Serum tartrate-resistant acid phosphatase 5b (TRACP 5b), a novel bone resorption marker, has been used gradually in the clinics as a specific and sensitive marker of bone resorption for the early diagnosis of cancer patients with bone metastasis. Here, we reported that high concentrations of uric acid (UA) lead to decrease of TRACP 5b levels and determined whether TRACP 5b level was associated with UA in interference experiment. Methods A total of 77 patients with high concentrations of UA and 77 healthy subjects were tested to evaluate the differences in their TRACP 5b levels. Serial dilutions of UA were respectively spiked with a known concentration of TRACP 5b standard sample, then Serum TRACP 5b was detected by using bone TRAP® Assay. A correction equation was set to eliminate UA-derived TRACP 5b false-decrease. The effect of this correction was evaluated in high-UA individuals. Results The average TRACP level of the high-UA individuals (1.47± 0.62 U/L) was significantly lower than that of the healthy subjects (2.62 ± 0.63 U/L) (t-test, p<0.0001). The UA correction equation derived: ΔTRACP 5b = -1.9751lgΔUA + 3.7365 with an R2 = 0.98899. Application of the UA correction equation resulted in a statistically non-significant difference in TRACP 5b values between the healthy subjects and high-UA individuals (p = 0.24). Conclusions High UA concentrations can falsely decrease TRACP 5b levels due to a method-related systematic error. To avoid misdiagnoses or inappropriate therapeutic decisions, increased attention should be paid to UA interference, when TRACP 5b is used for early diagnosis of cancer patients with bone metastasis, evaluation of the aggressiveness of osteosarcoma or prediction of survival in prostate cancer and breast cancer with bone metastases. PMID:26800211

  10. Structure-Function Analysis of the 3' Phosphatase Component of T4 Polynucleotide Kinase/phosphatase

    SciTech Connect

    Zhu,H.; Smith, P.; Wang, L.; Shuman, S.

    2007-01-01

    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer and ablated phosphatase activity.

  11. Anti-idiotypic nanobody-alkaline phosphatase fusion proteins: Development of a one-step competitive enzyme immunoassay for fumonisin B1 detection in cereal.

    PubMed

    Shu, Mei; Xu, Yang; Liu, Xing; Li, Yanping; He, Qinghua; Tu, Zhui; Fu, Jinheng; Gee, Shirley J; Hammock, Bruce D

    2016-06-14

    A rapid and sensitive one-step competitive enzyme immunoassay for the detection of FB1 was developed. The anti-idiotypic nanobody-alkaline phosphatase (Ab2β-Nb-AP) was validated by the AP enzyme activity and the properties of bounding to anti-FB1-mAb (3F11) through colorimetric and chemiluminescence analyses. The 50% inhibitory concentration and the detection limit (LOD) of colorimetric enzyme-linked immunosorbent assay (ELISA) for FB1 were 2.69 and 0.35 ng mL(-1), respectively, with a linear range of 0.93-7.73 ng mL(-1). The LOD of the chemiluminescence ELISA (CLIA) was 0.12 ng mL(-1), and the IC50 was 0.89 ± 0.09 ng mL(-1) with a linear range of 0.29-2.68 ng mL(-1). Compared with LC-MS/MS, the results of this assay indicated the reliability of the Ab2β-Nb-AP fusion protein based one-step competitive immunoassay for monitoring FB1 contamination in cereals. The Ab2β-Nb-AP fusion proteins have the potential to replace chemically-coupled probes in competitive enzyme immunoassay systems. PMID:27181644

  12. Chronological changes in acid phosphatase activity within neurons and perineuronal satellite cells of the inferior vagal ganglion of the cat induced by vagotomy.

    PubMed Central

    Glover, R A

    1982-01-01

    The hexazonium pararosaniline method was employed to describe the distribution of acid phosphatase activity, chronologically, within neurons and their investing satellite cells of the inferior vagal ganglion of the cat after vagotomy. In control ganglia, acid phosphatase activity was invariably confined to the cytoplasm of neurons and satellite cells. Reaction product was visible as distinct granules within neuronal perikarya. The cytoplasm of perineuronal satellite cells also contained reaction product but, in most instances, activity was weak and granules were difficult to distinguish. No reaction product was observed in myelin or axonal processes; nuclear staining was absent. Acid phosphatase activity was increased in ganglionic neurons as early as 24 hours after vagotomy. Increased activity in perineuronal satellite cells was not evident until 3 days post-operatively. By 15 days, activity was ubiquitously increased in the cytoplasm of both neurons and satellite cells. Evidence suggesting neuronophagia was also apparent. Between 30 and 60 days post-operatively acid phosphatase activity gradually decreased in both neurons and satellite cells until a picture comparable with that seen in control tissue sections was visible. The functional significance of these changes in acid phosphatase activity within an altered metabolic environment induced by vagotomy is discussed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:7076551

  13. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  14. Acid phosphatase test proves superior to standard phenotypic identification procedure for Clostridium perfringens strains isolated from water

    PubMed Central

    Ryzinska-Paier, G.; Sommer, R.; Haider, J.M.; Knetsch, S.; Frick, C.; Kirschner, A.K.T.; Farnleitner, A.H.

    2011-01-01

    Clostridium perfringens is used as an indicator for persistent faecal pollution as well as to monitor the efficacy of water treatment processes. For these purposes, differentiation between C. perfringens and other Clostridia is essential and is routinely carried out by phenotypic standard tests as proposed in the ISO/CD 6461-2:2002 (ISO_LGMN: lactose fermentation, gelatine liquidation, motility and nitrate reduction). Because the ISO_LGMN procedure is time consuming and labour intensive, the acid phosphatase test was investigated as a possible and much more rapid alternative method for confirmation. The aim of our study was to evaluate and compare confirmation results obtained by these two phenotypic methods using genotypically identified strains, what to our knowledge has not been accomplished before. For this purpose, a species specific PCR method was selected based on the results received for type strains and genotypically characterised environmental strains. For the comparative investigation type strains as well as presumptive C. perfringens isolates from water and faeces samples were used. The acid phosphatase test revealed higher percentage (92%) of correctly identified environmental strains (n = 127) than the ISO_LGMN procedure (83%) and proved to be a sensitive and reliable confirmation method. PMID:21872622

  15. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family.

    PubMed

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J H

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  16. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family

    PubMed Central

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A. Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J. H.

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  17. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    PubMed

    Ivanov, Delyan P; Parker, Terry L; Walker, David A; Alexander, Cameron; Ashford, Marianne B; Gellert, Paul R; Garnett, Martin C

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money. PMID:25119185

  18. Multiplexing Spheroid Volume, Resazurin and Acid Phosphatase Viability Assays for High-Throughput Screening of Tumour Spheroids and Stem Cell Neurospheres

    PubMed Central

    Ivanov, Delyan P.; Parker, Terry L.; Walker, David A.; Alexander, Cameron; Ashford, Marianne B.; Gellert, Paul R.; Garnett, Martin C.

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money. PMID:25119185

  19. Investigating the kinetics of paramagnetic-beads linked alkaline phosphatase enzyme through microchannel resistance measurement in dielectric microchip.

    PubMed

    Faure, Mathilde; Sotta, Bruno; Gamby, Jean

    2014-08-15

    Real time monitoring of electrolyte resistance changes during hydrolysis of 4-nitrophenylphosphate (pNPP) by alkaline phosphatase (ALP) bound on paramagnetic-beads was performed into a small dielectric channel. The reaction kinetic fit with a non-competitive substrate-inhibition equation. Michaelis-Menten apparent constant, KM(app), was determined as 0.33±0.06mM and the maximum apparent rate, Vmax(app) as 98±5pMs(-1). The detection limits were 15fM for ALP and 0.75mM for pNPP. This miniaturized device constitutes a powerful tool for analysis of interaction between ligands. PMID:24613971

  20. Polyphenolic compounds from flowers of Hibiscus rosa-sinensis Linn. and their inhibitory effect on alkaline phosphatase enzyme activity in vitro.

    PubMed

    Salib, Josline Y; Daniel, Enas N; Hifnawy, Mohamed S; Azzam, Shadia M; Shaheed, Iman B; Abdel-Latif, Sally M

    2011-01-01

    Graded concentrations (0.1-100 mg/mL reaction mixture) of the methanolic extract of the flowers of Hibiscus rosa-sinensis Linn., its water-soluble fraction as well as compounds isolated from this fraction were tested for their inhibitory effect on alkaline phosphatase enzyme activity in vitro. Both the methanolic extract and its water-soluble fraction showed significant inhibitory effects on the enzyme activity in vitro. On screening the activity of the compounds isolated from the water-soluble fraction, its high inhibitory activity was attributed to the presence of quercetin-7-O-galactoside which showed a high potent inhibition of the enzyme activity reaching 100% at 100 mg/mL reaction mixture. Phytochemical investigations of the water-soluble fraction were also carried out and afforded ten polyphenolic compounds including two new natural compounds, namely kaempferol-7-O-[6'''-O-p-hydroxybenzoyl-beta-D-glucosyl-(1-->6)-beta-D-glucopyranoside] and scutellarein-6-O-alpha-L-rhamnopyranoside-8-C-beta-D-glucopyranoside). The chemical structure of the isolated compounds was elucidated on the basis of chemical and spectral data. PMID:22191209

  1. Effects of dietary vitamin E on mucosal maltase and alkaline phosphatase enzyme activities and on the amount of mucosal malonyldialdehyde in broiler chickens

    PubMed Central

    Farrokhifar, Seyed Hamid; Ali Jafari, Ramezan; Erfani Majd, Naeem; Fatemi Tabatabaee, Seyed Reza; Mayahi, Mansour

    2013-01-01

    The effects of dietary vitamin E levels on mucosal maltase and alkaline phosphatase (ALP) enzyme activities and on the amount of mucosal malonyldialdehyde (MDA) in broiler chickens were studied in the present study. One hundred and eighty of male day old broiler chicks (Ross 308 strain) were randomly assigned into five groups, each with three replicates and 12 chicks in each replicate. Chickens in group A were fed corn-soy- based diet, while those in groups B, C, D and E were fed the same diet with 20, 60, 180, and 540 mg kg-1 vitamin E supplement (d-alpha tocopherol), respectively. Six birds were randomly chosen from each group, and were euthanized on days 10, 21, 32, and 42 of age. One segment of small intestine outset was homogenized and mucosal ALP and maltase activity were measured. Moreover, mucosal lipid peroxidate amount was measured to reveal the impact of vitamin E on oxidative stress. Maltase activity was increased with the increase of vitamin E up to 60 mg kg-1 of diet while with further levels, it was decreased. Addition of 60 mg kg-1 of vitamin E to the diet significantly increased ALP enzyme activity (p ≤ 0.001). Addition of 540 mg kg-1 of vitamin E supplement to the diet led to the minimum amount of MDA at 32 days of age. It may be concluded that supplementation of broiler's diet with 60 mg kg-1 of vitamin E can increase mucosal maltase and ALP enzyme activity. PMID:25568675

  2. Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein.

    PubMed Central

    Takai, A; Sasaki, K; Nagai, H; Mieskes, G; Isobe, M; Isono, K; Yasumoto, T

    1995-01-01

    Several groups have reported that okadaic acid (OA) and some other tight-binding protein phosphatase inhibitors including microcystin-LR (MCLR), calyculin-A and tautomycin prevent each other from binding to protein phosphatase 2A (PP2A). In this paper, we have introduced an improved procedure for examining to what extent the affinity of an enzyme for a labelled tight-binding ligand is reduced by binding of an unlabelled tight-binding, ligand to the enzyme. Using this procedure, we have analysed the dose-dependent reduction of PP2A binding of [24-3H]OA by addition of OA, MCLR, calyculin-A and tautomycin. The results indicate that the binding of the unlabelled inhibitors to the PP2A molecule causes a dramatic (10(6)-10(8)-fold) increase in the dissociation constant associated with the interaction of [24-3H]OA and PP2A. This suggests that OA and the other inhibitors bind to PP2A in a mutually exclusive manner. The protein phosphatase inhibitors may share the same binding site on the PP2A molecule. We have also measured values of the dissociation constant (Ki) for the interaction of these toxins with protein phosphatase 1 (PP1). For MCLR and calyculin-A, the ratio of the Ki value obtained for PP1 to that for PP2A was in the range 4-9, whereas it was 0.01-0.02 for tautomycin. The value of tautomycin is considerably smaller than that (0.4) calculated from previously reported Ki values. PMID:7702557

  3. Near-infrared fluorescence probe for the determination of acid phosphatase and imaging of prostate cancer cells.

    PubMed

    Lin, Zihan; Liu, Ziping; Zhang, Hao; Su, Xingguang

    2015-03-01

    In this paper, we developed a near-infrared mercaptopropionic acid (MPA)-capped CuInS2 quantum dot (QD) fluorescence probe for the detection of acid phosphatases (ACP), which is an important biomarker and indicator of prostate cancer. The fluorescence of CuInS2 QDs could be quenched by Cu(2+), and then the addition of adenosine-5'-triphosphate (ATP) could effectively turn on the quenched fluorescence due to the strong interaction between Cu(2+) and ATP. The ACP could catalyze the hydrolysis of ATP, which would disassemble the complex of Cu(2+)-ATP. Therefore, the recovered fluorescence could be quenched again by the addition of ACP. In our method, the limit of detection (LOD) is considerably low for ACP detection in solution. Using the CuInS2 QDs fluorescence probe, we successfully performed in vitro imaging of human prostate cancer cells. PMID:25632410

  4. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities.

    PubMed

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying; Naleway, John Joseph

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson's Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  5. Fluorogenic Substrates for Visualizing Acidic Organelle Enzyme Activities

    PubMed Central

    Harlan, Fiona Karen; Lusk, Jason Scott; Mohr, Breanna Michelle; Guzikowski, Anthony Peter; Batchelor, Robert Hardy; Jiang, Ying

    2016-01-01

    Lysosomes are acidic cytoplasmic organelles that are present in all nucleated mammalian cells and are involved in a variety of cellular processes including repair of the plasma membrane, defense against pathogens, cholesterol homeostasis, bone remodeling, metabolism, apoptosis and cell signaling. Defects in lysosomal enzyme activity have been associated with a variety of neurological diseases including Parkinson’s Disease, Lysosomal Storage Diseases, Alzheimer's disease and Huntington's disease. Fluorogenic lysosomal staining probes were synthesized for labeling lysosomes and other acidic organelles in a live-cell format and were shown to be capable of monitoring lysosomal metabolic activity. The new targeted substrates were prepared from fluorescent dyes having a low pKa value for optimum fluorescence at the lower physiological pH found in lysosomes. They were modified to contain targeting groups to direct their accumulation in lysosomes as well as enzyme-cleavable functions for monitoring specific enzyme activities using a live-cell staining format. Application to the staining of cells derived from blood and skin samples of patients with Metachromatic Leukodystrophy, Krabbe and Gaucher Diseases as well as healthy human fibroblast and leukocyte control cells exhibited localization to the lysosome when compared with known lysosomal stain LysoTracker® Red DND-99 as well as with anti-LAMP1 Antibody staining. When cell metabolism was inhibited with chloroquine, staining with an esterase substrate was reduced, demonstrating that the substrates can be used to measure cell metabolism. When applied to diseased cells, the intensity of staining was reflective of lysosomal enzyme levels found in diseased cells. Substrates specific to the enzyme deficiencies in Gaucher or Krabbe disease patient cell lines exhibited reduced staining compared to that in non-diseased cells. The new lysosome-targeted fluorogenic substrates should be useful for research, diagnostics and

  6. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  7. Ammonium Metabolism Enzymes Aid Helicobacter pylori Acid Resistance

    PubMed Central

    Miller, Erica F.

    2014-01-01

    The gastric pathogen Helicobacter pylori possesses a highly active urease to support acid tolerance. Urea hydrolysis occurs inside the cytoplasm, resulting in the production of NH3 that is immediately protonated to form NH4+. This ammonium must be metabolized or effluxed because its presence within the cell is counterproductive to the goal of raising pH while maintaining a viable proton motive force (PMF). Two compatible hypotheses for mitigating intracellular ammonium toxicity include (i) the exit of protonated ammonium outward via the UreI permease, which was shown to facilitate diffusion of both urea and ammonium, and/or (ii) the assimilation of this ammonium, which is supported by evidence that H. pylori assimilates urea nitrogen into its amino acid pools. We investigated the second hypothesis by constructing strains with altered expression of the ammonium-assimilating enzymes glutamine synthetase (GS) and glutamate dehydrogenase (GDH) and the ammonium-evolving periplasmic enzymes glutaminase (Ggt) and asparaginase (AsnB). H. pylori strains expressing elevated levels of either GS or GDH are more acid tolerant than the wild type, exhibit enhanced ammonium production, and are able to alkalize the medium faster than the wild type. Strains lacking the genes for either Ggt or AsnB are acid sensitive, have 8-fold-lower urea-dependent ammonium production, and are more acid sensitive than the parent. Additionally, we found that purified H. pylori GS produces glutamine in the presence of Mg2+ at a rate similar to that of unadenylated Escherichia coli GS. These data reveal that all four enzymes contribute to whole-cell acid resistance in H. pylori and are likely important for assimilation and/or efflux of urea-derived ammonium. PMID:24936052

  8. The adaptation of mussels Crenomytilus grayanus to cadmium accumulation result in alterations in organization of microsomal enzyme-membrane complex (non-specific phosphatase).

    PubMed

    Zakhartsev; Chelomin; Belcheva

    2000-08-01

    The kinetic parameters (V(m), K(m) and slope) of membrane-bound microsomal non-specific phosphatase (NPase, with G6P as the substrate) from the digestive gland of unexposed and cadmium adapted (45 days for 100 µg Cd(2+)/l) mussels were investigated. In vivo and in vitro approaches were used. Adaptation of mussels (Crenomytilus grayanus) to cadmium resulted in a 1.6-fold increase in NPase activity. V(m) was increased by 1.6-fold, but K(m) was the same in terms of enzyme kinetics. This indicates that the total concentration of the enzymes in the digestive gland increased. Cd(2+) (1 mM) did not significantly alter the activity of the membrane-bound enzyme in vitro both for unexposed and for cadmium adapted mussels, meaning that cadmium ions are not a direct inhibitor of the membrane-bound enzyme in this concentration. The microsomal NPase activity in both unexposed and cadmium adapted mussels was inhibited by in vitro solubilization of microsomes with non-ionic detergent (Triton X100, 0.01%). This inhibition was uncompetitive for microsomes of unexposed mussels (K(m) decreased 3.1-fold). The most drastic events were observed in cadmium adapted mussels, where inhibition was mixed (K(m) decreased 7.2-fold). The simultaneous actions of detergent and cadmium ions did not alter NPase activity significantly in comparison with action of the detergent alone. The differences in the types and the extents of inhibition of the enzymes activity by membrane disordering agent (Triton X100) indicated that the enzyme-membrane complex (NPase) has been altered as a result of adaptation of mussels to cadmium accumulation. We conclude that the mussels produced a new enzyme-membrane complex, with the same K(m) as the previous complex, but with other detergent sensitivity and greater amounts. Thus, the adaptation capacity of this enzyme is reduced as result of adaptation of mussels to cadmium accumulation. PMID:10930649

  9. Single Laboratory Validation of A Ready-to-Use Phosphatase Inhibition Assay for Detection of Okadaic Acid Toxins

    PubMed Central

    Smienk, Henry G. F.; Calvo, Dolores; Razquin, Pedro; Domínguez, Elena; Mata, Luis

    2012-01-01

    A phosphatase inhibition assay for detection of okadaic acid (OA) toxins in shellfish, OkaTest, was single laboratory validated according to international recognized guidelines (AOAC, EURACHEM). Special emphasis was placed on the ruggedness of the method and stability of the components. All reagents were stable for more than 6 months and the method was highly robust under normal laboratory conditions. The limit of detection and quantification were 44 and 56 µg/kg, respectively; both below the European legal limit of 160 µg/kg. The repeatability was evaluated with 2 naturally contaminated samples. The relative standard deviation (RSD) calculated was 1.4% at a level of 276 µg/kg and 3.9% at 124 µg/kg. Intermediate precision was estimated by testing 10 different samples (mussel and scallop) on three different days and ranged between 2.4 and 9.5%. The IC50 values of the phosphatase used in this assay were determined for OA (1.2 nM), DTX-1 (1.6 nM) and DTX-2 (1.2 nM). The accuracy of the method was estimated by recovery testing for OA (mussel, 78–101%; king scallop, 98–114%), DTX-1 (king scallop, 79–102%) and DTX-2 (king scallop, 93%). Finally, the method was qualitatively compared to the mouse bioassay and LC-MS/MS. PMID:22778904

  10. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production.

    PubMed

    Zhang, Ying-Hua; Xu, Di; Liu, Jia-Qi; Zhao, Xin-Huai

    2014-12-01

    Skimmed milk spiked with five organophosphorus pesticides (OPPs), chlorpyrifos, diazinon, fenitrothion, malathion and methyl parathion, was fermented by ten lactic acid bacteria (LAB) and four strain combinations at 42°C for 24h. OPPs left in the samples at different times were extracted, purified, detected by gas chromatography and calculated for degradation rate constants, based on a first-order reaction model. OPPs degradation was enhanced by the inoculated LAB, resulting in 0.8-225.4% increase in the rate constants. Diazinon and methyl parathion were more stable whereas chlorpyrifos, fenitrothion and malathion were more labile. Lactobacillus brevis 1.0209 showed the strongest acceleration on OPPs degradation while strain combination could bring about a synergy between the strains of lower ability. Phosphatase production of the strains might be one of the key factors responsible for the enhanced OPPs degradation, as the detected phosphatase activities were positively correlated to the measured degradation rate constants of OPPs (r=0.636-0.970, P<0.05). PMID:24996321

  11. The myeloperoxidase-derived oxidant hypothiocyanous acid inhibits protein tyrosine phosphatases via oxidation of key cysteine residues.

    PubMed

    Cook, Naomi L; Moeke, Cassidy H; Fantoni, Luca I; Pattison, David I; Davies, Michael J

    2016-01-01

    Phosphorylation of protein tyrosine residues is critical to cellular processes, and is regulated by kinases and phosphatases (PTPs). PTPs contain a redox-sensitive active site Cys residue, which is readily oxidized. Myeloperoxidase, released from activated leukocytes, catalyzes thiocyanate ion (SCN(-)) oxidation by H2O2 to form hypothiocyanous acid (HOSCN), an oxidant that targets Cys residues. Dysregulated phosphorylation and elevated MPO levels have been associated with chronic inflammatory diseases where HOSCN can be generated. Previous studies have shown that HOSCN inhibits isolated PTP1B and induces cellular dysfunction in cultured macrophage-like cells. The present study extends this previous work and shows that physiologically-relevant concentrations of HOSCN alter the activity and structure of other members of the wider PTP family (including leukocyte antigen-related PTP, PTP-LAR; T-cell PTP, TC-PTP; CD45 and Src homology phosphatase-1, Shp-1) by targeting Cys residues. Isolated PTP activity, and activity in lysates of human monocyte-derived macrophages (HMDM) was inhibited by 0-100 µM HOSCN with this being accompanied by reversible oxidation of Cys residues, formation of sulfenic acids or sulfenyl-thiocyanates (detected by Western blotting, and LC-MS as dimedone adducts), and structural changes. LC-MS/MS peptide mass-mapping has provided data on the modified Cys residues in PTP-LAR. This study indicates that inflammation-induced oxidants, and particularly myeloperoxidase-derived species, can modulate the activity of multiple members of the PTP superfamily via oxidation of Cys residues to sulfenic acids. This alteration of the balance of PTP/kinase activity may perturb protein phosphorylation and disrupt cell signaling with subsequent induction of apoptosis at sites of inflammation. PMID:26616646

  12. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid

    PubMed Central

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H′ 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi’s potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin

  13. Endophytic Fungi from Frankincense Tree Improves Host Growth and Produces Extracellular Enzymes and Indole Acetic Acid.

    PubMed

    Khan, Abdul Latif; Al-Harrasi, Ahmed; Al-Rawahi, Ahmed; Al-Farsi, Zainab; Al-Mamari, Aza; Waqas, Muhammad; Asaf, Sajjad; Elyassi, Ali; Mabood, Fazal; Shin, Jae-Ho; Lee, In-Jung

    2016-01-01

    Boswellia sacra, an economically important frankincense-producing tree found in the desert woodlands of Oman, is least known for its endophytic fungal diversity and the potential of these fungi to produce extracellular enzymes and auxins. We isolated various fungal endophytes belonging to Eurotiales (11.8%), Chaetomiaceae (17.6%), Incertae sadis (29.5%), Aureobasidiaceae (17.6%), Nectriaceae (5.9%) and Sporomiaceae (17.6%) from the phylloplane (leaf) and caulosphere (stem) of the tree. Endophytes were identified using genomic DNA extraction, PCR amplification and sequencing the internal transcribed spacer regions, whereas a detailed phylogenetic analysis of the same gene fragment was made with homologous sequences. The endophytic colonization rate was significantly higher in the leaf (5.33%) than the stem (0.262%). The Shannon-Weiner diversity index was H' 0.8729, while Simpson index was higher in the leaf (0.583) than in the stem (0.416). Regarding the endophytic fungi's potential for extracellular enzyme production, fluorogenic 4-methylumbelliferone standards and substrates were used to determine the presence of cellulases, phosphatases and glucosidases in the pure culture. Among fungal strains, Penicillum citrinum BSL17 showed significantly higher amounts of glucosidases (62.15±1.8 μM-1min-1mL) and cellulases (62.11±1.6 μM-1min-1mL), whereas Preussia sp. BSL10 showed significantly higher secretion of glucosidases (69.4±0.79 μM-1min-1mL) and phosphatases (3.46±0.31μM-1min-1mL) compared to other strains. Aureobasidium sp. BSS6 and Preussia sp. BSL10 showed significantly higher potential for indole acetic acid production (tryptophan-dependent and independent pathways). Preussia sp. BSL10 was applied to the host B. sacra tree saplings, which exhibited significant improvements in plant growth parameters and accumulation of photosynthetic pigments. The current study concluded that endophytic microbial resources producing extracellular enzymes and auxin could

  14. Spontaneous circadian fluctuations of prostate specific antigen and prostatic acid phosphatase serum activities in patients with prostatic cancer.

    PubMed

    Mannini, D; Maver, P; Aiello, E; Corrado, G; Vecchi, F; Bellanova, B; Marengo, M

    1988-01-01

    Spontaneous circadian variations of prostate specific antigen (PSA) and prostatic acid phosphatase (PAP), determined simultaneously by radioimmunoassay (RIA), were investigated by multiple sampling, over a 24-hour period, in 32 patients with prostatic cancer. In 29/32 patients (91%), the coefficient of variation of 24-hour values, for either marker, was greater than that of the RIA method at the same range of values; stage D patients showed the greatest spontaneous variability. Fluctuations around the mean of 24-hour values ranged from -65% to +85% for PAP, from -72% to +190% for PSA, occurring random and independently for each marker. Variability was about 20% greater for PSA than for PAP. The existence of spontaneous fluctuations should be considered in multiple marker evaluation of prostatic cancer patients. PMID:2449758

  15. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  16. Role of antioxidant enzymes in bacterial resistance to organic acids.

    PubMed

    Bruno-Bárcena, Jose M; Azcárate-Peril, M Andrea; Hassan, Hosni M

    2010-05-01

    Growth in aerobic environments has been shown to generate reactive oxygen species (ROS) and to cause oxidative stress in most organisms. Antioxidant enzymes (i.e., superoxide dismutases and hydroperoxidases) and DNA repair mechanisms provide protection against ROS. Acid stress has been shown to be associated with the induction of Mn superoxide dismutase (MnSOD) in Lactococcus lactis and Staphylococcus aureus. However, the relationship between acid stress and oxidative stress is not well understood. In the present study, we showed that mutations in the gene coding for MnSOD (sodA) increased the toxicity of lactic acid at pH 3.5 in Streptococcus thermophilus. The inclusion of the iron chelators 2,2'-dipyridyl (DIP), diethienetriamine-pentaacetic acid (DTPA), and O-phenanthroline (O-Phe) provided partial protection against 330 mM lactic acid at pH 3.5. The results suggested that acid stress triggers an iron-mediated oxidative stress that can be ameliorated by MnSOD and iron chelators. These findings were further validated in Escherichia coli strains lacking both MnSOD and iron SOD (FeSOD) but expressing a heterologous MnSOD from S. thermophilus. We also found that, in E. coli, FeSOD did not provide the same protection afforded by MnSOD and that hydroperoxidases are equally important in protecting the cells against acid stress. These findings may explain the ability of some microorganisms to survive better in acidified environments, as in acid foods, during fermentation and accumulation of lactic acid or during passage through the low pH of the stomach. PMID:20305033

  17. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  18. Dual Enzyme-Responsive Capsules of Hyaluronic Acid-block-Poly(Lactic Acid) for Sensing Bacterial Enzymes.

    PubMed

    Tücking, Katrin-Stephanie; Grützner, Verena; Unger, Ronald E; Schönherr, Holger

    2015-07-01

    The synthesis of novel amphiphilic hyaluronic acid (HYA) and poly(lactic acid) (PLA) block copolymers is reported as the key element of a strategy to detect the presence of pathogenic bacterial enzymes. In addition to the formation of defined HYA-block-PLA assemblies, the encapsulation of fluorescent reporter dyes and the selective enzymatic degradation of the capsules by hyaluronidase and proteinase K are studied. The synthesis of the dual enzyme-responsive HYA-b-PLA is carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition. The resulting copolymers are assembled in water to form vesicular structures, which are characterized by scanning electron microscopy, transmission electron microscopy, dynamic light scattering (DLS), and fluorescence lifetime imaging microscopy (FLIM). DLS measurements show that both enzymes cause a rapid decrease in the hydrodynamic diameter of the nanocapsules. Fluorescence spectroscopy data confirm the liberation of encapsulated dye, which indicates the disintegration of the capsules and validates the concept of enzymatically triggered payload release. Finally, cytotoxicity assays confirm that the HYA-b-PLA nanocapsules are biocompatible with primary human dermal microvascular endothelial cells. PMID:25940300

  19. Phosphatase activities as biosignatures of extant life

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.

    It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the

  20. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initia...

  1. Alkaline Phosphatase in Stem Cells

    PubMed Central

    Štefková, Kateřina; Procházková, Jiřina; Pacherník, Jiří

    2015-01-01

    Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells. PMID:25767512

  2. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    NASA Technical Reports Server (NTRS)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  3. Indoleacetic Acid and the Synthesis of Glucanases and Pectic Enzymes

    PubMed Central

    Datko, Anne Harmon; Maclachlan, G. A.

    1968-01-01

    Indoleacetic acid (IAA) and/or inhibitors of DNA, RNA or protein synthesis were added to the apex of decapitated seedlings of Pisum sativum L. var. Alaska. At various times up to 4 days, enzymic protein was extracted from a segment of epicotyl immediately below the apex and assayed for its ability to hydrolyse polysaccharides or their derivatives. With the exception of amylase, the total amounts per segment of all of the tested enzymes increased due to IAA treatment. The development of β-1,4-glucanase (cellulase) activity per unit of protein or fresh weight proceeded according to a typical sigmoid induction curve. Pectinase was formed for about 2 days in control segments and IAA treatment resulted in continued synthesis for at least another 2 days provided cell division took place. β-1,3-glucanase and pectinesterase activities were only enhanced by IAA to the extent that total protein levels increased. Reaction mechanisms for these effects and functions for the enzymes during growth are discussed. PMID:16656834

  4. Cdc2 H1 kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effects of okadaic acid.

    PubMed Central

    Félix, M A; Cohen, P; Karsenti, E

    1990-01-01

    In Xenopus embryos, the cell cycle is abbreviated to a rapid alternation between interphase and mitosis. The onset of each M phase is induced by the periodic activation of the cdc2 kinase which is triggered by a threshold level of cyclins and apparently involves dephosphorylation of p34cdc2. We have prepared post-ribosomal supernatants from eggs sampled during interphase (interphase extracts) and just before the first mitosis of the early embryonic cell cycle (prophase extracts). In 'interphase extracts', the cdc2 kinase never activates spontaneously upon incubation at room temperature whereas in 'prophase extracts' it does. We show here that in 'interphase extracts', specific inhibition of type 2A phosphatase by okadaic acid induces cdc2 kinase activation. This requires a subthreshold level of cyclin and the presence of a particulate factor in the extract. Inhibition of type 1 phosphatases by inhibitor 1 and inhibitor 2 never results in cdc2 kinase activation. These results demonstrate that during the period of cyclin accumulation, cdc2 kinase activation is inhibited by a type 2A phosphatase. In 'prophase extracts', spontaneous activation of the cdc2 kinase is inhibited by beta-glycerophosphate and NaF, but not by okadaic acid, inhibitor 1 and inhibitor 2 or divalent cation chelation. This demonstrates that when enough cyclin has accumulated, cdc2 kinase activation involves a protein phosphatase which must be distinct from the type 1 and 2A phosphatases, and from the calcium-dependent (type 2B) and magnesium-dependent (type 2C) phosphatases. Images Fig. 4. PMID:2155777

  5. Development of a nanobody-alkaline phosphatase fusion protein and its application in a highly sensitive direct competitive fluorescence enzyme immunoassay for detection of ochratoxin A in cereal

    PubMed Central

    Liu, Xing; Xu, Yang; Wan, De-bin; Xiong, Yong-hua; He, Zhen-yun; Wang, Xian-xian; Gee, Shirley J.; Ryu, Dojin; Hammock, Bruce D.

    2015-01-01

    A rapid and sensitive direct competitive fluorescence enzyme immunoassay (dc-FEIA) for ochratoxin A (OTA) based on a nanobody (Nb)-alkaline phosphatase (AP) fusion protein was developed. The VHH gene of Nb28 was subcloned into the expression vector pecan45 containing the AP double mutant gene. The Nb28-AP construct was transformed into E. coli BL21(DE3)plysS and soluble expression in bacteria was confirmed by SDS-PAGE and Western blot. Both the Nb properties and AP enzymatic activity were validated by colorimetric and fluorometric analysis. The 50% inhibitory concentration and the detection limit of the dc-FEIA were 0.13 ng/mL and 0.04 ng/mL, respectively, with a linear range of 0.06–0.43 ng/mL. This assay was compared with LC-MS/MS, and the results indicated the reliability of Nb-AP fusion protein-based dc-FEIA for monitoring OTA contamination in cereal. PMID:25531426

  6. Myosin assembly critical for the enzyme activity of smooth muscle myosin phosphatase: effects of MgATP, ionic strength, and Mg(2+).

    PubMed

    Sato, O; Ogawa, Y

    2001-06-01

    We suggested that an assembled form of phosphorylated myosin (P-myosin) might exhibit higher affinity for smooth muscle myosin phosphatase (SMMP) than dissociated P-myosin on the basis of the effect of MgATP [Sato and Ogawa (1999) J. Biochem. 126, 787-797]. To further deepen our understanding, we examined the SMMP activity and P-myosin assembly with various ionic strengths and Mg(2+) concentrations, with and without MgATP, all of which are well known to be critical for myosin assembly. The structure of myosin molecules was directly observed by electron microscopy using a rotary shadowing procedure, which was found to be consistent with the sedimentation assay. We found that the SMMP activity was always high when P-myosin was assembled. MgATP, which disassembled P-myosin mostly into a folded conformation, in contrast, decreased the enzyme activity. We also found that glycerol had a dissociating action on P-myosin, primarily dissociating it into an extended conformation, resulting in reduced SMMP activity, and that increases in the ionic strength and Mg(2+) (>5 mM) inhibited SMMP. These results indicate that myosin assembly is essential for SMMP activity. PMID:11388902

  7. Assessment the levels of tartrate-resistant acid phosphatase (TRAP) on mice fed with eggshell calcium citrate malate.

    PubMed

    Yu, Yiding; Zhang, Mingdi; Lin, Songyi; Wang, Liyan; Liu, Jingbo; Jones, Gregory; Huang, Hsiang-Chi

    2013-07-01

    Optimized conditions were obtained by one-factor-at-a-time test (OFAT) and ternary quadratic regression orthogonal composite design (TQROCD) respectively. By pulse electric fields (PEF) technology, the process of eggshell calcium citrate malate (ESCCM), eggshell calcium citrate (ESCC) and eggshells calcium malate (ESCM) were comprehensive compared. The levels of tartrate-resistant acid phosphatase (TRAP) and the bioavailability on mice fed with eggshell calcium citrate malate (ESCCM) treated by pulsed electric field (PEF) were evaluated. Results showed that the rates of calcium dissolution of the different acids studied can be arranged as ESCCM (7.90 mg/mL)>ESCC (7.12 mg/mL)>ESCM (7.08 mg/mL) from highest to lowest rate of dissolution. At the same dose 133.0 mg kg(-1) d(-1), the levels of TRAP in the ESCCM treatment groups were significantly lower than those in ESCM and ESCC (P<0.05). Bone calcium content in the mice fed with ESCCM was generally higher than fed with ESCM and ESCC. PMID:23603074

  8. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid.

    PubMed

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-07-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  9. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    PubMed Central

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  10. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa

    PubMed Central

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B.; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  11. Combinatorial Effects of Fatty Acid Elongase Enzymes on Nervonic Acid Production in Camelina sativa.

