Science.gov

Sample records for acid phosphatase isoform

  1. Expression of human protein phosphatase-1 in Saccharomyces cerevisiae highlights the role of phosphatase isoforms in regulating eukaryotic functions.

    PubMed

    Gibbons, Jennifer A; Kozubowski, Lukasz; Tatchell, Kelly; Shenolikar, Shirish

    2007-07-27

    Human (PP1) isoforms, PP1alpha, PP1beta, PP1gamma1, and PP1gamma2, differ in primary sequences at N and C termini that potentially bind cellular regulators and define their physiological functions. The GLC7 gene encodes the PP1 catalytic subunit with >80% sequence identity to human PP1 and is essential for viability of Saccharomyces cerevisiae. In yeast, Glc7p regulates glycogen and protein synthesis, actin cytoskeleton, gene expression, and cell division. We substituted human PP1 for Glc7p in yeast to investigate the ability of individual isoforms to catalyze Glc7p functions. S. cerevisiae expressing human PP1 isoforms were viable. PP1alpha-expressing yeast grew more rapidly than strains expressing other isoforms. On the other hand, PP1alpha-expressing yeast accumulated less glycogen than PP1beta-or PP1gamma1-expressing yeast. Yeast expressing human PP1 were indistinguishable from WT yeast in glucose derepression. However, unlike WT yeast, strains expressing human PP1 failed to sporulate. Analysis of chimeric PP1alpha/beta subunits highlighted a critical role for their unique N termini in defining PP1alpha and PP1beta functions in yeast. Biochemical studies established that the differing association of PP1 isoforms with the yeast glycogen-targeting subunit, Gac1p, accounted for their differences in glycogen synthesis. In contrast to human PP1 expressed in Escherichia coli, enzymes expressed in yeast displayed in vitro biochemical properties closely resembling PP1 from mammalian tissues. Thus, PP1 expression in yeast should facilitate future structure-function studies of this protein serine/threonine phosphatase.

  2. Acid phosphatase/phosphotransferases from enteric bacteria.

    PubMed

    Mihara, Y; Utagawa, T; Yamada, H; Asano, Y

    2001-01-01

    We have investigated the enzymatic phosphorylation of nucleosides and found that Morganella morganii phoC acid phosphatase exhibits regioselective pyrophosphate (PP(i))-nucleoside phosphotransferase activity. In this study, we isolated genes encoding an acid phosphatase with regioselective phosphotransferase activity (AP/PTase) from Providencia stuartii, Enterobacter aerogenes, Escherichia blattae and Klebsiella planticola, and compared the primary structures and enzymatic characteristics of these enzymes with those of AP/PTase (PhoC acid phosphatase) from M. morganii. The enzymes were highly homologous in primary structure with M. morganii AP/PTase, and are classified as class A1 acid phosphatases. The synthesis of inosine-5'-monophosphate (5'-IMP) by E. coli overproducing each acid phosphatase was investigated. The P. stuartii enzyme, which is most closely related to the M. morganii enzyme, exhibited high 5'-IMP productivity, similar to the M. morganii enzyme. The 5'-IMP productivities of the E. aerogenes, E. blattae and K. planticola enzymes were inferior to those of the former two enzymes. This result underlines the importance of lower K(m) values for efficient nucleotide production. As these enzymes exhibited a very high degree of homology at the amino acid sequence level, it is likely that local sequence differences in the binding pocket are responsible for the differences in the nucleoside-PP(i) phosphotransferase reaction.

  3. Acid phosphatase production by recombinant Arxula adeninivorans.

    PubMed

    Minocha, Neha; Kaur, Parvinder; Satyanarayana, T; Kunze, G

    2007-08-01

    Acid phosphatase production by recombinant Arxula adeninivorans was carried out in submerged fermentation. Using the Plackett-Burman design, three fermentation variables (pH, sucrose concentration, and peptone concentration) were identified to significantly affect acid phosphatase and biomass production, and these were optimized using response surface methodology of central composite design. The highest enzyme yields were attained in the medium with 3.9% sucrose and 1.6% peptone at pH 3.8. Because of optimization, 3.86- and 4.19-fold enhancement in enzyme production was achieved in shake flasks (17,054 U g(-1) DYB) and laboratory fermenter (18,465 U g(-1) DYB), respectively. PMID:17541580

  4. Acid Phosphatase Development during Ripening of Avocado.

    PubMed

    Sacher, J A

    1975-02-01

    The activity and subcellular distribution of acid phosphatase were assayed during ethylene-induced ripening of whole fruit or thick slices of avocado (Persea americana Mill. var. Fuerte and Hass). The activity increased up to 30-fold during ripening in both the supernatant fraction and the Triton X-100 extract of the precipitate of a 30,000g centrifugation of tissue homogenates from whole fruit or slices ripening in moist air. Enzyme activity in the residual precipitate after Triton extraction remained constant. The development of acid phosphatase in thick slices ripened in moist air was similar to that in intact fruit, except that enzyme development and ripening were accelerated about 24 hours in the slices. The increase in enzyme activity that occurs in slices ripening in moist air was inhibited when tissue sections were infiltrated with solutions, by aspiration for 2 minutes or by soaking for 2 hours, anytime 22 hours or more after addition of ethylene. This inhibition was independent of the presence or absence of cycloheximide or sucrose (0.3-0.5m). However, the large decline in enzyme activity in the presence of cycloheximide, as compared with the controls, indicated that synthesis of acid phosphatase was occurring at all stages of ripening.

  5. Digestion and the distribution of acid phosphatase in Blepharisma.

    PubMed

    Dembitzer, H M

    1968-05-01

    Suspensions of Blepharisma intermedium were fed latex particles for 5 min and then were separated from the particles by filtration. Samples were fixed at intervals after separation and incubated to demonstrate acid phosphatase activity. They were subsequently embedded and sectioned for electron microscopy. During formation of the food vacuole, the vacuolar membrane is acid phosphatase-negative. Within 5 min, dumbbell-shaped acid phosphatase-positive bodies, possibly derived from the the acid phosphatase-positive Golgi apparatus, apparently fuse with the food vacuole and render it acid phosphatase-positive. A larger type of acid phosphatase-positive, vacuolated body may also fuse with the food vacuole at later stages. At about 20 min after formation, acid phosphatase-positive secondary pinocytotic vesicles pinch off from the food vacuoles and approach a separate system of membrane-bounded spaces. By 1 hr after formation, the food vacuole becomes acid phosphatase-negative, and the undigested latex particles are voided into the membrane-bounded spaces. The membrane-bounded spaces are closely associated with the food vacuole at all stages of digestion and are generally acid phosphatase-negative. Within the membrane-bounded spaces, dense, pleomorphic, granular bodies are found, in which are embedded mitochondria, paraglycogen granules, membrane-limited acid phosphatase-containing structures, and Golgi apparatuses. The granular bodies may serve as vehicles for the transport of organelles through the extensive, ramifying membrane-bounded spaces.

  6. DIGESTION AND THE DISTRIBUTION OF ACID PHOSPHATASE IN BLEPHARISMA

    PubMed Central

    Dembitzer, Herbert M.

    1968-01-01

    Suspensions of Blepharisma intermedium were fed latex particles for 5 min and then were separated from the particles by filtration. Samples were fixed at intervals after separation and incubated to demonstrate acid phosphatase activity. They were subsequently embedded and sectioned for electron microscopy. During formation of the food vacuole, the vacuolar membrane is acid phosphatase-negative. Within 5 min, dumbbell-shaped acid phosphatase-positive bodies, possibly derived from the the acid phosphatase-positive Golgi apparatus, apparently fuse with the food vacuole and render it acid phosphatase-positive. A larger type of acid phosphatase-positive, vacuolated body may also fuse with the food vacuole at later stages. At about 20 min after formation, acid phosphatase-positive secondary pinocytotic vesicles pinch off from the food vacuoles and approach a separate system of membrane-bounded spaces. By 1 hr after formation, the food vacuole becomes acid phosphatase-negative, and the undigested latex particles are voided into the membrane-bounded spaces. The membrane-bounded spaces are closely associated with the food vacuole at all stages of digestion and are generally acid phosphatase-negative. Within the membrane-bounded spaces, dense, pleomorphic, granular bodies are found, in which are embedded mitochondria, paraglycogen granules, membrane-limited acid phosphatase-containing structures, and Golgi apparatuses. The granular bodies may serve as vehicles for the transport of organelles through the extensive, ramifying membrane-bounded spaces. PMID:4968524

  7. Penicillin inhibitors of purple acid phosphatase.

    PubMed

    Faridoon; Hussein, Waleed M; Ul Islam, Nazar; Guddat, Luke W; Schenk, Gerhard; McGeary, Ross P

    2012-04-01

    Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have a multitude of biological functions and are found in fungi, bacteria, plants and animals. In mammals, PAP activity is linked with bone resorption and over-expression can lead to bone disorders such as osteoporosis. PAP is therefore an attractive target for the development of drugs to treat this disease. A series of penicillin conjugates, in which 6-aminopenicillanic acid was acylated with aromatic acid chlorides, has been prepared and assayed against pig PAP. The binding mode of most of these conjugates is purely competitive, and some members of this class have potencies comparable to the best PAP inhibitors yet reported. The structurally related penicillin G was shown to be neither an inhibitor nor a substrate for pig PAP. Molecular modelling has been used to examine the binding modes of these compounds in the active site of the enzyme and to rationalise their activities.

  8. Unique structural features of red kidney bean purple acid phosphatase.

    PubMed

    Cashikar, A G; Rao, M N

    1995-06-01

    Purple acid phosphatase from red kidney beans (Phaseolus vulgaris) has been purified to homogeneity and characterized. The enzyme is a homodimer of 60 kDa subunits each containing one atom of zinc and iron in the active site. Circular dichroism spectral studies on the purified enzyme reveals that a large portion of the peptide backbone is in the unordered and beta-turn conformation. A unique feature of the red kidney bean acid phosphatase, which we have found, is that one of the two cysteines of each subunit is involved in the formation of an inter-subunit disulphide. The thiol group of the other cysteine is not necessary for the activity of the enzyme. Western blot analysis with antibodies raised against kidney bean acid phosphatase could not recognize acid phosphatases from other sources except from potato. This paper emphasizes the fact that acid phosphatases are functionally, but not structurally, conserved enzymes. PMID:7590853

  9. Acid phosphatase and protease activities in immobilized rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Witzmann, F. A.; Troup, J. P.; Fitts, R. H.

    1982-01-01

    The effect of hind-limb immobilization on selected Iysosomal enzyme activities was studied in rat hing-limb muscles composed primarily of type 1. 2A, or 2B fibers. Following immobilization, acid protease and acid phosphatase both exhibited signifcant increases in their activity per unit weight in all three fiber types. Acid phosphatase activity increased at day 14 of immobilization in the three muscles and returned to control levels by day 21. Acid protease activity also changed biphasically, displaying a higher and earlier rise than acid phosphatase. The pattern of change in acid protease, but not acid phosphatase, closely parallels observed muscle wasting. The present data therefore demonstrate enhanced proteolytic capacity of all three fiber types early during muscular atrophy. In addition, the data suggest a dependence of basal hydrolytic and proteolytic activities and their adaptive response to immobilization on muscle fiber composition.

  10. Emerging Roles of Human Prostatic Acid Phosphatase

    PubMed Central

    Kong, Hoon Young; Byun, Jonghoe

    2013-01-01

    Prostate cancer is one of the most prevalent non-skin related cancers. It is the second leading cause of cancer deaths among males in most Western countries. If prostate cancer is diagnosed in its early stages, there is a higher probability that it will be completely cured. Prostatic acid phosphatase (PAP) is a non-specific phosphomonoesterase synthesized in prostate epithelial cells and its level proportionally increases with prostate cancer progression. PAP was the biochemical diagnostic mainstay for prostate cancer until the introduction of prostate-specific antigen (PSA) which improved the detection of early-stage prostate cancer and largely displaced PAP. Recently, however, there is a renewed interest in PAP because of its usefulness in prognosticating intermediate to high-risk prostate cancers and its success in the immunotherapy of prostate cancer. Although PAP is believed to be a key regulator of prostate cell growth, its exact role in normal prostate as well as detailed molecular mechanism of PAP regulation is still unclear. Here, many different aspects of PAP in prostate cancer are revisited and its emerging roles in other environment are discussed. PMID:24009853

  11. Elevation of serum acid phosphatase in cancers with bone metastasis

    SciTech Connect

    Tavassoli, M.; Rizo, M.; Yam, L.T.

    1980-05-01

    In patients with nonprostatic cancer, serum acid phosphatase activity is usually elevated when bone metastasis is present but not when bone metastasis is absent. The fraction responsible for serum enzyme elevation is a normal component of serum; it appears in gel electrophoresis as band 5; and is tartrate-resistant. It is suggested that the origin of acid phosphatase elevation is bone osteoclasts rather than cancer tissue, as is the case with prostatic carcinoma. Determination of serum acid phosphatase activity may be useful in the detection of bone metastasis.

  12. Multiple forms of acid phosphatase activity in Gaucher's disease.

    PubMed

    Chambers, J P; Peters, S P; Glew, R H; Lee, R E; McCafferty, L R; Mercer, D W; Wenger, D A

    1978-07-01

    Although the primary genetic defect in all individuals with Gaucher's disease is a deficiency in glucocerebrosidase activity, the finding of marked elevations in splenic and serum acid phosphatase activity is almost as consistent a finding. Gaucher spleen and serum contain at least two forms of acid phosphatase that can be readily separated by chromatography on columns containing the cation exchange resin Sulphopropyl Sephadex. The major species of acid phosphatase (designated SP-I) contained in Triton X-100 (1% v/v) extracts of Gaucher spleen accounts for 65%--95% of the total activity and has the following properties: (1) it does not bind to the cation exchange column; (2) it exhibitis a pH optimum of 4.5--5.0; (3) it is inhibited by sodium fluoride (15 mM), L(+)-tartaric acid (20 mM), and beta-mercaptoethanol (2.1 M), and (4) it is resistant to inhibition by sodium dithionite (10 mM). The minor acid phosphatase activity (designated SP-II) present in extracts of Gaucher spleen has properties similar to those of the major species of acid phosphatase activity contained in serum from patients with Gaucher's disease: (1) it binds firmly to cation exchange columns (eluted by 0.5 M sodium chloride); (2) it exhibits a pH optimum of 5.0--6.0; (3) it is inhibited by sodium fluoride and sodium dithionite; and (4) it is resistant to inhibition by beta-mercaptoethanol (2.1 M) and L(+)-tartaric acid (20 mM). In addition, a second form of acid phosphatase that is tartrate resistant was found to be elevated in Gaucher serum. This form of serum acid phosphatase did not bind to Sulphopropyl Sephadex, was found to be significantly resistant to beta-mercaptoethanol (2.1 M), and was only partially inhibited by sodium dithionite (10 mM). The findings reported here indicate that at least three distinct forms of acid phosphatase activity are elevated in Gaucher's disease. Furthermore, the minor acid phosphatase activity contained in spleen homogenates has properties very similar to

  13. Ultrastructural localization of acid phosphatase in nonhuman primate vaginal epithelium.

    PubMed

    King, B F

    1985-01-01

    The vagina of the rhesus monkey is lined by a stratified squamous epithelium. However, little is known regarding the cytochemical composition of its cell organelles and the substances found in the intercellular spaces. In this study we have examined the ultrastructural distribution of acid phosphatase in the vaginal epithelium. In basal and parabasal cells reaction product was found in some Golgi cisternae and vesicles and in a variety of cytoplasmic granules. Reaction product was also found in some, but not all, membrane-coating granules. In the upper layers of the epithelium, the membrane-coating granules extruded their contents and acid phosphatase was localized in the intercellular spaces. The possible roles of acid phosphatase in keratinization, desquamation, or modification of substances in the intercellular compartment are discussed.

  14. Myosin phosphatase isoforms and related transcripts in the pig coronary circulation and effects of exercise and chronic occlusion.

    PubMed

    Zheng, Xiaoxu; Heaps, Cristine L; Fisher, Steven A

    2015-03-01

    Myosin phosphatase (MP) is a key target of signaling pathways that regulate smooth muscle tone and blood flow. Alternative splicing of MP targeting subunit (MYPT1) exon 24 (E24) generates isoforms with variable presence of a C-terminal leucine zipper (LZ) required for activation of MP by NO/cGMP. Here we examined the expression of MP and associated genes in a disease model in the coronary circulation. Female Yucatan miniature swine remained sedentary or were exercise-trained beginning eight weeks after placement of an ameroid constrictor around the left circumflex (LCX) artery. Fourteen weeks later epicardial arteries (~1mm) and resistance arterioles (~125 μm) were harvested and assayed for gene expression. MYPT1 isoforms were distinct in the epicardial arteries (E24-/LZ+) and resistance arterioles (E24+/LZ-) and unchanged by exercise training or coronary occlusion. MYPT1, CPI-17 and PDE5 mRNA levels were not different between arteries and arterioles while Kir2.1 and eNOS were 6.6-fold and 3.9-fold higher in the arterioles. There were no significant changes in transcript abundance in epicardial arteries of the collateralized (LCX) vs. non-occluded left anterior descending (LAD) territories, or in exercise-trained vs. sedentary pigs. There was a significant 1.2 fold increase in CPI-17 in collateral-dependent arterioles, independent of exercise, and a significant 1.7 fold increase in PDE5 in arterioles from exercise-trained pigs, independent of occlusion. We conclude that differences in MYPT1 E24 (LZ) isoforms, eNOS, and Kir2.1 distinguish epicardial arteries and resistance coronary arterioles. Up-regulation of coronary arteriolar PDE5 by exercise and CPI-17 by chronic occlusion could contribute to altered vasomotor responses and requires further study.

  15. Biocatalysis with Sol-Gel Encapsulated Acid Phosphatase

    ERIC Educational Resources Information Center

    Kulkarni, Suhasini; Tran, Vu; Ho, Maggie K.-M.; Phan, Chieu; Chin, Elizabeth; Wemmer, Zeke; Sommerhalter, Monika

    2010-01-01

    This experiment was performed in an upper-level undergraduate biochemistry laboratory course. Students learned how to immobilize an enzyme in a sol-gel matrix and how to perform and evaluate enzyme-activity measurements. The enzyme acid phosphatase (APase) from wheat germ was encapsulated in sol-gel beads that were prepared from the precursor…

  16. Nucleotide and amino acid sequences of human intestinal alkaline phosphatase: close homology to placental alkaline phosphatase

    SciTech Connect

    Henthorn, P.S.; Raducha, M.; Edwards, Y.H.; Weiss, M.J.; Slaughter, C.; Lafferty, M.A.; Harris, H.

    1987-03-01

    A cDNA clone for human adult intestinal alkaline phosphatase (ALP) (orthophosphoric-monoester phosphohydrolase (alkaline optimum); EC 3.1.3.1) was isolated from a lambdagt11 expression library. The cDNA insert of this clone is 2513 base pairs in length and contains an open reading frame that encodes a 528-amino acid polypeptide. This deduced polypeptide contains the first 40 amino acids of human intestinal ALP, as determined by direct protein sequencing. Intestinal ALP shows 86.5% amino acid identity to placental (type 1) ALP and 56.6% amino acid identity to liver/bone/kidney ALP. In the 3'-untranslated regions, intestinal and placental ALP cDNAs are 73.5% identical (excluding gaps). The evolution of this multigene enzyme family is discussed.

  17. Crystallization and preliminary crystallographic studies of the catalytic subunits of human pyruvate dehydrogenase phosphatase isoforms 1 and 2

    PubMed Central

    Kato, Junko; Kato, Masato

    2010-01-01

    Pyruvate dehydrogenase phosphatase (PDP) is a mitochondrial serine phos­phatase that activates phosphorylated pyruvate dehydrogenase complex by dephosphorylation. In humans, two PDP isoforms (1 and 2) have been identified. PDP1 is composed of a catalytic subunit (PDP1c) and a regulatory subunit (PDP1r), whereas PDP2 consists of only a catalytic subunit (PDP2c). Both PDP1c and PDP2c have been crystallized individually and complete X-ray diffraction data sets have been collected to 2.45 and 2.0 Å resolution, respectively. The PDP1c crystals belonged to space group P41212 or P43212, with unit-cell parameters a = b = 65.1, c = 216.1 Å. The asymmetric unit is expected to contain one molecule, with a Matthews coefficient V M of 2.56 Å3 Da−1. The PDP2c crystals belonged to space group P212121, with unit-cell parameters a = 53.6, b = 69.1, c = 109.7 Å. The asymmetric unit is expected to contain one molecule, with a Matthews coefficient V M of 1.91 Å3 Da−1. PMID:20208177

  18. Crystallization of recombinant Haemophilus influenzaee (P4) acid phosphatase

    SciTech Connect

    Ou, Zhonghui; Felts, Richard L.; Reilly, Thomas J.; Nix, Jay C.; Tanner, John J.

    2006-05-01

    Lipoprotein e (P4) is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. Haemophilus influenzae infects the upper respiratory tract of humans and can cause infections of the middle ear, sinuses and bronchi. The virulence of the pathogen is thought to involve a group of surface-localized macromolecular components that mediate interactions at the host–pathogen interface. One of these components is lipoprotein e (P4), which is a class C acid phosphatase and a potential vaccine candidate for nontypeable H. influenzae infections. This paper reports the crystallization of recombinant e (P4) and the acquisition of a 1.7 Å resolution native X-ray diffraction data set. The space group is P4{sub 2}2{sub 1}2, with unit-cell parameters a = 65.6, c = 101.4 Å, one protein molecule per asymmetric unit and 37% solvent content. This is the first report of the crystallization of a class C acid phosphatase.

  19. A high-frequency polymorphism in exon 6 of the CD45 tyrosine phosphatase gene (PTPRC) resulting in altered isoform expression

    PubMed Central

    Stanton, Tara; Boxall, Sally; Hirai, Kouzo; Dawes, Ritu; Tonks, Susan; Yasui, Tomoyo; Kanaoka, Yasushi; Yuldasheva, Nadira; Ishiko, Osamu; Bodmer, Walter; Beverley, Peter C. L.; Tchilian, Elma Z.

    2003-01-01

    CD45 (leukocyte common) antigen is a hemopoietic cell-specific tyrosine phosphatase essential for antigen receptor-mediated signaling in lymphocytes. The molecule undergoes complex alternative splicing in the extracellular domain, and different patterns of CD45 splicing are associated with distinct functions. Lack of CD45 leads to severe combined immunodeficiency, and alterations of CD45 splicing, because of a polymorphism in exon 4, have been associated with altered immune function. Here we describe a polymorphism in exon 6 (A138G) of the gene encoding CD45 that interferes with alternative splicing. The polymorphism results in an amino acid substitution of Thr-47 to Ala in exon 6, a potential O- and N-linked glycosylation site. This exon 6 A138G variant is present at a frequency of 23.7% in the Japanese population but is absent in Caucasoids. Peripheral blood T cells from individuals carrying the A138G variant show a significant decrease in the proportion of cells expressing the A, B, and C CD45 isoforms and a high frequency of CD45R0+ cells. These phenotypic alterations in the A138G carriers may lead to changes in ligand binding, homodimerization of CD45, and altered immune responses, suggesting the involvement of natural selection in controlling the A138G carrier frequency. PMID:12716971

  20. Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5.

    PubMed

    Marín, María José; Flández, Marta; Bermejo, Clara; Arroyo, Javier; Martín, Humberto; Molina, María

    2009-03-01

    The activity of protein phosphatases on mitogen-activated protein kinases (MAPKS) is essential in the modulation of the final outcome of MAPK-signalling pathways. The yeast dual-specificity phosphatase (DSP) Msg5, expressed as two isoforms of different length, dephosphorylates the MAPKs of mating and cell integrity pathways, Fus3 and Slt2, respectively, but its action on the MAPK Kss1 is unclear. Here we analyse the global impact of Msg5 on the yeast transcriptome. Both Fus3- and Slt2- but not Kss1-mediated gene expression is induced in cells lacking Msg5. However, although these cells show high Slt2 phosphorylation, the Rlm1-dependent Slt2-regulated transcriptional response is weak. Therefore, mechanisms concomitant with Slt2 phosphorylation are required for a strong Rlm1 activation. The limited Slt2 activity on Rlm1 is not a specific effect on this substrate but a consequence of its low kinase activity in msg5Delta cells. Lack of Msg5 does not increase Kss1 phosphorylation although both proteins physically interact. Both Msg5 isoforms interact similarly with Slt2, whereas the long form binds Fus3 with higher affinity and consequently down-regulates it more efficiently than the short one. We propose that specific binding of DSP isoforms to distinct MAPKs provides a novel mechanism for fine tuning different pathways by the same phosphatase. PMID:19123063

  1. Cytochemical characterization of yolk granule acid phosphatase during early development of the oyster Crassostrea gigas (Thunberg)

    NASA Astrophysics Data System (ADS)

    Wang, Yiyan; Sun, Hushan; Wang, Yanjie; Yan, Dongchun; Wang, Lei

    2015-03-01

    In this study, a cytochemical method and transmission electron microscopy was used to examine acid phosphatase activities of yolk granules throughout the early developmental stages of the Pacific oyster Crassostrea gigas. This study aimed to investigate the dynamic change of yolk granule acid phosphatase, and the mechanisms underlying its involvement in yolk degradation during the early developmental stages of molluscs. Three types of yolk granules (YGI, YGII, and YGIII) that differed in electron density and acid phosphatase reaction were identified in early cleavage, morula, blastula, gastrula, trochophore, and veliger stages. The morphological heterogeneities of the yolk granules were related to acid phosphatase activity and degrees of yolk degradation, indicating the association of acid phosphatase with yolk degradation in embryos and larvae of molluscs. Fusion of yolk granules was observed during embryogenesis and larval development of C. gigas. The fusion of YGI (free of acid phosphatase reaction) with YGII (rich in acid phosphatase reaction) could be the way by which yolk degradation is triggered.

  2. Calcium-dependent and -independent binding of soybean calmodulin isoforms to the calmodulin binding domain of tobacco MAPK phosphatase-1.

    PubMed

    Rainaldi, Mario; Yamniuk, Aaron P; Murase, Tomohiko; Vogel, Hans J

    2007-03-01

    The recent finding of an interaction between calmodulin (CaM) and the tobacco mitogen-activated protein kinase phosphatase-1 (NtMKP1) establishes an important connection between Ca(2+) signaling and the MAPK cascade, two of the most important signaling pathways in plant cells. Here we have used different biophysical techniques, including fluorescence and NMR spectroscopy as well as microcalorimetry, to characterize the binding of soybean CaM isoforms, SCaM-1 and -4, to synthetic peptides derived from the CaM binding domain of NtMKP1. We find that the actual CaM binding region is shorter than what had previously been suggested. Moreover, the peptide binds to the SCaM C-terminal domain even in the absence of free Ca(2+) with the single Trp residue of the NtMKP1 peptides buried in a solvent-inaccessible hydrophobic region. In the presence of Ca(2+), the peptides bind first to the C-terminal lobe of the SCaMs with a nanomolar affinity, and at higher peptide concentrations, a second peptide binds to the N-terminal domain with lower affinity. Thermodynamic analysis demonstrates that the formation of the peptide-bound complex with the Ca(2+)-loaded SCaMs is driven by favorable binding enthalpy due to a combination of hydrophobic and electrostatic interactions. Experiments with CaM proteolytic fragments showed that the two domains bind the peptide in an independent manner. To our knowledge, this is the first report providing direct evidence for sequential binding of two identical peptides of a target protein to CaM. Discussion of the potential biological role of this interaction motif is also provided.

  3. Human prostatic acid phosphatase directly stimulates collagen synthesis and alkaline phosphatase content of isolated bone cells

    SciTech Connect

    Ishibe, M.; Rosier, R.N.; Puzas, J.E. )

    1991-10-01

    Human prostatic acid phosphatase (hPAP) directly enhances the differentiated characteristics of isolated bone cells in vitro. This enzyme, when added to cell cultures for 24 h in vitro stimulates collagen synthesis and the production of alkaline phosphatase. The effects are dose dependent, with statistically significant effects occurring from 0.1-100 nM hPAP. Concentrations higher than 100 nM do not evoke greater effects. The maximal effect of hPAP occurs between 12 and 24 h of exposure. The cells stimulated to the greatest degree are osteoprogenitor cells and osteoblasts. Fibroblasts isolated from the same tissue show a lesser sensitivity to hPAP. hPAP has no detectable effect on cell proliferation, as measured by radiolabeled thymidine incorporation or total DNA synthesis. None of the observations reported in this work can be attributed to contaminating proteins in the hPAP preparation. hPAP was radiolabeled with 125I and was used for affinity binding and cross-linking studies. Scatchard analysis of specific binding indicated the presence of 1.0 X 10(5) high affinity binding sites/cell, with a Kd of 6.5 nM. Cross-linking studies demonstrated the presence of one 320-kDa binding complex. The pH profile and kinetic determinations of Km and maximum velocity for hPAP were similar to those previously reported, except for the finding of positive cooperativity of the substrate with the enzyme under the conditions of our assay. We believe that the direct stimulation of bone-forming cells by hPAP may contribute to the sclerotic nature of skeletal bone around sites of neoplastic prostatic metastases and that the effect of the enzyme is probably mediated by a plasma membrane receptor.

  4. Inhibition of the Hematopoietic Protein Tyrosine Phosphatase by Phenoxyacetic Acids.

    PubMed

    Bobkova, Ekaterina V; Liu, Wallace H; Colayco, Sharon; Rascon, Justin; Vasile, Stefan; Gasior, Carlton; Critton, David A; Chan, Xochella; Dahl, Russell; Su, Ying; Sergienko, Eduard; Chung, Thomas D Y; Mustelin, Tomas; Page, Rebecca; Tautz, Lutz

    2011-02-01

    Protein tyrosine phosphatases (PTPs) have only recently become the focus of attention in the search for novel drug targets despite the fact that they play vital roles in numerous cellular processes and are implicated in many human diseases. The hematopoietic protein tyrosine phosphatase (HePTP) is often found dysregulated in preleukemic myelodysplastic syndrome (MDS), as well as in acute myelogenous leukemia (AML). Physiological substrates of HePTP include the mitogen-activated protein kinases (MAPKs) ERK1/2 and p38. Specific modulators of HePTP catalytic activity will be useful for elucidating mechanisms of MAPK regulation in hematopietic cells, and may also provide treatments for hematopoietic malignancies such as AML. Here we report the discovery of phenoxyacetic acids as inhibitors of HePTP. Structure-activity relationship (SAR) analysis and in silico docking studies reveal the molecular basis of HePTP inhibition by these compounds. We also show that these compounds are able to penetrate cell membranes and inhibit HePTP in human T lymphocytes.

  5. Carboxyl-terminal receptor domains control the differential dephosphorylation of somatostatin receptors by protein phosphatase 1 isoforms.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Märtens, Jan Carlo; Nagel, Falko; Schulz, Stefan

    2014-01-01

    We have recently identified protein phosphatase 1β (PP1β) as G protein-coupled receptor (GPCR) phosphatase for the sst2 somatostatin receptor using siRNA knockdown screening. By contrast, for the sst5 somatostatin receptor we identified protein phosphatase 1γ (PP1γ) as GPCR phosphatase using the same approach. We have also shown that sst2 and sst5 receptors differ substantially in the temporal dynamics of their dephosphorylation and trafficking patterns. Whereas dephosphorylation and recycling of the sst2 receptor requires extended time periods of ∼30 min, dephosphorylation and recycling of the sst5 receptor is completed in less than 10 min. Here, we examined which receptor domains determine the selection of phosphatases for receptor dephosphorylation. We found that generation of tail-swap mutants between sst2 and sst5 was required and sufficient to reverse the patterns of dephosphorylation and trafficking of these two receptors. In fact, siRNA knockdown confirmed that the sst5 receptor carrying the sst2 tail is predominantly dephosphorylated by PP1β, whereas the sst2 receptor carrying the sst5 tail is predominantly dephosphorylated by PP1γ. Thus, the GPCR phosphatase responsible for dephosphorylation of individual somatostatin receptor subtypes is primarily determined by their different carboxyl-terminal receptor domains. This phosphatase specificity has in turn profound consequences for the dephosphorylation dynamics and trafficking patterns of GPCRs.

  6. A study of acid phosphatase locus 1 in women with high fat content and normal body mass index.

    PubMed

    De Lorenzo, Antonino; Di Renzo, Laura; Puja, Alberto; Saccucci, Patrizia; Gloria-Bottini, Fulvia; Bottini, Egidio

    2009-03-01

    De Lorenzo and coworkers have recently described a class of women with normal body mass index (BMI) and high fat content (normal weight obese syndrome [NWO]). This observation prompted us to study the possible role of acid phosphatase locus 1 (ACP(1)) in the differentiation of this special class of obese subjects. Acid phosphatase locus 1 is a polymorphic gene associated with severe obesity and with total cholesterol and triglycerides levels. The enzyme is composed by 2 isoforms--F and S--that have different biochemical properties and probably different functions. The sample study was composed of 130 white women from the population of Rome. Total fat mass and percentage of fat mass were measured by dual-energy x-ray absorptiometry. Thirty-six women had a BMI less than 25 and percentage of fat mass greater than 30 (high fat, normal BMI [HFHB]), and 94 women showed a BMI greater than 25 and a percentage of fat mass greater than 30 (high fat, high BMI [HFHB]). In the whole sample, the proportion of low-activity ACP(1) genotypes (*A/*A and *B/*A) was higher than in controls. However, whereas HFNB showed a very high frequency of ACP(1) *A/*A genotype, high-fat, high-BMI women showed an increase of *B/*A genotype. These 2 genotypes differ in the concentration of F isoform and the F/S ratio, which are lower in ACP(1)*A/*A genotype than in ACP(1)*B/*A genotype. The genetic differentiation of the class of women with normal BMI and high fat content from the class showing a concordant level of the 2 parameters supports the hypothesis that HFNB class represents a special cluster of obese subjects not revealed by BMI evaluation. Because ACP(1) is present in adipocytes, the present observation suggests that F isoform may have a specific role in the regulation of quantity of adipose tissue.

  7. Phosphatidic acid phosphatase and phospholipdase A activities in plasma membranes from fusing muscle cells.

    PubMed

    Kent, C; Vagelos, P R

    1976-06-17

    Plasma membrane from fusing embryonic muscle cells were assayed for phospholipase A activity to determine if this enzyme plays a role in cell fusion. The membranes were assayed under a variety of conditions with phosphatidylcholine as the substrate and no phospholipase A activity was found. The plasma membranes did contain a phosphatidic acid phosphatase which was optimally active in the presence of Triton X-100 and glycerol. The enzyme activity was constant from pH 5.2 to 7.0, and did not require divalent cations. Over 97% of the phosphatidic acid phosphatase activity was in the particulate fraction. The subcellular distribution of the phosphatidic acid phosphatase was the same as the distributions of the plasma membrane markers, (Na+ + k+)-ATPase and the acetylcholine receptor, which indicates that this phosphatase is located exclusively in the plasma membranes. There was no detectable difference in the phosphatidic acid phosphatase activities of plasma membranes from fusing and non-fusing cells.

  8. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease.

    PubMed

    Kamphuis, Willem; Middeldorp, Jinte; Kooijman, Lieneke; Sluijs, Jacqueline A; Kooi, Evert-Jan; Moeton, Martina; Freriks, Michel; Mizee, Mark R; Hol, Elly M

    2014-03-01

    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of astrocytes and that impose different properties to the intermediate filament network. We studied transcript levels and protein expression patterns of all known GFAP isoforms in human hippocampal AD tissue at different stages of the disease. Ten different transcripts for GFAP isoforms were detected at different abundancies. Transcript levels of most isoforms increased with AD progression. GFAPδ-immunopositive astrocytes were observed in subgranular zone, hilus, and stratum-lacunosum-moleculare. GFAPδ-positive cells also stained for GFAPα. In AD donors, astrocytes near plaques displayed increased staining of both GFAPα and GFAPδ. The reading-frame-shifted isoform, GFAP(+1), staining was confined to a subset of astrocytes with long processes, and their number increased in the course of AD. In conclusion, the various GFAP isoforms show differential transcript levels and are upregulated in a concerted manner in AD. The GFAP(+1) isoform defines a unique subset of astrocytes, with numbers increasing with AD progression. These data indicate the need for future exploration of underlying mechanisms concerning the functions of GFAPδ and GFAP(+1) isoforms in astrocytes and their possible role in AD pathology.

  9. Expression of acid phosphatase in the seminiferous epithelium of vertebrates.

    PubMed

    Peruquetti, R L; Taboga, S R; Azeredo-Oliveira, M T V

    2010-01-01

    Acid phosphatases (AcPs) are known to provide phosphate to tissues that have high energy requirements, especially during development, growth and maturation. During spermatogenesis AcP activity is manifested in heterophagous lysosomes of Sertoli cells. This phagocytic function appears to be hormone-independent. We examined the expression pattern of AcP during the reproductive period of four species belonging to different vertebrate groups: Tilapia rendalli (Teleostei, Cichlidae), Dendropsophus minutus (Amphibia, Anura), Meriones unguiculatus (Mammalia, Rodentia), and Oryctolagus cuniculus (Mammalia, Lagomorpha). To demonstrate AcP activity, cryosections were processed for enzyme histochemistry by a modification of the method of Gömöri. AcP activity was similar in the testes of these four species. Testes of T. rendalli, D. minutus and M. unguiculatus showed an intense reaction in the Sertoli cell region. AcP activity was detected in the testes of D. minutus and O. cuniculus in seminiferous epithelium regions, where cells are found in more advanced stages of development. The seminiferous epithelium of all four species exhibited AcP activity, mainly in the cytoplasm of either Sertoli cells or germ cells. These findings reinforce the importance of AcP activity during the spermatogenesis process in vertebrates. PMID:20391346

  10. Pregnancy-secreted Acid phosphatase, uteroferrin, enhances fetal erythropoiesis.

    PubMed

    Ying, Wei; Wang, Haiqing; Bazer, Fuller W; Zhou, Beiyan

    2014-11-01

    Uteroferrin (UF) is a progesterone-induced acid phosphatase produced by uterine glandular epithelia in mammals during pregnancy and targeted to sites of hematopoiesis throughout pregnancy. The expression pattern of UF is coordinated with early fetal hematopoietic development in the yolk sac and then liver, spleen, and bone to prevent anemia in fetuses. Our previous studies suggested that UF exerts stimulatory impacts on hematopoietic progenitor cells. However, the precise role and thereby the mechanism of action of UF on hematopoiesis have not been investigated previously. Here, we report that UF is a potent regulator that can greatly enhance fetal erythropoiesis. Using primary fetal liver hematopoietic cells, we observed a synergistic stimulatory effect of UF with erythropoietin and other growth factors on both burst-forming unit-erythroid and colony-forming unit-erythroid formation. Further, we demonstrated that UF enhanced erythropoiesis at terminal stages using an in vitro culture system. Surveying genes that are crucial for erythrocyte formation at various stages revealed that UF, along with erythropoietin, up-regulated transcription factors required for terminal erythrocyte differentiation and genes required for synthesis of hemoglobin. Collectively, our results demonstrate that UF is a cytokine secreted by uterine glands in response to progesterone that promotes fetal erythropoiesis at various stages of pregnancy, including burst-forming unit-erythroid and colony-forming unit-erythroid progenitor cells and terminal stages of differentiation of hematopoietic cells in the erythroid lineage. PMID:25093463

  11. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

    NASA Astrophysics Data System (ADS)

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-01

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au+ complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe3+ with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe3+, and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au+ complexes, and then a class of ~2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ~1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by

  12. Purification of prostatic acid phosphatase (PAP) for structural and functional studies.

    PubMed

    Herrala, Annakaisa M; Quintero, Ileana B; Vihko, Pirkko T

    2013-01-01

    High-scale purification methods are required for several protein studies such as crystallography, mass spectrometry, circular dichroism, and function. Here we describe a purification method for PAP based on anion exchange, L-(+)-tartrate affinity, and gel filtration chromatographies. Acid phosphatase activity and protein concentration were measured for each purification step, and to collect the fractions with the highest acid phosphatase activity the p-nitrophenyl phosphate method was used. The purified protein obtained by the procedure described here was used for the determination of the first reported three-dimensional structure of prostatic acid phosphatase.

  13. Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing.

    PubMed

    Sun, Jian; Yang, Fan; Yang, Xiurong

    2015-10-21

    A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au(+) complexes, and then a class of ∼2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ∼1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au(+) complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe(3+) with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe(3+), and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs. PMID:26391420

  14. The development of ribonuclease and acid phosphatase during germination of Pisum arvense.

    PubMed

    Barker, G R; Bray, C M; Walter, T J

    1974-08-01

    1. Development of ribonuclease activity in the cotyledons of germinating peas is biphasic, the time of appearance of the two phases depending on the conditions of growth. 2. Acid phosphatase exhibits a single phase of development. 3. Cycloheximide inhibits development of ribonuclease activity in phase II but not in phase I. 4. (14)C-labelled amino acids are not incorporated into ribonuclease isolated during phase I. 5. The buoyant density of ribonuclease isolated during phase I is not affected by imbibition of the seed in 80% deuterium oxide. 6. Acid phosphatase was isolated from the supernatant fraction of the cotyledons of germinating peas and partially purified. 7. Development of acid phosphatase activity during germination is inhibited by treatment of the seed with cycloheximide or actinomycin D. 8. Partial purification of acid phosphatase from peas germinated in the presence of (14)C-labelled amino acids suggests that the enzyme is radioactively labelled. 9. Germination of peas in the presence of 80% deuterium oxide results in an increase in the buoyant density of acid phosphatase. 10. The results suggest that increase in ribonuclease activity during the first 4 days of germination does not result from synthesis of protein de novo, but that the corresponding increase in acid phosphatase activity does result from synthesis de novo.

  15. Sat-Nav for T cells: Role of PI3K isoforms and lipid phosphatases in migration of T lymphocytes.

    PubMed

    Ward, Stephen G; Westwick, John; Harris, Stephanie

    2011-07-01

    Phosphoinositide 3-kinase (PI3K)-dependent signaling has been placed at the heart of conserved biochemical mechanisms that facilitate cell migration of leukocytes in response to a range of chemoattractant stimuli. This review assesses the evidence for and against PI3K-dependent mechanisms of T lymphocyte migration and whether pharmacological targeting of PI3K isoforms is likely to offer potential benefit for T cell mediated pathologies. PMID:21333676

  16. Induction of a Major Leaf Acid Phosphatase Does Not Confer Adaptation to Low Phosphorus Availability in Common Bean1

    PubMed Central

    Yan, Xiaolong; Liao, Hong; Trull, Melanie C.; Beebe, Steve E.; Lynch, Jonathan P.

    2001-01-01

    Acid phosphatase is believed to be important for phosphorus scavenging and remobilization in plants, but its role in plant adaptation to low phosphorus availability has not been critically evaluated. To address this issue, we compared acid phosphatase activity (APA) in leaves of common bean (Phaseolus vulgaris) in a phosphorus-inefficient genotype (DOR364), a phosphorus-efficient genotype (G19833), and their F5.10 recombinant inbred lines (RILs). Phosphorus deficiency substantially increased leaf APA, but APA was much higher and more responsive to phosphorus availability in DOR364 than in G19833. Leaf APA segregated in the RILs, with two discrete groups having either high (mean = 1.71 μmol/mg protein/min) or low (0.36 μmol/mg protein/min) activity. A chi-square test indicated that the observed difference might be controlled by a single gene. Non-denaturing protein electrophoresis revealed that there are four visible isoforms responsible for total APA in common bean, and that the difference in APA between contrasting genotypes could be attributed to the existence of a single major isoform. Qualitative mapping of the APA trait and quantitative trait loci analysis with molecular markers indicated that a major gene contributing to APA is located on linkage group B03 of the unified common bean map. This locus was not associated with loci conferring phosphorus acquisition efficiency or phosphorus use efficiency. RILs contrasting for APA had similar phosphorus pools in old and young leaves under phosphorus stress, arguing against a role for APA in phosphorus remobilization. Our results do not support a major role for leaf APA induction in regulating plant adaptation to phosphorus deficiency. PMID:11299369

  17. Effects of multivalent cations on cell wall-associated acid phosphatase activity

    SciTech Connect

    Tu, S.I.; Brouillette, J.N.; Nagahashi, G.; Kumosinski, T.F.

    1988-09-01

    Primary cell walls, free from cytoplasmic contamination were prepared from corn (Zea mays L.) roots and potato (Solanum tuberosum) tubers. After EDTA treatment, the bound acid phosphatase activities were measured in the presence of various multivalent cations. Under the conditions of minimized Donnan effect and at pH 4.2, the bound enzyme activity of potato tuber cell walls (PCW) was stimulated by Cu/sup 2 +/, Mg/sup 2 +/, Za/sup 2 +/, and Mn/sup 2 +/; unaffected by Ba/sup 2 +/, Cd/sup 2 +/, and Pb/sup 2 +/; and inhibited by Al/sup 3 +/. The bound acid phosphatase of PCW was stimulated by a low concentration but inhibited by a higher concentration of Hg/sup 2 +/. On the other hand, in the case of corn root cells walls (CCW), only inhibition of the bound acid phosphatase by Al/sup 3 +/ and Hg/sup 2 +/ was observed. Kinetic analyses revealed that PCW acid phosphatase exhibited a negative cooperativity under all employed experimental conditions except in the presence of Mg/sup 2 +/. In contrast, CCW acid phosphatase showed no cooperative behavior. The presence of Ca/sup 2 +/ significantly reduced the effects of Hg/sup 2 +/ or Al/sup 3 +/, but not Mg/sup 2 +/, to the bound cell wall acid phosphatases. The salt solubilized (free) acid phosphatases from both PCW and CCW were not affected by the presence of tested cations except for Hg/sup 2 +/ or Al/sup 3 +/ which caused a Ca/sup 2 +/-insensitive inhibition of the enzymes. The induced stimulation or inhibition of bound acid phosphatases was quantitatively related to cation binding in the cell wall structure.

  18. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice. PMID:26643381

  19. Glutamic acid decarboxylase isoform distribution in transgenic mouse septum: an anti-GFP immunofluorescence study.

    PubMed

    Verimli, Ural; Sehirli, Umit S

    2016-09-01

    The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.

  20. Alkaline, acid, and neutral phosphatase activities are induced during development in Myxococcus xanthus.

    PubMed Central

    Weinberg, R A; Zusman, D R

    1990-01-01

    One of the signals that has been reported to be important in stimulating fruiting body formation of Myxococcus xanthus is starvation for phosphate. We therefore chose to study phosphatase activity during M. xanthus development. Many phosphatases can cleave the substrate p-nitrophenol phosphate. Using this substrate in buffers at various pHs, we obtained a profile of phosphatase activities during development and germination of M. xanthus. These experiments indicated that there are five patterns of phosphatase activity in M. xanthus: two vegetative and three developmental. The two uniquely vegetative activities have pH optima at 7.2 and 8.5. Both require magnesium and both are inhibited by the reducing agent dithiothreitol. The developmental (spores) patterns of activity have pH optima of 5.2, 7.2, and 8.5. All three activities are Mg independent. Only the alkaline phosphatase activity is inhibited by dithiothreitol. The acid phosphatase activity is induced very early in development, within the first 2 to 4 h. Both the neutral and alkaline phosphatase Mg-independent activities are induced much later, about the time that myxospores become evident (24 to 30 h). The three activities are greatly diminished upon germination; however, the kinetics of loss differ for all three. The acid phosphatase activity declines very rapidly, the neutral activity begins to decline only after spores begin to convert to rods, and the alkaline phosphatase activity remains high until the time the cells begin to divide. All three developmental activities were measured in the developmental signalling mutants carrying asg, csg, and dsg. The pattern of expression obtained in the mutants was consistent with that of other developmentally regulated genes which exhibit similar patterns of expression during development. The ease with which phosphatases can be assayed should make the activities described in this report useful biochemical markers of stages of both fruiting body formation and

  1. Effects of precipitation on soil acid phosphatase activity in three successional forests in Southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-01-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of P supply to ecosystems. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment of precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three forests of early-, mid- and advanced-successional stages in Southern China was carried out. Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, no precipitation treatment depressed soil acid phosphatase activity, while doubled precipitation treatment exerted no positive effects on it, and even significantly lowered it in the advanced forest. These indicate the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. The negative responses of soil acid phosphatase activity to precipitation suggest that P supply in subtropical ecosystems might be reduced if there was a drought in a whole year or more rainfall in the wet season in the future. NP, no precipitation; Control, natural precipitation; DP, double precipitation.

  2. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  3. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    SciTech Connect

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2. Francisella tularensis is a highly infectious bacterial pathogen that is considered by the Centers for Disease Control and Prevention to be a potential bioterrorism weapon. Here, the crystallization of a 37.2 kDa phosphatase encoded by the genome of F. tularensis subsp. holarctica live vaccine strain is reported. This enzyme shares 41% amino-acid sequence identity with Legionella pneumophila major acid phosphatase and contains the RHGXRXP motif that is characteristic of the histidine acid phosphatase family. Large diffraction-quality crystals were grown in the presence of Tacsimate, HEPES and PEG 3350. The crystals belong to space group P4{sub 1}2{sub 1}2, with unit-cell parameters a = 61.96, c = 210.78 Å. The asymmetric unit is predicted to contain one protein molecule, with a solvent content of 53%. A 1.75 Å resolution native data set was recorded at beamline 4.2.2 of the Lawrence Berkeley National Laboratory Advanced Light Source. Molecular-replacement trials using the human prostatic acid phosphatase structure as the search model (28% amino-acid sequence identity) did not produce a satisfactory solution. Therefore, the structure of F. tularensis histidine acid phosphatase will be determined by multiwavelength anomalous dispersion phasing using a selenomethionyl derivative.

  4. Stabilization of human prostate acid phosphatase by cross-linking with diimidoesters.

    PubMed

    Wasylewska, E; Dulińska, J; Trubetskoy, V S; Torchilin, V P; Ostrowski, W S

    1987-01-01

    1. Modification of dimeric human prostate acid phosphatase (EC 3.1.3.2) by diimidoesters leads to the formation of water-soluble preparations of high enzymatic activity, resistant to denaturing agents. 2. Monomeric, dimeric, trimeric and tetrameric species were found in SDS-polyacrylamide gel electrophoresis of the phosphatase cross-linked with dimethyl-suberimidate, and dimeric, trimeric and tetrameric enzymatically active species on thin-layer Sephadex 200 gel filtration. This molecular pattern evidenced formation of the inter-subunit covalent linkages. All molecular forms are immunoreactive against the polyclonal rabbit anti-phosphatase antibodies. 3. The catalytic properties of the modified phosphatase are almost the same as those of the native enzyme. Differences in the optical properties between the modified and the native enzymes point to slight conformational transitions in the modified enzyme.

  5. The inhibitory effect of metals and other ions on acid phosphatase activity from Vigna aconitifolia seeds.

    PubMed

    Srivastava, Pramod Kumar; Anand, Asha

    2015-01-01

    Sensitivity of acid phosphatase from Vigna aconitifolia seeds to metal ions, fluoride, and phosphate was examined. All the effectors had different degree of inhibitory effect on the enzyme. Among metal ions, molybdate and ferric ion were observed to be most potent inhibitors and both exhibited mixed type of inhibition. Acid phosphatase activity was inhibited by Cu2+ in a noncompetitive manner. Zn and Mn showed mild inhibition on the enzyme activity. Inhibition kinetics analysis explored molybdate as a potent inhibitor for acid phosphatase in comparison with other effectors used in this study. Fluoride was the next most strong inhibitor for the enzyme activity, and caused a mixed type of inhibition. Phosphate inhibited the enzyme competitively, which demonstrates that inhibition due to phosphate is one of the regulatory factors for enzyme activity.

  6. Inhibition of lymphoid tyrosine phosphatase by benzofuran salicylic acids.

    PubMed

    Vang, Torkel; Xie, Yuli; Liu, Wallace H; Vidović, Dusica; Liu, Yidong; Wu, Shuangding; Smith, Deborah H; Rinderspacher, Alison; Chung, Caty; Gong, Gangli; Mustelin, Tomas; Landry, Donald W; Rickert, Robert C; Schürer, Stephan C; Deng, Shi-Xian; Tautz, Lutz

    2011-01-27

    The lymphoid tyrosine phosphatase (Lyp, PTPN22) is a critical negative regulator of T cell antigen receptor (TCR) signaling. A single-nucleotide polymorphism (SNP) in the ptpn22 gene correlates with the incidence of various autoimmune diseases, including type 1 diabetes, rheumatoid arthritis, and systemic lupus erythematosus. Since the disease-associated allele is a more potent inhibitor of TCR signaling, specific Lyp inhibitors may become valuable in treating autoimmunity. Using a structure-based approach, we synthesized a library of 34 compounds that inhibited Lyp with IC(50) values between 0.27 and 6.2 μM. A reporter assay was employed to screen for compounds that enhanced TCR signaling in cells, and several inhibitors displayed a dose-dependent, activating effect. Subsequent probing for Lyp's direct physiological targets by immunoblot analysis confirmed the ability of the compounds to inhibit Lyp in T cells. Selectivity profiling against closely related tyrosine phosphatases and in silico docking studies with the crystal structure of Lyp yielded valuable information for the design of Lyp-specific compounds. PMID:21190368

  7. Effects of precipitation on soil acid phosphatase activity in three successional forests in southern China

    NASA Astrophysics Data System (ADS)

    Huang, W.; Liu, J.; Zhou, G.; Zhang, D.; Deng, Q.