    PubMed

    Huai, Dongxin; Zhang, Yuanyuan; Zhang, Chunyu; Cahoon, Edgar B; Zhou, Yongming

    2015-01-01

    Very long chain fatty acids (VLCFAs) with chain lengths of 20 carbons and longer provide feedstocks for various applications; therefore, improvement of VLCFA contents in seeds has become an important goal for oilseed enhancement. VLCFA biosynthesis is controlled by a multi-enzyme protein complex referred to as fatty acid elongase, which is composed of β-ketoacyl-CoA synthase (KCS), β-ketoacyl-CoA reductase (KCR), β-hydroxyacyl-CoA dehydratase (HCD) and enoyl reductase (ECR). KCS has been identified as the rate-limiting enzyme, but little is known about the involvement of other three enzymes in VLCFA production. Here, the combinatorial effects of fatty acid elongase enzymes on VLCFA production were assessed by evaluating the changes in nervonic acid content. A KCS gene from Lunaria annua (LaKCS) and the other three elongase genes from Arabidopsis thaliana were used for the assessment. Five seed-specific expressing constructs, including LaKCS alone, LaKCS with AtKCR, LaKCS with AtHCD, LaKCS with AtECR, and LaKCS with AtKCR and AtHCD, were transformed into Camelina sativa. The nervonic acid content in seed oil increased from null in wild type camelina to 6-12% in LaKCS-expressing lines. However, compared with that from the LaKCS-expressing lines, nervonic acid content in mature seeds from the co-expressing lines with one or two extra elongase genes did not show further increases. Nervonic acid content from LaKCS, AtKCR and AtHCD co-expressing line was significantly higher than that in LaKCS-expressing line during early seed development stage, while the ultimate nervonic acid content was not significantly altered. The results from this study thus provide useful information for future engineering of oilseed crops for higher VLCFA production. PMID:26121034

  12. Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler.

    PubMed

    Maller, Alexandre; de Quadros, Thays Cristina Oliveira; Junqueira, Otto M; Graña, Alfredo Lora; de Lima Montaldi, Ana Paula; Alarcon, Ricardo Fernandes; Jorge, João Atílio; de Lourdes T M Polizeli, Maria

    2016-01-01

    Phytases are enzymes that hydrolyze the ester linkage of phytic acid, releasing inositol and inorganic phosphate. The phytic acid (phytate) is a major form of phosphorus in plant foods. Knowing that diet for animal of production has the cereal base (corn and soybean), primarily, broilers need for an alternative to use of the phosphate present in these ingredients, since it does not naturally produce the enzyme phytase, which makes it available. The aims of this work was studding the safe supplementation of Aspergillus japonicus var. Saito crude phytase in feeding broilers and check the biochemical effect on performance and bones of these animals. The enzymatic extract did not have aflatoxins B1, B2, G2 and G1 and zearalenone and ochratoxin, and low concentrations of this extract did not have cytotoxic effects on cells derived from lung tissue. The in vivo experiments showed that the phytase supplied the available phosphate reduction in the broiler feed formulation, with a live weight, weight gain, feed intake, feed conversion, viability, productive efficiency index and carcass yield similar to the control test. Furthermore, the phytase supplementation favored the formation of bone structure and performance of the broilers. The results show the high biotechnological potential of A. japonicus phytase on broiler food supplementation to reduce phosphorus addition in the food formulation. So, this enzyme could be used as a commercial alternative to animal diet supplementation. PMID:27625972

  13. Cytoplasmic Tyrosine Phosphatase Shp2 Coordinates Hepatic Regulation of Bile Acid and FGF15/19 Signaling to Repress Bile Acid Synthesis

    PubMed Central

    Li, Shuangwei; Hsu, Diane D.F.; Li, Bing; Luo, Xiaolin; Alderson, Nazilla; Qiao, Liping; Ma, Lina; Zhu, Helen H.; He, Zhao; Suino-Powell, Kelly; Ji, Kaihong; Li, Jiefu; Shao, Jianhua; Xu, H. Eric; Li, Tiangang; Feng, Gen-Sheng

    2015-01-01

    Summary Bile acid (BA) biosynthesis is tightly controlled by intrahepatic negative feedback signaling elicited by BA binding to farnesoid X receptor (FXR), and also by enterohepatic communication involving ileal BA reabsorption and FGF15/19 secretion. However, how these pathways are coordinated is poorly understood. We show here that non-receptor tyrosine phosphatase Shp2 is a critical player that couples and regulates the intrahepatic and enterohepatic signals for repression of BA synthesis. Ablating Shp2 in hepatocytes suppressed signal relay from FGFR4, receptor for FGF15/19, and attenuated BA activation of FXR signaling, resulting in elevation of systemic BA levels and chronic hepatobiliary disorders in mice. Acting immediately downstream of FGFR4, Shp2 associates with FRS2α and promotes the receptor activation and signal relay to several pathways. These results elucidate a molecular mechanism for the control of BA homeostasis by Shp2 through orchestration of multiple signals in hepatocytes. PMID:24981838

  14. Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices--a simple method for identifying polarized osteoclasts.

    PubMed

    Nakayama, Takahiro; Mizoguchi, Toshihide; Uehara, Shunsuke; Yamashita, Teruhito; Kawahara, Ichiro; Kobayashi, Yasuhiro; Moriyama, Yoshinori; Kurihara, Saburo; Sahara, Noriyuki; Ozawa, Hidehiro; Udagawa, Nobuyuki; Takahashi, Naoyuki

    2011-12-01

    Osteoclasts form ruffled borders and sealing zones toward bone surfaces to resorb bone. Sealing zones are defined as ringed structures of F-actin dots (actin rings). Polarized osteoclasts secrete protons to bone surfaces via vacuolar proton ATPase through ruffled borders. Catabolic enzymes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K are also secreted to bone surfaces. Here we show a simple method of identifying functional vestiges of polarized osteoclasts. Osteoclasts obtained from cocultures of mouse osteoblasts and bone marrow cells were cultured for 48 h on dentin slices. Cultures were then fixed and stained for TRAP to identify osteoclasts on the slices. Cells were removed from the slices with cotton swabs, and the slices subjected to TRAP and Mayer's hematoxylin staining. Small TRAP-positive spots (TRAP-marks) were detected in the resorption pits stained with Mayer's hematoxylin. Pitted areas were not always located in the places of osteoclasts, but osteoclasts existed on all TRAP-marks. A time course experiment showed that the number of TRAP-marks was maintained, while the number of resorption pits increased with the culture period. The position of actin rings formed in osteoclasts corresponded to that of TRAP-marks on dentin slices. Immunostaining of dentin slices showed that both cathepsin K and vacuolar proton ATPase were colocalized with the TRAP-marks. Treatment of osteoclast cultures with alendronate, a bisphosphonate, suppressed the formation of TRAP-marks and resorption pits without affecting the cell viability. Calcitonin induced the disappearance of both actin rings and TRAP-marks in osteoclast cultures. These results suggest that TRAP-marks are vestiges of proteins secreted by polarized osteoclasts. PMID:21983021

  15. Reversible Fluorescent Nanoswitch Based on Carbon Quantum Dots Nanoassembly for Real-Time Acid Phosphatase Activity Monitoring.

    PubMed

    Qian, Zhaosheng; Chai, Lujing; Zhou, Qian; Huang, Yuanyuan; Tang, Cong; Chen, Jianrong; Feng, Hui

    2015-07-21

    A reversible fluorescence nanoswitch by integrating carbon quantum dots nanoassembly and pyrophosphate ion is developed, and a reliable real-time fluorescent assay for acid phosphatase (ACP) activity is established on the basis of the fluorescence nanoswitch. Carbon quantum dots (CQDs) abundant in carboxyl groups on the surface, nickel(II) ion and pyrophosphate ion comprise the fluorescent nanoswitch, which operates in the following way: the nanoassembly consisting of CQDs and nickel ions can be triggered by pyrophosphate ion serving as an external stimulus. At the same time, the fluorescence nanoswitch switches between two fluorescence states (OFF and ON) accompanying shifts in their physical states aggregation and disaggregation. Based on the nanoswitch, the introduction of ACP leads to breakdown of pyrophosphate ions into phosphate ions and resultant fluorescence quenching due to catalytic hydrolysis of ACP toward pyrophosphate ions (PPi). Quantitative evaluation of ACP activity in a broad range from 18.2 U/L to 1300 U/L, with a detection limit of 5.5 U/L, can be achieved in this way, which endows the assay with sufficiently high sensitivity for practical detection in human serum and seminal plasma. PMID:26115095

  16. Salicylic Acid Based Small Molecule Inhibitor for the Oncogenic Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2)

    SciTech Connect

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-08-13

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy. We report a salicylic acid based combinatorial library approach aimed at binding both active site and unique nearby subpockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anticancer and antileukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors.

  17. Tartrate resistant acid phosphatase positive splenic lymphoma: a relatively benign condition occurring in a time-space cluster?

    PubMed Central

    Kettle, P; Morris, T C; Markey, G M; Alexander, H D; Curry, R C; Hayes, D; Cameron, C H; Toner, P G

    1990-01-01

    Conventional light and electron microscopic studies, together with cytochemical and immunocytochemical staining procedures, were carried out to ascertain whether the lymphomata of four elderly female patients living within 10 kilometers of each other, who presented within a short space of time with massive splenomegaly and varying cytopenia, belonged to any particular subgroup of lymphoma. In each case the lymphoma had a diffuse pattern and mature B cell phenotype. The malignant cells were of uniform cell type, slightly larger than admixed polymorphonuclear leucocytes, and showed minimal nuclear irregularity and positivity for tartrate resistant acid phosphatase (TRAP) staining. Their clinical and morphological features were compared with those of other lymphoproliferative disorders, but while sharing some features in common with each condition, this small group of patients seemed to have a unique combination of findings. The cytopenias of all four responded well after removal of the spleen and their disease has not been aggressive. It is concluded that these patients have a distinct subgroup of lymphoma, which it is important to recognise so that inappropriate use of aggressive cytotoxic drugs can be avoided. Images PMID:1698823

  18. Sensitivity and specificity of acid phosphatase to detect prostate cancer using data from a hospital information system.

    PubMed

    Zwetsloot-Schonk, J H; Hermans, J; Frolich, M; Snitker, P; Souverijn, J H; Zwartendijk, J

    1990-07-01

    Indices of diagnostic tests, such as sensitivity and specificity, should be determined using diagnostic test results of patients tested in clinical practice. Hospital information systems that store data on diagnostic tests and diagnoses might be used for sampling the desired study population and in the actual process of collecting the data. This paper presents, as an example, a study calculating the sensitivity and specificity of the prostate-specific acid phosphatase test. All data needed in the study were obtained from the hospital information system of Leiden University Hospital. The final health status of each patient was assessed by the cancer registry of the system. The reason for ordering the test was deduced from data on histopathological examinations of prostatic tissue. The actual selections made from the central database are described in dataflow diagrams. The sensitivity of the test was found to be 0.34 and the specificity 0.88, using a discrimination value of 1.00 U/l. The impact of the reason for ordering the test on the specificity is illustrated. Possible biases of these measured values are discussed. PMID:2215263

  19. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2, a phosphatase inactivated by the stress hormone abscisic acid.

    PubMed

    Léran, Sophie; Edel, Kai H; Pervent, Marjorie; Hashimoto, Kenji; Corratgé-Faillie, Claire; Offenborn, Jan Niklas; Tillard, Pascal; Gojon, Alain; Kudla, Jörg; Lacombe, Benoît

    2015-05-01

    Living organisms sense and respond to changes in nutrient availability to cope with diverse environmental conditions. Nitrate (NO3-) is the main source of nitrogen for plants and is a major component in fertilizer. Unraveling the molecular basis of nitrate sensing and regulation of nitrate uptake should enable the development of strategies to increase the efficiency of nitrogen use and maximize nitrate uptake by plants, which would aid in reducing nitrate pollution. NPF6.3 (also known as NRT1.1), which functions as a nitrate sensor and transporter; the kinase CIPK23; and the calcium sensor CBL9 form a complex that is crucial for nitrate sensing in Arabidopsis thaliana. We identified two additional components that regulate nitrate transport, sensing, and signaling: the calcium sensor CBL1 and protein phosphatase 2C family member ABI2, which is inhibited by the stress-response hormone abscisic acid. Bimolecular fluorescence complementation assays and in vitro kinase assays revealed that ABI2 interacted with and dephosphorylated CIPK23 and CBL1. Coexpression studies in Xenopus oocytes and analysis of plants deficient in ABI2 indicated that ABI2 enhanced NPF6.3-dependent nitrate transport, nitrate sensing, and nitrate signaling. These findings suggest that ABI2 may functionally link stress-regulated control of growth and nitrate uptake and utilization, which are energy-expensive processes. PMID:25943353

  20. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  1. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes...

  2. Development of an enzyme-linked immunosorbent assay to determine the numbers of chemolithotrophic bacteria at acid-mine-drainage sites. Technical report (Final)

    SciTech Connect

    Blake, R.C.; Revis, N.W.; Holdsworth, G.

    1990-09-01

    Thiobacillus ferrooxidans is a prominent member of a group of chemo-lithotrophic bacteria that bear principal responsibility for the formation of acid mine drainage. A prototype enzyme-linked immunosorbent assay (ELISA) for enumerating and qualifying T. ferrooxidans was assembled and characterized. The immunoassay protocol consisted of sequential incubations of the sample with (i) the primary antibody, (ii) the enzyme-labeled secondary antibody, and (iii) a chromogenic substrate specific for the enzyme lable. The necessary reagents comprised primary polyclonal rabbit antibodies directed against T. ferrooxidans ATCC 23270, alkaline phosphatase-copled goat anti-rabbit polyclonal antibodies, and phenolphrhalein monophosphate. The ELISA developed herein correctly identified whether iron-oxidizing bacteria were present in each of 4 samples supplied and analyzed by an independent laboratory. Sufficient preliminary data was obtained to warrant further research and development activities.

  3. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    PubMed Central

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  4. Chicken single-chain antibody fused to alkaline phosphatase detects Aspergillus pathogens and their presence in natural samples by direct sandwich enzyme-linked immunosorbent assay.

    PubMed

    Xue, Sheng; Li, He-Ping; Zhang, Jing-Bo; Liu, Jin-Long; Hu, Zu-Quan; Gong, An-Dong; Huang, Tao; Liao, Yu-Cai

    2013-11-19

    A sensitive and specific analytical method to detect ubiquitous aflatoxigenic Aspergillus pathogens is essential for monitoring and controlling aflatoxins. Four highly reactive chicken single-chain variable fragments (scFvs) against soluble cell wall proteins (SCWPs) from Aspergillus flavus were isolated by phage display. The scFv antibody AfSA4 displayed the highest activity toward both A. flavus and A. parasiticus and specifically recognized a surface target of their cell walls as revealed by immunofluorescence localization. Molecular modeling revealed a unique compact motif on the antibody surface mainly involving L-CDR2 and H-CDR3. As measured by surface plasmon resonance, AfSA4 fused to alkaline phosphatase had a higher binding capability and 6-fold higher affinity compared with AfSA4 alone. Immunoblot analyses showed that the fusion had good binding capacity to SCWP components from the two fungal species. Direct sandwich enzyme-linked immunosorbent assays with mouse antiaspergillus monoclonal antibody mAb2A8 generated in parallel as a capture antibody revealed that the detection limit of the two fungi was as low as 10(-3) μg/mL, 1000-fold more sensitive than that reported previously (1 μg/mL). The fusion protein was able to detect fungal concentrations below 1 μg/g of maize and peanut grains in both artificially and naturally contaminated samples, with at least 10-fold more sensitivity than that reported (10 μg/g) thus far. Thus, the fusion can be applied in rapid, simple, and specific diagnosis of Aspergillus contamination in field and stored food/feed commodities. PMID:24128348

  5. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  6. Activation of protein phosphatase 2A is responsible for increased content and inactivation of respiratory chain complex i induced by all-trans retinoic acid in human keratinocytes.

    PubMed

    Papa, F; Sardaro, N; Lippolis, R; Panelli, D; Scacco, S

    2016-01-01

    This study presents the effect of all-trans retinoic acid (ATRA) on cell growth and respiratory chain complex I in human keratinocyte cultures. Keratinocyte treatment results in increased level of GRIM-19 and other subunits of complex I, in particular of their carbonylated forms, associated with inhibition of its enzymatic activity. The results show that in keratinocytes ATRA-promoted phosphatase activity controls the proteostasis and activity of complex I. PMID:27358125

  7. Effect of Induced Oxidative Stress and Herbal Extracts on Acid Phosphatase Activity in Lysosomal and Microsomal Fractions of Midgut Tissue of the Silkworm, Bombyx mori

    PubMed Central

    Gaikwad, Y. B.; Gaikwad, S. M.; Bhawane, G. P.

    2010-01-01

    Lysosomal and microsomal acid phosphatase activity was estimated in midgut tissue of silkworm larvae, Bombyx mori L. (Lepidoptera: Bombycidae), after induced oxidative stress by D-galactose. The larvae were simultaneously were treated with ethanolic extracts of Bacopa monniera and Lactuca sativa to study their antioxidant properties. Lipid peroxidation and fluorescence was measured to analyze extent of oxidative stress. The ethanolic extract of Lactuca sativa was found to be more effective in protecting membranes against oxidative stress than Bacopa monniera. PMID:20874583

  8. Determination of liver microsomal glucose-6-phosphatase.

    PubMed

    Zak, B; Epstein, E; Baginski, E S

    1977-01-01

    A procedure for the determination of liver microsomal glucose-6-phosphatase is described. Homogenization and ultracentrifrigation were used to prepare a precipitate whose character was defined by monitoring the desire enzyme activity which serves as a marker. Activity of the enzyme was determined by means of a sensitive colorimetric reaction for the product, inorganic phosphate. Non-enzymatic hydrolysis problems with the substrate are minimized in this procedure by the masking action of citrate. The final heteropoly blue color appears to be considerably sensitized by interaction of phosphomolybdous ion with arsenite. The stability of the relatively labile enzyme was ensured by chelating any metals present with ethylene diamine tetraacetic acid. The overall results obtained by the procedure appear to be useful as an aid in the diagnosis of Type I glycogenosis, a glycogen storage disease called Von Gierke's disease. PMID:192125

  9. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    PubMed Central

    Petrosyan, Tigran R.; Ter-Markosyan, Anna S.; Hovsepyan, Anna S.

    2016-01-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3–4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian’s calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  10. Enzyme

    MedlinePlus

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  11. Zn-exchange and Mössbauer studies on the [Fe-Fe] derivatives of the purple acid Fe(III)-Zn(II)-phosphatase from kidney beans.

    PubMed

    Suerbaum, H; Körner, M; Witzel, H; Althaus, E; Mosel, B D; Müller-Warmuth, W

    1993-05-15

    In order to perform Mössbauer studies, Zn(II) in the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean has been exchanged by incubating the semiapoenzyme with 57Fe(II). The resulting Fe(III)-57Fe(II) enzyme has 125% activity, compared with that of the Zn(II) enzyme. It can be oxidized by H2O2 or peroxydisulfate to the Fe(III)-57Fe(III) species with a 30-times lower activity. Incubation of the metal-free apoenzyme with 57Fe(II) in the presence of O2 leads to the 57Fe(III)-57Fe(II) species which is stable in dilute solutions, but partially oxidized during the concentration procedure to the 57Fe(III)-57Fe(III) enzyme. Limited reduction of the oxidized enzyme with ascorbate delivers a mixture of the Fe(II)-Fe(II)/Fe(III)-Fe(III) species, but not the mixed valent Fe(III)-Fe(II) species, indicating that after the transfer of the first electron the second electron of the ascorbate radical is immediately transferred to the second Fe(III). The Mössbauer spectra of the oxidized species show at 4.2 K two quadrupole doublets with delta of 0.51 mm/s and 0.53 mm/s and delta E of 1.46 and 0.96 mm/s indicating high spin Fe(III) in two different binding sites, obviously with a higher asymmetry in the chromophoric Fe(III) site. The values are too low for a mu-oxo bridge. The mixed-valent Fe(III)-Fe(II) species shows two quadrupole doublets with delta values of 0.55 mm/s and 1.14 mm/s and delta E values of 1.43 mm/s and 3.01 mm/s at 70 K for high spin Fe(II) and Fe(III), but the signal of the Fe(II) component shows magnetic patterns at 4.2 K indicating a half-integer spin system with antiferromagnetic coupling. The Fe(II)-Fe(II) system exhibits two quadrupole doublets with delta values of 1.18 mm/s and 1.22 mm/s and with delta E values of 3.69 mm/s and 2.68 mm/s again indicating a higher asymmetry in the originally chromophoric Fe(III)-binding site. Addition of phosphate shows only minor differences in the oxidized enzyme and in the mixed valent Fe(III)-Fe(II) system

  12. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  13. Thermostable lipoxygenase, a key enzyme in bioconversion of linoleic acid to trihycroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases, enzymes that contain non-heme iron, catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene moiety leading to conjugated (Z,E)-hydroperoxydienoic acids. These enzymes are widely distributed in plants and animals, and a few microorganisms are reported as well. It ...

  14. Characterization of the major phosphofructokinase-dephosphorylating protein phosphatases from Ascaris suum muscle.

    PubMed

    Daum, G; Schmid, B; MacKintosh, C; Cohen, P; Hofer, H W

    1992-07-13

    In contrast to the mammalian enzyme, PFK from the nematode Ascaris suum is activated following phosphorylation (Daum et al. (1986) Biochem. Biophys. Res. Commun. 139, 215-221) catalyzed by a cAMP-dependent protein kinase (Thalhofer et al. (1988) J. Biol. Chem. 263, 952-957). In the present report, we describe the characterization of the major PFK dephosphorylating phosphatases from Ascaris muscle. Two of these phosphatases exhibit apparent M(r) values of 174,000 and 126,000, respectively, and are dissociated to active 33 kDa proteins by ethanol precipitation. Denaturing electrophoresis of each of the enzyme preparations showed two bands of M(r) 33,000 and 63,000. The enzymes are classified as type 2A phosphatases according to their inhibition by subnanomolar concentrations of okadaic acid, the lack of inhibition by heat-stable phosphatase inhibitors 1 and 2, and their preference for the alpha- rather than for the beta-subunit of phosphorylase kinase. Like other type 2A phosphatases, they exhibit broad substrate specificities, are activated by divalent cations and polycations, and inhibited by fluoride, inorganic phosphate and adenine nucleotides. In addition, we have found that PFK is also dephosphorylated by an unusual protein phosphatase. This exhibits kinetic properties similar to type 2A protein phosphatases, but has a distinctly lower sensitivity towards inhibition by okadaic acid (IC50 approx. 20 nM). Partial purification of the enzyme provided evidence that it is composed of a 30 kDa catalytic subunit and probably two other subunits (molecular masses 66 and 72 kDa). The dephosphorylation of PFK by protein phosphatases is strongly inhibited by heparin. This effect, however, is substrate-specific and does not occur with Ascaris phosphorylase a. PMID:1321672

  15. Fatty acid composition of muscle fat and enzymes of storage lipid synthesis in whole muscle from beef cattle.

    PubMed

    Kazala, E Chris; Lozeman, Fred J; Mir, Priya S; Aalhus, Jennifer L; Schmutz, Sheila M; Weselake, Randall J

    2006-11-01

    Enhanced intramuscular fat content (i.e., marbling) in beef is a desirable trait, which can result in increased product value. This study was undertaken with the aim of revealing biochemical factors associated with the marbling trait in beef cattle. Samples of longissimus lumborum (LL) and pars costalis diaphragmatis (PCD) were taken from a group of intact crossbred males and females at slaughter, lipids extracted, and the resulting FAME examined for relationships with marbling fat deposition. For LL, significant associations were found between degree of marbling and myristic (14:0, r = 0.55, P < 0.01), palmitic (16:0, r = 0.80, P < 0.001), stearic (18:0, r = -0.58, P < 0.01), and oleic (18:1c-9, r = 0.79, P < 0.001) acids. For PCD, significant relationships were found between marbling and palmitic (r = 0.71, P < 0.001) and oleic (r = 0.74, P < 0.001) acids. Microsomal fractions prepared from PCD muscle were assayed for diacylglycerol acyltransferase (DGAT), lysophosphatidic acid acyltransferase (LPAAT), and phosphatidic acid phosphatase-1 (PAP-1) activity, and the results examined for relationships with degree of intramuscular fat deposition. None of the enzyme activities from PCD displayed an association with marbling fat content, but DGAT specific activity showed significant positive associations with LPAAT (r = 0.54, P < 0.01), total PAP (r = 0.66, P < 0.001), and PAP-1 (r = 0.63, P < 0.01) specific activities. The results on FA compositions of whole muscle tissues provide insight into possible enzyme action associated with the production of specific FA. The increased proportion of oleic acid associated with enhanced lipid content of whole muscle is noteworthy given the known health benefits of this FA. PMID:17263304

  16. Liver-specific loss of lipin-1-mediated phosphatidic acid phosphatase activity does not mitigate intrahepatic TG accumulation in mice

    PubMed Central

    Schweitzer, George G.; Chen, Zhouji; Gan, Connie; McCommis, Kyle S.; Soufi, Nisreen; Chrast, Roman; Mitra, Mayurranjan S.; Yang, Kui; Gross, Richard W.; Finck, Brian N.

    2015-01-01

    Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1−/− mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1−/− mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1−/− mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1−/− mice were not protected from intrahepatic accumulation of diacylglyerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload. PMID:25722343

  17. Gallic acid and gallic acid derivatives: effects on drug metabolizing enzymes.

    PubMed

    Ow, Yin-Yin; Stupans, Ieva

    2003-06-01

    Gallic acid and its structurally related compounds are found widely distributed in fruits and plants. Gallic acid, and its catechin derivatives are also present as one of the main phenolic components of both black and green tea. Esters of gallic acid have a diverse range of industrial uses, as antioxidants in food, in cosmetics and in the pharmaceutical industry. In addition, gallic acid is employed as a source material for inks, paints and colour developers. Studies utilising these compounds have found them to possess many potential therapeutic properties including anti-cancer and antimicrobial properties. In this review, studies of the effects of gallic acid, its esters, and gallic acid catechin derivatives on Phase I and Phase II enzymes are examined. Many published reports of the effects of the in vitro effects of gallic acid and its derivatives on drug metabolising enzymes concern effects directly on substrate (generally drug or mutagen) metabolism or indirectly through observed effects in Ames tests. In the case of the Ames test an antimutagenic effect may be observed through inhibition of CYP activation of indirectly acting mutagens and/or by scavenging of metabolically generated mutagenic electrophiles. There has been considerable interest in the in vivo effects of the gallate esters because of their incorporation into foodstuffs as antioxidants and in the catechin gallates with their potential role as chemoprotective agents. Principally an induction of Phase II enzymes has been observed however more recent studies using HepG2 cells and primary cultures of human hepatocytes provide evidence for the overall complexity of actions of individual components versus complex mixtures, such as those in food. Further systematic studies of mechanisms of induction and inhibition of drug metabolising enzymes by this group of compounds are warranted in the light of their distribution and consequent ingestion, current uses and suggested therapeutic potential. However, it

  18. Lipid phosphate phosphatase inhibitors locally amplify lysophosphatidic acid LPA1 receptor signalling in rat brain cryosections without affecting global LPA degradation

    PubMed Central

    2012-01-01

    Background Lysophosphatidic acid (LPA) is a signalling phospholipid with multiple biological functions, mainly mediated through specific G protein-coupled receptors. Aberrant LPA signalling is being increasingly implicated in the pathology of common human diseases, such as arteriosclerosis and cancer. The lifetime of the signalling pool of LPA is controlled by the equilibrium between synthesizing and degradative enzymatic activity. In the current study, we have characterized these enzymatic pathways in rat brain by pharmacologically manipulating the enzymatic machinery required for LPA degradation. Results In rat brain cryosections, the lifetime of bioactive LPA was found to be controlled by Mg2+-independent, N-ethylmaleimide-insensitive phosphatase activity, attributed to lipid phosphate phosphatases (LPPs). Pharmacological inhibition of this LPP activity amplified LPA1 receptor signalling, as revealed using functional autoradiography. Although two LPP inhibitors, sodium orthovanadate and propranolol, locally amplified receptor responses, they did not affect global brain LPA phosphatase activity (also attributed to Mg2+-independent, N-ethylmaleimide-insensitive phosphatases), as confirmed by Pi determination and by LC/MS/MS. Interestingly, the phosphate analog, aluminium fluoride (AlFx-) not only irreversibly inhibited LPP activity thereby potentiating LPA1 receptor responses, but also totally prevented LPA degradation, however this latter effect was not essential in order to observe AlFx--dependent potentiation of receptor signalling. Conclusions We conclude that vanadate- and propranolol-sensitive LPP activity locally guards the signalling pool of LPA whereas the majority of brain LPA phosphatase activity is attributed to LPP-like enzymatic activity which, like LPP activity, is sensitive to AlFx- but resistant to the LPP inhibitors, vanadate and propranolol. PMID:22686545

  19. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    PubMed Central

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  20. Anti-thyroid and antifungal activities, BSA interaction and acid phosphatase inhibition of methimazole copper(II) complexes.

    PubMed

    Urquiza, Nora M; Islas, María S; Ariza, Santiago T; Jori, Nadir; Martínez Medina, Juan J; Lavecchia, Martín J; López Tévez, Leonor L; Lezama, Luis; Rojo, Teófilo; Williams, Patricia A M; Ferrer, Evelina G

    2015-03-01

    It has been reported that various metal coordination compounds have improved some biological properties. A high activity of acid phosphatase (AcP) is associated to several diseases (osteoporosis, Alzheimer's, prostate cancer, among others) and makes it a target for the development of new potential inhibitors. Anti-thyroid agents have disadvantageous side effects and the scarcity of medicines in this area motivated many researchers to synthesize new ones. Several copper(II) complexes have shown antifungal activities. In this work we presented for a first time the inhibition of AcP and the anti-thyroid activity produced by methimazole-Cu(II) complexes. Cu-Met ([Cu(MeimzH)2(H2O)2](NO3)2·H2O) produces a weak inhibition action while Cu-Met-phen ([Cu(MeimzH)2(phen)(H2O)2]Cl2) shows a strong inhibition effect (IC50 = 300 μM) being more effective than the reported behavior of vanadium complexes. Cu-Met-phen also presented a fairly good anti-thyroid activity with a formation constant value, Kc=1.02 × 10(10)M(-1) being 10(6) times more active than methimazole (Kc = 4.16 × 10(4)M(-1)) in opposition to Cu-Met which presented activity (Kc=9.54 × 10(3)M(-1)) but in a lesser extent than that of the free ligand. None of the complexes show antifungal activity except Cu-phen (MIC = 11.71 μgmL(-1) on Candidaalbicans) which was tested for comparison. Besides, albumin interaction experiments denoted high affinity toward the complexes and the calculated binding constants indicate reversible binding to the protein. PMID:25641192

  1. Antitumor effects of methotrexate-monoclonal anti-prostatic acid phosphatase antibody conjugate on human prostate tumor

    SciTech Connect

    Deguchi, T.; Chu, T.M.; Leong, S.S.; Horoszewicz, J.S.; Lee, C.L.

    1986-03-01

    Methotrexate (MTX) was conjugated to an IgG/sub 1/ monoclonal antibody (MCA) specific for human prostatic acid phosphatase (PAP) by an active ester method, resulting in a molar ratio of MTX to IgG/sub 1/ of 14. MTX-MCA conjugate retained 94% of free antibody activity and preserved 90% of dihydrofolate reductase inhibitory activity of free MTX. MTX-MCA conjugate was shown to be accumulated in vitro by prostate tumor cells (LNCaP) 1.3 times higher than that of MTX conjugate to normal mouse IgG (NIgG) and 6.2 times higher than that of free MTX. Antitumor activity in vitro exhibited that MTX-MCA conjugate is more effective on inhibition (52%) of /sup 3/H-deoxyuridine incorporation into LNCaP cells than that of MTX-NIgG (39%), but both were less effective than free MTX (70%). The in vivo distribution of /sup 3/H-MTX-MCA conjugate in human prostate tumor xenograft (tumor: blood ratio 5.1) was higher than those of /sup 3/H-MTX-NIgG conjugate (1.1) and of free /sup 3/H-MTX (1.5). Anti-tumor activity in vivo demonstrated that MTX-MCA conjugate retarded the growth of xenografted human prostate tumor greatly and persistently, as compared with the control groups. These results suggested that MTX-monoclonal anti-PAP antibody conjugate represents a potential reagent for immunochemotherapy of human prostate tumor (NIH CA-34536, CA-15437 and ACS CH-269.

  2. NGF-trkA signaling modulates the analgesic effects of prostatic acid phosphatase in resiniferatoxin-induced neuropathy

    PubMed Central

    Wu, Chieh-Hsin; Ho, Wan-Yi; Lee, Yi-Chen

    2016-01-01

    Background Neuropathic pain in small-fiber neuropathy results from injury to and sensitization of nociceptors. Functional prostatic acid phosphatase (PAP) acts as an analgesic effector. However, the mechanism responsible for the modulation of PAP neuropathology, which leads to loss of the analgesic effect after small-fiber neuropathy, remains unclear. Results We used a resiniferatoxin (RTX)-induced small-fiber neuropathy model to examine whether functional PAP(+) neurons are essential to maintain the analgesic effect. PAP(+) neurons were categorized into small to medium neurons (25th–75th percentile: 17.1–23.7 µm); these neurons were slightly reduced by RTX (p = 0.0003). By contrast, RTX-induced activating transcription factor 3 (ATF3), an injury marker, in PAP(+) neurons (29.0% ± 5.6% vs. 0.2% ± 0.2%, p = 0.0043), indicating PAP neuropathology. Moreover, the high-affinity nerve growth factor (NGF) receptor (trkA) colocalized with PAP and showed similar profiles after RTX-induced neuropathy, and the PAP/trkA ratios correlated with the degree of mechanical allodynia (r = 0.62, p = 0.0062). The NGF inducer 4-methylcatechol (4MC) normalized the analgesic effects of PAP; specifically, it reversed the PAP and trkA profiles and relieved mechanical allodynia. Administering 2.5S NGF showed similar results to those of administering 4MC. This finding suggests that the analgesic effect of functional PAP is mediated by NGF-trkA signaling, which was confirmed by NGF neutralization. Conclusions This study revealed that functional PAP(+) neurons are essential for the analgesic effect, which is mediated by NGF-trkA signaling. PMID:27306411

  3. Interaction between abscisic acid receptor PYL3 and protein phosphatase type 2C in response to ABA signaling in maize.

    PubMed

    Wang, Ying-Ge; Yu, Hao-Qiang; Zhang, Yuan-Yuan; Lai, Cong-Xian; She, Yue-Hui; Li, Wan-Chen; Fu, Feng-Ling

    2014-10-01

    Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. In recent researches, pyrabactin resistance 1-like protein (PYL) and protein phosphatase type 2C (PP2C) were identified as the direct receptor and the second component of ABA signaling pathway, respectively. However, a lot of PYL and PP2C members were found in Arabidopsis and several other plants. Some of them were found not to be involved in ABA signaling. Because of the complex diversity of the genome, few documents have been available on the molecular details of the ABA signal perception system in maize. In the present study, we conducted bioinformatics analysis to find out the candidates (ZmPYL3 and ZmPP2C16) of the PYL and PP2C members most probably involved in ABA signaling in maize, cloned their encoding genes (ZmPYL3 and ZmPP2C16), verified the interaction between these two proteins in response to exogenous ABA induction by yeast two-hybrid assay and bimolecular fluorescence complementation, and investigated the expression patterns of these two genes under the induction of exogenous ABA by real-time fluorescence quantitative PCR. The results indicated that the ZmPYL3 and ZmPP2C16 proteins interacted in vitro and in vivo in response to the induction of exogenous ABA. The downregulated expression of the ZmPYL3 gene and the upregulated expression of the ZmPP2C16 gene are responsive to the induction of exogenous ABA. The ZmPYL3 and ZmPP2C16 proteins are the most probable members of the receptors and the second components of ABA signaling pathway, respectively. PMID:25091169

  4. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse).

    PubMed

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18-19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22-23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  5. Cell- and ligand-specific dephosphorylation of acid hydrolases: Evidence that the mannose 6-phosphatase is controlled by compartmentalization

    SciTech Connect

    Einstein, R.; Gabel, C.A. )

    1991-01-01

    Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum. To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of individual acid hydrolases was studied in Man 6-P/IGF II receptor-positive and -deficient cell lines. 125I-labeled Man 6-P-containing acid hydrolases were proteolytically processed but remained phosphorylated when endocytosed by receptor-positive L cells maintained in the absence of serum; after the addition of serum, however, the cell-associated hydrolases were dephosphorylated. Individual hydrolases were dephosphorylated at distinct rates and to different extents. In contrast, the same hydrolases were dephosphorylated equally and completely after entry into Man 6-P/IGF II receptor-positive Chinese hamster ovary (CHO) cells. The dephosphorylation competence of Man 6-P/IGF II receptor-deficient mouse J774 cells was more limited. beta-Glucuronidase produced by these cells underwent a limited dephosphorylation in transit to lysosomes such that diphosphorylated oligosaccharides were converted to monophosphorylated species. The overall quantity of phosphorylated oligosaccharides associated with the enzyme, however, did not decrease within the lysosomal compartment. Likewise, beta-glucuronidase was not dephosphorylated when introduced into J774 cells via Fc receptor-mediated endocytosis. The CHO and J774 cell lysosomes, therefore, display opposite extremes with respect to their capacity to dephosphorylate acid hydrolases; within CHO cell lysosomes acid hydrolases are rapidly and efficiently dephosphorylated, but within J774 cell lysosomes the same acid hydrolases remain phosphorylated.

  6. Assessing the Biological Activity of the Glucan Phosphatase Laforin.

    PubMed

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S; Sanz, Pascual

    2016-01-01

    Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity. PMID:27514803

  7. The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression.

    PubMed

    Brock, Anita K; Willmann, Roland; Kolb, Dagmar; Grefen, Laure; Lajunen, Heini M; Bethke, Gerit; Lee, Justin; Nürnberger, Thorsten; Gust, Andrea A

    2010-07-01

    Abscisic acid (ABA) is an important phytohormone regulating various cellular processes in plants, including stomatal opening and seed germination. Although protein phosphorylation via mitogen-activated protein kinases (MAPKs) has been suggested to be important in ABA signaling, the corresponding phosphatases are largely unknown. Here, we show that a member of the Protein Phosphatase 2C (PP2C) family in Arabidopsis (Arabidopsis thaliana), PP2C5, is acting as a MAPK phosphatase. The PP2C5 protein colocalizes and directly interacts with stress-induced MPK3, MPK4, and MPK6, predominantly in the nucleus. Importantly, altered PP2C5 levels affect MAPK activation. Whereas Arabidopsis plants depleted of PP2C5 show an enhanced ABA-induced activation of MPK3 and MPK6, ectopic expression of PP2C5 in tobacco (Nicotiana benthamiana) resulted in the opposite effect, with the two MAPKs salicylic acid-induced protein kinase and wound-induced protein kinase not being activated any longer after ABA treatment. Moreover, depletion of PP2C5, whose gene expression itself is affected by ABA treatment, resulted in altered ABA responses. Loss-of-function mutation in PP2C5 or AP2C1, a close PP2C5 homolog, resulted in an increased stomatal aperture under normal growth conditions and a partial ABA-insensitive phenotype in seed germination that was most prominent in the pp2c5 ap2c1 double mutant line. In addition, the response of ABA-inducible genes such as ABI1, ABI2, RD29A, and Erd10 was reduced in the mutant plants. Thus, we suggest that PP2C5 acts as a MAPK phosphatase that positively regulates seed germination, stomatal closure, and ABA-inducible gene expression. PMID:20488890

  8. The Catalytic Scaffold fo the Haloalkanoic Acid Dehalogenase Enzyme Superfamily Acts as a Mold for the Trigonal Bipyramidal Transition State

    SciTech Connect

    Lu,Z.; Dunaway-Mariano, D.; Allen, K.

    2008-01-01

    The evolution of new catalytic activities and specificities within an enzyme superfamily requires the exploration of sequence space for adaptation to a new substrate with retention of those elements required to stabilize key intermediates/transition states. Here, we propose that core residues in the large enzyme family, the haloalkanoic acid dehalogenase enzyme superfamily (HADSF) form a 'mold' in which the trigonal bipyramidal transition states formed during phosphoryl transfer are stabilized by electrostatic forces. The vanadate complex of the hexose phosphate phosphatase BT4131 from Bacteroides thetaiotaomicron VPI-5482 (HPP) determined at 1.00 Angstroms resolution via X-ray crystallography assumes a trigonal bipyramidal coordination geometry with the nucleophilic Asp-8 and one oxygen ligand at the apical position. Remarkably, the tungstate in the complex determined to 1.03 Angstroms resolution assumes the same coordination geometry. The contribution of the general acid/base residue Asp-10 in the stabilization of the trigonal bipyramidal species via hydrogen-bond formation with the apical oxygen atom is evidenced by the 1.52 Angstroms structure of the D10A mutant bound to vanadate. This structure shows a collapse of the trigonal bipyramidal geometry with displacement of the water molecule formerly occupying the apical position. Furthermore, the 1.07 Angstroms resolution structure of the D10A mutant complexed with tungstate shows the tungstate to be in a typical 'phosphate-like' tetrahedral configuration. The analysis of 12 liganded HADSF structures deposited in the protein data bank (PDB) identified stringently conserved elements that stabilize the trigonal bipyramidal transition states by engaging in favorable electrostatic interactions with the axial and equatorial atoms of the transferring phosphoryl group.

  9. Measuring phosphatidic acid phosphatase (EC 3.1.3.4) activity using two phosphomolybdate-based colorimetric methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatidate phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4), which is also known as PAP, catalyzes the dephosphorylation of phosphatidate (PtdOH) to form diacylglycerol (DAG) and inorganic phosphate. In eukaryotes, PAP driven reaction is the committed step in the synthesis of triacyl...

  10. A Mg(2+)-dependent ecto-phosphatase activity on the external surface of Trypanosoma rangeli modulated by exogenous inorganic phosphate.

    PubMed

    Fonseca-de-Souza, André L; Dick, Claudia Fernanda; Dos Santos, André Luiz Araújo; Meyer-Fernandes, José Roberto

    2008-08-01

    In this work, we characterized a Mg(2+)-dependent ecto-phosphatase activity present in live Trypanosoma rangeli epimastigotes. This enzyme showed capacity to hydrolyze the artificial substrate for phosphatases, p-nitrophenylphosphate (p-NPP). At saturating concentration of p-NPP, half-maximal p-NPP hydrolysis was obtained with 0.23mM Mg(2+). Ca(2+) had no effect on the basal phosphatase activity, could not substitute Mg(2+) as an activator and in contrast inhibited the p-NPP hydrolysis stimulated by Mg(2+). The dependence on p-NPP concentration showed a normal Michaelis-Menten kinetics for this phosphatase activity with values of V(max) of 8.94+/-0.36 nmol p-NP x h(-1) x 10(-7) cells and apparent K(m) of 1.04+/-0.16 mM p-NPP. Mg(2+)-dependent ecto-phosphatase activity was stimulated by the alkaline pH range. Experiments using inhibitors, such as, sodium fluoride, sodium orthovanadate and ammonium molybdate, inhibited the Mg(2+)-dependent ecto-phosphatase activity. Inorganic phosphate (Pi), a product of phosphatases, inhibited reversibly in 50% this activity. Okadaic acid and microcystin-LR, specific phosphoserine/threonine phosphatase inhibitors, inhibited significantly the Mg(2+)-dependent ecto-phosphatase activity. In addition, this phosphatase activity was able to recognize as substrates only o-phosphoserine and o-phosphothreonine, while o-phosphotyrosine was not a good substrate for this phosphatase. Epimastigote forms of T. rangeli exhibit a typical growth curve, achieving the stationary phase around fifth or sixth day and the Mg(2+)-dependent ecto-phosphatase activity decreased around 10-fold with the cell growth progression. Cells maintained at Pi-deprived medium (2 mM Pi) present Mg(2+)-dependent ecto-phosphatase activity approximately threefold higher than that maintained at Pi-supplemented medium (50 mM Pi). PMID:18599005

  11. Phosphoinositide Phosphatases in Cell Biology and Disease

    PubMed Central

    Liu, Yang; Bankaitis, Vytas A.

    2010-01-01

    Phosphoinositides are essential signaling molecules linked to a diverse array of cellular processes in eukaryotic cells. The metabolic interconversions of these phospholipids are subject to exquisite spatial and temporal regulation executed by arrays of phosphatidylinositol (PtdIns) and phosphoinositide-metabolizing enzymes. These include PtdIns- and phosphoinositide-kinases that drive phosphoinositide synthesis, and phospholipases and phosphatases that regulate phosphoinositide degradation. In the past decade, phosphoinositide phosphatases have emerged as topics of particular interest. This interest is driven by the recent appreciation that these enzymes represent primary mechanisms for phosphoinositide degradation, and because of their ever-increasing connections with human diseases. Herein, we review the biochemical properties of six major phosphoinositide phosphatases, the functional involvements of these enzymes in regulating phosphoinositide metabolism, the pathologies that arise from functional derangements of individual phosphatases, and recent ideas concerning the involvements of phosphoinositide phosphatases in membrane traffic control. PMID:20043944

  12. Non-enzymic beta-decarboxylation of aspartic acid.

    NASA Technical Reports Server (NTRS)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  13. Effect of simulated acid rain on the litter decomposition of Quercus acutissima and Pinus massoniana in forest soil microcosms and the relationship with soil enzyme activities.

    PubMed

    Wang, Congyan; Guo, Peng; Han, Guomin; Feng, Xiaoguang; Zhang, Peng; Tian, Xingjun

    2010-06-01

    With the continuing increase in human activities, ecologists are increasingly interested in understanding the effects of acid rain on litter decomposition. Two dominant litters were chosen from Zijin Mountain in China: Quercus acutissima from a broad-leaved forest and Pinus massoniana from a coniferous forest. The litters were incubated in microcosms and treated with simulated acid rain (gradient pH levels). During a six-month incubation, changes in chemical composition (i.e., lignin, total carbohydrate, and nitrogen), litter mass losses, soil pH values, and activities of degradative enzymes were determined. Results showed that litter mass losses were depressed after exposure to acid rain and the effects of acid rain on the litter decomposition rates of needles were higher than on those of leaves. Results also revealed that simulated acid rain restrained the activities of cellulase, invertase, nitrate reductase, acid phosphatase, alkaline phosphatase, polyphenol oxidase, and urease, while it enhanced the activities of catalase in most cases during the six-month decomposition process. Catalase and polyphenol oxidase were primarily responsible for litter decomposition in the broad-leaved forest, while invertase, nitrate reductase, and urease were primarily responsible for litter decomposition in the coniferous forest. The results suggest acid rain-restrained litter decomposition may be due to the depressed enzymatic activities. According to the results of this study, soil carbon in subtropical forests would accumulate as a long-term consequence of continued acid rain. This may presumably alter the balance of ecosystem carbon flux, nutrient cycling, and humus formation, which may, in turn, have multiple effects on forest ecosystems. PMID:20382410

  14. Uronic Acid products release from enzymically active cell wall from tomato fruit and its dependency on enzyme quantity and distribution.

    PubMed

    Huber, D J; Lee, J H

    1988-07-01

    Isolated cell wall from tomato (Lycopersicon esculentum Mill. cv Rutgers) fruit released polymeric (degree of polymerization [DP] > 8), oligomeric, and monomeric uronic acids in a reaction mediated by bound polygalacturonase (PG) (EC 3.2.1.15). Wall autolytic capacity increased with ripening, reflecting increased levels of bound PG; however, characteristic oligomeric and monomeric products were recovered from all wall isolates exhibiting net pectin release. The capacity of wall from fruit at early ripening (breaker, turning) to generate oligomeric and monomeric uronic acids was attributed to the nonuniform ripening pattern of the tomato fruit and, consequently, a locally dense distribution of enzyme in wall originating from those fruit portions at more temporally advanced stages of ripening. Artificial autolytically active wall, prepared by permitting solubilized PG to bind to enzymically inactive wall from maturegreen fruit, released products which were similar in size characteristics to those recovered from active wall isolates. Extraction of wall-bound PG using high concentrations of NaCl (1.2 molar) did not attenuate subsequent autolytic activity but greatly suppressed the production of oligomeric and monomeric products. An examination of water-soluble uronic acids recovered from ripe pericarp tissue disclosed the presence of polymeric and monomeric uronic acids but only trace quantities of oligomers. The significance in autolytic reactions of enzyme quantity and distribution and their possible relevance to in vivo pectin degradation will be discussed. PMID:16666191

  15. The structure of a purple acid phosphatase involved in plant growth and pathogen defence exhibits a novel immunoglobulin-like fold

    PubMed Central

    Antonyuk, Svetlana Vladimirovna; Olczak, Mariusz; Olczak, Teresa; Ciuraszkiewicz, Justyna; Strange, Richard William

    2014-01-01

    Phosphatases function in the production, transport and recycling of inorganic phosphorus, which is crucial for cellular metabolism and bioenergetics, as well as in bacterial killing, since they are able to generate reactive oxygen species via Fenton chemistry. Diphosphonucleotide phosphatase/phosphodiesterase (PPD1), a glycoprotein plant purple acid phosphatase (PAP) from yellow lupin seeds, contains a bimetallic Fe–Mn catalytic site which is most active at acidic pH. Unlike other plant PAPs, PPD1 cleaves the pyrophosphate bond in diphosphonucleotides and the phosphodiester bond in various phosphodiesters. The homohexameric organization of PPD1, as revealed by a 1.65 Å resolution crystal structure and confirmed by solution X-ray scattering, is unique among plant PAPs, for which only homodimers have previously been reported. A phosphate anion is bound in a bidentate fashion at the active site, bridging the Fe and Mn atoms in a binding mode similar to that previously reported for sweet potato PAP, which suggests that common features occur in their catalytic mechanisms. The N-terminal domain of PPD1 has an unexpected and unique fibronectin type III-like fold that is absent in other plant PAPs. Here, the in vitro DNA-cleavage activity of PPD1 is demonstrated and it is proposed that the fibronectin III-like domain, which ‘overhangs’ the active site, is involved in DNA selectivity, binding and activation. The degradation of DNA by PPD1 implies a role for PPD1 in plant growth and repair and in pathogen defence. PMID:25075326

  16. Kinetic characteristics of polygalacturonase enzymes hydrolyzing galacturonic acid oligomers using isothermal titration calorimetry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polygalacturonase enzymes hydrolyze the polygalacturonic acid chains found in pectin. Interest in polygalacturonase enzymes continues as they are useful in a number of industrial processes and conversely, detrimental, as they are involved in maceration of economically important crops. While a good...

  17. Effects of Non-Natural Amino Acid Incorporation into the Enzyme Core Region on Enzyme Structure and Function

    PubMed Central

    Wong, H. Edward; Kwon, Inchan

    2015-01-01

    Techniques to incorporate non-natural amino acids (NNAAs) have enabled biosynthesis of proteins containing new building blocks with unique structures, chemistry, and reactivity that are not found in natural amino acids. It is crucial to understand how incorporation of NNAAs affects protein function because NNAA incorporation may perturb critical function of a target protein. This study investigates how the site-specific incorporation of NNAAs affects catalytic properties of an enzyme. A NNAA with a hydrophobic and bulky sidechain, 3-(2-naphthyl)-alanine (2Nal), was site-specifically incorporated at six different positions in the hydrophobic core of a model enzyme, murine dihydrofolate reductase (mDHFR). The mDHFR variants with a greater change in van der Waals volume upon 2Nal incorporation exhibited a greater reduction in the catalytic efficiency. Similarly, the steric incompatibility calculated using RosettaDesign, a protein stability calculation program, correlated with the changes in the catalytic efficiency. PMID:26402667

  18. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus.

    PubMed

    Lu, Linghong; Qiu, Wenmin; Gao, Wenwen; Tyerman, Stephen D; Shou, Huixia; Wang, Chuang

    2016-10-01

    Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice. PMID:27411391

  19. Derepressed 2-deoxyglucose-resistant mutants of Aspergillus niger with altered hexokinase and acid phosphatase activity in hyperproduction of beta-fructofuranosidase.

    PubMed

    Ashokkumar, B; Senthilkumar, S R; Gunasekaran, P

    2004-01-01

    Aspergillus niger NRRL330 produces extracellular beta-fructofuranosidase (Ffase), and its production is subject to repression by hexoses in the medium. After ultraviolet mutagenization and selection, seven derepressed mutants resistant to 2-deoxyglucose (2-DG) were isolated on Czapek's minimal medium containing glycerol. One of the mutants, designated DGRA-1, produced higher levels of Ffase. A considerable difference occurred in the mutants with reference to hexokinase and intracellular acid phosphatase activities. The hexokinase activity of the mutant DGRA-1 (0.69 U/mg) was 1.8-fold higher than the wild type (0.38 U/mg). Intracellular acid phosphatase activity of the mutant DGRA-1 (0.83 U/g of mycelia) was twofold higher than that of the wild type (0.42 U/g of mycelia), suggesting that phosphorylation and dephosphorylation steps could attribute to the 2-DG resistance of A. niger. However, additional mutations could account for the increased production of Ffase in the mutant DGRA-1. PMID:15304742

  20. Differential Expression of 1-Aminocyclopropane-1-Carboxylate Synthase Genes during Orchid Flower Senescence Induced by the Protein Phosphatase Inhibitor Okadaic Acid1

    PubMed Central

    Wang, Ning Ning; Yang, Shang Fa; Charng, Yee-yung

    2001-01-01

    Applying 10 pmol of okadaic acid (OA), a specific inhibitor of type 1 or type 2A serine/threonine protein phosphatases, to the orchid (Phalaenopsis species) stigma induced a dramatic increase in ethylene production and an accelerated senescence of the whole flower. Aminoethoxyvinylglycine or silver thiosulfate, inhibitors of ethylene biosynthesis or action, respectively, effectively inhibited the OA-induced ethylene production and retarded flower senescence, suggesting that the protein phosphatase inhibitor induced orchid flower senescence through an ethylene-mediated signaling pathway. OA treatment induced a differential expression pattern for the 1-aminocyclopropane-1-carboxylic acid synthase multigene family. Accumulation of Phal-ACS1 transcript in the stigma, labelum, and ovary induced by OA were higher than those induced by pollination as determined by “semiquantitative” reverse transcriptase-polymerase chain reaction. In contrast, the transcript levels of Phal-ACS2 and Phal-ACS3 induced by OA were much lower than those induced by pollination. Staurosporine, a protein kinase inhibitor, on the other hand, inhibited the OA-induced Phal-ACS1 expression in the stigma and delayed flower senescence. Our results suggest that a hyper-phosphorylation status of an unidentified protein(s) is involved in up-regulating the expression of Phal-ACS1 gene resulting in increased ethylene production and accelerated the senescence process of orchid flower. PMID:11351088

  1. Lipoxygenase, a key enzyme in bioconversion of linoleic acid into trihydroxy-octadecenoic acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases catalyze the oxidation of unsaturated fatty acids with a (1Z,4Z)-pentadiene structure leading to the formation of conjugated (Z,E)-hydroperoxydienoic acids, which in turn result in production of hydroxy lipid. These enzymes are widely distributed in plants, animals, and microorganisms...

  2. New metabolically stabilized analogues of lysophosphatidic acid: agonists, antagonists and enzyme inhibitors.

    PubMed

    Prestwich, G D; Xu, Y; Qian, L; Gajewiak, J; Jiang, G

    2005-12-01

    Lysophosphatidic acid (LPA) is a metabolically labile natural phospholipid with a bewildering array of physiological effects. We describe herein a variety of long-lived receptor-specific agonists and antagonists for LPA receptors. Several LPA and PA (phosphatidic acid) analogues also inhibit LPP (lipid phosphate phosphatase). The sn-1 or sn-2 hydroxy groups have been replaced by fluorine, difluoromethyl, difluoroethyl, O-methyl or O-hydroxyethoxy groups to give non-migrating LPA analogues that resist acyltransferases. Alkyl ether replacement of acyl esters produced lipase and acyltransferase-resistant analogues. Replacement of the bridging oxygen in the monophosphate by an alpha-monofluoromethylene-, alpha-bromomethylene- or alpha,alpha-difluoromethylenephosphonate gave phosphatase-resistant analogues. Phosphorothioate analogues with O-acyl and O-alkyl chains are potent, long-lived agonists for LPA1 and LPA3 receptors. Most recently, we have (i) prepared stabilized O-alkyl analogues of lysobisphosphatidic acid, (ii) explored the structure-activity relationship of stabilized cyclic LPA analogues and (iii) synthesized neutral head group trifluoromethylsulphonamide analogues of LPA. Through collaborative studies, we have collected data for these stabilized analogues as selective LPA receptor (ant)agonists, LPP inhibitors, TREK (transmembrane calcium channel) K+ channel agonists, activators of the nuclear transcription factor PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), promoters of cell motility and survival, and radioprotectants for human B-cells. PMID:16246118

  3. Ketol-acid reductoisomerase enzymes and methods of use

    DOEpatents

    Govindarajan, Sridhar; Li, Yougen; Liao, Der-Ing; O'Keefe, Daniel P.; Minshull, Jeremy Stephen; Rothman, Steven Cary; Tobias, Alexander Vincent

    2016-07-12

    Provided herein are polypeptides having ketol-acid reductoisomerase activity as well as microbial host cells comprising such polypeptides. Polypeptides provided herein may be used in biosynthetic pathways, including, but not limited to, isobutanol biosynthetic pathways.

  4. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis.

    PubMed

    Chen, Jia; Yu, Feng; Liu, Ying; Du, Changqing; Li, Xiushan; Zhu, Sirui; Wang, Xianchun; Lan, Wenzhi; Rodriguez, Pedro L; Liu, Xuanming; Li, Dongping; Chen, Liangbi; Luan, Sheng

    2016-09-13

    Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)-A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals. PMID:27566404

  5. Identification of the phosphohydrolase component of the hepatic and renal glucose-6-phosphatase systems

    SciTech Connect

    Countaway, J.L.

    1988-01-01

    The phosphohydrolase component of the renal and hepatic glucose-6-phosphatase systems has been identified by /sup 32/P-labeling of the phosphoryl-enzyme intermediate formed during steady state hydrolysis. Disrupted rat renal and hepatic microsomes were incubated with (/sup 32/P)glucose-6-P for 10-20 s at 30/sup 0/C and the reaction was stopped by the addition of ice-cold trichloroacetic acid. After separation of proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis, autoradiography revealed label incorporation into a 36,500 dalton polypeptide. Labeling of the phosphoryl-enzyme was blocked by competitive inhibitors of glucose-6-phosphatase activity and by thermal inactivation. The alternate substrates, (/sup 32/P)mannose-6-P and (/sup 32/P)pyrophosphate also labeled the phosphoryl-enzyme, but the phosphoryl-enzyme was not labeled by incubation with (/sup 32/P)inorganic phosphate.

  6. Metabolic Transformation of Mevalonic Acid by an Enzyme System from Peas 1

    PubMed Central

    Pollard, C. J.; Bonner, J.; Haagen-Smit, A. J.; Nimmo, C. C.

    1966-01-01

    En enzyme system has been found in peas which converts mevalonic acid to isoprenoid compounds. Among the intermediates in such conversion are mevalonic acid-5-phosphate and pyrophosphate, isopentenyl pyrophosphate and dimethylallylpyrophosphate. Among the products formed by the system are the pyrophosphates of geraniol, farnesol, nerolidol and higher isoprenoid alcohols. PMID:16656233

  7. Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa.

    PubMed

    Taura, Futoshi; Sirikantaramas, Supaart; Shoyama, Yoshinari; Yoshikai, Kazuyoshi; Shoyama, Yukihiro; Morimoto, Satoshi

    2007-06-26

    Cannabidiolic-acid (CBDA) synthase is the enzyme that catalyzes oxidative cyclization of cannabigerolic-acid into CBDA, the dominant cannabinoid constituent of the fiber-type Cannabis sativa. We cloned a novel cDNA encoding CBDA synthase by reverse transcription and polymerase chain reactions with degenerate and gene-specific primers. Biochemical characterization of the recombinant enzyme demonstrated that CBDA synthase is a covalently flavinylated oxidase. The structural and functional properties of CBDA synthase are quite similar to those of tetrahydrocannabinolic-acid (THCA) synthase, which is responsible for the biosynthesis of THCA, the major cannabinoid in drug-type Cannabis plants. PMID:17544411

  8. Structural and Kinetic Characterization of the LPS Biosynthetic Enzyme D-alpha,beta-D-heptose-1,7-bisphosphate Phosphatase (GmhB) from Escherichia coli

    SciTech Connect

    Taylor, P.; Sugiman-Marangos, S; Zhang, K; Valvano, M; Wright, G; Junop, M

    2010-01-01

    Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria and provides a permeability barrier to many commonly used antibiotics. ADP-heptose residues are an integral part of the LPS inner core, and mutants deficient in heptose biosynthesis demonstrate increased membrane permeability. The heptose biosynthesis pathway involves phosphorylation and dephosphorylation steps not found in other pathways for the synthesis of nucleotide sugar precursors. Consequently, the heptose biosynthetic pathway has been marked as a novel target for antibiotic adjuvants, which are compounds that facilitate and potentiate antibiotic activity. D-{alpha},{beta}-D-Heptose-1,7-bisphosphate phosphatase (GmhB) catalyzes the third essential step of LPS heptose biosynthesis. This study describes the first crystal structure of GmhB and enzymatic analysis of the protein. Structure-guided mutations followed by steady state kinetic analysis, together with established precedent for HAD phosphatases, suggest that GmhB functions through a phosphoaspartate intermediate. This study provides insight into the structure-function relationship of GmhB, a new target for combatting Gram-negative bacterial infection.

  9. Kinetics of enzyme inhibition by active molluscicidal agents ferulic acid, umbelliferone, eugenol and limonene in the nervous tissue of snail Lymnaea acuminata.

    PubMed

    Kumar, Pradeep; Singh, V K; Singh, D K

    2009-02-01

    Ferulic acid, umbelliferone (Ferula asafoetida), eugenol (Syzygium aromaticum) and limonene (Carum carvi) are active molluscicidal components that inhibited the activity of alkaline phosphatase and acetylcholinesterase in in vivo and in vitro exposure of Lymnaea acuminata. It was observed that ferulic acid, umbelliferone and eugenol are competitive and limonene is a competitive-non-competitive inhibitor of alkaline phosphatase. Ferulic acid and umbelliferone are competitive, whereas eugenol and limonene are competitive-non-competitive and uncompetitive inhibitors of acetylcholinesterase, respectively. PMID:18814203

  10. Discrimination of acidic and alkaline enzyme using Chou's pseudo amino acid composition in conjunction with probabilistic neural network model.

    PubMed

    Khan, Zaheer Ullah; Hayat, Maqsood; Khan, Muazzam Ali

    2015-01-21

    Enzyme catalysis is one of the most essential and striking processes among of all the complex processes that have evolved in living organisms. Enzymes are biological catalysts, which play a significant role in industrial applications as well as in medical areas, due to profound specificity, selectivity and catalytic efficiency. Refining catalytic efficiency of enzymes has become the most challenging job of enzyme engineering, into acidic and alkaline. Discrimination of acidic and alkaline enzymes through experimental approaches is difficult, sometimes impossible due to lack of established structures. Therefore, it is highly desirable to develop a computational model for discriminating acidic and alkaline enzymes from primary sequences. In this study, we have developed a robust, accurate and high throughput computational model using two discrete sample representation methods Pseudo amino acid composition (PseAAC) and split amino acid composition. Various classification algorithms including probabilistic neural network (PNN), K-nearest neighbor, decision tree, multi-layer perceptron and support vector machine are applied to predict acidic and alkaline with high accuracy. 10-fold cross validation test and several statistical measures namely, accuracy, F-measure, and area under ROC are used to evaluate the performance of the proposed model. The performance of the model is examined using two benchmark datasets to demonstrate the effectiveness of the model. The empirical results show that the performance of PNN in conjunction with PseAAC is quite promising compared to existing approaches in the literature so for. It has achieved 96.3% accuracy on dataset1 and 99.2% on dataset2. It is ascertained that the proposed model might be useful for basic research and drug related application areas. PMID:25452135

  11. The activity of some phosphatases in tissues of adult Hymenolepis nana Siebold (Csetoda).

    PubMed

    Humiczewska, M

    1989-01-01

    Histochemical methods were used to study the localization and activity of acid and alkaline phosphatases, ATP-ase, 5-nucleotidase, and glucose-6-phosphatase in tissues of the mature form of Hymenolepis nana. Considerable differences in activity and localization of particular enzymes were observed in the organs of the parasite. The results obtained permit the statement that the integument is the most active enzymatically; in connection with the literature data, this gives grounds for the thesis that the integument of the cestodes functions as an absorbent-digestive organ. PMID:2558920

  12. A Condensing Enzyme from the Seeds of Lesquerella fendleri That Specifically Elongates Hydroxy Fatty Acids1

    PubMed Central

    Moon, Hangsik; Smith, Mark A.; Kunst, Ljerka

    2001-01-01

    Lesquerella fendleri seed oil contains up to 60% hydroxy fatty acids, nearly all of which is the 20-carbon hydroxy fatty acid lesquerolic acid (d-14-hydroxyeicos-cis-11-enoic acid). Previous work suggested that lesquerolic acid in L. fendleri was formed by the elongation of the 18-carbon hydroxy fatty acid, ricinoleic acid. To identify a gene encoding the enzyme involved in hydroxy fatty acid elongation, an L. fendleri genomic DNA library was screened using the coding region of the Arabidopsis Fatty Acid Elongation1 gene as a probe. A gene, LfKCS3, with a high sequence similarity to known very long-chain fatty acid condensing enzymes, was isolated. LfKCS3 has a 2,062-bp open reading frame interrupted by two introns, which encodes a polypeptide of 496 amino acids. LfKCS3 transcripts accumulated only in the embryos of L. fendleri and first appeared in the early stages of development. Fusion of the LfKCS3 promoter to the uidA reporter gene and expression in transgenic Arabidopsis resulted in a high level of β-glucuronidase activity exclusively in developing embryos. Seeds of Arabidopsis plants transformed with LfKCS3 showed no change in their very long-chain fatty acid content. However, when these Arabidopsis plants were crossed with the transgenic plants expressing the castor oleate 12-hydroxylase, significant amounts of 20-carbon hydroxy fatty acids accumulated in the seed, indicating that the LfKCS3 condensing enzyme specifically catalyzes elongation of 18-carbon hydroxy fatty acids. PMID:11743108

  13. Spatial structure of oligopeptide PAP(248-261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248-286), in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Filippov, Andrei V.; Antzutkin, Oleg N.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2014-07-01

    Prostatic acid phosphatase (PAP) is an enzyme that facilitates infection of cells by HIV. Its peptide fragment PAP(248-286) forms amyloid fibrils known as SEVI, which enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of PAP(248-286) in aqueous and SDS solutions can be divided into an N-terminal disordered region, an α-helical central part and an α/310-helical C-terminal region (Nanga et al., 2009). In this work, we used NMR spectroscopy to study the spatial structure of the isolated N-terminal fragment of PAP(248-286), PAP(248-261) (GIHKQKEKSRLQGG), in aqueous and SDS micelle solutions. Formation of a PAP(248-261)-SDS complex was confirmed by chemical shift alterations in the 1H NMR spectra of the peptide, as well as by the signs and values of Nuclear Overhauser Effect (NOE). In addition, the PAP(248-261) peptide does not form any specified secondary structure in either aqueous or SDS solutions.

  14. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    SciTech Connect

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2013-02-28

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate {beta}-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes.

  15. The Catalytic Machinery of a Key Enzyme in Amino Acid Biosynthesis

    PubMed Central

    Viola, Ronald E.; Faehnle, Christopher R.; Blanco, Julio; Moore, Roger A.; Liu, Xuying; Arachea, Buenafe T.; Pavlovsky, Alexander G.

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  16. The catalytic machinery of a key enzyme in amino Acid biosynthesis.

    PubMed

    Viola, Ronald E; Faehnle, Christopher R; Blanco, Julio; Moore, Roger A; Liu, Xuying; Arachea, Buenafe T; Pavlovsky, Alexander G

    2011-01-01

    The aspartate pathway of amino acid biosynthesis is essential for all microbial life but is absent in mammals. Characterizing the enzyme-catalyzed reactions in this pathway can identify new protein targets for the development of antibiotics with unique modes of action. The enzyme aspartate β-semialdehyde dehydrogenase (ASADH) catalyzes an early branch point reaction in the aspartate pathway. Kinetic, mutagenic, and structural studies of ASADH from various microbial species have been used to elucidate mechanistic details and to identify essential amino acids involved in substrate binding, catalysis, and enzyme regulation. Important structural and functional differences have been found between ASADHs isolated from these bacterial and fungal organisms, opening the possibility for developing species-specific antimicrobial agents that target this family of enzymes. PMID:22332000

  17. Methods to distinguish various types of protein phosphatase activity

    SciTech Connect

    Brautigan, D.L.; Shriner, C.L.

    1988-01-01

    To distinguish the action of protein Tyr(P) and protein Ser(P)/Thr(P) phosphatases on /sup 32/P-labeled phosphoproteins in subcellular fractions different inhibitors and activators are utilized. Comparison of the effects of added compounds provides a convenient, indirect method to characterize dephosphorylation reactions. Protein Tyr(P) phosphatases are specifically inhibited by micromolar Zn2+ or vanadate, and show maximal activity in the presence of EDTA. The other class of cellular phosphatases, specific for protein Ser(P) and Thr(P) residues, are inhibited by fluoride and EDTA. In this class of enzymes two major functional types can be distinguished: those sensitive to inhibition by the heat-stable protein inhibitor-2 and not stimulated by polycations, and those not sensitive to inhibition and stimulated by polycations. Preparation of /sup 32/P-labeled Tyr(P) and Ser(P) phosphoproteins also is presented for the direct measurement of phosphatase activities in preparations by the release of acid-soluble (/sup 32/P)phosphate.

  18. Improving phosphorus acquisition of white clover (Trifolium repens L.) by transgenic expression of plant-derived phytase and acid phosphatase genes.

    PubMed

    Ma, Xue-Feng; Wright, Elane; Ge, Yaxin; Bell, Jeremey; Xi, Yajun; Bouton, Joseph H; Wang, Zeng-Yu

    2009-04-01

    Phosphate is one of the least available macronutrients restricting crop production in many ecosystems. A phytase gene (MtPHY1) and a purple acid phosphatase gene (MtPAP1), both isolated from the model legume Medicago truncatula, were introduced into white clover (Trifolium repens L.) by Agrobacterium-mediated transformation. The transgenes were driven by the constitutive CaMV35S promoter or the root-specific MtPT1 promoter. Transcripts were detected in roots of the transgenic plants. Phytase or acid phosphatase (APase) activities in root apoplasts of the transgenic plants were increased up to three-fold compared to the wild type control. After the plants were grown 80 days in sand pots supplied with organic phosphorus (Po) as the sole P source, dry weights of shoot tissues of the best performing transgenic plants almost doubled that of the control and were comparable to the counterparts supplied with inorganic phosphorus (Pi). Relative biomass production of the transgenics under Po treatment was over 90% and 80% of that from the Pi treatment when the plants were grown in hydroponics (40 days) and sand pots (80 days), respectively. In contrast, biomass of the wild type controls under Po treatment was only about 50% of the Pi treatment in either hydroponic cultures or sand pots. In addition, shoot P concentrations of the transgenic plants were significantly increased compared to the control. Transgenic plants accumulated much higher amounts of total P (up to 2.6-fold after 80 days of growth) than the control in Po supplied sand pots. The results showed that transgenic expression of MtPHY1 or MtPAP1 in white clover plants increased their abilities of utilizing organic phosphorus in response to P deficiency. PMID:26493137

  19. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  20. A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation

    PubMed Central

    Zhang, Ye; Wang, Xiaoyue; Lu, Shan; Liu, Dong

    2014-01-01

    The induction and secretion of acid phosphatases (APases) is a universal response of plants to phosphate (Pi) starvation. AtPAP10 (Arabidopsis purple acid phosphatase 10) is a major Pi starvation-induced APase that is associated with the root surface in Arabidopsis. So far, the roles of local and systemic signalling in regulating root-associated AtPAP10 activity remain largely unknown. In this work, we show that a decrease of local, external Pi availability is sufficient to induce AtPAP10 transcription in roots in the presence of sucrose, a systemic signal from shoots, whereas the magnitude of the induction is affected by the Pi status of the whole plant. Once the AtPAP10 mRNAs are synthesized in roots, subsequent accumulation of AtPAP10 proteins in root cells and increase in AtPAP10 activity on the root surface are mainly controlled by local signalling. Previously, ethylene has been demonstrated to be a positive regulator of AtPAP10 activity. In this study, we provide evidence that under Pi deficiency ethylene mainly modulates enzymatic activity of AtPAP10 on the root surface, but not AtPAP10 transcription and protein accumulation, suggesting that it functions as a local signal. Furthermore, our work indicates that the effect of ethylene on the induction of root-associated AtPAP10 activity depends on sucrose, but that the effect of sucrose does not depend on ethylene. These results reveal new insights into the distinct roles of local and systemic signalling in the regulation of root-associated AtPAP10 activity under Pi starvation. PMID:25246445

  1. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae).

    PubMed

    Shane, Michael W; Stigter, Kyla; Fedosejevs, Eric T; Plaxton, William C

    2014-11-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native 'extremophile' plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors' knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  2. Oxidase-peroxidase enzymes of Datura innoxia. Oxidation of formylphenylacetic acid ethyl ester.