    2011-07-01

    Phosphorus (P) is often a limiting nutrient for plant growth in tropical and subtropical forests. Global climate change has led to alterations in precipitation in the recent years, which inevitably influences P cycling. Soil acid phosphatase plays a vital role in controlling P mineralization, and its activity reflects the capacity of organic P mineralization potential in soils. In order to study the effects of precipitation on soil acid phosphatase activity, an experiment with precipitation treatments (no precipitation, natural precipitation and doubled precipitation) in three successional forests in southern China was carried out. The three forests include Masson pine forest (MPF), coniferous and broad-leaved mixed forest (MF) and monsoon evergreen broad-leaved forest (MEBF). Results showed that driven by seasonality of precipitation, changes in soil acid phosphatase activities coincided with the seasonal climate pattern, with significantly higher values in the wet season than in the dry season. Soil acid phosphatase activities were closely linked to forest successional stages, with enhanced values in the later stages of forest succession. In the dry season, soil acid phosphatase activities in the three forests showed a rising trend with increasing precipitation treatments. In the wet season, soil acid phosphatase activity was depressed by no precipitation treatment in the three forests. However, doubled precipitation treatment exerted a significantly negative effect on it only in MEBF. These results indicate that the potential transformation rate of organic P might be more dependent on water in the dry season than in the wet season. A decrease in organic P turnover would occur in the three forests if there was a drought in a whole year in the future. More rainfall in the wet season would also be adverse to organic P turnover in MEBF due to its high soil moisture.

  8. The "manganese(III)-containing" purple acid phosphatase from sweet potatoes is an iron enzyme.

    PubMed

    Hefler, S K; Averill, B A

    1987-08-14

    An improved purification of the purple acid phosphatase from sweet potatoes has been developed, and the properties of the enzyme have been reexamined. Contrary to previous reports, (e.g., Y. Sugiura, et al., J. Biol. Chem., 256, 10664-10670 (1981) ), the enzyme contains two moles of iron and insignificant amounts of manganese. The specific activity of the iron-containing preparations is ca. 14 times higher than that reported previously for the purported "Mn(III)" enzyme. The sweet potato purple acid phosphatase does indeed bind manganese, but it can be removed by dialysis with no changes in specific activity or spectral properties.

  9. Autosomal dominant aniridia: probable linkage to acid phosphatase-1 locus on chromosome 2.

    PubMed Central

    Ferrell, R E; Chakravarti, A; Hittner, H M; Riccardi, V M

    1980-01-01

    Maximum likelihood analysis for linkage between autosomal dominant aniridia and 12 biochemical and serological markers in a single large family showed a probable linkage between autosomal dominant aniridia and the enzyme acid phosphatase-1. The presence of an autosomal dominant aniridia gene linked to acid phosphatase-1 on chromosome arm 2p and the existence of an aniridia syndrome resulting from deletion of band 13 of the short arm of chromosome 11 establishes a chromosome basis for genetic heterogeneity of aniridia phenotypes. PMID:6929510

  10. PURIFICATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE FROM SPIRODELA OLIGORRHIZA AND ITS AFFINITY FOR SELECTED ORGANOPHOSPHATE PESTICIDES

    EPA Science Inventory

    An acid phosphatase from the aquatic plant Spirodela oligorrhiza (duckweed) was isolated by fast protein liquid chromatography (FPLC) and partially characterized. The enzyme was purified 1871-fold with a total yield of 40%. SDS-PAGE electrophoresis of the pure acid phosphatase ...

  11. [Biological profile of tartrate-resistant acid phosphatase as a marker of bone resorption].

    PubMed

    Rico, H; Iritia, M; Arribas, I; Revilla, M

    1990-12-01

    Tartrate-resistant serum acid phosphatase was measured in 123 subjects, 80 of which were normal and the rest pathologic, in order to define the profile and value of this parameter as a biological marker of osteoclastic activity. Normal subjects were divided into age groups based on the period where skeletal growth ends (under 20 years), at the age of menopause in women (50 years, between 20 and 50 years) and those over 50 years. There was an increase in tartrate-resistant serum acid phosphatase coinciding with puberty and no sex differences were observed after the 50 year mark, when women showed higher values than men (p less than 0.001). Such tartrate-resistant serum acid phosphatase increase, is reflected as higher values in the 50 year group than in the 20 to 50 year group (p less than 0.001), the only age limit where a negative significant correlation between tartrate-resistant serum acid phosphatase values and age could be observed (p less than 0.05). Values were higher up to the age of 20 years (p less than 0.001) than in any other older age group. Levels increased significantly (p less than 0.001 for both groups) in post-menopausal osteoporosis (n = 20) and in Paget's disease of bone (n = 15), and decreased significantly (p less than 0.05) in imperfect osteogenesis (n = 8), thus revealing its value as a biological marker of osteoclastic activity. PMID:2099535

  12. ISOLATION AND PARTIAL CHARACTERIZATION OF AN ACID PHOSPHATASE ACTIVITY FROM SPIRODELA OLIGORHIZA

    EPA Science Inventory

    An acid phosphatase activity from the aquatic plant Spirodela oligorhiza (duckweed) was isolated and partially characterized. S. oligorhiza was grown in a hydroponic growth medium, harvested, and ground up in liquid nitrogen. The ground plant material was added to a biological ...

  13. Identification of soybean purple acid phosphatase genes and their expression responses to phosphorus availability and symbiosis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background and Aims Purple acid phosphatases (PAPs) are members of the metallo-phosphoesterase family and have been known to play important roles in phosphorus (P) acquisition and recycling in plants. Low P availability is a major constraint to growth and production of soybean, Glycine max. Comparat...

  14. [Effect of phosphorus deficiency on activity of acid phosphatase exuded by wheat roots].

    PubMed

    Sun, Haiguo; Zhang, Fusuo

    2002-03-01

    The activity of acid phosphatase exuded by roots, the tissue location of the enzyme, and the relationship between the enzyme activity and phosphorus efficiency of wheat were studied. The results showed that the activity of acid phosphatase exuded by wheat 81(85)5-3-3-3 and NC37 under P-sufficiency treat were lower than those under P-deficiency, and the enzyme activity of the former variety was significantly higher than that of the latter. There was a significant difference in the enzyme activity among 12 wheat genotypes grown under P-deficiency treat. Acid phosphatase was exuded by epidermis cell of root, especially by epidermal cell of root apex. Thus, there was a linear relationship between the enzyme activity and the surface area of root or the number of root apexes. It implied that the enzyme activity was markedly related to the size of root system. The linear relationship between relative grain yield and acid phosphatase activity was significant. It indicates that the enzyme activity could be used as an early indicator to select P-efficient wheat genotypes.

  15. Prostatic acid phosphatase: structural aspects of inhibition by L-(+)-tartrate ions.

    PubMed

    Lovelace, L; Lewiński, K; Jakob, C G; Kuciel, R; Ostrowski, W; Lebioda, L

    1997-01-01

    The crystal structure of the complex between rat-prostatic acid phosphatase (PAP) and L-(+)-tartrate (Lindqvist et al., J. Biol. Chem., 1993, 268, 20744-20746) contains the model of the ligand with incorrect chirality. We report here the correct model and discuss the relation between this model and the model of the inhibitory complexes between PAP and oxy-anions.

  16. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  17. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  18. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  19. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  20. 21 CFR 862.1020 - Acid phosphatase (total or prostatic) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acid phosphatase (total or prostatic) test system. 862.1020 Section 862.1020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical...

  1. Alterations in activities of acid phosphatase, alkaline phosphatase, ATPase and ATP content in response to seasonally varying Pi status in okra (Abelmoschus esculentus).

    PubMed

    Sen, Supatra; Mukherji, S

    2004-04-01

    Phosphorus (P) is the second most important macronutrient for plant growth. Plants exhibit numerous physiological and metabolic adaptations in response to seasonal variations in phosphorus content. Activities of acid and alkaline phosphatases, ATPase and ATP content were studied in summer, rainy and winter seasons at two different developmental stages (28 and 58 days after sowing) in Okra. Activities of both acid and alkaline phosphatases increased manifold in winter to cope up with low phosphorus content. ATP content and ATPase activity were high in summer signifying an active metabolic period. Phosphorus deficiency is characterized by low ATP content and ATPase activity (which are in turn partly responsible for a drastic reduction in growth and yield) and enhanced activities of acid and alkaline phosphatases which increase the availability of P in P-deficient seasons.

  2. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: studies using chemical inhibitors of lipid phosphate phosphatase activity.

    PubMed

    Smyth, Susan S; Sciorra, Vicki A; Sigal, Yury J; Pamuklar, Zehra; Wang, Zuncai; Xu, Yong; Prestwich, Glenn D; Morris, Andrew J

    2003-10-31

    Blood platelets play an essential role in ischemic heart disease and stroke contributing to acute thrombotic events by release of potent inflammatory agents within the vasculature. Lysophosphatidic acid (LPA) is a bioactive lipid mediator produced by platelets and found in the blood and atherosclerotic plaques. LPA receptors on platelets, leukocytes, endothelial cells, and smooth muscle cells regulate growth, differentiation, survival, motility, and contractile activity. Definition of the opposing pathways of synthesis and degradation that control extracellular LPA levels is critical to understanding how LPA bioactivity is regulated. We show that intact platelets and platelet membranes actively dephosphorylate LPA and identify the major enzyme responsible as lipid phosphate phosphatase 1 (LPP1). Localization of LPP1 to the platelet surface is increased by exposure to LPA. A novel receptor-inactive sn-3-substituted difluoromethylenephosphonate analog of phosphatidic acid that is a potent competitive inhibitor of LPP1 activity potentiates platelet aggregation and shape change responses to LPA and amplifies LPA production by agonist-stimulated platelets. Our results identify LPP1 as a pivotal regulator of LPA signaling in the cardiovascular system. These findings are consistent with genetic and cell biological evidence implicating LPPs as negative regulators of lysophospholipid signaling and suggest that the mechanisms involve both attenuation of lysophospholipid actions at cell surface receptors and opposition of lysophospholipid production. PMID:12909631

  3. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses.

    PubMed

    Heo, W D; Lee, S H; Kim, M C; Kim, J C; Chung, W S; Chun, H J; Lee, K J; Park, C Y; Park, H C; Choi, J Y; Cho, M J

    1999-01-19

    The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, whereas other SCaM genes encoding highly conserved CaM isoforms did not show such response. This pathogen-triggered induction of these genes specifically depended on the increase of intracellular Ca2+ level. Constitutive expression of SCaM-4 and SCaM-5 in transgenic tobacco plants triggered spontaneous induction of lesions and induces an array of systemic acquired resistance (SAR)-associated genes. Surprisingly, these transgenic plants have normal levels of endogenous salicylic acid (SA). Furthermore, coexpression of nahG gene did not block the induction of SAR-associated genes in these transgenic plants, indicating that SA is not involved in the SAR gene induction mediated by SCaM-4 or SCaM-5. The transgenic plants exhibit enhanced resistance to a wide spectrum of virulent and avirulent pathogens, including bacteria, fungi, and virus. These results suggest that specific CaM isoforms are components of a SA-independent signal transduction chain leading to disease resistance.

  4. ISOZYMES OF ACID PHOSPHATASE IN NORMAL AND CALMETTE-GUÉRIN BACILLUS-INDUCED RABBIT ALVEOLAR MACROPHAGES

    PubMed Central

    Axline, S. G.

    1968-01-01

    The acid phosphatase activity of normal alveolar and BCG-induced alveolar macrophages has been examined. Five electrophoretically distinct forms of acid phosphatase have been identified in both normal and BCG-induced macrophages. The acid phosphatases can be divided into two major categories. One category, containing four distinct forms, is readily solubilized after repeated freezing and thawing or mechanical disruption The second category, containing one form, is firmly bound to the lysosomal membrane and can be solubilized by treatment of the lysosomal fraction with Triton X-100. The Triton-extractable acid phosphatase and the predominant aqueous soluble acid phosphatase have been shown to differ in the degree of membrane binding, in solubility, in net charge, and in molecular weight. The two pre-dominant phosphatases possess identical pH optimum and do not differ in response to enzyme inhibitors. BCG stimulation has been shown to result in a nearly twofold increase in acid phosphatase activity. A nearly proportionate increase in the major acid phosphatase forms has been observed. PMID:4878908

  5. High affinity of acid phosphatase encoded by PHO3 gene in Saccharomyces cerevisiae for thiamin phosphates.

    PubMed

    Nosaka, K

    1990-02-01

    The enzymatic properties of acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) encoded by PHO3 gene in Saccharomyces cerevisiae, which is repressed by thiamin and has thiamin-binding activity at pH 5.0, were investigated to study physiological functions. The following results led to the conclusion that thiamin-repressible acid phosphatase physiologically catalyzes the hydrolysis of thiamin phosphates in the periplasmic space of S. cerevisiae, thus participating in utilization of the thiamin moiety of the phosphates by yeast cells: (a) thiamin-repressible acid phosphatase showed Km values of 1.6 and 1.7 microM at pH 5.0 for thiamin monophosphate and thiamin pyrophosphate, respectively. These Km values were 2-3 orders of magnitude lower than those (0.61 and 1.7 mM) for p-nitrophenyl phosphate; (b) thiamin exerted remarkable competitive inhibition in the hydrolysis of thiamin monophosphate (Ki 2.2 microM at pH 5.0), whereas the activity for p-nitrophenyl phosphate was slightly affected by thiamin; (c) the inhibitory effect of inorganic phosphate, which does not repress the thiamin-repressible enzyme, on the hydrolysis of thiamin monophosphate was much smaller than that of p-nitrophenyl phosphate. Moreover, the modification of thiamin-repressible acid phosphatase of S. cerevisiae with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide resulted in the complete loss of thiamin-binding activity and the Km value of the modified enzyme for thiamin monophosphate increased nearly to the value of the native enzyme for p-nitrophenyl phosphate. These results also indicate that the high affinity of the thiamin-repressible acid phosphatase for thiamin phosphates is due to the thiamin-binding properties of this enzyme.

  6. Cloning and comparative protein modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas).

    PubMed

    Durmus, A; Eicken, C; Spener, F; Krebs, B

    1999-09-14

    The sequence of cDNA fragments of two isozymes of the purple acid phosphatase from sweet potato (spPAP1 and spPAP2) has been determined by 5' and 3' rapid amplification of cDNA ends protocols using oligonucleotide primers based on amino acid information. The encoded amino acid sequences of these two isozymes show an equidistance of 72-77% not only to each other, but also to the primary structure of the purple acid phosphatase from red kidney bean (kbPAP). A three-dimensional model of the active site has been constructed for spPAP2 on the basis of the kbPAP crystallographic structure that helps to explain the reported differences in the visible and EPR spectra of spPAP2 and kbPAP.

  7. Cloning and comparative protein modeling of two purple acid phosphatase isozymes from sweet potatoes (Ipomoea batatas).

    PubMed

    Durmus, A; Eicken, C; Spener, F; Krebs, B

    1999-09-14

    The sequence of cDNA fragments of two isozymes of the purple acid phosphatase from sweet potato (spPAP1 and spPAP2) has been determined by 5' and 3' rapid amplification of cDNA ends protocols using oligonucleotide primers based on amino acid information. The encoded amino acid sequences of these two isozymes show an equidistance of 72-77% not only to each other, but also to the primary structure of the purple acid phosphatase from red kidney bean (kbPAP). A three-dimensional model of the active site has been constructed for spPAP2 on the basis of the kbPAP crystallographic structure that helps to explain the reported differences in the visible and EPR spectra of spPAP2 and kbPAP. PMID:10556574

  8. Comparative analysis of the 5'-end regions of two repressible acid phosphatase genes in Saccharomyces cerevisiae.

    PubMed Central

    Thill, G P; Kramer, R A; Turner, K J; Bostian, K A

    1983-01-01

    The nucleotide sequence of 5'-noncoding and N-terminal coding regions of two coordinately regulated, repressible acid phosphatase genes from Saccharomyces cerevisiae were determined. These unlinked genes encode different, but structurally related polypeptides of molecular weights 60,000 and 56,000. The DNA sequences of their 5'-flanking regions show stretches of extensive homology upstream of, and surrounding, a "TATA" sequence and in a region in which heterogeneous 5' ends of the p60 mRNA were mapped. The predicted amino acid sequences encoded by the N-terminal regions of both genes were confirmed by determination of the amino acid sequence of the native exocellular acid phosphatase and the partial sequence of the presecretory polypeptide synthesized in a cell-free protein synthesizing system. The N-terminal region of the p60 polypeptide was shown to be characterized by a hydrophobic 17-amino acid signal polypeptide which is absent in the native exocellular protein and thought to be necessary for acid phosphatase secretion. Images PMID:6343840

  9. LEPS2, a Phosphorus Starvation-Induced Novel Acid Phosphatase from Tomato1

    PubMed Central

    Baldwin, James C.; Karthikeyan, Athikkattuvalasu S.; Raghothama, Kashchandra G.

    2001-01-01

    Phosphate (Pi) is one of the least available plant nutrients found in the soil. A significant amount of phosphate is bound in organic forms in the rhizosphere. Phosphatases produced by plants and microbes are presumed to convert organic phosphorus into available Pi, which is absorbed by plants. In this study we describe the isolation and characterization of a novel tomato (Lycopersicon esculentum) phosphate starvation-induced gene (LePS2) representing an acid phosphatase. LePS2 is a member of a small gene family in tomato. The cDNA is 942 bp long and contains an open reading frame encoding a 269-amino acid polypeptide. The amino acid sequence of LePS2 has a significant similarity with a phosphatase from chicken. Distinct regions of the peptide also share significant identity with the members of HAD and DDDD super families of phosphohydrolases. Many plant homologs of LePS2 are found in the databases. The LePS2 transcripts are induced rapidly in tomato plant and cell culture in the absence of Pi. However, the induction is repressible in the presence of Pi. Divided root studies indicate that internal Pi levels regulate the expression of LePS2. The enhanced expression of LePS2 is a specific response to Pi starvation, and it is not affected by starvation of other nutrients or abiotic stresses. The bacterially (Escherichia coli) expressed protein exhibits phosphatase activity against the synthetic substrate p-nitrophenyl phosphate. The pH optimum of the enzyme activity suggests that LePS2 is an acid phosphatase. PMID:11161030

  10. LEPS2, a phosphorus starvation-induced novel acid phosphatase from tomato.

    PubMed

    Baldwin, J C; Karthikeyan, A S; Raghothama, K G

    2001-02-01

    Phosphate (Pi) is one of the least available plant nutrients found in the soil. A significant amount of phosphate is bound in organic forms in the rhizosphere. Phosphatases produced by plants and microbes are presumed to convert organic phosphorus into available Pi, which is absorbed by plants. In this study we describe the isolation and characterization of a novel tomato (Lycopersicon esculentum) phosphate starvation-induced gene (LePS2) representing an acid phosphatase. LePS2 is a member of a small gene family in tomato. The cDNA is 942 bp long and contains an open reading frame encoding a 269-amino acid polypeptide. The amino acid sequence of LePS2 has a significant similarity with a phosphatase from chicken. Distinct regions of the peptide also share significant identity with the members of HAD and DDDD super families of phosphohydrolases. Many plant homologs of LePS2 are found in the databases. The LePS2 transcripts are induced rapidly in tomato plant and cell culture in the absence of Pi. However, the induction is repressible in the presence of Pi. Divided root studies indicate that internal Pi levels regulate the expression of LePS2. The enhanced expression of LePS2 is a specific response to Pi starvation, and it is not affected by starvation of other nutrients or abiotic stresses. The bacterially (Escherichia coli) expressed protein exhibits phosphatase activity against the synthetic substrate p-nitrophenyl phosphate. The pH optimum of the enzyme activity suggests that LePS2 is an acid phosphatase.

  11. Dissecting the Role of Retinoic Acid Receptor Isoforms in the CD8 Response to Infection

    PubMed Central

    Guo, Yanxia; Lee, Yu-Chi; Brown, Chrysothemis; Zhang, Weijun; Usherwood, Edward; Noelle, Randolph J.

    2015-01-01

    Vitamin A deficiency leads to increased susceptibility to a spectrum of infectious diseases. The studies presented dissect the intrinsic role of each of the retinoic acid receptor (RAR) isoforms in the clonal expansion, differentiation, and survival of pathogen-specific CD8 T cells in vivo. The data show that RARα is required for the expression of gut-homing receptors on CD8+ T cells and survival of CD8+ T cells in vitro. Furthermore, RARα is essential for survival of CD8+ T cells in vivo following Listeria monocytogenes infection. In contrast, RARβ deletion leads to modest deficiency in Ag-specific CD8+ T cell expansion during infection. The defective survival of RARα-deficient CD8+ T cells leads to a deficiency in control of L. monocytogenes expansion in the spleen. To our knowledge, these are the first comparative studies of the role of RAR isoforms in CD8+ T cell immunity. PMID:24610012

  12. Recognition of Nucleoside Monophosphate Substrates by Haemophilus influenzae Class C Acid Phosphatase

    SciTech Connect

    Singh, Harkewal; Schuermann, Jonathan P.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2010-12-08

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD{sup +} utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5{prime},3{prime}-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5{prime}-AMP, 3{prime}-AMP, and 2{prime}-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5{prime}-nucleotides and 3{prime}-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5{prime} substrates in an anti conformation and 3{prime} substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition.

  13. Recognition of nucleoside monophosphate substrates by Haemophilus influenzae class C acid phosphatase.

    PubMed

    Singh, Harkewal; Schuermann, Jonathan P; Reilly, Thomas J; Calcutt, Michael J; Tanner, John J

    2010-12-10

    The e (P4) phosphatase from Haemophilus influenzae functions in a vestigial NAD(+) utilization pathway by dephosphorylating nicotinamide mononucleotide to nicotinamide riboside. P4 is also the prototype of class C acid phosphatases (CCAPs), which are nonspecific 5',3'-nucleotidases localized to the bacterial outer membrane. To understand substrate recognition by P4 and other class C phosphatases, we have determined the crystal structures of a substrate-trapping mutant P4 enzyme complexed with nicotinamide mononucleotide, 5'-AMP, 3'-AMP, and 2'-AMP. The structures reveal an anchor-shaped substrate-binding cavity comprising a conserved hydrophobic box that clamps the nucleotide base, a buried phosphoryl binding site, and three solvent-filled pockets that contact the ribose and the hydrogen-bonding edge of the base. The span between the hydrophobic box and the phosphoryl site is optimal for recognizing nucleoside monophosphates, explaining the general preference for this class of substrate. The base makes no hydrogen bonds with the enzyme, consistent with an observed lack of base specificity. Two solvent-filled pockets flanking the ribose are key to the dual recognition of 5'-nucleotides and 3'-nucleotides. These pockets minimize the enzyme's direct interactions with the ribose and provide sufficient space to accommodate 5' substrates in an anti conformation and 3' substrates in a syn conformation. Finally, the structures suggest that class B acid phosphatases and CCAPs share a common strategy for nucleotide recognition. PMID:20934434

  14. Structural basis of the inhibition of class C acid phosphatases by adenosine 5;#8242;-phosphorothioate

    SciTech Connect

    Singh, Harkewal; Reilly, Thomas J.; Tanner, John J.

    2012-01-20

    The inhibition of phosphatases by adenosine 5'-phosphorothioate (AMPS) was first reported in the late 1960s; however, the structural basis for the inhibition has remained unknown. Here, it is shown that AMPS is a submicromolar inhibitor of class C acid phosphatases, a group of bacterial outer membrane enzymes belonging to the haloacid dehalogenase structural superfamily. Furthermore, the 1.35-{angstrom} resolution crystal structure of the inhibited recombinant Haemophilus influenzae class C acid phosphatase was determined; this is the first structure of a phosphatase complexed with AMPS. The conformation of AMPS is identical to that of the substrate 5'-AMP, except that steric factors force a rotation of the thiophosphoryl out of the normal phosphoryl-binding pocket. This conformation is catalytically nonproductive, because the P atom is not positioned optimally for nucleophilic attack by Asp64, and the O atom of the scissile O-P bond is too far from the Asp (Asp66) that protonates the leaving group. The structure of 5'-AMP complexed with the Asp64 {yields} Asn mutant enzyme was also determined at 1.35-{angstrom} resolution. This mutation induces the substrate to adopt the same nonproductive binding mode that is observed in the AMPS complex. In this case, electrostatic considerations, rather than steric factors, underlie the movement of the phosphoryl. The structures not only provide an explanation for the inhibition by AMPS, but also highlight the precise steric and electrostatic requirements of phosphoryl recognition by class C acid phosphatases. Moreover, the structure of the Asp64 {yields} Asn mutant illustrates how a seemingly innocuous mutation can cause an unexpected structural change.

  15. Cloning and primary structure of a human islet isoform of glutamic acid decarboxylase from chromosome 10

    SciTech Connect

    Karlsen, A.E.; Hagopian, W.A.; Grubin, C.E.; Dube, S.; Disteche, C.M.; Adler, D.A.; Baermeier, H.; Lernmark, A. ); Mathewes, S.; Grant, F.J.; Foster, D. )

    1991-10-01

    Glutamic acid decarboxylase which catalyzes formation of {gamma}-aminobutyric acid from L-glutamic acid, is detectable in different isoforms with distinct electrophoretic and kinetic characteristics. GAD has also been implicated as an autoantigen in the vastly differing autoimmune disease stiff-man syndrome and insulin-dependent diabetes mellitus. Despite the differing GAD isoforms, only one type of GAD cDNA (GAD-1), localized to a syntenic region of chromosome 2, has been isolated from rat, mouse, and cat. Using sequence information from GAD-1 to screen a human pancreatic islet cDNA library, the authors describe the isolation of an additional GAD cDNA (GAD-2), which was mapped to the short arm of human chromosome 10. Genomic Southern blotting with GAD-2 demonstrated a hybridization pattern different form that detected by GAD-1. GAD-2 recognizes a 5.6-kilobase transcript in both islets and brain, in contrast to GAD-1, which detects a 3.7-kilobase transcript in brain only. The deduced 585-amino acid sequence coded for by GAD-2 shows < 65% identify to previously published, highly conserved GAD-1 brain sequences, which show > 96% deduced amino acid sequence homology among the three species.

  16. Two isoforms of Xenopus retinoic acid receptor gamma 2 (B) exhibit differential expression and sensitivity to retinoic acid during embryogenesis.

    PubMed

    Crawford, M J; Liversage, R A; Varmuza, S L

    1995-01-01

    We report the isolation of two retinoic acid receptor isoforms (RAR gamma), which differ only in the 5'untranslated and putative N-terminus A regions. The two isoforms appear to serve as early markers for the presumptive neural axis; however, their expression patterns differ. RAR-gamma 2.1 is first expressed at gastrulation at the dorsal lip and subsequently along the presumptive neural axis. RAR- gamma 2.2 represents the full-length sequence of a receptor cDNA already partially characterized and present as a maternal transcript [Ellinger-Ziegelbauer and Dreyer (1991); Genes Dev 5:94-104, (1993): Mech Dev 41:31-46; Pfeffer and DeRobertis, (1994) Mech Dev: 45:147-153]. Unlike RAR-gamma 2.2, the 2.1 variant is not expressed either in pre-somitic mesoderm or notochord. RAR-gamma 2.1 is strongly expressed in branchial arches and to a lesser extent in the neural floor plate. The two isoforms also exhibit differential sensitivity to retinoic acid. Constitutive expression of RAR gamma 2.2 following neurulation appears to be depressed by treatment with retinoic acid, but domains of highest expression, namely, the head and tail, remain relatively unaffected, as do patterns of expression prior to late neurulation. By contrast, RAR-gamma 2.1 is not transcribed in retinoid-inhibited structures. Using microinjection techniques, we show that changes of RAR-gamma 2.1 expression in presumptive head structures occur as an early and local consequence of retinoic acid administration. Since RAR-gamma 2.1 expression is inhibited by retinoic acid, we tested to see if other treatments that perturb axis formation had any effect. Surprisingly, UV irradiation did not suppress that its inhibition by retinoic acid is not due solely to inhibition of anterior neural development. These experiments demonstrate a new subdivision of isoforms that undergo differential expression during development and that exhibit differential sensitivity to retinoic acid and to UV. This sensitivity and the presence

  17. Crystal structures and biochemical studies of human lysophosphatidic acid phosphatase type 6.

    PubMed

    Li, Jun; Dong, Yu; Lü, Xingru; Wang, Lu; Peng, Wei; Zhang, Xuejun C; Rao, Zihe

    2013-07-01

    Lysophosphatidic acid (LPA) is an important bioactive phospholipid involved in cell signaling through Gprotein-coupled receptors pathways. It is also involved in balancing the lipid composition inside the cell, and modulates the function of lipid rafts as an intermediate in phospholipid metabolism. Because of its involvement in these important processes, LPA degradation needs to be regulated as precisely as its production. Lysophosphatidic acid phosphatase type 6 (ACP6) is an LPA-specific acid phosphatase that hydrolyzes LPA to monoacylglycerol (MAG) and phosphate. Here, we report three crystal structures of human ACP6 in complex with malonate, L-(+)-tartrate and tris, respectively. Our analyses revealed that ACP6 possesses a highly conserved Rossmann-foldlike body domain as well as a less conserved cap domain. The vast hydrophobic substrate-binding pocket, which is located between those two domains, is suitable for accommodating LPA, and its shape is different from that of other histidine acid phosphatases, a fact that is consistent with the observed difference in substrate preferences. Our analysis of the binding of three molecules in the active site reveals the involvement of six conserved and crucial residues in binding of the LPA phosphate group and its catalysis. The structure also indicates a water-supplying channel for substrate hydrolysis. Our structural data are consistent with the fact that the enzyme is active as a monomer. In combination with additional mutagenesis and enzyme activity studies, our structural data provide important insights into substrate recognition and the mechanism for catalytic activity of ACP6.

  18. Phosphatidic acid phosphatase activity in subcellular fractions of normal and dystrophic human muscle.

    PubMed

    Kunze, D; Rüstow, B; Olthoff, D; Jung, K

    1985-03-15

    Biopsy samples from normal and dystrophic human muscle (Duchenne type) were fractionated by differential centrifugation and microsomes, mitochondria and cytosol were assayed for phosphatidic acid phosphatase (EC 3.1.3.4) and marker enzymes of mitochondria and cytosol. The activity of phosphatidic acid phosphatase was significantly lower in microsomes and higher in cytosol and mitochondria of dystrophic muscle than in the corresponding subcellular fractions of normal muscle. The results support an explanation of earlier findings that there is reduced G3P incorporation into diglycerides and phosphatidylcholine and a qualitative and quantitative change in the amount of phosphatidylcholine in dystrophic microsomes. The possible reasons for the reduction in the activity of only microsomal PA-P-ase were discussed.

  19. The prostatic acid phosphatase (ACPP) gene is localized to human chromosome 3q21-q23

    SciTech Connect

    Li, S.S.L.; Sharief, F.S. )

    1993-09-01

    Human prostatic acid phosphatase (ACPP) has been used as a diagnostic marker for prostate cancer. It is synthesized under androgen regulation and secreted by the epithelial cells of the prostate gland. The authors have confirmed the previous assignment of the ACPP gene to chromosome 3 by probing a panel of 25 human-Chinese hamster somatic cell hybrids, and they have further localized the ACPP gene to chromosome 3q21-q23 by fluorescence in situ hybridization. 10 refs., 1 fig.

  20. A COMPARATIVE ANALYSIS OF THREE CLASSES OF BACTERIAL NON-SPECIFIC ACID PHOSPHATASES AND ARCHAEAL PHOSPHOESTERASES: EVOLUTIONARY PERSPECTIVE

    PubMed Central

    U. Gandhi, Neha; B. Chandra, Sathees

    2012-01-01

    Introduction: Bacterial nonspecific acid phosphohydrolases (NSAPs) or phosphatases are group of enzymes secreted as soluble periplasmic proteins or retained as membrane bound lipoproteins that are usually able to dephosphorylate a broad array of structurally unrelated organic phosphoesters (nucleotides, sugar phosphates, phytic acid etc.) to acquire inorganic phosphate (Pi) and organic byproducts. They exhibit optimal catalytic activity at acidic to neutral pH values. On the basis of amino acid sequence relatedness, phosphatase are grouped into different molecular families namely Class A, Class B and Class C acid phosphatase respectively. Results and discussion: In this article out of thirty three sequences, twenty six belonging to each of the three classes of bacterial acid phosphatase and seven belonging to archaeal phosphoesterases were analyzed using various tools of bioinformatics. Phylogenetic analysis, dot plot comparisons and motif analysis were done to identify a number of similarities and differences between three classes of bacterial acid phosphatases and archaeal phosphoesterases. In this research we have attempted to decipher evolutionary relationship between three classes of bacterial acid phosphatase and archaeal phosphoesterases using bioinformatics approach. PMID:23322973

  1. Cloning, purification and crystallization of Bacillus anthracis class C acid phosphatase

    SciTech Connect

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2006-07-01

    Crystallization of a surface-localized acid phosphatase from Bacillus anthracis is reported. Flash annealing increased the high-resolution limit of usable data from 1.8 to 1.6 Å. Cloning, expression, purification and crystallization studies of a recombinant class C acid phosphatase from the Category A pathogen Bacillus anthracis are reported. Large diffraction-quality crystals were grown in the presence of HEPES and Jeffamine ED-2001 at pH 7.0. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 53.4, b = 90.1, c = 104.2 Å. The asymmetric unit is predicted to contain two protein molecules with a solvent content of 38%. Two native data sets were collected from the same crystal before and after flash-annealing. The first data set had a mosaicity of 1.6° and a high-resolution limit of 1.8 Å. After flash-annealing, the apparent mosaicity decreased to 0.9° and the high-resolution limit of usable data increased to 1.6 Å. This crystal form is currently being used to determine the structure of B. anthracis class C acid phosphatase with experimental phasing techniques.

  2. Expression, purification and crystallization of class C acid phosphatases from Francisella tularensis and Pasteurella multocida

    PubMed Central

    Singh, Harkewal; Felts, Richard L.; Ma, Li; Malinski, Thomas J.; Calcutt, Michael J.; Reilly, Thomas J.; Tanner, John J.

    2009-01-01

    Class C nonspecific acid phosphatases are bacterial enzymes that are secreted across the cytoplasmic membrane and hydrolyze a variety of phosphomono­esters at acidic pH. These enzymes are of interest for the development of improved vaccines and clinical diagnostic methods. In one case, the category A pathogen Francisella tularensis, the class C phosphatase plays a role in bacterial fitness. Here, the cloning, expression, purification and crystallization methods for the class C acid phosphatases from F. tularensis and Pasteurella multocida are reported. Crystals of the F. tularensis enzyme diffracted to 2.0 Å resolution and belonged to space group C2221, with one enzyme molecule in the asymmetric unit. Crystals of the P. multocida enzyme diffracted to 1.85 Å resolution and belonged to space group C2, with three molecules in the asymmetric unit. Diffraction patterns from crystals of the P. multocida enzyme exhibited multiple interpenetrating reciprocal-space lattices, indicating epitaxial twinning. Despite this aberrance, autoindexing was robust and the data could be satisfactorily processed to 1.85 Å resolution using MOSFLM and SCALA. PMID:19255471

  3. Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells.

    PubMed

    Hayman, A R; Cox, T M

    1994-01-14

    The purple phosphatases catalyze hydrolysis of phosphate esters (optimum pH approximately 5) and are resistant to inhibition by dextro-rotatory tartrate; their distinctive color is due to Fe(III)-phenolate charge-transfer transitions at their active site. Expression of human purple phosphatase, designated type 5 acid phosphatase, is restricted to osteoclasts and other activated cells of monohistiocytic lineage, but its biological rôle in relation to bone resorption and phagocytosis is unknown. To characterize this enzyme further, we have engineered the human type 5 acid phosphatase into a baculovirus vector expression system that enabled milligram quantities of purple protein to be purified from medium containing Sf9 host cells. The phosphatase cDNA was transcribed as a single RNA species of 1.5 kilobases as in human tissues. Tartrate-resistant acid phosphatase activity reacting with uteroferrin antisera appeared in the culture medium, from which up to 8 mg/liter was purified by two-step cation-exchange chromatography at pH 8.0. Two isoforms of approximately 36 kDa were identified by SDS-polyacrylamide electrophoresis and were converted to a single species of apparent molecular size 34 kDa upon treatment with N-glycosidase F, indicating secreted glycoforms of a single polypeptide. Mass spectroscopy showed that the mean molecular mass of the active, secreted glycoprotein was 35849 Da. The recombinant enzyme (specific activity, 190 mumol p-nitrophenol/min/mg at 37 degrees C) contained 2 iron atoms/molecule and formed purple, monoclinic crystals. Exposure to the ferric chelator, 1,2-dimethyl-3-hydroxypyrid-4-one, rapidly inactivated the enzyme, which was not inhibited by alpha, alpha'-bipyridyl, a ferrous chelator. That ferric iron is essential for enzymatic catalysis, was further indicated by the synergistic effects of the reductant, dithiothreitol, and bipyridyl on phosphatase activity. The recombinant purple phosphatase catalyzed the peroxidation of 5

  4. Identification of purple acid phosphatase inhibitors by fragment-based screening: promising new leads for osteoporosis therapeutics.

    PubMed

    Feder, Daniel; Hussein, Waleed M; Clayton, Daniel J; Kan, Meng-Wei; Schenk, Gerhard; McGeary, Ross P; Guddat, Luke W

    2012-11-01

    Purple acid phosphatases are metalloenzymes found in animals, plants and fungi. They possess a binuclear metal centre to catalyse the hydrolysis of phosphate esters and anhydrides under acidic conditions. In humans, elevated purple acid phosphatases levels in sera are correlated with the progression of osteoporosis and metabolic bone malignancies, making this enzyme a target for the development of new chemotherapeutics to treat bone-related illnesses. To date, little progress has been achieved towards the design of specific and potent inhibitors of this enzyme that have drug-like properties. Here, we have undertaken a fragment-based screening approach using a 500-compound library identifying three inhibitors of purple acid phosphatases with K(i) values in the 30-60 μm range. Ligand efficiency values are 0.39-0.44 kcal/mol per heavy atom. X-ray crystal structures of these compounds in complex with a plant purple acid phosphatases (2.3-2.7 Å resolution) have been determined and show that all bind in the active site within contact of the binuclear centre. For one of these compounds, the phenyl ring is positioned within 3.5 Å of the binuclear centre. Docking simulations indicate that the three compounds fit into the active site of human purple acid phosphatases. These studies open the way to the design of more potent and selective inhibitors of purple acid phosphatases that can be tested as anti-osteoporotic drug leads.

  5. Senescence-inducible cell wall and intracellular purple acid phosphatases: implications for phosphorus remobilization in Hakea prostrata (Proteaceae) and Arabidopsis thaliana (Brassicaceae)

    PubMed Central

    Shane, Michael W.; Stigter, Kyla; Fedosejevs, Eric T.; Plaxton, William C.

    2014-01-01

    Despite its agronomic importance, the metabolic networks mediating phosphorus (P) remobilization during plant senescence are poorly understood. Highly efficient P remobilization (~85%) from senescing leaves and proteoid roots of harsh hakea (Hakea prostrata), a native ‘extremophile’ plant of south-western Australia, was linked with striking up-regulation of cell wall-localized and intracellular acid phosphatase (APase) and RNase activities. Non-denaturing PAGE followed by in-gel APase activity staining revealed senescence-inducible 120kDa and 60kDa intracellular APase isoforms, whereas only the 120kDa isoform was detected in corresponding cell wall fractions. Kinetic and immunological properties of the 120kDa and 60kDa APases partially purified from senescing leaves indicated that they are purple acid phosphatases (PAPs). Results obtained with cell wall-targeted hydrolases of harsh hakea were corroborated using Arabidopsis thaliana in which an ~200% increase in cell wall APase activity during leaf senescence was paralleled by accumulation of immunoreactive 55kDa AtPAP26 polypeptides. Senescing leaves of an atpap26 T-DNA insertion mutant displayed a >90% decrease in cell wall APase activity. Previous research established that senescing leaves of atpap26 plants exhibited a similar reduction in intracellular (vacuolar) APase activity, while displaying markedly impaired P remobilization efficiency and delayed senescence. It is hypothesized that up-regulation and dual targeting of PAPs and RNases to the cell wall and vacuolar compartments make a crucial contribution to highly efficient P remobilization that dominates the P metabolism of senescing tissues of harsh hakea and Arabidopsis. To the best of the authors’ knowledge, the apparent contribution of cell wall-targeted hydrolases to remobilizing key macronutrients such as P during senescence has not been previously suggested. PMID:25170100

  6. AN ANALYSIS OF CELLULAR AND SUBCELLULAR SYSTEMS WHICH TRANSFORM THE SPECIES CHARACTER OF ACID PHOSPHATASE IN ACETABULARIA.

    PubMed

    KECK, K; CHOULES, E A

    1963-08-01

    Several species-specific molecular forms of acid phosphatase are known to exist in the unicellular green alga Acetabularia. In graft combinations between cells of Acetabularia mediterranea (med) and Acicularia Schenckii (acic) the expression of the med phosphatase is dominant over acic phosphatase. There is good evidence that in such grafts the preexisting acic phosphatase is converted on the molecular level via an intermediate form to the med phosphatase. This conversion can be initiated by the transplantation of a med cell nucleus to an anucleate acic cell, but will also take place in grafts between anucleate med and anucleate acic cells, indicating that the direct participation of a cell nucleus is not required. An incomplete conversion of acic phosphatase, which terminates at the intermediate stage, is induced in acic cells by injection of a concentrated homogenate of med cytoplasm. A similar partial conversion occurs in vitro in a mixture of homogenates from med and acic cells. Subcellular particles, such as chloroplasts or mitochondria, can be removed from the homogenates by centrifugation without impairing the reactions leading to the intermediate phosphatase type. Experimental evidence suggests that the transformation of phosphatase types is enzymatically catalyzed and may involve the conjugation of small molecules with the phosphatase protein. It was shown, however, that sialic acid is not involved, since the incubation of med or acic homogenates with neuraminidase did not modify the electrophoretic mobility of either enzyme type. Another type of phosphatase, which occurs in Acetabularia erenulata (cren) and can be distinguished electrophoretically from the aforementioned types, is not subject to interaction. In various mono- and multi-nucleate graft combinations between cren cells on one hand, and med or acic cells on the other hand, the cren phosphatase is synthesized independently of the enzyme of the graft partner.

  7. OsPAP10c, a novel secreted acid phosphatase in rice, plays an important role in the utilization of external organic phosphorus.

    PubMed

    Lu, Linghong; Qiu, Wenmin; Gao, Wenwen; Tyerman, Stephen D; Shou, Huixia; Wang, Chuang

    2016-10-01

    Under phosphate (Pi ) starvation, plants increase the secretion of purple acid phosphatases (PAPs) into the rhizosphere to scavenge organic phosphorus (P) for plant use. To date, only a few members of the PAP family have been characterized in crops. In this study, we identified a novel secreted PAP in rice, OsPAP10c, and investigated its role in the utilization of external organic P. OsPAP10c belongs to a monocotyledon-specific subclass of Ia group PAPs and is specifically expressed in the epidermis/exodermis cell layers of roots. Both the transcript and protein levels of OsPAP10c are strongly induced by Pi starvation. OsPAP10c overexpression increased acid phosphatase (APase) activity by more than 10-fold in the culture media and almost fivefold in both roots and leaves under Pi -sufficient and Pi -deficient conditions. This increase in APase activity further improved the plant utilization efficiency of external organic P. Moreover, several APase isoforms corresponding to OsPAP10c were identified using in-gel activity assays. Under field conditions with three different Pi supply levels, OsPAP10c-overexpressing plants had significantly higher tiller numbers and shorter plant heights. This study indicates that OsPAP10c encodes a novel secreted APase that plays an important role in the utilization of external organic P in rice. PMID:27411391

  8. Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase.

    PubMed

    Dhatwalia, Richa; Singh, Harkewal; Reilly, Thomas J; Tanner, John J

    2015-11-01

    Histidine acid phosphatases (HAPs) utilize a nucleophilic histidine residue to catalyze the transfer of a phosphoryl group from phosphomonoesters to water. HAPs function as protein phosphatases and pain suppressors in mammals, are essential for Giardia lamblia excystation, and contribute to virulence of the category A pathogen Francisella tularensis. Herein we report the first crystal structure and steady-state kinetics measurements of the HAP from Legionella pneumophila (LpHAP), also known as Legionella major acid phosphatase. The structure of LpHAP complexed with the inhibitor l(+)-tartrate was determined at 2.0 Å resolution. Kinetics assays show that l(+)-tartrate is a 50-fold more potent inhibitor of LpHAP than of other HAPs. Electrostatic potential calculations provide insight into the basis for the enhanced tartrate potency: the tartrate pocket of LpHAP is more positive than other HAPs because of the absence of an ion pair partner for the second Arg of the conserved RHGXRXP HAP signature sequence. The structure also reveals that LpHAP has an atypically expansive active site entrance and lacks the nucleotide substrate base clamp found in other HAPs. These features imply that nucleoside monophosphates may not be preferred substrates. Kinetics measurements confirm that AMP is a relatively inefficient in vitro substrate of LpHAP. PMID:26380880

  9. Biochemical Characterization and Subcellular Localization of the Red Kidney Bean Purple Acid Phosphatase.

    PubMed Central

    Cashikar, A. G.; Kumaresan, R.; Rao, N. M.

    1997-01-01

    Phosphatases are known to play a crucial role in phosphate turnover in plants. However, the exact role of acid phosphatases in plants has been elusive because of insufficient knowledge of their in vivo substrate and subcellular localization. We investigated the biochemical properties of a purple acid phosphatase isolated from red kidney bean (Phaseolus vulgaris) (KBPAP) with respect to its substrate and inhibitor profiles. The kinetic parameters were estimated for five substrates. We used 31P nuclear magnetic resonance to investigate the in vivo substrate of KBPAP. Chemical and enzymological estimation of polyphosphates and ATP, respectively, indicated the absence of polyphosphates and the presence of ATP in trace amounts in the seed extracts. Immunolocalization using antibodies raised against KBPAP was unsuccessful because of the non-specificity of the antiserum toward glycoproteins. Using histoenzymological methods with ATP as a substrate, we could localize KBPAP exclusively in the cell walls of the peripheral two to three rows of cells in the cotyledons. KBPAP activity was not detected in the embryo. In vitro experiments indicated that pectin, a major component of the cell wall, significantly altered the kinetic properties of KBPAP. The substrate profile and localization suggest that KBPAP may have a role in mobilizing organic phosphates in the soil during germination. PMID:12223752

  10. Acid phosphatase localization in the digestive glands of Dionaea muscipula Ellis flytraps.

    PubMed

    Henry, Y; Steer, M W

    1985-04-01

    The intracellular localization of acid phosphatases in stimulated digestive glands of Dionaea flytraps has been studied to provide evidence for the route taken by this enzyme during secretion. Previous studies have either included or excluded a role for the dictyosomes in this pathway. Both p-nitrophenyl phosphate and beta-glycerophosphate were used as substrates, and both gave similar localization patterns. Unstimulated glands contained little phosphatase activity in the endomembrane system, whereas 24 and 48 hr after stimulation, heavy deposits of lead were located in the endoplasmic reticulum cisternae, including the nuclear envelope, the dictyosome cisternae, and secretory vesicles. Since dictyosome activation, as judged by the presence of secretory vesicles in the cytoplasm, also coincides with gland stimulation, we conclude that secretion of the hydrolase enzymes occurs via this route and not, as suggested elsewhere, via direct endoplasmic reticulum to plasma membrane connections.

  11. Biogeochemical drivers of phosphatase activity in salt marsh sediments

    NASA Astrophysics Data System (ADS)

    Freitas, Joana; Duarte, Bernardo; Caçador, Isabel

    2014-10-01

    Although nitrogen has become a major concern for wetlands scientists dealing with eutrophication problems, phosphorous represents another key element, and consequently its biogeochemical cycling has a crucial role in eutrophication processes. Microbial communities are a central component in trophic dynamics and biogeochemical processes on coastal systems, since most of the processes in sediments are microbial-mediated due to enzymatic action, including the mineralization of organic phosphorus carried out by acid phosphatase activity. In the present work, the authors investigate the biogeochemical sediment drivers that control phosphatase activities. Authors also aim to assess biogeochemical factors' influence on the enzyme-mediated phosphorous cycling processes in salt marshes. Plant rhizosediments and bare sediments were collected and biogeochemical features, including phosphatase activities, inorganic and organic phosphorus contents, humic acids content and pH, were assessed. Acid phosphatase was found to give the highest contribution for total phosphatase activity among the three pH-isoforms present in salt marsh sediments, favored by acid pH in colonized sediments. Humic acids also appear to have an important role inhibiting phosphatase activity. A clear relation of phosphatase activity and inorganic phosphorous was also found. The data presented reinforces the role of phosphatase in phosphorous cycling.

  12. Potential Role for Purple Acid Phosphatase in the Dephosphorylation of Wall Proteins in Tobacco Cells1[W

    PubMed Central

    Kaida, Rumi; Serada, Satoshi; Norioka, Naoko; Norioka, Shigemi; Neumetzler, Lutz; Pauly, Markus; Sampedro, Javier; Zarra, Ignacio; Hayashi, Takahisa; Kaneko, Takako S.

    2010-01-01

    It is not yet known whether dephosphorylation of proteins catalyzed by phosphatases occurs in the apoplastic space. In this study, we found that tobacco (Nicotiana tabacum) purple acid phosphatase could dephosphorylate the phosphoryl residues of three apoplastic proteins, two of which were identified as α-xylosidase and β-glucosidase. The dephosphorylation and phosphorylation of recombinant α-xylosidase resulted in a decrease and an increase in its activity, respectively, when xyloglucan heptasaccharide was used as a substrate. Attempted overexpression of the tobacco purple acid phosphatase NtPAP12 in tobacco cells not only decreased the activity levels of the glycosidases but also increased levels of xyloglucan oligosaccharides and cello-oligosaccharides in the apoplast during the exponential phase. We suggest that purple acid phosphatase controls the activity of α-xylosidase and β-glucosidase, which are responsible for the degradation of xyloglucan oligosaccharides and cello-oligosaccharides in the cell walls. PMID:20357138

  13. Crystal Structures of the Histidine Acid Phosphatase from Francisella tularensis Provide Insight into Substrate Recognition

    SciTech Connect

    Singh, Harkewal; Felts, Richard L.; Schuermann, Jonathan P.; Reilly, Thomas J.; Tanner, John J.