    PubMed Central

    Kalyanaraman, V S; Mahadevan, S; Kumar, S A

    1975-01-01

    An enzyme system from Datura innoxia roots oxidizing formylphenylacetic acid ethyl ester was purified 38-fold by conventional methods such as (NH4)2SO4 fractionation, negative adsorption on alumina Cy gel and chromatography on DEAE-cellulose. The purified enzyme was shown to catalyse the stoicheiometric oxidation of formylphenylacetic acid ethyl ester to benzoylformic acid ethyl ester and formic acid, utilizing molecular O2. Substrate analogues such as phenylacetaldehyde and phenylpyruvate were oxidized at a very low rate, and formylphenylacetonitrile was an inhilating agents, cyanide, thiol compounds and ascorbic acid. This enzyme was identical with an oxidase-peroxidase isoenzyme. Another oxidase-peroxidase isoenzyme which separated on DEAE-chromatography also showed formylphenylacetic acid ethyl ester oxidase activity, albeit to a lesser extent. The properties of the two isoenzymes of the oxidase were compared and shown to differ in their oxidation and peroxidation properties. The oxidation of formylphenylacetic acid ethyl ester was also catalysed by horseradish peroxidase. The Datura isoenzymes exhibited typical haemoprotein spectra. The oxidation of formylphenylacetic acid ethyl ester was different from other peroxidase-catalysed reactions in not being activated by either Mn2+ or monophenols. The oxidation was inhibited by several mono- and poly-phenols and by catalase. A reaction mechanism for the oxidation is proposed. PMID:997

  3. Antioxidant activity and enzyme inhibition of phenolic acids from fermented rice bran with fungus Rizhopus oryzae.

    PubMed

    Schmidt, Cristiano G; Gonçalves, Letícia M; Prietto, Luciana; Hackbart, Helen S; Furlong, Eliana B

    2014-03-01

    The solid-state fermentation (SSF) has been employed as a form making available a higher content of functional compounds from agroindustrial wastes. In this work, the effect of SSF with the Rhizopus oryzae fungus on the phenolic acid content of rice bran was studied. Phenolic extracts derived from rice bran and fermented rice bran were evaluated for their ability to reduce free radical 1,1-diphenyl-2-picrihidrazil (DPPH) and for the ability to inhibit the enzymes peroxidase and polyphenol oxidase. The phenolic compound content increased by more than two times with fermentation. A change in the content of phenolic acids was observed, with ferulic acid presenting the greatest increase with the fermentation, starting from 33μg/g in rice bran and reaching 765μg/g in the fermented bran. [corrected]. The phenolic extracts showed an inhibition potential for DPPH and for the peroxidase enzyme, however did not inhibit the polyphenol oxidase enzyme. PMID:24176356

  4. GFP Reporter Screens for the Engineering of Amino Acid Degrading Enzymes from Libraries Expressed in Bacteria

    PubMed Central

    Paley, Olga; Agnello, Giulia; Cantor, Jason; Yoo, Tae Hyun; Georgiou, George; Stone, Everett

    2014-01-01

    There is significant interest in engineering human amino acid degrading enzymes as non-immunogenic chemotherapeutic agents. We describe a high-throughput fluorescence activated cell sorting (FACS) assay for detecting the catalytic activity of amino acid degrading enzymes in bacteria, at the single cell level. This assay relies on coupling the synthesis of the GFP reporter to the catalytic activity of the desired amino acid degrading enzyme in an appropriate E. coli genetic background. The method described here allows facile screening of much larger libraries (106–107) than was previously possible. We demonstrate the application of this technique in the screening of libraries of bacterial and human asparaginases and also for the catalytic optimization of an engineered human methionine gamma lyase. PMID:23423887

  5. Enzyme-entrapped mesoporous silica for treatment of uric acid disorders.

    PubMed

    Muthukoori, Shanthini; Narayanan, Naagarajan; Chandra, Manuguri Sesha Sarath; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2013-05-01

    Gout is an abnormality in the body resulting in the accumulation of uric acid mainly in joints. Dissolution of uric acid crystals into soluble allantoin by the enzyme uricase might provide a better alternative for the treatment of gout. This work aims to investigate the feasibility of a transdermal patch loaded with uricase for better patient compliance. Mesoporous silica (SBA-15) was chosen as the matrix for immobilisation of uricase. Highly oriented mesoporous SBA-15 was synthesized, characterized and uricase was physisorbed in the mesoporous material. The percentage adsorption and release of enzyme in borate buffer was monitored. The release followed linear kinetics and greater than 80% enzyme activity was retained indicating the potential of this system as an effective enzyme immobilization matrix. The enzyme permeability was studied with Wistar rat skin and human cadaver skin. It was found that in case of untreated rat skin 10% of enzyme permeated through skin in 100 h. The permeation increased by adding permeation enhancer (combination of oleic acid in propylene glycol (OA in PG)). The permeation enhancement was studied under two concentrations of OA in PG (1%, 5%) in both rat and human cadaver skin and it was found that 1% OA in PG showed better result in rat skin and 5% OA in PG showed good results in human cadaver skin. PMID:23802423

  6. Low Concentration of a Dioxin (2, 3, 7, 8 TCDD) Affects the Glycosidases and Acid Phosphatase Activity in Mice Hepatocytes

    PubMed Central

    Jigyasi, Jyoti; Kundu, Rahul

    2014-01-01

    Present communication reports the effects of environmentally available, low doses of tetra chloro di benzo-p-dioxin (2,3,7,8 TCDD) to lysosomal enzymes in mice liver. The study tests the hypothesis, in vivo exposure of low dose TCDD provokes dose and duration dependent toxic effects to key lysosomal enzymes and thereby causes cellular apoptotic changes. Three groups of female Swiss albino mice were subjected to two doses of TCDD (0.004 mg/kg bw/d, 0.04 mg/kg bw/d) for 2, 4 and 6 days of exposure durations. The results indicated significant exposure duration dependent effects of TCDD in mice liver cells. The results suggested that TCDD possibly induced an increase in intracellular ions or ROS which in turn altered different physiological activities by affecting different metabolic pathway of the liver cells. The altered functions of key lysosomal enzymes by TCDD may also evoke the process of cellular apoptosis. PMID:25552958

  7. Low concentration of a dioxin (2, 3, 7, 8 TCDD) affects the glycosidases and Acid phosphatase activity in mice hepatocytes.

    PubMed

    Jigyasi, Jyoti; Kundu, Rahul

    2014-12-01

    Present communication reports the effects of environmentally available, low doses of tetra chloro di benzo-p-dioxin (2,3,7,8 TCDD) to lysosomal enzymes in mice liver. The study tests the hypothesis, in vivo exposure of low dose TCDD provokes dose and duration dependent toxic effects to key lysosomal enzymes and thereby causes cellular apoptotic changes. Three groups of female Swiss albino mice were subjected to two doses of TCDD (0.004 mg/kg bw/d, 0.04 mg/kg bw/d) for 2, 4 and 6 days of exposure durations. The results indicated significant exposure duration dependent effects of TCDD in mice liver cells. The results suggested that TCDD possibly induced an increase in intracellular ions or ROS which in turn altered different physiological activities by affecting different metabolic pathway of the liver cells. The altered functions of key lysosomal enzymes by TCDD may also evoke the process of cellular apoptosis. PMID:25552958

  8. Enzyme Regulation in Crassulacean Acid Metabolism Photosynthesis : Studies on Thioredoxin-Linked Enzymes of KalanchoE daigremontiana.

    PubMed

    Hutcheson, S W; Buchanan, B B

    1983-07-01

    Fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) were identified and purified from the Crassulacean acid metabolism (CAM) plant, Kalanchoë daigremontiana. FBPase and SBPase showed respective molecular weights of 180,000 and 76,000, and exhibited immunological cross-reactivity with their counterparts from chloroplasts of C(3) (spinach) and C(4) (corn) plants. Based on Western blot analysis, FBPase was composed of four identical 45,000-dalton subunits and SBPase of two identical 38,000-dalton subunits. Immunological evidence, together with physical properties, indicated that both enzymes were of chloroplast origin.Kalanchoë FBPase and SBPase could be activated by thioredoxin f reduced chemically by dithiothreitol or photochemically by a reconstituted Kalanchoë ferredoxin/thioredoxin system. Both enzymes were activated synergistically by reduced thioredoxin f and thier respective substrates.Kalanchoë FBPase could be partially activated by Mg(2+) at concentrations greater than 10 millimolar; however, such activation was considerably less than that observed in the presence of reduced thioredoxin and Ca(2+), especially in the pH range between 7.8 and 8.3. In contrast to FBPase, Kalanchoë SBPase exhibited an absolute requirement for a dithiol such as reduced thioredoxin irrespective of Mg(2+) concentration. However, like FBPase, increased Mg(2+) concentrations enhanced the thioredoxin-linked activation of this enzyme.In conjunction with these studies, an NADP-linked malate dehydrogenase (NADP-MDH) was identified in cell-free preparations of Kalanchoë leaves which required reduced thioredoxin m for activity.These results indicate that Kalanchoë FBPase, SBPase, and NADP-MDH share physical and regulatory properties with their equivalents in C(3) and C(4) plants. In contrast to previous evidence, all three enzymes appear to have the capacity to be photoregulated in chloroplasts of CAM plants, thereby providing a means for the

  9. Production of Cell Wall Hydrolyzing Enzymes by Barley Aleurone Layers in Response to Gibberellic Acid 1

    PubMed Central

    Taiz, Lincoln; Honigman, William A.

    1976-01-01

    The cell walls of barley (Hordeum vulgare var. Himalaya) aleurone layers undergo extensive degradation during the tissue's response to gibberellic acid. Previous work had shown that these cell walls consist almost entirely of arabinoxylan. In this study we show that gibberellic acid stimulates endo-β-1,4-xylanase activity in isolated aleurone layers. In addition, gibberellic acid enhances the activity of two glycosidases: β-xylopyranosidase and α-arabinofuranosidase. No gibberellic acid-stimulated cellulase activity was detected. Germination studies showed a similar pattern of enzyme development in intact seeds. Images PMID:16659683

  10. Exploring omega-3 fatty acids, enzymes and biodiesel producing thraustochytrids from Australian and Indian marine biodiversity.

    PubMed

    Gupta, Adarsha; Singh, Dilip; Byreddy, Avinesh R; Thyagarajan, Tamilselvi; Sonkar, Shailendra P; Mathur, Anshu S; Tuli, Deepak K; Barrow, Colin J; Puri, Munish

    2016-03-01

    The marine environment harbours a vast diversity of microorganisms, many of which are unique, and have potential to produce commercially useful materials. Therefore, marine biodiversity from Australian and Indian habitat has been explored to produce novel bioactives, and enzymes. Among these, thraustochytrids collected from Indian habitats were shown to be rich in saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs), together constituting 51-76% of total fatty acids (TFA). Indian and Australian thraustochytrids occupy separate positions in the dendrogram, showing significant differences exist in the fatty acid profiles in these two sets of thraustochytrid strains. In general, Australian strains had a higher docosahexaenoic acid (DHA) content than Indian strains with DHA at 17-31% of TFA. A range of enzyme activities were observed in the strains, with Australian strains showing overall higher levels of enzyme activity, with the exception of one Indian strain (DBTIOC-1). Comparative analysis of the fatty acid profile of 34 strains revealed that Indian thraustochytrids are more suitable for biodiesel production since these strains have higher fatty acids content for biodiesel (FAB, 76%) production than Australian thraustochytrids, while the Australian strains are more suitable for omega-3 (40%) production. PMID:26580151

  11. Spatial structure of heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys, a fragment of the HIV enhancer prostatic acid phosphatase, in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Bloсhin, Dmitri S.; Aganova, Oksana V.; Yulmetov, Aidar R.; Filippov, Andrei V.; Gizatullin, Bulat I.; Afonin, Sergii; Antzutkin, Oleg N.; Klochkov, Vladimir V.

    2013-02-01

    Prostatic acid phosphatase (PAP) is a protein abundantly present in human seminal fluid. PAP plays important role in fertilization. Its 39-amino-acid fragment, PAP(248-286), is effective in enhancing infectivity of HIV virus. In this work, we determined the spatial structure in aqueous solution of a heptapeptide within the PAP fragment, containing amino acid residues 266-272 (Glu-Ile-Leu-Asn-His-Met-Lys). We also report the structure of the complex formed by this heptapeptide with sodium dodecyl sulfate micelles, a model of a biological membrane, as determined by 1H NMR spectroscopy and 2D NMR (TOCSY, HSQC-HECADE, NOESY) spectroscopy. Complex formation was confirmed by chemical shift alterations in the 1H NMR spectra of the heptapeptide, as well as by the signs and values of NOE effects. We also present a comparison of the spatial structure of Glu-Ile-Leu-Asn-His-Met-Lys in water and in complex with sodium dodecyl sulfate.

  12. Searching for the role of protein phosphatases in eukaryotic microorganisms.

    PubMed

    da-Silva, A M; Zapella, P D; Andrioli, L P; Campanhã, R B; Fiorini, L C; Etchebehere, L C; da-Costa-Maia, J C; Terenzi, H F

    1999-07-01

    Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism. PMID:10454741

  13. Developmental regulation of hexosamine biosynthesis by protein phosphatases 2A and 2C in Blastocladiella emersonii.

    PubMed

    Etchebehere, L C; Simon, M N; Campanhã, R B; Zapella, P D; Véron, M; Maia, J C

    1993-08-01

    Extracts of the aquatic fungus Blastocladiella emersonii were found to contain protein phosphatases type 1, type 2A, and type 2C with properties analogous to those found in mammalian tissues. The activities of all three protein phosphatases are developmentally regulated, increasing during sporulation, with maximum level in zoospores. Protein phosphatases 2A and 2C, present in zoospore extracts, catalyze the dephosphorylation of L-glutamine:fructose-6-phosphate amidotransferase (EC 2.6.1.16, amidotransferase), a key regulatory enzyme in hexosamine biosynthesis. The protein phosphatase inhibitor okadaic acid induces encystment and inhibits germ tube formation but does not affect the synthesis of the chitinous cell wall. These results strongly suggest that phosphatase 2C is responsible for the dephosphorylation of amidotransferase in vivo. This dephosphorylation is inhibited by uridine-5'-diphospho-N-acetylglucosamine, the end product of hexosamine synthesis and the substrate for chitin synthesis. This result demonstrates a dual role of uridine-5'-diphospho-N-acetylglucosamine by inhibiting the activity of the phosphorylated form of amidotransferase and by preventing its dephosphorylation by protein phosphatases. PMID:8394312

  14. Role of Malic Enzyme during Fatty Acid Synthesis in the Oleaginous Fungus Mortierella alpina

    PubMed Central

    Hao, Guangfei; Chen, Haiqin; Wang, Lei; Gu, Zhennan; Song, Yuanda; Zhang, Hao

    2014-01-01

    The generation of NADPH by malic enzyme (ME) was postulated to be a rate-limiting step during fatty acid synthesis in oleaginous fungi, based primarily on the results from research focusing on ME in Mucor circinelloides. This hypothesis is challenged by a recent study showing that leucine metabolism, rather than ME, is critical for fatty acid synthesis in M. circinelloides. To clarify this, the gene encoding ME isoform E from Mortierella alpina was homologously expressed. ME overexpression increased the fatty acid content by 30% compared to that for a control. Our results suggest that ME may not be the sole rate-limiting enzyme, but does play a role, during fatty acid synthesis in oleaginous fungi. PMID:24532075

  15. The inhibitory effect of convulsant agents on the enzyme in brain which inactivates nerveside

    PubMed Central

    Toh, C. C.

    1969-01-01

    1. An enzyme which can be extracted from brain inactivates nerveside in the optimum pH range 5·8-7·0. 2. The polybasic acids trypan blue and its analogue trypan red, bromphenol blue and its analogue bromthymol blue at concentrations of 0·22 mM and ethylenediaminetetra-acetic acid (EDTA) at a concentration of 1 mM are strong inhibitors of the enzyme. 3. Penicillin which is a monobasic carboxylic acid also inhibits the enzyme but only if concentrations as high as 3·6 mM are used. The antibiotic streptomycin which is a basic substance does not inhibit the enzyme. 4. Caffeine at a concentration of 7·2 mM only weakly inhibits the enzyme. 5. Chymotrypsin and wheat germ acid phosphatase also inactivate nerveside at pH 5·9 and are inhibited by the acidic dyes and penicillin. EDTA inhibits wheat germ phosphatase but activates chymotrypsin. 6. Inactivation of nerveside by the brain enzyme and by wheat germ phosphatase is different from the action of chymotrypsin. Nerveside solutions incubated with chymotrypsin completely lose all biological activity whereas if incubation is carried out with either the brain enzyme or wheat germ acid phosphatase a residual biological activity remains even when the concentration of these two enzymes is increased. This residual biological activity is due to a peptide as it is destroyed by chymotrypsin. 7. The manner in which nerveside is inactivated by the brain enzyme is uncertain as the preparation of the latter contained phosphodiesterase and protease activities which were similarly inhibited by the acid dyes, penicillin and EDTA. 8. Pentylenetetrazole, picrotoxin, strychnine and tetanus toxin do not inhibit the brain enzyme. 9. The nerveside-inactivating enzyme is not identical with the Substance P-inactivating enzyme in brain as the former is inhibited by EDTA while the latter is not. PMID:4390385

  16. Myosin light-chain phosphatase.

    PubMed Central

    Morgan, M; Perry, S V; Ottaway, J

    1976-01-01

    1. A method for the isolation of a new enzyme, myosin light-chain phosphatase, from rabbit white skeletal muscle by using a Sepharose-phosphorylated myosin light-chain affinity column is described. 2. The enzyme migrated as a single component on electrophoresis in sodium dodecyl sulphate/polyacrylamide gel at pH7.0, with apparent mol.wt. 70000. 3. The enzyme was highly specific for the phosphorylated P-light chain of myosin, had pH optima at 6.5 and 8.0 and was not inhibited by NaF. 4. A Ca2+-sensitive 'ATPase' (adenosine triphosphatase) system consisting of myosin light-chain kinase, myosin light-chain phosphatase and the P-light chain is described. 5. Evidence is presented for a phosphoryl exchange between Pi, phosphorylated P-light chain and myosin light-chain phosphatase. 6. Heavy meromyosin prepared by chymotryptic digestion can be phosphorylated by myosin light-chain kinase. 7. The ATPase activities of myosin and heavy meromyosin, in the presence and absence of F-actin, were not significantly changed (+/- 10%) by phosphorylation of the P-light chain. Images PLATE 1 PMID:186030

  17. Production of Glucaric Acid from Hemicellulose Substrate by Rosettasome Enzyme Assemblies.

    PubMed

    Lee, Charles C; Kibblewhite, Rena E; Paavola, Chad D; Orts, William J; Wagschal, Kurt

    2016-07-01

    Hemicellulose biomass is a complex polymer with many different chemical constituents that can be utilized as industrial feedstocks. These molecules can be released from the polymer and transformed into value-added chemicals through multistep enzymatic pathways. Some bacteria produce cellulosomes which are assemblies composed of lignocellulolytic enzymes tethered to a large protein scaffold. Rosettasomes are artificial engineered ring scaffolds designed to mimic the bacterial cellulosome. Both cellulosomes and rosettasomes have been shown to facilitate much higher rates of biomass hydrolysis compared to the same enzymes free in solution. We investigated whether tethering enzymes involved in both biomass hydrolysis and oxidative transformation to glucaric acid onto a rosettasome scaffold would result in an analogous production enhancement in a combined hydrolysis and bioconversion metabolic pathway. Three different enzymes were used to hydrolyze birchwood hemicellulose and convert the substituents to glucaric acid, a top-12 DOE value added chemical feedstock derived from biomass. It was demonstrated that colocalizing the three different enzymes to the synthetic scaffold resulted in up to 40 % higher levels of product compared to uncomplexed enzymes. PMID:27198564

  18. Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex1[W][OPEN

    PubMed Central

    Charpentier, Myriam; Sun, Jongho; Wen, Jiangqi; Mysore, Kirankumar S.; Oldroyd, Giles E.D.

    2014-01-01

    Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB′1. Mutations in PP2AB′1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB′1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB′1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. PMID:25293963

  19. Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite.

    PubMed

    Ma, Xiaolong; Zhang, Xin; Guo, Xinli; Kang, Qi; Shen, Dazhong; Zou, Guizheng

    2016-07-01

    Sensitive and selective determining bio-related molecule and enzyme play an important role in designing novel procedure for biological sensing and clinical diagnosis. Herein, we found that dual-stabilizers-capped CdSe quantum dots (QDs) in composite film of multi-walled carbon nanotubes (CNTs) and Nafion, displaying eye-visible monochromatic electrochemiluminescence (ECL) with fwhm of 37nm, which offers promising ECL signal for detecting ascorbic acid (AA) as well as the activity of alkaline phosphatase (ALP) in biological samples. It was also shown that the dual-stabilizers-capped CdSe QDs can preserve their highly passivated surface states with prolonged lifetime of excited states in Nafion mixtures, and facilitate electron-transfer ability of Nafion film along with CNTs. Compared with the QDs/GCE, the ECL intensity is enhanced 1.8 times and triggering potential shifted to lower energy by 0.12V on the CdSe-CNTs-Nafion/GCE. The ECL quenching degree increases with increasing concentration of AA in the range of 0.01-30nM with a limit of detection (LOD) of 5pM. The activity of ALP was determined indirectly according to the concentration of AA, generated in the hydrolysis reaction of l-ascorbic acid 2-phosphate sesquimagnesium (AA-P) in the presence of ALP as a catalyst, with an LOD of 1μU/L. The proposed strategy is favorable for developing simple ECL sensor or device with high sensitivity, spectral resolution and less electrochemical interference. PMID:27154663

  20. Mycolic acid biosynthesis and enzymic characterization of the beta-ketoacyl-ACP synthase A-condensing enzyme from Mycobacterium tuberculosis.

    PubMed

    Kremer, Laurent; Dover, Lynn G; Carrère, Séverine; Nampoothiri, K Madhavan; Lesjean, Sarah; Brown, Alistair K; Brennan, Patrick J; Minnikin, David E; Locht, Camille; Besra, Gurdyal S

    2002-06-01

    Mycolic acids consist of long-chain alpha-alkyl-beta-hydroxy fatty acids that are produced by successive rounds of elongation catalysed by a type II fatty acid synthase (FAS-II). A key feature in the elongation process is the condensation of a two-carbon unit from malonyl-acyl-carrier protein (ACP) to a growing acyl-ACP chain catalysed by a beta-ketoacyl-ACP synthase (Kas). In the present study, we provide evidence that kasA from Mycobacterium tuberculosis encodes an enzyme that elongates in vivo the meromycolate chain, in both Mycobacterium smegmatis and Mycobacterium chelonae. We demonstrate that KasA belongs to the FAS-II system, which utilizes primarily palmitoyl-ACP rather than short-chain acyl-ACP primers. Furthermore, in an in vitro condensing assay using purified recombinant KasA, palmitoyl-AcpM and malonyl-AcpM, KasA was found to express Kas activity. Also, mutated KasA proteins, with mutation of Cys(171), His(311), Lys(340) and His(345) to Ala abrogated the condensation activity of KasA in vitro completely. Finally, purified KasA was highly sensitive to cerulenin, a well-known inhibitor of Kas, which may lead to the development of novel anti-mycobacterial drugs targeting KasA. PMID:12023885

  1. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity.

    PubMed

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-03-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  2. Molecular annotation of ketol-acid reductoisomerases from Streptomyces reveals a novel amino acid biosynthesis interlock mediated by enzyme promiscuity

    PubMed Central

    Verdel-Aranda, Karina; López-Cortina, Susana T; Hodgson, David A; Barona-Gómez, Francisco

    2015-01-01

    The 6-phosphogluconate dehydrogenase superfamily oxidize and reduce a wide range of substrates, making their functional annotation challenging. Ketol-acid reductoisomerase (KARI), encoded by the ilvC gene in branched-chain amino acids biosynthesis, is a promiscuous reductase enzyme within this superfamily. Here, we obtain steady-state enzyme kinetic parameters for 10 IlvC homologues from the genera Streptomyces and Corynebacterium, upon eight selected chemically diverse substrates, including some not normally recognized by enzymes of this superfamily. This biochemical data suggested a Streptomyces biosynthetic interlock between proline and the branched-chain amino acids, mediated by enzyme substrate promiscuity, which was confirmed via mutagenesis and complementation analyses of the proC, ilvC1 and ilvC2 genes in Streptomyces coelicolor. Moreover, both ilvC orthologues and paralogues were analysed, such that the relationship between gene duplication and functional diversification could be explored. The KARI paralogues present in S. coelicolor and Streptomyces lividans, despite their conserved high sequence identity (97%), were shown to be more promiscuous, suggesting a recent functional diversification. In contrast, the KARI paralogue from Streptomyces viridifaciens showed selectivity towards the synthesis of valine precursors, explaining its recruitment within the biosynthetic gene cluster of valanimycin. These results allowed us to assess substrate promiscuity indices as a tool to annotate new molecular functions with metabolic implications. PMID:25296650

  3. Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria

    PubMed Central

    van Hijum, Sacha A. F. T.; Kralj, Slavko; Ozimek, Lukasz K.; Dijkhuizen, Lubbert; van Geel-Schutten, Ineke G. H.

    2006-01-01

    Lactic acid bacteria (LAB) employ sucrase-type enzymes to convert sucrose into homopolysaccharides consisting of either glucosyl units (glucans) or fructosyl units (fructans). The enzymes involved are labeled glucansucrases (GS) and fructansucrases (FS), respectively. The available molecular, biochemical, and structural information on sucrase genes and enzymes from various LAB and their fructan and α-glucan products is reviewed. The GS and FS enzymes are both glycoside hydrolase enzymes that act on the same substrate (sucrose) and catalyze (retaining) transglycosylation reactions that result in polysaccharide formation, but they possess completely different protein structures. GS enzymes (family GH70) are large multidomain proteins that occur exclusively in LAB. Their catalytic domain displays clear secondary-structure similarity with α-amylase enzymes (family GH13), with a predicted permuted (β/α)8 barrel structure for which detailed structural and mechanistic information is available. Emphasis now is on identification of residues and regions important for GS enzyme activity and product specificity (synthesis of α-glucans differing in glycosidic linkage type, degree and type of branching, glucan molecular mass, and solubility). FS enzymes (family GH68) occur in both gram-negative and gram-positive bacteria and synthesize β-fructan polymers with either β-(2→6) (inulin) or β-(2→1) (levan) glycosidic bonds. Recently, the first high-resolution three-dimensional structures have become available for FS (levansucrase) proteins, revealing a rare five-bladed β-propeller structure with a deep, negatively charged central pocket. Although these structures have provided detailed mechanistic insights, the structural features in FS enzymes dictating the synthesis of either β-(2→6) or β-(2→1) linkages, degree and type of branching, and fructan molecular mass remain to be identified. PMID:16524921

  4. The Tinkerbell (Tink) Mutation Identifies the Dual-Specificity MAPK Phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a Novel Regulator of Organ Size in Arabidopsis.

    PubMed

    Johnson, Kim L; Ramm, Sascha; Kappel, Christian; Ward, Sally; Leyser, Ottoline; Sakamoto, Tomoaki; Kurata, Tetsuya; Bevan, Michael W; Lenhard, Michael

    2015-01-01

    Mitogen-activated dual-specificity MAPK phosphatases are important negative regulators in the MAPK signalling pathways responsible for many essential processes in plants. In a screen for mutants with reduced organ size we have identified a mutation in the active site of the dual-specificity MAPK phosphatase indole-3-butyric acid-response5 (IBR5) that we named tinkerbell (tink) due to its small size. Analysis of the tink mutant indicates that IBR5 acts as a novel regulator of organ size that changes the rate of growth in petals and leaves. Organ size and shape regulation by IBR5 acts independently of the KLU growth-regulatory pathway. Microarray analysis of tink/ibr5-6 mutants identified a likely role for this phosphatase in male gametophyte development. We show that IBR5 may influence the size and shape of petals through auxin and TCP growth regulatory pathways. PMID:26147117

  5. Occurrence of Arginine Deiminase Pathway Enzymes in Arginine Catabolism by Wine Lactic Acid Bacteria

    PubMed Central

    Liu, S.; Pritchard, G. G.; Hardman, M. J.; Pilone, G. J.

    1995-01-01

    l-Arginine, an amino acid found in significant quantities in grape juice and wine, is known to be catabolized by some wine lactic acid bacteria. The correlation between the occurrence of arginine deiminase pathway enzymes and the ability to catabolize arginine was examined in this study. The activities of the three arginine deiminase pathway enzymes, arginine deiminase, ornithine transcarbamylase, and carbamate kinase, were measured in cell extracts of 35 strains of wine lactic acid bacteria. These enzymes were present in all heterofermentative lactobacilli and most leuconostocs but were absent in all the homofermentative lactobacilli and pediococci examined. There was a good correlation among arginine degradation, formation of ammonia and citrulline, and the occurrence of arginine deiminase pathway enzymes. Urea was not detected during arginine degradation, suggesting that the catabolism of arginine did not proceed via the arginase-catalyzed reaction, as has been suggested in some earlier studies. Detection of ammonia with Nessler's reagent was shown to be a simple, rapid test to assess the ability of wine lactic acid bacteria to degrade arginine, although in media containing relatively high concentrations (>0.5%) of fructose, ammonia formation is inhibited. PMID:16534912

  6. Biological Monitoring of 3-Phenoxybenzoic Acid in Urine by an Enzyme -Linked Immunosorbent Assay

    EPA Science Inventory

    An enzyme-linked immunosorbent assay (ELISA) method was employed for determination of the pyrethroid biomarker, 3-phenoxybenzoic acid (3-PBA) in human urine samples. The optimized coating antigen concentration was 0.5 ng/mL with a dilution of 1:4000 for the 3-PBA antibody and 1:6...

  7. A Study of Krebs Citric Acid Cycle Enzymes in Rice Larvae (Corcyrace phalonica St) During Mycotoxicosis

    PubMed Central

    Hegde, Umashashi C.; Shanmugasundaram, E. R. B.

    1967-01-01

    Krebs citric acid cycle enzymes have been studied in rice moth larvae (Corcyra cephalonica St) reared in groundnut meal control and contaminated with A. flavus, wheat bran control and wheat bran contaminated with A. flavus and also wheat bran containing aflatoxin. It was observed that the activity of enzymes other than succinic oxidase, succinic dehydrogenase and isocitric dehydrogenase were reduced significantly in larvae reared in contaminated groundnut meal when compared with the control. In the case of larvae reared in contaminated wheat bran all the enzymes except succinic oxidase were inhibited when compared to the control larvae. It was also observed that the inhibition of these enzymes is greater in the case of larvae reared in contaminated wheat bran than in contaminated groundnut meal. The higher toxicity of wheat bran has been discussed. PMID:4229935

  8. Acid ceramidase and the treatment of ceramide diseases: The expanding role of enzyme replacement therapy.

    PubMed

    Schuchman, Edward H

    2016-09-01

    Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease. PMID:27155573

  9. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    PubMed Central

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to succinate and carbon dioxide. A variety of other phenoxyacetates and alpha-ketoacids can be used by the enzyme, but the greatest catalytic efficiencies were found using 2,4-D and alpha-ketoglutarate. The enzyme possesses multiple essential histidine residues, whereas catalytically essential cysteine and lysine groups do not appear to be present. PMID:8565907

  10. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans.

    PubMed

    Ilg, T; Overath, P; Ferguson, M A; Rutherford, T; Campbell, D G; McConville, M J

    1994-09-30

    The protozoan parasite Leishmania mexicana secretes a heavily glycosylated 100-kDa acid phosphatase (sAP) which is associated with one or more polydisperse proteophosphoglycans. Most of the glycans in this complex were released using mild acid hydrolysis conditions that preferentially cleave phosphodiester linkages. The released saccharides were shown to consist of monomeric mannose and a series of neutral and phosphorylated glycans by Dionex high performance liquid chromatography, methylation analysis, exoglycosidase digestions, and one-dimensional 1H NMR spectroscopy. The neutral species comprised a linear series of oligosaccharides with the structures [Man alpha 1-2]1-5Man. The phosphorylated oligosaccharides were characterized as PO4-6Gal beta 1-4Man and PO4-6[Glc beta 1-3]Gal beta 1-4Man. The attachment of these glycans to the polypeptide backbone via the linkage, Man alpha 1-PO4-Ser, is suggested by: 1) the finding that more than 60% of the serine residues in the polypeptide are phosphorylated and 2) the resistance of the phosphoserine residues to alkaline phosphatase digestion unless the sAP was first treated with either mild acid (to release all glycans) or jack bean alpha-mannosidase (to release neutral mannose glycans). Analysis of the partially resolved components of the complex indicated that the most of the O-linked glycans on the 100-kDa phosphoglycoprotein comprised mannose and the mannose-oligosaccharides. In contrast the major O-linked glycans on the proteophosphoglycan were short phosphoglycan chains, containing on average two repeat units per chain. In addition to the O-linked glycans, both components in the sAP complex contained N-linked glycans. The N-glycanase F-released glycans were characterized by Bio-Gel P4 chromatography and exoglycosidase digestions to be the biantennary oligomannose type with the structures Glc1Man6GlcNAc2 and Man6GlcNAc2. The O-linked glycans of the sAP complex are similar to those found in the phosphoglycan chains of

  11. Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli.

    PubMed

    Gomes, Suzete A O; Fonseca de Souza, André L; Kiffer-Moreira, Tina; Dick, Claudia F; dos Santos, André L A; Meyer-Fernandes, José R

    2008-05-01

    The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction. PMID:18407240

  12. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  13. Enzyme degradable polymersomes from hyaluronic acid-block-poly(ε-caprolactone) copolymers for the detection of enzymes of pathogenic bacteria.

    PubMed

    Haas, Simon; Hain, Nicole; Raoufi, Mohammad; Handschuh-Wang, Stephan; Wang, Tao; Jiang, Xin; Schönherr, Holger

    2015-03-01

    We introduce a new hyaluronidase-responsive amphiphilic block copolymer system, based on hyaluronic acid (HYA) and polycaprolactone (PCL), that can be assembled into polymersomes by an inversed solvent shift method. By exploiting the triggered release of encapsulated dye molecules, these HYA-block-PCL polymersomes lend themselves as an autonomous sensing system for the detection of the presence of hyaluronidase, which is produced among others by the pathogenic bacterium Staphylococcus aureus. The synthesis of the enzyme-responsive HYA-block-PCL block copolymers was carried out by copper-catalyzed Huisgen 1,3-dipolar cycloaddition of ω-azide-terminated PCL and ω-alkyne-functionalized HYA. The structure of the HYA-block-PCL assemblies and their enzyme-triggered degradation and concomitant cargo release were investigated by dynamic light scattering, fluorescence spectroscopy, confocal laser-scanning microscopy, scanning and transmission electron, and atomic force microscopy. As shown, a wide range of reporter dye molecules as well as antimicrobials can be encapsulated into the vesicles during formation and are released upon the addition of hyaluronidase. PMID:25654495

  14. Phosphoglycolate phosphatase of spinach acts as a phosphoenzyme

    SciTech Connect

    Rose, Z.B.; Seal, S.N.

    1987-05-01

    When /sup 32/P-glycolate and phosphoglycolate phosphatase from spinach are mixed, /sup 32/P is incorporated into acid precipitated protein. Properties that relate this phosphorylation to the enzyme are: The K/sub m/ value for P-glycolate is similar for protein phosphorylation and substrate hydrolysis; the /sup 32/P appearing in the phosphoenzyme is diluted by unlabeled P-glycolate or the alternative substrate, ethyl-P; the activator Cl/sup -/ enhances the effectiveness of ethyl-P as a substrate and as an inhibitor of the formation of /sup 32/P-enzyme; and /sup 32/P is lost from the enzyme when /sup 32/P-glycolate is consumed. The acid denatured phosphorylated protein is a molecule of 34,000 Da, which is half of the molecular weight of the native protein and is similar in size to the labeled band that is seen on SDS-polyacrylamide gels. The enzyme-bound phosphoryl group appears to be an acyl-phosphate from its pH stability, being quite stable at pH 1, less stable at pH 5, and very unstable above pH 5. The bond is readily hydrolyzed in acid molybdate and it is sensitive to cleavage by hydroxylamine at pH 6.8. The demonstration of enzyme phosphorylation by /sup 32/P-glycolate resolves the dilemma presented by initial rate studies in which alternative substrates appeared to have different mechanisms.

  15. Involvement of phylogenetically conserved acidic amino acid residues in catalysis by an oxidative DNA damage enzyme formamidopyrimidine glycosylase.

    PubMed

    Lavrukhin, O V; Lloyd, R S

    2000-12-12

    Formamidopyrimidine glycosylase (Fpg) is an important bacterial base excision repair enzyme, which initiates removal of damaged purines such as the highly mutagenic 8-oxoguanine. Similar to other glycosylase/AP lyases, catalysis by Fpg is known to proceed by a nucleophilic attack by an amino group (the secondary amine of its N-terminal proline) on C1' of the deoxyribose sugar at a damaged base, which results in the departure of the base from the DNA and removal of the sugar ring by beta/delta-elimination. However, in contrast to other enzymes in this class, in which acidic amino acids have been shown to be essential for glycosyl and phosphodiester bond scission, the catalytically essential acidic residues have not been documented for Fpg. Multiple sequence alignments of conserved acidic residues in all known bacterial Fpg-like proteins revealed six conserved glutamic and aspartic acid residues. Site-directed mutagenesis was used to change glutamic and aspartic acid residues to glutamines and asparagines, respectively. While the Asp to Asn mutants had no effect on the incision activity on 8-oxoguanine-containing DNA, several of the substitutions at glutamates reduced Fpg activity on the 8-oxoguanosine DNA, with the E3Q and E174Q mutants being essentially devoid of activity. The AP lyase activity of all of the glutamic acid mutants was slightly reduced as compared to the wild-type enzyme. Sodium borohydride trapping of wild-type Fpg and its E3Q and E174Q mutants on 8-oxoguanosine or AP site containing DNA correlated with the relative activity of the mutants on either of these substrates. PMID:11106507

  16. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  17. MALDI mass sequencing and biochemical characterization of Setaria cervi protein tyrosine phosphatase.

    PubMed

    Rai, Reeta; Singh, Neetu; Elesela, Srikanth; Tiwari, Savitri; Rathaur, Sushma

    2013-01-01

    A 30-kDa acid phosphatase with protein tyrosine phosphatase activity was identified in Setaria cervi (ScPTP). The enzyme was purified to homogeneity using three-step column chromatography. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) analysis of purified ScPTP yielded a total of eight peptides matching most closely to phosphoprotein phosphatase of Ricinus communis (RcPP). A hydrophilicity plot of RcPP revealed the presence of these peptides in the hydrophilic region, suggesting their antigenic nature. The substrate specificity of ScPTP with ortho-phospho-L-tyrosine and inhibition with sodium orthovanadate and ammonium molybdate affirmed it as a protein tyrosine phosphatase. ScPTP was also found to be tartrate resistant. The Km and Vmax were 6.60 mM and 83.3 μM/ml/min, respectively, with pNPP and 8.0 mM and 111 μM/ml/min, respectively, with ortho-phospho-L-tyrosine as the substrate. The Ki value with sodium orthovanadate was calculated to be 16.10 mM. Active site modification with DEPC, EDAC and pHMB suggested the presence of histidine, cysteine and aspartate at its active site. Thus, on the basis of MALDI-TOF and biochemical studies, it was confirmed that purified acid phosphatase is a PTP. PMID:23052758

  18. Immobilization of uricase enzyme on self-assembled gold nanoparticles for application in uric acid biosensor.

    PubMed

    Ahuja, T; Tanwar, V K; Mishra, S K; Kumar, D; Biradar, A M; Rajesh

    2011-06-01

    An enzyme immobilization matrix is described by preparing a self-assembly of gold nanoparticles (GNPs) over a self-assembled monolayer (SAM) of 3-aminopropyltriethoxysilane (APTES) on an indium-tin-oxide (ITO) coated glass plate. The surface of the GNPs was modified with a mixed (1:9) SAM of 11-mercaptoundecanoic acid (MUA) and 3-mercapto-propionic acid (MPA). The enzyme, uricase was covalently immobilized to the carboxyl groups of the mixed SAM of MUA/MPA through carbodiimide coupling reaction. The whole assembly was constructed on 1 cm2 area of ITO-glass plate and was tested as an amperometric biosensor for the detection of uric acid in aqueous solution. The biosensor assembly was characterized by atomic force microscopy (AFM) and electrochemical techniques. The AFM of the enzyme biosensor assembly reveals an asymmetrical sharp regular island-like structure with an average roughness parameter value of 2.81 nm. Chronoamperometric response was measured as a function of uric acid concentration in aqueous solution (pH 7.4), which exhibits a linear response over a concentration range of 0.07 to 0.63 mM with a sensitivity of 19.27 microAmM(-1) and a response of 25 s with excellent reproducibility. These results are not influenced by the presence of interfering reagents such as ascorbic acid, urea and glucose. GNPs-biomolecule assemblies constructed using this method may facilitate development of new hybrid biosensing materials. PMID:21770094

  19. Non-enzymic phosphorylation of polyphosphoinositides and phosphatidic acid is catalysed by bivalent metal ions.

    PubMed Central

    Gumber, S C; Lowenstein, J M

    1986-01-01

    Phosphatidylinositol 4-phosphate, phosphatidylinositol 4,5-bisphosphate and phosphatidic acid undergo non-enzymic phosphorylation by ATP in the presence of bivalent metal ions. The non-enzymic reaction is more rapid in a mixture of water, chloroform and methanol than in water alone. Chemical evidence indicates that the product formed from phosphatidylinositol 4-phosphate is the corresponding 4-pyrophosphate. This product shows an RF value very close to that of phosphatidylinositol 4,5-bisphosphate on t.l.c. with an acidic solvent commonly used to characterize and measure the latter; however, it can be separated readily with an alkaline solvent. Chemical evidence indicates that the products formed from phosphatidylinositol 4,5-bisphosphate and phosphatidic acid are also pyrophosphates. Images Fig. 1. Fig. 2. PMID:3017309

  20. The acid and enzymic hydrolysis of O-acetylated sialic acid residues from rabbit Tamm–Horsfall glycoprotein

    PubMed Central

    Neuberger, A.; Ratcliffe, Wendy A.

    1972-01-01

    Rabbit Tamm–Horsfall glycoprotein and bovine submaxillary glycoprotein were both found to contain sialic acid residues which are released at a slow rate by the standard conditions of acid hydrolysis. These residues are also resistant to neuraminidases from Vibrio cholerae and Clostridium perfringens. This behaviour was attributed to the presence of O-acetylated sialic acid, since the removal of O-acetyl groups by mild alkaline treatment normalized the subsequent release of sialic acid from rabbit Tamm–Horsfall glycoprotein by acid and by enzymic hydrolysis. Determination of the O-acetyl residues in rabbit Tamm–Horsfall glycoprotein indicated that on average two hydroxyl groups of sialic acid are O-acetylated, and these were located on the polyhydroxy side-chain of sialic acid or on C-4 and C-8. These findings confirm the assumption that certain O-acetylated forms of sialic acid are not substrates for bacterial neuraminidases. Several explanations have been suggested to explain the effect of O-acetylation of the side-chain on the rate of acidcatalysed hydrolysis of sialic acid residues. PMID:4349114

  1. Production of Two Extracellular Alkaline Phosphatases by a Psychrophilic Arthrobacter Strain

    PubMed Central

    de Prada, P.; Loveland-Curtze, J.; Brenchley, J. E.

    1996-01-01

    We surveyed our collection of psychrophilic bacteria to determine the types of phosphatases they produce and whether any had heat-labile activities with potential applications. Assays at different temperatures showed that the activity from one isolate was optimal at 45(deg)C and decreased dramatically above 55(deg)C. This isolate, D10, had the rod-coccus morphological cycle and cell wall amino acids associated with members of the Arthrobacter genus. Interestingly, we found that this strain made two extracellular phosphatases that could be separated by ammonium sulfate fractionation and migration during polyacrylamide gel electrophoresis. One enzyme, designated D10A, hydrolyzed both X-phos (5-bromo-4-chloro-3-indolyl phosphate) and para-nitrophenyl phosphate as substrates and had activity over a broad pH range of 7 to 11. The second enzyme, D10B, lacked activity against X-phos and had a narrow pH range of about 8 to 9. In addition, the D10B enzyme required calcium for activity. The levels of activity of both enzymes decreased for cells grown in media containing more than 100 (mu)M P(infi). These results not only demonstrate the existence of different enzymes from one Arthrobacter strain but also suggest ways in which other studies may have missed phosphatases with unknown requirements. PMID:16535422

  2. Purification and characterization of cannabidiolic-acid synthase from Cannabis sativa L.. Biochemical analysis of a novel enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid.

    PubMed

    Taura, F; Morimoto, S; Shoyama, Y

    1996-07-19

    We identified a unique enzyme that catalyzes the oxidocyclization of cannabigerolic acid to cannabidiolic acid (CBDA) in Cannabis sativa L. (CBDA strain). The enzyme, named CBDA synthase, was purified to apparent homogeneity by a four-step procedure: ammonium sulfate precipitation followed by chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, and hydroxylapatite. The active enzyme consists of a single polypeptide with a molecular mass of 74 kDa and a pI of 6.1. The NH2-terminal amino acid sequence of CBDA synthase is similar to that of Delta1-tetrahydrocannabinolic-acid synthase. CBDA synthase does not require coenzymes, molecular oxygen, hydrogen peroxide, and metal ion cofactors for the oxidocyclization reaction. These results indicate that CBDA synthase is neither an oxygenase nor a peroxidase and that the enzymatic cyclization does not proceed via oxygenated intermediates. CBDA synthase catalyzes the formation of CBDA from cannabinerolic acid as well as cannabigerolic acid, although the kcat for the former (0.03 s-1) is lower than that for the latter (0.19 s-1). Therefore, we conclude that CBDA is predominantly biosynthesized from cannabigerolic acid rather than cannabinerolic acid. PMID:8663284

  3. Does single-amino-acid replacement work in favor of or against improvement of the thermostability of immobilized enzyme?

    PubMed Central

    Koizumi, J; Zhang, M; Imanaka, T; Aiba, S

    1990-01-01

    Thermostabilities of kanamycin nucleotidyltransferase and of its mutants that became thermostable, in the free state, because of single-amino-acid replacements were studied after immobilization of the enzymes on cyanogen bromide-activated Sephadex G-200 particles. Lys in place of Gln at position 102 decreased the thermostability of the immobilized enzyme, whereas replacement with other amino acids enhanced it. PMID:2176451

  4. Location and characteristics of enzymes involved in the breakdown of polygalacturonic acid by Bacteroides thetaiotaomicron.

    PubMed Central

    McCarthy, R E; Kotarski, S F; Salyers, A A

    1985-01-01

    When Bacteroides thetaiotaomicron is grown in medium which contains polygalacturonic acid (PGA) as the sole carbon source, two different polygalacturonases are produced: a PGA lyase (EC 4.2.2.2) and a PGA hydrolase (EC 3.2.1.15). Both enzymes are cell associated. The PGA hydrolase appears to be an inner membrane protein. The PGA lyase is a soluble protein that associates with membranes under certain conditions. The PGA lyase was purified to apparent homogeneity. It has a molecular weight (from sodium dodecyl sulfate-polyacrylamide gel electrophoresis) of 74,000, a pH optimum of 8.7, a pI of 7.5, and a Km for PGA of 40 to 70 micrograms/ml. It requires calcium for maximal activity. The main product of this enzyme appears to be a disaccharide that contains a delta 4,5-unsaturated galacturonic acid residue. The PGA hydrolase can be solubilized from membranes with 2% Triton X-100 and has been partially purified. It has a pH optimum of 5.4 to 5.5, a pI of 4.7 to 4.9, and a Km for PGA of 350 to 400 micrograms/ml. The main product of this enzyme appears to be galacturonic acid. The specific activities of both PGA hydrolase and PGA lyase increase at the same rate when bacteria are exposed to PGA. The two enzymes therefore appear to be similarly regulated. Images PMID:3968032

  5. Human cytomegalovirus carries serine/threonine protein phosphatases PP1 and a host-cell derived PP2A.

    PubMed Central

    Michelson, S; Turowski, P; Picard, L; Goris, J; Landini, M P; Topilko, A; Hemmings, B; Bessia, C; Garcia, A; Virelizier, J L

    1996-01-01

    Human cytomegalovirus (CMV), a herpesvirus, is an important cause of morbidity and mortality in immunocompromised patients. When studying hyper-immediate-early events after contact between CMV virions and the cell membrane, we observed a hypophosphorylation of cellular proteins within 10 min. This can be explained in part by our finding that purified CMV contains serine/threonine protein phosphatase activities. Biochemical analyses indicate that this protein phosphatase activity has all characteristics of type 1 and 2A protein phosphatases (PP1 and PP2A). Specifically, PP1 accounts for approximately 30% and PP2A accounts for the remaining 70% of the phosphorylase phosphatase activity found. CMV produced in astrocytoma cells stably expressing an amino-terminally tagged PP2A catalytic subunit contained tagged enzyme, thus demonstrating the cellular origin of CMV-associated PP2A. PP2A is specifically found inside the virus, associated with the nucleocapsid fraction. Western blot (immunoblot) analysis of purified virus revealed the presence of the catalytic subunits of PP2A and PP1. Furthermore, the catalytic subunit of PP2A appears to be complexed to the regulatory subunits PR65 and PR55, which is also the most abundant configuration of this enzyme found in the host cells. Incubation of virus with okadaic acid before contact of CMV with cells prevented hypophosphorylation of cellular proteins, thus demonstrating the role of CMV-associated phosphatases in this phenomenon. CMV can thus transport an active enzyme from one cell to another. PMID:8627658

  6. Aluminium-induced changes in hemato-biochemical parameters, lipid peroxidation and enzyme activities of male rabbits: protective role of ascorbic acid.

    PubMed

    Yousef, Mokhtar I

    2004-06-01

    For a long time, aluminium (Al) has been considered an indifferent element from a toxicological point of view. In recent years, however, Al has been implicated in the pathogenesis of several clinical disorders, such as dialysis dementia, the fulminant neurological disorder that can develop in patients on renal dialysis. Therefore, the present experiment was carried out to determine the effectiveness of l-ascorbic acid (AA) in alleviating the toxicity of aluminium chloride (AlCl3) on certain hemato-biochemical parameters, lipid peroxidation and enzyme activities of male New Zealand white rabbits. Six rabbits per group were assigned to 1 of 4 treatment groups: 0mg AA and 0mg AlCl3/kg body weight (BW) (control); 40 mg AA/kg BW; 34 mg AlCl3/kg BW (1/25 LD50); 34 mg AlCl3 plus 40 mg AA/kg BW. Rabbits were orally administered their respective doses every other day for 16 weeks. Evaluations were made for lipid peroxidation, enzyme activities and hemato-biochemical parameters. Results obtained showed that AlCl3 significantly (P<0.05) induced free radicals and decreased the activity of glutathione S-transferase (GST) and the levels of sulfhydryl groups (SH groups) in rabbit plasma, liver, brain, testes and kidney. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (AlP), acid phosphatase (AcP), and phosphorylase activities were significantly decreased in liver and testes due to AlCl3 administration. While, plasma, liver, testes and brain lactate dehydrogenase (LDH) activities were significantly increased. Contrariwise, the activity of acetylcholinesterase (AChE) was significantly decreased in brain and plasma. Aluminium treatment caused a significant decrease in plasma total lipids (TL), blood haemoglobin (Hb), total erythrocytic count (TEC) and packed cell volume (PCV), and increased total leukocyte count (TLC) and the concentrations of glucose, urea, creatinine, bilirubin and cholesterol. Ascorbic acid alone significantly decreased the

  7. The Impact of Enzyme Characteristics on Corn Stover Fiber Degradation and Acid Production During Ensiled Storage

    NASA Astrophysics Data System (ADS)

    Ren, Haiyu; Richard, Tom L.; Moore, Kenneth J.

    Ensilage can be used to store lignocellulosic biomass before industrial bioprocessing. This study investigated the impacts of seven commerical enzyme mixtures derived from Aspergillus niger, Trichoderma reesei, and T. longibrachiatum. Treatments included three size grades of corn stover, two enzyme levels (1.67 and 5 IU/g dry matter based on hemicellulase), and various ratios of cellulase to hemicellulase (C ∶ H). The highest C ∶ H ratio tested, 2.38, derived from T. reesei, resulted in the most effective fermentation, with lactic acid as the dominant product. Enzymatic activity during storage may complement industrial pretreatment; creating synergies that could reduce total bioconversion costs.

  8. Morphological characteristics, oxidative stability and enzymic hydrolysis of amylose-fatty acid complexes.

    PubMed

    Marinopoulou, Anna; Papastergiadis, Efthimios; Raphaelides, Stylianos N; Kontominas, Michael G

    2016-05-01

    Complexes of amylose with fatty acids varying in carbon chain length and degree of unsaturation were prepared at 30, 50 or 70°C by dissolving amylose in 0.1N KOH and mixing with fatty acid potassium soap solution. The complexes were obtained in solid form as precipitates after neutralization. SEM microscopy revealed that the morphology of the complexes was that of ordered lamellae separated from amorphous regions whereas confocal laser scanning microscopy showed images of the topography of the guest molecules in the complex matrix. FTIR spectroscopy revealed that the absorption peak attributed to carbonyl group of free fatty acid was shifted when the fatty acid was in the form of amylose complex. Thermo-gravimetry showed that the unsaturated fatty acids were effectively protected from oxidation when they were complexed with amylose whereas enzymic hydrolysis experiments showed that the guest molecules were quantitatively released from the amylose complexes. PMID:26877002

  9. Bacillus licheniformis MC14 alkaline phosphatase I gene with an extended COOH-terminus.

    PubMed

    Kim, J W; Peterson, T; Bee, G; Hulett, F M

    1998-02-01

    Bacterial alkaline phosphatases (APases), except those isolated from Bacillus licheniformis, are approximately 45-kDa proteins while eucaryotic alkaline phosphatases are 60 kDa. To answer the question of whether the apparent 60-kDa alkaline phosphatase from Bacillus licheniformis accurately reflected the size of the protein, the entire gene was analyzed. DNA sequence analysis of the alkaline phosphatase I (APaseI) gene of B. licheniformis MC14 indicated that the gene could code for a 60-kDa protein of 553 amino acids. The deduced protein sequence of APaseI showed about 32% identity to those of B. subtilis APase III and IV and had apparent sequence homologies in the core structure and active sites that are conserved among APases of various sources. The extra carboxy-terminal sequence of APaseI, which made the enzyme bigger than other procaryotic APases, was not homologous to those of eucaryotic APases. The amino acid composition of APaseI was most similar to that of salt-dependent APase among the isozymes of B. licheniformis MC14. Another open reading frame of 261 amino acids was present 142 nucleotide upstream of the APaseI gene and its predicted amino acid sequence showed 68% identity to that of glucose dehydrogenase of B. megaterium. PMID:9485594

  10. Production of L-lactic Acid from Biomass Wastes Using Scallop Crude Enzymes and Novel Lactic Acid Bacterium

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Mitsunori; Nakamura, Kanami; Nakasaki, Kiyohiko

    In the present study, biomass waste raw materials including paper mill sludge, bamboo, sea lettuce, and shochu residue (from a distiller) and crude enzymes derived from inedible and discarded scallop parts were used to produce L-lactic acid for the raw material of biodegradable plastic poly-lactic acid. The activities of cellulase and amylase in the crude enzymes were 22 and 170units/L, respectively, and L-lactic acid was produced from every of the above mentioned biomass wastes, by the method of liquid-state simultaneous saccharification and fermentation (SSF) . The L-lactic acid concentrations produced from sea lettuce and shochu residue, which contain high concentration of starch were 3.6 and 9.3g/L, respectively, and corresponded to greater than 25% of the conversion of glucans contained in these biomass wastes. Furthermore, using the solid state SSF method, concentrations as high as 13g/L of L-lactic acid were obtained from sea lettuce and 26g/L were obtained from shochu residue.

  11. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme

    PubMed Central

    Gallage, Nethaji J.; Hansen, Esben H.; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  12. Vanillin formation from ferulic acid in Vanilla planifolia is catalysed by a single enzyme.

    PubMed

    Gallage, Nethaji J; Hansen, Esben H; Kannangara, Rubini; Olsen, Carl Erik; Motawia, Mohammed Saddik; Jørgensen, Kirsten; Holme, Inger; Hebelstrup, Kim; Grisoni, Michel; Møller, Birger Lindberg

    2014-01-01

    Vanillin is a popular and valuable flavour compound. It is the key constituent of the natural vanilla flavour obtained from cured vanilla pods. Here we show that a single hydratase/lyase type enzyme designated vanillin synthase (VpVAN) catalyses direct conversion of ferulic acid and its glucoside into vanillin and its glucoside, respectively. The enzyme shows high sequence similarity to cysteine proteinases and is specific to the substitution pattern at the aromatic ring and does not metabolize caffeic acid and p-coumaric acid as demonstrated by coupled transcription/translation assays. VpVAN localizes to the inner part of the vanilla pod and high transcript levels are found in single cells located a few cell layers from the inner epidermis. Transient expression of VpVAN in tobacco and stable expression in barley in combination with the action of endogenous alcohol dehydrogenases and UDP-glucosyltransferases result in vanillyl alcohol glucoside formation from endogenous ferulic acid. A gene encoding an enzyme showing 71% sequence identity to VpVAN was identified in another vanillin-producing plant species Glechoma hederacea and was also shown to be a vanillin synthase as demonstrated by transient expression in tobacco. PMID:24941968

  13. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria.

    PubMed

    Long, Jonathan Z; Svensson, Katrin J; Bateman, Leslie A; Lin, Hua; Kamenecka, Theodore; Lokurkar, Isha A; Lou, Jesse; Rao, Rajesh R; Chang, Mi Ra; Jedrychowski, Mark P; Paulo, Joao A; Gygi, Steven P; Griffin, Patrick R; Nomura, Daniel K; Spiegelman, Bruce M

    2016-07-14

    Brown and beige adipocytes are specialized cells that express uncoupling protein 1 (UCP1) and dissipate chemical energy as heat. These cells likely possess alternative UCP1-independent thermogenic mechanisms. Here, we identify a secreted enzyme, peptidase M20 domain containing 1 (PM20D1), that is enriched in UCP1(+) versus UCP1(-) adipocytes. We demonstrate that PM20D1 is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction. N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice with increased circulating PM20D1 have augmented respiration and increased N-acyl amino acids in blood. Lastly, administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure. These data identify an enzymatic node and a family of metabolites that regulate energy homeostasis. This pathway might be useful for treating obesity and associated disorders. PMID:27374330

  14. CYP4 Enzymes as potential drug targets: focus on enzyme multiplicity, inducers and inhibitors, and therapeutic modulation of 20-hydroxyeicosatetraenoic acid (20-HETE) synthase and fatty acid ω-hydroxylase activities

    PubMed Central

    Edson, Katheryne Z.; Rettie, Allan E.

    2014-01-01

    The Cytochrome P450 4 (CYP4) family of enzymes in humans is comprised of thirteen isozymes that typically catalyze the ω-oxidation of endogenous fatty acids and eicosanoids. Several CYP4 enzymes can biosynthesize 20-hydroxyeicosatetraenoic acid or 20-HETE, an important signaling eicosanoid involved in regulation of vascular tone and kidney reabsorption. Additionally, accumulation of certain fatty acids is a hallmark of the rare genetic disorders, Refsum disease and X-ALD. Therefore, modulation of CYP4 enzyme activity, either by inhibition or induction, is a potential strategy for drug discovery. Here we review the substrate specificities, sites of expression, genetic regulation, and inhibition by exogenous chemicals of the human CYP4 enzymes, and discuss the targeting of CYP4 enzymes in the development of new treatments for hypertension, stroke, certain cancers and the fatty acid-linked orphan diseases. PMID:23688133

  15. Effect of colchicine on the Golgi apparatus and on GERL of rat jejunal absorptive cells. Ultrastructural localization of thiamine pyrophosphatase and acid phosphatase activity.

    PubMed

    Pavelka, M; Ellinger, A

    1981-04-01

    Ultrastructural localization of thiamine pyrophosphatase (TTP) and acid phosphatase (AcPase) activity was performed on jejunal absorptive cells of rats pretreated with the antimicrotubular agent colchicine and of control animals. Demonstration of TPP activity showed that most of the dislocated Golgi stacks after colchicine application lacked positively staining cisternae of the mature side. This cytochemical finding is in agreement with the morphologically demonstrable changes of the Golgi stacks resulting in a loss of polarity and give evidence for a colchicine-induced deficiency of the Golgi apparatus. The cytochemical localization of AcPase activity showed deposits of reaction product over lysosomes and GERL and demonstrated a dislocation of GERL occurring concomitantly with the changes of the Golgi apparatus. The antimicrotubular effect of colchicine is well documented; thus the morphological and cytochemical changes of the Golgi apparatus and of GERL might be due to a disturbed microtubular function after application of this agent suggesting an influence of microtubules in the maintenance of the integrity of these organelles. This hypothesis includes the possibility of an involvement of microtubules in formation and differentiation of Golgi stacks and GERL as well as a kind of "skeletal"function being responsible for their characteristic structure and fashion. PMID:6113143

  16. A salicylic acid-based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2)

    PubMed Central

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-01-01

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias and solid tumors. Thus there is considerable interest in SHP2 as a potential target for anti-cancer and anti-leukemia therapy. We report a salicylic acid-based combinatorial library approach aimed to bind both active site and unique nearby sub-pockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anti-cancer and anti-leukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors. PMID:20170098

  17. Small activating ribonucleic acid reverses tyrosine kinase inhibitor resistance in epidermal growth factor receptor‐mutant lung cancer by increasing the expression of phosphatase and tensin homolog

    PubMed Central

    Li, Meng; Peng, Zhongmin; Ren, Wangang

    2016-01-01

    Background Epidermal growth factor receptor‐tyrosine kinase inhibitors (TKI‐EGFRs) present a new prospect for the treatment of lung cancer. However, in clinical application, the majority of patients become TKI resistant within a year. More and more studies have shown that a loss of phosphatase and tensin homolog (PTEN) expression is associated with TKI resistance. An alternative method of upregulating PTEN expression may reverse TKI resistance. Methods We designed five candidate small activating ribonucleic acids (saRNAs) to target PTEN, and transfected them into H‐157 cells to screen out functional saRNA. We used reverse transcriptase‐polymerase chain reaction and Western blot to evaluate the effect of saRNA to PTEN expression. We then analyzed the growth and apoptosis of cells transfected with saRNA under the treatment of TKI to investigate whether saRNAs can reverse TKI resistance by upregulating PTEN expression. Results The functional saRNA we designed could upregulate PTEN expression. The H‐157 cells transfected with saRNA grew slower in the presence of TKI drugs than the cells that were not transfected with saRNA. The apoptosis rate was also obviously higher. Conclusions Our study proves that loss of PTEN expression is an important mechanism of TKI resistance. It is possible to control TKI resistance by upregulating PTEN expression using RNA activation technology. PMID:27385992

  18. Retinoic Acid Modulates Interferon-γ Production by Hepatic Natural Killer T Cells via Phosphatase 2A and the Extracellular Signal-Regulated Kinase Pathway

    PubMed Central

    Chang, Heng-Kwei

    2015-01-01

    Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668

  19. Comparison of the effects of eldecalcitol with either raloxifene or bisphosphonate on serum tartrate resistant acid phosphatase-5b, a bone resorption marker, in postmenopausal osteoporosis

    PubMed Central

    Takada, Junichi; Ikeda, Satoshi; Kusanagi, Tetsuya; Mizuno, Satoshi; Wada, Hiroshi; Iba, Kousuke; Yoshizaki, Takashi; Yamashita, Toshihiko

    2016-01-01

    Summary Objective This study analyzes whether concomitant raloxifene (RLX) or bisphosphonates (BP) plus eldecalcitol (ELD) has excessive suppressive effects on a bone resorption marker during the first 6 months of treatment in postmenopausal women in real-world setting. Methods 285 postmenopausal osteoporotic patients who had been treated with RLX or BP plus ELD were evaluated the bone resorption marker, serum tartrate resistant acid phosphatase-5b (TRACP-5b), during the first 6 months of treatment. Results In drug-naïve group (not received osteoporosis medications before the administration, n=70), the concomitant RLX or BP with ELD significantly decreased levels of TRACP-5b without severe suppression. In vitamin D switch group [RLX or BP plus alfacalcidol (ALF) and then switched to RLX or BP plus ELD, n=215], the replacing ALF with ELD further and significantly decreased TRACP-5b and tertile analyses based on baseline values were significantly decreased far more in the highest, compared with the lowest tertile in the ELD+RLX and ELD+BP groups. Conclusion ELD combined with RLX or BP administered for 6 months to postmenopausal women with osteoporosis who were drug-naïve or who had switched medications significantly reduced and maintained TRACP-5b values within the reference range. PMID:27252739

  20. Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

    PubMed Central

    Kong, Hoon Young; Byun, Jonghoe

    2015-01-01

    Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2′-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2′-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer. PMID:25591398

  1. [Measurement of serum prostatic acid phosphatase (PAP) by Delfia PAP Kit using europium and clinical evaluation in patients with prostate cancer].

    PubMed

    Akimoto, S; Ohki, T; Ichikawa, T; Akakura, K; Shimazaki, J

    1994-11-01

    Fundamental and clinical studies of serum prostatic acid phosphatase (PAP) detected by a Delfia PAP kit were performed. The system is a time-resolved fluoroimmunoassay using europium as a tracer. The lower limit of detection was 0.2 ng/ml. Sera from 54 patients with prostate cancer, 20 with benign prostatic hypertrophy, 20 with urological malignancies other than prostate cancer and 140 adult males over 46 years old were determined. From the mean + 2 S.D. of serum PAP values obtained on the adult males, 1.5 ng/ml was considered as the upper normal level of adult males. By calculating the efficiency and ROC curve using the PAP values of prostate cancer and benign prostatic cancer, 2.5 ng/ml was decided as a cut-off value of this kit. The positive rates of adult males, prostate cancer, benign prostatic cancer and urological malignancies other than prostate cancer were 0.7%, 65%, 20% and 10%, respectively. The sensitivity of stage A2, B2, C and D1 + D2 was, 0%, 0%, 64% and 83%, respectively. The efficiency of the Delfia PAP kit was 52% and that of the Markit M PA kit was 71%. The correlation between the values assayed with the Delfia PAP kit and the Dinabot PAP kit was very high; the value obtained with the Delfia PAP kit was about 80% of that obtained with the Dinabot PAP kit. PMID:7530404

  2. Pistagremic acid, a novel β-secretase enzyme (BACE1) inhibitor from Pistacia integerrima Stewart.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Khan, Ajmal; Siddiqui, Bina S; Arfan, Mohammad; Dalvandi, Kourosh; Ben Hadda, Taibi

    2015-01-01

    A new triterpenic compound named pistagremic acid (PA) was once again isolated from Pistaciaintegerrima. The β-secretase inhibition study was carried out. Compound PA was found significantly active against β-secretase enzyme (BACE1) with IC50 value of 350 ± 2 nM in comparison to the standard inhibitors [Asn670, Sta671, Val672]-amyloid-β/A4 precursor protein 770 fragment 662-675 (IC50 = 290.71 ± 1 nM). The selectivity of this compound was also evaluated against the acetylcholinesterase and butyrylcholinesterase enzymes. Interestingly compound PA was found to be inactive against them and showed selectivity towards β-secretase enzyme (BACE1). PMID:25588845

  3. Assembly of Lipoic Acid on Its Cognate Enzymes: an Extraordinary and Essential Biosynthetic Pathway.

    PubMed

    Cronan, John E

    2016-06-01

    Although the structure of lipoic acid and its role in bacterial metabolism were clear over 50 years ago, it is only in the past decade that the pathways of biosynthesis of this universally conserved cofactor have become understood. Unlike most cofactors, lipoic acid must be covalently bound to its cognate enzyme proteins (the 2-oxoacid dehydrogenases and the glycine cleavage system) in order to function in central metabolism. Indeed, the cofactor is assembled on its cognate proteins rather than being assembled and subsequently attached as in the typical pathway, like that of biotin attachment. The first lipoate biosynthetic pathway determined was that of Escherichia coli, which utilizes two enzymes to form the active lipoylated protein from a fatty acid biosynthetic intermediate. Recently, a more complex pathway requiring four proteins was discovered in Bacillus subtilis, which is probably an evolutionary relic. This pathway requires the H protein of the glycine cleavage system of single-carbon metabolism to form active (lipoyl) 2-oxoacid dehydrogenases. The bacterial pathways inform the lipoate pathways of eukaryotic organisms. Plants use the E. coli pathway, whereas mammals and fungi probably use the B. subtilis pathway. The lipoate metabolism enzymes (except those of sulfur insertion) are members of PFAM family PF03099 (the cofactor transferase family). Although these enzymes share some sequence similarity, they catalyze three markedly distinct enzyme reactions, making the usual assignment of function based on alignments prone to frequent mistaken annotations. This state of affairs has possibly clouded the interpretation of one of the disorders of human lipoate metabolism. PMID:27074917

  4. Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids.

    PubMed

    Carpini, Guido; Lucarelli, Fausto; Marrazza, Giovanna; Mascini, Marco

    2004-09-15

    An electrochemical genosensor for the detection of specific sequences of DNA has been developed using disposable screen-printed gold electrodes. Screen-printed gold electrodes were firstly modified with a mixed monolayer of a 25-mer thiol-tethered DNA probe and a spacer thiol, 6-mercapto-1-hexanol (MCH). The DNA probe sequence was internal to the sequence of the 35S promoter, which sequence is inserted in the genome of GMOs regulating the transgene expression. An enzyme-amplified detection scheme, based on the coupling of a streptavidin-alkaline phosphatase conjugate and biotinylated target sequences was then applied. The enzyme catalysed the hydrolysis of the electroinactive alpha-naphthyl phosphate to alpha-naphthol; this product is electroactive and has been detected by means of differential pulse voltammetry. The assay was, firstly, characterised using synthetic oligonucleotides. Relevant parameters, such as the probe concentration and the immobilisation time, the use of the MCH and different enzymatic conjugates, were investigated and optimised. The genosensor response was found to be linearly related to the target concentration between 0 and 25 nmol/L; the detection limit was 0.25 nmol/L. The analytical procedure was then applied for the detection of the 35S promoter sequence, which was amplified from the pBI121 plasmid by polymerase chain reaction (PCR). Hybridisation conditions (i.e., hybridisation buffer and hybridisation time) were further optimised. The selectivity of the assay was confirmed using biotinylated non-complementary amplicons and PCR blanks. The results showed that the genosensor enabled sensitive (detection limit: 1 nmol/L) and specific detection of GMO-related sequences, thus providing a useful tool for the screening analysis of bioengineered food samples. PMID:15308218

  5. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    SciTech Connect

    Liu, Xin; Zhu, Yanming; Zhai, Hong; Cai, Hua; Ji, Wei; Luo, Xiao; Li, Jing; Bai, Xi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  6. Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis.

    PubMed

    Meng, Qinglong; Zhang, Yanfei; Ju, Xiaozhi; Ma, Chunling; Ma, Hongwu; Chen, Jiuzhou; Zheng, Ping; Sun, Jibin; Zhu, Jun; Ma, Yanhe; Zhao, Xueming; Chen, Tao

    2016-05-20

    5-Aminolevulinic acid (ALA) is the precursor for the biosynthesis of tetrapyrroles and has broad agricultural and medical applications. Currently ALA is mainly produced by chemical synthesis and microbial fermentation. Cell free multi-enzyme catalysis is a promising method for producing high value chemicals. Here we reported our work on developing a cell free process for ALA production using thermostable enzymes. Cheap substrates (succinate and glycine) were used for ALA synthesis by two enzymes: 5-aminolevulinic acid synthase (ALAS) from Laceyella sacchari (LS-ALAS) and succinyl-CoA synthase (Suc) from Escherichia coli. ATP was regenerated by polyphosphate kinase (Ppk) using polyphosphate as the substrate. Succinate was added into the reaction system in a fed-batch mode to avoid its inhibition effect on Suc. After reaction for 160min, ALA concentration was increased to 5.4mM. This is the first reported work on developing the cell free process for ALA production. Through further process and enzyme optimization the cell free process could be an effective and economic way for ALA production. PMID:27012885

  7. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  8. Plastid-localized amino acid biosynthetic pathways of Plantae are predominantly composed of non-cyanobacterial enzymes

    PubMed Central

    Reyes-Prieto, Adrian; Moustafa, Ahmed

    2012-01-01

    Studies of photosynthetic eukaryotes have revealed that the evolution of plastids from cyanobacteria involved the recruitment of non-cyanobacterial proteins. Our phylogenetic survey of >100 Arabidopsis nuclear-encoded plastid enzymes involved in amino acid biosynthesis identified only 21 unambiguous cyanobacterial-derived proteins. Some of the several non-cyanobacterial plastid enzymes have a shared phylogenetic origin in the three Plantae lineages. We hypothesize that during the evolution of plastids some enzymes encoded in the host nuclear genome were mistargeted into the plastid. Then, the activity of those foreign enzymes was sustained by both the plastid metabolites and interactions with the native cyanobacterial enzymes. Some of the novel enzymatic activities were favored by selective compartmentation of additional complementary enzymes. The mosaic phylogenetic composition of the plastid amino acid biosynthetic pathways and the reduced number of plastid-encoded proteins of non-cyanobacterial origin suggest that enzyme recruitment underlies the recompartmentation of metabolic routes during the evolution of plastids. PMID:23233874

  9. The unique serine/threonine phosphatase from the minimal bacterium Mycoplasma synoviae: biochemical characterization and metal dependence.

    PubMed

    Menegatti, Angela C O; Vernal, Javier; Terenzi, Hernán

    2015-01-01

    Serine/threonine protein phosphatases have been described in many pathogenic bacteria as essential enzymes involved in phosphorylation-dependent signal transduction pathways and frequently associated with the virulence of these organisms. An inspection of Mycoplasma synoviae genome revealed the presence of a gene (prpC) encoding a putative protein phosphatase of the protein phosphatase 2C (PP2C) subfamily. Here, we report a complete biochemical characterization of M. synoviae phosphatase (PrpC) and the particular role of metal ions in the structure-function relationship of this enzyme. PrpC amino acid sequence analysis revealed that all the residues involved in the dinuclear metal center and the putative third metal ion-coordinating residues, conserved in PP2C phosphatases, are present in PrpC. PrpC is a monomeric protein able to dephosphorylate phospho-substrates with Mn(2+) ions' dependence. Thermal stability analysis demonstrated the enzyme stability at mild temperatures and the influence of Mn(2+) ions in this property. Mass spectrometry analysis suggested that three metal ions bind to PrpC, two of which with an apparent high-affinity constant. Mutational analysis of the putative third metal-coordinating residues, Asp122 and Arg164, revealed that these variants exhibited a weaker binding of manganese ions, and that both mutations affected PrpC phosphatase activity. According to these results, PrpC is a metal-dependent protein phosphatase member with an improved stability in the holo form and with Asp122, possibly implicated in the third metal-binding site, essential to catalytic activity. PMID:25370051

  10. Differentially expressed myo-inositol monophosphatase gene (CaIMP) in chickpea (Cicer arietinum L.) encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity and improves seed germination and seedling growth under abiotic stresses.

    PubMed

    Saxena, Saurabh C; Salvi, Prafull; Kaur, Harmeet; Verma, Pooja; Petla, Bhanu Prakash; Rao, Venkateswara; Kamble, Nitin; Majee, Manoj

    2013-12-01

    myo-Inositol monophosphatase (IMP) is an essential enzyme in the myo-inositol metabolic pathway where it primarily dephosphorylates myo-inositol 1-phosphate to maintain the cellular inositol pool which is important for many metabolic and signalling pathways in plants. The stress-induced increased accumulation of inositol has been reported in a few plants including chickpea; however, the role and regulation of IMP is not well defined in response to stress. In this work, it has been shown that IMP activity is distributed in all organs in chickpea and was noticeably enhanced during environmental stresses. Subsequently, using degenerate oligonucleotides and RACE strategy, a full-length IMP cDNA (CaIMP) was cloned and sequenced. Biochemical study revealed that CaIMP encodes a lithium-sensitive phosphatase enzyme with broad substrate specificity, although maximum activity was observed with the myo-inositol 1-phosphate and l-galactose 1-phosphate substrates. Transcript analysis revealed that CaIMP is differentially expressed and regulated in different organs, stresses and phytohormones. Complementation analysis in Arabidopsis further confirmed the role of CaIMP in l-galactose 1-phosphate and myo-inositol 1-phosphate hydrolysis and its participation in myo-inositol and ascorbate biosynthesis. Moreover, Arabidopsis transgenic plants over-expressing CaIMP exhibited improved tolerance to stress during seed germination and seedling growth, while the VTC4/IMP loss-of-function mutants exhibited sensitivity to stress. Collectively, CaIMP links various metabolic pathways and plays an important role in improving seed germination and seedling growth, particularly under stressful environments. PMID:24123252

  11. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria

    PubMed Central

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  12. Crystal structure of FadD32, an enzyme essential for mycolic acid biosynthesis in mycobacteria.

    PubMed

    Li, Wenjuan; Gu, Shoujin; Fleming, Joy; Bi, Lijun

    2015-01-01

    Fatty acid degradation protein D32 (FadD32), an enzyme required for mycolic acid biosynthesis and essential for mycobacterial growth, has recently been identified as a valid and promising target for anti-tuberculosis drug development. Here we report the crystal structures of Mycobacterium smegmatis FadD32 in the apo and ATP-bound states at 2.4 Å and 2.25 Å resolution, respectively. FadD32 consists of two globular domains connected by a flexible linker. ATP binds in a cleft at the interface between the N- and C-terminal domains and its binding induces significant local conformational changes in FadD32. The binding sites of meromycolic acid and phosphopantetheine are identified by structural comparison with other members of the adenylating enzyme superfamily. These results will improve our understanding of the catalytic mechanism of FadD32 and help in the design of inhibitors of this essential enzyme. PMID:26628098

  13. Catalytic nucleic acid enzymes for the study and development of therapies in the central nervous system

    PubMed Central

    Tritz, Richard; Habita, Cellia; Robbins, Joan M.; Gomez, German G.; Kruse, Carol A.