    2009-12-01

    Histidine acid phosphatases catalyze the transfer of a phosphoryl group from phosphomonoesters to water at acidic pH using an active-site histidine. The histidine acid phosphatase from the category A pathogen Francisella tularensis (FtHAP) has been implicated in intramacrophage survival and virulence, motivating interest in understanding the structure and mechanism of this enzyme. Here, we report a structure-based study of ligand recognition by FtHAP. The 1.70-{angstrom}-resolution structure of FtHAP complexed with the competitive inhibitor L(+)-tartrate was solved using single-wavelength anomalous diffraction phasing. Structures of the ligand-free enzyme and the complex with inorganic phosphate were determined at resolutions of 1.85 and 1.70 {angstrom}, respectively. The structure of the Asp261Ala mutant enzyme complexed with the substrate 3'-AMP was determined at 1.50 {angstrom} resolution to gain insight into substrate recognition. FtHAP exhibits a two-domain fold similar to that of human prostatic acid phosphatase, consisting of an {alpha}/{beta} core domain and a smaller domain that caps the core domain. The structures show that the core domain supplies the phosphoryl binding site, catalytic histidine (His17), and an aspartic acid residue (Asp261) that protonates the leaving group, while the cap domain contributes residues that enforce substrate preference. FtHAP and human prostatic acid phosphatase differ in the orientation of the crucial first helix of the cap domain, implying differences in the substrate preferences of the two enzymes. 3'-AMP binds in one end of a 15-{angstrom}-long tunnel, with the adenine clamped between Phe23 and Tyr135, and the ribose 2'-hydroxyl interacting with Gln132. The importance of the clamp is confirmed with site-directed mutagenesis; mutation of Phe23 and Tyr135 individually to Ala increases K{sub m} by factors of 7 and 10, respectively. The structural data are consistent with a role for FtHAP in scavenging phosphate from small

  14. Inhibition of mammalian carbonic anhydrase isoforms I-XIV with a series of phenolic acid esters.

    PubMed

    Maresca, Alfonso; Akyuz, Gulay; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T

    2015-11-15

    A series of phenolic acid esters incorporating caffeic, ferulic, and p-coumaric acid, and benzyl, m/p-hydroxyphenethyl- as well as p-hydroxy-phenethoxy-phenethyl moieties were investigated for their inhibitory effects against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Many of the mammalian isozymes of human (h) or murine (m) origin, hCA I-hCA XII, mCA XIII and hCA XIV, were inhibited in the submicromolar range by these derivatives (with KIs of 0.31-1.03 μM against hCA VA, VB, VI, VII, IX and XIV). The off-target, highly abundant isoforms hCA I and II, as well as hCA III, IV and XII were poorly inhibited by many of these esters, although the original phenolic acids were micromolar inhibitors. These phenols, like others investigated earlier, possess a CA inhibition mechanism distinct of the sulfonamides/sulfamates, clinically used drugs for the treatment of a multitude of pathologies, but with severe side effects due to hCA I/II inhibition. Unlike the sulfonamides, which bind to the catalytic zinc ion, phenols are anchored at the Zn(II)-coordinated water molecule, binding more externally within the active site cavity, and making contacts with amino acid residues at the entrance of the active site. As this is the region with the highest variability between the many CA isozymes found in mammals, this class of compounds shows isoform-selective inhibitory profiles, which may be exploited for obtaining pharmacological agents with less side effects compared to other classes of inhibitors. PMID:26498394

  15. Kinetics of trihalogenated acetic acid metabolism and isoform specificity in liver microsomes.

    PubMed

    Saghir, Shakil A; Ghanayem, Burhan I; Schultz, Irvin R

    2011-10-01

    This study determined the metabolism of 3 drinking water disinfection by-products (halogenated acetic acids [HAAs]), bromodichloroacetic acid (BDCAA), chlorodibromoacetic acid (CDBAA), and tribromoacetic acid (TBAA), using rat, mouse, human liver microsomes, and recombinant P450. Metabolism proceeded by reductive debromination forming a di-HAA; the highest under nitrogen >2% oxygen > atmospheric headspaces. V (max) for the loss of tri-HAA was 4 to 5 times higher under nitrogen than atmospheric headspace. Intrinsic metabolic clearance was TBAA>CDBAA>BDCAA. At the high substrate concentrations, tri-HAA consumption rate was 2 to 3 times higher than the formation of di-HAA. Liberation of Br(-) from TBAA corresponded to the expected amount produced after DBAA formation, indicating retention of Br(-) by additional metabolite/metabolites. Subsequent experiments with CDBAA detected negligible formation of chlorodibromomethane (CDBM) and failed to account for the missing tri-HAA. Carbon monoxide and especially diphenyleneiodonium ([DPI] P450 reductase inhibitor) blocked CDBAA metabolism. Other chemical inhibitors were only partially able to block CDBAA metabolism. Most effective were inhibitors of CYP 2E1 and CYP 3A4. Immunoinhibition studies using human liver microsomes and anti-human CYP 2E1 antibodies were successful in reducing CDBAA metabolism. However, CDBAA metabolism in wild-type (WT) and CYP 2E1 knockout (KO) mouse liver microsomes was similar, suggesting significant interspecies differences in CYP isoform in tri-HAA metabolism. Additional assessment of CYP isoform involvement was complicated by the finding that recombinantly expressed rat and human P450 reductase was able to metabolize CDBAA, which may be a contributing factor in interspecies differences in tri-HAA metabolism.

  16. The first structure of a bacterial class B Acid phosphatase reveals further structural heterogeneity among phosphatases of the haloacid dehalogenase fold.

    PubMed

    Calderone, Vito; Forleo, Costantino; Benvenuti, Manuela; Cristina Thaller, Maria; Rossolini, Gian Maria; Mangani, Stefano

    2004-01-16

    AphA is a periplasmic acid phosphatase of Escherichia coli belonging to class B bacterial phosphatases, which is part of the DDDD superfamily of phosphohydrolases. The crystal structure of AphA has been determined at 2.2A and its resolution extended to 1.7A on an AuCl(3) derivative. This represents the first crystal structure of a class B bacterial phosphatase. Despite the lack of sequence homology, the AphA structure reveals a haloacid dehalogenase-like fold. This finding suggests that this fold could be conserved among members of the DDDD superfamily of phosphohydrolases. The active enzyme is a homotetramer built by using an extended N-terminal arm intertwining the four monomers. The active site of the native enzyme, as prepared, hosts a magnesium ion, which can be replaced by other metal ions. The structure explains the non-specific behaviour of AphA towards substrates, while a structure-based alignment with other phosphatases provides clues about the catalytic mechanism.

  17. Acid phosphatase complex from the freshwater snail Viviparus viviparus L. under standard conditions and intoxication by cadmium ions.

    PubMed

    Tsvetkov, I L; Popov, A P; Konichev, A S

    2003-12-01

    Acid phosphatases differing in both subcellular localization and substrate specificity were isolated for the first time from the liver of the freshwater snail Viviparus viviparus L. by preparative isoelectrofocusing. One of five characterized phosphatases is highly specific to ADP and the others can hydrolyze (at variable rate) a series of natural substrates. A scheme is proposed for the involvement of the studied phosphatases in carbohydrate metabolism. We have also studied some peculiarities of the effect of Cd2+ in vitro and in vivo on the activities of individual components of the acid phosphatase complex and corresponding changes in metabolism of the freshwater snail as a new test-object allowing the estimation of toxicity in water.

  18. Gibberellic acid controls specific acid-phosphatase isozymes in aleurone cells and protoplasts of Avena fatua L.

    PubMed

    Hooley, R

    1984-06-01

    In the presence of gibberellic acid (GA3) aleurone layers and isolated aleurone protoplasts of Avena fatua accumulate specific isozymes of acid phosphatase (EC 3.1.3.2). Some of these may be involved in mobilizing aleurone-grain phosphate reserves during germination. The hormone also controls secretion of other specific molecular forms of the enzyme that probably assist in endosperm hydrolysis. The accumulation and secretion of putative cell-wall-associated isozymes are stimulated by the action of GA3 in isolated protoplasts. This effect however, is apparently over-ridden in the intact tissue, possibly by a cell-wall-based feedback mechanism.

  19. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1.

    PubMed

    Harris, Thurl E; Huffman, Todd A; Chi, An; Shabanowitz, Jeffrey; Hunt, Donald F; Kumar, Anil; Lawrence, John C

    2007-01-01

    Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg(2+)-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld(2j) (Gly(84) --> Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser(106). In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity. PMID:17105729

  20. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1.

    PubMed

    Harris, Thurl E; Huffman, Todd A; Chi, An; Shabanowitz, Jeffrey; Hunt, Donald F; Kumar, Anil; Lawrence, John C

    2007-01-01

    Brain, liver, kidney, heart, and skeletal muscle from fatty liver dystrophy (fld/fld) mice, which do not express lipin 1 (lipin), contained much less Mg(2+)-dependent phosphatidic acid phosphatase (PAP) activity than tissues from wild type mice. Lipin harboring the fld(2j) (Gly(84) --> Arg) mutation exhibited relatively little PAP activity. These results indicate that lipin is a major PAP in vivo and that the loss of PAP activity contributes to the fld phenotype. PAP activity was readily detected in immune complexes of lipin from 3T3-L1 adipocytes, where the protein was found both as a microsomal form and a soluble, more highly phosphorylated, form. Fifteen phosphorylation sites were identified by mass spectrometric analyses. Insulin increased the phosphorylation of multiple sites and promoted a gel shift that was due in part to phosphorylation of Ser(106). In contrast, epinephrine and oleic acid promoted dephosphorylation of lipin. The PAP-specific activity of lipin was not affected by the hormones or by dephosphorylation of lipin with protein phosphatase 1. However, the ratio of soluble to microsomal lipin was markedly increased in response to insulin and decreased in response to epinephrine and oleic acid. The results suggest that insulin and epinephrine control lipin primarily by changing localization rather than intrinsic PAP activity.

  1. Molecular characterization and expression analysis of purple acid phosphatase gene from pearl oyster Pinctada martensii.

    PubMed

    Wang, Q H; Jiao, Y; Du, X D; Zhao, X X; Huang, R L; Deng, Y W; Yan, F

    2015-01-01

    Purple acid phosphatases (PAPs), also known as type 5 acid phosphatases, are widely present in animals, plants, and fungi. In mammal, PAP was reported to participate in immune defense and bone resorption. In this study, the characteristics and potential functions of a PAP gene from pearl oyster Pinctada martensii (pm-PAP) were examined. The Pm-PAP cDNA was found to be 2777 base pairs, containing a 1581-base pair open reading fragment encoding for 526 amino acids with an estimated molecular mass of 60.1 kDa and theoretical isoelectric point of 5.82. One signal peptide and five conserved motifs [GDXX/GDXXY/GNH(D/E)/XXXH/(A/G)HXH] were present in the entire sequence. Tissue expression profile analysis showed that pm-PAP mRNA was constitutively expressed in all tissues studied with abundant mRNA found in mollusk defense system, including hepatopancreas, gill, and hemocytes. After lipopolysaccharide stimulation, the expression of pm-PAP mRNA in hemocytes was dramatically upregulated at 2 h and achieved the highest level at 36 h. Additionally, pm-PAP mRNA expression was significantly increased and achieved the highest level at 2 days after the surgical implantation during pearl production. These results suggest that pm-PAP is a constitutive and inducible protein that may be involved in the immune defense of pearl oyster. PMID:25729991

  2. In vitro effects of cinnamic acid derivatives on protein tyrosine phosphatase 1B.

    PubMed

    Adisakwattana, Sirichai; Pongsuwan, Jirawan; Wungcharoen, Chompunut; Yibchok-anun, Sirintorn

    2013-10-01

    Protein Tyrosine Phosphatase 1B (PTP1B) is a major negative regulator of insulin signaling pathways. Finding selective PTP1B inhibitors from natural sources has been widely recognized as a potential drug target for the treatment of diabetes mellitus and obesity. In the present study, we evaluated the inhibitory activity of cinnamic acid derivatives against PTP1B in vitro. Among 14 cinnamic acid derivatives and related compounds, the most potent inhibitor PTP1Bs were o-hydroxycinnamic acid and p-hydroxycinnamic acid, which had IC50 values of 137.67 ± 13.37 and 181.60 ± 9.34 µM, respectively. The kinetics analysis revealed that PTP1B was inhibited by o-hydroxycinnamic acid and p-hydroxycinnamic acid in a non-competitive manner. o-Hydroxycinnamic acid (25 μM) and p-hydroxycinnamic acid (25 μM), in combination with sodium orthovanadate (0.0125 μM), demonstrated a synergistic effect to inhibit PTP1B activity. In conclusion, the findings provide a new insight into naturally occurring PTP1B inhibitors that could be useful for treatment of diabetes and obesity.

  3. Inhibition kinetics of acid and alkaline phosphatases by atrazine and methomyl pesticides.

    PubMed

    El-Aswad, Ahmed F; Badawy, Mohamed E I

    2015-01-01

    The main objective of this work was to investigate the kinetic characteristics of acid and alkaline phosphatases isolated from different sources and to study the effects of the herbicide atrazine and insecticide methomyl on the activity and kinetic properties of the enzymes. Acid phosphatase (ACP) was isolated from the tomato plant (Solanum lycopersicum L. var. lycopersicum); alkaline phosphatase (ALP) was isolated from two sources, including mature earthworms (Aporrectodea caliginosa) and larvae of the Egyptian cotton leafworm (Spodoptera littoralis). The specific activities of the enzymes were 33.31, 5.56 and 0.72 mmol substrate hydrolyzed per minute per milligram protein for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. The inhibition kinetics indicated that atrazine and methomyl caused competitive-non-competitive inhibition of the enzymes. The relationships between estimates of K(m) and V(max) calculated from the Michaelis-Menten equation have been explored. The extent of the inhibition was different, as estimated by the values of the inhibition constant Ki that were found to be 3.34 × 10(-3), 1.12 × 10(-2) and 1.07 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively, with methomyl. In the case of atrazine, K(i) were found to be 8.99 × 10(-3), 3.55 × 10(-2) and 1.36 × 10(-2) mM for plant ACP, earthworms ALP and cotton leafworm ALP, respectively. PMID:25996812

  4. Acid and Alkaline Phosphatase Levels in GCF during Orthodontic Tooth Movement

    PubMed Central

    Farahani, Mohammad; Safavi, Seyed Mohammadreza; Dianat, Omid; Khoramian Tusi, Somayeh; Younessian, Farnaz

    2015-01-01

    Statement of the Problem The present constituents of gingival crevicular fluid (GCF) can reflect the changes occurring in underlying tissues. Considering variety of biologic bone markers, alkaline phosphatase and acid phosphatase have been examined as bone turn over markers in orthodontic tooth movement. Purpose The current study designed in a longitudinal pattern to determine the changes of acid and alkaline phosphatase (ACP & ALP) in GCF during orthodontic tooth movement. Materials and Method An upper canines from twelve patients (mean age: 14±2 years) undergoing extraction orthodontic treatment for distal movement served as the test tooth (DC), and its contralateral (CC) and antagonist (AC) canines were used as controls. The CC was included in orthodontic appliance without orthodontic force; the AC was free from any orthodontic appliance. The GCF around the experimental teeth was harvested from mesial and distal tooth sites immediately before appliance placement (T0), and 14 (T2) and 28 days (T3) after it and ALP and ACP concentration were determined spectrophotometrically. Results ALP concentration was elevated significantly in DC and CC groups at days 14 and 28 compared with the AC. In DC group, the ALP was significantly greater in mesial sites than distal site, while no significant changes were found between both sites of CC. The peak level of ALP was observed in mesial sites of DC at T2. Regarding ACP, significant elevation of this enzyme was seen in DC group both in mesial and distal sites at T2 and T3. The peak level of this enzyme was seen at T2. Conclusion Monitoring simultaneous changes of ALP and ACP levels in GCF can reflect the tissue responses occur in periodontium during bone formation and bone resorption during orthodontic tooth movement, respectively. PMID:26535403

  5. Structure of thermotoga maritima stationary phase survival protein SurE : a novel acid phosphatase.

    SciTech Connect

    Zhang, R.-G; Skarina, T.; Katz, J. E.; Khachatryan, A; Vyas, S.; Arrowsmith, C. H.; Clarke, S.; Edwards, A.; Joachimiak, A.; Savchenko, A.; Biosciences Division; Univ. of Toronto; Univ. of California; Clinical Genomics Centre /Proteomics, Univ. Health Network

    2001-11-01

    Background: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase {sigma} subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. Results: The structure of SurE from Thermotoga maritima was determined at 2.0 Angstroms. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. Conclusions: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.

  6. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application

    PubMed Central

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65°C, respectively, and is stable at 55°C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  7. A purple acid phosphatase plays a role in nodule formation and nitrogen fixation in Astragalus sinicus.

    PubMed

    Wang, Jianyun; Si, Zaiyong; Li, Fang; Xiong, Xiaobo; Lei, Lei; Xie, Fuli; Chen, Dasong; Li, Yixing; Li, Youguo

    2015-08-01

    The AsPPD1 gene from Astragalus sinicus encodes a purple acid phosphatase. To address the functions of AsPPD1 in legume-rhizobium symbiosis, its expression patterns, enzyme activity, subcellular localization, and phenotypes associated with its over-expression and RNA interference (RNAi) were investigated. The expression of AsPPD1 was up-regulated in roots and nodules after inoculation with rhizobia. Phosphate starvation reduced the levels of AsPPD1 transcripts in roots while increased those levels in nodules. We confirmed the acid phosphatase and phosphodiesterase activities of recombinant AsPPD1 purified from Pichia pastoris, and demonstrated its ability to hydrolyze ADP and ATP in vitro. Subcellular localization showed that AsPPD1 located on the plasma membranes in hairy roots and on the symbiosomes membranes in root nodules. Over-expression of AsPPD1 in hairy roots inhibited nodulation, while its silencing resulted in nodules early senescence and significantly decreased nitrogenase activity. Furthermore, HPLC measurement showed that AsPPD1 overexpression affects the ADP levels in the infected roots and nodules, AsPPD1 silencing affects the ratio of ATP/ADP and the energy charge in nodules, and quantitative observation demonstrated the changes of AsPPD1 transcripts level affected nodule primordia formation. Taken together, it is speculated that AsPPD1 contributes to symbiotic ADP levels and energy charge control, and this is required for effective nodule organogenesis and nitrogen fixation.

  8. Trichoderma harzianum Produces a New Thermally Stable Acid Phosphatase, with Potential for Biotechnological Application.

    PubMed

    Souza, Amanda Araújo; Leitão, Vanessa Oliveira; Ramada, Marcelo Henrique; Mehdad, Azadeh; Georg, Raphaela de Castro; Ulhôa, Cirano José; de Freitas, Sonia Maria

    2016-01-01

    Acid phosphatases (ACPases) are produced by a variety of fungi and have gained attention due their biotechnological potential in industrial, diagnosis and bioremediation processes. These enzymes play a specific role in scavenging, mobilization and acquisition of phosphate, enhancing soil fertility and plant growth. In this study, a new ACPase from Trichoderma harzianum, named ACPase II, was purified and characterized as a glycoprotein belonging to the acid phosphatase family. ACPase II presents an optimum pH and temperature of 3.8 and 65 °C, respectively, and is stable at 55 °C for 120 min, retaining 60% of its activity. The enzyme did not require metal divalent ions, but was inhibited by inorganic phosphate and tungstate. Affinity for several phosphate substrates was observed, including phytate, which is the major component of phosphorus in plant foods. The inhibition of ACPase II by tungstate and phosphate at different pH values is consistent with the inability of the substrate to occupy its active site due to electrostatic contacts that promote conformational changes, as indicated by fluorescence spectroscopy. A higher affinity for tungstate rather than phosphate at pH 4.0 was observed, in accordance with its highest inhibitory effect. Results indicate considerable biotechnological potential of the ACPase II in soil environments. PMID:26938873

  9. Synthesis, modelling and kinetic assays of potent inhibitors of purple acid phosphatase.

    PubMed

    Mohd-Pahmi, Siti Hajar; Hussein, Waleed M; Schenk, Gerhard; McGeary, Ross P

    2011-05-15

    Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have been isolated from various mammals, plants, fungi and bacteria. In mammals PAP activity is associated with bone resorption and can lead to bone metabolic disorders such as osteoporosis; thus human PAP is an attractive target to develop anti-osteoporotic drugs. Based on a previous lead compound and rational drug design, acyl derivatives of α-aminonaphthylmethylphosphonic acid were synthesised and tested as PAP inhibitors. Kinetic analysis showed that they are good PAP inhibitors whose potencies improve with increasing acyl chain length. Maximum potency is reached when the number of carbons in the acyl chain is between 12 and 14. The most potent inhibitor of red kidney bean PAP is the dodecyl-derivative with K(ic)=5 μM, while the most potent pig PAP inhibitor is the tetradecyl-derivative with K(ic)=8 μM, the most potent inhibitor of a mammalian PAP yet reported.

  10. Expression profile of Wilms Tumor 1 (WT1) isoforms in undifferentiated and all-trans retinoic acid differentiated neuroblastoma cells

    PubMed Central

    Maugeri, Grazia; D'Amico, Agata Grazia; Rasà, Daniela Maria; Reitano, Rita; Saccone, Salvatore; Federico, Concetta; Parenti, Rosalba; Magro, Gaetano; D'Agata, Velia

    2016-01-01

    Wilms tumor 1 gene (WT1) is a tumor suppressor gene originally identified in nephroblastoma. It is also expressed in neuroblastoma which represents the most aggressive extracranial pediatric tumor. Many evidences have shown that neuroblastoma may undergo maturation, by transforming itself in a more differentiated tumors such as ganglioneuroblastoma and ganglioneuroma, or progressing into a highly aggressive metastatic malignancy. To date, 13 WT1 mRNA alternative splice variants have been identified. However, most of the studies have focused their attention only on isoform of ∼49 kDa. In the present study, it has been investigated the expression pattern of WT1 isoforms in an in vitro model of neuroblastoma consisting in undifferentiated or all-trans retinoic acid (RA) differentiated cells. These latter representing the less malignant phenotype of this tumor. Results have demonstrated that WT1.1-WT1.5, WT1.6-WT1.9, WT1.10 WT1.11-WT1.12 and WT1.13 isoforms are expressed in both groups of cells, but their levels are significantly increased after RA treatment. These data have also been confirmed by immunofluorescence analysis. Moreover, the inhibition of PI3K/Akt and MAPK/ERK, that represent two signalling pathway specifically involved in NB differentiation, induces an overexpression of WT1 isoforms. These data suggest that WT1 isoforms might be involved in differentiation of neuroblastic into mature ganglion cells. PMID:27014421

  11. Regulation of collagenase gene expression by okadaic acid, an inhibitor of protein phosphatases.

    PubMed Central

    Kim, S J; Lafyatis, R; Kim, K Y; Angel, P; Fujiki, H; Karin, M; Sporn, M B; Roberts, A B

    1990-01-01

    Human collagenase gene expression is regulated transcriptionally and is inducible by various mitogens in many cell types. To investigate the molecular mechanisms of this response, we examined the effects on collagenase gene expression of okadaic acid, a non-12-O-tetradecanoyl-phorbol-13-acetate (TPA)-type tumor promoter, which induces apparent "activation" of protein kinases by inhibition of protein phosphatases. Steady state levels of collagenase mRNA were markedly increased by okadaic acid treatment. We show that the AP-1 consensus sequence in the collagenase promoter is required for the induction of collagenase gene expression by okadaic acid, even though sequences upstream of the AP-1 consensus site have an additive effect. We also examined the regulation by okadaic acid of expression of the components of the AP-1 complex, c-fos and c-jun. c-fos expression is dramatically stimulated by okadaic acid, whereas c-jun expression is stimulated to a lesser extent. Induction of c-fos gene mRNA occurs through a region known to contain multiple regulatory elements. These results suggest that phosphorylation regulates collagenase gene expression mediated by an AP-1 binding site. Images PMID:1966042

  12. An Approach to More Accurate Model Systems for Purple Acid Phosphatases (PAPs).

    PubMed

    Bernhardt, Paul V; Bosch, Simone; Comba, Peter; Gahan, Lawrence R; Hanson, Graeme R; Mereacre, Valeriu; Noble, Christopher J; Powell, Annie K; Schenk, Gerhard; Wadepohl, Hubert

    2015-08-01

    The active site of mammalian purple acid phosphatases (PAPs) have a dinuclear iron site in two accessible oxidation states (Fe(III)2 and Fe(III)Fe(II)), and the heterovalent is the active form, involved in the regulation of phosphate and phosphorylated metabolite levels in a wide range of organisms. Therefore, two sites with different coordination geometries to stabilize the heterovalent active form and, in addition, with hydrogen bond donors to enable the fixation of the substrate and release of the product, are believed to be required for catalytically competent model systems. Two ligands and their dinuclear iron complexes have been studied in detail. The solid-state structures and properties, studied by X-ray crystallography, magnetism, and Mössbauer spectroscopy, and the solution structural and electronic properties, investigated by mass spectrometry, electronic, nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), and Mössbauer spectroscopies and electrochemistry, are discussed in detail in order to understand the structures and relative stabilities in solution. In particular, with one of the ligands, a heterovalent Fe(III)Fe(II) species has been produced by chemical oxidation of the Fe(II)2 precursor. The phosphatase reactivities of the complexes, in particular, also of the heterovalent complex, are reported. These studies include pH-dependent as well as substrate concentration dependent studies, leading to pH profiles, catalytic efficiencies and turnover numbers, and indicate that the heterovalent diiron complex discussed here is an accurate PAP model system. PMID:26196255

  13. A possible role for acid phosphatase with thiamin-binding activity encoded by PHO3 in yeast.

    PubMed

    Nosaka, K; Kaneko, Y; Nishimura, H; Iwashima, A

    1989-07-01

    Periplasmic soluble thiamin-binding protein in Saccharomyces cerevisiae (Iwashima, A. et al. (1979) Biochim. Biophys. Acta 577, 217-220) was demonstrated to be encoded by PHO3 gene that codes for thiamin repressible acid phosphatase (Schweingruber, M.E. et al. (1986) J. Biol. Chem. 261, 15877-15882) by genetic analysis. The pho3 mutant cells of S. cerevisiae in contrast to the parent cells have markedly reduced activity of the uptake of [14C]thiamin phosphates, suggesting that thiamin repressible acid phosphatase plays a role in the hydrolysis of thiamin phosphates in the periplasmic space prior to the uptake of their thiamin moieties by S. cerevisiae.

  14. [Tartrate-resistant acid phosphatase in free-living Amoeba proteus].

    PubMed

    Sopina, V A

    2002-01-01

    Tartrate-resistant acid phosphatase (TRAP) of Amoeba proteus (strain B) was represented by 3 of 6 bands (= electromorphs) revealed after disc-electrophoresis in polyacrylamide gels with the use of 2-naphthyl phosphate as a substrate at pH 4.0. The presence of MgCl2, CaCl2 or ZnCl2 (50 mM) in the incubation mixture used for gel staining stimulated activities of all 3 TRAP electromorphs or of two of them (in the case of ZnCl2). When gels were treated with MgCl2, CaCl2 or ZnCl2 (10 and 100 mM, 30 min) before their staining activity of TRAP electromorphs also increased. But unlike 1 M MgCl2 or 1 M CaCl2, 1 M ZnCl2 partly inactivated two of the three TRAP electromorphs. EDTA and EGTA (5 mM), and H2O2 (10 mM) completely inhibited TRAP electromorphs after gel treatment for 10, 20 and 30 min, resp. Of 5 tested ions (Mg2+, Ca2+, Fe2+, Fe3+ and Zn2+), only the latter reactivated the TRAP electromorphs previously inactivated by EDTA or EGTA treatment. In addition, after EDTA inactivation, TRAP electromorphs were reactivated better than after EGTA. The resistance of TRAP electromorphs to okadaic acid and phosphatase inhibitor cocktail 1 used in different concentrations is indicative of the absence of PP1 and PP2A among these electromorphs. Mg2+, Ca2+ and Zn2+ dependence of TRAP activity, and the resistance of its electromorphs to vanadate and phosphatase inhibitor cocktail 2 prevents these electromorphs from being classified as PTP. It is suggested that the active center of A. proteus TRAP contains zinc ion, which is essential for catalytic activity of the enzyme. Thus, TRAP of these amoebae is metallophosphatase showing phosphomonoesterase activity in acidic medium. This metalloenzyme differs from both mammalian tartrate-resistant PAPs and tartrate-resistant metallophosphatase of Rana esculenta.

  15. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu

    2014-07-15

    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  16. The internalization signal in the cytoplasmic tail of lysosomal acid phosphatase consists of the hexapeptide PGYRHV.

    PubMed Central

    Lehmann, L E; Eberle, W; Krull, S; Prill, V; Schmidt, B; Sander, C; von Figura, K; Peters, C

    1992-01-01

    Lysosomal acid phosphatase (LAP) is rapidly internalized from the cell surface due to a tyrosine-containing internalization signal in its 19 amino acid cytoplasmic tail. Measuring the internalization of a series of LAP cytoplasmic tail truncation and substitution mutants revealed that the N-terminal 12 amino acids of the cytoplasmic tail are sufficient for rapid endocytosis and that the hexapeptide 411-PGYRHV-416 is the tyrosine-containing internalization signal. Truncation and substitution mutants of amino acid residues following Val416 can prevent internalization even though these residues do not belong to the internalization signal. It was shown recently that part of the LAP cytoplasmic tail peptide corresponding to 410-PPGY-413 forms a well-ordered beta turn structure in solution. Two-dimensional NMR spectroscopy of two modified LAP tail peptides, in which the single tyrosine was substituted either by phenylalanine or by alanine, revealed that the tendency to form a beta turn is reduced by 25% in the phenylalanine-containing peptide and by approximately 50% in the alanine-containing mutant peptide. Our results suggest, that in the short cytoplasmic tail of LAP tyrosine is required for stabilization of the right turn and that the aromatic ring system of the tyrosine residue is a contact point to the putative cytoplasmic receptor. Images PMID:1425575

  17. The hppA gene of Helicobacter pylori encodes the class C acid phosphatase precursor.

    PubMed

    Godlewska, Renata; Bujnicki, Janusz M; Ostrowski, Jerzy; Jagusztyn-Krynicka, Elzbieta K

    2002-08-14

    Screening of the Helicobacter pylori genomic library with sera from infected humans and from immunized rabbits resulted in identification of the 25 kDa protein cell envelope (HppA) which exhibits acid phosphatase activity. Enzyme activity was demonstrated by specific enzymatic assays with whole-cell protein preparations of H. pylori strain N6 and from Escherichia coli carrying the hppA gene (pUWM192). HppA showed optimum activity at pH 5.6 and was resistant to inhibition by EDTA. Bioinformatics analysis and site-directed mutagenesis of two putative active site residues (D73 and D192) provide further insight into the sequence-structure-function relationships of HppA as a member of the DDDD phosphohydrolase superfamily.

  18. Lysosomal Acid Phosphatase Biosynthesis and Dysfunction: A Mini Review Focused on Lysosomal Enzyme Dysfunction in Brain.

    PubMed

    Ashtari, N; Jiao, X; Rahimi-Balaei, M; Amiri, S; Mehr, S E; Yeganeh, B; Marzban, H

    2016-01-01

    Lysosomes are membrane-bound organelles that are responsible for degrading and recycling macromolecules. Lysosomal dysfunction occurs in enzymatic and non-enzymatic deficiencies, which result in abnormal accumulation of materials. Although lysosomal storage disorders affect different organs, the central nervous system is the most vulnerable. Evidence shows the role of lysosomal dysfunction in different neurodegenerative diseases, such as Niemann-Pick Type C disease, juvenile neuronal ceroid lipofuscinosis, Alzheimer's disease and Parkinson's disease. Lysosomal enzymes such as lysosomal acid phosphatase 2 (Acp2) play a critical role in mannose-6-phosphate removal and Acp2 controls molecular and cellular functions in the brain during development and adulthood. Acp2 is essential in cerebellar development, and mutations in this gene cause severe cerebellar neurodevelopmental and neurodegenerative disorders. In this mini-review, we highlight lysosomal dysfunctions in the pathogenesis of neurodevelopmental and/or neurodegenerative diseases with special attention to Acp2 dysfunction. PMID:27132795

  19. Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis

    PubMed Central

    Ito, Shinsaku; Nozoye, Tomoko; Sasaki, Eriko; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Ishige, Taichiro; Fukui, Kosuke; Ito, Ken; Nakanishi, Hiromi; Nishizawa, Naoko K.; Yajima, Shunsuke; Asami, Tadao

    2015-01-01

    Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL) signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants. PMID:25793732

  20. Stabilization of human prostatic acid phosphatase by coupling with chondroitin sulfate.

    PubMed

    Luchter-Wasylewska, E; Dulińska, J; Ostrowski, W S; Torchilin, V P; Trubetskoy, V S

    1991-02-01

    Human prostatic acid phosphatase (PAP) (EC 3.1.3.2) was covalently linked to chondroitin sulfate A from whale cartilage. In order to bind the protein amino groups with the preactivated carboxyl groups of chondroitin sulfate, 1-ethyl-3-(3'-dimethylaminepropyl)carbodiimide and N-hydroxysulfosuccinimide were used as coupling agents. The product was soluble and enzymatically active. The activity was on average 25% higher than that of the free enzyme. The product was heterogeneous in respect to charge and Mr (50-1500) kDa, as determined by chromatography on Sephacryl S 300 and polyacrylamide gel electrophoresis. The resulting polymers contained covalently bound chondroitin sulfate, as shown by the biotin-avidin test. The modified enzyme is more resistant against various denaturing agents, e.g., urea, ethanol, and heat. Thus covalent modification of PAP by cross-linking to chondroitin sulfate could be the preferred method for stabilization of its biological activity.

  1. Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase.

    PubMed Central

    Gottschalk, S; Waheed, A; Schmidt, B; Laidler, P; von Figura, K

    1989-01-01

    BHK cells expressing human lysosomal acid phosphatase (LAP) transport LAP to lysosomes as an integral membrane protein. In lysosomes LAP is released from the membrane by proteolytic processing, which involves at least two cleavages at the C terminus of LAP. The first cleavage is catalysed by a thiol proteinase at the outside of the lysosomal membrane and removes the bulk of the cytoplasmic tail of LAP. The second cleavage is catalysed by an aspartyl proteinase inside the lysosomes and releases the luminal part of LAP from the membrane-spanning domain. The first cleavage at the cytoplasmic side of the lysosomal membrane depends on acidification of lysosomes and the second cleavage inside the lysosomes depends on prior processing of the cytoplasmic tail. These results suggest that the cytoplasmic tail controls the conformation of the luminal portion of LAP and vice versa. Images PMID:2684640

  2. Phosphatidic acid inhibits blue light-induced stomatal opening via inhibition of protein phosphatase 1 [corrected].

    PubMed

    Takemiya, Atsushi; Shimazaki, Ken-ichiro

    2010-08-01

    Stomata open in response to blue light under a background of red light. The plant hormone abscisic acid (ABA) inhibits blue light-dependent stomatal opening, an effect essential for promoting stomatal closure in the daytime to prevent water loss. However, the mechanisms and molecular targets of this inhibition in the blue light signaling pathway remain unknown. Here, we report that phosphatidic acid (PA), a phospholipid second messenger produced by ABA in guard cells, inhibits protein phosphatase 1 (PP1), a positive regulator of blue light signaling, and PA plays a role in stimulating stomatal closure in Vicia faba. Biochemical analysis revealed that PA directly inhibited the phosphatase activity of the catalytic subunit of V. faba PP1 (PP1c) in vitro. PA inhibited blue light-dependent stomatal opening but did not affect red light- or fusicoccin-induced stomatal opening. PA also inhibited blue light-dependent H(+) pumping and phosphorylation of the plasma membrane H(+)-ATPase. However, PA did not inhibit the autophosphorylation of phototropins, blue light receptors for stomatal opening. Furthermore, 1-butanol, a selective inhibitor of phospholipase D, which produces PA via hydrolysis of phospholipids, diminished the ABA-induced inhibition of blue light-dependent stomatal opening and H(+) pumping. We also show that hydrogen peroxide and nitric oxide, which are intermediates in ABA signaling, inhibited the blue light responses of stomata and that 1-butanol diminished these inhibitions. From these results, we conclude that PA inhibits blue light signaling in guard cells by PP1c inhibition, accelerating stomatal closure, and that PP1 is a cross talk point between blue light and ABA signaling pathways in guard cells.

  3. Comparative Evaluation of Efficacy of Three Different Herbal Toothpastes on Salivary Alkaline Phosphatase and Salivary Acid Phosphatase - A Randomized Controlled Trial

    PubMed Central

    Dodamani, Arun; Karibasappa, G. N.; Deshmukh, Manjiri; Naik, Rahul

    2016-01-01

    Introduction Very few researches in the past have tried to evaluate the effect of herbal toothpaste on saliva and salivary constituents like alkaline phosphatase and acid phosphatase which play an important role in maintaining oral health. Aim To evaluate and compare the effect of three different herbal toothpastes on Salivary Alkaline Phosphatase (ALP) and salivary Acid Phosphatase (ACP). Material and Methods The present study was a preliminary study conducted among 45 dental students (15 subjects in each group) in the age group of 19-21 years. Subjects in each group were randomly intervened with three different herbal toothpastes respectively (Group A – Patanjali Dant Kanti, Group B - Himalaya Complete Care and Group C – Vicco Vajradanti). Unstimulated saliva sample were collected before and after brushing and salivary ACP and salivary ALP levels were assessed at an interval of one week each for a period of four weeks starting from day one. Compiled data was analyzed using chi square test, paired t-test and ANOVA based on the nature of the obtained data. Results All the three toothpastes showed significant (p<0.001) reduction in ACP and ALP levels at each interval. For patanjali toothpaste, the mean reduction was in the range of 2.55 – 2.62 IU/L for ACP and 2.94 – 2.99 IU/L for ALP. For Himalaya toothpaste, the mean reduction was in the range of 1.39 – 1.47 IU/L for ACP and 1.55 – 1.61 IU/L for ALP. For Vicco toothpaste, the mean reduction was in the range of 2.46 – 2.50 IU/L for ACP and 2.64 – 2.77 IU/L for ALP. Patanjali and Vicco toothpaste were significantly effective in reducing the levels of salivary ACP and ALP more than Himalaya toothpaste (p<0.05). Conclusion Herbal toothpastes, especially Dant Kanti and Vicco Vajradanti, showed significant reduction in levels of ACP and ALP resulting in overall improvement towards the oral health. PMID:27790584

  4. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening.

    PubMed

    Xu, Yongqian; Li, Benhao; Xiao, Liangliang; Ouyang, Jia; Sun, Shiguo; Pang, Yi

    2014-08-14

    A dual-channel including a colorimetric and fluorescent probe based on the aggregation-caused quenching (ACQ) and enzymolysis approach has been presented to screen acid phosphatase (ACP) and its inhibitor. Moreover, the ACP activity was determined by real time assay. PMID:24957006

  5. Progesterone receptor isoforms differentially regulate the expression of tryptophan and tyrosine hydroxylase and glutamic acid decarboxylase in the rat hypothalamus.

    PubMed

    González-Flores, Oscar; Gómora-Arrati, Porfirio; García-Juárez, Marcos; Miranda-Martínez, Alfredo; Armengual-Villegas, Alejandra; Camacho-Arroyo, Ignacio; Guerra-Araiza, Christian

    2011-10-01

    Progesterone exerts a variety of actions in the brain through the interaction with its receptors (PR) which have two isoforms with different function and regulation: PR-A and PR-B. Progesterone may modulate neurotransmission by regulating the expression of neurotransmitters synthesizing enzymes or their receptors in several brain regions. The role of PR isoforms in this modulation is unknown. We explored the role of PR isoforms in the regulation of tryptophan (TPH) and tyrosine (TH) hydroxylase, and glutamic acid decarboxylase (GAD) expression in the hypothalamus of ovariectomized rats. Two weeks after ovariectomy, animals were subcutaneously injected with 5 μg of estradiol benzoate (EB), and 40 h later, progesterone (P) was intracerebroventricularly (ICV) injected. Each animal received two ICV injections of 1 μg/μl (4 nmol) of PR-B and total PR (PR-A+PR-B) sense or antisense (As) oligonucleotides (ODNs). First injection was made immediately before sc EB injection, and 24h later animals received the second one. Twenty-four hours after P administration, rats were euthanized and brains removed to measure the expression of PR-A and PR-B, TPH, TH and GAD by Western blot. We observed that sense ODNs modified neither PR isoforms nor enzymes expression in the hypothalamus, whereas PR A+B antisense (PR A+B As) clearly decreased the expression of both PR isoforms in this region. ICV administration of PR-B As only decreased PR-B isoform expression with no significant effects on PR-A expression. A differential protein expression of TPH, TH and GAD was observed after PR isoforms antisense administration. PR-B As administration decreased the expression of TPH (65% with respect to control). In contrast, PR A+B As and PR-B As administration increased (51.6% and 34.4%, respectively) TH expression. The administration of PR A+B As and PR-B As diminished GAD expression (33.4% and 41.6%, respectively). Our findings indicate that PR isoforms play a differential role in the

  6. Effect of gingival application of melatonin on alkaline and acid phosphatase, osteopontin and osteocalcin in patients with diabetes and periodontal disease

    PubMed Central

    López-Valverde, Antonio; Gómez-de-Diego, Rafel; Arias-Santiago, Salvador; de Vicente-Jiménez, Joaquín

    2013-01-01

    Objectives: To assess the effect of topical application of melatonin to the gingiva on salivary fluid concentrations of acid phosphatase, alkaline phosphatase, osteopontin, and osteocalcin. Study Design: Cross-sectional study of 30 patients with diabetes and periodontal disease and 30 healthy subjects. Diabetic patients were treated with topical application of melatonin (1% orabase cream formula) once daily for 20 days and controls with a placebo formulation. Results: Before treatment with melatonin, diabetic patients showed significantly higher mean salivary levels of alkaline and acid phosphatase, osteopontin and osteocalcin than healthy subjects (P < 0.01). After treatment with melatonin, there was a statistically significant decrease of the gingival index (15.84± 10.3 vs 5.6 ± 5.1) and pocket depth (28.3 ± 19.5 vs 11.9 ± 9.0) (P < 0.001). Also, use of melatonin was associated with a significant reduction of the four biomarkers. Changes of salivary acid phosphatase and osteopontin correlated significantly with changes in the gingival index, whereas changes of alkaline phosphatase and osteopontin correlated significantly with changes in the pocket depth. Conclusions: Treatment with topical melatonin was associated with an improvement in the gingival index and pocket depth, a reduction in salivary concentrations of acid phosphatase, alkaline phosphatase, osteopontin and osteocalcin. Key words:Melatonin, diabetes mellitus, alkaline phosphatase, acid phosphatase, osteopontin, osteocalcin. PMID:23524437

  7. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia).

    PubMed

    Cao, Heping; Sethumadhavan, Kandan; Grimm, Casey C; Ullah, Abul H J

    2014-01-01

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initial step towards understanding the biochemical mechanism of fatty acid accumulation in bitter melon seeds, this study focused on a soluble phosphatidic acid phosphatase (PAP, 3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4) that hydrolyzes the phosphomonoester bond in phosphatidate yielding diacylglycerol and P(i). PAPs are typically categorized into two subfamilies: Mg(2+)-dependent soluble PAP and Mg(2+)-independent membrane-associated PAP. We report here the partial purification and characterization of an Mg(2+)-independent PAP activity from developing cotyledons of bitter melon. PAP protein was partially purified by successive centrifugation and UNOsphere Q and S columns from the soluble extract. PAP activity was optimized at pH 6.5 and 53-60 °C and unaffected by up to 0.3 mM MgCl2. The K(m) and Vmax values for dioleoyl-phosphatidic acid were 595.4 µM and 104.9 ηkat/mg of protein, respectively. PAP activity was inhibited by NaF, Na(3)VO(4), Triton X-100, FeSO4 and CuSO4, but stimulated by MnSO4, ZnSO4 and Co(NO3)2. In-gel activity assay and mass spectrometry showed that PAP activity was copurified with a number of other proteins. This study suggests that PAP protein is probably associated with other proteins in bitter melon seeds and that a new class of PAP exists as a soluble and Mg(2+)-independent enzyme in plants. PMID:25203006

  8. Association of the acid phosphatase (ACP1) gene with triglyceride levels in obese women.

    PubMed

    Bottini, Nunzio; MacMurray, James; Peters, Warren; Rostamkhani, Masoud; Comings, David E

    2002-11-01

    The acid phosphatase (ACP1) locus codes for a low molecular weight protein tyrosine phosphatase (LMPTP) that is found ubiquitously in human tissues. The *A allele of the ACP1 gene is associated with lower total enzymatic activity than the *B and *C alleles. An association between the *A allele and extreme values of body-mass-index (BMI) and dyslipidemia has previously been described in several samples of obese subjects from the Italian population. In the present study, we investigated the relationship between ACP1 *A allele genotypes (*A/*A, *A/*B, and *A/*C) and non-*A allele genotypes (*B/*B, *B/*C, and *C/*C) and metabolic variables in 277 Caucasian post-menopausal subjects consisting of 82 non-obese subjects (BMI/=35) subjects. ACP1 genotypes were found to be significantly associated with total cholesterol (p

  9. Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum.

    PubMed

    Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2010-01-01

    This study was undertaken to (1) determine the effects of petroleum pollution on changes in the biochemical properties of soil and (2) demonstrate whether the application of compost, bentonite, and calcium oxide is likely to restore biological balance. Petroleum soil pollution at a dose ranging from 2.5 to 10 cm(3)/kg disturbed the biochemical balance as evidenced by inhibition of the activities of soil dehydrogenases (SDH), urease (URE), and acid phosphatase (ACP). The greatest change was noted in the activity of SDH, whereas the least change occurred in URE. Petroleum significantly increased the activity of soil alkaline phosphatase (ALP) in soil used for spring rape, whereas in soil used for oat harvest there was decreased ALP activity. The application of compost, bentonite, and calcium oxide to soil proved effective in mitigating the adverse effects of petroleum on the activities of soil enzymes. Soil enrichment with compost, bentonite, and calcium oxide was found to stimulate the activities of URE and ALP and inhibit the activity of ACP. The influence of bentonite and calcium oxide was greater than that of compost. Calcium oxide and, to a lesser extent, compost were found to increase the activity of SDH, whereas bentonite exerted the opposite effect, especially in the case of the main crop, spring rape. The activities of SDH, URE, and ACP were higher in soil used for rape than that for oats. In contrast the activity of ALP was higher in soil used for oats. Data thus indicate that compost and especially bentonite and calcium oxide exerted a positive effect on activities of some enzymes in soil polluted with petroleum. Application of neutralizing additives to soil restored soil biological balance by counteracting the negative influence of petroleum on activities of URE and ALP. PMID:20706945

  10. A convenient and label-free fluorescence "turn off-on" nanosensor with high sensitivity and selectivity for acid phosphatase.

    PubMed

    Liu, Ziping; Lin, Zihan; Liu, Linlin; Su, Xingguang

    2015-05-30

    In this study, we reported a convenient label-free fluorescence nanosensor for rapid detection of acid phosphatase on the basis of aggregation-caused quenching (ACQ) and enzymolysis approach. The selectivity nanosensor was based on the fluorescence "turn off-on" mode, which possessed high sensitivity features. The original strong fluorescence intensity of CuInS2 QDs was quenched by sodium hexametaphosphate (NaPO3)6. The high efficiency of the quenching was caused by the non-covalent binding of positively charged CuInS2 QDs to the negatively charged (NaPO3)6 through electrostatic interactions, aggregating to form a CuInS2 QDs/(NaPO3)6 complex. Adding acid phosphatase caused intense fluorescence of CuInS2 QDs/(NaPO3)6 to be recovered, and this was because of enzymolysis. (NaPO3)6 was hydrolyzed into small fragments and the high negative charge density decreased, which would weaken the strong electrostatic interactions. As a result, the quenched fluorescence "turned on". Under the optimum conditions, there was a good linear relationship between I/I0 (I and I0 were the fluorescence intensity of CuInS2 QDs/(NaPO3)6 system in the presence and absence of acid phosphatase, respectively) and acid phosphatase concentration in the range of 75-1500 nU mL(-1) with the detection limit of 9.02 nU mL(-1). The proposed nanosensor had been utilized to detect and accurately quantify acid phosphatase in human serum samples with satisfactory results.

  11. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment. PMID:27209386

  12. Alteration of the isoform composition of plasma-membrane-associated rat sperm alpha-L-fucosidase during late epididymal maturation: comparative characterization of the acidic and neutral isoforms.

    PubMed Central

    Abascal, I; Skalaban, S R; Grimm, K M; Avilés, M; Martianez-Menarguez, J A; Castells, M T; Ballesta, J; Alhadeff, J A

    1998-01-01

    In a previous study, evidence was provided for the presence of a novel plasma-membrane-associated neutral-pH-optimum alpha-L-fucosidase in rat sperm. In the present study, rat sperm alpha-L-fucosidase was characterized during epididymal maturation. The pH 7 activity optimum of alpha-L-fucosidase and its subunit composition (one or two closely spaced immunoreactive protein bands of about 53+/-2 kDa) did not appear to change during transit through the epididymis. Isoelectric focusing of alpha-L-fucosidase indicated the presence of a major isoform (B) with a pI near 7 in sperm from testis, caput, corpus and the proximal half of the cauda. alpha-L-Fucosidase from sperm from the distal half of the cauda, which contained a significant enrichment of sperm and alpha-L-fucosidase activity, contained isoform B and an additional minor isoform (A) with a pI near 5.2. Isoform B and small amounts of isoform A were present in sperm from the vas deferens. The two fucosidase isoforms present in sperm from the distal cauda were separated by isoelectric focusing and comparatively characterized. They had similar pH-activity curves (with optima near pH 7) and comparable apparent KM values (0.4+/-0.04 mM) for 4-methylumbelliferyl alpha-l-fucopyranoside. Preincubation of the isoforms at different temperatures indicated that isoform A is considerably more thermostable than isoform B. Immunoprecipitation studies using polyclonal antibodies against human liver alpha-L-fucosidase indicated that approx. 90% of the enzymic activity for both isoforms was immunoprecipitable under conditions that immunoprecipitated essentially all the human liver enzyme. Neuraminidase treatment of sperm alpha-L-fucosidase from distal cauda (when compared with the appropriate heat-treated control) led to disappearance of isoform A and a concomitant increase in isoform B. The overall results suggest that isoform A is derived by sialylation of isoform B near the end of epididymal maturation. PMID:9639580

  13. The Jasper Ridge elevated CO{sub 2} experiment: Root acid phosphatase activity in Bromus hordeaceus and Avena barbata remains unchanged under elevated [CO{sub 2}

    SciTech Connect

    Cardon, Z.G.; Jackson, R.

    1995-06-01

    Root acid phosphatase activity increases phosphate available to plants by cleaving phosphate esters in soil organic matter. Because of increased plant growth potential under elevated [CO{sub 2}], we hypothesized that high [CO{sub 2}]-grown plants might exhibit higher phosphatase activity than low [CO{sub 2}]-grown plants. We assayed phosphatase activity in two species grown on two substrates (Bromus on serpentine soil and Bromus and Avena on sandstone soil) under high and low [CO{sub 2}] and under several nutrient treatments. Phosphatase activity was expressed per gram fresh weight of roots. Phosphatase activity of Bromus roots (on sandstone) was first assayed in treatments where only P and K, or only N, were added to soil. Bromus roots in this case showed strong induction of phosphatase activity when N only had been added to soil, indicating that Bromus regulated its phosphatase activity in response to phosphate availability. Both Bromus and Avena growing in sandstone, and Bromus growing in serpentine, showed enhanced phosphatase activity at high nutrient (N, P, and K) levels over that at low nutrient levels, but no differences between phosphatase activity were apparent between [CO{sub 2}] treatments. The increased phosphatase activity at high N, P, and K may indicate enhanced {open_quotes}growth demand{close_quotes} (reflected in higher biomass) in both Avena and Bromus. In contrast, though Bromus {open_quotes}growth demand{close_quotes} (biomass) increased under high [CO{sub 2}] on sandstone, phosphatase activity did not increase.

  14. Optimal level of purple acid phosphatase5 is required for maintaining complete resistance to Pseudomonas syringae

    PubMed Central

    Ravichandran, Sridhar; Stone, Sophia L.; Benkel, Bernhard; Zhang, Junzeng; Berrue, Fabrice; Prithiviraj, Balakrishnan

    2015-01-01

    Plants possess an exceedingly complex innate immune system to defend against most pathogens. However, a relative proportion of the pathogens overcome host's innate immunity and impair plant growth and productivity. We previously showed that mutation in purple acid phosphatase (PAP5) lead to enhanced susceptibility of Arabidopsis to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Here, we report that an optimal level of PAP5 is crucial for mounting complete basal resistance. Overexpression of PAP5 impaired ICS1, PR1 expression and salicylic acid (SA) accumulation similar to pap5 knockout mutant plants. Moreover, plant overexpressing PAP5 was impaired in H2O2 accumulation in response to Pst DC3000. PAP5 is localized in to peroxisomes, a known site of generation of reactive oxygen species for activation of defense responses. Taken together, our results demonstrate that optimal levels of PAP5 is required for mounting resistance against Pst DC3000 as both knockout and overexpression of PAP5 lead to compromised basal resistance. PMID:26300891

  15. Phosphatidic acid phosphatase and diacylglycerol acyltransferase: potential targets for metabolic engineering of microorganism oil.