    2005-01-01

    Summary Nucleic acid enzymes have been used with great success for studying natural processes in the central nervous system (CNS). We first provide information on the structural and enzymatic differences of various ribozymes and DNAzymes. We then discuss how they have been used to explore new therapeutic approaches for treating diseases of the CNS. They have been tested in various systems modeling retinitis pigmentosum, proliferative vitreoretinopathy, Alzheimer's disease, and malignant brain tumors. For these models, effective targets for nucleic acid enzymes have been readily identified and the rules for selecting cleavage sites have been well established. The bulk of studies, including those from our laboratory, have emphasized their use for gliomas. With the availability of multiple excellent animal models to test glioma treatments, good progress has been made in the initial testing of nucleic acid enzymes for brain tumor therapy. However, opportunities still exist to significantly improve the delivery and efficacy of ribozymes to achieve effective treatment. The future holds significant potential for the molecular targeting and therapy of eye diseases, neurodegenerative disorders, and brain tumors with these unique treatment agents. PMID:16467915

  14. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities.

    PubMed

    Akhtar, M Kalim; Turner, Nicholas J; Jones, Patrik R

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C(6)-C(18)) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C(8)-C(16)) or fatty alkanes (C(7)-C(15)) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L(-1) was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C(8)-C(18)). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  15. Carboxylic acid reductase is a versatile enzyme for the conversion of fatty acids into fuels and chemical commodities

    PubMed Central

    Akhtar, M. Kalim; Turner, Nicholas J.; Jones, Patrik R.

    2013-01-01

    Aliphatic hydrocarbons such as fatty alcohols and petroleum-derived alkanes have numerous applications in the chemical industry. In recent years, the renewable synthesis of aliphatic hydrocarbons has been made possible by engineering microbes to overaccumulate fatty acids. However, to generate end products with the desired physicochemical properties (e.g., fatty aldehydes, alkanes, and alcohols), further conversion of the fatty acid is necessary. A carboxylic acid reductase (CAR) from Mycobacterium marinum was found to convert a wide range of aliphatic fatty acids (C6–C18) into corresponding aldehydes. Together with the broad-substrate specificity of an aldehyde reductase or an aldehyde decarbonylase, the catalytic conversion of fatty acids to fatty alcohols (C8–C16) or fatty alkanes (C7–C15) was reconstituted in vitro. This concept was applied in vivo, in combination with a chain-length-specific thioesterase, to engineer Escherichia coli BL21(DE3) strains that were capable of synthesizing fatty alcohols and alkanes. A fatty alcohol titer exceeding 350 mg·L−1 was obtained in minimal media supplemented with glucose. Moreover, by combining the CAR-dependent pathway with an exogenous fatty acid-generating lipase, natural oils (coconut oil, palm oil, and algal oil bodies) were enzymatically converted into fatty alcohols across a broad chain-length range (C8–C18). Together with complementing enzymes, the broad substrate specificity and kinetic characteristics of CAR opens the road for direct and tailored enzyme-catalyzed conversion of lipids into user-ready chemical commodities. PMID:23248280

  16. DEVELOPMENT OF ENZYME-LINKED IMMUNOSORBENT ASSAYS FOR ISOCUPRESSIC ACID AND SERUM METABOLITES OF ISOCUPRESSIC ACID

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The consumption of ponderosa pine (Pinus ponderosa), lodgepole pine (Pinus contorta), common juniper (Juniperus communis) and Monterey cypress (Cupressus macrocarpa) causes abortions in pregnant cattle. Recent studies have identified isocupressic acid as the primary abortifacient compound in these ...

  17. Purification and properties of phytate-specific phosphatase from Bacillus subtilis.

    PubMed Central

    Powar, V K; Jagannathan, V

    1982-01-01

    An enzyme which liberates Pi from myo-inositol hexaphosphate (phytic acid) was shown to be present in culture filtrates of Bacillus subtilis. It was purified until it was homogeneous by ultracentrifugation, but it still showed two isozymes on polyacrylamide gel electrophoresis. The enzyme differed from other previously known phytases in its metal requirement and in its specificity for phytate. It had a specific requirement for Ca2+ for its activity. The enzyme hydrolyzed only phytate and had no action on other phosphate esters tested. This B. subtilis phytase is the only known phytate-specific phosphatase. The products of hydrolysis of phytate by this enzyme were Pi and myo-inositol monophosphate. The enzyme showed optimum activity at pH 7.5. It was inhibited by Ba2+, Sr2+, Hg2+, Cd2+, and borate. Its activity was unaffected by urea, diisopropylfluorophosphate, arsenate, fluoride, mercaptoethanol, trypsin, papain, and elastase. Images PMID:6286590

  18. Cell death-inducing stresses are required for defense activation in DS1-phosphatidic acid phosphatase-silenced Nicotiana benthamiana.

    PubMed

    Nakano, Masahito; Yoshioka, Hirofumi; Ohnishi, Kouhei; Hikichi, Yasufumi; Kiba, Akinori

    2015-07-20

    We previously identified DS1 plants that showed resistance to compatible Ralstonia solanacearum with accelerated defense responses. Here, we describe activation mechanisms of defense responses in DS1 plants. After inoculation with incompatible R. solanacearum 8107, DS1 plants showed hyperinduction of hypersensitive response (HR) and reactive oxygen species (ROS) generation. Transient expression of PopP1 and AvrA induced hyperinduction of HR and ROS generation. Furthermore, Pseudomonas cichorii (Pc) and a type III secretion system (TTSS)-deficient mutant of P. cichorii showed accelerated induction of HR and ROS generation. Chitin and flg22 did not induce either HR or ROS hyperaccumulation; however, INF1 accelerated HR and ROS in DS1 plants. Activation of these defense responses was closely associated with increased phosphatidic acid (PA) content. Our results show that DS1 plants exhibit PA-mediated sensitization of plant defenses and that cell death-inducing stress is required to achieve full activation of defense responses. PMID:26188395

  19. The Crystal Structure of the Adenylation Enzyme VinN Reveals a Unique β-Amino Acid Recognition Mechanism*

    PubMed Central

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-01-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp230 residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  20. The crystal structure of the adenylation enzyme VinN reveals a unique β-amino acid recognition mechanism.

    PubMed

    Miyanaga, Akimasa; Cieślak, Jolanta; Shinohara, Yuji; Kudo, Fumitaka; Eguchi, Tadashi

    2014-11-01

    Adenylation enzymes play important roles in the biosynthesis and degradation of primary and secondary metabolites. Mechanistic insights into the recognition of α-amino acid substrates have been obtained for α-amino acid adenylation enzymes. The Asp residue is invariant and is essential for the stabilization of the α-amino group of the substrate. In contrast, the β-amino acid recognition mechanism of adenylation enzymes is still unclear despite the importance of β-amino acid activation for the biosynthesis of various natural products. Herein, we report the crystal structure of the stand-alone adenylation enzyme VinN, which specifically activates (2S,3S)-3-methylaspartate (3-MeAsp) in vicenistatin biosynthesis. VinN has an overall structure similar to that of other adenylation enzymes. The structure of the complex with 3-MeAsp revealed that a conserved Asp(230) residue is used in the recognition of the β-amino group of 3-MeAsp similar to α-amino acid adenylation enzymes. A mutational analysis and structural comparison with α-amino acid adenylation enzymes showed that the substrate-binding pocket of VinN has a unique architecture to accommodate 3-MeAsp as a β-amino acid substrate. Thus, the VinN structure allows the first visualization of the interaction of an adenylation enzyme with a β-amino acid and provides new mechanistic insights into the selective recognition of β-amino acids in this family of enzymes. PMID:25246523

  1. PrpE, a PPP protein phosphatase from Bacillus subtilis with unusual substrate specificity.

    PubMed Central

    Iwanicki, Adam; Herman-Antosiewicz, Anna; Pierechod, Marcin; Séror, Simone J; Obuchowski, Michał

    2002-01-01

    Bacillus subtilis is a Gram-positive bacterium with a relatively large number of protein phosphatases. Previous studies have shown that some Ser/Thr phosphatases play an important role in the life cycle of this bacterium [Losick and Stragier (1992) Nature (London) 355, 601-604; Yang, Kang, Brody and Price (1996) Genes Dev. 10, 2265-2275]. In this paper, we report the biochemical properties of a putative, previously uncharacterized phosphatase, PrpE, belonging to the PPP family. This enzyme shares homology with other PPP phosphatases as well as with symmetrical diadenosine tetraphosphatases related to ApaH (symmetrical Ap(4)A hydrolase) from Escherichia coli. A His-tagged recombinant PrpE was purified from E. coli and shown to have Ni(2+)-dependent and okadaic acid-resistant phosphatase activity against a synthetic phosphorylated peptide and hydrolase activity against diadenosine 5',5"'-tetraphosphate. Unexpectedly, PrpE was able to remove phosphate from phosphotyrosine, but not from phosphothreonine or phosphoserine. PMID:12059787

  2. Structure of human PIR1, an atypical dual-specificity phosphatase.

    PubMed

    Sankhala, Rajeshwer Singh; Lokareddy, Ravi Kumar; Cingolani, Gino

    2014-02-11

    PIR1 is an atypical dual-specificity phosphatase (DSP) that dephosphorylates RNA with a higher specificity than phosphoproteins. Here we report the atomic structure of a catalytically inactive mutant (C152S) of the human PIR1 phosphatase core (PIR1-core, residues 29-205), refined at 1.20 Å resolution. PIR1-core shares structural similarities with DSPs related to Vaccinia virus VH1 and with RNA 5'-phosphatases such as the baculovirus RNA triphosphatase and the human mRNA capping enzyme. The PIR1 active site cleft is wider and deeper than that of VH1 and contains two bound ions: a phosphate trapped above the catalytic cysteine C152 exemplifies the binding mode expected for the γ-phosphate of RNA, and ∼6 Å away, a chloride ion coordinates the general base R158. Two residues in the PIR1 phosphate-binding loop (P-loop), a histidine (H154) downstream of C152 and an asparagine (N157) preceding R158, make close contacts with the active site phosphate, and their nonaliphatic side chains are essential for phosphatase activity in vitro. These residues are conserved in all RNA 5'-phosphatases that, analogous to PIR1, lack a "general acid" residue. Thus, a deep active site crevice, two active site ions, and conserved P-loop residues stabilizing the γ-phosphate of RNA are defining features of atypical DSPs that specialize in dephosphorylating 5'-RNA. PMID:24447265

  3. Induction of Arabidopsis tryptophan pathway enzymes and camalexin by amino acid starvation, oxidative stress, and an abiotic elicitor.

    PubMed Central

    Zhao, J; Williams, C C; Last, R L

    1998-01-01

    The tryptophan (Trp) biosynthetic pathway leads to the production of many secondary metabolites with diverse functions, and its regulation is predicted to respond to the needs for both protein synthesis and secondary metabolism. We have tested the response of the Trp pathway enzymes and three other amino acid biosynthetic enzymes to starvation for aromatic amino acids, branched-chain amino acids, or methionine. The Trp pathway enzymes and cytosolic glutamine synthetase were induced under all of the amino acid starvation test conditions, whereas methionine synthase and acetolactate synthase were not. The mRNAs for two stress-inducible enzymes unrelated to amino acid biosynthesis and accumulation of the indolic phytoalexin camalexin were also induced by amino acid starvation. These results suggest that regulation of the Trp pathway enzymes under amino acid deprivation conditions is largely a stress response to allow for increased biosynthesis of secondary metabolites. Consistent with this hypothesis, treatments with the oxidative stress-inducing herbicide acifluorfen and the abiotic elicitor alpha-amino butyric acid induced responses similar to those induced by the amino acid starvation treatments. The role of salicylic acid in herbicide-mediated Trp and camalexin induction was investigated. PMID:9501110

  4. Study and comparison of two enzyme membrane reactors for fatty acids and glycerol production

    SciTech Connect

    Molinari, R.; Santoro, M.E.; Drioli, E. . Dept. of Chemical Engineering and Materials Inst. on Membranes and Chemical Reactors-CNR, Arcavacata di Rende )

    1994-11-01

    Two enzyme membrane reactors (EMR), (1) with one substrate (olive oil) in an oil-in-water emulsion (E-EMR) and (2) with two separated liquid phases (oil and water) (TSLP-EMR), have been studied for the conversion of the triglycerides to fatty acids and glycerol. The enzyme was Candida cylindracea lipase confined on the pressurized face or entrapped in the sponge side of capillary ultrafiltration membranes. Two methods for immobilizing the enzyme in the TSLP-EMR were used: ultrafiltration on a virgin membrane and ultrafiltration on glutaraldehyde pretreated membranes. A multiple use of the reactor was obtained immobilizing the enzyme on the membrane preactivated with glutaraldehyde. The TSLP-EMR showed a specific activity of 0.529 mmol/(mg[center dot]h) versus a specific activity of 0.170 mmol/(mg[center dot]h) of the E-EMR. The rate of fatty acid production in the TSLP-EMR was linear with time showing no enzyme deactivation in an operating time of 80 h. The kinetics observed in the two reactors was different: an equilibrium reaction product-inhibited for the E-EMR and an apparent irreversible reaction of zero order for the TSLP-EMR. Taking into account that in the TSLP-EMR, compared to the E-EMR, (1) the specific activity was higher, (2) the specific rate was constant with the time, and (3) the two products were already separated after the reaction, the TSLP-EMR configuration seems the more convenient.

  5. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme.

    PubMed

    Lederer, Florence; Vignaud, Caroline; North, Paul; Bodevin, Sabrina

    2016-09-01

    A controversy exists with respect to the mechanism of l-2-hydroxy acid oxidation by members of a family of FMN-dependent enzymes. A so-called carbanion mechanism was initially proposed, in which the active site histidine abstracts the substrate α-hydrogen as a proton, followed by electron transfer from the carbanion to the flavin. But an alternative mechanism was not incompatible with some results, a mechanism in which the active site histidine instead picks up the substrate hydroxyl proton and a hydride transfer occurs. Even though more recent experiments ruling out such a mechanism were published (Rao & Lederer (1999) Protein Science 7, 1531-1537), a few authors have subsequently interpreted their results with variant enzymes in terms of a hydride transfer. In the present work, we analyse the reactivity of trifluorolactate, a substrate analogue, with the flavocytochrome b2 (Fcb2) flavodehydrogenase domain, compared to its reactivity with an NAD-dependent lactate dehydrogenase (LDH), for which this compound is known to be an inhibitor (Pogolotti & Rupley (1973) Biochem. Biophys. Res. Commun, 55, 1214-1219). Indeed, electron attraction by the three fluorine atoms should make difficult the removal of the α-H as a hydride. We also analyse the reactivity of trifluoropyruvate with the FMN- and NAD-dependent enzymes. The results substantiate a different effect of the fluorine substituents on the two enzymes compared to their normal substrates. In the discussion we analyse the conclusions of recent papers advocating a hydride transfer mechanism for the family of l-2-hydroxy acid oxidizing FMN-dependent enzymes. PMID:27155230

  6. Association of phosphoenolpyruvate phosphatase activity with the cytosolic pyruvate kinase of germinating mung beans.

    PubMed

    Podestá, F E; Plaxton, W C

    1991-12-01

    The procedure of Malhotra and Kayastha ([1990] Plant Physiology 93: 194-200) for the purification to homogeneity of a phosphoenolpyruvate-specific alkaline phosphatase (PEP phosphatase) from germinating mung beans (Vigna radiata) was followed. Although a higher specific activity of 1.4 micromoles pyruvate produced per minute per milligram protein was obtained, the final preparation was less than 10% pure as judged by polyacrylamide gel electrophoresis. Attempts to further purify the enzyme resulted in loss of activity. The partially purified enzyme contained significant pyruvate kinase activity (0.13 micromole pyruvate produced per minute per milligram protein) when assayed at pH 7.2, but not at pH 8.5. The PEP phosphatase activity of the final preparation exhibited hysteresis; a lag time of 5 to 6 minutes was required before a steady-state reaction rate was attained. A western blot of the final preparation revealed an immunoreactive 57 kilodalton polypeptide when probed with monospecific rabbit polyclonal antibodies prepared against germinating castor bean cytosolic pyruvate kinase. No antigenic cross-reaction of the final preparation was observed with antibodies against castor bean leucoplast pyruvate kinase, or black mustard PEP-specific acid phosphatase. Nondenaturing polyacrylamide gel electrophoresis of the final preparation resulted in a single PEP phosphatase activity band; when this band was excised and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting, a 57 kilodalton silver-staining polypeptide was obtained that strongly cross-reacted with the anti-(cytosolic pyruvate kinase) immunoglobulin G. It is suggested that mung bean PEP-specific alkaline phosphatase activity is due to cytosolic pyruvate kinase, in which pyruvate and ortho-phosphate are formed in the absence of ADP. PMID:16668551

  7. Association of Phosphoenolpyruvate Phosphatase Activity with the Cytosolic Pyruvate Kinase of Germinating Mung Beans 1

    PubMed Central

    Podestá, Florencio E.; Plaxton, William C.

    1991-01-01

    The procedure of Malhotra and Kayastha ([1990] Plant Physiology 93: 194-200) for the purification to homogeneity of a phosphoenolpyruvate-specific alkaline phosphatase (PEP phosphatase) from germinating mung beans (Vigna radiata) was followed. Although a higher specific activity of 1.4 micromoles pyruvate produced per minute per milligram protein was obtained, the final preparation was less than 10% pure as judged by polyacrylamide gel electrophoresis. Attempts to further purify the enzyme resulted in loss of activity. The partially purified enzyme contained significant pyruvate kinase activity (0.13 micromole pyruvate produced per minute per milligram protein) when assayed at pH 7.2, but not at pH 8.5. The PEP phosphatase activity of the final preparation exhibited hysteresis; a lag time of 5 to 6 minutes was required before a steady-state reaction rate was attained. A western blot of the final preparation revealed an immunoreactive 57 kilodalton polypeptide when probed with monospecific rabbit polyclonal antibodies prepared against germinating castor bean cytosolic pyruvate kinase. No antigenic cross-reaction of the final preparation was observed with antibodies against castor bean leucoplast pyruvate kinase, or black mustard PEP-specific acid phosphatase. Nondenaturing polyacrylamide gel electrophoresis of the final preparation resulted in a single PEP phosphatase activity band; when this band was excised and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blotting, a 57 kilodalton silver-staining polypeptide was obtained that strongly cross-reacted with the anti-(cytosolic pyruvate kinase) immunoglobulin G. It is suggested that mung bean PEP-specific alkaline phosphatase activity is due to cytosolic pyruvate kinase, in which pyruvate and ortho-phosphate are formed in the absence of ADP. ImagesFigure 1Figure 2 PMID:16668551

  8. Effects of Omega-3 Fatty Acids Supplement on Antioxidant Enzymes Activity in Type 2 Diabetic Patients

    PubMed Central

    TOORANG, Fatemeh; DJAZAYERY, Abolghassem; DJALALI, Mahmoud

    2016-01-01

    Background: Diabetes is a major cause of death. Oxidative stress mainly caused by hyperglycemia is the primary reason of related complications. Omega-3 fatty acids are prescribed in diabetes but the effect on antioxidant defense is controversial. This study investigated effects of omega-3 supplementation on antioxidant enzymes activity in type 2 diabetic patients. Methods: A randomized, placebo controlled, double blind clinical trial was performed on 90 type2 diabetic patients. The treatment group took, daily, three capsules of omega-3 for two mo, which totally provided 2714mg omega-3 (EPA=1548 mg, DHA=828 mg and 338 mg of other omega=3 fatty acids). Placebo contained 2100 mg sunflower oil (12% SFA, 65% linoleic acid, 23% MUFA), which is the main oil used in the study population. Food intakes, anthropometric and demographic characteristics, and therapeutic regimen data were recorded before and after the intervention. Fasting blood samples were taken before and after the intervention to measure super oxide dismutase, glutathione peroxidase, glutathione reductase, catalase and total antioxidant capacity in erythrocytes. Results: A total of 81 subjects completed the study. Two study groups were similar as regards duration of diabetes, age and the enzymes at baseline. Energy and macro- and micronutrients intakes, weight and hypoglycemic agent consumption were similar in the two groups at baseline and did not change. Supplementation had no effect on antioxidant enzyme status. Glycated hemoglobin showed a significant reduction by supplementation. Conclusion: Daily supplementation of 2714 mg mega-3 for two mo results in a significant reduction in HbA1c level in type2 diabetic patients with no effects on antioxidant enzymes activity. PMID:27141496

  9. Dissecting Proton Delocalization in an Enzyme's Hydrogen Bond Network with Unnatural Amino Acids.

    PubMed

    Wu, Yufan; Fried, Stephen D; Boxer, Steven G

    2015-12-01

    Extended hydrogen bond networks are a common structural motif of enzymes. A recent analysis proposed quantum delocalization of protons as a feature present in the hydrogen bond network spanning a triad of tyrosines (Y(16), Y(32), and Y(57)) in the active site of ketosteroid isomerase (KSI), contributing to its unusual acidity and large isotope shift. In this study, we utilized amber suppression to substitute each tyrosine residue with 3-chlorotyrosine to test the delocalization model and the proton affinity balance in the triad. X-ray crystal structures of each variant demonstrated that the structure, notably the O-O distances within the triad, was unaffected by 3-chlorotyrosine substitutions. The changes in the cluster's acidity and the acidity's isotope dependence in these variants were assessed via UV-vis spectroscopy and the proton sharing pattern among individual residues with (13)C nuclear magnetic resonance. Our data show pKa detuning at each triad residue alters the proton delocalization behavior in the H-bond network. The extra stabilization energy necessary for the unusual acidity mainly comes from the strong interactions between Y(57) and Y(16). This is further enabled by Y(32), which maintains the right geometry and matched proton affinity in the triad. This study provides a rich picture of the energetics of the hydrogen bond network in enzymes for further model refinement. PMID:26571340

  10. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme.

    PubMed

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C K

    2010-11-01

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavouring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a β-barrel structure and two α-helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the β-barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site. PMID:21045284

  11. Structural analysis of Bacillus pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme

    SciTech Connect

    Matte, Allan; Grosse, Stephan; Bergeron, Hélène; Abokitse, Kofi; Lau, Peter C.K.

    2012-04-30

    The decarboxylation of phenolic acids, including ferulic and p-coumaric acids, to their corresponding vinyl derivatives is of importance in the flavoring and polymer industries. Here, the crystal structure of phenolic acid decarboxylase (PAD) from Bacillus pumilus strain UI-670 is reported. The enzyme is a 161-residue polypeptide that forms dimers both in the crystal and in solution. The structure of PAD as determined by X-ray crystallography revealed a -barrel structure and two -helices, with a cleft formed at one edge of the barrel. The PAD structure resembles those of the lipocalin-fold proteins, which often bind hydrophobic ligands. Superposition of structurally related proteins bound to their cognate ligands shows that they and PAD bind their ligands in a conserved location within the -barrel. Analysis of the residue-conservation pattern for PAD-related sequences mapped onto the PAD structure reveals that the conservation mainly includes residues found within the hydrophobic core of the protein, defining a common lipocalin-like fold for this enzyme family. A narrow cleft containing several conserved amino acids was observed as a structural feature and a potential ligand-binding site.

  12. Effect of exogenous amylolytic enzymes on the accumulation of chlorogenic acid isomers in wounded potato tubers.

    PubMed

    Torres-Contreras, Ana Mariel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2014-08-01

    Potato tubers under wounding stress synthesize chlorogenic acid isomers, which are phenolic compounds that prevent chronic diseases. The biosynthesis of phenolic compounds in plants requires aromatic amino acids that are produced from sugars. Therefore, in this study, we hypothesized that the wound-induced accumulation of chlorogenic acid isomers in potatoes could be enhanced if the availability of sugars is increased by exogenous amylolytic enzymes applied to the surface of the site of wounding. To test this hypothesis, wounded potatoes stored at 20 °C were treated with amylolytic enzymes (pullulanase and amyloglucosidase, 282 units/mL, 10 mL/kg) after being stored for 0 (E0h), 48 (E48h), or 96 h (E96h). The highest level of accumulation of total chlorogenic acid isomers (∼210% higher than that of time 0 h samples) was observed after storage for 120 h for the E96h treatment. The results suggest that increasing the availability of carbon sources needed for the biosynthesis of phenolic compounds would trigger their accumulation in wounded plants. PMID:25032895

  13. Ensemble Methods for Monitoring Enzyme Translocation along Single Stranded Nucleic Acids

    PubMed Central

    Tomko, Eric J.; Fischer, Christopher J.; Lohman, Timothy M.

    2010-01-01

    We review transient kinetic methods developed to study the mechanism of translocation of nucleic acid motor proteins. One useful stopped-flow fluorescence method monitors arrival of the translocase at the end of a fluorescently labeled nucleic acid. When conducted under single-round conditions the time courses can be analyzed quantitatively using n-step sequential models to determine the kinetic parameters for translocation (rate, kinetic step size and processivity). The assay and analysis discussed here can be used to study enzyme translocation along a linear lattice such as ssDNA or ssRNA. We outline the methods for experimental design and two approaches, along with their limitations, that can be used to analyze the time courses. Analysis of the full time courses using n-step sequential models always yields an accurate estimate of the translocation rate. An alternative semi-quantitative “time to peak” analysis yields accurate estimates of translocation rates only if the enzyme initiates translocation from a unique site on the nucleic acid. However, if initiation occurs at random sites along the nucleic acid, then the “time to peak” analysis can yield inaccurate estimates of even the rates of translocation depending on the values of other kinetic parameters, especially the rate of dissociation of the translocase. Thus, in those cases analysis of the full time course is needed to obtain accurate estimates of translocation rates. PMID:20371288

  14. Experiment K-7-21: Effect of Microgravity on 1: Metabolic Enzymes of Type 1 and Type 2 Muscle Fibers, and on 2: Metabolic Enzymes, Neurotransmitter Amino Acids, and Neurotransmitter Associated Enzymes in Selected Regions of the Central Nervous System. Part 2; The Distribution of Selected Enzymes and Amino Acids in the Hippocampal Formation

    NASA Technical Reports Server (NTRS)

    Lowry, O. H.; Krasnov, I.; Ilyina-Kakueva, E. I.; Nemeth, P. M.; McDougal, D. B., Jr.; Choksi, R.; Carter, J. G.; Chi, M. M. Y.; Manchester, J. K.; Pusateri, M. E.

    1994-01-01

    Six key metabolic enzymes plus glutaminase and glutamate decarboxylase, as well as glutamate, aspartate and GABA, were measured in 11 regions of the hippocampal formation of synchronous, flight and tail suspension rats. Major differences were observed in the normal distribution patterns of each enzyme and amino acid, but no substantive effects of either microgravity or tail suspension on these patterns were clearly demonstrated.

  15. Antioxidant enzymes and fatty acid composition as related to disease resistance in postharvest loquat fruit.

    PubMed

    Cao, Shifeng; Yang, Zhenfeng; Cai, Yuting; Zheng, Yonghua

    2014-11-15

    Two cultivars of loquat fruit were stored at 20°C for 10days to investigate the relationship between disease resistance, and fatty acid composition and activities of endogenous antioxidant enzymes. The results showed that decay incidence increased with storage time in both cultivars. A significantly lower disease incidence was observed in 'Qingzhong' fruit than in 'Fuyang', suggesting 'Qingzhong' had increased disease resistance. Meanwhile, 'Qingzhong' fruit also had lower levels of superoxide radical and hydrogen peroxide, and lower lipoxygenase activity, but higher levels of linolenic and linoleic acids and higher activities of catalase (CAT) and ascorbate peroxidase (APX) compared with 'Fuyang'. These results suggest that the higher levels of linolenic and linoleic acids and the higher activity of CAT and APX have a role in disease resistance of postharvest loquat fruit. PMID:24912701

  16. Phosphatase hydrolysis of organic phosphorus compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatases are diverse groups of enzymes that deserve special attention because of the significant roles they play in mineralizing organic phosphorus (P) into inorganic available form. For getting more insight on the enzymatically hydrolysis of organic P, in this work, we compared the catalytic pa...

  17. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots

    PubMed Central

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  18. Combined Effects of Lanthanum (III) and Acid Rain on Antioxidant Enzyme System in Soybean Roots.

    PubMed

    Zhang, Xuanbo; Du, Yuping; Wang, Lihong; Zhou, Qing; Huang, Xiaohua; Sun, Zhaoguo

    2015-01-01

    Rare earth element pollution (REEs) and acid rain (AR) pollution simultaneously occur in many regions, which resulted in a new environmental issue, the combined pollution of REEs and AR. The effects of the combined pollution on the antioxidant enzyme system of plant roots have not been reported. Here, the combined effects of lanthanum ion (La3+), one type of REE, and AR on the antioxidant enzyme system of soybean roots were investigated. In the combined treatment of La3+ (0.08 mM) and AR, the cell membrane permeability and the peroxidation of cell membrane lipid of soybean roots increased, and the superoxide dismutase, catalase, peroxidase and reduced ascorbic acid served as scavengers of reactive oxygen species. In other combined treatments of La3+ (0.40 mM, 1.20 mM) and AR, the membrane permeability, malonyldialdehyde content, superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content increased, while the catalase activity decreased. The increased superoxide dismutase activity, peroxidase activity and reduced ascorbic acid content were inadequate to scavenge the excess hydrogen peroxide and superoxide, leading to the damage of the cell membrane, which was aggravated with the increase in the concentration of La3+ and the level of AR. The deleterious effects of the combined treatment of La3+ and AR were stronger than those of the single treatment of La3+ or AR. Moreover, the activity of antioxidant enzyme system in the combined treatment group was affected directly and indirectly by mineral element content in soybean plants. PMID:26230263

  19. Immunohistochemical Localization of Key Arachidonic Acid Metabolism Enzymes during Fracture Healing in Mice

    PubMed Central

    Lin, Hsuan-Ni; O’Connor, J. Patrick

    2014-01-01

    This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1), cyclooxygenase -2 (COX-2), 5-lipoxygenase (5-LO), and leukotriene A4 hydrolase (LTA4H) was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture). In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing. PMID:24516658

  20. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  1. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  2. [Phosphatase activity in Amoeba proteus at pH 9.0].

    PubMed

    Sopina, V A

    2007-01-01

    In the free-living amoeba Amoeba proteus (strain B), after PAAG disk-electrophoresis of the homogenate supernatant, at using 1-naphthyl phosphate as a substrate and pH 9.0, three forms of phosphatase activity were revealed; they were arbitrarily called "fast", "intermediate", and "slow" phosphatases. The fast phosphatase has been established to be a fraction of lysosomal acid phosphatase that preserves some low activity at alkaline pH. The question as to which particular class the intermediate phosphatase belongs to has remained unanswered: it can be both acid phosphatase and protein tyrosine phosphatase (PTP). Based on data of inhibitor analysis, large substrate specificity, results of experiments with reactivation by Zn ions after inactivation with EDTA, other than in the fast and intermediate phosphatases localization in the amoeba cell, it is concluded that only slow phosphatase can be classified as alkaline phosphatase (EC 3.1.3.1). PMID:17933343

  3. Nucleotide sequence and characterization of the gene for secreted alkaline phosphatase from Lysobacter enzymogenes.

    PubMed Central

    Au, S; Roy, K L; von Tigerstrom, R G

    1991-01-01

    Lysobacter enzymogenes produces an alkaline phosphatase which is secreted into the medium. The gene for the enzyme (phoA) was isolated from a recombinant lambda library. It was identified within a 4.4-kb EcoRI-BamH1 fragment, and its sequence was determined by the chain termination method. The structural gene consists of an open reading frame which encodes a 539-amino-acid protein with a 29-residue signal sequence, followed by a 119-residue propeptide, the 281-residue mature phosphatase, and a 110-residue carboxy-terminal domain. The roles of the propeptide and the carboxy-terminal peptide remain to be determined. A molecular weight of 30,000 was determined for the mature enzyme from sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid sequence was compared with sequences available in the current protein data base, and a region of the sequence was found to show considerable homology with sequences in mammalian type 5 iron-containing purple acid phosphatases. Images PMID:1856159

  4. The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation1[OPEN

    PubMed Central

    Tao, Sibo; Zhang, Ye; Wang, Xiaoyue; Xu, Le; Fang, Xiaofeng; Lu, Zhi John

    2016-01-01

    Induction and secretion of acid phosphatases (APases) is an adaptive response that plants use to cope with P (Pi) deficiency in their environment. The molecular mechanism that regulates this response, however, is poorly understood. In this work, we identified an Arabidopsis (Arabidopsis thaliana) mutant, hps8, which exhibits enhanced APase activity on its root surface (also called root-associated APase activity). Our molecular and genetic analyses indicate that this altered Pi response results from a mutation in the AtTHO1 gene that encodes a subunit of the THO/TREX protein complex. The mutation in another subunit of this complex, AtTHO3, also enhances root-associated APase activity under Pi starvation. In Arabidopsis, the THO/TREX complex functions in mRNA export and miRNA biogenesis. When treated with Ag+, an inhibitor of ethylene perception, the enhanced root-associated APase activity in hps8 is largely reversed. hpr1-5 is another mutant allele of AtTHO1 and shows similar phenotypes as hps8. ein2 is completely insensitive to ethylene. In the hpr1-5ein2 double mutant, the enhanced root-associated APase activity is also greatly suppressed. These results indicate that the THO/TREX complex in Arabidopsis negatively regulates root-associated APase activity induced by Pi starvation by inhibiting ethylene signaling. In addition, we found that the miRNA399-PHO2 pathway is also involved in the regulation of root-associated APase activity induced by Pi starvation. These results provide insight into the molecular mechanism underlying the adaptive response of plants to Pi starvation. PMID:27329222

  5. Effects of cadmium alone and in combination with low molecular weight chitosan on metallothionein, glutathione-S-transferase, acid phosphatase, and ATPase of freshwater crab Sinopotamon yangtsekiense.

    PubMed

    Li, Ruijin; Zhou, Yanying; Wang, Lan; Ren, Guorui; Zou, Enmin

    2014-03-01

    Cadmium (Cd) is an environmental contaminant showing a variety of deleterious effects, including the potential threat for the ecological environment and human health via food chains. Low molecular weight chitosan (LMWC) has been demonstrated to be an effective antioxidant. Metallothionein (MT) mRNA levels and activities of glutathione-S-transferase (GST), superoxide dismutase (SOD), acid phosphatase (ACP), Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as malondialdehyde (MDA) contents in the gills of the freshwater crab Sinopotamon yangtsekiense were analyzed in vivo in order to determine the injury of Cd exposure on the gill tissues as well as the protective effect of LMWC against this injury. The results showed that there was an apparent accumulation of Cd in the gills, which was lessened by the presence of LMWC. Moreover, Cd(2+) significantly increased the gill MT mRNA levels, ACP activity and MDA content while decreasing the activities of SOD, GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in the crabs relative to the control. Cotreatment with LMWC reduced the levels of MT mRNA and ACP but raised the activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in gill tissues compared with the crabs exposed to Cd(2+) alone. These results suggest that LMWC may exert its protective effect through chelating Cd(2+) to form LMWC-Cd(2+) complex, elevating the antioxidative activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as alleviating the stress pressure on MT and ACP, consequently protecting the cell from the adverse effects of Cd. PMID:22331632

  6. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana

    PubMed Central

    Plaxton, William C.

    2012-01-01

    Orthophosphate (Pi) is an essential but limiting macronutrient for plant growth. Extensive soil P reserves exist in the form of organic P (Po), which is unavailable for root uptake until hydrolysed by secretory acid phosphatases (APases). The predominant purple APase (PAP) isozymes secreted by roots of Pi-deficient (–Pi) Arabidopsis thaliana were recently identified as AtPAP12 (At2g27190) and AtPAP26 (At5g34850). The present study demonstrated that exogenous Po compounds such as glycerol-3-phosphate or herring sperm DNA: (i) effectively substituted for Pi in supporting the P nutrition of Arabidopsis seedlings, and (ii) caused upregulation and secretion of AtPAP12 and AtPAP26 into the growth medium. When cultivated under –Pi conditions or supplied with Po as its sole source of P nutrition, an atpap26/atpap12 T-DNA double insertion mutant exhibited impaired growth coupled with >60 and >30% decreases in root secretory APase activity and rosette total Pi concentration, respectively. Development of the atpap12/atpap26 mutant was unaffected during growth on Pi-replete medium but was completely arrested when 7-day-old Pi-sufficient seedlings were transplanted into a –Pi, Po-containing soil mix. Both PAPs were also strongly upregulated on root surfaces and in shoot cell-wall extracts of –Pi seedlings. It is hypothesized that secreted AtPAP12 and AtPAP26 facilitate the acclimation of Arabidopsis to nutritional Pi deficiency by: (i) functioning in the rhizosphere to scavenge Pi from the soil’s accessible Po pool, while (ii) recycling Pi from endogenous phosphomonoesters that have been leaked into cell walls from the cytoplasm. Thus, AtPAP12 and AtPAP26 are promising targets for improving crop P-use efficiency. PMID:23125358

  7. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells.

    PubMed

    Allen, G J; Kuchitsu, K; Chu, S P; Murata, Y; Schroeder, J I

    1999-09-01

    Elevations in cytoplasmic calcium ([Ca(2)+](cyt)) are an important component of early abscisic acid (ABA) signal transduction. To determine whether defined mutations in ABA signal transduction affect [Ca(2)+](cyt) signaling, the Ca(2)+-sensitive fluorescent dye fura 2 was loaded into the cytoplasm of Arabidopsis guard cells. Oscillations in [Ca(2)+](cyt) could be induced when the external calcium concentration was increased, showing viable Ca(2)+ homeostasis in these dye-loaded cells. ABA-induced [Ca(2)+](cyt) elevations in wild-type stomata were either transient or sustained, with a mean increase of approximately 300 nM. Interestingly, ABA-induced [Ca(2)+](cyt) increases were significantly reduced but not abolished in guard cells of the ABA-insensitive protein phosphatase mutants abi1 and abi2. Plasma membrane slow anion currents were activated in wild-type, abi1, and abi2 guard cell protoplasts by increasing [Ca(2)+](cyt), demonstrating that the impairment in ABA activation of anion currents in the abi1 and abi2 mutants was bypassed by increasing [Ca(2)+](cyt). Furthermore, increases in external calcium alone (which elevate [Ca(2)+](cyt)) resulted in stomatal closing to the same extent in the abi1 and abi2 mutants as in the wild type. Conversely, stomatal opening assays indicated different interactions of abi1 and abi2, with Ca(2)+-dependent signal transduction pathways controlling stomatal closing versus stomatal opening. Together, [Ca(2)+](cyt) recordings, anion current activation, and stomatal closing assays demonstrate that the abi1 and abi2 mutations impair early ABA signaling events in guard cells upstream or close to ABA-induced [Ca(2)+](cyt) elevations. These results further demonstrate that the mutations can be bypassed during anion channel activation and stomatal closing by experimental elevation of [Ca(2)+](cyt). PMID:10488243

  8. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    PubMed Central

    Brinch-Pedersen, Henrik

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a. PMID:23918958

  9. A novel enzyme-based acidizing system: Matrix acidizing and drilling fluid damage removal

    SciTech Connect

    Harris, R.E.; McKay, D.M.; Moses, V.