    PubMed

    Jin, Hong-Hao; Jiang, Jian-Guo

    2015-04-01

    Oleaginous microorganism is becoming one of the most promising oil feedstocks for biodiesel production due to its great advantages in triglyceride (TAG) accumulation. Previous studies have shown that de novo TAG biosynthesis can be divided into two parts: the fatty acid biosynthesis pathway (the upstream part which generates acyl-CoAs) and the glycerol-3-phosphate acylation pathway (the downstream part in which three acyl groups are sequentially added onto a glycerol backbone). This review mainly focuses on two enzymes in the G3P pathway, phosphatidic acid phosphatase (PAP) and diacylglycerol acyltransferase (DGAT). The former catalyzes a dephosphorylation reaction, and the latter catalyzes a subsequent acylation reaction. Genes, functional motifs, transmembrane domains, action mechanism, and new studies of the two enzymes are discussed in detail. Furthermore, this review also covers diacylglycerol kinase, an enzyme that catalyzes the reverse reaction of diacylglycerol formation. In addition, PAP and DGAT are the conjunction points of the G3P pathway, the Kennedy pathway, and the CDP-diacylglycerol pathway (CDP-DAG pathway), and the mutual transformation between TAGs and phospholipids is discussed as well. Given that both the Kennedy and CDP-diacylglycerol pathways are in metabolic interlock (MI) with the G3P pathway, it is suggested that, via metabolic engineering, TAG accumulation can be improved by the two pathways based on the pivotal function of PAP and DGAT.

  16. Molecular cloning of magnesium-independent type 2 phosphatidic acid phosphatases from airway smooth muscle.

    PubMed

    Tate, R J; Tolan, D; Pyne, S

    1999-07-01

    Members of the type 2 phosphatidic acid phosphatase (PAP2) family catalyse the dephosphorylation of phosphatidic acid (PA), lysophosphatidate and sphingosine 1-phosphate. Here, we demonstrate the presence of a Mg(2+)-independent and N-ethymaleimide-insensitive PAP2 activity in cultured guinea-pig airway smooth muscle (ASM) cells. Two PAP2 cDNAs of 923 and 926 base pairs were identified and subsequently cloned from these cells. The ORF of the 923 base pair cDNA encoded a protein of 285 amino acids (Mr = 32.1 kDa), which had 94% homology with human PAP2a (hPAP2a) and which probably represents a guinea-pig specific PAP2a (gpPAP2a1). The ORF of the 926 base pair cDNA encoded a protein of 286 amino acids (Mr = 32.1 kDa) which had 84% and 91% homology with hPAP2a and gpPAP2a1, respectively. This protein, termed gpPAP2a2, has two regions (aa 21-33 and 51-74) of marked divergence and altered hydrophobicity compared with hPAP2a and gpPAP2a1. This occurs in the predicted first and second transmembrane domains and at the extremes of the first outer loop. Other significant differences between gpPAP2a1/2 and hPAP2a, hPAP2b and hPAP2c occur at the cytoplasmic C-terminal. Transient expression of gpPAP2a2 in Cos-7 cells resulted in an approx. 4-fold increase in Mg(2+)-independent PAP activity, thereby confirming that gpPAP2a2 is another catalytically active member of an extended PAP2 family.

  17. Optimization of the tartrate-resistant acid phosphatase detection by histochemical method.

    PubMed

    Galvão, M J; Santos, A; Ribeiro, M D; Ferreira, A; Nolasco, F

    2011-01-01

    According to the new KDIGO (Kidney Disease Improving Global Outcomes) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling,the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 μm were stained to identify TRACP at different incubation temperatures (37º, 45º, 60º, 70º and 80ºC) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60ºC and 70ºC. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 minutes, the reaction should be carried out at 60

  18. Optimization of the tartrate-resistant acid phosphatase detection by histochemical method

    PubMed Central

    Galvão, M.J.; Santos, A. R.; Ribeiro, M.D.; Ferreira, A.; Nolasco, F.

    2011-01-01

    According to the new kidney disease improving global outcomes (KDIGO) guidelines, the term of renal osteodystrophy, should be used exclusively in reference to the invasive diagnosis of bone abnormalities. Due to the low sensitivity and specificity of biochemical serum markers of bone remodelling, the performance of bone biopsies is highly stimulated in dialysis patients and after kidney transplantation. The tartrate-resistant acid phosphatase (TRACP) is an iso-enzyme of the group of acid phosphatases, which is highly expressed by activated osteoclasts and macrophages. TRACP in osteoclasts is in intracytoplasmic vesicles that transport the products of bone matrix degradation. Being present in activated osteoclasts, the identification of this enzyme by histochemistry in undecalcified bone biopsies is an excellent method to quantify the resorption of bone. Since it is an enzymatic histochemical method for a thermolabile enzyme, the temperature at which it is performed is particularly relevant. This study aimed to determine the optimal temperature for identification of TRACP in activated osteoclasts in undecalcified bone biopsies embedded in methylmethacrylate. We selected 10 cases of undecalcified bone biopsies from hemodialysis patients with the diagnosis of secondary hyperparathyroidism. Sections of 5 µm were stained to identify TRACP at different incubation temperatures (37°, 45°, 60°, 70° and 80°C) for 30 minutes. Activated osteoclasts stained red and trabecular bone (mineralized bone) was contrasted with toluidine blue. This approach also increased the visibility of the trabecular bone resorption areas (Howship lacunae). Unlike what is suggested in the literature and in several international protocols, we found that the best results were obtained with temperatures between 60°C and 70°C. For technical reasons and according to the results of the present study, we recommended that, for an incubation time of 30 min, the reaction should be carried out at 60

  19. A novel antimicrobial protein isolated from potato (Solanum tuberosum) shares homology with an acid phosphatase.

    PubMed

    Feng, Jie; Yuan, Fenghua; Gao, Yin; Liang, Chenggang; Xu, Jin; Zhang, Changling; He, Liyuan

    2003-12-01

    The nucleotide and amino acids sequences for AP(1) will appear in the GenBank(R) and NCBI databases under accession number AY297449. A novel antimicrobial protein (AP(1)) was purified from leaves of the potato ( Solanum tuberosum, variety MS-42.3) with a procedure involving ammonium sulphate fractionation, molecular sieve chromatography with Sephacryl S-200 and hydrophobic chromatography with Butyl-Sepharose using a FPLC system. The inhibition spectrum investigation showed that AP(1) had good inhibition activity against five different strains of Ralstonia solanacearum from potato or other crops, and two fungal pathogens, Rhizoctonia solani and Alternaria solani from potato. The full-length cDNA encoding AP(1) has been successfully cloned by screening a cDNA expression library of potato with an anti-AP(1) antibody and RACE (rapid amplification of cDNA ends) PCR. Determination of the nucleotide sequences revealed the presence of an open reading frame encoding 343 amino acids. At the C-terminus of AP(1) there is an ATP-binding domain, and the N-terminus exhibits 58% identity with an/the acid phosphatase from Mesorhizobium loti. SDS/PAGE and Western blotting analysis suggested that the AP(1) gene can be successfully expressed in Escherichia coli and recognized by an antibody against AP(1). Also the expressed protein showed an inhibition activity the same as original AP(1) protein isolated from potato. We suggest that AP(1) most likely belongs to a new group of proteins with antimicrobial characteristics in vitro and functions in relation to phosphorylation and energy metabolism of plants.

  20. Blood groups and red cell acid phosphatase types in a Mixteca population resident in Mexico City.

    PubMed

    Buentello, L.; García, P.; Lisker, R.; Salamanca, F.; Peñaloza, R.

    1999-01-01

    Several blood groups, ABO, Rh, Ss, Fy, Jk, and red cell acid phosphatase (ACP) types were studied in a native Mixteca population that has resided in Mexico City since 1950. Gene frequencies were obtained and used to establish admixture estimates with blacks and whites. The subjects came from three different geographical areas: High Mixteca, Low Mixteca, and Coast Mixteca. All frequencies were in Hardy-Weinberg equilibrium. The difference in the ABO frequencies was statistically significant when subjects from the three areas were compared simultaneously. Rh frequencies differed only between the High and the Low Mixteca populations. The ACP frequencies were similar between the Low Mixteca population and a previously reported Mestizo population. However, there were significant differences between the High Mixteca group and a Mestizo population, all the subjects being from Oaxaca. This is the first report of Ss, Fy, Jk, and ACP frequencies in a Mixteca population. Am. J. Hum. Biol. 11:525-529, 1999. Copyright 1999 Wiley-Liss, Inc.

  1. Macrophage expression of tartrate-resistant acid phosphatase as a prognostic indicator in colon cancer

    PubMed Central

    How, Joan; Brown, Jason R.; Saylor, Sasha; Rimm, David L.

    2014-01-01

    Recent research has indicated that separate populations of macrophages are associated with differing outcomes in cancer survival. In our study, we examine macrophage expression of tartrate resistant acid phosphatase (TRAP) and its effect on survival in colon cancer. Immunohistochemical analysis on colorectal adenocarcinomas confirmed macrophage expression of TRAP. Co-localization of TRAP with CD68, a pan-macrophage marker, revealed that TRAP is present in some but not all subpopulations of macrophages. Further co-localization of TRAP with CD163, an M2 marker, revealed that TRAP is expressed by both M2 and non-M2 macrophages. TRAP expression was then measured using the AQUA method of quantitative immunofluorescence in a tissue microarray consisting of 233 colorectal cancer patients seen at Yale-New Haven Hospital. Survival analysis revealed that patients with high TRAP expression have a 22% increase in 5-year survival (uncorrected log rank p=0.025) and a 47% risk reduction for disease specific death (p=0.02). This finding was validated in a second cohort of older cases consisting of 505 colorectal cancer patients. Patients with high TRAP expression in the validation set had a 19% increase in 5-year survival (log rank p=0.0041) and a 52% risk reduction of death (p=0.0019). These results provide evidence that macrophage expression of TRAP is associated with improved outcome, and implicates TRAP as a potential biomarker in colon cancer. PMID:24429833

  2. Macrophage expression of tartrate-resistant acid phosphatase as a prognostic indicator in colon cancer.

    PubMed

    How, Joan; Brown, Jason R; Saylor, Sasha; Rimm, David L

    2014-08-01

    Recent research has indicated that separate populations of macrophages are associated with differing outcomes in cancer survival. In our study, we examine macrophage expression of tartrate-resistant acid phosphatase (TRAP) and its effect on survival in colon cancer. Immunohistochemical analysis on colorectal adenocarcinomas confirmed macrophage expression of TRAP. Co-localization of TRAP with CD68, a pan-macrophage marker, revealed that TRAP is present in some but not all sub-populations of macrophages. Further co-localization of TRAP with CD163, an M2 marker, revealed that TRAP is expressed by both M2 and non-M2 macrophages. TRAP expression was then measured using the AQUA method of quantitative immunofluorescence in a tissue microarray consisting of 233 colorectal cancer patients seen at Yale-New Haven Hospital. Survival analysis revealed that patients with high TRAP expression have a 22 % increase in 5-year survival (uncorrected log-rank p = 0.025) and a 47 % risk reduction in disease-specific death (p = 0.02). This finding was validated in a second cohort of older cases consisting of 505 colorectal cancer patients. Patients with high TRAP expression in the validation set had a 19 % increase in 5-year survival (log-rank p = 0.0041) and a 52 % risk reduction in death (p = 0.0019). These results provide evidence that macrophage expression of TRAP is associated with improved outcome and implicates TRAP as a potential biomarker in colon cancer.

  3. Biochemical characterization of the class B acid phosphatase (AphA) of Escherichia coli MG1655.

    PubMed

    Passariello, Claudio; Forleo, Costantino; Micheli, Vanna; Schippa, Serena; Leone, Rosalida; Mangani, Stefano; Thaller, Maria Cristina; Rossolini, Gian Maria

    2006-01-01

    The AphA enzyme of Escherichia coli, a molecular class B periplasmic phosphatase that belongs to the DDDD superfamily of phosphohydrolases, was purified and subjected to biochemical characterization. Kinetic analysis with several substrates revealed that the enzyme essentially behaves as a broad-spectrum nucleotidase highly active on 3'- and 5'-mononucleotides and monodeoxynucleotides, but not active on cyclic nucleotides, or nucleotides di- and triphosphate. Mononucleotides are degraded to nucleosides, and AphA apparently does not exhibit any nucleotide phosphomutase activity. However, it can transphosphorylate nucleosides in the presence of phosphate donors. Kinetic properties of AphA are consistent with structural data, and suggest a role for the hydrophobic pocket present in the active site crevice, made by residues Phe 56, Leu71, Trp77 and Tyr193, in conferring preferential substrate specificity by accommodating compounds with aromatic rings. AphA was inhibited by several chelating agents, including EDTA, EGTA, 1,10-phenanthroline and dipicolinic acid, with EDTA being apparently the most powerful inhibitor.

  4. Purification and characterization of an acid phosphatase from the commercial mushroom Agaricus bisporus.

    PubMed

    Wannet, W J; Wassenaar, R W; Jorissen, H J; van der Drift, C; Op den Camp, H J

    2000-04-01

    Acid phosphatase [AP; EC 3.1.3.2], a key enzyme involved in the synthesis of mannitol in Agaricus bisporus, was purified to homogeneity and characterized. The native enzyme appeared to be a high molecular weight type glycoprotein. It has a molecular weight of 145 kDa and consists of four identical 39-kDa subunits. The isoelectric point of the enzyme was found at 4.7. Maximum activity occurred at 65 degrees C. The optimum pH range was between 3.5 and 5.5, with maximum activity at pH 4.75. The enzyme was unaffected by EDTA, and inhibited by tartrate and inorganic phosphate. The enzyme exhibits a Km for p-nitrophenylphosphate and fructose-6-phosphate of 370 microM and 3.1 mM, respectively. A broad substrate specificity was observed with significant activities for fructose-6-phosphate, glucose-6-phosphate, mannitol-1-phosphate, AMP and beta-glycerol phosphate. Only phosphomonoesters were dephosphorylated. Antibodies raised against the purified enzyme could precipitate AP activity from a cell-free extract in an anticatalytic immunoprecipitation test.

  5. Avian prostatic acid phosphatase: estrogen regulation in the oviduct and epithelial cell-derived ovarian carcinomas.

    PubMed

    Bae, Hyocheol; Lim, Whasun; Bae, Seung-Min; Bazer, Fuller W; Choi, Youngsok; Song, Gwonhwa

    2014-07-01

    Prostatic acid phosphatase (ACPP) is a glycoprotein that is mainly synthesized and secreted by glandular epithelial cells (GE) of the prostate, and it is well known as a biomarker for prostate cancer. Although ACPP was used as prognostic/diagnostic indicator and studied to elucidate regulatory mechanism(s) during several decades in humans, its role is not clearly understood. Gene profiling data using a chicken DNA microarray revealed that ACPP increased significantly during remodeling and recrudescence of the oviduct in response to estrogen. Thus, in this study, we investigated the expression and hormonal regulation of ACPP gene in the reproductive tracts of chickens. ACPP was specifically detected in the luminal cells (LE) and GE of chicken oviduct, and diethylstilbestrol (a synthetic nonsteroidal estrogen) stimulated its expression during development of the oviduct. In addition, ACPP mRNA and protein were localized to LE and GE during the regeneration phase of the oviduct of laying hens during induced molting. Furthermore, ACPP mRNA and protein were abundant in GE of ovarian carcinoma, but not in normal ovaries. Moreover, strong expression of ACPP protein was detected in epithelial cells of cancerous ovaries from women. Collectively, results of the present study are the first to show that ACPP is a novel estrogen-stimulated gene in the oviductal epithelial cells of the chicken and that its expression increases significantly in epithelial cells of ovarian carcinoma, which indicates that it may be a candidate biomarker for diagnosis of epithelia-derived ovarian cancer in women. PMID:24829029

  6. Characterization of purple acid phosphatases involved in extracellular dNTP utilization in Stylosanthes.

    PubMed

    Liu, Pan-Dao; Xue, Ying-Bin; Chen, Zhi-Jian; Liu, Guo-Dao; Tian, Jiang

    2016-07-01

    Stylo (Stylosanthes spp.) is a pasture legume predominant in tropical and subtropical areas, where low phosphorus (P) availability is a major constraint for plant growth. Therefore, stylo might exhibit superior utilization of the P pool on acid soils, particularly organic P. However, little is known about mechanisms of inorganic phosphate (Pi) acquisition employed by stylo. In this study, the utilization of extracellular deoxy-ribonucleotide triphosphate (dNTP) and the underlying physiological and molecular mechanisms were examined for two stylo genotypes with contrasting P efficiency. Results showed that the P-efficient genotype, TPRC2001-1, was superior to the P-inefficient genotype, Fine-stem, when using dNTP as the sole P source. This was reflected by a higher dry weight and total P content for TPRC2001-1 than for Fine-stem, which was correlated with higher root-associated acid phosphatase (APase) activities in TPRC2001-1 under low P conditions. Subsequently, three PAP members were cloned from TPRC2001-1: SgPAP7, SgPAP10, and SgPAP26 Expression levels of these three SgPAPs were up-regulated by Pi starvation in stylo roots. Furthermore, there was a higher abundance of transcripts of SgPAP7 and SgPAP10 in TPRC2001-1 than in Fine-stem. Subcellular localization analysis demonstrated that these three SgPAPs were localized on the plasma membrane. Overexpression of these three SgPAPs could result in significantly increased root-associated APase activities, and thus extracellular dNTP utilization in bean hairy roots. Taken together, the results herein suggest that SgPAP7, SgPAP10, and SgPAP26 may differentially contribute to root-associated APase activities, and thus control extracellular dNTP utilization in stylo.

  7. Effect of endosulfan on acid and alkaline phosphatase activity in liver, kidney, and muscles of Channa gachua

    SciTech Connect

    Sharma, R.M. )

    1990-03-01

    The widespread use of a great many toxic chemicals to eliminate unwanted plant or animal species has resulted in the contamination of most aquatic habitats with these substances on a regular basis. Endosulfan, a polycyclic chlorinated hydrocarbon of cyclodien group, is a well known organochlorine insecticide on the activity of acid and alkaline phosphatase in liver, kidney and muscles of a freshwater teleost, Channa gachua.

  8. Dehydrogenases, Acid and Alkaline Phosphatases, and Esterases for Chemotaxonomy of Selected Meloidogyne, Ditylenchus, Heterodera and Aphelenchus spp.

    PubMed Central

    Dickson, D. W.; Huisingh, D.; Sasser, J. N.

    1971-01-01

    Various taxonomically useful profiles of four dehydrogenases (lactate, malate, glucose-6-phosphate, and a-glycerophosphate) and three hydrolases (acid and alkaline phosphatase and esterase) were detected in whole nematode homogenates of Meloidogyne javanica, M. hapla, M. incognita, M. arenaria, Ditylenchus dipsaci, D. triformis, Heterodera glycines, and Aphelenchus avenae. The enzyme profiles were stable in populations cultured on several different hosts. A tentative enzymically-determined phylogeny of Meloidogyne is given. PMID:19322334

  9. Cellular prostatic acid phosphatase, a PTEN-functional homologue in prostate epithelia, functions as a prostate-specific tumor suppressor

    PubMed Central

    Muniyan, Sakthivel; Ingersoll, Matthew A.; Batra, Surinder K.; Lin, Ming-Fong

    2014-01-01

    The inactivation of tumor suppressor genes (TSGs) plays a vital role in the progression of human cancers. Nevertheless, those ubiquitous TSGs have been shown with limited roles in various stages of diverse carcinogenesis. Investigation on identifying unique TSG, especially for early stage of carcinogenesis, is imperative. As such, the search for organ-specific TSGs has emerged as a major strategy in cancer research. Prostate cancer (PCa) has the highest incidence in solid tumors in US males. Cellular prostatic acid phosphatase (cPAcP) is a prostate-specific differentiation antigen. Despite intensive studies over the past several decades on PAcP as a PCa biomarker, the role of cPAcP as a PCa-specific tumor suppressor has only recently been emerged and validated. The mechanism underlying the pivotal role of cPAcP as a prostate-specific TSG is, in part, due to its function as a protein tyrosine phosphatase (PTP) as well as a phosphoinositide phosphatase (PIP), an apparent functional homologue to Phosphatase and tensin homolog (PTEN) in PCa cells. This review is focused on discussing the function of this authentic prostate-specific tumor suppressor and the mechanism behind the loss of cPAcP expression leading to prostate carcinogenesis. We review other phosphatases’ roles as TSGs which regulate oncogenic PI3K signaling in PCa and discuss the functional similarity between cPAcP and PTEN in prostate carcinogenesis. PMID:24747769

  10. Differential regulation of the postsynaptic clustering of γ-aminobutyric acid type A (GABAA) receptors by collybistin isoforms.

    PubMed

    Chiou, Tzu-Ting; Bonhomme, Bevan; Jin, Hongbing; Miralles, Celia P; Xiao, Haiyan; Fu, Zhanyan; Harvey, Robert J; Harvey, Kirsten; Vicini, Stefano; De Blas, Angel L

    2011-06-24

    Collybistin promotes submembrane clustering of gephyrin and is essential for the postsynaptic localization of gephyrin and γ-aminobutyric acid type A (GABA(A)) receptors at GABAergic synapses in hippocampus and amygdala. Four collybistin isoforms are expressed in brain neurons; CB2 and CB3 differ in the C terminus and occur with and without the Src homology 3 (SH3) domain. We have found that in transfected hippocampal neurons, all collybistin isoforms (CB2(SH3+), CB2(SH3-), CB3(SH3+), and CB3(SH3-)) target to and concentrate at GABAergic postsynapses. Moreover, in non-transfected neurons, collybistin concentrates at GABAergic synapses. Hippocampal neurons co-transfected with CB2(SH3-) and gephyrin developed very large postsynaptic gephyrin and GABA(A) receptor clusters (superclusters). This effect was accompanied by a significant increase in the amplitude of miniature inhibitory postsynaptic currents. Co-transfection with CB2(SH3+) and gephyrin induced the formation of many (supernumerary) non-synaptic clusters. Transfection with gephyrin alone did not affect cluster number or size, but gephyrin potentiated the clustering effect of CB2(SH3-) or CB2(SH3+). Co-transfection with CB2(SH3-) or CB2(SH3+) and gephyrin did not affect the density of presynaptic GABAergic terminals contacting the transfected cells, indicating that collybistin is not synaptogenic. Nevertheless, the synaptic superclusters induced by CB2(SH3-) and gephyrin were accompanied by enlarged presynaptic GABAergic terminals. The enhanced clustering of gephyrin and GABA(A) receptors induced by collybistin isoforms was not accompanied by enhanced clustering of neuroligin 2. Moreover, during the development of GABAergic synapses, the clustering of gephyrin and GABA(A) receptors preceded the clustering of neuroligin 2. We propose a model in which the SH3- isoforms play a major role in the postsynaptic accumulation of GABA(A) receptors and in GABAergic synaptic strength.

  11. A novel phytase with sequence similarity to purple acid phosphatases is expressed in cotyledons of germinating soybean seedlings.

    PubMed

    Hegeman, C E; Grabau, E A

    2001-08-01

    Phytic acid (myo-inositol hexakisphosphate) is the major storage form of phosphorus in plant seeds. During germination, stored reserves are used as a source of nutrients by the plant seedling. Phytic acid is degraded by the activity of phytases to yield inositol and free phosphate. Due to the lack of phytases in the non-ruminant digestive tract, monogastric animals cannot utilize dietary phytic acid and it is excreted into manure. High phytic acid content in manure results in elevated phosphorus levels in soil and water and accompanying environmental concerns. The use of phytases to degrade seed phytic acid has potential for reducing the negative environmental impact of livestock production. A phytase was purified to electrophoretic homogeneity from cotyledons of germinated soybeans (Glycine max L. Merr.). Peptide sequence data generated from the purified enzyme facilitated the cloning of the phytase sequence (GmPhy) employing a polymerase chain reaction strategy. The introduction of GmPhy into soybean tissue culture resulted in increased phytase activity in transformed cells, which confirmed the identity of the phytase gene. It is surprising that the soybean phytase was unrelated to previously characterized microbial or maize (Zea mays) phytases, which were classified as histidine acid phosphatases. The soybean phytase sequence exhibited a high degree of similarity to purple acid phosphatases, a class of metallophosphoesterases.

  12. Separation of acid phosphatases in the rat ventral prostate by gel filtration, isoelectric focusing, and chromatofocusing.

    PubMed

    Jauhiainen, A; Rytöluoto-Kärkkäinen, R; Vanha-Perttula, T

    1983-01-01

    Acid phosphatases of the rat ventral prostate were fractionated by gel filtration (GF) on Sepharose 6B, isoelectric focusing (IEF), and chromatofocusing (CF). In GF three activity peaks (GF-1, GF-2, GF-3) were disclosed. They showed some differences in substrate preference when six substrates (p-nitrophenyl phosphate; p-NPP; phenolphthalein phosphate, Phe-P; thymolphthalein phosphate, Tym-P; alpha-naphthyl phosphate, alpha-NP; beta-naphthyl phosphate, beta-NP; naphthol ASBI phosphate, N-ASBI-P) were tested. Differences were also encountered in their sensitivity to tartrate and fluoride. IEF gave seven bands at different pI values (8.3, 8.1, 7.9, 7.1, 6.4, 5.5, and 5.0) with alpha-NP and beta-NP but only four with N-ASBI-P. Four of the bands (8.3, 8.1, 7.9, 5.5) were sensitive to tartrate. In CF eight activity peaks (CF-1 to CF-8) were resolved with the six substrates. They differed from each other in pI values, pH optima, substrate preference, and modifier characteristics. Peaks CF-1 (pI 8.3, pH 5.5), CF-2 (pI 8.1, pH 4.2) and CF-3 (pI 7.9, pH 4.2) had a large substrate spectrum and high sensitivity to tartrate and fluoride. CF-4 (pI 7.1, pH 6.0) and CF-7 (pI 5.5, pH 4.2) were low in activity, preferred alpha-NP as substrate, and were moderately sensitive to tartrate. CF-5 (pI 6.4, pH 5.5) and CF-8 (pI 5.0, pH 5.0) were able to hydrolyse all substrates tested with moderate inhibition by tartrate. CF-6 (pI 6.0, pH 5.0) showed a relative preference for p-NPP and Phe-P with no hydrolysis of N-ASBI-P and Tym-P. Of these activities CF-6 and CF-7 were also clearly activated by Co2+. Peaks CF-6 and CF-7 appeared the most sensitive to p-chloromercuribenzoate. It is concluded that activities CF-1, CF-2, and CF-3 are lysosomal isoenzymes with minor structural differences. The others are possibly all nonlysosomal with greater biochemical differences. Some of them apparently represent the secretory form(s) of acid phosphatase in the rat ventral prostate.

  13. Regulation of alkaline phosphatase expression in a neonatal rat clonal calvarial cell strain by retinoic acid.

    PubMed

    Ng, K W; Gummer, P R; Michelangeli, V P; Bateman, J F; Mascara, T; Cole, W G; Martin, T J

    1988-02-01

    A clonal cell strain, UMR 201, was established from a culture of rat calvarial cells by the process of limiting dilution on a collagen substratum. One-day-old neonatal rat calvaria stripped of periosteum were placed on collagen in alpha-MEM with 10% fetal bovine serum (FBS). Cells that grew out from the calvaria were passaged eight times to select cells with the ability to proliferate in culture before cloning was attempted. Cells from the clonal strain were homogeneous in appearance with a doubling time in culture of about 24 hours. The UMR 201 cells formed predominantly type 1 collagen. When treated with retinoic acid (RA), all cells showed an intense staining for alkaline phosphatase (ALP). This effect of RA on the expression of ALP activity was reversible and was time and dose dependent. The earliest change was observed within 6 hours. In contrast, single and isolated clumps of untreated cells stained positively for ALP only when they were confluent. Coincubation with dactinomycin up to 3 hours after the addition of RA completely prevented the expression of ALP, whereas dactinomycin became progressively less effective when added at later times. This is interpreted as indicating a regulatory role of RA on the gene expression of ALP. Other hormones acting on bone, such as 1,25(OH)2 vitamin D3 and dexamethasone, also modulate ALP activity. The cells showed morphologic evidence of senescence after passage 12. Our preliminary studies showed that the UMR 201 cells had the characteristics of relatively undifferentiated mesenchymal cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Atomistic details of the Catalytic Mechanism of Fe(III)-Zn(II) Purple Acid Phosphatase.

    PubMed

    Alberto, Marta E; Marino, Tiziana; Ramos, Maria J; Russo, Nino

    2010-08-10

    In the present work, we performed a theoretical investigation of the reaction mechanism of the Fe(III)-Zn(II) purple acid phosphatase from red kidney beans (rkbPAP), using the hybrid density functional theory and employing different exchange-correlation potentials. Characterization of the transition states and intermediates involved and the potential energy profiles for the reaction in different environments (gas phase, protein environment, and water) are reported. Our results show that the Fe(III)-Zn(II)PAP catalyzes the hydrolysis of methylphosphate via direct attack by a bridging metals-coordinated hydroxide leading to the cleavage of the ester bond. From our study emerges that the rate-limiting step of the reaction is the nucleophilic attack followed by the less energetically demanding release of the leaving group. Furthermore, we provide insights into some important points of contention concerning the precatalytic complex and the substrate coordination mode into the active site prior to hydrolysis. In particular: (i) Two models of enzyme-substrate with different orientations of the substrate into the active site were tested to evaluate the possible roles played by the conserved histidine residues (His 202 and His 296); (ii) Different protonation states of the substrate were taken into account in order to reproduce different pH values and to verify its influence on the catalytic efficiency and on the substrate binding mode; (iii) The metals role in each step of the catalytic mechanism was elucidated. We were also able to ascertain that the activation of the leaving group by the protonated His 296 is decisive to reach an optimal catalytic efficiency, while the bond scission without activation requires higher energy to occur. PMID:26613496

  15. Root surface acid phosphatases and their role in phosphorus assimilation by Eriophorum vaginatum

    SciTech Connect

    Kroehler, C.J.; Linkins, A.E.

    1988-01-01

    Eriophorum vaginatum is a dominant plant in much of the arctic tundra ecosystem where phosphorus is frequently a limiting nutrient. The mineralization of this organic phosphorus was thought to be principally controlled by microbial respiration, however, more recent work shows that extracellular soil phosphatases are the principal regulators. The existence of plant root and mycorrhizal surface phosphatases which are capable of hydrolyzing organic phosphorus compounds, suggests that soil organic phosphorus may be directly utilized by plants. Since E. vaginatum is a tussock forming sedge with a very dense annually produced rooting system which can exploit most of the tussock soil volume, its surface phosphatases may play a dominant role in organic phosphorus hydrolysis into inorganic phosphorus. Of equal significance would be the potential for this activity to contribute to the phosphorus nutrition through the coupling of phosphorus hydrolysis on the root and root uptake of the resultant inorganic phosphorus. Phosphatase activity was investigated and found to be uniformly distributed along the surface of the root. Kinetic analysis of the enzyme gave estimates of 9.23 mM for the apparent Km and 1.61 * 10/sup -3/ ..mu..moles mm-2 hr/sup -1/ for the apparent Vmax. Saturation values for E. vaginatum phosphatases are about 3 times higher than average soil solution organic phosphorus concentrations. 12 refs., 4 figs.

  16. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures.

    PubMed Central

    Bozzo, Gale G; Raghothama, Kashchandra G; Plaxton, William C

    2004-01-01

    An intracellular acid phosphatase (IAP) from P(i)-starved (-P(i)) tomato ( Lycopersicon esculentum ) suspension cells has been purified to homogeneity. IAP is a purple acid phosphatase (PAP), as the purified protein was violet in colour (lambda(max)=546 nm) and was insensitive to L-tartrate. PAGE, periodic acid-Schiff staining and peptide mapping demonstrated that the enzyme exists as a 142 kDa heterodimer composed of an equivalent ratio of glycosylated and structurally dissimilar 63 (alpha-subunit) and 57 kDa (beta-subunit) polypeptides. However, the nine N-terminal amino acids of the alpha- and beta-subunits were identical, exhibiting similarity to the deduced N-terminal portions of several putative plant PAPs. Quantification of immunoblots probed with rabbit anti-(tomato acid phosphatase) immune serum revealed that the 4-fold increase in IAP activity due to P(i)-deprivation was correlated with similar increases in the amount of antigenic IAP alpha- and beta-subunits. IAP displayed optimal activity at pH 5.1, was activated 150% by 10 mM Mg(2+), but was potently inhibited by Zn(2+), Cu(2+), Fe(3+), molybdate, vanadate, fluoride and P(i). Although IAP demonstrated broad substrate selectivity, its specificity constant ( V (max)/ K (m)) with phosphoenolpyruvate was >250% greater than that obtained with any other substrate. IAP exhibited significant peroxidase activity, which was optimal at pH 9.0 and insensitive to Mg(2+) or molybdate. This IAP is proposed to scavenge P(i) from intracellular phosphate esters in -P(i) tomato. A possible secondary IAP role in the metabolism of reactive oxygen species is discussed. IAP properties are compared with those of two extracellular PAP isoenzymes that are secreted into the medium of -P(i) tomato cells [Bozzo, Raghothama and Plaxton (2002) Eur. J. Biochem. 269, 6278-6286]. PMID:14521509

  17. The IBO germination quantitative trait locus encodes a phosphatase 2C-related variant with a nonsynonymous amino acid change that interferes with abscisic acid signaling.

    PubMed

    Amiguet-Vercher, Amélia; Santuari, Luca; Gonzalez-Guzman, Miguel; Depuydt, Stephen; Rodriguez, Pedro L; Hardtke, Christian S

    2015-02-01

    Natural genetic variation is crucial for adaptability of plants to different environments. Seed dormancy prevents precocious germination in unsuitable conditions and is an adaptation to a major macro-environmental parameter, the seasonal variation in temperature and day length. Here we report the isolation of IBO, a quantitative trait locus (QTL) that governs c. 30% of germination rate variance in an Arabidopsis recombinant inbred line (RIL) population derived from the parental accessions Eilenburg-0 (Eil-0) and Loch Ness-0 (Lc-0). IBO encodes an uncharacterized phosphatase 2C-related protein, but neither the Eil-0 nor the Lc-0 variant, which differ in a single amino acid, have any appreciable phosphatase activity in in vitro assays. However, we found that the amino acid change in the Lc-0 variant of the IBO protein confers reduced germination rate. Moreover, unlike the Eil-0 variant of the protein, the Lc-0 variant can interfere with the activity of the phosphatase 2C ABSCISIC ACID INSENSITIVE 1 in vitro. This suggests that the Lc-0 variant possibly interferes with abscisic acid signaling, a notion that is supported by physiological assays. Thus, we isolated an example of a QTL allele with a nonsynonymous amino acid change that might mediate local adaptation of seed germination timing. PMID:25490966

  18. Functional characterization of flax fatty acid desaturase FAD2 and FAD3 isoforms expressed in yeast reveals a broad diversity in activity.

    PubMed

    Radovanovic, Natasa; Thambugala, Dinushika; Duguid, Scott; Loewen, Evelyn; Cloutier, Sylvie

    2014-07-01

    With 45 % or more oil content that contains more than 55 % alpha linolenic (LIN) acid, linseed (Linum usitatissimum L.) is one of the richest plant sources of this essential fatty acid. Fatty acid desaturases 2 (FAD2) and 3 (FAD3) are the main enzymes responsible for the Δ12 and Δ15 desaturation in planta. In linseed, the oilseed morphotype of flax, two paralogous copies, and several alleles exist for each gene. Here, we cloned three alleles of FAD2A, four of FAD2B, six of FAD3A, and seven of FAD3B into a pYES vector and transformed all 20 constructs and an empty construct in yeast. The transformants were induced in the presence of oleic (OLE) acid substrate for FAD2 constructs and linoleic (LIO) acid for FAD3. Conversion rates of OLE acid into LIO acid and LIO acid into LIN acid were measured by gas chromatography. Conversion rate of FAD2 exceeded that of FAD3 enzymes with FAD2B having a conversion rate approximately 10 % higher than FAD2A. All FAD2 isoforms were active, but significant differences existed between isoforms of both FAD2 enzymes. Two FAD3A and three FAD3B isoforms were not functional. Some nonfunctional enzymes resulted from the presence of nonsense mutations causing premature stop codons, but FAD3B-C and FAD3B-F seem to be associated with single amino acid changes. The activity of FAD3A-C was more than fivefold greater than the most common isoform FAD3A-A, while FAD3A-F was fourfold greater. Such isoforms could be incorporated into breeding lines to possibly further increase the proportion of LIN acid in linseed.

  19. Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition.

    PubMed

    Vaquero, Javier; Monte, Maria J; Dominguez, Mercedes; Muntané, Jordi; Marin, Jose J G

    2013-10-01

    The farnesoid X receptor (FXR) is a key sensor in bile acid homeostasis. Although four human FXR isoforms have been identified, the physiological role of this diversity is poorly understood. Here we investigated their subcellular localization, agonist sensitivity and response of target genes. Measurement of mRNA revealed that liver predominantly expressed FXRα1(+/-), whereas FXRα2(+/-) were the most abundant isoforms in kidney and intestine. In all cases, the proportion of FXRα(1/2)(+) and FXRα(1/2)(-) isoforms, i.e., with and without a 12bp insert, respectively, was approximately 50%. When FXR was expressed in liver and intestinal cells the magnitude of the response to GW4064 and bile acids differs among FXR isoforms. In both cell types the strongest response was that of FXRα1(-). Different efficacy of bile acids species to activate FXR was found. The four FXR isoforms shared the order of sensitivity to bile acids species. When in FXR-deficient cells FXR was transfected, unconjugated, but not taurine- and glycine-amidated bile acids, were able to activate FXR. In contrast, human hepatocytes and cell lines showing an endogenous expression of FXR were sensitive to both unconjugated and conjugated bile acids. This suggests that to activate FXR conjugated, but not unconjugated, bile acids require additional component(s) of the intracellular machinery not related with uptake processes, which are missing in some tumor cells. In conclusion, cell-specific pattern of FXR isoforms determine the overall tissue sensitivity to FXR agonists and may be involved in the differential response of FXR target genes to FXR activation.

  20. A vaccine strategy with multiple prostatic acid phosphatase-fused cytokines for prostate cancer treatment

    PubMed Central

    FUJIO, KEI; WATANABE, MASAMI; UEKI, HIDEO; LI, SHUN-AI; KINOSHITA, RIE; OCHIAI, KAZUHIKO; FUTAMI, JUNICHIRO; WATANABE, TOYOHIKO; NASU, YASUTOMO; KUMON, HIROMI

    2015-01-01

    Immunotherapy is one of the attractive treatment strategies for advanced prostate cancer. The US Food and Drug Administration (FDA) previously approved the therapeutic vaccine, sipuleucel-T, which is composed of autologous antigen-presenting cells cultured with a fusion protein [prostatic acid phosphatase (PAP) and granulocyte-macrophage colony-stimulating factor (GMCSF)]. Although sipuleucel-T has been shown to prolong the median survival of patients for 4.1 months, more robust therapeutic effects may be expected by modifying the vaccination protocol. In the present study, we aimed to develop and validate a novel vaccination strategy using multiple PAP-fused cytokines for prostate cancer treatment. Using a super gene expression (SGE) system that we previously established to amplify the production of a recombinant protein, significant amounts of PAP-fused cytokines [human GMCSF, interleukin-2 (IL2), IL4, IL7 and mouse GMCSF and IL4] were obtained. We examined the activity of the fusion proteins in vitro to validate their cytokine functions. A significant upregulation of dendritic cell differentiation from monocytes was achieved by PAP-GMCSF when used with the other PAP-fused cytokines. The PAP-fused human IL2 significantly increased the proliferation of lymphocytes, as determined by flow cytometry. We also investigated the in vivo therapeutic effects of multiple PAP-fused cytokines in a mouse prostate cancer model bearing prostate-specific antigen (PSA)- and PAP-expressing tumors. The simultaneous intraperitoneal administration of PAP-GMCSF, -IL2, -IL4 and -IL7 significantly prevented tumor induction and inhibited the tumor growth in the PAP-expressing tumors, yet not in the PSA-expressing tumors. The in vivo therapeutic effects with the multiple PAP-fused cytokines were superior to the effects of PAP-GMCSF alone. We thus demonstrated the advantages of the combined use of multiple PAP-fused cytokines including PAP-GMCSF, and propose a promising prostatic antigen

  1. Acid phosphatases of the rat epididymis. II. Biochemical characteristics, subcellular distribution and histochemical localization.

    PubMed

    Nikkanen, V; Vanha-Perttula, T

    1977-01-01

    After separation of three epididymal acid phosphatases their biochemical properties were differently studied. With appropriate substrate and inhibitor selection the distribution of the enzymes in different segments as well as the subcellular fractions of the rat epididymis was also demonstrated. The same biochemical differences were also utilized in the histochemical localization of the enzymes. It was found that Enzyme I had a pH-optimum at 5.0, a molecular weight of 97 000 and Km-constant of 0.901 mM. It was highly sensitive to tartrate and fluoride and it was localized in lysosomes as well as in the epididymal spermatozoa. Enzyme II had an optimum at pH 5.7, a molecular weight of 67 000 and Km-constant of 0.806 mM. It was also inhibited by fluoride but more resistant to tartrate. Its subcellular site was also particulate, but it was also found in the epididymal fluid. Enzyme III had an optimum at pH 5.2, a molecular weight of 135 000 and Km-constant of 0.685 m. It was resistant to low concentrations of fluoride and tartrate but sensitive to heavy metal ions. The enzyme was soluble and it behaved incoherently in thermal inactivation. All enzymes revealed the highest activity in the thin middle segments of the epididymis. Histochemical naphthol substrates gave a diffuse reaction in the epididymal epithelial cells. With the lead salt methods glycerophosphates and p-nitrophenylphosphate gave somewhat different results depending on their specificity as substrates for the epididymal enzymes. Both substrates gave a strong reaction supranuclearly in the Golgi area of the chief cells. This activity was inhibited by tartrate and was most probably due to Enzyme I. The epididymal corpus and cauda showed additionally a very strong apical activity in the chief cells with p-nitrophenylphosphate. This activity was resitant to tartrate but sensitive to fluoride. It was concluded that this enzyme represents Enzyme II activity. Similar activity was also found in the dissolving

  2. Apolipoprotein E isoforms 3/3 and 3/4 differentially interact with circulating stearic, palmitic, and oleic fatty acids and lipid levels in Alaskan Natives.

    PubMed

    Castellanos-Tapia, Lyssia; López-Alvarenga, Juan Carlos; Ebbesson, Sven O E; Ebbesson, Lars O E; Tejero, M Elizabeth

    2015-04-01

    Lifestyle changes in Alaskan Natives have been related to the increase of cardiovascular disease and metabolic syndrome in the last decades. Variation of the apolipoprotein E (Apo E) genotype may contribute to the diverse response to diet in lipid metabolism and influence the association between fatty acids in plasma and risk factors for cardiovascular disease. The aim of this investigation was to analyze the interaction between Apo E isoforms and plasma fatty acids, influencing phenotypes related to metabolic diseases in Alaskan Natives. A sample of 427 adult Siberian Yupik Alaskan Natives was included. Fasting glucose, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, Apo A1, and Apo B plasma concentrations were measured using reference methods. Concentrations of 13 fatty acids in fasting plasma were analyzed by gas chromatography, and Apo E variants were identified. Analyses of covariance were conducted to identify Apo E isoform and fatty acid main effects and multiplicative interactions. The means for body mass index and age were 26 ± 5.2 and 47 ± 1.5, respectively. Significant main effects were observed for variation in Apo E and different fatty acids influencing Apo B levels, triglycerides, and total cholesterol. Significant interactions were found between Apo E isoform and selected fatty acids influencing total cholesterol, triglycerides, and Apo B concentrations. In summary, Apo E3/3 and 3/4 isoforms had significant interactions with circulating levels of stearic, palmitic, oleic fatty acids, and phenotypes of lipid metabolism in Alaskan Natives.

  3. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA.

    PubMed

    Hoang, Ky Van; Chen, Carolyn G; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E; Gunn, John S

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  4. Identification of Genes Required for Secretion of the Francisella Oxidative Burst-Inhibiting Acid Phosphatase AcpA

    PubMed Central

    Hoang, Ky Van; Chen, Carolyn G.; Koopman, Jacob; Moshiri, Jasmine; Adcox, Haley E.; Gunn, John S.

    2016-01-01

    Francisella tularensis is a Tier 1 bioterror threat and the intracellular pathogen responsible for tularemia in humans and animals. Upon entry into the host, Francisella uses multiple mechanisms to evade killing. Our previous studies have shown that after entering its primary cellular host, the macrophage, Francisella immediately suppresses the oxidative burst by secreting a series of acid phosphatases including AcpA-B-C and HapA, thereby evading the innate immune response of the macrophage and enhancing survival and further infection. However, the mechanism of acid phosphatase secretion by Francisella is still unknown. In this study, we screened for genes required for AcpA secretion in Francisella. We initially demonstrated that the known secretion systems, the putative Francisella-pathogenicity island (FPI)-encoded Type VI secretion system and the Type IV pili, do not secrete AcpA. Using random transposon mutagenesis in conjunction with ELISA, Western blotting and acid phosphatase enzymatic assays, a transposon library of 5450 mutants was screened for strains with a minimum 1.5-fold decrease in secreted (culture supernatant) AcpA, but no defect in cytosolic AcpA. Three mutants with decreased supernatant AcpA were identified. The transposon insertion sites of these mutants were revealed by direct genomic sequencing or inverse-PCR and sequencing. One of these mutants has a severe defect in AcpA secretion (at least 85% decrease) and is a predicted hypothetical inner membrane protein. Interestingly, this mutant also affected the secretion of the FPI-encoded protein, VgrG. Thus, this screen identified novel protein secretion factors involved in the subversion of host defenses. PMID:27199935

  5. Carbonic anhydrase activators: an activation study of the human mitochondrial isoforms VA and VB with amino acids and amines.

    PubMed

    Vullo, Daniela; Nishimori, Isao; Innocenti, Alessio; Scozzafava, Andrea; Supuran, Claudiu T

    2007-03-01

    The mitochondrial isozymes of human carbonic anhydrase (hCA, EC 4.2.1.1), hCA VA and hCA VB, were investigated for activation with a series of amino acids and amines. D-His, L-DOPA, histamine, dopamine, and 4-(2-aminoethyl)morpholine were excellent hCA VA activators, with KAs in the range of 10-130 nM. Good hCA VB activating effects were identified for L-His, D-Phe, D-DOPA, L-Trp, L-Tyr, serotonin, and 2-(2-aminoethyl)-pyridine, with KAs in the range of 44-110 nM. All these activators enhanced kcat, having no effect on KM, favoring thus the rate-determining step in the catalytic cycle, the proton transfer reactions between the active site and environment. The activation pattern of the two mitochondrial isoforms is very different from each other and as compared to those of the cytosolic isoforms hCA I and II. PMID:17174092

  6. Toxic impact of aldrin on acid and alkaline phosphatase activity of penaeid prawn, Metapenaeus monoceros: In vitro study

    SciTech Connect

    Reddy, M.S.; Jayaprada, P.; Rao, K.V.R. )

    1991-03-01

    The increasing contamination of the aquatic environment by the indiscriminate and widespread use of different kinds of pesticides is a serious problem for environmental biologists. Organochlorine insecticides are more hazardous since they are not only more toxic but also leave residues in nature. The deleterious effects of aldrin on several crustaceans have been studied. But studies concerning the impact of aldrin on biochemical aspects of crustaceans are very much limited. The present study is aimed at probing the in vitro effects of aldrin on the acid and alkaline phosphatase activity levels in selected tissues of penaeid prawn, Metapenaeus monoceros (Fabricius).

  7. Calcification in human osteoblasts cultured in medium conditioned by the prostatic cancer cell line PC-3 and prostatic acid phosphatase.

    PubMed

    Kimura, G; Sugisaki, Y; Masugi, Y; Nakazawa, N

    1992-01-01

    A medium that had been conditioned by PC-3 cells stimulated the calcification of a human osteoblastic cell line, Tak-10, in a nonmitogenic culture. The calcification of the osteoblasts was stimulated maximally at a 25% concentration of the conditioned medium. Calcification activity was markedly enhanced by the addition of both prostatic acid phosphatase (PAP) and its substrate, alpha-glycerophosphate, to the medium; however, PAP added alone did not enhance this activity. These results suggest that human prostatic carcinoma cells produce a factor that stimulates the calcification of the human osteoblasts. Results have also suggested that PAP is a requisite for osteogenesis provided that its substrates are abundant in the medium.

  8. Comparative acid phosphatase distribution in the suprarenal gland of Discoglossus pictus, Xenopus laevis and Bufo bufo (Anurans, Amphibia).

    PubMed

    Manelli, H; Mastrolia, L; Arizzi, M

    1981-01-01

    Acid phosphatase activity was found to have a similar distribution in the suprarenal glands of Discoglossus pictus, Xenopus laevis and Bufo Bufo (Anurans, Amphibia) as determined by light and electron histochemical localization. The enzymatic activity is localized in the lysosomes of both the interrenal cells and the chromaffin cells. It is, moreover, positive on the granule membranes of the adrenaline cells whereas it appears only occasionally on the granule membranes of the noradrenaline cells. Some precipitates can also be seen occasionally at the level of the Golgi membranes.

  9. Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells.

    PubMed Central

    Waheed, A; Gottschalk, S; Hille, A; Krentler, C; Pohlmann, R; Braulke, T; Hauser, H; Geuze, H; von Figura, K

    1988-01-01

    BHK cells transfected with human lysosomal acid phosphatase (LAP) cDNA (CT29) expressed 70-fold higher enzyme activities of acid phosphatase than non-transfected BHK cells. The CT29-LAP was synthesized in BHK cells as a heterogeneously glycosylated precursor that was tightly membrane associated. Transfer to the trans-Golgi was associated with a small increase in size (approximately 7 kd) and partial processing of the oligosaccharides to complex type structures. CT29-LAP was transferred into lysosomes as shown by subcellular fractionation, immunofluorescence and immunoelectron microscopy. Lack of mannose-6-phosphate residues suggested that transport does not involve mannose-6-phosphate receptors. Part of the membrane-associated CT29-LAP was processed to a soluble form. The mechanism that converts CT29-LAP into a soluble form was sensitive to NH4Cl, and reduced the size of the polypeptide by 7 kd. In vitro translation of CT29-derived cRNA in the presence of microsomal membranes yielded a CT29-LAP precursor that is protected from proteinase K except for a small peptide of approximately 2 kd. In combination with the sequence data available for LAP, these observations suggest that CT29-LAP is synthesized and transported to lysosomes as a transmembrane protein. In the lysosomes, CT29-LAP is released from the membrane by proteolytic cleavage, which removes a C-terminal peptide including the transmembrane domain and the cytosolic tail of 18 amino acids. Images PMID:3056714

  10. High Uric Acid (UA) Negatively Affects Serum Tartrate-Resistant Acid Phosphatase 5b (TRACP 5b) Immunoassay

    PubMed Central

    Wu, Zhi-Qi; Zhang, Yan; Xie, Erfu; Song, Wei-Juan; Yang, Rui-Xia; Yan, Cheng-Jing; Zhang, Bing-Feng; Xu, Hua-Guo

    2016-01-01

    Background Bone metastases often occur in the majority of patients with advanced cancer, such as prostate cancer, lung cancer and breast cancer. Serum tartrate-resistant acid phosphatase 5b (TRACP 5b), a novel bone resorption marker, has been used gradually in the clinics as a specific and sensitive marker of bone resorption for the early diagnosis of cancer patients with bone metastasis. Here, we reported that high concentrations of uric acid (UA) lead to decrease of TRACP 5b levels and determined whether TRACP 5b level was associated with UA in interference experiment. Methods A total of 77 patients with high concentrations of UA and 77 healthy subjects were tested to evaluate the differences in their TRACP 5b levels. Serial dilutions of UA were respectively spiked with a known concentration of TRACP 5b standard sample, then Serum TRACP 5b was detected by using bone TRAP® Assay. A correction equation was set to eliminate UA-derived TRACP 5b false-decrease. The effect of this correction was evaluated in high-UA individuals. Results The average TRACP level of the high-UA individuals (1.47± 0.62 U/L) was significantly lower than that of the healthy subjects (2.62 ± 0.63 U/L) (t-test, p<0.0001). The UA correction equation derived: ΔTRACP 5b = -1.9751lgΔUA + 3.7365 with an R2 = 0.98899. Application of the UA correction equation resulted in a statistically non-significant difference in TRACP 5b values between the healthy subjects and high-UA individuals (p = 0.24). Conclusions High UA concentrations can falsely decrease TRACP 5b levels due to a method-related systematic error. To avoid misdiagnoses or inappropriate therapeutic decisions, increased attention should be paid to UA interference, when TRACP 5b is used for early diagnosis of cancer patients with bone metastasis, evaluation of the aggressiveness of osteosarcoma or prediction of survival in prostate cancer and breast cancer with bone metastases. PMID:26800211

  11. The catalytic role of aspartic acid-92 in a human dual-specific protein-tyrosine-phosphatase.

    PubMed

    Denu, J M; Zhou, G; Guo, Y; Dixon, J E

    1995-03-14

    The mechanism of catalysis for the human dual-specific (vaccinia H1-related) protein-tyrosine-phosphatase was investigated. The pH dependence of the kcat value is bell-shaped when p-nitrophenyl phosphate was employed as a model substrate. The kcat/Km pH profile rises with a slope of 2 and decreases with a slope of -1, indicating that two groups must be unprotonated and one group must be protonated for activity. An amino acid residue with an apparent pKa value of 5.5 +/- 0.2 must be unprotonated and a residue with a pKa value of 5.7 must be unprotonated for activity. The pKa value of the catalytic cysteine-124 (C124) was 5.6 +/- 0.1. The aspartic acid-92-asparagine (D92N) mutant enzyme was 100-fold less active than the native enzyme and exhibited the loss of the basic limb in the pH profiles, suggesting that in the native enzyme D92 must be protonated for activity. The D92 residue is conserved throughout the entire family of dual-specific phosphatases. Mutants glutamic acid-6-glutamine, glutamic acid-32-glutamine, aspartic acid-14-asparagine, and aspartic acid-110-asparagine had less than a 2-fold effect on the kinetic parameters when compared to native enzyme. Based upon the lack of a "burst" in rapid reaction kinetics, formation of the intermediate is rate-limiting with both native and D92N mutant enzymes. In agreement with rate-limiting formation of the intermediate, the pKa value of 5.5 for the group which must be unprotonated for activity was assigned to C124.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family

    PubMed Central

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A. Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J. H.

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  13. The maize (Zea mays ssp. mays var. B73) genome encodes 33 members of the purple acid phosphatase family.

    PubMed

    González-Muñoz, Eliécer; Avendaño-Vázquez, Aida-Odette; Montes, Ricardo A Chávez; de Folter, Stefan; Andrés-Hernández, Liliana; Abreu-Goodger, Cei; Sawers, Ruairidh J H

    2015-01-01

    Purple acid phosphatases (PAPs) play an important role in plant phosphorus nutrition, both by liberating phosphorus from organic sources in the soil and by modulating distribution within the plant throughout growth and development. Furthermore, members of the PAP protein family have been implicated in a broader role in plant mineral homeostasis, stress responses and development. We have identified 33 candidate PAP encoding gene models in the maize (Zea mays ssp. mays var. B73) reference genome. The maize Pap family includes a clear single-copy ortholog of the Arabidopsis gene AtPAP26, shown previously to encode both major intracellular and secreted acid phosphatase activities. Certain groups of PAPs present in Arabidopsis, however, are absent in maize, while the maize family contains a number of expansions, including a distinct radiation not present in Arabidopsis. Analysis of RNA-sequencing based transcriptome data revealed accumulation of maize Pap transcripts in multiple plant tissues at multiple stages of development, and increased accumulation of specific transcripts under low phosphorus availability. These data suggest the maize PAP family as a whole to have broad significance throughout the plant life cycle, while highlighting potential functional specialization of individual family members. PMID:26042133

  14. Relation of fatty acid composition in lead-exposed mallards to fat mobilization, lipid peroxidation and alkaline phosphatase activity

    USGS Publications Warehouse

    Mateo, R.; Beyer, W.N.; Spann, J.W.; Hoffman, D.J.

    2003-01-01

    The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of Pb poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for three weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with increased triglycerides and cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.

  15. X-ray absorption studies of the purple acid phosphatase from red kidney beans (native enzyme, metal exchanged form)

    NASA Astrophysics Data System (ADS)

    Ahlers, F.; Zippel, F.; Klabunde, T.; Krebs, B.; Löcke, R.; Witzel, H.; Nolting, H.-F.

    1995-02-01

    Purple acid phosphatase from red kidney beans (KBP) catalyzes the hydrolysis of activated phosphoric acid monoesters and contains a heterodinuclear Fe(III)Zn(II) core in its active site. Iron K-edge X-ray absorption data have been obtained for the native enzyme and for a metal exchanged derivative, where Zn(II) was substituted by Fe(III). The environment of the native enzyme consists of 2.5 O/N at 1.91 Å, 3 O/N at 2.09 Å, and 1 Zn at 4.05 Å. For the metal exchanged form we obtained 2.5 O/N at 1.94 Å, 2.5 O/N at 2.09 Å, and 1 Fe at 3.79 Å.

  16. A structure-based proposal for the catalytic mechanism of the bacterial acid phosphatase AphA belonging to the DDDD superfamily of phosphohydrolases.

    PubMed

    Calderone, Vito; Forleo, Costantino; Benvenuti, Manuela; Thaller, Maria Cristina; Rossolini, Gian Maria; Mangani, Stefano

    2006-01-27

    The Escherichia coli gene aphA codes for a periplasmic acid phosphatase called AphA, belonging to class B bacterial phosphatases, which is part of the DDDD superfamily of phosphohydrolases. After our first report about its crystal structure, we have started a series of crystallographic studies aimed at understanding of the catalytic mechanism of the enzyme. Here, we report three crystal structures of the AphA enzyme in complex with the hydrolysis products of nucleoside monophosphate substrates and a fourth with a proposed intermediate analogue that appears to be covalently bound to the enzyme. Comparison with the native enzyme structure and with the available X-ray structures of different phosphatases provides clues about the enzyme chemistry and allows us to propose a catalytic mechanism for AphA, and to discuss it with respect to the mechanism of other bacterial and human phosphatases.

  17. Variation of Photosynthesis, Fatty Acid Composition, ATPase and Acid Phosphatase Activities, and Anatomical Structure of Two Tea (Camellia sinensis (L.) O. Kuntze) Cultivars in Response to Fluoride

    PubMed Central

    Wang, L. X.; Tang, J. H.; Xiao, B.; Yang, Y. J.; Liu, J.

    2013-01-01

    The changes of photosynthetic parameters, water use efficiency (WUE), fatty acid composition, chlorophyll (Chl) content, malondialdehyde (MDA) content, ATPase and acid phosphatase activities, fluoride (F) content, and leaf anatomical structure of two tea cultivars, “Pingyangtezao” (PY) and “Fudingdabai” (FD), after F treatments were investigated. The results show that net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (E) significantly decreased in both cultivars after 0.3 mM F treatment, but FD had higher Pn, gs, and WUE and lower E than PY. Chl content in PY significantly decreased after 0.2 and 0.3 mM F treatments, while no significant changes were observed in FD. The proportions of shorter chain and saturated fatty acids increased and those of longer chain and unsaturated fatty acids decreased in both cultivars under F treatments. The contents of MDA increased after F treatments but were higher in PY than in FD. In addition, F treatments decreased the activities of ATPase and acid phosphatase and increased F content in both cultivars; however, compared with PY, FD showed higher enzymatic activities and lower F content in roots and leaves. Leaf anatomical structure in FD indicated that cells in leaf midrib region were less injured by F than in PY. PMID:24023526

  18. Variation of photosynthesis, fatty acid composition, ATPase and acid phosphatase activities, and anatomical structure of two tea (Camellia sinensis (L.) O. Kuntze) cultivars in response to fluoride.

    PubMed

    Wang, L X; Tang, J H; Xiao, B; Yang, Y J; Liu, J

    2013-01-01

    The changes of photosynthetic parameters, water use efficiency (WUE), fatty acid composition, chlorophyll (Chl) content, malondialdehyde (MDA) content, ATPase and acid phosphatase activities, fluoride (F) content, and leaf anatomical structure of two tea cultivars, "Pingyangtezao" (PY) and "Fudingdabai" (FD), after F treatments were investigated. The results show that net photosynthetic rate (P(n)), stomatal conductance (g(s)), and transpiration rate (E) significantly decreased in both cultivars after 0.3 mM F treatment, but FD had higher P(n), g(s), and WUE and lower E than PY. Chl content in PY significantly decreased after 0.2 and 0.3 mM F treatments, while no significant changes were observed in FD. The proportions of shorter chain and saturated fatty acids increased and those of longer chain and unsaturated fatty acids decreased in both cultivars under F treatments. The contents of MDA increased after F treatments but were higher in PY than in FD. In addition, F treatments decreased the activities of ATPase and acid phosphatase and increased F content in both cultivars; however, compared with PY, FD showed higher enzymatic activities and lower F content in roots and leaves. Leaf anatomical structure in FD indicated that cells in leaf midrib region were less injured by F than in PY.

  19. Structure of 'linkerless' hydroxamic acid inhibitor-HDAC8 complex confirms the formation of an isoform-specific subpocket.

    PubMed

    Tabackman, Alexa A; Frankson, Rochelle; Marsan, Eric S; Perry, Kay; Cole, Kathryn E

    2016-09-01

    Histone deacetylases (HDACs) catalyze the hydrolysis of acetylated lysine side chains in histone and non-histone proteins, and play a critical role in the regulation of many biological processes, including cell differentiation, proliferation, senescence, and apoptosis. Aberrant HDAC activity is associated with cancer, making these enzymes important targets for drug design. In general, HDAC inhibitors (HDACi) block the proliferation of tumor cells by inducing cell differentiation, cell cycle arrest, and/or apoptosis, and comprise some of the leading therapies in cancer treatments. To date, four HDACi have been FDA approved for the treatment of cancers: suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza®), romidepsin (FK228, Istodax®), belinostat (Beleodaq®), and panobinostat (Farydak®). Most current inhibitors are pan-HDACi, and non-selectively target a number of HDAC isoforms. Six previously reported HDACi were rationally designed, however, to target a unique sub-pocket found only in HDAC8. While these inhibitors were indeed potent against HDAC8, and even demonstrated specificity for HDAC8 over HDACs 1 and 6, there were no structural data to confirm the mode of binding. Here we report the X-ray crystal structure of Compound 6 complexed with HDAC8 to 1.98Å resolution. We also describe the use of molecular docking studies to explore the binding interactions of the other 5 related HDACi. Our studies confirm that the HDACi induce the formation of and bind in the HDAC8-specific subpocket, offering insights into isoform-specific inhibition. PMID:27374062

  20. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production.

    PubMed

    Zhang, Ying-Hua; Xu, Di; Liu, Jia-Qi; Zhao, Xin-Huai

    2014-12-01

    Skimmed milk spiked with five organophosphorus pesticides (OPPs), chlorpyrifos, diazinon, fenitrothion, malathion and methyl parathion, was fermented by ten lactic acid bacteria (LAB) and four strain combinations at 42°C for 24h. OPPs left in the samples at different times were extracted, purified, detected by gas chromatography and calculated for degradation rate constants, based on a first-order reaction model. OPPs degradation was enhanced by the inoculated LAB, resulting in 0.8-225.4% increase in the rate constants. Diazinon and methyl parathion were more stable whereas chlorpyrifos, fenitrothion and malathion were more labile. Lactobacillus brevis 1.0209 showed the strongest acceleration on OPPs degradation while strain combination could bring about a synergy between the strains of lower ability. Phosphatase production of the strains might be one of the key factors responsible for the enhanced OPPs degradation, as the detected phosphatase activities were positively correlated to the measured degradation rate constants of OPPs (r=0.636-0.970, P<0.05). PMID:24996321

  1. Enhanced degradation of five organophosphorus pesticides in skimmed milk by lactic acid bacteria and its potential relationship with phosphatase production.

    PubMed

    Zhang, Ying-Hua; Xu, Di; Liu, Jia-Qi; Zhao, Xin-Huai

    2014-12-01

    Skimmed milk spiked with five organophosphorus pesticides (OPPs), chlorpyrifos, diazinon, fenitrothion, malathion and methyl parathion, was fermented by ten lactic acid bacteria (LAB) and four strain combinations at 42°C for 24h. OPPs left in the samples at different times were extracted, purified, detected by gas chromatography and calculated for degradation rate constants, based on a first-order reaction model. OPPs degradation was enhanced by the inoculated LAB, resulting in 0.8-225.4% increase in the rate constants. Diazinon and methyl parathion were more stable whereas chlorpyrifos, fenitrothion and malathion were more labile. Lactobacillus brevis 1.0209 showed the strongest acceleration on OPPs degradation while strain combination could bring about a synergy between the strains of lower ability. Phosphatase production of the strains might be one of the key factors responsible for the enhanced OPPs degradation, as the detected phosphatase activities were positively correlated to the measured degradation rate constants of OPPs (r=0.636-0.970, P<0.05).

  2. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization.

    PubMed

    Durmus, A; Eicken, C; Sift, B H; Kratel, A; Kappl, R; Hüttermann, J; Krebs, B

    1999-03-01

    Purple acid phosphatase from sweet potatoes Ipomoea batatas (spPAP) has been purified to homogeneity and characterized using spectroscopic investigations. Matrix-assisted laser desorption/ionization mass spectrometry analysis revealed a molecular mass of approximately 112 kDa. The metal content was determined by X-ray fluorescence using synchrotron radiation. In contrast to previous studies it is shown that spPAP contains a Fe(III)-Zn(II) center in the active site as previously determined for the purple acid phosphatase from red kidney bean (kbPAP). Moreover, an alignment of the amino acid sequences suggests that the residues involved in metal-binding are identical in both plant PAPs. Tyrosine functions as one of the ligands for the chromophoric Fe(III). Low temperature EPR spectra of spPAP show a signal near g = 4.3, characteristic for high-spin Fe(III) in a rhombic environment. The Tyr-Fe(III) charge transfer transition and the EPR signal are both very sensitive to changes in pH. The pH dependency strongly suggests the presence of an ionizable group with a pKa of 4.7, arising from an aquo ligand coordinated to Fe(III). EPR and UV/visible studies of spPAP in the presence of the inhibitors phosphate or arsenate suggest that both anions bind to Fe(III) in the binuclear center replacing the coordinated water or hydroxide ligand necessary for hydrolysis. The conserved histidine residues of spPAP corresponding to His202 and His296 in kbPAP probably interact in catalysis. PMID:10102999

  3. The active site of purple acid phosphatase from sweet potatoes (Ipomoea batatas) metal content and spectroscopic characterization.

    PubMed

    Durmus, A; Eicken, C; Sift, B H; Kratel, A; Kappl, R; Hüttermann, J; Krebs, B

    1999-03-01

    Purple acid phosphatase from sweet potatoes Ipomoea batatas (spPAP) has been purified to homogeneity and characterized using spectroscopic investigations. Matrix-assisted laser desorption/ionization mass spectrometry analysis revealed a molecular mass of approximately 112 kDa. The metal content was determined by X-ray fluorescence using synchrotron radiation. In contrast to previous studies it is shown that spPAP contains a Fe(III)-Zn(II) center in the active site as previously determined for the purple acid phosphatase from red kidney bean (kbPAP). Moreover, an alignment of the amino acid sequences suggests that the residues involved in metal-binding are identical in both plant PAPs. Tyrosine functions as one of the ligands for the chromophoric Fe(III). Low temperature EPR spectra of spPAP show a signal near g = 4.3, characteristic for high-spin Fe(III) in a rhombic environment. The Tyr-Fe(III) charge transfer transition and the EPR signal are both very sensitive to changes in pH. The pH dependency strongly suggests the presence of an ionizable group with a pKa of 4.7, arising from an aquo ligand coordinated to Fe(III). EPR and UV/visible studies of spPAP in the presence of the inhibitors phosphate or arsenate suggest that both anions bind to Fe(III) in the binuclear center replacing the coordinated water or hydroxide ligand necessary for hydrolysis. The conserved histidine residues of spPAP corresponding to His202 and His296 in kbPAP probably interact in catalysis.

  4. Effects of synthetic retinoids and retinoic acid isomers on the expression of alkaline phosphatase in F9 teratocarcinoma cells.

    PubMed

    Gianni, M; Zanotta, S; Terao, M; Garattini, S; Garattini, E

    1993-10-15

    Expression of ALP in F9 teratocarcinoma cells is induced by all-trans retinoic acid (ATRA) (Gianni' et al., Biochem. J. 274: 673-678, 1991). The specific ligand for retinoic acid related receptors (RXRs), 9-cis retinoic acid (9-cis RA), and three synthetic analogs binding to the alpha, beta and gamma forms of the retinoic acid receptors (RARs), AM580, CD2019, and CD437, were used to study their effects on alkaline phosphatase (ALP) enzymatic activity and mRNA levels. At concentrations close to the Kd for their respective receptors, 9-cis RA, AM580 (the RAR alpha agonist) and CD437 (the RAR gamma agonist) clearly upregulate the expression of the ALP gene, whereas the effect of CD2019 (the RAR beta agonist) is very modest. A specific inhibitor of the RAR alpha, Ro 41-5253, completely blocks the induction of ALP triggered by AM580, while it has minor effects on the upregulation caused by ATRA, 9-cis RA, CD437 and CD2019. The induction of ALP observed with the various retinoids is inhibited by the contemporaneous treatment with dibutyryl cAMP. The levels of the RAR alpha and gamma transcripts are unaltered, while RAR beta mRNAs are induced by ATRA, AM580, CD437 and to a lower extent by 9-cis RA and CD2019.

  5. Dermcidin isoform-2 induced nullification of the effect of acetyl salicylic acid in platelet aggregation in acute myocardial infarction.

    PubMed

    Bank, Sarbashri; Jana, Pradipta; Maiti, Smarajit; Guha, Santanu; Sinha, A K

    2014-07-24

    The aggregation of platelets on the plaque rupture site on the coronary artery is reported to cause both acute coronary syndromes (ACS) and acute myocardial infarction (AMI). While the inhibition of platelet aggregation by acetyl salicylic acid was reported to produce beneficial effects in ACS, it failed to do in AMI. The concentration of a stress induced protein (dermcidin isoform-2) was much higher in AMI than that in ACS. Incubation of normal platelet rich plasma (PRP) with dermcidin showed one high affinity (Kd = 40 nM) and one low affinity binding sites (Kd = 333 nM). When normal PRP was incubated with 0.4 μM dermcidin, the platelets became resistant to the inhibitory effect of aspirin similar to that in the case of AMI. Incubation of PRP from AMI with dermcidin antibody restored the sensitivity of the platelets to the aspirin effect. Incubation of AMI PRP pretreated with 15 μM aspirin, a stimulator of the NO synthesis, resulted in the increased production of NO in the platelets that removed the bound dermcidin by 40% from the high affinity binding sites of AMI platelets. When the same AMI PRP was retreated with 10 μM aspirin, the aggregation of platelets was completely inhibited by NO synthesis.

  6. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants.

    PubMed

    Truong, Ngoc Thanh; Naseri, Joseph Itor; Vogel, Andreas; Rompel, Annette; Krebs, B

    2005-08-01

    Purple acid phosphatases are binuclear metalloenzymes, which catalyze the conversion of orthophosphoric monoesters to alcohol and orthophosphate. The enzyme from red kidney beans is characterized with a Fe(III)-Zn(II) active center. So far, the reaction mechanisms postulated for PAPs assume the essentiality of two amino acids, residing near the bimetallic active site. Based on the amino acid sequence of kidney bean PAP (kbPAP), residues H296 and H202 are believed to be essential for catalytic function of the enzyme. In the present study, the role of residue H202 has been elucidated. Mutants H202A and H202R were prepared by site-directed mutagenesis and expressed in baculovirus-infected insect cells. Based on kinetic studies, residue H202 is assumed to play a role in stabilizing the transition state, particularly in charge compensation, steric positioning of the substrate, and facilitating the release of the product by protonating the substrate leaving groups. The study confirmed the essentiality and elucidates the functional role of H202 in the catalytic mechanism of kbPAP.

  7. Structure-function relationships of purple acid phosphatase from red kidney beans based on heterologously expressed mutants.

    PubMed

    Truong, Ngoc Thanh; Naseri, Joseph Itor; Vogel, Andreas; Rompel, Annette; Krebs, B

    2005-08-01

    Purple acid phosphatases are binuclear metalloenzymes, which catalyze the conversion of orthophosphoric monoesters to alcohol and orthophosphate. The enzyme from red kidney beans is characterized with a Fe(III)-Zn(II) active center. So far, the reaction mechanisms postulated for PAPs assume the essentiality of two amino acids, residing near the bimetallic active site. Based on the amino acid sequence of kidney bean PAP (kbPAP), residues H296 and H202 are believed to be essential for catalytic function of the enzyme. In the present study, the role of residue H202 has been elucidated. Mutants H202A and H202R were prepared by site-directed mutagenesis and expressed in baculovirus-infected insect cells. Based on kinetic studies, residue H202 is assumed to play a role in stabilizing the transition state, particularly in charge compensation, steric positioning of the substrate, and facilitating the release of the product by protonating the substrate leaving groups. The study confirmed the essentiality and elucidates the functional role of H202 in the catalytic mechanism of kbPAP. PMID:16009331

  8. Phosphorylated TandeMBP: A unique protein substrate for protein phosphatase assay.

    PubMed

    Sugiyama, Yasunori; Yamashita, Sho; Uezato, Yuuki; Senga, Yukako; Katayama, Syouichi; Goshima, Naoki; Shigeri, Yasushi; Sueyoshi, Noriyuki; Kameshita, Isamu

    2016-11-15

    To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca(2+)/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials. Moreover, P-TandeMBP served as an efficient substrate for PPM family phosphatases (PPM1A, PPM1B, PPM1D, PPM1F, PPM1G, PPM1H, PPM1K, and PPM1M) and PPP family phosphatase PP5. Various phosphatase activities were also detected with high sensitivity in gel filtration fractions from mouse brain using P-TandeMBP. These results indicate that P-TandeMBP might be a powerful tool for the detection of protein phosphatase activities. PMID:27565380

  9. Characterization of a soluble phosphatidic acid phosphatase in bitter melon (Momordica charantia)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Momordica charantia is often called bitter melon, bitter gourd or bitter squash because its fruit has a bitter taste. The fruit has been widely used as vegetable and herbal medicine. Alpha-eleostearic acid is the major fatty acid in the seeds, but little is known about its biosynthesis. As an initia...

  10. Overexpression of a phosphatidic acid phosphatase type 2 leads to an increase in triacylglycerol production in oleaginous Rhodococcus strains.

    PubMed

    Hernández, Martín A; Comba, Santiago; Arabolaza, Ana; Gramajo, Hugo; Alvarez, Héctor M

    2015-03-01

    Oleaginous Rhodococcus strains are able to accumulate large amounts of triacylglycerol (TAG). Phosphatidic acid phosphatase (PAP) enzyme catalyzes the dephosphorylation of phosphatidic acid (PA) to yield diacylglycerol (DAG), a key precursor for TAG biosynthesis. Studies to establish its role in lipid metabolism have been mainly focused in eukaryotes but not in bacteria. In this work, we identified and characterized a putative PAP type 2 (PAP2) encoded by the ro00075 gene in Rhodococcus jostii RHA1. Heterologous expression of ro00075 in Escherichia coli resulted in a fourfold increase in PAP activity and twofold in DAG content. The conditional deletion of ro00075 in RHA1 led to a decrease in the content of DAG and TAG, whereas its overexpression in both RHA1 and Rhodococcus opacus PD630 promoted an increase up to 10 to 15 % by cellular dry weight in TAG content. On the other hand, expression of ro00075 in the non-oleaginous strain Rhodococcus fascians F7 promoted an increase in total fatty acid content up to 7 % at the expense of free fatty acid (FFA), DAG, and TAG fractions. Moreover, co-expression of ro00075/atf2 genes resulted in a fourfold increase in total fatty acid content by a further increase of the FFA and TAG fractions. The results of this study suggest that ro00075 encodes for a PAP2 enzyme actively involved in TAG biosynthesis. Overexpression of this gene, as single one or with an atf gene, provides an alternative approach to increase the biosynthesis and accumulation of bacterial oils as a potential source of raw material for biofuel production.

  11. Structure of recombinant Haemophilus influenzae e (P4) acid phosphatase reveals a new member of the haloacid dehalogenase superfamily.

    PubMed

    Felts, Richard L; Ou, Zhonghui; Reilly, Thomas J; Tanner, John J

    2007-10-01

    Lipoprotein e (P4) from Haemophilus influenzae belongs to the "DDDD" superfamily of phosphohydrolases and is the prototype of class C nonspecific acid phosphatases. P4 is also a component of a H. influenzae vaccine. We report the crystal structures of recombinant P4 in the ligand-free and tungstate-inhibited forms, which are the first structures of a class C phosphatase. P4 has a two-domain architecture consisting of a core alpha/beta domain and a smaller alpha domain. The core domain features a five-stranded beta-sheet flanked by helices on both sides that is reminiscent of the haloacid dehalogenase superfamily. The alpha domain appears to be unique and plays roles in substrate binding and dimerization. The active site is solvent accessible and located in a cleft between the two domains. The structure shows that P4 is a metalloenzyme and that magnesium is the most likely metal ion in the crystalline recombinant enzyme. The ligands of the metal ion are the carboxyl groups of the first and third Asp residues of the DDDD motif, the backbone carbonyl of the second Asp of the DDDD motif, and two water molecules. The structure of the tungstate-bound enzyme suggests that Asp64 is the nucleophile that attacks the substrate P atom. Dimerization appears to be important for catalysis because intersubunit contacts stabilize the active site. Analysis of the structural context of mutations engineered for vaccine studies shows that the most promising mutations are located in the dimer interface. This observation suggests a structure-based vaccine design strategy in which the dimer interface is disrupted in order to expose epitopes that are buried in dimeric P4.

  12. Clinical usefulness of serum tartrate-resistant fluoride-sensitive acid phosphatase activity in evaluating bone turnover.

    PubMed

    Nakanishi, M; Yoh, K; Uchida, K; Maruo, S; Rai, S K; Matsuoka, A

    1999-01-01

    This study was carried out to evaluate the clinical validity and usefulness of serum tartrate-resistant fluoride-sensitive acid phosphatase (TrFsACP) activity using 2,6-dichloro-4-acetylphenyl phosphate as substrate at pH 6.2 in metabolic bone diseases. The mean Z-scores of TrFsACP activity in patients on hemodialysis were higher than in healthy subjects (male: 2.04+/-1.98, n = 49, P < .05; female: 1.49+/-2.43, n = 39, P < .05) and increased with duration of hemodialysis (r = .516, P < .01). Bone alkaline phosphatase also was found to be significantly higher in hemodialysis patients (male: 0.93+/-1.49, P < .05; female: 1.66+/-2.42, P < .05) compared with normal subjects: but had lower correlation with duration of hemodialysis than TrFsACP (r = .277, P < .05). Ulcerative colitis (1.37+/-2.21, n = 15) in males showed a significantly higher Z-score of TrFsACP compared with control subjects (P < .05). The relationship of TrFsACP activity and ultrasound findings (stiffness; speed of sound [SOS]; broadband ultra sound attenuation [BUA]) in healthy women aged 30-75 years (n = 95) were inversely and significantly correlated with stiffness (r = -.465, P < .01 ), SOS (r = -.484, P < .01), and BUA (r = -.366, P < .01), but were age dependent. TrFsACP activity significantly correlated with stiffness (r = -.521, P < .05) and SOS (r = -.527, P < .05) only in the age group of 46-55 years. BUA (r = -.313, P > .05) did not correlate significantly in any subject in the present study. We conclude that serum TrFsACP activity is useful in the diagnosis and monitoring of bone turnover.

  13. Boswellic Acid Blocks STAT3 Signaling, Proliferation, and Survival of Multiple Myeloma via the Protein Tyrosine Phosphatase SHP-1

    PubMed Central

    Kunnumakkara, Ajaikumar B.; Nair, Asha S.; Sung, Bokyung; Pandey, Manoj K.; Aggarwal, Bharat B.

    2009-01-01

    Activation of signal transducers and activators of transcription (STAT)-3 factors has been linked with survival, proliferation, chemoresistance and angiogenesis of tumor cells, including human multiple myeloma (MM). Thus agents that can suppress STAT3 activation have potential as cancer therapeutics. In our search for such agents, we identified acetyl-11-keto-β-boswellic acid (AKBA), originally isolated from Boswellia serrata. Our results show that AKBA inhibited constitutive STAT3 activation in human MM cells. AKBA suppressed IL-6-induced STAT3 activation, and the inhibition was reversible. The phosphorylation of both Jak 2 and Src, constituents of the STAT3 pathway, was inhibited by AKBA. Interestingly, treatment of cells with pervanadate suppressed AKBA’s effect to inhibit the phosphorylation of STAT3, thus suggesting the involvement of a protein tyrosine phosphatase. We found that AKBA induced Src homology region 2 domain-containing phosphatase 1 (SHP-1), which may account for its role in dephosphorylation of STAT3. Moreover, deletion of SHP-1 gene by SiRNA abolished the ability of AKBA to inhibit STAT3 activation. The inhibition of STAT3 activation by AKBA led to the suppression of gene products involved in proliferation (cyclin D1), survival (Bcl-2, Bcl-xL and Mcl-1), and angiogenesis (VEGF). This affect correlated with the inhibition of proliferation and apoptosis in MM cells. Consistent with these results, overexpression of constitutive active STAT3 significantly reduced the AKBA induced apoptosis. Overall, our results suggest that AKBA is a novel inhibitor of STAT3 activation and has potential in the treatment of cancer. PMID:19147543

  14. Okadaic acid indicates a major function for protein phosphatases in stimulus-response coupling of RINm5F rat insulinoma cells.

    PubMed

    Mayer, P; Jochum, C; Schatz, H; Pfeiffer, A

    1994-01-01

    Stimulus-induced insulin secretion involves the activation of several protein kinases within the beta cell. Most prominent are protein kinase A, protein kinase C and calcium/calmodulin-dependent protein kinases. Protein kinase action is functionally antagonized by protein phosphatases. The four ubiquious serine/threonine protein phosphatases are termed PP-1, PP-2A, -2B and -2C. PP-1 and PP-2A are in vivo parts of major protein complexes. These complexes presumably regulate the phosphatase activity and direct the enzyme to its site of action. Therefore, PP-1 and -2A could play an important role in controlling intracellular signal transmission. Two different toxins, okadaic acid and calyculin A, both from marine invertebrates, were recently discovered and identified as potent and highly specific inhibitors of PP-1 and PP-2A. Both compounds emerged as very useful tools for studying intracellular phosphorylation events. We took advantage of these substances to investigate the significance of protein phosphatase action in stimulus-induced insulin secretion. To avoid major complexity, we confined our study to the cAMP and the phosphoinositide signal pathway. Okadaic acid alone evoked virtually no secretory response. cAMP-dependent secretion was markedly enhanced by 1 microM okadaic acid. The stimulatory effect of okadaic acid was strongly dependent on the concentration of cAMP analoga. In contrast, insulin release caused by the cholinergic agonist carbachol was not influenced by okadaic acid. Calyculin A (10 nM) slightly increased cAMP-induced secretion, but its high toxicity prohibited accurate interpretation of the data. Our findings support the idea that serine/threonine phosphatases act as important regulators in stimulus response coupling.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Farnesoic acid O-methyl transferase (FAMeT) isoforms: conserved traits and gene expression patterns related to caste differentiation in the stingless bee, Melipona scutellaris.

    PubMed

    Vieira, Carlos U; Bonetti, Ana M; Simões, Zilá L P; Maranhão, Andréa Q; Costa, Christiane S; Costa, Maria Cristina R; Siquieroli, Ana Carolina S; Nunes, Francis M F

    2008-02-01

    Farnesoic acid O-methyl transferase (FAMeT) is the enzyme that catalyzes the formation of methyl farnesoate (MF) from farnesoic acid (FA) in the biosynthetic pathway of juvenile hormone (JH). This work reports the cloning, sequencing, and expression of FAMeT gene from the stingless bee Melipona scutellaris (MsFAMeT). The MsFAMeT in silico analysis showed that greatest sequence similarity is found in Apis mellifera and other insects, while relatively less similarity is shown in crustaceans. Evidence of alternative splicing of a 27 nucleotide (nt) microexon explains the presence of the detected isoforms, 1 and 2. The expression analysis of the two isoforms showed a marked difference when castes were compared, suggesting that they could be involved differently in the JH metabolism in M. scutellaris, providing new insights for the comprehension of female plasticity.

  16. Voltage-dependent motion of the catalytic region of voltage-sensing phosphatase monitored by a fluorescent amino acid

    PubMed Central

    Sakata, Souhei; Jinno, Yuka; Kawanabe, Akira; Okamura, Yasushi

    2016-01-01

    The cytoplasmic region of voltage-sensing phosphatase (VSP) derives the voltage dependence of its catalytic activity from coupling to a voltage sensor homologous to that of voltage-gated ion channels. To assess the conformational changes in the cytoplasmic region upon activation of the voltage sensor, we genetically incorporated a fluorescent unnatural amino acid, 3-(6-acetylnaphthalen-2-ylamino)-2-aminopropanoic acid (Anap), into the catalytic region of Ciona intestinalis VSP (Ci-VSP). Measurements of Anap fluorescence under voltage clamp in Xenopus oocytes revealed that the catalytic region assumes distinct conformations dependent on the degree of voltage-sensor activation. FRET analysis showed that the catalytic region remains situated beneath the plasma membrane, irrespective of the voltage level. Moreover, Anap fluorescence from a membrane-facing loop in the C2 domain showed a pattern reflecting substrate turnover. These results indicate that the voltage sensor regulates Ci-VSP catalytic activity by causing conformational changes in the entire catalytic region, without changing their distance from the plasma membrane. PMID:27330112

  17. Roles of arachidonic acid, lipoxygenases and phosphatases in calcium-dependent modulation of M-current in bullfrog sympathetic neurons.

    PubMed Central

    Yu, S P

    1995-01-01

    1. M-current (IM) is regulated by intracellular free Ca2+ ([Ca2+]i). Suppression and overrecovery of IM induced by muscarine and luteinizing-hormone releasing hormone (LHRH) are also regulated by [Ca2+]i. The role of the arachidonic acid (AA) pathway in the Ca(2+)-dependent modulation of IM was investigated using whole-cell voltage clamp and intracellular perfusion in dissociated bullfrog sympathetic B neurons. 2. Quinacrine (10-20 microM) and 4-bromophenacyl bromide (4-BPB; 4-10 microM), the inhibitors of phospholipase A2, blocked the enhancement of IM evoked by raising [Ca2+]i. 3. AA (6-120 microM) increased IM by about 50% of the control current in a Ca(2+)-dependent manner. 4. Enhancements of IM by Ca2+ and AA were blocked by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 1-5 microM) and 5,8,11-eicosatrynoic acid (ETI; 10 microM). The cyclo-oxygenase inhibitor indomethacin (10 microM) had no effect. 5. Enhancement of IM by Ca2+ was abolished by the selective 12-LO inhibitors baicalein (1-2 microM) and 15(S)-hydroxy-5-cis-8-cis-11-cis-13-trans-eicosatetraenoic acid (15-HETE; 6.5 microM). A 12-LO product, 2(S)-hydroxy-5-cis-8-cis-10-trans-14-cis- eicosatetraenoic acid (12-HETE; 13-20 microM), increased IM without Ca2+ requirement. 6. Enhancement of IM by Ca2+ was not affected by the selective 5-LO inhibitors AA-861 (10 microM), 5,6-dehydroarachidonic acid (5,6-DAA, 10 microM) and L-651,896 (10 microM). The 5-LO metabolites leukotriene C4 (1.5-8 microM) and leukotriene B4 (1.5-5 microM) showed no obvious effect on IM. 7. NDGA alone inhibited IM with an IC50 of 0.73 microM at 120 nM Cai(2+). 8. NDGA did not affect suppression of IM by muscarine or LHRH; however, overrecovery of IM upon removing these agonists was totally eliminated by 1 microM NDGA. 9. Inhibitors of phosphatases, calyculin A (0.1 microM) and okadaic acid (1 microM), completely abolished overrecovery of IM. Calyculin A also blocked the Ca(2+)-induced IM enhancement. 10. It is

  18. Carbonic anhydrase activators: the first activation study of the human secretory isoform VI with amino acids and amines.

    PubMed

    Nishimori, Isao; Onishi, Saburo; Vullo, Daniela; Innocenti, Alessio; Scozzafava, Andrea; Supuran, Claudiu T

    2007-08-01

    The secretory isozyme of human carbonic anhydrase (hCA, EC 4.2.1.1), hCA VI, has been cloned, expressed, and purified in a bacterial expression system. The kinetic parameters for the CO(2) hydration reaction proved hCA VI to possess a k(cat) of 3.4 x 10(5)s(-1) and k(cat)/K(M) of 4.9 x 10(7)M(-1)s(-1) (at pH 7.5 and 20 degrees C). hCA VI has a significant catalytic activity for the physiological reaction, of the same order of magnitude as the ubiquitous isoform CA I or the transmembrane, tumor-associated isozyme CA IX. A series of amino acids and amines were shown to act as CA VI activators, with variable efficacies. l-His, l-Trp, and dopamine showed weak CA VI activating effects (K(A)s in the range of 21-42 microM), whereas d-His, d-Phe, l-DOPA, l-Trp, serotonin, and some pyridyl-alkylamines were better activators, with K(A)s in the range of 13-19 microM. The best CA VI activators were l-Phe, d-DOPA, l-Tyr, 4-amino-l-Phe, and histamine, with K(A)s in the range of 1.23-9.31 microM. All these activators enhance k(cat), having no effect on K(M), participating thus in the rate determining step in the catalytic cycle, the proton transfer reactions between the enzyme active site and the environment. PMID:17499996

  19. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976

  20. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.

  1. Phosphatase Under-Producer Mutants Have Altered Phosphorus Relations1

    PubMed Central

    Tomscha, Jennifer L.; Trull, Melanie C.; Deikman, Jill; Lynch, Jonathan P.; Guiltinan, Mark J.

    2004-01-01

    Phosphorus (P) acquisition and partitioning are essential for plant homeostasis. P is available for plant uptake when in its inorganic form (H2PO4−, or Pi), but Pi is often limiting in soils. Plants secrete acid phosphatases (APases) into the apoplastic space, which may be important for obtaining Pi from organic P sources; however, the relative importance of these enzymes for plant P nutrition has yet to be determined. We demonstrate that the root-associated APase pool is increased in Arabidopsis when Pi is limiting and document five APase isoforms secreted from Arabidopsis roots. Previously, we presented the identification of the phosphatase under-producer (pup) mutants, which have decreased in vivo root APase staining when grown under low P conditions. Here, we present the characterization of one of these, pup3, and further studies with pup1. pup3 has 49%, 38%, and 37% less specific APase activity in exudates, roots, and shoots, respectively. Root-associated APase activity is decreased by 16% in pup1 and 25% in pup3, regardless of P treatment. Two APase activity isoforms are reduced in pup3 exudates, and root and shoot isoforms are also affected. One of the two exudate isoforms is recognized by a polyclonal antibody raised to an Arabidopsis purple APase recombinant protein (AtPAP12); however, AtPAP12 transcript levels are unaffected in the mutant. The pup3 mutation was mapped to 68.4 ± 6.0 centimorgans on chromosome 5. Although P concentrations were not altered in pup1 and pup3 tissues when grown in nutrient solution in which Pi was the sole source of P, the mutants had 10% (pup1) and 17% (pup3) lower shoot P concentrations when grown in a peat-vermiculite mix in which the majority of the total P was present as organic P. Therefore, the pup defects, which include secreted APases, are functionally important for plant P nutrition. PMID:15122033

  2. [Acid phosphatase of leukocytes in patients with diffuse toxic goiter in evaluating the stage of the disease].

    PubMed

    Vaiuta, N P; Livshits, A Kh; Mendeleev, I M

    1987-01-01

    Acid phosphatase (AP) of lymphocytes and neutrophils was examined cytochemically in 23 patients with associated diffuse toxic goiter (DTG) and thyrotoxicosis during thiamazol treatment, in 20 persons with a DTG remission, and in 5 patients with postradiation and postoperative hypothyroses. AP activity with multiple-granule distribution of the enzyme was high in the majority of the patients with thyrotoxicosis, decreasing with thiamazol treatment. Thyrotoxicosis recurred in 4 out of 11 patients whose lymphocytes had an increased amount of AP during a DTG remission. In 9 patients with normal AP content, no relapses were noted during a DTG remission. Two patients with iatrogenic hypothyroses associated with high lymphocytic AP activity manifested elevated titres of antithyroglobulin immunoglobulins (ATI). In 3 patients with normal content of cellular AP, the ATI titre was low. Cellular AP, a non-specific marker of immunogenesis activity, makes it possible to presumably differentiate the stages of DTG and to evaluate to a definite degree the character of a remission. The preserved high activity of lymphocytic AP in patients with a DTG remission is a prognostically unfavourable factor as regards thyrotoxicosis relapses. The high titre of ATI and activity of lymphocytic AP attest to the predominant autoimmune component of such hypothyroses in part of DTG patients. The authors stress that such patients should receive combined thyroid and glucocorticoid therapy.

  3. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay.

    PubMed

    Wen, Z; Liao, Q; Hu, Y; You, L; Zhou, L; Zhao, Y

    2013-07-01

    Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.

  4. Salicylic Acid Based Small Molecule Inhibitor for the Oncogenic Src Homology-2 Domain Containing Protein Tyrosine Phosphatase-2 (SHP2)

    SciTech Connect

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-08-13

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias, and solid tumors. Thus, there is considerable interest in SHP2 as a potential target for anticancer and antileukemia therapy. We report a salicylic acid based combinatorial library approach aimed at binding both active site and unique nearby subpockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anticancer and antileukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors.

  5. Influence of swine manure on growth, P uptake and activities of acid phosphatase and phytase of Polygonum hydropiper.

    PubMed

    Ye, Daihua; Li, Tingxuan; Chen, Guangdeng; Zheng, Zicheng; Yu, Haiying; Zhang, Xizhou

    2014-06-01

    Excessive application of animal manure to the farmland results in enrichment of P in the soil. Phytoremediation is a promising strategy for extracting excess P from manure impacted soil. P uptake characteristics of a mining ecotype (ME) and a non-mining ecotype (NME) of Polygonum hydropiper were investigated in this study by adopting soil culture containing various concentrations of swine manure (0-200 g swine manure kg(-1) soil). A peak value in the biomass of P. hydropiper was determined in 100 g kg(-1) soil. Significant increase of P content in tissues of two ecotypes was noticed with an increase in swine manure concentration. Maximum P accumulation in shoots and roots was observed at the concentration of 100 g kg(-1) soil, however, the ME accumulated more P as compared to the NME. The ME showed a lower plant effective number and a higher P extraction ratio compared to the NME. Both acid phosphatase and phytase activities of P. hydropiper were obviously enhanced under swine manure impacted soil compared with control, while those of ME higher than the NMEs. Therefore, the two ecotypes of P. hydropiper can accumulate P from soil amended with swine manure and establishes the foundation for phytoremediation.

  6. Active inclusion bodies of acid phosphatase PhoC: aggregation induced by GFP fusion and activities modulated by linker flexibility

    PubMed Central

    2013-01-01

    Background Biologically active inclusion bodies (IBs) have gained much attention in recent years. Fusion with IB-inducing partner has been shown to be an efficient strategy for generating active IBs. To make full use of the advantages of active IBs, one of the key issues will be to improve the activity yield of IBs when expressed in cells, which would need more choices on IB-inducing fusion partners and approaches for engineering IBs. Green fluorescent protein (GFP) has been reported to aggregate when overexpressed, but GFP fusion has not been considered as an IB-inducing approach for these fusion proteins so far. In addition, the role of linker in fusion proteins has been shown to be important for protein characteristics, yet impact of linker on active IBs has never been reported. Results Here we report that by fusing GFP and acid phosphatase PhoC via a linker region, the resultant PhoC-GFPs were expressed largely as IBs. These IBs show high levels of specific fluorescence and specific PhoC activities (phosphatase and phosphotransferase), and can account for up to over 80% of the total PhoC activities in the cells. We further demonstrated that the aggregation of GFP moiety in the fusion protein plays an essential role in the formation of PhoC-GFP IBs. In addition, PhoC-GFP IBs with linkers of different flexibility were found to exhibit different levels of activities and ratios in the cells, suggesting that the linker region can be utilized to manipulate the characteristics of active IBs. Conclusions Our results show that active IBs of PhoC can be generated by GFP fusion, demonstrating for the first time the potential of GFP fusion to induce active IB formation of another soluble protein. We also show that the linker sequence in PhoC-GFP fusion proteins plays an important role on the regulation of IB characteristics, providing an alternative and important approach for engineering of active IBs with the goal of obtaining high activity yield of IBs. PMID:23497261

  7. Phosphatase inhibitors remove the run-down of γ-aminobutyric acid type A receptors in the human epileptic brain

    PubMed Central

    Palma, E.; Ragozzino, D. A.; Di Angelantonio, S.; Spinelli, G.; Trettel, F.; Martinez-Torres, A.; Torchia, G.; Arcella, A.; Di Gennaro, G.; Quarato, P. P.; Esposito, V.; Cantore, G.; Miledi, R.; Eusebi, F.

    2004-01-01

    The properties of γ-aminobutyric acid (GABA) type A receptors (GABAA receptors) microtransplanted from the human epileptic brain to the plasma membrane of Xenopus oocytes were compared with those recorded directly from neurons, or glial cells, in human brains slices. Cell membranes isolated from brain specimens, surgically obtained from six patients afflicted with drug-resistant temporal lobe epilepsy (TLE) were injected into frog oocytes. Within a few hours, these oocytes acquired GABAA receptors that generated GABA currents with an unusual run-down, which was inhibited by orthovanadate and okadaic acid. In contrast, receptors derived from membranes of a nonepileptic hippocampal uncus, membranes from mouse brain, or recombinant rat α1β2γ2-GABA receptors exhibited a much less pronounced GABA-current run-down. Moreover, the GABAA receptors of pyramidal neurons in temporal neocortex slices from the same six epileptic patients exhibited a stronger run-down than the receptors of rat pyramidal neurons. Interestingly, the GABAA receptors of neighboring glial cells remained substantially stable after repetitive activation. Therefore, the excessive GABA-current run-down observed in the membrane-injected oocytes recapitulates essentially what occurs in neurons, rather than in glial cells. Quantitative RT-PCR analyses from the same TLE neocortex specimens revealed that GABAA-receptor β1, β2, β3, and γ2 subunit mRNAs were significantly overexpressed (8- to 33-fold) compared with control autopsy tissues. Our results suggest that an abnormal GABA-receptor subunit transcription in the TLE brain leads to the expression of run-down-enhanced GABAA receptors. Blockage of phosphatases stabilizes the TLE GABAA receptors and strengthens GABAergic inhibition. It may be that this process can be targeted to develop new treatments for intractable epilepsy. PMID:15218107

  8. Estimation of the rate constants associated with the inhibitory effect of okadaic acid on type 2A protein phosphatase by time-course analysis.

    PubMed Central

    Takai, A; Ohno, Y; Yasumoto, T; Mieskes, G

    1992-01-01

    As is often the case with tightly binding inhibitors, okadaic acid produces its inhibitory effect on type 2A protein phosphatase (PP2A) in a time-dependent manner. We measured the rate constants associated with the binding of okadaic acid to PP2A by analysing the time-course of the reduction of the p-nitrophenyl phosphate (pNPP) phosphatase activity of the enzyme after application of okadaic acid. The rate constants for dissociation of okadaic acid from PP2A were also estimated from the time-course of the recovery of the activity from inhibition by okadaic acid after addition of a mouse IgG1 monoclonal antibody raised against the inhibitor. Our results show that the rate constants for the binding of okadaic acid and PP2A are of the order of 10(7) M-1.s-1, a typical value for reactions involving relatively large molecules, whereas those for their dissociation are in the range 10(-4)-10(-3) s-1. The very low values of the latter seems to be the determining factor for the exceedingly high affinity of okadaic acid for PP2A. The dissociation constants for the interaction of okadaic acid with the free enzyme and the enzyme-substrate complex, estimated as the ratio of the rate constants, are both in the range 30-40 pM, in agreement with the results of previous dose-inhibition analyses. PMID:1329723

  9. Activation of protein phosphatase 2A is responsible for increased content and inactivation of respiratory chain complex i induced by all-trans retinoic acid in human keratinocytes.

    PubMed

    Papa, F; Sardaro, N; Lippolis, R; Panelli, D; Scacco, S

    2016-01-01

    This study presents the effect of all-trans retinoic acid (ATRA) on cell growth and respiratory chain complex I in human keratinocyte cultures. Keratinocyte treatment results in increased level of GRIM-19 and other subunits of complex I, in particular of their carbonylated forms, associated with inhibition of its enzymatic activity. The results show that in keratinocytes ATRA-promoted phosphatase activity controls the proteostasis and activity of complex I. PMID:27358125

  10. Effect of Induced Oxidative Stress and Herbal Extracts on Acid Phosphatase Activity in Lysosomal and Microsomal Fractions of Midgut Tissue of the Silkworm, Bombyx mori

    PubMed Central

    Gaikwad, Y. B.; Gaikwad, S. M.; Bhawane, G. P.

    2010-01-01

    Lysosomal and microsomal acid phosphatase activity was estimated in midgut tissue of silkworm larvae, Bombyx mori L. (Lepidoptera: Bombycidae), after induced oxidative stress by D-galactose. The larvae were simultaneously were treated with ethanolic extracts of Bacopa monniera and Lactuca sativa to study their antioxidant properties. Lipid peroxidation and fluorescence was measured to analyze extent of oxidative stress. The ethanolic extract of Lactuca sativa was found to be more effective in protecting membranes against oxidative stress than Bacopa monniera. PMID:20874583

  11. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    PubMed Central

    Petrosyan, Tigran R.; Ter-Markosyan, Anna S.; Hovsepyan, Anna S.

    2016-01-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3–4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian’s calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  12. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    PubMed Central

    Petrosyan, Tigran R.; Ter-Markosyan, Anna S.; Hovsepyan, Anna S.

    2016-01-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3–4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian’s calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system. PMID:27630700

  13. Detection of Ca(2+)-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin.

    PubMed

    Petrosyan, Tigran R; Ter-Markosyan, Anna S; Hovsepyan, Anna S

    2016-07-01

    The study aims to confirm the neuroregenerative effects of bacterial melanin (BM) on central nervous system injury using a special staining method based on the detection of Ca(2+)-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12) or unilateral rubrospinal tract transection at the cervical level (C3-4) (group II; n = 12). In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup) and the remaining six rats were intramuscularly injected with saline (saline subgroup). Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca(2+)-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca(2+)-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system. PMID:27630700

  14. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.

    PubMed

    Hassan, Saad S M; Sayour, Hossam E M; Kamel, Ayman H

    2009-04-27

    A novel poly(vinyl chloride) matrix membrane sensor responsive to 4-nitrophenylphosphate (4-NPP) substrate is described, characterized and used for the potentiometric assay of acid (ACP) and alkaline (ALP) phosphatase enzymes. The sensor is based on the use of the ion-association complex of 4-NPP anion with nickel(II)-bathophenanthroline cation as an electroactive material and nitrophenyloctyl ether (NPOE) as a solvent mediator. The sensor displays good selectivity and stability and demonstrates a near-Nernstian response for 4-NPP over the concentration range 9.6x10(-6) to 1.0x10(-2) M with an anionic slope of 28.6+/-0.3 mV decade(-1) and a detection limit of 6.3x10(-6) M over the pH range 4.5-10. The sensor is used to measure the decrease of a fixed concentration of 4-NPP substrate as a function of acid and alkaline phosphatase enzyme activities at optimized conditions of pH and temperature. A linear relationship between the initial rate of 4-NPP substrate hydrolysis and enzyme activity holds over 0.05-3.0 and 0.03-3.4 IU L(-1) of ACP and ALP enzymes, respectively. Validation of the method by measuring the lower detection limit, range, accuracy, precision, within-day repeatability and between-day-variability reveals good performance characteristics of the proposed sensor. The sensor is used for the determination of acid and alkaline phosphatase enzyme activities in biological fluids of some patients suffering from alcoholic cirrhosis, acute myelocytic leukemia, pre-eclampsia and prostatic cancer. The sensor is also utilized for assessment of alkaline phosphatase enzyme in milk and dairy products. The results obtained agree fairly well with data obtained by the standard spectrophotometric methods.

  15. Release of an acid phosphatase activity during lily pollen tube growth involves components of the secretory pathway.

    PubMed

    Ibrahim, Hala; Pertl, Heidi; Pittertschatscher, Klaus; Fadl-Allah, Ezzat; el-Shahed, Ahmed; Bentrup, Friedrich-Wilhelm; Obermeyer, Gerhard

    2002-05-01

    An acid phosphatase (acPAse) activity was released during germination and tube growth of pollen of Lilium longiflorum Thunb. By inhibiting components of the secretory pathway, the export of the acPase activity was affected and tube growth stopped. Brefeldin A (1 microM) and cytochalasin D (1 microM), which block the production and transport of secretory vesicles, respectively, inhibited the acPase secretion. The Ca2+ channel blocker gadolinium (100 microM Gd3+) also inhibited acPase secretion and tube growth, whereas 3 mM caffeine, another Ca2+ uptake inhibitor, stimulated the acPase release, while tube growth was inhibited. The Yariv reagent (beta-D-glucosyl)3 Yariv phenylglycoside stopped tube growth by binding to arabinogalactan proteins of the tube tip cell wall but did not affect acPase secretion. A strong correlation between tube growth and acPase release was detected. The secreted acPase activity had a pH optimum at pH 5.5, a KM of 0.4 mM for p-nitrophenyl phosphate, and was inhibited by zinc, molybdate, phosphate, and fluoride ions, but not by tartrate. In electrophoresis gels the main acPase activity was detected at 32 kDa. The conspicuous correlation between activity of the secretory pathway and acPase secretion during tube elongation strongly indicates an important role of the acPase during pollen tube growth and the secreted acPase activity may serve as a useful marker enzyme assay for secretory activity in pollen tubes.