    1995-12-31

    A novel acidizing process is used to increase the permeability of carbonate rock cores in the laboratory and to remove drilling fluid damage from cores and wafers. Field results show the benefits of the technology as applied both to injector and producer wells.

  10. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations

    PubMed Central

    Arnold, Samuel L.; Kent, Travis; Hogarth, Cathryn A.; Schlatt, Stefan; Prasad, Bhagwat; Haenisch, Michael; Walsh, Thomas; Muller, Charles H.; Griswold, Michael D.; Amory, John K.; Isoherranen, Nina

    2015-01-01

    Retinoic acid (RA), the active metabolite of vitamin A, is required for spermatogenesis and many other biological processes. RA formation requires irreversible oxidation of retinal to RA by aldehyde dehydrogenase enzymes of the 1A family (ALDH1A). While ALDH1A1, ALDH1A2, and ALDH1A3 all form RA, the expression pattern and relative contribution of these enzymes to RA formation in the testis is unknown. In this study, novel methods to measure ALDH1A protein levels and intrinsic RA formation were used to accurately predict RA formation velocities in individual human testis samples and an association between RA formation and intratesticular RA concentrations was observed. The distinct localization of ALDH1A in the testis suggests a specific role for each enzyme in controlling RA formation. ALDH1A1 was found in Sertoli cells, while only ALDH1A2 was found in spermatogonia, spermatids, and spermatocytes. In the absence of cellular retinol binding protein (CRBP)1, ALDH1A1 was predicted to be the main contributor to intratesticular RA formation, but when CRBP1 was present, ALDH1A2 was predicted to be equally important in RA formation as ALDH1A1. This study provides a comprehensive novel methodology to evaluate RA homeostasis in human tissues and provides insight to how the individual ALDH1A enzymes mediate RA concentrations in specific cell types. PMID:25502770

  11. Are Phragmites australis enzymes involved in the degradation of the textile azo dye acid orange 7?

    PubMed

    Carias, Cátia C; Novais, Júlio M; Martins-Dias, Susete

    2008-01-01

    The role of antioxidant and detoxification enzymes of Phragmites australis, in the degradation of an azo dye, acid orange 7 (AO7), was studied. Activities of several enzymes involved in plant protection against stress were assayed through the activity characterization of superoxide dismutase (SOD), peroxidases (POD), catalase (CAT), ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR) and glutathione S-transferase (GST), obtained from P. australis crude extracts of leaves, stems and roots. A sub-surface vertical flow constructed wetland, planted with P. australis was used to test the plants response to the AO7 exposure at two different concentrations (130 and 700 mg l(-1)). An activity increase was detected for an AO7 concentration of 130 mg l(-1) for most enzymes studied (SOD, CAT and APOX), especially in leaves, suggesting a response of the reactive oxygen species scavenging enzymes to the chemical stress imposed. GST activity increase in this situation can also be interpreted as an activation of the detoxification pathway and subsequent AO7 conjugation. A totally different behaviour was observed for AO7 at 700 mg l(-1). An evident decrease in activity was observed for SOD, CAT, APOX and GST, probably due to enzymatic inhibition by AO7. Contrarily, DHAR activity augmented drastically in this situation. POD activity was not greatly affected during trial. Altogether these results suggest that P. australis effectively uses the ascorbate-glutathione pathway for the detoxification of AO7. PMID:17336060

  12. Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis.

    PubMed Central

    Elkins, Jonathan M; Clifton, Ian J; Hernández, Helena; Doan, Linh X; Robinson, Carol V; Schofield, Christopher J; Hewitson, Kirsty S

    2002-01-01

    During biosynthesis of the clinically used beta-lactamase inhibitor clavulanic acid, one of the three steps catalysed by clavaminic acid synthase is separated from the other two by a step catalysed by proclavaminic acid amidino hydrolase (PAH), in which the guanidino group of an intermediate is hydrolysed to give proclavaminic acid and urea. PAH shows considerable sequence homology with the primary metabolic arginases, which hydrolyse arginine to ornithine and urea, but does not accept arginine as a substrate. Like other members of the bacterial sub-family of arginases, PAH is hexameric in solution and requires Mn2+ ions for activity. Other metal ions, including Co2+, can substitute for Mn2+. Two new substrates for PAH were identified, N-acetyl-(L)-arginine and (3R)-hydroxy-N-acetyl-(L)-arginine. Crystal structures of PAH from Streptomyces clavuligerus (at 1.75 A and 2.45 A resolution, where 1 A=0.1 nm) imply how it binds beta-lactams rather than the amino acid substrate of the arginases from which it evolved. The structures also suggest how PAH selects for a particular alcohol intermediate in the clavam biosynthesis pathway. As observed for the arginases, each PAH monomer consists of a core of beta-strands surrounded by alpha-helices, and its active site contains a di-Mn2+ centre with a bridging water molecule responsible for hydrolytic attack on to the guanidino group of the substrate. Comparison of structures obtained under different conditions reveals different conformations of a flexible loop, which must move to allow substrate binding. PMID:12020346

  13. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule

  14. Reverse reaction of malic enzyme for HCO3- fixation into pyruvic acid to synthesize L-malic acid with enzymatic coenzyme regeneration.

    PubMed

    Ohno, Yoko; Nakamori, Toshihiko; Zheng, Haitao; Suye, Shin-ichiro

    2008-05-01

    Malic enzyme [L-malate: NAD(P)(+) oxidoreductase (EC 1.1.1.39)] catalyzes the oxidative decarboxylation of L-malic acid to produce pyruvic acid using the oxidized form of NAD(P) (NAD(P)(+)). We used a reverse reaction of the malic enzyme of Pseudomonas diminuta IFO 13182 for HCO(3)(-) fixation into pyruvic acid to produce L-malic acid with coenzyme (NADH) generation. Glucose-6-phosphate dehydrogenase (EC1.1.1.49) of Leuconostoc mesenteroides was suitable for coenzyme regeneration. Optimum conditions for the carboxylation of pyruvic acid were examined, including pyruvic acid, NAD(+), and both malic enzyme and glucose-6-phosphate dehydrogenase concentrations. Under optimal conditions, the ratio of HCO(3)(-) and pyruvic acid to malic acid was about 38% after 24 h of incubation at 30 degrees C, and the concentration of the accumulated L-malic acid in the reaction mixture was 38 mM. The malic enzyme reverse reaction was also carried out by the conjugated redox enzyme reaction with water-soluble polymer-bound NAD(+). PMID:18460807

  15. Spectrophotometric and cytochemical analyses of phosphatase activity in Beta vulgaris L.

    PubMed

    Pesacreta, T C; Bennett, A B; Lucas, W J

    1986-03-01

    Spectrophotometric and cytochemical methods were used to investigate the localization and/or the sensitivity of phosphatase activities in aldehyde-fixed beet leaves and membrane fractions. The nonspecific acid phosphatase substrates, p-nitrophenyl phosphate and beta-glycerol phosphate, each exhibited unique spectrophotometric patterns of hydrolysis as a function of pH. Additionally, beta-glycerol phosphatase activity was primarily present on the tonoplast, whereas p-nitrophenyl phosphatase was present on the plasma membrane. Because of the unique pH response of each enzyme and their different localization, we conclude that they cannot be entirely "nonspecific." The spectrophotometric pattern of ATP hydrolysis differed from that of p-nitrophenol phosphate in that it decreased at pH 5.0-5.5 and was greatly inhibited by 10 mM sodium fluoride; however, both activities were on the plasma membrane. Therefore, we conclude that these activities represent either two enzymes or only one enzyme that differs in its ability to hydrolyze these two substrates. Generally, enzymatically produced lead deposits on the plasma membrane of non-vascular cells were as frequent and large as those on phloem cells; frequently, deposits on sieve element plasma membranes were relatively small. We therefore conclude that there is no evidence for the presence of relatively intense ATPase activity on the plasma membrane of phloem cells in beet leaf, in contrast to other species. Studies with membrane fractions indicated that formaldehyde could completely inhibit the inhibitor-sensitive phosphatase activities in mitochondrial and vacuolar fractions while preserving significant activity in the plasma membrane fraction. PMID:2419391

  16. Activity of selected hydrolytic enzymes in Allium sativum L. anthers.

    PubMed

    Winiarczyk, Krystyna; Gębura, Joanna

    2016-05-01

    The aim of the study was to determine enzymatic activity in sterile Allium sativum anthers in the final stages of male gametophyte development (the stages of tetrads and free microspores). The analysed enzymes were shown to occur in the form of numerous isoforms. In the tetrad stage, esterase activity was predominant, which was manifested by the greater number of isoforms of the enzyme. In turn, in the microspore stage, higher numbers of isoforms of acid phosphatases and proteases were detected. The development of sterile pollen grains in garlic is associated with a high level of protease and acid phosphatase activity and lower level of esterase activities in the anther locule. Probably this is the first description of the enzymes activity (ACPH, EST, PRO) in the consecutives stages of cell wall formation which is considered to be one of the causes of male sterility in flowering plant. PMID:26901781

  17. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    PubMed

    Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D; Wang, Yingda; Oeser, James K; O'Brien, Richard M

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans. PMID:27611587

  18. Relationship of lipogenic enzyme activities to the rate of rat liver fatty acid synthesis

    SciTech Connect

    Nelson, G.; Kelley, D.; Schmidt, P.; Virk, S.; Serrato, C.

    1986-05-01

    The mechanism by which diet regulates liver lipogenesis is unclear. Here the authors report how dietary alterations effect the activities of key enzymes of fatty acid (FA) synthesis. Male Sprague-Dawley rats, 400-500 g, were fasted for 48h and then refed a fat-free, high carbohydrate (HC) diet (75% cal. from sucrose) for 0,3,9,24 and 48h, or refed a HC diet for 48h, then fed a high-fat (HF) diet (44% cal. from corn oil) for 3,9,24 and 48h. The FA synthesis rate and the activities of acetyl CoA carboxylase (AC), fatty acid synthase (FAS), ATP citrate lyase (CL), and glucose 6-phosphate dehydrogenase (G6PDH) were determined in the livers. FA synthesis was assayed with /sup 3/H/sub 2/O, enzyme activities were measured spectrophotometrically except for AC which was assayed with /sup 14/C-bicarbonate. There was no change in the activity of AC during fasting or on the HC diet. Fasting decreased the rate of FA synthesis by 25% and the activities of FAS and CL by 50%; refeeding the HC diet induced parallel changes in FA synthesis and the activities of FAS, CL, and G6PDH. After 9h on the HF diet, FA synthesis had decreased sharply, AC activity increased significantly while no changes were detected in the other activities. Subsequently FA synthesis did not change while the activities of the enzymes decreased slowly. These enzymes did not appear to regulate FA synthesis during inhibition of lipogenesis, but FAS, CL or G6PDH may be rate limiting in the induction phase. Other key factors may regulate FA synthesis during dietary alterations.

  19. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut

    PubMed Central

    Chen, Hui; Wilkerson, Curtis G.; Kuchar, Jason A.; Phinney, Brett S.; Howe, Gregg A.

    2005-01-01

    The plant hormone jasmonic acid (JA) activates host defense responses against a broad spectrum of herbivores. Although it is well established that JA controls the expression of a large set of target genes in response to tissue damage, very few gene products have been shown to play a direct role in reducing herbivore performance. To test the hypothesis that JA-inducible proteins (JIPs) thwart attack by disrupting digestive processes in the insect gut, we used a MS-based approach to identify host proteins that accumulate in the midgut of Manduca sexta larvae reared on tomato (Solanum lycopersicum) plants. We show that two JIPs, arginase and threonine deaminase (TD), act in the M. sexta midgut to catabolize the essential amino acids Arg and Thr, respectively. Transgenic plants that overexpress arginase were more resistant to M. sexta larvae, and this effect was correlated with reduced levels of midgut Arg. We present evidence indicating that the ability of TD to degrade Thr in the midgut is enhanced by herbivore-induced proteolytic removal of the enzyme's C-terminal regulatory domain, which confers negative feedback regulation by isoleucine in planta. Our results demonstrate that the JA signaling pathway strongly influences the midgut protein content of phytophagous insects and support the hypothesis that catabolism of amino acids in the insect digestive tract by host enzymes plays a role in plant protection against herbivores. PMID:16357201

  20. Bacterial-like PPP protein phosphatases

    PubMed Central

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, “bacterial-like” enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the “eukaryotic-like” phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research. PMID:24675170

  1. 5, 8, 11, 14-eicosatetraynoic acid suppresses CCL2/MCP-1 expression in IFN-γ-stimulated astrocytes by increasing MAPK phosphatase-1 mRNA stability

    PubMed Central

    2012-01-01

    Background The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. Methods To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. Results We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. Conclusion ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests

  2. [Isolation and certain properties of mutant alkaline phosphatase of Escherichia coli].

    PubMed

    Nesmeianova, M A; Krupianko, V I; Kalinin, A E; Kadyrova, L Iu

    1996-01-01

    Natural and mutant alkaline phosphatases with amino acid substitutions in the processing site and N-terminal domain of the mature polypeptide chain Val for Ala(-1), Gln for Glu (+4) and simultaneously Gln for Glu (+4) and Ala for Arg (+1) have been isolated from the periplasm and cultural fluid of E. coli. It has been found that these substitutions have little effect on the dependence of the enzyme activity on pH, ionic strength and temperature but influence its isoenzymic spectrum and decrease (almost twofold) the maximal rate of the enzyme-catalyzed reaction. Extracellular enzymes display, in contrast with periplasmic ones, other catalytic properties (Vmax) and binding activity (Km). After translocation through the outer membrane all the enzymes display decreased Vmax and increased Km. These changes are especially well-pronounced in case of the mutant protein PhoA46 which contains an uncleaved signal peptide due to the impossibility of processing resulting from the substitution of Val for Ala(-1). The Vmax for this protein is decreased 20 times, while the Km is increased 4-fold. The protein also shows a higher (in comparison with other proteins) sensitivity towards proteolytic enzymes and is less resistant upon storage. The experimental data suggest that the changes in the N-end of alkaline phosphatase located at a long distance from its active center influence the enzyme function. PMID:8679783

  3. Characterization of Two Streptomyces Enzymes That Convert Ferulic Acid to Vanillin

    PubMed Central

    Yang, Wenwen; Tang, Hongzhi; Ni, Jun; Wu, Qiulin; Hua, Dongliang; Tao, Fei; Xu, Ping

    2013-01-01

    Production of flavors from natural substrates by microbial transformation has become a growing and expanding field of study over the past decades. Vanillin, a major component of vanilla flavor, is a principal flavoring compound used worldwide. Streptomyces sp. strain V-1 is known to be one of the most promising microbial producers of natural vanillin from ferulic acid. Although identification of the microbial genes involved in the biotransformation of ferulic acid to vanillin has been previously reported, purification and detailed characterization of the corresponding enzymes with important functions have rarely been studied. In this study, we isolated and identified 2 critical genes, fcs and ech, encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively, which are involved in the vanillin production from ferulic acid. Both genes were heterologously expressed in Escherichia coli, and the resting cell reactions for converting ferulic acid to vanillin were performed. The corresponding crucial enzymes, Fcs and Ech, were purified for the first time and the enzymatic activity of each purified protein was studied. Furthermore, Fcs was comprehensively characterized, at an optimal pH of 7.0 and temperature of 30°C. Kinetic constants for Fcs revealed the apparent Km, kcat, and Vmax values to be 0.35 mM, 67.7 s−1, and 78.2 U mg−1, respectively. The catalytic efficiency (kcat/Km) value of Fcs was 193.4 mM−1 s−1 for ferulic acid. The characterization of Fcs and Ech may be helpful for further research in the field of enzymatic engineering and metabolic regulation. PMID:23840666

  4. Mass Spectrometric Detection and Characterization of Atypical Membrane-Bound Zinc-Sensitive Phosphatases Modulating GABAA Receptors

    PubMed Central

    SidAhmed-Mezi, Mounia; Kurcewicz, Irène; Rose, Christiane; Louvel, Jacques; Sokoloff, Pierre; Pumain, René; Laschet, Jacques J.

    2014-01-01

    Background GABAA receptor (GABAAR) function is maintained by an endogenous phosphorylation mechanism for which the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the kinase. This phosphorylation is specific to the long intracellular loop I2 of the α1 subunit at two identified serine and threonine residues. The phosphorylation state is opposed by an unknown membrane-bound phosphatase, which inhibition favors the phosphorylated state of the receptor and contributes to the maintenance of its function. In cortical nervous tissue from epileptogenic areas in patients with drug-resistant epilepsies, both the endogenous phosphorylation and the functional state of the GABAAR are deficient. Methodology/Principal Findings The aim of this study is to characterize the membrane-bound phosphatases counteracting the endogenous phosphorylation of GABAAR. We have developed a new analytical tool for in vitro detection of the phosphatase activities in cortical washed membranes by liquid chromatography coupled to mass spectrometry. The substrates are two synthetic phosphopeptides, each including one of the identified endogenous phosphorylation sites of the I2 loop of GABAAR α1 subunit. We have shown the presence of multiple and atypical phosphatases sensitive to zinc ions. Patch-clamp studies of the rundown of the GABAAR currents on acutely isolated rat pyramidal cells using the phosphatase inhibitor okadaic acid revealed a clear heterogeneity of the phosphatases counteracting the function of the GABAAR. Conclusion/Significance Our results provide new insights on the regulation of GABAAR endogenous phosphorylation and function by several and atypical membrane-bound phosphatases specific to the α1 subunit of the receptor. By identifying specific inhibitors of these enzymes, novel development of antiepileptic drugs in patients with drug-resistant epilepsies may be proposed. PMID:24967814

  5. Transgenic Production of Epoxy Fatty Acids by Expression of a Cytochrome P450 Enzyme from Euphorbia lagascae Seed

    PubMed Central

    Cahoon, Edgar B.; Ripp, Kevin G.; Hall, Sarah E.; McGonigle, Brian

    2002-01-01

    Seed oils of a number of Asteraceae and Euphorbiaceae species are enriched in 12-epoxyoctadeca-cis-9-enoic acid (vernolic acid), an unusual 18-carbon Δ12-epoxy fatty acid with potential industrial value. It has been previously demonstrated that the epoxy group of vernolic acid is synthesized by the activity of a Δ12-oleic acid desaturase-like enzyme in seeds of the Asteraceae Crepis palaestina and Vernonia galamensis. In contrast, results from metabolic studies have suggested the involvement of a cytochrome P450 enzyme in vernolic acid synthesis in seeds of the Euphorbiaceae species Euphorbia lagascae. To clarify the biosynthetic origin of vernolic acid in E. lagascae seed, an expressed sequence tag analysis was conducted. Among 1,006 randomly sequenced cDNAs from developing E. lagascae seeds, two identical expressed sequence tags were identified that encode a cytochrome P450 enzyme classified as CYP726A1. Consistent with the seed-specific occurrence of vernolic acid in E. lagascae, mRNA corresponding to the CYP726A1 gene was abundant in developing seeds, but was not detected in leaves. In addition, expression of the E. lagascae CYP726A1 cDNA in Saccharomyces cerevisiae was accompanied by production of vernolic acid in cultures supplied with linoleic acid and an epoxy fatty acid tentatively identified as 12-epoxyoctadeca-9,15-dienoic acid (12-epoxy-18:2Δ9,15) in cultures supplied with α-linolenic acid. Consistent with this, expression of CYP726A1 in transgenic tobacco (Nicotiana tabacum) callus or somatic soybean (Glycine max) embryos resulted in the accumulation of vernolic acid and 12-epoxy-18:2Δ9,15. Overall, these results conclusively demonstrate that Asteraceae species and the Euphorbiaceae E. lagascae have evolved structurally unrelated enzymes to generate the Δ12-epoxy group of vernolic acid. PMID:11842164

  6. The biosynthetic gene cluster for coronamic acid, an ethylcyclopropyl amino acid, contains genes homologous to amino acid-activating enzymes and thioesterases.

    PubMed Central

    Ullrich, M; Bender, C L

    1994-01-01

    Coronamic acid (CMA), an ethylcyclopropyl amino acid derived from isoleucine, functions as an intermediate in the biosynthesis of coronatine, a chlorosis-inducing phytotoxin produced by Pseudomonas syringae pv. glycinea PG4180. The DNA required for CMA biosynthesis (6.9 kb) was sequenced, revealing three distinct open reading frames (ORFs) which share a common orientation for transcription. The deduced amino acid sequence of a 2.7-kb ORF designated cmaA contained six core sequences and two conserved motifs which are present in a variety of amino acid-activating enzymes, including nonribosomal peptide synthetases. Furthermore, CmaA contained a spatial arrangement of histidine, aspartate, and arginine residues which are conserved in the ferrous active site of some nonheme iron(II) enzymes which catalyze oxidative cyclizations. The deduced amino acid sequence of a 1.2-kb ORF designated cmaT was related to thioesterases of both procaryotic and eucaryotic origins. These data suggest that CMA assembly is similar to the thiotemplate mechanism of nonribosomal peptide synthesis. No significant similarities between a 0.9-kb ORF designated cmaU and other database entries were found. The start sites of two transcripts required for CMA biosynthesis were identified in the present study. pRG960sd, a vector containing a promoterless glucuronidase gene, was used to localize and study the promoter regions upstream of the two transcripts. Data obtained in the present study indicate that CMA biosynthesis is regulated at the transcriptional level by temperature. Images PMID:8002582

  7. Partial purification, characterisation and histochemical localisation of alkaline phosphatase from ascocarps of the edible desert truffle Terfezia claveryi Chatin.

    PubMed

    Navarro-Ródenas, A; Morte, A; Pérez-Gilabert, M

    2009-09-01

    In the present paper, we confirmed that alkaline phosphatase (ALP) is the main phosphatase present in ascocarps of the edible mycorrhizal fungus Terfezia claveryi. The enzyme was partially purified by precipitation with polyethylene glycol. The purification achieved from a crude extract was fivefold, with 53% of the activity recovered, and acid phosphatase, most of the lipids and phenolic compounds were eliminated. Alkaline phosphatase was kinetically characterised at pH 10.0, the optimum for this enzyme, using p-nitrophenyl phosphate as substrate. The V(max) and K(m) values were 0.3 micromol.min(-1).mg(-1) protein and 9.0 mM, respectively. Orthovanadate was a competitive inhibitor of ALP, with a K(i) of 42.5 microM. The enzyme was histochemically localised in the peridium, the hypothecium and in the ascogenic hyphae of the gleba using both colour and fluorescent reactions. The results presented suggest that the ascocarp of T. claveryi, at some stages of its development, may become nutritionally autonomous and independent of the host plant. PMID:19689775

  8. Assessment and kinetics of soil phosphatase in Brazilian Savanna systems.

    PubMed

    Ferreira, Adão S; Espíndola, Suéllen P; Campos, Maria Rita C

    2016-05-31

    The activity and kinetics of soil phosphatases are important indicators to evaluate soil quality in specific sites such as the Cerrado (Brazilian Savanna). This study aimed to determine the activity and kinetic parameters of soil phosphatase in Cerrado systems. Soil phosphatase activity was assessed in samples of native Cerrado (NC), no-tillage (NT), conventional tillage (CT) and pasture with Brachiaria brizantha (PBb) and evaluated with acetate buffer (AB), tris-HCl buffer (TB), modified universal buffer (MUB) and low MUB. The Michaelis-Menten equation and Eadie-Hofstee model were applied to obtain the kinetic parameters of soil phosphatase using different concentrations of p-nitrophenol phosphate (p-NPP). MUB showed the lowest soil phosphatase activity in all soils whereas AB in NC and NT presented the highest. Low MUB decreased interferences in the assessment of soil phosphatase activity when compared to MUB, suggesting that organic acids interfere on the soil phosphatase activity. In NC and NT, soil phosphatase activity performed with TB was similar to AB and low MUB. Km values from the Michaels-Menten equation were higher in NC than in NT, which indicate a lower affinity of phosphatase activity for the substrate in NC. Vmax values were also higher in NC than in NT. The Eadie-Hofstee model suggests that NC had more phosphatase isoforms than NT. The study showed that buffer type is of fundamental importance when assessing soil phosphatase activity in Cerrado soils. PMID:27254453

  9. Guanine nanowire based amplification strategy: Enzyme-free biosensing of nucleic acids and proteins.

    PubMed

    Gao, Zhong Feng; Huang, Yan Li; Ren, Wang; Luo, Hong Qun; Li, Nian Bing

    2016-04-15

    Sensitive and specific detection of nucleic acids and proteins plays a vital role in food, forensic screening, clinical and environmental monitoring. There remains a great challenge in the development of signal amplification method for biomolecules detection. Herein, we describe a novel signal amplification strategy based on the formation of guanine nanowire for quantitative detection of nucleic acids and proteins (thrombin) at room temperature. In the presence of analytes and magnesium ions, the guanine nanowire could be formed within 10 min. Compared to the widely used single G-quadruplex biocatalytic label unit, the detection limits are improved by two orders of magnitude in our assay. The proposed enzyme-free method avoids fussy chemical label-ling process, complex programming task, and sophisticated equipment, which might provide an ideal candidate for the fabrication of selective and sensitive biosensing platform. PMID:26649493

  10. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery.

    PubMed

    Yang, Chenchen; Wang, Xin; Yao, Xikuang; Zhang, Yajun; Wu, Wei; Jiang, Xiqun

    2015-05-10

    A methacrylation strategy was employed to functionalize hyaluronic acid and prepare hyaluronic acid (HA) nanogels. Dynamic light scattering, zeta potential analyzer and electron microscopy were utilized to characterize the nanogels and their enzyme-degradability in vitro. It was found that these nanogels had a spherical morphology with the diameter of about 70nm, and negative surface potential. When doxorubicin (DOX) was loaded into the nanogels, the diameter decreased to approximately 50nm with a drug loading content of 16% and encapsulation efficiency of 62%. Cellular uptake examinations showed that HA nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs) which both overexpress CD44 receptor. Near-infrared fluorescence imaging, biodistribution and penetration examinations in tumor tissue indicated that the HA nanogels could efficiently accumulate and penetrate the tumor matrix. In vivo antitumor evaluation found that DOX-loaded HA nanogels exhibited a significantly superior antitumor effect. PMID:25665867

  11. Bioconjugation of therapeutic proteins and enzymes using the expanded set of genetically encoded amino acids.

    PubMed

    Lim, Sung In; Kwon, Inchan

    2016-10-01

    The last decade has witnessed striking progress in the development of bioorthogonal reactions that are strictly directed towards intended sites in biomolecules while avoiding interference by a number of physical and chemical factors in biological environment. Efforts to exploit bioorthogonal reactions in protein conjugation have led to the evolution of protein translational machineries and the expansion of genetic codes that systematically incorporate a range of non-natural amino acids containing bioorthogonal groups into recombinant proteins in a site-specific manner. Chemoselective conjugation of proteins has begun to find valuable applications to previously inaccessible problems. In this review, we describe bioorthogonal reactions useful for protein conjugation, and biosynthetic methods that produce proteins amenable to those reactions through an expanded genetic code. We then provide key examples in which novel protein conjugates, generated by the genetic incorporation of a non-natural amino acid and the chemoselective reactions, address unmet needs in protein therapeutics and enzyme engineering. PMID:26036278

  12. Characterization of inulin hydrolyzing enzyme(s) in commercial glucoamylases and its application in lactic acid production from Jerusalem artichoke tubers (Jat).

    PubMed

    Dao, Thai Ha; Zhang, Jian; Bao, Jie

    2013-11-01

    A high inulinase activity was found in three commercially available glucoamylase enzymes. Its origin was investigated and two proteins in the commercial glucoamylases were identified as the potential enzymes showing inulinase activity. One of the commercial glucoamylases, GA-L New from Genencor, was used for Jerusalem artichoke tubers (Jat) hydrolysis and a high hydrolysis yield of fructose was obtained. The simultaneous saccharification and lactic acid fermentation (SSF) of Jat was carried out using GA-L New as the inulinase and Pediococcus acidilactici DQ2 as the fermenting strain. A high lactic acid titer, yield, and productivity of 111.5 g/L, 0.46 g/g DM, and 1.55 g/L/h, respectively, were obtained within 72 h. The enzyme cost using the commercial glucoamylase as inulinase was compared to that using the typical inulinase and a large profit margin was identified. The results provided a practical way of Jat application for lactic acid production using cheap commercial glucoamylase enzyme. PMID:24050923

  13. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-01-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  14. Ontogenetic changes in digestive enzyme activities and the amino acid profile of starry flounder Platichthys stellatus

    NASA Astrophysics Data System (ADS)

    Song, Zhidong; Wang, Jiying; Qiao, Hongjin; Li, Peiyu; Zhang, Limin; Xia, Bin

    2016-09-01

    Ontogenetic changes in digestive enzyme activities and the amino acid (AA) profile of starry flounder, Platichthys stellatus, were investigated and limiting amino acids were estimated compared with the essential AA profile between larvae and live food to clarify starry flounder larval nutritional requirements. Larvae were collected at the egg stage and 0, 2, 4, 7, 12, 17, 24 days after hatching (DAH) for analysis. Larvae grew from 1.91 mm at hatching to 12.13 mm at 24 DAH. Trypsin and chymotrypsin activities changed slightly by 4 DAH and then increased significantly 4 DAH. Pepsin activity increased sharply beginning 17 DAH. Lipase activity increased significantly 4 DAH and increased progressively with larval growth. Amylase activity was also detected in newly hatched larvae and increased 7 DAH followed by a gradual decrease. High free amino acid (FAA) content was detected in starry flounder eggs (110.72 mg/g dry weight). Total FAA content dropped to 43.29 mg/g in 4-DAH larvae and then decreased gradually to 13.74 mg/g in 24-DAH larvae. Most FAAs (except lysine and methionine) decreased >50% in 4-DAH larvae compared with those in eggs and then decreased to the lowest values in 24-DAH larvae. Changes in the protein amino acid (PAA) profile were much milder than those observed for FAAs. Most PAAs increased gradually during larval development, except lysine and phenylalanine. The percentages of free threonine, valine, isoleucine, and leucine decreased until the end of the trial, whereas the protein forms of these four AAs followed the opposite trend. A comparison of the essential AA composition of live food (rotifers, Artemia nauplii, and Artemia metanauplii) and larvae suggested that methionine was potentially the first limiting AA. These results may help develop starry flounder larviculture methods by solving the AA imbalance in live food. Moreover, the increased digestive enzyme activities indicate the possibility of introducing artificial compound feed.

  15. Characterization of fatty acid modifying enzyme activity in staphylococcal mastitis isolates and other bacteria

    PubMed Central

    2012-01-01

    Background Fatty acid modifying enzyme (FAME) has been shown to modify free fatty acids to alleviate their bactericidal effect by esterifying fatty acids to cholesterol or alcohols. Although it has been shown in previous studies that FAME is required for Staphylococcus aureus survival in skin abscesses, FAME is poorly studied compared to other virulence factors. FAME activity had also been detected in coagulase-negative staphylococci (CNS). However, FAME activity was only surveyed after a bacterial culture was grown for 24 h. Therefore if FAME activity was earlier in the growth phase, it would not have been detected by the assay and those strains would have been labeled as FAME negative. Results Fifty CNS bovine mastitis isolates and several S. aureus, Escherichia coli, and Streptococcus uberis strains were assayed for FAME activity over 24 h. FAME activity was detected in 54% of CNS and 80% S. aureus strains surveyed but none in E. coli or S. uberis. While some CNS strains produced FAME activity comparable to the lab strain of S. aureus, the pattern of FAME activity varied among strains and across species of staphylococci. All CNS that produced FAME activity also exhibited lipase activity. Lipase activity relative to colony forming units of these CNS decreased over the 24 h growth period. No relationship was observed between somatic cell count in the milk and FAME activity in CNS. Conclusions Some staphylococcal species surveyed produced FAME activity, but E. coli and S. uberis strains did not. All FAME producing CNS exhibited lipase activity which may indicate that both these enzymes work in concert to alter fatty acids in the bacterial environment. PMID:22726316

  16. Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content

    PubMed Central

    Lee, Do Kyung; Jang, Seok; Baek, Eun Hye; Kim, Mi Jin; Lee, Kyung Soon; Shin, Hea Soon; Chung, Myung Jun; Kim, Jin Eung; Lee, Kang Oh; Ha, Nam Joo

    2009-01-01

    Background Lactic acid bacteria (LAB) are beneficial probiotic organisms that contribute to improved nutrition, microbial balance, and immuno-enhancement of the intestinal tract, as well as lower cholesterol. Although present in many foods, most trials have been in spreads or dairy products. Here we tested whether Bifidobacteria isolates could lower cholesterol, inhibit harmful enzyme activities, and control fecal water content. Methods In vitro culture experiments were performed to evaluate the ability of Bifidobacterium spp. isolated from healthy Koreans (20~30 years old) to reduce cholesterol-levels in MRS broth containing polyoxyethanylcholesterol sebacate. Animal experiments were performed to investigate the effects on lowering cholesterol, inhibiting harmful enzyme activities, and controlling fecal water content. For animal studies, 0.2 ml of the selected strain cultures (108~109 CFU/ml) were orally administered to SD rats (fed a high-cholesterol diet) every day for 2 weeks. Results B. longum SPM1207 reduced serum total cholesterol and LDL levels significantly (p < 0.05), and slightly increased serum HDL. B. longum SPM1207 also increased fecal LAB levels and fecal water content, and reduced body weight and harmful intestinal enzyme activities. Conclusion Daily consumption of B. longum SPM1207 can help in managing mild to moderate hypercholesterolemia, with potential to improve human health by helping to prevent colon cancer and constipation. PMID:19515264

  17. Gluconic acid production from sucrose in an airlift reactor using a multi-enzyme system.

    PubMed

    Mafra, Agnes Cristina Oliveira; Furlan, Felipe Fernando; Badino, Alberto Colli; Tardioli, Paulo Waldir

    2015-04-01

    Sucrose from sugarcane is produced in abundance in Brazil, which provides an opportunity to manufacture other high-value products. Gluconic acid (GA) can be produced by multi-enzyme conversion of sucrose using the enzymes invertase, glucose oxidase, and catalase. In this process, one of the byproducts is fructose, which has many commercial applications. This work concerns the batch mode production of GA in an airlift reactor fed with sucrose as substrate. Evaluation was made of the influence of temperature and pH, as well as the thermal stability of the enzymes. Operational conditions of 40 °C and pH 6.0 were selected, based on the enzymatic activity profiles and the thermal stabilities. Under these conditions, the experimental data could be accurately described by kinetic models. The maximum yield of GA was achieved within 3.8 h, with total conversion of sucrose and glucose and a volumetric productivity of around 7.0 g L(-1) h(-1). PMID:25326720

  18. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme.