  16. Antitumor effects of methotrexate-monoclonal anti-prostatic acid phosphatase antibody conjugate on human prostate tumor

    SciTech Connect

    Deguchi, T.; Chu, T.M.; Leong, S.S.; Horoszewicz, J.S.; Lee, C.L.

    1986-03-01

    Methotrexate (MTX) was conjugated to an IgG/sub 1/ monoclonal antibody (MCA) specific for human prostatic acid phosphatase (PAP) by an active ester method, resulting in a molar ratio of MTX to IgG/sub 1/ of 14. MTX-MCA conjugate retained 94% of free antibody activity and preserved 90% of dihydrofolate reductase inhibitory activity of free MTX. MTX-MCA conjugate was shown to be accumulated in vitro by prostate tumor cells (LNCaP) 1.3 times higher than that of MTX conjugate to normal mouse IgG (NIgG) and 6.2 times higher than that of free MTX. Antitumor activity in vitro exhibited that MTX-MCA conjugate is more effective on inhibition (52%) of /sup 3/H-deoxyuridine incorporation into LNCaP cells than that of MTX-NIgG (39%), but both were less effective than free MTX (70%). The in vivo distribution of /sup 3/H-MTX-MCA conjugate in human prostate tumor xenograft (tumor: blood ratio 5.1) was higher than those of /sup 3/H-MTX-NIgG conjugate (1.1) and of free /sup 3/H-MTX (1.5). Anti-tumor activity in vivo demonstrated that MTX-MCA conjugate retarded the growth of xenografted human prostate tumor greatly and persistently, as compared with the control groups. These results suggested that MTX-monoclonal anti-PAP antibody conjugate represents a potential reagent for immunochemotherapy of human prostate tumor (NIH CA-34536, CA-15437 and ACS CH-269.

  17. Gambogic Acid Inhibits STAT3 Phosphorylation Through Activation of Protein Tyrosine Phosphatase SHP-1: Potential Role in Proliferation and Apoptosis

    PubMed Central

    Prasad, Sahdeo; Pandey, Manoj K.; Yadav, Vivek R.; Aggarwal, Bharat B.

    2011-01-01

    The transcription factor, signal transducer and activator of transcription 3 (STAT3), is associated with proliferation, survival, and metastasis of cancer cells. We investigated whether gambogic acid (GA), a xanthone derived from the resin of traditional Chinese medicine, Gamboge hanburyi (mangosteen), can regulate the STAT3 pathway, leading to suppression of growth and sensitization of cancer cells. We found that GA induced apoptosis in human multiple myeloma cells that correlated with the inhibition of both constitutive and inducible STAT3 activation. STAT3 phosphorylation at both tyrosine residue 705 and serine residue 727 was inhibited by GA. STAT3 suppression was mediated through the inhibition of activation of the protein tyrosine kinases Janus-activated kinase (JAK) 1, and JAK2. Treatment with the protein tyrosine phosphatase (PTP) inhibitor pervanadate reversed the GA-induced down-regulation of STAT3, suggesting the involvement of a PTP. We also found that GA induced the expression of the PTP SHP-1. Deletion of the SHP-1 gene by small interfering RNA suppressed the ability of GA to inhibit STAT3 activation and to induce apoptosis, suggesting the critical role of SHP-1 in its action. Moreover, GA down-regulated the expression of STAT3-regulated antiapoptotic (Bcl-2, Bcl-xL, and Mcl-1), proliferative (cyclin D1), and angiogenic (VEGF) proteins, and this correlated with suppression of proliferation and induction of apoptosis. Overall, these results suggest that GA blocks STAT3 activation, leading to suppression of tumor cell proliferation and induction of apoptosis. PMID:21490133

  18. Involvement of lysophosphatidic acid, sphingosine 1-phosphate and ceramide 1-phosphate in the metabolization of phosphatidic acid by lipid phosphate phosphatases in bovine rod outer segments.

    PubMed

    Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma Maria

    2008-07-01

    The aim of the present research was to evaluate the generation of [2-3H]diacylglycerol ([2-3H]DAG) from [2-3H]-Phosphatidic acid ([2-3H]PA) by lipid phosphate phosphatases (LPPs) at different concentrations of lysophosphatidic acid (LPA), sphingosine 1-phosphate (S1P), and ceramide 1-phosphate (C1P) in purified ROS obtained from dark-adapted retinas (DROS) or light-adapted retinas (BLROS) as well as in ROS membrane preparations depleted of soluble and peripheral proteins. Western blot analysis revealed the presence of LPP3 exclusively in all membrane preparations. Immunoblots of entire ROS and depleted ROS did not show dark-light differences in LPP3 levels. LPPs activities were diminished by 53% in BLROS with respect to DROS. The major competitive effect on PA hydrolysis was exerted by LPA and S1P in DROS and by C1P in BLROS. LPPs activities in depleted ROS were similar to the activity observed in entire DROS and BLROS, respectively. LPA, S1P and C1P competed at different extent in depleted DROS and BLROS. Sphingosine and ceramide inhibited LPPs activities in entire and depleted DROS. Ceramide also inhibited LPPs activities in entire and in depleted BLROS. Our findings are indicative of a different degree of competition between PA and LPA, S1P and C1P by LPPs depending on the illumination state of the retina. PMID:18288612

  19. Protein tyrosine phosphatases regulate arachidonic acid release, StAR induction and steroidogenesis acting on a hormone-dependent arachidonic acid-preferring acyl-CoA synthetase.

    PubMed

    Cano, Florencia; Poderoso, Cecilia; Cornejo Maciel, Fabiana; Castilla, Rocío; Maloberti, Paula; Castillo, Fernanda; Neuman, Isabel; Paz, Cristina; Podestá, Ernesto J

    2006-06-01

    The activation of the rate-limiting step in steroid biosynthesis, that is the transport of cholesterol into the mitochondria, is dependent on PKA-mediated events triggered by hormones like ACTH and LH. Two of such events are the protein tyrosine dephosphorylation mediated by protein tyrosine phosphatases (PTPs) and the release of arachidonic acid (AA) mediated by two enzymes, ACS4 (acyl-CoA synthetase 4) and Acot2 (mitochondrial thioesterase). ACTH and LH regulate the activity of PTPs and Acot2 and promote the induction of ACS4. Here we analyzed the involvement of PTPs on the expression of ACS4. We found that two PTP inhibitors, acting through different mechanisms, are both able to abrogate the hormonal effect on ACS4 induction. PTP inhibitors also reduce the effect of cAMP on steroidogenesis and on the level of StAR protein, which facilitates the access of cholesterol into the mitochondria. Moreover, our results indicate that exogenous AA is able to overcome the inhibition produced by PTP inhibitors on StAR protein level and steroidogenesis. Then, here we describe a link between PTP activity and AA release, since ACS4 induction is under the control of PTP activity, being a key event for AA release, StAR induction and steroidogenesis.

  20. Measuring phosphatidic acid phosphatase (EC 3.1.3.4) activity using two phosphomolybdate-based colorimetric methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatidate phosphatase (3-sn-phosphatidate phosphohydrolase, EC 3.1.3.4), which is also known as PAP, catalyzes the dephosphorylation of phosphatidate (PtdOH) to form diacylglycerol (DAG) and inorganic phosphate. In eukaryotes, PAP driven reaction is the committed step in the synthesis of triacyl...

  1. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease

    PubMed Central

    Boevink, Petra C.; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R.; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M.; Tian, Zhendong; Birch, Paul R. J.

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c–1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  2. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease.

    PubMed

    Boevink, Petra C; Wang, Xiaodan; McLellan, Hazel; He, Qin; Naqvi, Shaista; Armstrong, Miles R; Zhang, Wei; Hein, Ingo; Gilroy, Eleanor M; Tian, Zhendong; Birch, Paul R J

    2016-01-01

    Plant pathogens deliver effectors to alter host processes. Knowledge of how effectors target and manipulate host proteins is critical to understand crop disease. Here, we show that in planta expression of the RXLR effector Pi04314 enhances leaf colonization by Phytophthora infestans via activity in the host nucleus and attenuates induction of jasmonic and salicylic acid-responsive genes. Pi04314 interacts with three host protein phosphatase 1 catalytic (PP1c) isoforms, causing their re-localization from the nucleolus to the nucleoplasm. Re-localization of PP1c-1 also occurs during infection and is dependent on an R/KVxF motif in the effector. Silencing the PP1c isoforms or overexpression of a phosphatase-dead PP1c-1 mutant attenuates infection, demonstrating that host PP1c activity is required for disease. Moreover, expression of PP1c-1mut abolishes enhanced leaf colonization mediated by in planta Pi04314 expression. We argue that PP1c isoforms are susceptibility factors forming holoenzymes with Pi04314 to promote late blight disease. PMID:26822079

  3. Activity of hydrolytic enzymes in fungi isolated from diabetic pregnant women: is there any relationship between fungal alkaline and acid phosphatase activity and glycemic control?

    PubMed

    Nowakowska, Dorota; Kurnatowska, Alicja; Stray-Pedersen, Babill; Wilczyński, Jan

    2004-06-01

    Ability to respond to environmental changes and secretion of hydrolases are considered to be important for Candida virulence. In this study we determined and compared the activities of 19 different hydrolases of the fungal strains isolated from diabetic and non-diabetic pregnant women. We also looked for the presence of a relationship between hydrolase activities and glycemic control, and, furthermore, evaluated the influence of gestational age on the activity of hydrolases. Mycological examinations were performed for 119 diabetic pregnant women: 47 with diabetes mellitus type I (DM), 72 with gestational diabetes (GDM), and for 132 healthy women (CON). Samples were collected from the vagina, rectum and oral cavity and cultured on Sabouraud media. The fungal hydrolase activities were evaluated using the API ZYM test (bioMerieux). For the 19 different fungal hydrolases tested, 13 activities were present in the isolated fungal strains. The activity of alkaline phosphatase (ALP) in vaginal strains (p=0.028) and acid phosphatase (ACP) in strains from the vagina (p=0.006) and rectum (p=0.049) was significantly lower in DM than in GDM and CON women. In conclusion, we describe for the first time that fungi isolated from pregnant diabetic women have lower activity of both phosphatases compared to fungi isolated from healthy women. Furthermore, similar differences of mean ALP and ACP activities were observed in the course of pregnancy in strains from the vagina and rectum of DM and CON women. However, strains from DM had lower activity at each stage of pregnancy. The highest activity of ALP and ACP was detected at the beginning, then declined, and had the lowest values between the 24(th) and 33(rd) week of gestation. After that period the activity of both phosphatases increased.

  4. Genetic studies of water buffalo blood markers. I. Red cell acid phosphatase, albumin, catalase, red cell alpha-esterase-3, group-specific component, and protease inhibitor.

    PubMed

    Tan, S G; Barker, J S; Selvaraj, O S; Mukherjee, T K; Wong, Y F

    1993-06-01

    We have developed the methodologies for typing and family studies to establish the modes of inheritance of water buffalo red cell acid phosphatase (Acp), protease inhibitor (Pi), and group-specific component (Gc) on isoelectric focusing and albumin (Alb), red cell alpha-esterase-3 (Est-3), and catalase (Cat) on polyacrylamide gel electrophoresis. Family studies showed that Pi, Gc, Alb, and Cat are coded by autosomal genes with two codominant alleles, while Est-3 is autosomal with two codominant alleles and a recessive null allele and Acp exhibits three codominant alleles.

  5. Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells.

    PubMed Central

    Kuo, A; Cappelluti, S; Cervantes-Cervantes, M; Rodriguez, M; Bush, D S

    1996-01-01

    The cereal aleurone functions during germination by secreting hydrolases, mainly alpha-amylase, into the starchy endosperm. Multiple signal transduction pathways exist in cereal aleurone cells that enable them to modulate hydrolase production in response to both hormonal and environmental stimuli. Gibberellic acid (GA) promotes hydrolase production, whereas abscisic acid (ABA), hypoxia, and osmotic stress reduce amylase production. In an effort to identify the components of transduction pathways in aleurone cells, we have investigated the effect of okadaic acid (OA), a protein phosphatase inhibitor, on stimulus-response coupling for GA, ABA, and hypoxia. We found that OA (100 nM) completely inhibited all the GA responses that we measured, from rapid changes in cytosolic Ca2+ through changes in gene expression and accelerated cell death. OA (100 nM) partially inhibited ABA responses, as measured by changes in the level of PHAV1, a cDNA for an ABA-induced mRNA in barley. In contrast, OA had no effect on the response to hypoxia, as measured by changes in cytosolic Ca2+ and by changes in enzyme activity and RNA levels of alcohol dehydrogenase. Our data indicate that OA-sensitive protein phosphatases act early in the transduction pathway of GA but are not involved in the response to hypoxia. These data provide a basis for a model of multiple transduction pathways in which the level of cytosolic Ca2+ is a key point of convergence controlling changes in stimulus-response coupling. PMID:8742711

  6. Aspartic acid-484 of nascent placental alkaline phosphatase condenses with a phosphatidylinositol glycan to become the carboxyl terminus of the mature enzyme.

    PubMed Central

    Micanovic, R; Bailey, C A; Brink, L; Gerber, L; Pan, Y C; Hulmes, J D; Udenfriend, S

    1988-01-01

    A carboxyl-terminal chymotryptic peptide from mature human placental alkaline phosphatase was purified by HPLC and monitored by a specific RIA. Sequencing and amino acid assay showed that the carboxyl terminus of the peptide was aspartic acid, representing residue 484 of the proenzyme as deduced from the corresponding cDNA. Further analysis of the peptide showed it to be a peptidoglycan containing one residue of ethanolamine, one residue of glucosamine, and two residues of neutral hexose. The inositol glycan is apparently linked to the alpha carboxyl group of the aspartic acid through the ethanolamine. Location of the inositol glycan on Asp-484 of the proenzyme indicates that a 29-residue peptide is cleaved from the nascent protein during the post-translational condensation with the phosphatidylinositol-glycan. PMID:3422741

  7. Discovery and Evaluation of Novel Inhibitors of Mycobacterium Protein Tyrosine Phosphatase B from the 6-Hydroxy-Benzofuran-5-Carboxylic Acid Scaffold

    PubMed Central

    He, Yantao; Xu, Jie; Yu, Zhi-hong; Gunawan, Andrea M.; Wu, Li; Wang, Lina; Zhang, Zhong-Yin

    2013-01-01

    Mycobacterium tuberculosis (Mtb) protein tyrosine phosphatase B (mPTPB) is a virulence factor secreted by the pathogen and mediates mycobacterial survival in macrophages by targeting host cell immune responses. Consequently, mPTPB represents an exciting new target to combat TB infection. We describe a medicinal chemistry-oriented approach that transforms a benzofuran salicylic acid scaffold into a highly potent (IC50 = 38 nM) and selective mPTPB inhibitor (>50 fold against a large panel of PTPs). Importantly, the inhibitor is capable of reversing the altered host immune responses induced by the bacterial phosphatase and restoring the macrophage’s full capacity to secrete IL-6 and undergo apoptosis in response to IFN-γ stimulation, validating the concept that chemical inhibition of mPTPB may be therapeutically useful for novel TB treatment. The study further demonstrates that bicyclic salicylic acid pharmacophores can be used to deliver PTP inhibitors with high potency, selectivity, and cellular efficacy. PMID:23305444

  8. Differential Expression of 1-Aminocyclopropane-1-Carboxylate Synthase Genes during Orchid Flower Senescence Induced by the Protein Phosphatase Inhibitor Okadaic Acid1

    PubMed Central

    Wang, Ning Ning; Yang, Shang Fa; Charng, Yee-yung

    2001-01-01

    Applying 10 pmol of okadaic acid (OA), a specific inhibitor of type 1 or type 2A serine/threonine protein phosphatases, to the orchid (Phalaenopsis species) stigma induced a dramatic increase in ethylene production and an accelerated senescence of the whole flower. Aminoethoxyvinylglycine or silver thiosulfate, inhibitors of ethylene biosynthesis or action, respectively, effectively inhibited the OA-induced ethylene production and retarded flower senescence, suggesting that the protein phosphatase inhibitor induced orchid flower senescence through an ethylene-mediated signaling pathway. OA treatment induced a differential expression pattern for the 1-aminocyclopropane-1-carboxylic acid synthase multigene family. Accumulation of Phal-ACS1 transcript in the stigma, labelum, and ovary induced by OA were higher than those induced by pollination as determined by “semiquantitative” reverse transcriptase-polymerase chain reaction. In contrast, the transcript levels of Phal-ACS2 and Phal-ACS3 induced by OA were much lower than those induced by pollination. Staurosporine, a protein kinase inhibitor, on the other hand, inhibited the OA-induced Phal-ACS1 expression in the stigma and delayed flower senescence. Our results suggest that a hyper-phosphorylation status of an unidentified protein(s) is involved in up-regulating the expression of Phal-ACS1 gene resulting in increased ethylene production and accelerated the senescence process of orchid flower. PMID:11351088

  9. Fine structural and histochemical studies on salivary glands of Peripatoides novae-zealandiae (Onychophora) with special reference to acid phosphatase distribution.

    PubMed

    Nelson, L; van der Lande, V; Robson, E A

    1980-01-01

    The Onychophora feed on small arthropods and produce saliva when ingesting prey. Although saliva undoubtedly helps to liquefy the food its constituents have not yet been fully described. The salivary glands, two long tubes of glandularepithelium, are known to secrete a powerful protease, however, besides other enzymes and mucus. In Peripatoides novae-zealandiae there are protein-secreting cells of three types, referred to here as columnar, cuboidal and modified cells, and mucus cells. The anterior two-thirds of the gland show most cell diversity, while the posterior regionconsists mainly of columnar cells. These are the most numerous elements overall and they probably secrete salivary protease. In thick resin sections the granules of all protein-secreting cells stain strongly with methylene blue. Those of columnar cells are markedly uneven in size and accumulate distally, eventually filling the cytoplasm. More proximal Golgi regions may be discernible. Mucus cells are all of one type and their secretion droplets are stained lightly by methylene blue. The electron microscope shows that distal microvilli, desmosomes and septate junctions are common to all gland cells. In columnar cells, secretory material is contributed by Golgi complexes and by rough endoplasmic reticulum. Early secretory vacuoles containing dense material are seen in the concavity of Golgi regions. They are precursors to larger condensing vacuoles whose contents have a more flocculent appearance, and which may attain 3--4 micrometers in diameter. These evolve into secretory granules, usually of uneven texture, which are up to 2.5 micrometers in diameter. Histochemical tests for acid phosphatase show moderate amounts of enzyme throughout the gland. In whole mounts and sections the strongest reaction is in a band of cuboidal cells along the anterior median border. Columnar cells show a diffuse cytoplasmic reaction towards the base and sometimes distal to the nucleus, and mucus cells may also react

  10. Differential Roles of PML Isoforms

    PubMed Central

    Nisole, Sébastien; Maroui, Mohamed Ali; Mascle, Xavier H.; Aubry, Muriel; Chelbi-Alix, Mounira K.

    2013-01-01

    The tumor suppressor promyelocytic leukemia (PML) protein is fused to the retinoic acid receptor alpha in patients suffering from acute promyelocytic leukemia (APL). Treatment of APL patients with arsenic trioxide (As2O3) reverses the disease phenotype by a process involving the degradation of the fusion protein via its PML moiety. Several PML isoforms are generated from a single PML gene by alternative splicing. They share the same N-terminal region containing the RBCC/tripartite motif but differ in their C-terminal sequences. Recent studies of all the PML isoforms reveal the specific functions of each. Here, we review the nomenclature and structural organization of the PML isoforms in order to clarify the various designations and classifications found in different databases. The functions of the PML isoforms and their differential roles in antiviral defense also are reviewed. Finally, the key players involved in the degradation of the PML isoforms in response to As2O3 or other inducers are discussed. PMID:23734343

  11. Regan isoenzyme of alkaline phosphatase as a tumour marker for renal cell carcinoma.

    PubMed

    Bukowczan, J; Pattman, S; Jenkinson, F; Quinton, R

    2014-09-01

    Alkaline phosphatase is an enzyme present in all tissues of the human body. Several isoforms of this enzyme have been described with different catalytic nature, stability and antigenic structure. Rises in the activity of alkaline phosphatase are recognised in various states including bone diseases, liver disease, pregnancy, hyperthyroidism and malignant processes. The Regan isoenzyme, a rare variant of placental alkaline phosphatase, has been identified circulating in association with various tumours. The reported case describes a rising Regan isoform of alkaline phosphatase concentrations that led to a new diagnosis of occult renal cell carcinoma and persistently elevated activity postoperatively signposting persistent or recurrent disease.

  12. The Role of DmCatD, a Cathepsin D-Like Peptidase, and Acid Phosphatase in the Process of Follicular Atresia in Dipetalogaster maxima (Hemiptera: Reduviidae), a Vector of Chagas' Disease

    PubMed Central

    Leyria, Jimena; Fruttero, Leonardo L.; Nazar, Magalí; Canavoso, Lilián E.

    2015-01-01

    In this work, we have investigated the involvement of DmCatD, a cathepsin D-like peptidase, and acid phosphatase in the process of follicular atresia of Dipetalogaster maxima, a hematophagous insect vector of Chagas’ disease. For the studies, fat bodies, ovaries and hemolymph were sampled from anautogenous females at representative days of the reproductive cycle: pre-vitellogenesis, vitellogenesis as well as early and late atresia. Real time PCR (qPCR) and western blot assays showed that DmCatD was expressed in fat bodies and ovaries at all reproductive stages, being the expression of its active form significantly higher at the atretic stages. In hemolymph samples, only the immunoreactive band compatible with pro-DmCatD was observed by western blot. Acid phosphatase activity in ovarian tissues significantly increased during follicular atresia in comparison to pre-vitellogenesis and vitellogenesis. A further enzyme characterization with inhibitors showed that the high levels of acid phosphatase activity in atretic ovaries corresponded mainly to a tyrosine phosphatase. Immunofluorescence assays demonstrated that DmCatD and tyrosine phosphatase were associated with yolk bodies in vitellogenic follicles, while in atretic stages they displayed a different cellular distribution. DmCatD and tyrosine phosphatase partially co-localized with vitellin. Moreover, their interaction was supported by FRET analysis. In vitro assays using homogenates of atretic ovaries as the enzyme source and enzyme inhibitors demonstrated that DmCatD, together with a tyrosine phosphatase, were necessary to promote the degradation of vitellin. Taken together, the results strongly suggested that both acid hydrolases play a central role in early vitellin proteolysis during the process of follicular atresia. PMID:26091289

  13. Differential induction of apoptosis in human breast tumor cells by okadaic acid and related inhibitors of protein phosphatases 1 and 2A

    SciTech Connect

    Kiguchi, Kaoru; Chubb, C.H.; Glesne, D.; Huberman, E. |; Fujiki, Hirota

    1994-09-01

    To investigate a possible relationship between apoptosis induction and protein phosphorylation in human breast carcinoma cells, the authors treated three such cell types, MB-231, MCF-7, and AU-565, wit okadaic acid (OA), an inhibitor of protein phosphatases 1 and 2A, or phorbol 12 myristate 13-acetate, an activator of protein kinase C. They then examined these cells of the appearance of apoptosis markers. While OA caused multiplication arrest and cytotoxicity in all three cell lines, apoptosis was induced in MB-231 and MCF-7 cells but not in AU-565 cells. A similar cell-specific apoptosis induction was also observed after treatment with dinophysistoxin-1 (an active OA analogue) and with calyculin A (a structurally unrelated protein phosphatase inhibitor) but not with analogues that either ar inactive or penetrate epithelial cells poorly. Phorbol 12-myristate 13-acetate also inhibited cell multiplication but was without effect in inducing apoptosis in these cells. Levels of the apoptosis-inhibitory protein BCL2 were examined in these cells, but they did to correlate with this differential susceptibility. They additionally treated the three cell types with 1-{beta}-D-arabinofuranosylcytosine and genistein to determine whether the AU-565 cell line would also be resistant to apoptosis induction by other chemical stimuli. Both of these agents led to the induction of apoptosis in all three cell lines. These results indicate that the AU-565 cells are specifically resistant to apoptosis induction by inhibitors of protein phosphatases 1 and 2A. This cell-specific resistance may thus allow one to identify cellular mediators of apoptosis by comparing protein phosphorylation patterns in these cells before and after treatment with OA or related inhibitors.

  14. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis.

    PubMed

    Chen, Jia; Yu, Feng; Liu, Ying; Du, Changqing; Li, Xiushan; Zhu, Sirui; Wang, Xianchun; Lan, Wenzhi; Rodriguez, Pedro L; Liu, Xuanming; Li, Dongping; Chen, Liangbi; Luan, Sheng

    2016-09-13

    Receptor-like kinase FERONIA (FER) plays a crucial role in plant response to small molecule hormones [e.g., auxin and abscisic acid (ABA)] and peptide signals [e.g., rapid alkalinization factor (RALF)]. It remains unknown how FER integrates these different signaling events in the control of cell growth and stress responses. Under stress conditions, increased levels of ABA will inhibit cell elongation in the roots. In our previous work, we have shown that FER, through activation of the guanine nucleotide exchange factor 1 (GEF1)/4/10-Rho of Plant 11 (ROP11) pathway, enhances the activity of the phosphatase ABA Insensitive 2 (ABI2), a negative regulator of ABA signaling, thereby inhibiting ABA response. In this study, we found that both RALF and ABA activated FER by increasing the phosphorylation level of FER. The FER loss-of-function mutant displayed strong hypersensitivity to both ABA and abiotic stresses such as salt and cold conditions, indicating that FER plays a key role in ABA and stress responses. We further showed that ABI2 directly interacted with and dephosphorylated FER, leading to inhibition of FER activity. Several other ABI2-like phosphatases also function in this pathway, and ABA-dependent FER activation required PYRABACTIN RESISTANCE (PYR)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR)-A-type protein phosphatase type 2C (PP2CA) modules. Furthermore, suppression of RALF1 gene expression, similar to disruption of the FER gene, rendered plants hypersensitive to ABA. These results formulated a mechanism for ABA activation of FER and for cross-talk between ABA and peptide hormone RALF in the control of plant growth and responses to stress signals. PMID:27566404

  15. /sup 18/O isotope effect in /sup 13/C nuclear magnetic resonance spectroscopy. Part 9. Hydrolysis of benzyl phosphate by phosphatase enzymes and in acidic aqueous solutions

    SciTech Connect

    Parente, J.E.; Risley, J.M.; Van Etten, R.L.

    1984-12-26

    The /sup 18/O isotope-induced shifts in /sup 13/C and /sup 31/P nuclear magnetic resonance (NMR) spectroscopy were used to establish the position of bond cleavage in the phosphatase-catalyzed and acid-catalyzed hydrolysis reactions of benzyl phosphate. The application of the /sup 18/O-isotope effect in NMR spectroscopy affords a continuous, nondestructive assay method for following the kinetics and position of bond cleavage in the hydrolytic process. The technique provides advantages over most discontinuous methods in which the reaction components must be isolated and converted to volatile derivatives prior to analysis. In the present study, (..cap alpha..-/sup 13/C,ester-/sup 18/O)benzyl phosphate and (ester-/sup 18/O)benzyl phosphate were synthesized for use in enzymatic and nonenzymatic studies. Hydrolysis reactions catalyzed by the alkaline phosphatase from E. coli and by the acid phosphatases isolated from human prostate and human liver were all accompanied by cleavage of the substrate phosphorus-oxygen bond consistent with previously postulated mechanisms involving covalent phosphoenzyme intermediates. An extensive study of the acid-catalyzed hydrolysis of benzyl phosphate at 75/sup 0/C revealed that the site of bond cleavage is dependent on pH. At pH less than or equal to 1.3, the hydrolysis proceeds with C-O bond cleavage; at 1.3 < pH < 2.0, there is a mixture of C-O and P-O bond scission, the latter progressively predominating as the pH is raised; at pH greater than or equal to 2.0, the hydrolysis proceeds with exclusive P-O bond scission. (S)-(+)-(..cap alpha..-/sup 2/H)Benzyl phosphate was also synthesized. Hydrolysis of this chiral benzyl derivative demonstrated that the acid-catalyzed C-O bond scission of benzyl phosphate proceeds by an A-1 (S/sub N/1) mechanism with 70% racemization and 30% inversion at carbon. 37 references, 4 figures, 2 tables.

  16. A Second Two-Component Regulatory System of Bordetella bronchiseptica Required for Bacterial Resistance to Oxidative Stress, Production of Acid Phosphatase, and In Vivo Persistence

    PubMed Central

    Jungnitz, Heidrun; West, Nicholas P.; Walker, Mark J.; Chhatwal, Gursharan S.; Guzmán, Carlos A.

    1998-01-01

    Random minitransposon mutagenesis was used to identify genes involved in the survival of Bordetella bronchiseptica within eukaryotic cells. One of the mutants which exhibited a reduced ability to survive intracellularly harbored a minitransposon insertion in a locus (ris) which displays a high degree of homology to two-component regulatory systems. This system exhibited less than 25% amino acid sequence homology to the only other two-component regulatory system described in Bordetella spp., the bvg locus. A risA′-′lacZ translational fusion was constructed and integrated into the chromosome of B. bronchiseptica. Determination of β-galactosidase activity under different environmental conditions suggested that ris is regulated independently of bvg and is optimally expressed at 37°C, in the absence of Mg2+, and when bacteria are in the intracellular niche. This novel regulatory locus, present in all Bordetella spp., is required for the expression of acid phosphatase by B. bronchiseptica. Although catalase and superoxide dismutase production were unaffected, the ris mutant was more sensitive to oxidative stress than the wild-type strain. Complementation of bvg-positive and bvg-negative ris mutants with the intact ris operon incorporated as a single copy into the chromosome resulted in the reestablishment of the ability of the bacterium to produce acid phosphatase and to resist oxidative stress. Mouse colonization studies demonstrated that the ris mutant is cleared by the host much earlier than the wild-type strain, suggesting that ris-regulated products play a significant role in natural infections. The identification of a second two-component system in B. bronchiseptica highlights the complexity of the regulatory network needed for organisms with a life cycle requiring adaptation to both the external environment and a mammalian host. PMID:9746560

  17. A STRESS-RESPONSIVE NAC1-Regulated Protein Phosphatase Gene Rice Protein Phosphatase18 Modulates Drought and Oxidative Stress Tolerance through Abscisic Acid-Independent Reactive Oxygen Species Scavenging in Rice1[W][OPEN

    PubMed Central

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-01-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways. PMID:25318938

  18. A STRESS-RESPONSIVE NAC1-regulated protein phosphatase gene rice protein phosphatase18 modulates drought and oxidative stress tolerance through abscisic acid-independent reactive oxygen species scavenging in rice.

    PubMed

    You, Jun; Zong, Wei; Hu, Honghong; Li, Xianghua; Xiao, Jinghua; Xiong, Lizhong

    2014-12-01

    Plants respond to abiotic stresses through a complexity of signaling pathways, and the dephosphorylation mediated by protein phosphatase (PP) is an important event in this process. We identified a rice (Oryza sativa) PP2C gene, OsPP18, as a STRESS-RESPONSIVE NAC1 (SNAC1)-regulated downstream gene. The ospp18 mutant was more sensitive than wild-type plants to drought stress at both the seedling and panicle development stages. Rice plants with OsPP18 suppressed through artificial microRNA were also hypersensitive to drought stress. Microarray analysis of the mutant revealed that genes encoding reactive oxygen species (ROS) scavenging enzymes were down-regulated in the ospp18 mutant, and the mutant exhibited reduced activities of ROS scavenging enzymes and increased sensitivity to oxidative stresses. Overexpression of OsPP18 in rice led to enhanced osmotic and oxidative stress tolerance. The expression of OsPP18 was induced by drought stress but not induced by abscisic acid (ABA). Although OsPP18 is a typical PP2C with enzymatic activity, it did not interact with SNF1-RELATED PROTEIN KINASE2 protein kinases, which function in ABA signaling. Meanwhile, the expression of ABA-responsive genes was not affected in the ospp18 mutant, and the ABA sensitivities of the ospp18 mutant and OsPP18-overexpressing plants were also not altered. Together, these findings suggest that OsPP18 is a unique PP2C gene that is regulated by SNAC1 and confers drought and oxidative stress tolerance by regulating ROS homeostasis through ABA-independent pathways.

  19. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression

    PubMed Central

    Boortz, Kayla A.; Syring, Kristen E.; Pound, Lynley D.; Wang, Yingda; Oeser, James K.; O’Brien, Richard M.

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans. PMID:27611587

  20. Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression.

    PubMed

    Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D; Wang, Yingda; Oeser, James K; O'Brien, Richard M

    2016-01-01

    Elevated fasting blood glucose (FBG) has been associated with increased risk for development of type 2 diabetes. Single nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in FBG in humans. Studies using G6pc2 knockout mice suggest that G6pc2 regulates the glucose sensitivity of insulin secretion. G6PC2 and the related G6PC1 and G6PC3 genes encode glucose-6-phosphatase catalytic subunits. This study describes a functional analysis of 22 non-synonymous G6PC2 SNPs, that alter amino acids that are conserved in human G6PC1, mouse G6pc1 and mouse G6pc2, with the goal of identifying variants that potentially affect G6PC2 activity/expression. Published data suggest strong conservation of catalytically important amino acids between all four proteins and the related G6PC3 isoform. Because human G6PC2 has very low glucose-6-phosphatase activity we used an indirect approach, examining the effect of these SNPs on mouse G6pc1 activity. Using a novel in situ functional assay for glucose-6-phosphatase activity we demonstrate that the amino acid changes associated with the human G6PC2 rs144254880 (Arg79Gln), rs149663725 (Gly114Arg) and rs2232326 (Ser324Pro) SNPs reduce mouse G6pc1 enzyme activity without affecting protein expression. The Arg79Gln variant alters an amino acid mutation of which, in G6PC1, has previously been shown to cause glycogen storage disease type 1a. We also demonstrate that the rs368382511 (Gly8Glu), rs138726309 (His177Tyr), rs2232323 (Tyr207Ser) rs374055555 (Arg293Trp), rs2232326 (Ser324Pro), rs137857125 (Pro313Leu) and rs2232327 (Pro340Leu) SNPs confer decreased G6PC2 protein expression. In summary, these studies identify multiple G6PC2 variants that have the potential to be associated with altered FBG in humans. PMID:27611587

  1. A Novel Phosphatidic Acid-Protein-tyrosine Phosphatase D2 Axis Is Essential for ERBB2 Signaling in Mammary Epithelial Cells*

    PubMed Central

    Ramesh, Mathangi; Krishnan, Navasona; Muthuswamy, Senthil K.; Tonks, Nicholas K.

    2015-01-01

    We used a loss-of-function screen to investigate the role of classical protein-tyrosine phosphatases (PTPs) in three-dimensional mammary epithelial cell morphogenesis and ERBB2 signaling. The study revealed a novel role for PTPD2 as a positive regulator of ERBB2 signaling. Suppression of PTPD2 attenuated the ERBB2-induced multiacinar phenotype in three-dimensional cultures specifically by inhibiting ERBB2-mediated loss of polarity and lumen filling. In contrast, overexpression of PTPD2 enhanced the ERBB2 phenotype. We also found that a lipid second messenger, phosphatidic acid, bound PTPD2 in vitro and enhanced its catalytic activity. Small molecule inhibitors of phospholipase D (PLD), an enzyme that produces phosphatidic acid in cells, also attenuated the ERBB2 phenotype. Exogenously added phosphatidic acid rescued the PLD-inhibition phenotype, but only when PTPD2 was present. These findings illustrate a novel pathway involving PTPD2 and the lipid second messenger phosphatidic acid that promotes ERBB2 function. PMID:25681440

  2. Characterization of Yersinia enterocolitica, Y. intermedia, Y. aldovae, Y. frederiksenii, Y. kristensenii and Y. pseudotuberculosis by electrophoretic polymorphism of acid phosphatase, esterases, and glutamate and malate dehydrogenases.

    PubMed

    Goullet, P; Picard, B

    1988-02-01

    Acid phosphatase, esterases, and glutamate and malate dehydrogenases of 192 strains of Yersinia enterocolitica, Y. intermedia, Y. aldovae, Y. frederiksenii, Y. kristensenii and Y. pseudotuberculosis were analysed by horizontal polyacrylamide agarose gel electrophoresis and by isoelectrofocusing in thin-layer polyacrylamide gels. The six species were clearly separated from each other by their distinct enzyme electrophoretic polymorphism. For Y. enterocolitica, the strains of biotype 5 were differentiated from the other biotypes by the mobility of glutamate dehydrogenase. For Y. frederiksenii, six zymotypes were delineated by pI and by the mobility of the enzymes. Variation in number or mobility of esterases within each species could represent a marker for epidemiological and ecological analyses. A linear relationship was obtained between the mean genetic diversity coefficient of enzymes and the mean percentage DNA-DNA relatedness of Y. intermedia, Y. aldovae, Y. enterocolitica and Y. frederiksenii.

  3. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose

    PubMed Central

    Hibbs, John B.; Vavrin, Zdenek; Cox, James E.

    2016-01-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces. PMID:26895212

  4. Stimulation of a Gs-like G protein in the osteoclast inhibits bone resorption but enhances tartrate-resistant acid phosphatase secretion.

    PubMed

    Moonga, B S; Pazianas, M; Alam, A S; Shankar, V S; Huang, C L; Zaidi, M

    1993-01-29

    Previous studies have demonstrated that G-protein agonists induce quiescence (Q effect) or retraction (R effect) in isolated osteoclasts. We now report the functional effects of such agonists on osteoclastic bone resorption and enzyme release. Exposure of osteoclasts to tetrafluoro-aluminate anions (AlF4-), a universal G protein stimulator, resulted in a marked concentration-dependent inhibition of bone resorption. This was associated with a dramatic increase in the secretion of the osteoclast-specific enzyme, tartrate-resistant acid phosphatase (TRAP). Cholera toxin, a Gs stimulator and a selective Q effect agonist, similarly abolished bone resorption and enhanced TRAP secretion. In contrast, pertussis toxin, a Gi inhibitor and a selective R effect agonist, inhibited bone resorption significantly, but slightly reduced enzyme release. The results suggest an involvement of a Gs-like G protein in TRAP secretion from the osteoclast, possibly through a cyclic AMP-dependent mechanism.

  5. Complex coordinated extracellular metabolism: Acid phosphatases activate diluted human leukocyte proteins to generate energy flow as NADPH from purine nucleotide ribose.

    PubMed

    Hibbs, John B; Vavrin, Zdenek; Cox, James E

    2016-08-01

    Complex metabolism is thought to occur exclusively in the crowded intracellular environment. Here we report that diluted enzymes from lysed human leukocytes produce extracellular energy. Our findings involve two pathways: the purine nucleotide catabolic pathway and the pentose phosphate pathway, which function together to generate energy as NADPH. Glucose6P fuel for NADPH production is generated from structural ribose of purine ribonucleoside monophosphates, ADP, and ADP-ribose. NADPH drives glutathione reductase to reduce an oxidized glutathione disulfide-glutathione redox couple. Acid phosphatases initiate ribose5P salvage from purine ribonucleoside monophosphates, and transaldolase controls the direction of carbon chain flow through the nonoxidative branch of the pentose phosphate pathway. These metabolic control points are regulated by pH. Biologically, this energy conserving metabolism could function in perturbed extracellular spaces.

  6. A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation

    PubMed Central

    Zhang, Ye; Wang, Xiaoyue; Lu, Shan; Liu, Dong

    2014-01-01

    The induction and secretion of acid phosphatases (APases) is a universal response of plants to phosphate (Pi) starvation. AtPAP10 (Arabidopsis purple acid phosphatase 10) is a major Pi starvation-induced APase that is associated with the root surface in Arabidopsis. So far, the roles of local and systemic signalling in regulating root-associated AtPAP10 activity remain largely unknown. In this work, we show that a decrease of local, external Pi availability is sufficient to induce AtPAP10 transcription in roots in the presence of sucrose, a systemic signal from shoots, whereas the magnitude of the induction is affected by the Pi status of the whole plant. Once the AtPAP10 mRNAs are synthesized in roots, subsequent accumulation of AtPAP10 proteins in root cells and increase in AtPAP10 activity on the root surface are mainly controlled by local signalling. Previously, ethylene has been demonstrated to be a positive regulator of AtPAP10 activity. In this study, we provide evidence that under Pi deficiency ethylene mainly modulates enzymatic activity of AtPAP10 on the root surface, but not AtPAP10 transcription and protein accumulation, suggesting that it functions as a local signal. Furthermore, our work indicates that the effect of ethylene on the induction of root-associated AtPAP10 activity depends on sucrose, but that the effect of sucrose does not depend on ethylene. These results reveal new insights into the distinct roles of local and systemic signalling in the regulation of root-associated AtPAP10 activity under Pi starvation. PMID:25246445

  7. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes*

    PubMed Central

    Cooper, Daniel E.; Grevengoed, Trisha J.; Klett, Eric L.; Coleman, Rosalind A.

    2015-01-01

    Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4−/− mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4−/− mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4−/− mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4−/− BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4−/− brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state. PMID:25918168

  8. Spatial structure of heptapeptide Glu-Ile-Leu-Asn-His-Met-Lys, a fragment of the HIV enhancer prostatic acid phosphatase, in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Bloсhin, Dmitri S.; Aganova, Oksana V.; Yulmetov, Aidar R.; Filippov, Andrei V.; Gizatullin, Bulat I.; Afonin, Sergii; Antzutkin, Oleg N.; Klochkov, Vladimir V.

    2013-02-01

    Prostatic acid phosphatase (PAP) is a protein abundantly present in human seminal fluid. PAP plays important role in fertilization. Its 39-amino-acid fragment, PAP(248-286), is effective in enhancing infectivity of HIV virus. In this work, we determined the spatial structure in aqueous solution of a heptapeptide within the PAP fragment, containing amino acid residues 266-272 (Glu-Ile-Leu-Asn-His-Met-Lys). We also report the structure of the complex formed by this heptapeptide with sodium dodecyl sulfate micelles, a model of a biological membrane, as determined by 1H NMR spectroscopy and 2D NMR (TOCSY, HSQC-HECADE, NOESY) spectroscopy. Complex formation was confirmed by chemical shift alterations in the 1H NMR spectra of the heptapeptide, as well as by the signs and values of NOE effects. We also present a comparison of the spatial structure of Glu-Ile-Leu-Asn-His-Met-Lys in water and in complex with sodium dodecyl sulfate.

  9. Coordinated Regulation of the Neutral Amino Acid Transporter SNAT2 and the Protein Phosphatase Subunit GADD34 Promotes Adaptation to Increased Extracellular Osmolarity*

    PubMed Central

    Krokowski, Dawid; Jobava, Raul; Guan, Bo-Jhih; Farabaugh, Kenneth; Wu, Jing; Majumder, Mithu; Bianchi, Massimiliano G.; Snider, Martin D.; Bussolati, Ovidio; Hatzoglou, Maria

    2015-01-01

    Cells respond to shrinkage induced by increased extracellular osmolarity via programmed changes in gene transcription and mRNA translation. The immediate response to this stress includes the induction of expression of the neutral amino acid transporter SNAT2. Increased SNAT2-mediated uptake of neutral amino acids is an essential adaptive mechanism for restoring cell volume. In contrast, stress-induced phosphorylation of the α subunit of the translation initiation factor eIF2 (eIF2α) can promote apoptosis. Here we show that the response to mild hyperosmotic stress involves regulation of the phosphorylation of eIF2α by increased levels of GADD34, a regulatory subunit of protein phosphatase 1 (PP1). The induction of GADD34 was dependent on transcriptional control by the c-Jun-binding cAMP response element in the GADD34 gene promoter and posttranscriptional stabilization of its mRNA. This mechanism differs from the regulation of GADD34 expression by other stresses that involve activating transcription factor 4 (ATF4). ATF4 was not translated during hyperosmotic stress despite an increase in eIF2α phosphorylation. The SNAT2-mediated increase in amino acid uptake was enhanced by increased GADD34 levels in a manner involving decreased eIF2α phosphorylation. It is proposed that the induction of the SNAT2/GADD34 axis enhances cell survival by promoting the immediate adaptive response to stress. PMID:26041779

  10. Inhibitors of the Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N)

    SciTech Connect

    Sueyoshi, Noriyuki; Takao, Toshihiko; Nimura, Takaki; Sugiyama, Yasunori; Numano, Takamasa; Shigeri, Yasushi; Taniguchi, Takanobu; Kameshita, Isamu Ishida, Atsuhiko

    2007-11-23

    Ca{sup 2+}/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear isoform CaMKP-N are unique Ser/Thr protein phosphatases that negatively regulate the Ca{sup 2+}/calmodulin-dependent protein kinase (CaMK) cascade by dephosphorylating multifunctional CaMKI, II, and IV. However, the lack of specific inhibitors of these phosphatases has hampered studies on these enzymes in vivo. In an attempt to obtain specific inhibitors, we searched inhibitory compounds and found that Evans Blue and Chicago Sky Blue 6B served as effective inhibitors for CaMKP. These compounds also inhibited CaMKP-N, but inhibited neither protein phosphatase 2C, another member of PPM family phosphatase, nor calcineurin, a typical PPP family phosphatase. The minimum structure required for the inhibition was 1-amino-8-naphthol-4-sulfonic acid. When Neuro2a cells cotransfected with CaMKIV and CaMKP-N were treated with these compounds, the dephosphorylation of CaMKIV was strongly suppressed, suggesting that these compounds could be used as potent inhibitors of CaMKP and CaMKP-N in vivo as well as in vitro.

  11. Ecto-alkaline phosphatase activity identified at physiological pH range on intact P19 and HL-60 cells is induced by retinoic acid.

    PubMed

    Scheibe, R J; Kuehl, H; Krautwald, S; Meissner, J D; Mueller, W H

    2000-01-01

    The activity of membrane-bound alkaline phosphatase (ALP) expressed on the external surface of cultured murine P19 teratocarcinoma and human HL-60 myeloblastic leukemia cells was studied at physiological pH using p-nitrophenylphosphate (pNPP) as substrate. The rate of substrate hydrolysis catalyzed by intact viable cells remained constant for eight successive incubations of 30 min and was optimal at micromolar substrate concentrations over the pH range 7.4-8.5. The value of apparent K(m) for pNPP in P19 and HL-60 cells was 120 microM. Hydrolytic activity of the ecto-enzyme at physiological pH decreased by the addition of levamisole, a specific and noncompetitive inhibitor of ALP (K(i) P19 = 57 microM; K(i) HL-60 = 50 microM). Inhibition of hydrolysis was reversed by removal of levamisole within 30 min. Retinoic acid (RA), which promotes the differentiation of P19 and HL-60 cells, induced levamisole-sensitive ecto-phosphohydrolase activity at pH 7.4. After its autophosphorylation by ecto-kinase activity, a 98-kDa membrane protein in P19 cells was found to be sensitive to ecto-ALP, and protein dephosphorylation increased after incubation of cells with RA for 24 h and 48 h. Orthovanadate, an inhibitor of all phosphatase activities, blocked the levamisole-sensitive dephosphorylation of the membrane phosphoproteins, while (R)-(-)-epinephrine reversed the effect by complexation of the inhibitor. The results demonstrate that the levamisole-sensitive phosphohydrolase activity on the cell surface is consistent with ecto-ALP activity degrading both physiological concentrations of exogenously added substrate and endogenous surface phosphoproteins under physiological pH conditions. The dephosphorylating properties of ecto-ALP are induced by RA, suggesting a specific function in differentiating P19 teratocarcinoma and HL-60 myeloblastic leukemia cells. PMID:10649440

  12. Structure and function of an archaeal homolog of survival protein E (SurEalpha): an acid phosphatase with purine nucleotide specificity.

    PubMed

    Mura, Cameron; Katz, Jonathan E; Clarke, Steven G; Eisenberg, David

    2003-03-01

    The survival protein E (SurE) family was discovered by its correlation to stationary phase survival of Escherichia coli and various repair proteins involved in sustaining this and other stress-response phenotypes. In order to better understand this ancient and well-conserved protein family, we have determined the 2.0A resolution crystal structure of SurEalpha from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum (Pae). This first structure of an archaeal SurE reveals significant similarities to and differences from the only other known SurE structure, that from the eubacterium Thermatoga maritima (Tma). Both SurE monomers adopt similar folds; however, unlike the Tma SurE dimer, crystalline Pae SurEalpha is predominantly non-domain swapped. Comparative structural analyses of Tma and Pae SurE suggest conformationally variant regions, such as a hinge loop that may be involved in domain swapping. The putative SurE active site is highly conserved, and implies a model for SurE bound to a potential substrate, guanosine-5'-monophosphate (GMP). Pae SurEalpha has optimal acid phosphatase activity at temperatures above 90 degrees C, and is less specific than Tma SurE in terms of metal ion requirements. Substrate specificity also differs between Pae and Tma SurE, with a more specific recognition of purine nucleotides by the archaeal enzyme. Analyses of the sequences, phylogenetic distribution, and genomic organization of the SurE family reveal examples of genomes encoding multiple surE genes, and suggest that SurE homologs constitute a broad family of enzymes with phosphatase-like activities.

  13. Multiplexing Spheroid Volume, Resazurin and Acid Phosphatase Viability Assays for High-Throughput Screening of Tumour Spheroids and Stem Cell Neurospheres

    PubMed Central

    Ivanov, Delyan P.; Parker, Terry L.; Walker, David A.; Alexander, Cameron; Ashford, Marianne B.; Gellert, Paul R.; Garnett, Martin C.

    2014-01-01

    Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity) were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money. PMID:25119185

  14. Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-κB activation and interleukin-8 secretion in human bronchial epithelial cells

    PubMed Central

    2004-01-01

    LPA (lysophosphatidic acid), a potent bioactive phospholipid, elicits diverse cellular responses through activation of the G-protein-coupled receptors LPA1–LPA4. LPA-mediated signalling is partially regulated by LPPs (lipid phosphate phosphatases; LPP-1, -2 and -3) that belong to the phosphatase superfamily. This study addresses the role of LPPs in regulating LPA-mediated cell signalling and IL-8 (interleukin-8) secretion in HBEpCs (human bronchial epithelial cells). Reverse transcription–PCR and Western blotting revealed the presence and expression of LPP-1–3 in HBEpCs. Exogenous [3H]oleoyl LPA was hydrolysed to [3H]-mono-oleoylglycerol. Infection of HBEpCs with an adenoviral construct of human LPP-1 for 48 h enhanced the dephosphorylation of exogenous LPA by 2–3-fold compared with vector controls. Furthermore, overexpression of LPP-1 partially attenuated LPA-induced increases in the intracellular Ca2+ concentration, phosphorylation of IκB (inhibitory κB) and translocation of NF-κB (nuclear factor-κB) to the nucleus, and almost completely prevented IL-8 secretion. Infection of cells with an adenoviral construct of the mouse LPP-1 (R217K) mutant partially attenuated LPA-induced IL-8 secretion without altering LPA-induced changes in intracellular Ca2+ concentration, phosphorylation of IκB, NF-κB activation or IL-8 gene expression. Our results identify LPP-1 as a key regulator of LPA signalling and IL-8 secretion in HBEpCs. Thus LPPs could represent potential targets in regulating leucocyte infiltration and airway inflammation. PMID:15461590

  15. Abscisic Acid Promotion of Arbuscular Mycorrhizal Colonization Requires a Component of the PROTEIN PHOSPHATASE 2A Complex1[W][OPEN

    PubMed Central

    Charpentier, Myriam; Sun, Jongho; Wen, Jiangqi; Mysore, Kirankumar S.; Oldroyd, Giles E.D.

    2014-01-01

    Legumes can establish intracellular interactions with symbiotic microbes to enhance their fitness, including the interaction with arbuscular mycorrhizal (AM) fungi. AM fungi colonize root epidermal cells to gain access to the root cortex, and this requires the recognition by the host plant of fungus-made mycorrhizal factors. Genetic dissection has revealed the symbiosis signaling pathway that allows the recognition of AM fungi, but the downstream processes that are required to promote fungal infection are poorly understood. Abscisic acid (ABA) has been shown to promote arbuscule formation in tomato (Solanum lycopersicum). Here, we show that ABA modulates the establishment of the AM symbiosis in Medicago truncatula by promoting fungal colonization at low concentrations and impairing it at high concentrations. We show that the positive regulation of AM colonization via ABA requires a PROTEIN PHOSPHATASE 2A (PP2A) holoenzyme subunit, PP2AB′1. Mutations in PP2AB′1 cause reduced levels of AM colonization that cannot be rescued with permissive ABA application. The action of PP2AB′1 in response to ABA is unlinked to the generation of calcium oscillations, as the pp2aB′1 mutant displays a normal calcium response. This contrasts with the application of high concentrations of ABA that impairs mycorrhizal factor-induced calcium oscillations, suggesting different modes of action of ABA on the AM symbiosis. Our work reveals that ABA functions at multiple levels to regulate the AM symbiosis and that a PP2A phosphatase is required for the ABA promotion of AM colonization. PMID:25293963

  16. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  17. Biological activities of Zn(II)-S-methyl-cysteine complex as antiradical, inhibitor of acid phosphatase enzyme and in vivo antidepressant effects.

    PubMed

    Escudero, Graciela E; Martini, Nancy; Jori, Khalil; Jori, Nadir; Maresca, Nahuel R; Laino, Carlos H; Naso, Luciana G; Williams, Patricia A M; Ferrer, Evelina G

    2016-12-01

    The antidepressant effect of simple Zn(II) salts has been proved in several animal models of depression. In this study, a coordination metal complex of Zn(II) having a sulfur containing ligand is tested as antidepressant for the first time. Forced swimming test method on male Wistar rats shows a decrease in the immobility and an increase in the swimming behavior after treatment with [Zn(S-Met)2] (S-Met=S-methyl-l-cysteine) being more effective and remarkable than ZnCl2. The thiobarbituric acid and the pyranine consumption (hydroxyl and peroxyl radicals, respectively) methods were applied to evaluate the antioxidant activity of S-Met and [Zn(S-Met)2] showing evidence of attenuation of hydroxyl but not peroxyl radicals activities. UV-vis studies on the inhibition of acid phosphatase enzyme (AcP) demonstrated that S-methyl-l-cysteine did not produce any effect but, in contrast, [Zn(S-Met)2] complex behaved as a moderate inhibitor. Finally, bioavailability studies were performed by fluorescence spectroscopy denoting the ability of the albumin to transport the complex.

  18. Tailor-Made Protein Tyrosine Phosphatases: In Vitro Site-Directed Mutagenesis of PTEN and PTPRZ-B.

    PubMed

    Luna, Sandra; Mingo, Janire; Aurtenetxe, Olaia; Blanco, Lorena; Amo, Laura; Schepens, Jan; Hendriks, Wiljan J; Pulido, Rafael

    2016-01-01

    In vitro site-directed mutagenesis (SDM) of protein tyrosine phosphatases (PTPs) is a commonly used approach to experimentally analyze PTP functions at the molecular and cellular level and to establish functional correlations with PTP alterations found in human disease. Here, using the tumor-suppressor PTEN and the receptor-type PTPRZ-B (short isoform from PTPRZ1 gene) phosphatases as examples, we provide a brief insight into the utility of specific mutations in the experimental analysis of PTP functions. We describe a standardized, rapid, and simple method of mutagenesis to perform single and multiple amino acid substitutions, as well as deletions of short nucleotide sequences, based on one-step inverse PCR and DpnI restriction enzyme treatment. This method of SDM is generally applicable to any other protein of interest. PMID:27514801

  19. Cell- and ligand-specific dephosphorylation of acid hydrolases: Evidence that the mannose 6-phosphatase is controlled by compartmentalization

    SciTech Connect

    Einstein, R.; Gabel, C.A. )

    1991-01-01

    Mouse L cells that possess the cation-independent mannose 6-phosphate (Man 6-P)/insulin-like growth factor (IGF) II receptor change the extent to which they dephosphorylate endocytosed acid hydrolases in response to serum. To investigate the mechanism by which dephosphorylation competence is regulated, the dephosphorylation of individual acid hydrolases was studied in Man 6-P/IGF II receptor-positive and -deficient cell lines. 125I-labeled Man 6-P-containing acid hydrolases were proteolytically processed but remained phosphorylated when endocytosed by receptor-positive L cells maintained in the absence of serum; after the addition of serum, however, the cell-associated hydrolases were dephosphorylated. Individual hydrolases were dephosphorylated at distinct rates and to different extents. In contrast, the same hydrolases were dephosphorylated equally and completely after entry into Man 6-P/IGF II receptor-positive Chinese hamster ovary (CHO) cells. The dephosphorylation competence of Man 6-P/IGF II receptor-deficient mouse J774 cells was more limited. beta-Glucuronidase produced by these cells underwent a limited dephosphorylation in transit to lysosomes such that diphosphorylated oligosaccharides were converted to monophosphorylated species. The overall quantity of phosphorylated oligosaccharides associated with the enzyme, however, did not decrease within the lysosomal compartment. Likewise, beta-glucuronidase was not dephosphorylated when introduced into J774 cells via Fc receptor-mediated endocytosis. The CHO and J774 cell lysosomes, therefore, display opposite extremes with respect to their capacity to dephosphorylate acid hydrolases; within CHO cell lysosomes acid hydrolases are rapidly and efficiently dephosphorylated, but within J774 cell lysosomes the same acid hydrolases remain phosphorylated.

  20. Improvement of Student Understanding of How Kinetic Data Facilitates the Determination of Amino Acid Catalytic Function through an Alkaline Phosphatase Structure/Mechanism Bioinformatics Exercise

    ERIC Educational Resources Information Center

    Grunwald, Sandra K.; Krueger, Katherine J.

    2008-01-01

    Laboratory exercises, which utilize alkaline phosphatase as a model enzyme, have been developed and used extensively in undergraduate biochemistry courses to illustrate enzyme steady-state kinetics. A bioinformatics laboratory exercise for the biochemistry laboratory, which complements the traditional alkaline phosphatase kinetics exercise, was…

  1. Invertases involved in the development of the parasitic plant Phelipanche ramosa: characterization of the dominant soluble acid isoform, PrSAI1.

    PubMed

    Draie, Rida; Péron, Thomas; Pouvreau, Jean-Bernard; Véronési, Christophe; Jégou, Sandrine; Delavault, Philippe; Thoiron, Séverine; Simier, Philippe

    2011-09-01

    Phelipanche ramosa L. parasitizes major crops, acting as a competitive sink for host photoassimilates, especially sucrose. An understanding of the mechanisms of sucrose utilization in parasites is an important step in the development of new control methods. Therefore, in this study, we characterized the invertase gene family in P. ramosa and analysed its involvement in plant development. Invertase-encoded cDNAs were isolated using degenerate primers corresponding to highly conserved regions of invertases. In addition to enzyme assays, gene expression was analysed using real-time quantitative reverse transcriptase-polymerase chain reaction during overall plant development. The dominant isoform was purified and sequenced using electrospray ionization-liquid chromatography-tandem mass spectrometry (ESI-LC-MS/MS). Five invertase-encoded cDNAs were thus characterized, including PrSai1 which encodes a soluble acid invertase (SAI). Of the five invertases, PrSai1 transcripts and SAI activity were dominant in growing organs. The most active invertase corresponded to the PrSai1 gene product. The purified PrSAI1 displayed low pI and optimal pH values, specificity for β-fructofuranosides and inhibition by metallic ions and competitive inhibition by fructose. PrSAI1 is a typical vacuolar SAI that is actively involved in growth following both germination and attachment to host roots. In addition, germinated seeds displayed enhanced cell wall invertase activity (PrCWI) in comparison with preconditioned seeds, suggesting the contribution of this activity in the sink strength of infected roots during the subsequent step of root penetration. Our results show that PrSAI1 and, possibly, PrCWI constitute good targets for the development of new transgenic resistance in host plants using proteinaceous inhibitors or silencing strategies. PMID:21726369

  2. High-resolution high-performance liquid chromatography with electrospray ionization mass spectrometry and tandem mass spectrometry characterization of a new isoform of human salivary acidic proline-rich proteins named Roma-Boston Ser22(Phos) → Phe variant

    PubMed Central

    Iavarone, Federica; D’Alessandro, Alfredo; Tian, Na; Cabras, Tiziana; Messana, Irene; Helmerhorst, Eva J.; Oppenheim, Frank G.; Castagnola, Massimo

    2015-01-01

    During a survey of human saliva by a top-down reversed-phase high-performance liquid chromatography with electrospray ionization mass spectrometry approach, two proteins eluting at 27.4 and 28.4 min, with average masses of 15 494 ± 1 and 11 142 ± 1 Da, were detected in a subject from Boston. The Δmass value (4352 Da) of the two proteins was similar to the difference in mass values between intact (150 amino acids, [a.a.]) and truncated acidic proline-rich proteins (aPRPs; 106 a.a.) suggesting an a.a. substitution in the first 106 residues resulting in a strong reduction in polarity, since under the same experimental conditions aPRPs eluted at ~22.5 min (intact) and 23.5 min (truncated forms). Manual inspection of the high-resolution high-performance liquid chromatography with electrospray ionization tandem mass spectra of the truncated isoform showed the replacement of the phosphorylated Ser-22 in PRP-3 with a Phe residue. Inspection of the tandem mass spectra of the intact isoform confirmed the substitution, which is allowed by the code transition TCT→TTT and is in agreement with the dramatic increase in elution time. The isoform was also detected in two other subjects, one from Boston (unrelated to the previous) and one from Rome. For this reason we propose to name this variant PRP-1 (PRP-3) RB (Roma-Boston) Ser22(phos)→Phe. PMID:24771659

  3. Terpenes and sterols from the fruits of Prunus mume and their inhibitory effects on osteoclast differentiation by suppressing tartrate-resistant acid phosphatase activity.

    PubMed

    Yan, Xi-Tao; Lee, Sang-Hyun; Li, Wei; Jang, Hae-Dong; Kim, Young-Ho

    2015-02-01

    The fruits of Prunus mume are a common commercial product and a valuable source of food and medicinal material in Eastern Asian countries. Our phytochemical investigation of the P. mume fruit led to the isolation of nine terpenes, including three ursane-type triterpenes (1-3), two cycloartane-type triterpenes (4 and 5), and four tocopherols (10-13), as well as four sterols (6-9). Their structures were elucidated based on extensive spectroscopic analysis, including 1D and 2D NMR and ESI-MS, and the majority of these compounds were isolated from this plant for the first time. The anti-osteoporosis activities of 1-13 were evaluated by measuring their inhibitory effects on tartrate-resistant acid phosphatase (TRAP) activity in receptor activator of nuclear factor κB ligand-induced osteoclastic RAW 264.7 macrophage cells. Compounds 2-7 and 9-12 significantly suppressed TRAP activity down to 47.96 ± 2.45-86.45 ± 3.07 % relative to the control at a concentration of 1 μM. These results suggest that the fruits of P. mume could be an excellent source of anti-osteoporosis phytochemicals that may be developed as natural nutraceuticals and functional foods.

  4. Screening and Characterization of a Novel RNA Aptamer That Specifically Binds to Human Prostatic Acid Phosphatase and Human Prostate Cancer Cells

    PubMed Central

    Kong, Hoon Young; Byun, Jonghoe

    2015-01-01

    Prostatic acid phosphatase (PAP) expression increases proportionally with prostate cancer progression, making it useful in prognosticating intermediate to high-risk prostate cancers. A novel ligand that can specifically bind to PAP would be very helpful for guiding prostate cancer therapy. RNA aptamers bind to target molecules with high specificity and have key advantages such as low immunogenicity and easy synthesis. Here, human PAP-specific aptamers were screened from a 2′-fluoropyrimidine (FY)-modified RNA library by SELEX. The candidate aptamer families were identified within six rounds followed by analysis of their sequences and PAP-specific binding. A gel shift assay was used to identify PAP binding aptamers and the 6N aptamer specifically bound to PAP with a Kd value of 118 nM. RT-PCR and fluorescence labeling analyses revealed that the 6N aptamer bound to PAP-positive mammalian cells, such as PC-3 and LNCaP. IMR-90 negative control cells did not bind the 6N aptamer. Systematic minimization analyses revealed that 50 nucleotide sequences and their two hairpin structures in the 6N 2′-FY RNA aptamer were equally important for PAP binding. Renewed interest in PAP combined with the versatility of RNA aptamers, including conjugation of anti-cancer drugs and nano-imaging probes, could open up a new route for early theragnosis of prostate cancer. PMID:25591398

  5. [The importance of studying the acid phosphatase of the blood serum and bone marrow lymphoblasts and polymorphonuclear neutrophils in the prognosis of the course of acute lymphoblastic leukemia].

    PubMed

    Vaiuta, N P; Khaĭfets, L M; Mendeleev, I M

    1988-01-01

    The activity of serum acid phosphatase (AP), bone marrow lymphoblasts and polymorphonuclear neutrophils was studied in 45 ALL patients. Cytochemical coefficients (CCC) and the percentage of positively reacting bone marrow cells were determined. All the patients received programmed polychemotherapy. They were investigated before the start of therapy, during recurrence and at different time of remission (from 1 to 60 mos) during each reinduction cycle. At the climax of ALL the activity of serum AP was increased 2.8-fold, a CCC value for lymphoblastic AP--10-fold, for polymorphonuclear neutrophils--3-fold as compared with normal values. A tendency toward the reduction of indices was noted at different time of remission, the approximation to normal values was noted on the 40th-46th months of remission only. In recurrence development the level of the serum and cellular enzyme as well as the percentage of positively reacting cells significantly exceeded normal values and were close to indices at the climax of disease. The above tendency permitted the use of these tests to evaluate the completeness of remission and to predict recurrences during a follow-up of ALL patients.

  6. A comparative study on phosphotransferase activity of acid phosphatases from Raoultella planticola and Enterobacter aerogenes on nucleosides, sugars, and related compounds.

    PubMed

    Médici, Rosario; Garaycoechea, Juan I; Valino, Ana L; Pereira, Claudio A; Lewkowicz, Elizabeth S; Iribarren, Adolfo M

    2014-04-01

    Natural and modified nucleoside-5'-monophosphates and their precursors are valuable compounds widely used in biochemical studies. Bacterial nonspecific acid phosphatases (NSAPs) are a group of enzymes involved in the hydrolysis of phosphoester bonds, and some of them exhibit phosphotransferase activity. NSAP containing Enterobacter aerogenes and Raoultella planticola whole cells were evaluated in the phosphorylation of a wide range of nucleosides and nucleoside precursors using pyrophosphate as phosphate donor. To increase the productivity of the process, we developed two genetically modified strains of Escherichia coli which overexpressed NSAPs of E. aerogenes and R. planticola. These new recombinant microorganisms (E. coli BL21 pET22b-phoEa and E. coli BL21 pET22b-phoRp) showed higher activity than the corresponding wild-type strains. Reductions in the reaction times from 21 h to 60 min, from 4 h to 15 min, and from 24 h to 40 min in cases of dihydroxyacetone, inosine, and fludarabine, respectively, were obtained.

  7. Extending the Mannose 6-Phosphate Glycoproteome by High Resolution/Accuracy Mass Spectrometry Analysis of Control and Acid Phosphatase 5-Deficient Mice*

    PubMed Central

    Sleat, David E.; Sun, Pengling; Wiseman, Jennifer A.; Huang, Ling; El-Banna, Mukarram; Zheng, Haiyan; Moore, Dirk F.; Lobel, Peter

    2013-01-01

    In mammals, most newly synthesized lumenal lysosomal proteins are delivered to the lysosome by the mannose 6-phosphate (Man6P) targeting pathway. Man6P -containing proteins can be affinity-purified and characterized using proteomic approaches, and such studies have led to the discovery of new lysosomal proteins and associated human disease genes. One limitation to this approach is that in most cell types the Man6P modification is rapidly removed by acid phosphatase 5 (ACP5) after proteins are targeted to the lysosome, and thus, some lysosomal proteins may escape detection. In this study, we have extended the analysis of the lysosomal proteome using high resolution/accuracy mass spectrometry to identify and quantify proteins in a combined analysis of control and ACP5-deficient mice. To identify Man6P glycoproteins with limited tissue distribution, we analyzed multiple tissues and used statistical approaches to identify proteins that are purified with high specificity. In addition to 68 known Man6P glycoproteins, 165 other murine proteins were identified that may contain Man6P and may thus represent novel lysosomal residents. For four of these lysosomal candidates, (lactoperoxidase, phospholipase D family member 3, ribonuclease 6, and serum amyloid P component), we demonstrate lysosomal residence based on the colocalization of fluorescent fusion proteins with a lysosomal marker. PMID:23478313

  8. Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish

    NASA Astrophysics Data System (ADS)

    Broeg, Katja

    2003-10-01

    The activity of acid phosphatase in liver macrophage aggregates (MA-AP) of different fish species was used as a marker for a pollution-induced modulation of the digestive capacity of phagocytes, since functions of the non-specific immune response play a central role in the maintenance of animals' health. Based upon the investigation of more than 900 individual flounders (Platichthys flesus) and mullets (Liza aurata), natural variations, gender-specific differences and pollution-induced alterations in AP activity are demonstrated in this study. MA-AP activity was dependent on temperature and season but, nevertheless, distinctions between differently polluted areas were visible in all sampling campaigns with lowest MA-AP activity in fish from the polluted areas of the German Bight and the Israeli coast of the Mediterranean Sea. For organochlorine contaminants, as well as for mercury and copper, a significant correlation could be observed between residue concentrations in fish tissues and MA-AP activity. In all cases, except mercury which showed a positive correlation, AP activity was suppressed in animals with a high contaminant burden. MA-AP activity turned out to give reliable and consistent results for a quantification of immunomodulation in both fish species.

  9. Comparison of the effects of eldecalcitol with either raloxifene or bisphosphonate on serum tartrate resistant acid phosphatase-5b, a bone resorption marker, in postmenopausal osteoporosis

    PubMed Central

    Takada, Junichi; Ikeda, Satoshi; Kusanagi, Tetsuya; Mizuno, Satoshi; Wada, Hiroshi; Iba, Kousuke; Yoshizaki, Takashi; Yamashita, Toshihiko

    2016-01-01

    Summary Objective This study analyzes whether concomitant raloxifene (RLX) or bisphosphonates (BP) plus eldecalcitol (ELD) has excessive suppressive effects on a bone resorption marker during the first 6 months of treatment in postmenopausal women in real-world setting. Methods 285 postmenopausal osteoporotic patients who had been treated with RLX or BP plus ELD were evaluated the bone resorption marker, serum tartrate resistant acid phosphatase-5b (TRACP-5b), during the first 6 months of treatment. Results In drug-naïve group (not received osteoporosis medications before the administration, n=70), the concomitant RLX or BP with ELD significantly decreased levels of TRACP-5b without severe suppression. In vitamin D switch group [RLX or BP plus alfacalcidol (ALF) and then switched to RLX or BP plus ELD, n=215], the replacing ALF with ELD further and significantly decreased TRACP-5b and tertile analyses based on baseline values were significantly decreased far more in the highest, compared with the lowest tertile in the ELD+RLX and ELD+BP groups. Conclusion ELD combined with RLX or BP administered for 6 months to postmenopausal women with osteoporosis who were drug-naïve or who had switched medications significantly reduced and maintained TRACP-5b values within the reference range. PMID:27252739

  10. Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler.

    PubMed

    Maller, Alexandre; de Quadros, Thays Cristina Oliveira; Junqueira, Otto M; Graña, Alfredo Lora; de Lima Montaldi, Ana Paula; Alarcon, Ricardo Fernandes; Jorge, João Atílio; de Lourdes T M Polizeli, Maria

    2016-01-01

    Phytases are enzymes that hydrolyze the ester linkage of phytic acid, releasing inositol and inorganic phosphate. The phytic acid (phytate) is a major form of phosphorus in plant foods. Knowing that diet for animal of production has the cereal base (corn and soybean), primarily, broilers need for an alternative to use of the phosphate present in these ingredients, since it does not naturally produce the enzyme phytase, which makes it available. The aims of this work was studding the safe supplementation of Aspergillus japonicus var. Saito crude phytase in feeding broilers and check the biochemical effect on performance and bones of these animals. The enzymatic extract did not have aflatoxins B1, B2, G2 and G1 and zearalenone and ochratoxin, and low concentrations of this extract did not have cytotoxic effects on cells derived from lung tissue. The in vivo experiments showed that the phytase supplied the available phosphate reduction in the broiler feed formulation, with a live weight, weight gain, feed intake, feed conversion, viability, productive efficiency index and carcass yield similar to the control test. Furthermore, the phytase supplementation favored the formation of bone structure and performance of the broilers. The results show the high biotechnological potential of A. japonicus phytase on broiler food supplementation to reduce phosphorus addition in the food formulation. So, this enzyme could be used as a commercial alternative to animal diet supplementation.

  11. Biochemical effect of a histidine phosphatase acid (phytase) of Aspergillus japonicus var. Saito on performance and bony characteristics of broiler.

    PubMed

    Maller, Alexandre; de Quadros, Thays Cristina Oliveira; Junqueira, Otto M; Graña, Alfredo Lora; de Lima Montaldi, Ana Paula; Alarcon, Ricardo Fernandes; Jorge, João Atílio; de Lourdes T M Polizeli, Maria

    2016-01-01

    Phytases are enzymes that hydrolyze the ester linkage of phytic acid, releasing inositol and inorganic phosphate. The phytic acid (phytate) is a major form of phosphorus in plant foods. Knowing that diet for animal of production has the cereal base (corn and soybean), primarily, broilers need for an alternative to use of the phosphate present in these ingredients, since it does not naturally produce the enzyme phytase, which makes it available. The aims of this work was studding the safe supplementation of Aspergillus japonicus var. Saito crude phytase in feeding broilers and check the biochemical effect on performance and bones of these animals. The enzymatic extract did not have aflatoxins B1, B2, G2 and G1 and zearalenone and ochratoxin, and low concentrations of this extract did not have cytotoxic effects on cells derived from lung tissue. The in vivo experiments showed that the phytase supplied the available phosphate reduction in the broiler feed formulation, with a live weight, weight gain, feed intake, feed conversion, viability, productive efficiency index and carcass yield similar to the control test. Furthermore, the phytase supplementation favored the formation of bone structure and performance of the broilers. The results show the high biotechnological potential of A. japonicus phytase on broiler food supplementation to reduce phosphorus addition in the food formulation. So, this enzyme could be used as a commercial alternative to animal diet supplementation. PMID:27625972

  12. AtPP2CG1, a protein phosphatase 2C, positively regulates salt tolerance of Arabidopsis in abscisic acid-dependent manner

    SciTech Connect

    Liu, Xin; Zhu, Yanming; Zhai, Hong; Cai, Hua; Ji, Wei; Luo, Xiao; Li, Jing; Bai, Xi

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer AtPP2CG1 positively regulates salt tolerance in ABA-dependent manner. Black-Right-Pointing-Pointer AtPP2CG1 up-regulates the expression of marker genes in different pathways. Black-Right-Pointing-Pointer AtPP2CG1 expresses in the vascular system and trichomes of Arabidopsis. -- Abstract: AtPP2CG1 (Arabidopsis thaliana protein phosphatase 2C G Group 1) was predicted as an abiotic stress candidate gene by bioinformatic analysis in our previous study. The gene encodes a putative protein phosphatase 2C that belongs to Group G of PP2C. There is no report of Group G genes involved in abiotic stress so far. Real-time RT-PCR analysis showed that AtPP2CG1 expression was induced by salt, drought, and abscisic acid (ABA) treatment. The expression levels of AtPP2CG1 in the ABA synthesis-deficient mutant abi2-3 were much lower than that in WT plants under salt stress suggesting that the expression of AtPP2CG1 acts in an ABA-dependent manner. Over-expression of AtPP2CG1 led to enhanced salt tolerance, whereas its loss of function caused decreased salt tolerance. These results indicate that AtPP2CG1 positively regulates salt stress in an ABA-dependent manner. Under salt treatment, AtPP2CG1 up-regulated the expression levels of stress-responsive genes, including RD29A, RD29B, DREB2A and KIN1. GUS activity was detected in roots, leaves, stems, flower, and trichomes of AtPP2CG1 promoter-GUS transgenic plants. AtPP2CG1 protein was localized in nucleus and cytoplasm via AtPP2CG1:eGFP and YFP:AtPP2CG1 fusion approaches.

  13. Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

    PubMed Central

    Li, Lin-Jie; Kim, So-Nam

    2016-01-01

    PURPOSE In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies. PMID:27350860

  14. Histochemical and electrophoretic studies on phosphatases of some Indian trematodes.

    PubMed

    Haque, M; Siddiqi, A H

    1982-06-01

    The isoenzymes of acid and alkaline phosphatases and their histochemical localization were studied by polyacrylamide disc gel electrophoresis in four species of trematodes: Gigantocotyle explanatum from the liver and Gastrothylax crumenifer from the rumen of water buffalo (Bubalus bubalis) and Echinostoma malayanum and Fasciolopsis buski from the small intestine of the pig (Sus scrofa). Both acid and alkaline phosphatases were present in the tegument, gastrodermis, suckers, testes, ovary, eggs, vitellaria and uterus but alkaline phosphatase activity was demonstrated only in the parenchyma and excretory ducts. Polyacrylamide gel electrophoresis revealed two to four isoenzymes for both acid and alkaline phosphatase.

  15. Effect of Bacteria and Amoebae on Rhizosphere Phosphatase Activity

    PubMed Central

    Gould, W. Douglas; Coleman, David C.; Rubink, Amy J.

    1979-01-01

    The contributions of various components of soil microflora and microfauna to rhizosphere phosphatase activity were determined with hydroponic cultures. Three treatments were employed: (i) plants alone (Bouteloua gracilis (H.B.K.) Lag. ex Steud.) (ii) plants plus bacteria (Pseudomonas sp.), and (iii) plants plus bacteria plus amoebae (Acanthamoeba sp.). No alkaline phosphatase was detected, but an appreciable amount of acid phosphatase activity (120 to 500 nmol of p-nitrophenylphosphate hydrolyzed per h per plant) was found in the root culture solutions. The presence of bacteria or bacteria and amoebae increased the amount of acid phosphatase in solution, and properties of additional activity were identical to properties of plant acid phosphatase. The presence of bacteria or bacteria and amoebae increased both solution and root phosphatase activities at most initial phosphate concentrations. PMID:16345390

  16. Extracellular phosphatases of Chlamydomonas reinhardi and their regulation.

    PubMed

    Patni, N J; Dhawale, S W; Aaronson, S

    1977-04-01

    Chlamydomonas reinhardi, cultured under normal growth conditions, secreted significant amounts of protein and carbohydrates but not lipids or nucleic acids. A fivefold increase in light intensity led to a tenfold increase in secreted protein and carbohydrate. Among the proteins secreted was acid phosphatase with a pH optimum at 4.8 like the enzyme in the cells. Phosphorus depleted algae grown on minimal orthophosphate contained and secreted both acid and alkaline phosphatase. The pH optimum of the intracellular alkaline phosphatase was 9.2. When phosphorus-depleted cells were grown with increasing orthophosphate, intra- and extracellular alkaline phosphatase was almost completely repressed and intra- and extracellular acid phosphatase was partially repressed. Extracellular acid and alkaline phosphatase increased with the age of the culture. Electrophoresis indicated only one acid and one alkaline phosphatase in phosphorus-satisfied and phosphorus-depleted cells. Chlamydomonas cells suspended in an inorganic salt solution secreted only acid phosphatase; the absence of any extr-cellular cytoplasmic marker enzyme indicated that there was little, if any, autolysis to account for the extracellular acid enzyme. Phosphorus-depleted cells were able to grow on organic phosphates as the sole source of orthophosphate. Ribose-5-phosphate was the best for cell multiplication, and its utility was shown to be due to the cell's ability to use the ribose as well as the orthophosphatase for cell multiplication.

  17. Identification and characterization of two distinct PPP1R2 isoforms in human spermatozoa

    PubMed Central

    2013-01-01

    Background Protein Ser/Thr Phosphatase PPP1CC2 is an alternatively spliced isoform of PPP1C that is highly enriched in testis and selectively expressed in sperm. Addition of the phosphatase inhibitor toxins okadaic acid or calyculin A to caput and caudal sperm triggers and stimulates motility, respectively. Thus, the endogenous mechanisms of phosphatase inhibition are fundamental for controlling sperm function and should be characterized. Preliminary results have shown a protein phosphatase inhibitor activity resembling PPP1R2 in bovine and primate spermatozoa. Results Here we show conclusively, for the first time, that PPP1R2 is present in sperm. In addition, we have also identified a novel protein, PPP1R2P3. The latter was previously thought to be an intron-less pseudogene. We show that the protein corresponding to the pseudogene is expressed. It has PPP1 inhibitory potency similar to PPP1R2. The potential phosphosites in PPP1R2 are substituted by non-phosphorylable residues, T73P and S87R, in PPP1R2P3. We also confirm that PPP1R2/PPP1R2P3 are phosphorylated at Ser121 and Ser122, and report a novel phosphorylation site, Ser127. Subfractionation of sperm structures show that PPP1CC2, PPP1R2/PPP1R2P3 are located in the head and tail structures. Conclusions The conclusive identification and localization of sperm PPP1R2 and PPP1R2P3 lays the basis for future studies on their roles in acrosome reaction, sperm motility and hyperactivation. An intriguing possibility is that a switch in PPP1CC2 inhibitory subunits could be the trigger for sperm motility in the epididymis and/or sperm hyperactivation in the female reproductive tract. PMID:23506001

  18. High mature grain phytase activity in the Triticeae has evolved by duplication followed by neofunctionalization of the purple acid phosphatase phytase (PAPhy) gene

    PubMed Central

    Brinch-Pedersen, Henrik

    2013-01-01

    The phytase activity in food and feedstuffs is an important nutritional parameter. Members of the Triticeae tribe accumulate purple acid phosphatase phytases (PAPhy) during grain filling. This accumulation elevates mature grain phytase activities (MGPA) up to levels between ~650 FTU/kg for barley and 6000 FTU/kg for rye. This is notably more than other cereals. For instance, rice, maize, and oat have MGPAs below 100 FTU/kg. The cloning and characterization of the PAPhy gene complement from wheat, barley, rye, einkorn, and Aegilops tauschii is reported here. The Triticeae PAPhy genes generally consist of a set of paralogues, PAPhy_a and PAPhy_b, and have been mapped to Triticeae chromosomes 5 and 3, respectively. The promoters share a conserved core but the PAPhy_a promoter have acquired a novel cis-acting regulatory element for expression during grain filling while the PAPhy_b promoter has maintained the archaic function and drives expression during germination. Brachypodium is the only sequenced Poaceae sharing the PAPhy duplication. As for the Triticeae, the duplication is reflected in a high MGPA of ~4200 FTU/kg in Brachypodium. The sequence conservation of the paralogous loci on Brachypodium chromosomes 1 and 2 does not extend beyond the PAPhy gene. The results indicate that a single-gene segmental duplication may have enabled the evolution of high MGPA by creating functional redundancy of the parent PAPhy gene. This implies that similar MGPA levels may be out of reach in breeding programs for some Poaceae, e.g. maize and rice, whereas Triticeae breeders should focus on PAPhy_a. PMID:23918958

  19. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana

    PubMed Central

    Plaxton, William C.

    2012-01-01

    Orthophosphate (Pi) is an essential but limiting macronutrient for plant growth. Extensive soil P reserves exist in the form of organic P (Po), which is unavailable for root uptake until hydrolysed by secretory acid phosphatases (APases). The predominant purple APase (PAP) isozymes secreted by roots of Pi-deficient (–Pi) Arabidopsis thaliana were recently identified as AtPAP12 (At2g27190) and AtPAP26 (At5g34850). The present study demonstrated that exogenous Po compounds such as glycerol-3-phosphate or herring sperm DNA: (i) effectively substituted for Pi in supporting the P nutrition of Arabidopsis seedlings, and (ii) caused upregulation and secretion of AtPAP12 and AtPAP26 into the growth medium. When cultivated under –Pi conditions or supplied with Po as its sole source of P nutrition, an atpap26/atpap12 T-DNA double insertion mutant exhibited impaired growth coupled with >60 and >30% decreases in root secretory APase activity and rosette total Pi concentration, respectively. Development of the atpap12/atpap26 mutant was unaffected during growth on Pi-replete medium but was completely arrested when 7-day-old Pi-sufficient seedlings were transplanted into a –Pi, Po-containing soil mix. Both PAPs were also strongly upregulated on root surfaces and in shoot cell-wall extracts of –Pi seedlings. It is hypothesized that secreted AtPAP12 and AtPAP26 facilitate the acclimation of Arabidopsis to nutritional Pi deficiency by: (i) functioning in the rhizosphere to scavenge Pi from the soil’s accessible Po pool, while (ii) recycling Pi from endogenous phosphomonoesters that have been leaked into cell walls from the cytoplasm. Thus, AtPAP12 and AtPAP26 are promising targets for improving crop P-use efficiency. PMID:23125358

  20. The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation1[OPEN

    PubMed Central

    Tao, Sibo; Zhang, Ye; Wang, Xiaoyue; Xu, Le; Fang, Xiaofeng; Lu, Zhi John

    2016-01-01

    Induction and secretion of acid phosphatases (APases) is an adaptive response that plants use to cope with P (Pi) deficiency in their environment. The molecular mechanism that regulates this response, however, is poorly understood. In this work, we identified an Arabidopsis (Arabidopsis thaliana) mutant, hps8, which exhibits enhanced APase activity on its root surface (also called root-associated APase activity). Our molecular and genetic analyses indicate that this altered Pi response results from a mutation in the AtTHO1 gene that encodes a subunit of the THO/TREX protein complex. The mutation in another subunit of this complex, AtTHO3, also enhances root-associated APase activity under Pi starvation. In Arabidopsis, the THO/TREX complex functions in mRNA export and miRNA biogenesis. When treated with Ag+, an inhibitor of ethylene perception, the enhanced root-associated APase activity in hps8 is largely reversed. hpr1-5 is another mutant allele of AtTHO1 and shows similar phenotypes as hps8. ein2 is completely insensitive to ethylene. In the hpr1-5ein2 double mutant, the enhanced root-associated APase activity is also greatly suppressed. These results indicate that the THO/TREX complex in Arabidopsis negatively regulates root-associated APase activity induced by Pi starvation by inhibiting ethylene signaling. In addition, we found that the miRNA399-PHO2 pathway is also involved in the regulation of root-associated APase activity induced by Pi starvation. These results provide insight into the molecular mechanism underlying the adaptive response of plants to Pi starvation. PMID:27329222

  1. Real-Time Immune Monitoring to Guide Plasmid DNA Vaccination Schedule Targeting Prostatic Acid Phosphatase (PAP) in Patients with Castration-Resistant Prostate Cancer

    PubMed Central

    McNeel, Douglas G.; Becker, Jordan T.; Eickhoff, Jens C.; Johnson, Laura E.; Bradley, Eric; Pohlkamp, Isabel; Staab, Mary Jane; Liu, Glenn; Wilding, George; Olson, Brian M.

    2014-01-01

    BACKGROUND We have previously reported that a DNA vaccine encoding prostatic acid phosphatase (PAP) could elicit PAP-specific T cells in patients with early recurrent prostate cancer. In the current pilot trial we sought to evaluate whether prolonged immunization with regular booster immunizations, or “personalized” schedules of immunization determined using real-time immune monitoring, could elicit persistent, antigen-specific T cells, and whether treatment was associated with changes in PSA doubling time (PSA DT). METHODS 16 patients with castration-resistant, non-metastatic prostate cancer received six immunizations at two-week intervals, and then either quarterly (Arm 1) or as determined by multi-parameter immune monitoring (Arm 2). RESULTS Patients were on study a median of 16 months; four received 24 vaccinations. Only one event associated with treatment > grade 2 was observed. 6/16 (38%) remained metastasis-free at 2 years. PAP-specific T cells were elicited in 12/16 (75%), predominantly of a Th1 phenotype, which persisted in frequency and phenotype for at least one year. IFNγ-secreting T-cell responses measured by ELISPOT were detectable in 5/13 individuals at one year, and this was not statistically different between study arms. The overall median fold change in PSA DT from pre-treatment to post-treatment was 1.6 (range 0.6–7.0, p=0.036). CONCLUSIONS Repetitive immunization with a plasmid DNA vaccine was safe and elicited Th1-biased antigen-specific T cells that persisted over time. Modifications in the immunization schedule based on real-time immune monitoring did not increase the frequency of patients developing effector and memory T-cell responses with this DNA vaccine. PMID:24850844

  2. Caveolae-mediated endocytosis of the glucosaminoglycan-interacting adipokine tartrate resistant acid phosphatase 5a in adipocyte progenitor lineage cells.

    PubMed

    Patlaka, Christina; Norgård, Maria; Paulie, Staffan; Nordvall-Bodell, Annica; Lång, Pernilla; Andersson, Göran

    2014-03-01

    Adipogenesis depends on growth factors controlling proliferation/differentiation of mesenchymal stem cells (MSCs). Membrane binding and endocytosis of growth factors are often coupled to receptor activation and downstream signaling leading to specific cellular responses. The novel adipokine tartrate-resistant acid phosphatase (TRAP) 5a exhibits a growth factor-like effect on MSCs and pre-adipocytes and induces hyperplastic obesity in vivo. However its molecular interaction with pre-adipocytes remains unknown. Therefore, this study aimed to investigate membrane interaction of TRAP and its endocytosis routes in pre-adipocytes. Confocal and/or electron microscopy were used to detect TRAP in untreated or TRAP 5a/b treated pre-adipocytes under conditions that allow or inhibit endocytosis in combination with co-staining of endocytotic vesicles. TRAP interaction with heparin/heparan sulfate was verified by gel filtration. It could be shown that TRAP 5a, but not 5b, binds to the membrane of pre-adipocytes where it co-localizes with heparin-sulfate proteoglycan glypican-4. Also in vitro, TRAP 5a exhibited affinity for both heparin and heparan sulfate with heparin inhibiting its enzyme activity. Upon caveolae-mediated endocytosis of saturating levels of TRAP 5a, TRAP 5a co-localized intracellularly with glypican-4 and late endosomal marker Rab-7 positive vesicles. The protein was also located in multivesicular bodies (MVBs) but did not co-localize with lysosomal marker LAMP-1. TRAP 5a endocytosis was also detectable in pre-osteoblasts, but not fibroblasts, embryonic MSCs or mature adipocytes. These results indicate that TRAP 5a exhibits binding to cell surface, endocytosis and affinity to glucosaminoglycans (GAGs) in pre-adipocyte and pre-osteoblast lineage cells in a manner similar to other heparin-binding growth factors.

  3. Effects of cadmium alone and in combination with low molecular weight chitosan on metallothionein, glutathione-S-transferase, acid phosphatase, and ATPase of freshwater crab Sinopotamon yangtsekiense.

    PubMed

    Li, Ruijin; Zhou, Yanying; Wang, Lan; Ren, Guorui; Zou, Enmin

    2014-03-01

    Cadmium (Cd) is an environmental contaminant showing a variety of deleterious effects, including the potential threat for the ecological environment and human health via food chains. Low molecular weight chitosan (LMWC) has been demonstrated to be an effective antioxidant. Metallothionein (MT) mRNA levels and activities of glutathione-S-transferase (GST), superoxide dismutase (SOD), acid phosphatase (ACP), Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as malondialdehyde (MDA) contents in the gills of the freshwater crab Sinopotamon yangtsekiense were analyzed in vivo in order to determine the injury of Cd exposure on the gill tissues as well as the protective effect of LMWC against this injury. The results showed that there was an apparent accumulation of Cd in the gills, which was lessened by the presence of LMWC. Moreover, Cd(2+) significantly increased the gill MT mRNA levels, ACP activity and MDA content while decreasing the activities of SOD, GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in the crabs relative to the control. Cotreatment with LMWC reduced the levels of MT mRNA and ACP but raised the activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase in gill tissues compared with the crabs exposed to Cd(2+) alone. These results suggest that LMWC may exert its protective effect through chelating Cd(2+) to form LMWC-Cd(2+) complex, elevating the antioxidative activities of GST, Na(+),K(+)-ATPase, and Ca(2+)-ATPase as well as alleviating the stress pressure on MT and ACP, consequently protecting the cell from the adverse effects of Cd.

  4. Secreted Acid Phosphatase (SapM) of Mycobacterium tuberculosis Is Indispensable for Arresting Phagosomal Maturation and Growth of the Pathogen in Guinea Pig Tissues

    PubMed Central

    Puri, Rupangi Verma; Reddy, P. Vineel; Tyagi, Anil K.

    2013-01-01

    Tuberculosis (TB) is responsible for nearly 1.4 million deaths globally every year and continues to remain a serious threat to human health. The problem is further complicated by the growing incidence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), emphasizing the need for the development of new drugs against this disease. Phagosomal maturation arrest is an important strategy employed by Mycobacterium tuberculosis to evade the host immune system. Secretory acid phosphatase (SapM) of M.tuberculosis is known to dephosphorylate phosphotidylinositol 3-phosphate (PI3P) present on phagosomes. However, there have been divergent reports on the involvement of SapM in phagosomal maturation arrest in mycobacteria. This study was aimed at reascertaining the involvement of SapM in phagosomal maturation arrest in M.tuberculosis. Further, for the first time, we have also studied whether SapM is essential for the pathogenesis of M.tuberculosis. By deleting the sapM gene of M.tuberculosis, we demonstrate that MtbΔsapM is defective in the arrest of phagosomal maturation as well as for growth in human THP-1 macrophages. We further show that MtbΔsapM is severely attenuated for growth in the lungs and spleen of guinea pigs and has a significantly reduced ability to cause pathological damage in the host when compared with the parental strain. Also, the guinea pigs infected with MtbΔsapM exhibited a significantly enhanced survival when compared with M.tuberculosis infected animals. The importance of SapM in phagosomal maturation arrest as well as in the pathogenesis of M.tuberculosis establishes it as an attractive target for the development of new therapeutic molecules against tuberculosis. PMID:23923000

  5. Polarized osteoclasts put marks of tartrate-resistant acid phosphatase on dentin slices--a simple method for identifying polarized osteoclasts.

    PubMed

    Nakayama, Takahiro; Mizoguchi, Toshihide; Uehara, Shunsuke; Yamashita, Teruhito; Kawahara, Ichiro; Kobayashi, Yasuhiro; Moriyama, Yoshinori; Kurihara, Saburo; Sahara, Noriyuki; Ozawa, Hidehiro; Udagawa, Nobuyuki; Takahashi, Naoyuki

    2011-12-01

    Osteoclasts form ruffled borders and sealing zones toward bone surfaces to resorb bone. Sealing zones are defined as ringed structures of F-actin dots (actin rings). Polarized osteoclasts secrete protons to bone surfaces via vacuolar proton ATPase through ruffled borders. Catabolic enzymes such as tartrate-resistant acid phosphatase (TRAP) and cathepsin K are also secreted to bone surfaces. Here we show a simple method of identifying functional vestiges of polarized osteoclasts. Osteoclasts obtained from cocultures of mouse osteoblasts and bone marrow cells were cultured for 48 h on dentin slices. Cultures were then fixed and stained for TRAP to identify osteoclasts on the slices. Cells were removed from the slices with cotton swabs, and the slices subjected to TRAP and Mayer's hematoxylin staining. Small TRAP-positive spots (TRAP-marks) were detected in the resorption pits stained with Mayer's hematoxylin. Pitted areas were not always located in the places of osteoclasts, but osteoclasts existed on all TRAP-marks. A time course experiment showed that the number of TRAP-marks was maintained, while the number of resorption pits increased with the culture period. The position of actin rings formed in osteoclasts corresponded to that of TRAP-marks on dentin slices. Immunostaining of dentin slices showed that both cathepsin K and vacuolar proton ATPase were colocalized with the TRAP-marks. Treatment of osteoclast cultures with alendronate, a bisphosphonate, suppressed the formation of TRAP-marks and resorption pits without affecting the cell viability. Calcitonin induced the disappearance of both actin rings and TRAP-marks in osteoclast cultures. These results suggest that TRAP-marks are vestiges of proteins secreted by polarized osteoclasts. PMID:21983021

  6. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases.

  7. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses.

    PubMed

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A; Kay, Steve A; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R; Schroeder, Julian I

    2015-09-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  8. Identification of Open Stomata1-Interacting Proteins Reveals Interactions with Sucrose Non-fermenting1-Related Protein Kinases2 and with Type 2A Protein Phosphatases That Function in Abscisic Acid Responses1[OPEN

    PubMed Central

    Waadt, Rainer; Manalansan, Bianca; Rauniyar, Navin; Munemasa, Shintaro; Booker, Matthew A.; Brandt, Benjamin; Waadt, Christian; Nusinow, Dmitri A.; Kay, Steve A.; Kunz, Hans-Henning; Schumacher, Karin; DeLong, Alison; Yates, John R.; Schroeder, Julian I.

    2015-01-01

    The plant hormone abscisic acid (ABA) controls growth and development and regulates plant water status through an established signaling pathway. In the presence of ABA, pyrabactin resistance/regulatory component of ABA receptor proteins inhibit type 2C protein phosphatases (PP2Cs). This, in turn, enables the activation of Sucrose Nonfermenting1-Related Protein Kinases2 (SnRK2). Open Stomata1 (OST1)/SnRK2.6/SRK2E is a major SnRK2-type protein kinase responsible for mediating ABA responses. Arabidopsis (Arabidopsis thaliana) expressing an epitope-tagged OST1 in the recessive ost1-3 mutant background was used for the copurification and identification of OST1-interacting proteins after osmotic stress and ABA treatments. These analyses, which were confirmed using bimolecular fluorescence complementation and coimmunoprecipitation, unexpectedly revealed homo- and heteromerization of OST1 with SnRK2.2, SnRK2.3, OST1, and SnRK2.8. Furthermore, several OST1-complexed proteins were identified as type 2A protein phosphatase (PP2A) subunits and as proteins involved in lipid and galactolipid metabolism. More detailed analyses suggested an interaction network between ABA-activated SnRK2-type protein kinases and several PP2A-type protein phosphatase regulatory subunits. pp2a double mutants exhibited a reduced sensitivity to ABA during seed germination and stomatal closure and an enhanced ABA sensitivity in root growth regulation. These analyses add PP2A-type protein phosphatases as another class of protein phosphatases to the interaction network of SnRK2-type protein kinases. PMID:26175513

  9. Regulation of different human NFAT isoforms by neuronal activity.

    PubMed

    Vihma, Hanna; Luhakooder, Mirjam; Pruunsild, Priit; Timmusk, Tõnis

    2016-05-01

    Nuclear factor of activated T-cells (NFAT) is a family of transcription factors comprising four calcium-regulated members: NFATc1, NFATc2, NFATc3, and NFATc4. Upon activation by the calcium-dependent phosphatase calcineurin (CaN), NFATs translocate from cytosol to the nucleus and regulate their target genes, which in the nervous system are involved in axon growth, synaptic plasticity, and neuronal survival. We have shown previously that there are a number of different splice variants of NFAT genes expressed in the brain. Here, we studied the subcellular localizations and transactivation capacities of alternative human NFAT isoforms in rat primary cortical or hippocampal neurons in response to membrane depolarization and compared the induced transactivation levels in neurons to those obtained from HEK293 cells in response to calcium signaling. We confirm that in neurons the translocation to the nucleus of all NFAT isoforms is reliant on the activity of CaN. However, our results suggest that both the regulation of subcellular localization and transcriptional activity of NFAT proteins in neurons is isoform specific. We show that in primary hippocampal neurons NFATc2 isoforms have very fast translocation kinetics, whereas NFATc4 isoforms translocate relatively slowly to the nucleus. Moreover, we demonstrate that the strongest transcriptional activators in HEK293 cells are NFATc1 and NFATc3, but in neurons NFATc3 and NFATc4 lead to the highest induction, and NFATc2 and NFATc1 display isoform-specific transcription activation capacities. Altogether, our results indicate that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and can differ between cell types. We show that the effects of calcium signaling on the action of NFAT proteins are isoform-specific and differ between cell types. Although nuclear localization of all NFAT isoforms in neurons requires calcineurin, the subcellular distributions, neuronal activity-induced nuclear

  10. Glycation Contributes to Interaction Between Human Bone Alkaline Phosphatase and Collagen Type I.

    PubMed

    Halling Linder, Cecilia; Enander, Karin; Magnusson, Per

    2016-03-01

    Bone is a biological composite material comprised primarily of collagen type I and mineral crystals of calcium and phosphate in the form of hydroxyapatite (HA), which together provide its mechanical properties. Bone alkaline phosphatase (ALP), produced by osteoblasts, plays a pivotal role in the mineralization process. Affinity contacts between collagen, mainly type II, and the crown domain of various ALP isozymes were reported in a few in vitro studies in the 1980s and 1990s, but have not attracted much attention since, although such interactions may have important implications for the bone mineralization process. The objective of this study was to investigate the binding properties of human collagen type I to human bone ALP, including the two bone ALP isoforms B1 and B2. ALP from human liver, human placenta and E. coli were also studied. A surface plasmon resonance-based analysis, supported by electrophoresis and blotting, showed that bone ALP binds stronger to collagen type I in comparison with ALPs expressed in non-mineralizing tissues. Further, the B2 isoform binds significantly stronger to collagen type I in comparison with the B1 isoform. Human bone and liver ALP (with identical amino acid composition) displayed pronounced differences in binding, revealing that post-translational glycosylation properties govern these interactions to a large extent. In conclusion, this study presents the first evidence that glycosylation differences in human ALPs are of crucial importance for protein-protein interactions with collagen type I, although the presence of the ALP crown domain may also be necessary. Different binding affinities among the bone ALP isoforms may influence the mineral-collagen interface, mineralization kinetics, and degree of bone matrix mineralization, which are important factors determining the material properties of bone. PMID:26645431

  11. Epigallocatechin-3-gallate and penta-O-galloyl-β-D-glucose inhibit protein phosphatase-1.

    PubMed

    Kiss, Andrea; Bécsi, Bálint; Kolozsvári, Bernadett; Komáromi, István; Kövér, Katalin E; Erdődi, Ferenc

    2013-01-01

    Protein phosphatase-1 (PP1) and protein phosphatase-2A (PP2A) are responsible for the dephosphorylation of the majority of phosphoserine/threonine residues in cells. In this study, we show that (-)-epigallocatechin-3-gallate (EGCG) and 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), polyphenolic constituents of green tea and tannins, inhibit the activity of the PP1 recombinant δ-isoform of the PP1 catalytic subunit and the native PP1 catalytic subunit (PP1c) with IC(50) values of 0.47-1.35 μm and 0.26-0.4 μm, respectively. EGCG and PGG inhibit PP2Ac less potently, with IC(50) values of 15 and 6.6 μm, respectively. The structure-inhibitory potency relationships of catechin derivatives suggests that the galloyl group may play a major role in phosphatase inhibition. The interaction of EGCG and PGG with PP1c was characterized by NMR and surface plasmon resonance-based binding techniques. Competitive binding assays and molecular modeling suggest that EGCG docks at the hydrophobic groove close to the catalytic center of PP1c, partially overlapping with the binding surface of microcystin-LR or okadaic acid. This hydrophobic interaction is further stabilized by hydrogen bonding via hydroxyl/oxo groups of EGCG to PP1c residues. Comparative docking shows that EGCG binds to PP2Ac in a similar manner, but in a distinct pose. Long-term treatment (24 h) with these compounds and other catechins suppresses the viability of HeLa cells with a relative effectiveness reminiscent of their in vitro PP1c-inhibitory potencies. The above data imply that the phosphatase-inhibitory features of these polyphenols may be implicated in the wide spectrum of their physiological influence.

  12. Cardiac-specific deletion of protein phosphatase 1β promotes increased myofilament protein phosphorylation and contractile alterations

    PubMed Central

    Liu, Ruijie; Correll, Robert N.; Davis, Jennifer; Vagnozzi, Ronald J.; York, Allen J.; Sargent, Michelle A.; Nairn, Angus C.; Molkentin, Jeffery D.