    PubMed

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS-PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS-PKS hybrid enzyme. PMID:26503170

  19. Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme

    PubMed Central

    Yun, Choong-Soo; Motoyama, Takayuki; Osada, Hiroyuki

    2015-01-01

    Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS–PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS–PKS hybrid enzyme. PMID:26503170

  20. Effects of traditionally used anxiolytic botanicals on enzymes of the gamma-aminobutyric acid (GABA) system.

    PubMed

    Awad, R; Levac, D; Cybulska, P; Merali, Z; Trudeau, V L; Arnason, J T

    2007-09-01

    In Canada, the use of botanical natural health products (NHPs) for anxiety disorders is on the rise, and a critical evaluation of their safety and efficacy is required. The purpose of this study was to determine whether commercially available botanicals directly affect the primary brain enzymes responsible for gamma-aminobutyric acid (GABA) metabolism. Anxiolytic plants may interact with either glutamic acid decarboxylase (GAD) or GABA transaminase (GABA-T) and ultimately influence brain GABA levels and neurotransmission. Two in vitro rat brain homogenate assays were developed to determine the inhibitory concentrations (IC50) of aqueous and ethanolic plant extracts. Approximately 70% of all extracts that were tested showed little or no inhibitory effect (IC50 values greater than 1 mg/mL) and are therefore unlikely to affect GABA metabolism as tested. The aqueous extract of Melissa officinalis (lemon balm) exhibited the greatest inhibition of GABA-T activity (IC50 = 0.35 mg/mL). Extracts from Centella asiatica (gotu kola) and Valeriana officinalis (valerian) stimulated GAD activity by over 40% at a dose of 1 mg/mL. On the other hand, both Matricaria recutita (German chamomile) and Humulus lupulus (hops) showed significant inhibition of GAD activity (0.11-0.65 mg/mL). Several of these species may therefore warrant further pharmacological investigation. The relation between enzyme activity and possible in vivo mode of action is discussed. PMID:18066140

  1. Adding an appropriate amino acid during crosslinking results in more stable crosslinked enzyme aggregates.

    PubMed

    Mukherjee, Joyeeta; Majumder, Abir Baran; Gupta, Munishwar Nath

    2016-08-15

    Carrier free immobilization, especially crosslinked enzyme aggregates (CLEAs), has become an important design for biocatalysis in several areas. Adding amino acids during formation of CLEAs was found to give biocatalysts more stable at 55 °C and in the presence of 60% acetonitrile. The half-lives of CLEAs prepared with and without Arg addition were 21 and 15 h (subtilisin) and 4 and 1.6 h (α-chymotrypsin) at 55 °C, respectively. The corresponding half-lives during acetonitrile presence were 4.1 and 3.0 h (subtilisin) and 39 and 22 min (α-chymotrypsin), respectively. CLEAs made with Arg had higher percentages of alpha helix. CLEAs made by adding Lys, Ala, or Asp also were more stable. In the case of Thermomyces lanuginosus lipase (TLL), CLEA with Ala was even more stable than CLEA with Arg. The addition of a suitable amino acid, thus, enhances CLEA stabilities. The results are discussed in the light of earlier results on chemical modification of proteins and the observation that the Arg/Lys ratio is invariably high in the case of enzymes from thermophiles. PMID:27237371

  2. A new role for an old enzyme: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana

    PubMed Central

    Desikan, Radhika; Griffiths, Rachael; Hancock, John; Neill, Steven

    2002-01-01

    The plant hormone abscisic acid (ABA), synthesized in response to water-deficit stress, induces stomatal closure via activation of complex signaling cascades. Recent work has established that nitric oxide (NO) is a key signaling molecule mediating ABA-induced stomatal closure. However, the biosynthetic origin of NO in guard cells has not yet been resolved. Here, we provide pharmacological, physiological, and genetic evidence that NO synthesis in Arabidopsis guard cells is mediated by the enzyme nitrate reductase (NR). Guard cells of wild-type Arabidopsis generate NO in response to treatment with ABA and nitrite, a substrate for NR. Moreover, NR-mediated NO synthesis is required for ABA-induced stomatal closure. However, in the NR double mutant, nia1, nia2 that has diminished NR activity, guard cells do not synthesize NO nor do the stomata close in response to ABA or nitrite, although stomatal opening is still inhibited by ABA. Furthermore, by using the ABA-insensitive (ABI) abi1–1 and abi2–1 mutants, we show that the ABI1 and ABI2 protein phosphatases are downstream of NO in the ABA signal-transduction cascade. These data demonstrate a previously uncharacterized signaling role for NR, that of mediating ABA-induced NO synthesis in Arabidopsis guard cells. PMID:12446847

  3. Relationship of spermatoscopy, prostatic acid phosphatase activity and prostate-specific antigen (p30) assays with further DNA typing in forensic samples from rape cases.

    PubMed

    Romero-Montoya, Lydia; Martínez-Rodríguez, Hugo; Pérez, Miguel Antonio; Argüello-García, Raúl

    2011-03-20

    In the forensic laboratory the biological analyses for rape investigation commonly include vaginal swabs as sample material combined to biochemical tests including sperm cytology (SC) and detection of acid phosphatase activity (AP) and prostate-specific antigen (PSA, p30) for the conclusive identification of semen components. Most reports comparing these tests relied on analysis of semen samples or donor swabs taken under controlled conditions; however their individual or combined efficacy under real live sampling conditions in different laboratories is largely unknown. We carried out SC, APA and PSA analyses in vaginal swabs collected from casework rapes submitted to Mexican Forensic Laboratories at Texcoco and Toluca. On the basis of positive and negative results from each assay and sample, data were classified into eight categories (I-VIII) and compared with those obtained in the two only similar studies reported in Toronto, Canada and Hong Kong, China. SC and APA assays had the higher overall positivity in Toluca and Texcoco samples respectively and otherwise PSA had a lower but very similar positivity between these two laboratories. When compared to the previous studies some similarities were found, namely similar frequencies (at a ratio of approximately 1 out of 3) of samples being positive or negative by all techniques (Categories I and VI respectively) and a comparable overall positivity of APA and SC but higher than that of PSA. Indeed the combined results of using SC, APA and PSA tests was considered as conclusive for semen detection from approximately 1 out of 3 cases (Category I) to approximately 1 out of 2 cases in a scenario where at least SC is positive, strongly presumptive in 2 out of 3 cases (with at least one test positive) and the remainder 1 out of 3 cases (Category VI) suggested absence of semen. By determining Y-STR polymorphisms (12-loci) in additional samples obtained at Toluca laboratory, complete DNA profiles were determined from all

  4. Rapid and enzyme-free nucleic acid detection based on exponential hairpin assembly in complex biological fluids.

    PubMed

    Ma, Cuiping; Zhang, Menghua; Chen, Shan; Liang, Chao; Shi, Chao

    2016-05-10

    Herein, we have developed a rapid and enzyme-free nucleic acid amplification detection method that combined the exponential self-assembly of four DNA hairpins and the FRET pair Cy3 and Cy5. This strategy was very ingenious and rapid, and could detect nucleic acids at concentrations as low as 10 pM in 15 min in biological fluids. PMID:27138054

  5. An enzymic assay for uric acid in serum and urine compared with HPLC.

    PubMed

    Dubois, H; Delvoux, B; Ehrhardt, V; Greiling, H

    1989-03-01

    We evaluated a colorimetric method for the assay of uric acid in serum or urine, which utilises a Trinder chromogenic system modified by the inclusion of 2,4,6-tribromo-3-hydroxybenzoic acid for oxidative coupling to p-aminophenazone. Colour development (Amax: 512 nm) is complete within five minutes. Measurement of a sample blank is not needed. The procedure involves pre-incubation with ascorbic acid oxidase and detergent to eliminate interference by ascorbic acid and to abolish turbidity due to lipaemia; this pretreatment was effective up to 1.14 mmol/l ascorbate and up to at least 25 mmol/l triacylglycerol. Interference by icteric sera was insignificant up to about 170 mumol/l bilirubin. The method is linear up to at least 1428 mumol/l. In human serum and urine the procedure correlates well with HPLC and the uricase p-aminophenazone method on the SMAC analyser. Within-run and between-run imprecisions of the enzymic test were higher than for HPLC, but did not exceed 1.2% (CV) and 2.5% (CV), respectively. PMID:2708944

  6. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development.

    PubMed

    Bhatt, Apoorva; Molle, Virginie; Besra, Gurdyal S; Jacobs, William R; Kremer, Laurent

    2007-06-01

    Mycolic acids are very long-chain fatty acids representing essential components of the mycobacterial cell wall. Considering their importance, characterization of key enzymes participating in mycolic acid biosynthesis not only allows an understanding of their role in the physiology of mycobacteria, but also might lead to the identification of new drug targets. Mycolates are synthesized by at least two discrete elongation systems, the type I and type II fatty acid synthases (FAS-I and FAS-II respectively). Among the FAS-II components, the condensing enzymes that catalyse the formation of carbon-carbon bonds have received considerable interest. Four condensases participate in initiation (mtFabH), elongation (KasA and KasB) and termination (Pks13) steps, leading to full-length mycolates. We present the recent biochemical and structural data for these important enzymes. Special emphasis is given to their role in growth, intracellular survival, biofilm formation, as well as in the physiopathology of tuberculosis. Recent studies demonstrated that phosphorylation of these enzymes by mycobacterial kinases affects their activities. We propose here a model in which kinases that sense environmental changes can phosphorylate the condensing enzymes, thus representing a novel mechanism of regulating mycolic acid biosynthesis. Finally, we discuss the attractiveness of these enzymes as valid targets for future antituberculosis drug development. PMID:17555433

  7. Inhibitory action of Epilobium hirsutum extract and its constituent ellagic acid on drug-metabolizing enzymes.

    PubMed

    Celik, Gurbet; Semiz, Aslı; Karakurt, Serdar; Gencler-Ozkan, Ayse Mine; Arslan, Sevki; Adali, Orhan; Sen, Alaattin

    2016-04-01

    Epilobium hirsutum (EH) is a medicinal plant for treating various diseases. Despite its wide usage, there is no available information about its potential influences on drug metabolism. The present study was undertaken to determine the in vivo effects of EH on hepatic CYP2B, CYP2C, CYP2D, and CYP3A enzymes that are primarily involved in drug metabolism. Male Wistar rats were injected intraperitoneally with EH water extract (EHWE) and ellagic acid (EA) at a daily dose of 37.5 and 20 mg/kg, respectively, for 9 days and hepatic drug-metabolizing enzymes were assessed at activity, protein and mRNA levels. Erythromycin N-demethylase activity was inhibited by 53 and 21 % in EHWE- and EA-treated rats, respectively. Benzphetamine N-demethylase and 7-benzyloxyresorufin-O-debenzylase activities were decreased by 53 and 43 %, and 57 and 57 % in EHWE-and EA-treated rats, respectively. Moreover, protein levels of CYP2B1, CYP2C6, CYP2D2, and CYP3A1 also decreased by 55, 15, 33, and 82 % as a result of EHWE treatment of rats, respectively. Similarly, CYP2B1, CYP2C6, CYP2D2, and CYP3A1 protein levels decreased by 62, 63, 49, and 37 % with EA treatment, respectively. qRT-PCR analyses also showed that mRNA levels of these enzymes were significantly inhibited with bothEHWE and EA treatments. In conclusion, inhibition of drug clearances leading to drug toxicity because of the lowered activity and expression of drug-metabolizing enzymes might be observed in the people who used EH as complementary herbal remedy that might be contributed by its EA content. PMID:25425117

  8. Prediction of enzyme function based on 3D templates of evolutionarily important amino acids

    PubMed Central

    Kristensen, David M; Ward, R Matthew; Lisewski, Andreas Martin; Erdin, Serkan; Chen, Brian Y; Fofanov, Viacheslav Y; Kimmel, Marek; Kavraki, Lydia E; Lichtarge, Olivier

    2008-01-01

    Background Structural genomics projects such as the Protein Structure Initiative (PSI) yield many new structures, but often these have no known molecular functions. One approach to recover this information is to use 3D templates – structure-function motifs that consist of a few functionally critical amino acids and may suggest functional similarity when geometrically matched to other structures. Since experimentally determined functional sites are not common enough to define 3D templates on a large scale, this work tests a computational strategy to select relevant residues for 3D templates. Results Based on evolutionary information and heuristics, an Evolutionary Trace Annotation (ETA) pipeline built templates for 98 enzymes, half taken from the PSI, and sought matches in a non-redundant structure database. On average each template matched 2.7 distinct proteins, of which 2.0 share the first three Enzyme Commission digits as the template's enzyme of origin. In many cases (61%) a single most likely function could be predicted as the annotation with the most matches, and in these cases such a plurality vote identified the correct function with 87% accuracy. ETA was also found to be complementary to sequence homology-based annotations. When matches are required to both geometrically match the 3D template and to be sequence homologs found by BLAST or PSI-BLAST, the annotation accuracy is greater than either method alone, especially in the region of lower sequence identity where homology-based annotations are least reliable. Conclusion These data suggest that knowledge of evolutionarily important residues improves functional annotation among distant enzyme homologs. Since, unlike other 3D template approaches, the ETA method bypasses the need for experimental knowledge of the catalytic mechanism, it should prove a useful, large scale, and general adjunct to combine with other methods to decipher protein function in the structural proteome. PMID:18190718

  9. Human osteoclast and giant cell differentiation: the apparent switch from nonspecific esterase to tartrate resistant acid phosphatase activity coincides with the in situ expression of osteopontin mRNA.

    PubMed

    Connor, J R; Dodds, R A; James, I E; Gowen, M

    1995-12-01

    Animal model and in vitro cultures suggest that osteoclasts and cells of the mononuclear phagocyte system share a common precursor. However, the human osteoclast precursor has not been positively identified. We attempted to identify the precursor in situ by using a number of osteoclast- and macrophage-selective markers, together with the expression of osteopontin mRNA, previously shown to be abundant in human osteoclasts. Sections of osteophytic bone and a panel of inflammatory connective tissues were processed for in situ hybridization; serial sections were analyzed for tartrate-resistant acid phosphatase (TRAP) and nonspecific esterase (NSE) activity, selective cytochemical markers for the osteoclast and cells of the macrophage/monocyte lineage, respectively. The murine anti-human osteoclast monoclonal antibodies 23C6 (vitronectin receptor) and C35 (osteoclast-selective) were used to further identify the osteoclast phenotype. We compared osteoclasts, giant cells, and their respective putative mononuclear precursors. At resorption sites within osteophytic bone, osteopontin mRNA was expressed in osteoclasts and a distinct population of TRAP+, NSE- mononuclear cells. Adjacent clusters of mononuclear cells were TRAP- and NSE+ or were active for both enzymes; these cells demonstrated variable expression of osteopontin mRNA. In the inflammatory connective tissues, abundant macrophage-like cells (NSE+/TRAP-) did not express osteopontin mRNA. However, TRAP+ mononuclear cells observed among clusters of NSE+ cells did express osteopontin mRNA. At these sites, clusters of putative macrophage polykaryons removing fragments of bone debris were observed. These giant cells and associated mononuclear cells were NSE- and distinctly TRAP+, and expressed osteopontin mRNA, C35, and 23C6 (human osteoclast) reactivity. Therefore, cells involved in the remodeling (resorption) of bone or the removal of bone debris, together with their immediate precursors, switch from being NSE

  10. Isolation and characterization of a neutral phosphatase from wheat seedlings

    SciTech Connect

    Cheng, H.F.

    1988-01-01

    A neutral phosphatase was purified to homogeneity from wheat seedlings. The enzyme was a monomeric glycoprotein exhibiting a molecular weight of 35,000, frictional ratio of 1.22, Stokes' radius of 26 A, and sedimentation coefficient of 3.2 S. That the enzyme was a glycoprotein was surmised from its chromatographic property on Concanavalin A-Sepharose column. The phosphatase activity was assayed using either fructose-2,6-bisphosphate or p-nitrophenyl phosphate as substrate. The phosphatase activity was not affected by high concentrations of chelating agents and did not require the addition of Mg{sup +2} or Ca{sup +2} for its activity. Molybdate, orthovanadate, Zn{sup +2}, and Hg{sup +2} were all potent inhibitors of the phosphatase activity. The inhibition by Hg{sup +2} was reversed by dithiothreitol. The enzyme activity was stimulated by Mn{sup +2} about 2-fold. On the other hand, 3-phosphoglycerate, fructose-6-P and Pi as well as polyamines inhibited the enzyme activity. The ability of the neutral phosphatase to dephosphorylate protein phosphotyrosine was also investigated. The phosphotyrosyl-substrates, such as ({sup 32}P) phosphotyrosyl-poly(Glu, Tyr)n, -alkylated bovine serum albumin, -angiotensin-1, and -band 3 of erythrocytes, were all substrates of the phosphatase. On the other hand, the enzyme had no activity toward protein phosphoserine and protein phosphothreonine.

  11. Thermostable Lipoxygenase, a Key Enzyme in the Conversion of Linoleic Acid into Thrihydroxy-octadecenoic Acid by Pseudomonas aeruginosa PR3

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lipoxygenases (LOX) constitute a family of lipid-peroxidizing enzymes catalyzing the oxidation of unsaturated fatty acid with (1Z,4Z)-pentadiene structural unit, leading to formation of the conjugated (Z,E)-hydroperoxydienoic acid. LOXs have been known to be widely distributed in plants and animals...

  12. Clostridium thermocellum releases coumaric acid during degradation of untreated grasses by the action of an unknown enzyme.

    PubMed

    Herring, Christopher D; Thorne, Philip G; Lynd, Lee R

    2016-03-01

    Clostridium thermocellum is an anaerobic thermophile with the ability to digest lignocellulosic biomass that has not been pretreated with high temperatures. Thermophilic anaerobes have previously been shown to more readily degrade grasses than wood. Part of the explanation for this may be the presence of relatively large amounts of coumaric acid in grasses, with linkages to both hemicellulose and lignin. We found that C. thermocellum and cell-free cellulase preparations both release coumaric acid from bagasse and switchgrass. Cellulase preparations from a mutant strain lacking the scaffoldin cipA still showed activity, though diminished. Deletion of all three proteins in C. thermocellum with ferulic acid esterase domains, either singly or in combination, did not eliminate the activity. Further work will be needed to identify the novel enzyme(s) responsible for the release of coumaric acid from grasses and to determine whether these enzymes are important factors of microbial biomass degradation. PMID:26762388

  13. Characterization of enzymes in the oxidation of 1,2-propanediol to D: -(-)-lactic acid by Gluconobacter oxydans DSM 2003.

    PubMed

    Wei, Liujing; Yang, Xuepeng; Gao, Keliang; Lin, Jinping; Yang, Shengli; Hua, Qiang; Wei, Dongzhi

    2010-09-01

    Although Gluconobacter oxydans can convert 1,2-propanediol to D: -(-)-lactic acid, the enzyme(s) responsible for the conversion has remain unknown. In this study, the membrane-bound alcohol dehydrogenase (ADH) of Gluconobacter oxydans DSM 2003 was purified and confirmed to be essential for the process of D: -(-)-lactic acid production by gene knockout and complementation studies. A 25 percent decrease in D: -(-)-lactic acid production was found for the aldehyde dehydrogenase (ALDH) deficient strain of G. oxydans DSM 2003, indicating that this enzyme is involved in the reaction but not necessary. It is the first report that reveals the function of ADH and ALDH in the biooxidation of 1,2-propanediol to D: -(-)-lactic acid by G. oxydans DSM 2003. PMID:20300886

  14. Photosynthetic Characteristics of Portulaca grandiflora, a Succulent C(4) Dicot : CELLULAR COMPARTMENTATION OF ENZYMES AND ACID METABOLISM.

    PubMed

    Ku, S B; Shieh, Y J; Reger, B J; Black, C C

    1981-11-01

    on enzyme localization, a scheme of C(4) photosynthesis in P. grandiflora is proposed.Well-watered plants of P. grandiflora exhibit a diurnal fluctuation of total titratable acidity, with an amplitude of 61 and 54 microequivalent per gram fresh weight for the leaves and stems, respectively. These changes were in parallel with changes in malic acid concentration in these tissues. Under severe drought conditions, diurnal changes in both titratable acidity and malic acid concentration in both leaves and stems were much reduced. However, another C(4) dicot Amaranthus graecizans (nonsucculent) did not show any diurnal acid fluctuation under the same conditions. These results confirm the suggestion made by Koch and Kennedy (Plant Physiol. 65: 193-197, 1980) that succulent C(4) dicots can exhibit an acid metabolism similar to Crassulacean acid metabolism plants in certain environments. PMID:16662054

  15. Adapting capillary gel electrophoresis as a sensitive, high-throughput method to accelerate characterization of nucleic acid metabolic enzymes

    PubMed Central

    Greenough, Lucia; Schermerhorn, Kelly M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Slatko, Barton E.; Gardner, Andrew F.

    2016-01-01

    Detailed biochemical characterization of nucleic acid enzymes is fundamental to understanding nucleic acid metabolism, genome replication and repair. We report the development of a rapid, high-throughput fluorescence capillary gel electrophoresis method as an alternative to traditional polyacrylamide gel electrophoresis to characterize nucleic acid metabolic enzymes. The principles of assay design described here can be applied to nearly any enzyme system that acts on a fluorescently labeled oligonucleotide substrate. Herein, we describe several assays using this core capillary gel electrophoresis methodology to accelerate study of nucleic acid enzymes. First, assays were designed to examine DNA polymerase activities including nucleotide incorporation kinetics, strand displacement synthesis and 3′-5′ exonuclease activity. Next, DNA repair activities of DNA ligase, flap endonuclease and RNase H2 were monitored. In addition, a multicolor assay that uses four different fluorescently labeled substrates in a single reaction was implemented to characterize GAN nuclease specificity. Finally, a dual-color fluorescence assay to monitor coupled enzyme reactions during Okazaki fragment maturation is described. These assays serve as a template to guide further technical development for enzyme characterization or nucleoside and non-nucleoside inhibitor screening in a high-throughput manner. PMID:26365239

  16. Phylogenetic and genetic linkage between novel atypical dual-specificity phosphatases from non-metazoan organisms.

    PubMed

    Romá-Mateo, Carlos; Sacristán-Reviriego, Almudena; Beresford, Nicola J; Caparrós-Martín, José Antonio; Culiáñez-Macià, Francisco A; Martín, Humberto; Molina, María; Tabernero, Lydia; Pulido, Rafael

    2011-04-01

    Dual-specificity phosphatases (DSPs) constitute a large protein tyrosine phosphatase (PTP) family, with examples in distant evolutive phyla. PFA-DSPs (Plant and Fungi Atypical DSPs) are a group of atypical DSPs present in plants, fungi, kinetoplastids, and slime molds, the members of which share structural similarity with atypical- and lipid phosphatase DSPs from mammals. The analysis of the PFA-DSPs from the plant Arabidopsis thaliana (AtPFA-DSPs) showed differential tissue mRNA expression, substrate specificity, and catalytic activity for these proteins, suggesting different functional roles among plant PFA-DSPs. Bioinformatic analysis revealed the existence of novel PFA-DSP-related proteins in fungi (Oca1, Oca2, Oca4 and Oca6 in Saccharomyces cerevisiae) and protozoa, which were segregated from plant PFA-DSPs. The closest yeast homolog for these proteins was the PFA-DSP from S. cerevisiae ScPFA-DSP1/Siw14/Oca3. Oca1, Oca2, Siw14/Oca3, Oca4, and Oca6 were involved in the yeast response to caffeine and rapamycin stresses. Siw14/Oca3 was an active phosphatase in vitro, whereas no phosphatase activity could be detected for Oca1. Remarkably, overexpression of Siw14/Oca3 suppressed the caffeine sensitivity of oca1, oca2, oca4, and oca6 deleted strains, indicating a genetic linkage and suggesting a functional relationship for these proteins. Functional studies on mutations targeting putative catalytic residues from the A. thaliana AtPFA-DSP1/At1g05000 protein indicated the absence of canonical amino acids acting as the general acid/base in the phosphor-ester hydrolysis, which suggests a specific mechanism of reaction for PFA-DSPs and related enzymes. Our studies demonstrate the existence of novel phosphatase protein families in fungi and protozoa, with active and inactive enzymes linked in common signaling pathways. This illustrates the catalytic and functional complexity of the expanding family of atypical dual-specificity phosphatases in non-metazoans, including

  17. Mechanistic studies on the reactions of molybdenum(VI), tungsten(VI), vanadium(V), and arsenic(V) tetraoxo anions with the Fe{sup II}Fe{sup III} form of purple acid phosphatase from porcine uteri (Uteroferrin)

    SciTech Connect

    Lim, J.S.; Aquino, M.A.S.; Skyes, A.G.

    1996-01-31

    The Fe{sup II}-Fe{sup III} form of purple acid phosphatase (PAP{sub r}) from porcine uteri (uteroferrin) catalyses the hydrolysis of phosphate esters. Here, kinetic studies have been extended to include the complexing of tetraoxo XO{sub 4} anions of molybdate(VI), tungstate(VI), vanadate(V), and arsenate(V) with PAP{sub r}. UV-vis absorbance changes are small and the range of concentrations is restricted by the need to maximise monomer XO{sub 4} forms. Rate constants k{sub obs}(25{degrees}C) were determined by stopped-flow monitoring of the reactions at {approximately}520 nm.

  18. Optimization of the enzyme-catalyzed synthesis of amino acid-based surfactants from palm oil fractions.

    PubMed

    Soo, Ee Lin; Salleh, Abu Bakar; Basri, Mahiran; Zaliha Raja Abdul Rahman, Raja Noor; Kamaruddin, Kamarulzaman

    2003-01-01

    The feasibility of using palm oil fractions as cheap and abundant sources of raw material for the synthesis of amino acid surfactants was investigated. Of a number of enzymes screened, the best results were obtained with the immobilized enzyme, Lipozyme. The effects of temperature, solvent, incubation period, fatty substrate/amino acid molar ratio, enzyme amount, and water removal on the reactions were analyzed and compared to those on reactions with free fatty acids and pure triglycerides as fatty substrates. All reactions were most efficient when carried out at high temperatures (70-80 degrees C) in hexane as a solvent. However, while reactions with free fatty acids proceeded better when a slight excess of the free fatty acids over the amino acids was used, reactions with triglycerides and palm oil fractions were best performed at equimolar ratios. Also, the addition of molecular sieves slightly enhanced reactions with free fatty acids but adversely affected reactions with triglycerides and palm oil fractions. Although reactions with palm oil fractions took longer (6 d) to reach equilibrium compared to reactions with free fatty acids (4 d) and pure triglycerides (4 d), better yields were obtained. Such lipase-catalyzed transacylation of palm oil fractions with amino acids is potentially useful in the production of mixed medium- to long-chain surfactants for specific applications. PMID:16233420

  19. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid

    NASA Astrophysics Data System (ADS)

    Zhou, Yu-Ting; He, Weiwei; Wamer, Wayne G.; Hu, Xiaona; Wu, Xiaochun; Lo, Y. Martin; Yin, Jun-Jie

    2013-01-01

    Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge DPPH radicals and superoxide radicals. These results demonstrate that Au@Pt nanorods can reduce the antioxidant activity of AA. Therefore, it is necessary to consider the effects of using Pt nanoparticles together with other reducing agents or antioxidants such as AA due to the oxidase-like property of Au@Pt nanorods.Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spectroscopy, the apparent kinetics of enzyme-mimetic activity of Au@Pt nanorods were studied and compared with the activity of AAO. With the help of ESR, we found that Au@Pt nanorods did not scavenge hydroxyl radicals but inhibited the antioxidant ability of AA for scavenging hydroxyl radicals produced by photoirradiating solutions containing titanium dioxide and zinc oxide. Moreover, the Au@Pt nanorods reduced the ability of AA to scavenge

  20. [Reconstitution of polyunsaturated fatty acid synthesis enzymes in mammalian cells to convert LA to DHA].

    PubMed

    Zhu, Guiming; Saleh, Abdulmomen Ali Mohammed; Bahwal, Said Ahmed; Qiu, Lihong; Sun, Jie; Shang, Yu; Jiang, Xudong; Ge, Tangdong; Zhang, Tao

    2015-02-01

    DHA (22:6n-3) is a Ω-3 polyunsaturated fatty acid with 22 carbon atoms and 6 double bonds, which has important biological functions in human body. Human and other mammals synthesize only limited amounts of DHA, more requirements must be satisfied from food resources. However, the natural resources of DHA (Mainly deep-sea fish and other marine products) are prone to depletion. New resources development is still insufficient to satisfy the growing market demand. Previous studies have revealed that the mammals can increase the synthesis of DHA and other long-chain polyunsaturated fatty acids after transgenic procedures. In this study, mammalian cells were transfected with Δ6, Δ5 desaturase, Δ6, Δ5 elongase, Δ15 desaturase (Isolated from nematode Caenorhabditis elegans) and Δ4 desaturase (Isolated from Euglena gracilis), simultaneously. Results show that the expression or overexpression of these 6 enzymes is capable of conversion of the o-6 linoleic acid (LA, 18:2n-6) in DHA (22:6n-3). DHA content has increased from 16.74% in the control group to 25.3% in the experimental group. The strategy and related technology in our research provided important data for future production the valuable DHA (22:6n-3) by using genetically modified animals. PMID:26062349

  1. Single-Cell Measurements of Enzyme Levels as a Predictive Tool for Cellular Fates during Organic Acid Production

    PubMed Central

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna

    2013-01-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as “acidified”). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This “switch-like” relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  2. Single-cell measurements of enzyme levels as a predictive tool for cellular fates during organic acid production.

    PubMed

    Zdraljevic, Stefan; Wagner, Drew; Cheng, Kevin; Ruohonen, Laura; Jäntti, Jussi; Penttilä, Merja; Resnekov, Orna; Pesce, C Gustavo

    2013-12-01

    Organic acids derived from engineered microbes can replace fossil-derived chemicals in many applications. Fungal hosts are preferred for organic acid production because they tolerate lignocellulosic hydrolysates and low pH, allowing economic production and recovery of the free acid. However, cell death caused by cytosolic acidification constrains productivity. Cytosolic acidification affects cells asynchronously, suggesting that there is an underlying cell-to-cell heterogeneity in acid productivity and/or in resistance to toxicity. We used fluorescence microscopy to investigate the relationship between enzyme concentration, cytosolic pH, and viability at the single-cell level in Saccharomyces cerevisiae engineered to synthesize xylonic acid. We found that cultures producing xylonic acid accumulate cells with cytosolic pH below 5 (referred to here as "acidified"). Using live-cell time courses, we found that the probability of acidification was related to the initial levels of xylose dehydrogenase and sharply increased from 0.2 to 0.8 with just a 60% increase in enzyme abundance (Hill coefficient, >6). This "switch-like" relationship likely results from an enzyme level threshold above which the produced acid overwhelms the cell's pH buffering capacity. Consistent with this hypothesis, we showed that expression of xylose dehydrogenase from a chromosomal locus yields ∼20 times fewer acidified cells and ∼2-fold more xylonic acid relative to expression of the enzyme from a plasmid with variable copy number. These results suggest that strategies that further reduce cell-to-cell heterogeneity in enzyme levels could result in additional gains in xylonic acid productivity. Our results demonstrate a generalizable approach that takes advantage of the cell-to-cell variation of a clonal population to uncover causal relationships in the toxicity of engineered pathways. PMID:24038690

  3. Secretion of three enzymes for fatty acid synthesis into mouse milk in association with fat globules, and rapid decrease of the secreted enzymes by treatment with rapamycin.

    PubMed

    Moriya, Hitomi; Uchida, Kana; Okajima, Tetsuya; Matsuda, Tsukasa; Nadano, Daita

    2011-04-01

    The mammary epithelium produces numerous lipid droplets during lactation and secretes them in plasma membrane-enclosed vesicles known as milk fat globules. The biogenesis of such fat globules is considered to provide a model for clarifying the mechanisms of lipogenesis in mammals. In the present study, we identified acetyl coenzyme A carboxylase, ATP citrate lyase, and fatty acid synthase in mouse milk. Fractionation of milk showed that these three enzymes were located predominantly in milk fat globules. The three enzymes were resistant to trypsin digestion without Triton X-100, indicating that they were not located on the outer surface of the globules and thus associated with the precursors of the globules before secretion. When a low dose of rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), was injected into lactating mice, the levels of the three enzymes in milk were decreased within 3h after injection. Since the protein levels of the three enzymes in tissues were not obviously altered by this short-term treatment, known transcriptional control by mTOR signaling was unlikely to account for this decrease in their levels in milk. Our findings suggest a new, putatively mTOR-dependent localization of the three enzymes for de novo lipogenesis. PMID:21281598

  4. Vanadate and selenium inhibit the triiodothyronine induced enzyme activity and mRNA level for both fatty acid synthase and malic enzyme

    SciTech Connect

    Zhu, Y.; Mirmiran, R.; Goodridge, A.G.; Stapleton, S.R. Western Michigan Univ., Kalamazoo )

    1991-03-15

    In chick-embryo hepatocytes in culture, triiodothyronine stimulates enzyme activity, mRNA level and transcription rate for both fatty acid synthase (FAS) and malic enzyme (ME). Insulin alone has no effect but amplifies the induction by T3. Recent evidence has demonstrated the insulin-mimicking action of vanadate and selenium on various physiological processes. Little information, however, is available on the affects of vanadate and selenium on the expression of genes that are regulated by insulin. These studies were initiated to test the potential of vanadate and selenium to mimic the amplification affect of insulin on the T3 induction of FAS and ME. In chick-embryo hepatocytes incubated in a chemically defined medium, addition of T3 for 48h causes an increase in the enzyme activity and mRNA level for both FAS and ME. Addition of sodium vanadate or sodium selenate (20 {mu}M) coincident with the T3 almost completely inhibited the stimulation of FAS and ME activity and accumulation of their respective mRNA's. Fifty percent maximal inhibition occurred at about 3-40{mu}M vanadate or 5-10{mu}M selenium. Vanadate and selenium similarity inhibited FAS and ME enzyme activity and mRNA level when the cells were incubated in the presence of insulin and T3. The effect of these metals was selective; isocitrate dehydrogenase activity as well as the level of glyceraldehyde 3-phosphate mRNA were not affected by any of the additions made to the cells in culture. This effect by vanadate and selenium also does not appear to be a generalized effect of metals on lipogenic enzymes as molydate under similar experimental conditions has no effect on either the enzyme activity or mRNA level of FAS or ME. Studies are continuing to determine the mechanism of action of these agents on the regulation of lipogenic enzymes.

  5. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  6. Possible protein phosphatase inhibition by bis(hydroxyethyl) sulfide, a hydrolysis product of mustard gas

    SciTech Connect

    Brimfield, A.A.

    1995-12-31

    Recently, the natural vesicant cantharidin was shown to bind exclusively to and inhibit protein phosphatase 2A (PP2A) in mouse tissue extracts (Li and Casida (1992) Proc. Nati. Acad. Sci. USA 89, 11867-11870). To explore the generality of this effect in vesicant action, we measured the protein serinelthreonine phosphatase activity in mouse liver cytosol (in the form of the okadaic acid inhibitable increment of p-nitrophenyl phosphate (p-NPP) phosphatase activity) in the presence of aqueous sulfur mustard or its hydrolysis product, bis(hydroxyethyl)sulfide (TDG). Sulfur mustard inhibited p-NPP hydrolysis. However, inhibition correlated with the time elapsed between thawing and the addition of mustard to the enzyme preparation, not with concentration. TDG exhibited a direct, concentration-related inhibition of p-NPP hydrolysis between 30 and 300 1LM. We conclude that sulfur mustard also has an inhibitory effect on protein serinelthreonine phosphatases. However, the inhibition is an effect of its non-alkykating hydrolysis product TDG, not of sulfur mustard itself.

  7. Rhizobiales-like Phosphatase 2 from Arabidopsis thaliana Is a Novel Phospho-tyrosine-specific Phospho-protein Phosphatase (PPP) Family Protein Phosphatase.

    PubMed

    Uhrig, R Glen; Labandera, Anne-Marie; Muhammad, Jamshed; Samuel, Marcus; Moorhead, Greg B

    2016-03-11

    Cellular signaling through protein tyrosine phosphorylation is well established in mammalian cells. Although lacking the classic tyrosine kinases present in humans, plants have a tyrosine phospho-proteome that rivals human cells. Here we report a novel plant tyrosine phosphatase from Arabidopsis thaliana (AtRLPH2) that, surprisingly, has the sequence hallmarks of a phospho-serine/threonine phosphatase belonging to the PPP family. Rhizobiales/Rhodobacterales/Rhodospirillaceae-like phosphatases (RLPHs) are conserved in plants and several other eukaryotes, but not in animals. We demonstrate that AtRLPH2 is localized to the plant cell cytosol, is resistant to the classic serine/threonine phosphatase inhibitors okadaic acid and microcystin, but is inhibited by the tyrosine phosphatase inhibitor orthovanadate and is particularly sensitive to inhibition by the adenylates, ATP and ADP. AtRLPH2 displays remarkable selectivity toward tyrosine-phosphorylated peptides versus serine/threonine phospho-peptides and readily dephosphorylates a classic tyrosine phosphatase protein substrate, suggesting that in vivo it is a tyrosine phosphatase. To date, only one other tyrosine phosphatase is known in plants; thus AtRLPH2 represents one of the missing pieces in the plant tyrosine phosphatase repertoire and supports the concept of protein tyrosine phosphorylation as a key regulatory event in plants. PMID:26742850

  8. Active-site amino acid residues in γ-glutamyltransferase and the nature of the γ-glutamyl-enzyme bond

    PubMed Central

    Elce, John S.

    1980-01-01

    Active-site residues in rat kidney γ-glutamyltransferase (EC 2.3.2.2) were investigated by means of chemical modification. 1. In the presence of maleate, the activity was inhibited by phenylmethanesulphonyl fluoride, and the inhibition was not reversed by β-mercaptoethanol, suggesting that a serine residue is close to the active site, but is shielded except in the presence of maleate. 2. Treatment of the enzyme with N-acetylimidazole modified an amino group, exposed a previously inaccessible cysteine residue and inhibited hydrolysis of the γ-glutamyl-enzyme intermediate, but not its formation. 3. After reaction of the enzyme successively with N-acetylimidazole and with non-radioactive iodoacetamide/serine/borate, two active-site residues reacted with iodo[14C]acetamide. One of these possessed a carboxy group, which formed a [14C]glycollamide ester, and the other was cysteine, shown by isolation of S-[14C]carboxymethylcysteine after acid hydrolysis. When N-acetylimidazole treatment was omitted, only the carboxy group reacted with iodo[14C]acetamide. 4. Isolation of the γ-[14C]glutamyl-enzyme intermediate was made easier by prior treatment of the enzyme with N-acetylimidazole. The γ-glutamyl-enzyme bond was stable to performic acid, and to hydroxylamine/urea at pH10, but was hydrolysed slowly at pH12, indicating attachment of the γ-[14C]glutamyl group in amide linkage to an amino group on the enzyme. Proteolysis of the γ-[14C]glutamyl-enzyme after performic acid oxidation gave rise to a small acidic radioactive peptide that was resistant to further proteolysis and was not identical with γ-glutamyl-ε-lysine. 5. A scheme for the catalytic mechanism is proposed. PMID:6104953

  9. Aptamer- and nucleic acid enzyme-based systems for simultaneous detection of multiple analytes

    DOEpatents

    Lu, Yi; Liu, Juewen

    2011-11-15

    The present invention provides aptamer- and nucleic acid enzyme-based systems for simultaneously determining the presence and optionally the concentration of multiple analytes in a sample. Methods of utilizing the system and kits that include the sensor components are also provided. The system includes a first reactive polynucleotide that reacts to a first analyte; a second reactive polynucleotide that reacts to a second analyte; a third polynucleotide; a fourth polynucleotide; a first particle, coupled to the third polynucleotide; a second particle, coupled to the fourth polynucleotide; and at least one quencher, for quenching emissions of the first and second quantum dots, coupled to the first and second reactive polynucleotides. The first particle includes a quantum dot having a first emission wavelength. The second particle includes a second quantum dot having a second emission wavelength different from the first emission wavelength. The third polynucleotide and the fourth polynucleotide are different.

  10. The role of CYP26 enzymes in defining appropriate retinoic acid exposure during embryogenesis.