    2015-01-01

    There are 3 protein phosphatase 1 (PP1) catalytic isoforms (α, β and γ) encoded within the mammalian genome. These 3 gene products share ~90% amino acid homology within their catalytic domains but each has unique N- and C-termini that likely underlie distinctive subcellular localization or functionality. In this study, we assessed the effect associated with loss of each PP1 isoform in the heart using a conditional Cre-loxP targeting approach in mice. Ppp1ca-loxP, Ppp1cb-loxP and Ppp1cc-oxP alleles were crossed with either an Nkx2.5-Cre knock-in containing allele for early embryonic deletion or a tamoxifen inducible α-myosin heavy chain (αMHC)-MerCreMer transgene for adult and cardiac-specific deletion. We determined that while deletion of Ppp1ca (PP1α) or Ppp1cc (PP1γ) had little effect on the whole heart, deletion of Ppp1cb (PP1β) resulted in concentric remodeling of the heart, interstitial fibrosis and contractile dysregulation, using either the embryonic or adult-specific Cre-expressing alleles. However, myocytes isolated from Ppp1cb deleted hearts surprisingly showed enhanced contractility. Mechanistically we found that deletion of any of the 3 PP1 gene-encoding isoforms had no effect on phosphorylation of phospholamban, nor were Ca2+ handling dynamics altered in adult myocytes from Ppp1cb deleted hearts. However, loss of Ppp1cb from the heart, but not Ppp1ca or Ppp1cc, resulted in elevated phosphorylation of myofilament proteins such as myosin light chain 2 and cardiac myosin binding protein C, consistent with an enriched localization profile of this isoform to the sarcomeres. These results suggest a unique functional role for the PP1β isoform in affecting cardiac contractile function. PMID:26334248

  13. Cloning and sequence analysis of a full-length cDNA of SmPP1cb encoding turbot protein phosphatase 1 beta catalytic subunit

    NASA Astrophysics Data System (ADS)

    Qi, Fei; Guo, Huarong; Wang, Jian

    2008-02-01

    Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is an important and versatile mechanism by which eukaryotic cells regulate almost all the signaling processes. Protein phosphatase 1 (PP1) is the first and well-characterized member of the protein serine/threonine phosphatase family. In the present study, a full-length cDNA encoding the beta isoform of the catalytic subunit of protein phosphatase 1(PP1cb), was for the first time isolated and sequenced from the skin tissue of flatfish turbot Scophthalmus maximus, designated SmPP1cb, by the rapid amplification of cDNA ends (RACE) technique. The cDNA sequence of SmPP1cb we obtained contains a 984 bp open reading frame (ORF), flanked by a complete 39 bp 5' untranslated region and 462 bp 3' untranslated region. The ORF encodes a putative 327 amino acid protein, and the N-terminal section of this protein is highly acidic, Met-Ala-Glu-Gly-Glu-Leu-Asp-Val-Asp, a common feature for PP1 catalytic subunit but absent in protein phosphatase 2B (PP2B). And its calculated molecular mass is 37 193 Da and pI 5.8. Sequence analysis indicated that, SmPP1cb is extremely conserved in both amino acid and nucleotide acid levels compared with the PP1cb of other vertebrates and invertebrates, and its Kozak motif contained in the 5'UTR around ATG start codon is GXXAXXGXX ATGG, which is different from mammalian in two positions A-6 and G-3, indicating the possibility of different initiation of translation in turbot, and also the 3'UTR of SmPP1cb is highly diverse in the sequence similarity and length compared with other animals, especially zebrafish. The cloning and sequencing of SmPP1cb gene lays a good foundation for the future work on the biological functions of PP1 in the flatfish turbot.

  14. Cloning and characterization of phosphorus starvation inducible Brassica napus PURPLE ACID PHOSPHATASE 12 gene family, and imprinting of a recently evolved MITE-minisatellite twin structure.

    PubMed

    Lu, Kun; Chai, You-Rong; Zhang, Kai; Wang, Rui; Chen, Li; Lei, Bo; Lu, Jun; Xu, Xin-Fu; Li, Jia-Na

    2008-10-01

    Purple acid phosphatase (PAP) is important for phosphorus assimilation and in planta redistribution. In this study, seven Brassica napus PAP12 (BnPAP12) genes orthologous to Arabidopsis thaliana PAP12 (AtPAP12) are isolated and characterized. NCBI BLASTs, multi-alignments, conserved domain prediction, and featured motif/residue characterization indicate that all BnPAP12 members encode dimeric high molecular weight plant PAPs. BnPAP12-1, BnPAP12-2, BnPAP12-3 and BnPAP12-7 (Group I) have six introns and encode 469-aa polypeptides structurally comparable to AtPAP12. BnPAP12-4 and BnPAP12-6 (Group II) have seven introns and encode 526-aa PAP12s. Encoding a 475-aa polypeptide, BnPAP12-5 (Group III) is evolved from a chimera of 5' part of Group I and 3' part of Group II. Sequence characterization and Southern detection suggest that there are about five BnPAP12 alleles. Homoeologous non-allelic fragment exchanges exist among BnPAP12 genes. BnPAP12-4 and BnPAP12-6 are imprinted with a Tourist-like miniature inverted-repeat transposable element (MITE) which is tightly associated with a novel minisatellite composed of four 36-bp tandem repeats. Existing solely in B. rapa/oleracea lineage, this recently evolved MITE-minisatellite twin structure does not impair transcription and coding capacity of the imprinted genes, and could be used to identify close relatives of B. rapa/oleracea lineage within Brassica. It is also useful for studying MITE activities especially possible involvement in minisatellite formation and gene structure evolution. BnPAP12-6 is silent in transcription. All other BnPAP12 genes basically imitate AtPAP12 in tissue specificity and Pi-starvation induced expression pattern, but divergence and complementation are distinct among them. Alternative polyadenylation and intron retention also exist in BnPAP12 mRNAs.

  15. Ternary oxovanadium(IV) complexes with amino acid-Schiff base and polypyridyl derivatives: synthesis, characterization, and protein tyrosine phosphatase 1B inhibition.

    PubMed

    Lu, Liping; Yue, Jinjun; Yuan, Caixia; Zhu, Miaoli; Han, Hong; Liu, Zhiwei; Guo, Maolin

    2011-10-01

    To investigate the structure-activity relationship of vanadium complexes in inhibiting protein tyrosine phosphatase1B (PTP1B), eight mixed-ligand oxovanadium(IV) complexes, [V(IV)O(SalAla)(NN)] (H(2)SalAla for salicylidene alanine, NN for N,N'-donor heterocyclic base, namely, 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4)), [V(IV)O(SalLys)(dpq)] (5), [V(IV)O(SalLys)(dppz)] (6), [V(IV)O(SalAsp)(dppz)], (7) and [V(IV)O(SalTrp)(dppz)] (8)), of which 3-8 are new, have been prepared and characterized by elemental analysis, infrared, UV-visible, electrospray ionization mass spectrometry and conductivity. The molar conductance data confirmed the non-electrolytic nature of the complexes in DMSO solution. The coordination in [V(IV)O (SalAla)(phen)] (2) was confirmed by X-ray crystal structure analysis. The oxidation state of V(IV) with d(1) configuration in 2 was confirmed by EPR. The speciation of VO-SalAla-phen in aqueous solution was investigated by potentiometric pH titrations. The results indicate that the main species are two ternary complexes at the pH range 7.0-7.4. Biochemical assays demonstrate that the mixed-ligand oxovanadium(IV) complexes are potent inhibitors of PTP1B with IC(50) values in the range of 62-597nM, approximately 3-10 fold weaker in potency than those of similar mixed-ligand oxovanadium(IV) complexes of salicylidene anthranilic acid (SAA) derivative with polypyridyl ligands, except complex 8, which exhibits comparable or better inhibition activity than those of the mixed-ligand oxovanadium(IV) complexes of SAA derivative with polypyridyl ligands. The results demonstrate that the structures of vanadium complexes influence the PTP1B inhibition activity. Kinetics assays reveal that complex 2 inhibits PTP1B in a competitive manner.

  16. Relationship of spermatoscopy, prostatic acid phosphatase activity and prostate-specific antigen (p30) assays with further DNA typing in forensic samples from rape cases.

    PubMed

    Romero-Montoya, Lydia; Martínez-Rodríguez, Hugo; Pérez, Miguel Antonio; Argüello-García, Raúl

    2011-03-20

    In the forensic laboratory the biological analyses for rape investigation commonly include vaginal swabs as sample material combined to biochemical tests including sperm cytology (SC) and detection of acid phosphatase activity (AP) and prostate-specific antigen (PSA, p30) for the conclusive identification of semen components. Most reports comparing these tests relied on analysis of semen samples or donor swabs taken under controlled conditions; however their individual or combined efficacy under real live sampling conditions in different laboratories is largely unknown. We carried out SC, APA and PSA analyses in vaginal swabs collected from casework rapes submitted to Mexican Forensic Laboratories at Texcoco and Toluca. On the basis of positive and negative results from each assay and sample, data were classified into eight categories (I-VIII) and compared with those obtained in the two only similar studies reported in Toronto, Canada and Hong Kong, China. SC and APA assays had the higher overall positivity in Toluca and Texcoco samples respectively and otherwise PSA had a lower but very similar positivity between these two laboratories. When compared to the previous studies some similarities were found, namely similar frequencies (at a ratio of approximately 1 out of 3) of samples being positive or negative by all techniques (Categories I and VI respectively) and a comparable overall positivity of APA and SC but higher than that of PSA. Indeed the combined results of using SC, APA and PSA tests was considered as conclusive for semen detection from approximately 1 out of 3 cases (Category I) to approximately 1 out of 2 cases in a scenario where at least SC is positive, strongly presumptive in 2 out of 3 cases (with at least one test positive) and the remainder 1 out of 3 cases (Category VI) suggested absence of semen. By determining Y-STR polymorphisms (12-loci) in additional samples obtained at Toluca laboratory, complete DNA profiles were determined from all

  17. Structure-Function Analysis of the 3' Phosphatase Component of T4 Polynucleotide Kinase/phosphatase

    SciTech Connect

    Zhu,H.; Smith, P.; Wang, L.; Shuman, S.

    2007-01-01

    T4 polynucleotide kinase/phosphatase (Pnkp) exemplifies a family of bifunctional enzymes with 5'-kinase and 3' phosphatase activities that function in nucleic acid repair. T4 Pnkp is a homotetramer of a 301-aa polypeptide, which consists of an N-terminal kinase domain of the P-loop phosphotransferase superfamily and a C-terminal phosphatase domain of the DxD acylphosphatase superfamily. The homotetramer is formed via pairs of phosphatase-phosphatase and kinase-kinase homodimer interfaces. Here we identify four side chains-Asp187, Ser211, Lys258, and Asp277-that are required for 3' phosphatase activity. Alanine mutations at these positions abolished phosphatase activity without affecting kinase function or tetramerization. Conservative substitutions of asparagine or glutamate for Asp187 did not revive the 3' phosphatase, nor did arginine or glutamine substitutions for Lys258. Threonine in lieu of Ser211 and glutamate in lieu of Asp277 restored full activity, whereas asparagine at position 277 had no salutary effect. We report a 3.0 A crystal structure of the Pnkp tetramer, in which a sulfate ion is coordinated between Arg246 and Arg279 in a position that we propose mimics one of the penultimate phosphodiesters (5'NpNpNp-3') of the polynucleotide 3'-PO(4) substrate. The amalgam of mutational and structural data engenders a plausible catalytic mechanism for the phosphatase that includes covalent catalysis (via Asp165), general acid-base catalysis (via Asp167), metal coordination (by Asp165, Asp277 and Asp278), and transition state stabilization (via Lys258, Ser211, backbone amides, and the divalent cation). Other critical side chains play architectural roles (Arg176, Asp187, Arg213, Asp254). To probe the role of oligomerization in phosphatase function, we introduced six double-alanine cluster mutations at the phosphatase-phosphatase domain interface, two of which (R297A-Q295A and E292A-D300A) converted Pnkp from a tetramer to a dimer and ablated phosphatase activity.

  18. Crystal Structures of Human Choline Kinase Isoforms in Complex with Hemicholinium-3 Single Amino Acid near the Active Site Influences Inhibitor Sensitivity

    SciTech Connect

    Hong, Bum Soo; Allali-Hassani, Abdellah; Tempel, Wolfram; Finerty, Jr., Patrick J.; MacKenzie, Farrell; Dimov, Svetoslav; Vedadi, Masoud; Park, Hee-Won

    2010-07-06

    Human choline kinase (ChoK) catalyzes the first reaction in phosphatidylcholine biosynthesis and exists as ChoK{alpha} ({alpha}1 and {alpha}2) and ChoK{beta} isoforms. Recent studies suggest that ChoK is implicated in tumorigenesis and emerging as an attractive target for anticancer chemotherapy. To extend our understanding of the molecular mechanism of ChoK inhibition, we have determined the high resolution x-ray structures of the ChoK{alpha}1 and ChoK{beta} isoforms in complex with hemicholinium-3 (HC-3), a known inhibitor of ChoK. In both structures, HC-3 bound at the conserved hydrophobic groove on the C-terminal lobe. One of the HC-3 oxazinium rings complexed with ChoK{alpha}1 occupied the choline-binding pocket, providing a structural explanation for its inhibitory action. Interestingly, the HC-3 molecule co-crystallized with ChoK{beta} was phosphorylated in the choline binding site. This phosphorylation, albeit occurring at a very slow rate, was confirmed experimentally by mass spectroscopy and radioactive assays. Detailed kinetic studies revealed that HC-3 is a much more potent inhibitor for ChoK{alpha} isoforms ({alpha}1 and {alpha}2) compared with ChoK{beta}. Mutational studies based on the structures of both inhibitor-bound ChoK complexes demonstrated that Leu-401 of ChoK{alpha}2 (equivalent to Leu-419 of ChoK{alpha}1), or the corresponding residue Phe-352 of ChoK{beta}, which is one of the hydrophobic residues neighboring the active site, influences the plasticity of the HC-3-binding groove, thereby playing a key role in HC-3 sensitivity and phosphorylation.

  19. Inhibition of specific binding of okadaic acid to protein phosphatase 2A by microcystin-LR, calyculin-A and tautomycin: method of analysis of interactions of tight-binding ligands with target protein.

    PubMed Central

    Takai, A; Sasaki, K; Nagai, H; Mieskes, G; Isobe, M; Isono, K; Yasumoto, T

    1995-01-01

    Several groups have reported that okadaic acid (OA) and some other tight-binding protein phosphatase inhibitors including microcystin-LR (MCLR), calyculin-A and tautomycin prevent each other from binding to protein phosphatase 2A (PP2A). In this paper, we have introduced an improved procedure for examining to what extent the affinity of an enzyme for a labelled tight-binding ligand is reduced by binding of an unlabelled tight-binding, ligand to the enzyme. Using this procedure, we have analysed the dose-dependent reduction of PP2A binding of [24-3H]OA by addition of OA, MCLR, calyculin-A and tautomycin. The results indicate that the binding of the unlabelled inhibitors to the PP2A molecule causes a dramatic (10(6)-10(8)-fold) increase in the dissociation constant associated with the interaction of [24-3H]OA and PP2A. This suggests that OA and the other inhibitors bind to PP2A in a mutually exclusive manner. The protein phosphatase inhibitors may share the same binding site on the PP2A molecule. We have also measured values of the dissociation constant (Ki) for the interaction of these toxins with protein phosphatase 1 (PP1). For MCLR and calyculin-A, the ratio of the Ki value obtained for PP1 to that for PP2A was in the range 4-9, whereas it was 0.01-0.02 for tautomycin. The value of tautomycin is considerably smaller than that (0.4) calculated from previously reported Ki values. PMID:7702557

  20. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites.

    PubMed

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong; Yao, Bin

    2015-12-04

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed.

  1. N-Glycosylation Improves the Pepsin Resistance of Histidine Acid Phosphatase Phytases by Enhancing Their Stability at Acidic pHs and Reducing Pepsin's Accessibility to Its Cleavage Sites

    PubMed Central

    Niu, Canfang; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Wang, Yaru; Yang, Peilong

    2015-01-01

    N-Glycosylation can modulate enzyme structure and function. In this study, we identified two pepsin-resistant histidine acid phosphatase (HAP) phytases from Yersinia kristensenii (YkAPPA) and Yersinia rohdei (YrAPPA), each having an N-glycosylation motif, and one pepsin-sensitive HAP phytase from Yersinia enterocolitica (YeAPPA) that lacked an N-glycosylation site. Site-directed mutagenesis was employed to construct mutants by altering the N-glycosylation status of each enzyme, and the mutant and wild-type enzymes were expressed in Pichia pastoris for biochemical characterization. Compared with those of the N-glycosylation site deletion mutants and N-deglycosylated enzymes, all N-glycosylated counterparts exhibited enhanced pepsin resistance. Introduction of the N-glycosylation site into YeAPPA as YkAPPA and YrAPPA conferred pepsin resistance, shifted the pH optimum (0.5 and 1.5 pH units downward, respectively) and improved stability at acidic pH (83.2 and 98.8% residual activities at pH 2.0 for 1 h). Replacing the pepsin cleavage sites L197 and L396 in the immediate vicinity of the N-glycosylation motifs of YkAPPA and YrAPPA with V promoted their resistance to pepsin digestion when produced in Escherichia coli but had no effect on the pepsin resistance of N-glycosylated enzymes produced in P. pastoris. Thus, N-glycosylation may improve pepsin resistance by enhancing the stability at acidic pH and reducing pepsin's accessibility to peptic cleavage sites. This study provides a strategy, namely, the manipulation of N-glycosylation, for improvement of phytase properties for use in animal feed. PMID:26637601

  2. Ga(III) complexes as models for the M(III) site of purple acid phosphatase: ligand effects on the hydrolytic reactivity toward bis(2,4-dinitrophenyl) phosphate.

    PubMed

    Coleman, Fergal; Hynes, Michael J; Erxleben, Andrea

    2010-07-19

    The effects of a series of Ga(III) complexes with tripodal ligands on the hydrolysis rate of the activated phosphate diester bis(2,4-dinitrophenyl)phosphate (BDNPP) have been investigated. In particular, the influence of the nature of the ligand donor sites on the reactivity of Ga(III) which represents a mimic of the Fe(III) ion in purple acid phosphatase has been evaluated. It has been shown that replacing neutral nitrogen donor atoms and carboxylate groups by phenolate groups enhanced the reactivity of the Ga complexes. Bell-shaped pH-rate profiles and the measured solvent deuterium isotope effects are indicative of a mechanism that involves nucleophilic attack on the coordinated substrate by Ga-OH. The trend in reactivity found for the different Ga complexes reveals that of the two effects of the metal, Lewis acid activation of the substrate and nucleophile activation, the latter one is more important in determining the intrinsic reactivity of the metal catalyst. The relevance of the present findings for the modulation of the activity of the M(III) ion in purple acid phosphatase whose active site contains a phenolate (tyrosine side chain) is discussed. PMID:20565083

  3. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  4. Protein phosphatase 1 is a key player in nuclear events.

    PubMed

    Rebelo, Sandra; Santos, Mariana; Martins, Filipa; da Cruz e Silva, Edgar F; da Cruz e Silva, Odete A B

    2015-12-01

    Reversible protein phosphorylation at serine (Ser), threonine (Thr) and tyrosine (Tyr) residues is among the major regulatory mechanism in eukaryotic cells. The eukaryotic genome encodes many protein kinases and protein phosphatases. However, the localization, activity and specificity towards phosphatase substrates are dictated by a large array of phosphatase binding and regulatory subunits. For protein phosphatase 1 (PP1) more than 200 binding subunits have been described. The various PP1 isoforms and the binding subunits can be located throughout the cell, including in the nucleus. It follows that several nuclear specific PP1 binding proteins (PIPs) have been described and these will be discussed. Among them are PNUTS (phosphatase 1 nuclear targeting subunit), NIPP1 (nuclear inhibitor of PP1) and CREB (cAMP-responsive element-binding protein), which have all been associated with transcription. In fact PP1 can associate with transcription factors fulfilling an important regulatory function, in this respect it can bind to Hox11, human factor C1 (HCF1) and myocyte enhancer factor-2 (MEF2). PP1 also regulates cell cycle progression and centrosome maturation and splitting, again by binding to specific regulatory proteins. Moreover, PP1 together with other protein phosphatases control the entry into mitosis by regulating the activity of mitotic kinases. Thus, PP1, its binding proteins and/or the phosphorylation states of both, directly control a vast array of cell nucleus associated functions, many of which are starting to be unraveled.

  5. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  6. Biochemical Characterization of Mycobacterium smegmatis RnhC (MSMEG_4305), a Bifunctional Enzyme Composed of Autonomous N-Terminal Type I RNase H and C-Terminal Acid Phosphatase Domains

    PubMed Central

    Jacewicz, Agata

    2015-01-01

    ABSTRACT Mycobacterium smegmatis encodes several DNA repair polymerases that are adept at incorporating ribonucleotides, which raises questions about how ribonucleotides in DNA are sensed and removed. RNase H enzymes, of which M. smegmatis encodes four, are strong candidates for a surveillance role. Here, we interrogate the biochemical activity and nucleic acid substrate specificity of M. smegmatis RnhC, a bifunctional RNase H and acid phosphatase. We report that (i) the RnhC nuclease is stringently specific for RNA:DNA hybrid duplexes; (ii) RnhC does not selectively recognize and cleave DNA-RNA or RNA-DNA junctions in duplex nucleic acid; (iii) RnhC cannot incise an embedded monoribonucleotide or diribonucleotide in duplex DNA; (iv) RnhC can incise tracts of 4 or more ribonucleotides embedded in duplex DNA, leaving two or more residual ribonucleotides at the cleaved 3′-OH end and at least one or two ribonucleotides on the 5′-PO4 end; (v) the RNase H activity is inherent in an autonomous 140-amino-acid (aa) N-terminal domain of RnhC; and (vi) the C-terminal 211-aa domain of RnhC is an autonomous acid phosphatase. The cleavage specificity of RnhC is clearly distinct from that of Escherichia coli RNase H2, which selectively incises at an RNA-DNA junction. Thus, we classify RnhC as a type I RNase H. The properties of RnhC are consistent with a role in Okazaki fragment RNA primer removal or in surveillance of oligoribonucleotide tracts embedded in DNA but not in excision repair of single misincorporated ribonucleotides. IMPORTANCE RNase H enzymes help cleanse the genome of ribonucleotides that are present either as ribotracts (e.g., RNA primers) or as single ribonucleotides embedded in duplex DNA. Mycobacterium smegmatis encodes four RNase H proteins, including RnhC, which is characterized in this study. The nucleic acid substrate and cleavage site specificities of RnhC are consistent with a role in initiating the removal of ribotracts but not in single

  7. Zn-exchange and Mössbauer studies on the [Fe-Fe] derivatives of the purple acid Fe(III)-Zn(II)-phosphatase from kidney beans.

    PubMed

    Suerbaum, H; Körner, M; Witzel, H; Althaus, E; Mosel, B D; Müller-Warmuth, W

    1993-05-15

    In order to perform Mössbauer studies, Zn(II) in the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean has been exchanged by incubating the semiapoenzyme with 57Fe(II). The resulting Fe(III)-57Fe(II) enzyme has 125% activity, compared with that of the Zn(II) enzyme. It can be oxidized by H2O2 or peroxydisulfate to the Fe(III)-57Fe(III) species with a 30-times lower activity. Incubation of the metal-free apoenzyme with 57Fe(II) in the presence of O2 leads to the 57Fe(III)-57Fe(II) species which is stable in dilute solutions, but partially oxidized during the concentration procedure to the 57Fe(III)-57Fe(III) enzyme. Limited reduction of the oxidized enzyme with ascorbate delivers a mixture of the Fe(II)-Fe(II)/Fe(III)-Fe(III) species, but not the mixed valent Fe(III)-Fe(II) species, indicating that after the transfer of the first electron the second electron of the ascorbate radical is immediately transferred to the second Fe(III). The Mössbauer spectra of the oxidized species show at 4.2 K two quadrupole doublets with delta of 0.51 mm/s and 0.53 mm/s and delta E of 1.46 and 0.96 mm/s indicating high spin Fe(III) in two different binding sites, obviously with a higher asymmetry in the chromophoric Fe(III) site. The values are too low for a mu-oxo bridge. The mixed-valent Fe(III)-Fe(II) species shows two quadrupole doublets with delta values of 0.55 mm/s and 1.14 mm/s and delta E values of 1.43 mm/s and 3.01 mm/s at 70 K for high spin Fe(II) and Fe(III), but the signal of the Fe(II) component shows magnetic patterns at 4.2 K indicating a half-integer spin system with antiferromagnetic coupling. The Fe(II)-Fe(II) system exhibits two quadrupole doublets with delta values of 1.18 mm/s and 1.22 mm/s and with delta E values of 3.69 mm/s and 2.68 mm/s again indicating a higher asymmetry in the originally chromophoric Fe(III)-binding site. Addition of phosphate shows only minor differences in the oxidized enzyme and in the mixed valent Fe(III)-Fe(II) system

  8. Zn-exchange and Mössbauer studies on the [Fe-Fe] derivatives of the purple acid Fe(III)-Zn(II)-phosphatase from kidney beans.

    PubMed

    Suerbaum, H; Körner, M; Witzel, H; Althaus, E; Mosel, B D; Müller-Warmuth, W

    1993-05-15

    In order to perform Mössbauer studies, Zn(II) in the Fe(III)-Zn(II) purple acid phosphatase of the red kidney bean has been exchanged by incubating the semiapoenzyme with 57Fe(II). The resulting Fe(III)-57Fe(II) enzyme has 125% activity, compared with that of the Zn(II) enzyme. It can be oxidized by H2O2 or peroxydisulfate to the Fe(III)-57Fe(III) species with a 30-times lower activity. Incubation of the metal-free apoenzyme with 57Fe(II) in the presence of O2 leads to the 57Fe(III)-57Fe(II) species which is stable in dilute solutions, but partially oxidized during the concentration procedure to the 57Fe(III)-57Fe(III) enzyme. Limited reduction of the oxidized enzyme with ascorbate delivers a mixture of the Fe(II)-Fe(II)/Fe(III)-Fe(III) species, but not the mixed valent Fe(III)-Fe(II) species, indicating that after the transfer of the first electron the second electron of the ascorbate radical is immediately transferred to the second Fe(III). The Mössbauer spectra of the oxidized species show at 4.2 K two quadrupole doublets with delta of 0.51 mm/s and 0.53 mm/s and delta E of 1.46 and 0.96 mm/s indicating high spin Fe(III) in two different binding sites, obviously with a higher asymmetry in the chromophoric Fe(III) site. The values are too low for a mu-oxo bridge. The mixed-valent Fe(III)-Fe(II) species shows two quadrupole doublets with delta values of 0.55 mm/s and 1.14 mm/s and delta E values of 1.43 mm/s and 3.01 mm/s at 70 K for high spin Fe(II) and Fe(III), but the signal of the Fe(II) component shows magnetic patterns at 4.2 K indicating a half-integer spin system with antiferromagnetic coupling. The Fe(II)-Fe(II) system exhibits two quadrupole doublets with delta values of 1.18 mm/s and 1.22 mm/s and with delta E values of 3.69 mm/s and 2.68 mm/s again indicating a higher asymmetry in the originally chromophoric Fe(III)-binding site. Addition of phosphate shows only minor differences in the oxidized enzyme and in the mixed valent Fe(III)-Fe(II) system

  9. Differentiation, early response gene expression, and apoptosis induction in human breast tumor cells by Okadaic Acid and related inhibitors of protein phosphatases 1 and 2A. Okadaic acid effects on human breast tumor cells

    SciTech Connect

    Kiguchi, K.; Giometti, C.; Chubb, C.H.; Huberman, E.; Fujiki, H.

    1992-08-20

    Okadaic acid (OA), a tumor promoter and an inhibitor of protein phosphatases (PPH) 1 and 2A, was tested for its ability to induce events associated with differentiation and apoptosis induction in the human MCF-7, AU-565, and MB-231 breast tumor cells. Differentiation in these cells was characterized by inhibition of cell multiplication, reactivity with monoclonal antibodies to {alpha}-lactalbumin and {beta}-casein, and the appearance of large lipid droplets; apoptosis was characterized by the appearance of cells with segmented and fragmented nuclei. In the MCF-7 cell line, OA at nanomolar concentrations elicited within 5 min an increase in the phosphorylation of a set of cellular proteins, within hours expression of the early response genes, junB, c-jun, and c-fos and within days manifestation of differentiation and apoptosis markers. Differentiation and apoptosis were also induced by dinophysistoxin-1 and calyculin A, two other tumor promoters and inhibitors of PPH 1 and 2A, but not by OA tetramethyl ether, an inactive OA derivative, or microcystin LR, a PPH 1 and 2A inhibitor that penetrates epithelial cells poorly. OA induced both differentiation and apoptosis in MB-231 cells and MCF-7, but only differentiation in AU-565 cells. Phorbol 12-myristate 13-acetate (PMA), a tumor promoter that is not an inhibitor of PPH 1 and 2A but rather an activator of protein kinase C, also induced within minutes the phosphorylation of proteins, within hours the expression of early response genes, and within days differentiation, but not apoptosis; yet PMA was able to attenuate apoptosis induced by the okadaic acid class of tumor promoters. These results indicate that OA and related agents can induce processes that result in tumor breast cell differentiation and apoptosis, and this induction is associated with their ability to inhibit PPH 1 and 2A. Yet apoptosis is not necessarily required for differentiation induction by these agents.

  10. Resistance of leishmanial phosphatases to inactivation by oxygen metabolites.

    PubMed

    Saha, A K; Das, S; Glew, R H; Gottlieb, M

    1985-09-01

    Leishmania donovani promastigotes produce large quantities of two distinct acid phosphatases; a tartrate-resistant enzyme is localized to the external surface of the plasma membrane, and a tartrate-sensitive enzyme is secreted into the growth medium. It was shown previously that preincubation of human neutrophils and macrophages with the tartrate-resistant phosphatase markedly reduced the ability of these host cells to produce superoxide anions in response to stimulation with the activator formyl-methionyl-leucyl-phenylalanine. The possibility that the cell surface acid phosphatase or the phosphatase that is secreted into the extracellular fluid might compromise other host cell functions, especially intracellular ones, depends on the ability of the enzyme to resist exposure to toxic oxygen metabolites (e.g., superoxide anion, hydrogen peroxide, hypochlorite) generated by phagocytic cells. In the present report, we show that both leishmanial acid phosphatases were relatively resistant to inactivation by oxygen metabolites. At pH 5.5, the activity of the tartrate-resistant phosphatase was reduced 50% by incubation for 1 h with each of the following: 30 mM O2-, 500 mM hydrogen peroxide, and 6 mM hypochlorite ion. These concentrations are many fold greater than the concentrations of these substances that are generated by stimulated polymorphonuclear phagocytes. The tartrate-sensitive acid phosphatase differed markedly from the tartrate-resistant phosphatase in that the former was essentially insensitive to even very high concentrations of superoxide anion and hydrogen peroxide. Furthermore, 50% inactivation of the tartrate-sensitive leishmanial phosphatase required exposure to 35 mM hypochlorite for 30 min. These results indicate that the catalytic potential of these two leishmanial acid phosphatases probably survives exposure to toxic oxygen metabolites generated by neutrophils and macrophages.

  11. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae).

    PubMed

    Koodalingam, Arunagirinathan; Mullainadhan, Periasamy; Arumugam, Munusamy

    2011-04-01

    Our earlier investigations with kernels from the soapnut Sapindus emarginatus revealed it as a new source of botanical biocide with potent antimosquito activity, as evident from the proven unique ability of the aqueous kernel extract to kill all the developmental stages of three important vector mosquito species, Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus. This extract was also found to be safe for two non-target aquatic insects. As a sequel to these findings, we have further examined quantitative and qualitative changes in total proteins, esterases, and phosphatases in whole body homogenates of fourth instar larvae and pupae of A. aegypti exposed to this extract at an appropriate threshold time for its lethal effect to gain insights into the impact of the botanical biocide on biochemical characteristics of the target vector mosquito at two distinct developmental stages. The profiles of proteins, esterases (acetylcholinesterse, α- and β-carboxylesterases), and phosphatases (acid and alkaline) exhibited distinct patterns of variation during normal development of fourth instar larvae and pupae, indicating intrinsic difference in biochemical features between these two developmental stages of A. aegypti. Upon exposure of the larvae to the extract, significant reduction in the activities of acetylcholinesterse, β-carboxylesterase, and acid phosphatases were recorded, whereas the total proteins, α-carboxylesterase and alkaline phosphatase activities were unaffected. By contrast, only alkaline phosphatase activity was significantly affected in pupae exposed to the extract. Analysis of these enzymes in native PAGE revealed that they exist in isoforms in both the larvae and pupae. The alterations in the levels of enzymatic activities observed from the quantitative assays of various enzymes were reflected by the respective zymograms with perceptible differences in the intensity and the number of bands detected especially with β-carboxylesterase, acid

  12. Oral administration of a fusion protein between the cholera toxin B subunit and the 42-amino acid isoform of amyloid-β peptide produced in silkworm pupae protects against Alzheimer's disease in mice.

    PubMed

    Li, Si; Wei, Zhen; Chen, Jian; Chen, Yanhong; Lv, Zhengbing; Yu, Wei; Meng, Qiaohong; Jin, Yongfeng

    2014-01-01

    A key molecule in the pathogenesis of Alzheimer's disease (AD) is a 42-amino acid isoform of the amyloid-β peptide (Aβ42), which is the most toxic element of senile plaques. In this study, to develop an edible, safe, low-cost vaccine for AD, a cholera toxin B subunit (CTB)-Aβ42 fusion protein was successfully expressed in silkworm pupae. We tested the silkworm pupae-derived oral vaccination containing CTB-Aβ42 in a transgenic mouse model of AD. Anti-Aβ42 antibodies were induced in these mice, leading to a decreased Aβ deposition in the brain. We also found that the oral administration of the silk worm pupae vaccine improved the memory and cognition of mice, as assessed using a water maze test. These results suggest that the new edible CTB-Aβ42 silkworm pupae-derived vaccine has potential clinical application in the prevention of AD.

  13. Redox regulation of protein tyrosine phosphatase 1B (PTP1B): Importance of steric and electronic effects on the unusual cyclization of the sulfenic acid intermediate to a sulfenyl amide

    NASA Astrophysics Data System (ADS)

    Sarma, Bani Kanta

    2013-09-01

    The redox regulation of protein tyrosine phosphatase 1B (PTP1B) via the unusual transformation of its sulfenic acid (PTP1B-SOH) to a cyclic sulfenyl amide intermediate is studied by using small molecule chemical models. These studies suggest that the sulfenic acids derived from the H2O2-mediated reactions o-amido thiophenols do not efficiently cyclize to sulfenyl amides and the sulfenic acids produced in situ can be trapped by using methyl iodide. Theoretical calculations suggest that the most stable conformer of such sulfenic acids are stabilized by nO → σ*S-OH orbital interactions, which force the -OH group to adopt a position trans to the S⋯O interaction, leading to an almost linear arrangement of the O⋯S-O moiety and this may be the reason for the slow cyclization of such sulfenic acids to their corresponding sulfenyl amides. On the other hand, additional substituents at the 6-position of o-amido phenylsulfenic acids that can induce steric environment and alter the electronic properties around the sulfenic acid moiety by S⋯N or S⋯O nonbonded interactions destabilize the sulfenic acids by inducing strain in the molecule. This may lead to efficient the cyclization of such sulfenic acids. This model study suggests that the amino acid residues in the close proximity of the sulfenic acid moiety in PTP1B may play an important role in the cyclization of PTP1B-SOH to produce the corresponding sulfenyl amide.

  14. Parvalbumin isoforms in zebrafish.

    PubMed

    Friedberg, Felix

    2005-09-01

    By using an analysis of existing genomic information it is concluded that in zebrafish nine genes encode parvalbumin (PV). These genes possess introns that differ in size and show nucleotide variability but they contain the same number of exons, and for each corresponding exon, the number of nucleotides therein are identical in all the paralogs. This rule also applies to the multiple PV genes of other species e.g. mammals. Each of these genes displays, however, characteristic 5' and 3' UTRs which appear highly conserved between closely related species (so that orthologs among these species can be readily identified) but which show larger numbers of mutations between species that are more distant in evolution. A tree is presented which suggests that the traditional classification of PVs as alpha or beta (based mainly on charge of the protein molecule) is not sustainable. Numbers 1-9 are assigned to the various isoforms to facilitate their identification in future studies. A bifurcation of isoforms into 1 and 4; 2 and 3; 6 and 7; 8 and 9 appears to have occurred simultaneously in more recent time, i.e. perhaps approximately 60 mys ago when primates and rodents branched. PMID:16172917

  15. Phosphatase activities as biosignatures of extant life

    NASA Astrophysics Data System (ADS)

    Kobayashi, K.; Itoh, Y.; Edazawa, Y.; Moroi, A.; Takano, Y.

    It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere high temperature hot springs and stratosphere Possible extraterrestrial biospheres in Mars Europa and Titan are being discussed Many biosignatures or biomarkers have been proposed to detect microbial activities in such extreme environments Phosphate esters are essential for the terrestrial life since they are constituents of nucleic acids and cell mebranes Thus all the terrestrial organisms have phosphatases that are enzymes catalyzing hydrolysis of phosphate esters We analyzed phosphatase activities in the samples obtained in extreme environments such as submarine hydrothermal systems and discussed whether they can be used as biosignatures for extant life Core samples and chimney samples were collected at the Suiyo Seamount Izu-Bonin Arc the Pacific Ocean in 2001 and 2002 and in South Mariana hydrothermal systems the Pacific Oceanas in 2003 both in a part of the Archaean Park Project Phosphatase activity in solid rock samples was measured spectrometrically by using 25 mM p-nitrophenyl phosphate pH 8 0 or pH 6 5 as a substrate as follows Pulverized samples were incuvated with substrate solution for an hour and then production rate of p-nitrophenol was calculated with absorbance at 410 nm Phosphatase activity in extracts was measured fluorometrically by using 4-methylumberyferryl phosphate as a substrate Concentration of amino acids and their enantiomeric ratio were determined by HPLC after HF digestion of the

  16. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.

    PubMed

    Yang, Jing; Roe, S Mark; Cliff, Matthew J; Williams, Mark A; Ladbury, John E; Cohen, Patricia T W; Barford, David

    2005-01-12

    Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.

  17. Effect of ovine luteinizing hormone (oLH) charge isoforms on VEGF and cAMP production.

    PubMed

    Montero-Pardo, Arnulfo; Diaz, Daniel; Olivares, Aleida; González-Padilla, Everardo; Murcia, Clara; Gómez-Chavarín, Margarita; Gutiérrez-Ospina, Gabriel; Perera-Marín, Gerardo

    2015-12-01

    Although an increase in VEGF expression and synthesis in association with LH has been established; it is unknown if all LH isoforms act similarly. This study evaluated the production of cAMP and VEGF among LH isoforms in two in vitro bioassays. The LH was obtained from hypophyses and the group of isoforms was isolated by chromatofocusing. cAMP production was assessed using the in vitro bioassay of HEK-293 cells and VEGF production was evaluated in granulosa cells. Immunological activity was measured with a homologous RIA. Immunoactivity and bioactivity for each isoform were compared against a standard, by estimating the IC50 and the EC50. The basic isoforms were more immunoactive than the standard. The neutral and the moderately acidic had an immunological activity similar to the standard. The acidic isoform was the least immunoreactive. cAMP production at the EC50 dose was similar among the basic isoforms, the moderately acidic and the standard; for the neutral and the acidic, the EC50 dose was higher. It was observed that compared with the control, VEGF production at the lowest LH dose was no different in the standard and each isoform. In the intermediate dose, a positive response was caused in the standard and the neutral and basic isoforms. Although the acidic isoform showed a dose-dependent response, it was not significant relative to the control. In conclusion, the basic isoform generated the greatest cAMP and VEGF production, similar to the reference standard, and the acidic the smallest.

  18. Regulation of synthase phosphatase and phosphorylase phosphatase in rat liver.

    PubMed

    Tan, A W; Nuttall, F Q

    1976-08-12

    Using substrates purified from liver, the apparent Km values of synthase phosphatase ([UDPglucose--glycogen glucosyltransferase-D]phosphohydrolase, EC 3.1.3.42) and phosphorylase phosphatase (phosphorylase a phosphohydrolase, EC 3.1.3.17) were found to be 0.7 and 60 units/ml respectively. The maximal velocity of phosphorylase phosphatase was more than a 100 times that of synthase phosphatase. In adrenalectomized, fasted animals there was a complete loss of synthase phosphatase but only a slight decrease in phosphorylase phosphatase when activity was measured using endogenous substrates in a concentrated liver extract. When assayed under optimal conditions with purified substrates, both activities were present but had decreased to very low levels. Mixing experiments indicated that synthase D present in the extract of adrenalectomized fasted animals was altered such that it was no longer a substrate for synthase phosphatase from normal rats. Phosphorylase a substrate on the other hand was unaltered and readily converted. When glucose was given in vivo, no change in percent of synthase in the I form was seen in adrenalectomized rats but the percent of phosphorylase in the a form was reduced. Precipitation of protein from an extract of normal fed rats with ethanol produced a large activation of phosphorylase phosphatase activity with no corresponding increase in synthase phosphatase activity. Despite the low phosphorylase phosphatase present in extracts of adrenalectomized fasted animals, ethanol precipitation increased activity to the same high level as obtained in the normal fed rats. Synthase phosphatase and phosphorylase phosphatase activities were also decreased in normal fasted, diabetic fed and fasted, and adrenalectomized fed rats. Both enzymes recovered in the same manner temporally after oral glucose administration to adrenalectomized, fasted rats. These results suggest an integrated regulatory mechanism for the two phosphatase.

  19. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae.

  20. [ATPase and phosphatase activity of drone brood].

    PubMed

    Bodnarchuk, L I; Stakhman, O S

    2004-01-01

    Most researches on insect enzymes concern carbohydrate and nitrogenous exchange. Data on ATPase activity for larval material of drone brood are absent in the available literature. The drone brood is one of the least investigated apiproducts. Allowing for the important role of ATPase in the vital functions of the insect cells our work was aimed at the study of ATPase of the drone blood activity and that of alkaline and acid phosphatases. When studying liophylised preparations of the drone brood homogenate we have found out high activity of Mg2+, Na+, K+-, Ca2+- and Mg2+-ATPase and of alkaline and acid phosphatase, that is the possible explanation of the high-intensity power and plastic processes proceeding during growth and development of larvae. PMID:16350755

  1. New isoforms of Ca2+/calmodulin-dependent protein kinase II in smooth muscle.

    PubMed Central

    Zhou, Z L; Ikebe, M

    1994-01-01

    Four novel isoforms of Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) were found in rat aorta smooth muscle. Two of them were related to gamma-isoform of brain CaM kinase II (gamma-a). Differences in the primary structure of these isoforms were located in the variable region. One of them (gamma-b) contained 23 unique amino acid residues, whereas the other (gamma-c) did not contain this sequence. Both isoforms lacked the two segments (Val-316 to Gln-337 and Lys-353 to Leu-362) present in gamma-a. The DNA sequence of these gamma-isoforms except the variable region was exactly the same, suggesting that they are produced by alternative splicing. Another two isoforms were related to the delta-isoform of brain CaM kinase II (delta-a). delta-b contained a unique 11-residue sequence in the variable region whereas delta-c did not. As found for gamma-isoforms, the sequence analysis suggested that the three delta-isoforms are also produced by alternative splicing. Analysis of RNA by reverse transcription PCR confirmed the existence of specific messages for gamma-b, delta-a and delta-b. The variety of isoforms of CaM kinase II suggest that each isoform may play a specialized role in cell regulation. Images Figure 5 Figure 6 Figure 7 PMID:8172610

  2. Differences in expression, actions and cocaine regulation of two isoforms for the brain transcriptional regulator NAC1.

    PubMed

    Korutla, L; Wang, P J; Lewis, D M; Neustadter, J H; Stromberg, M F; Mackler, S A

    2002-01-01

    BTB/POZ proteins can influence the cell cycle and contribute to oncogenesis. Many family members are present in the mammalian CNS. Previous work demonstrated elevated NAC1 mRNA levels in the rat nucleus accumbens in response to cocaine. NAC1 acts like other BTB/POZ proteins that regulate transcription but is unusual because of the absence of identifiable DNA binding domains. cDNAs were isolated encoding two NAC1 isoforms differing by only 27 amino acids (the longer isoform contains 514 amino acids). The mRNAs for both isoforms were simultaneously expressed throughout the rat brain and peripheral tissues. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed that the mRNA of the longer isoform was more abundant than the mRNA of the shorter isoform. Western blot analysis demonstrated a similar unequal distribution between the isoforms in the CNS. The longer isoform was the more abundant of the two NAC1 proteins and the ratio between them differed throughout the rat brain. The shorter isoform was not detected in most of the examined peripheral tissues, suggesting differences from the CNS in post-transcriptional processing. Both isoforms repressed transcription in H293T cells using a Gal4-luciferase reporter system. However, the shorter isoform did not repress transcription as effectively as the longer isoform. Transfection of different ratios for both isoforms, in order to replicate the relative amounts observed throughout the CNS, supported an interaction between the isoforms. The net effect on transcriptional repression was determined by the ratio of the two NAC1 isoforms. Each isoform exhibited the subnuclear localization that is characteristic of many BTB/POZ proteins. A rapid and transient increase in the level of the shorter isoform occurred in the nucleus accumbens 2 h following a single i.p. cocaine injection. We conclude that the two isoforms of NAC1 may differentially affect neuronal functions, including the regulation of

  3. Akt isoforms in vascular disease.

    PubMed

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-08-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease.

  4. Akt isoforms in vascular disease

    PubMed Central

    Yu, Haixiang; Littlewood, Trevor; Bennett, Martin

    2015-01-01

    The mammalian serine/threonine Akt kinases comprise three closely related isoforms: Akt1, Akt2 and Akt3. Akt activation has been implicated in both normal and disease processes, including in development and metabolism, as well as cancer and cardiovascular disease. Although Akt signalling has been identified as a promising therapeutic target in cancer, its role in cardiovascular disease is less clear. Importantly, accumulating evidence suggests that the three Akt isoforms exhibit distinct tissue expression profiles, localise to different subcellular compartments, and have unique modes of activation. Consistent with in vitro findings, genetic studies in mice show distinct effects of individual Akt isoforms on the pathophysiology of cardiovascular disease. This review summarises recent studies of individual Akt isoforms in atherosclerosis, vascular remodelling and aneurysm formation, to provide a comprehensive overview of Akt function in vascular disease. PMID:25929188

  5. Natural Variation in Seed Very Long Chain Fatty Acid Content Is Controlled by a New Isoform of KCS18 in Arabidopsis thaliana

    PubMed Central

    Jasinski, Sophie; Lécureuil, Alain; Miquel, Martine; Loudet, Olivier; Raffaele, Sylvain; Froissard, Marine; Guerche, Philippe

    2012-01-01

    Oil from oleaginous seeds is mainly composed of triacylglycerols. Very long chain fatty acids (VLCFAs) are major constituents of triacylglycerols in many seed oils and represent valuable feedstock for industrial purposes. To identify genetic factors governing natural variability in VLCFA biosynthesis, a quantitative trait loci (QTL) analysis using a recombinant inbred line population derived from a cross between accessions Bay-0 and Shahdara was performed in Arabidopsis thaliana. Two fatty acid chain length ratio (CLR) QTL were identified, with one major locus, CLR.2, accounting for 77% of the observed phenotypic variation. A fine mapping and candidate gene approach showed that a key enzyme of the fatty acid elongation pathway, the β-ketoacyl-CoA synthase 18 (KCS18), was responsible for the CLR.2 QTL detected between Bay-0 and Shahdara. Association genetics and heterologous expression in yeast cells identified a single point mutation associated with an alteration of KCS18 activity, uncovering the molecular bases for the modulation of VLCFA content in these two natural populations of Arabidopsis. Identification of this kcs18 mutant with altered activity opens new perspectives for the modulation of oil composition in crop plants. PMID:23145136

  6. A single amino acid change (substitution of the conserved Glu-590 with alanine) in the C-terminal domain of rat liver carnitine palmitoyltransferase I increases its malonyl-CoA sensitivity close to that observed with the muscle isoform of the enzyme.

    PubMed

    Napal, Laura; Dai, Jia; Treber, Michelle; Haro, Diego; Marrero, Pedro F; Woldegiorgis, Gebre

    2003-09-01

    Carnitine palmitoyltransferase I (CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of l-carnitine. To determine the role of the highly conserved C-terminal glutamate residue, Glu-590, on catalysis and malonyl-CoA sensitivity, we separately changed the residue to alanine, lysine, glutamine, and aspartate. Substitution of Glu-590 with aspartate, a negatively charged amino acid with only one methyl group less than the glutamate residue in the wild-type enzyme, resulted in complete loss in the activity of the liver isoform of CPTI (L-CPTI). A change of Glu-590 to alanine, glutamine, and lysine caused a significant 9- to 16-fold increase in malonyl-CoA sensitivity but only a partial decrease in catalytic activity. Substitution of Glu-590 with neutral uncharged residues (alanine and glutamine) and/or a basic positively charged residue (lysine) significantly increased L-CPTI malonyl-CoA sensitivity to the level observed with the muscle isoform of the enzyme, suggesting the importance of neutral and/or positive charges in the switch of the kinetic properties of L-CPTI to the muscle isoform of CPTI. Since a conservative substitution of Glu-590 to aspartate but not glutamine resulted in complete loss in activity, we suggest that the longer side chain of glutamate is essential for catalysis and malonyl-CoA sensitivity. This is the first demonstration whereby a single residue mutation in the C-terminal region of the liver isoform of CPTI resulted in a change of its kinetic properties close to that observed with the muscle isoform of the enzyme and provides the rationale for the high malonyl-CoA sensitivity of muscle CPTI compared with the liver isoform of the enzyme. PMID:12826662

  7. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes. PMID:25785438

  8. Direct determination of phosphatase activity from physiological substrates in cells.

    PubMed

    Ren, Zhongyuan; Do, Le Duy; Bechkoff, Géraldine; Mebarek, Saida; Keloglu, Nermin; Ahamada, Saandia; Meena, Saurabh; Magne, David; Pikula, Slawomir; Wu, Yuqing; Buchet, René

    2015-01-01

    A direct and continuous approach to determine simultaneously protein and phosphate concentrations in cells and kinetics of phosphate release from physiological substrates by cells without any labeling has been developed. Among the enzymes having a phosphatase activity, tissue non-specific alkaline phosphatase (TNAP) performs indispensable, multiple functions in humans. It is expressed in numerous tissues with high levels detected in bones, liver and neurons. It is absolutely required for bone mineralization and also necessary for neurotransmitter synthesis. We provided the proof of concept that infrared spectroscopy is a reliable assay to determine a phosphatase activity in the osteoblasts. For the first time, an overall specific phosphatase activity in cells was determined in a single step by measuring simultaneously protein and substrate concentrations. We found specific activities in osteoblast like cells amounting to 116 ± 13 nmol min(-1) mg(-1) for PPi, to 56 ± 11 nmol min(-1) mg(-1) for AMP, to 79 ± 23 nmol min(-1) mg(-1) for beta-glycerophosphate and to 73 ± 15 nmol min(-1) mg(-1) for 1-alpha-D glucose phosphate. The assay was also effective to monitor phosphatase activity in primary osteoblasts and in matrix vesicles. The use of levamisole--a TNAP inhibitor--served to demonstrate that a part of the phosphatase activity originated from this enzyme. An IC50 value of 1.16 ± 0.03 mM was obtained for the inhibition of phosphatase activity of levamisole in osteoblast like cells. The infrared assay could be extended to determine any type of phosphatase activity in other cells. It may serve as a metabolomic tool to monitor an overall phosphatase activity including acid phosphatases or other related enzymes.

  9. Human tissue non-specific alkaline phosphatases: sugar-moiety-induced enzymic and antigenic modulations and genetic aspects.

    PubMed Central

    Nosjean, O; Koyama, I; Goseki, M; Roux, B; Komoda, T

    1997-01-01

    To investigate the possible role(s) of glycans in human tissue non-specific alkaline phosphatase (TNAP) activity, the iso-enzymes were purified and treated with various exo- and endo-glycosidases. Catalytic activity, oligomerization, conformation and immunoreactivity of the modified TNAPs were evaluated. All TNAPs proved to be N-glycosylated, and only the liver isoform (LAP) is not O-glycosylated. Usually, the kidney (KAP) and bone (BAP) isoenzymes are similar and cannot be clearly discriminated. Differences between the immunoreactivity of KAP/BAP and LAP with a BAP antibody were mainly attributed to the N-glycosylated moieties of the TNAPs. In addition, elimination of O-glycosylations moderately affects the TNAP reactivity. Interestingly, N-glycosylation is absolutely essential for TNAP activity, but not for that of the placental or intestinal enzymes. According to the deduced amino acid sequence of TNAP cDNA, Asn-213 is a possible N-glycosylation site, and our present findings suggest that this sugar chain plays a key role in enzyme regulation. With regard to the oligomeric state of alkaline phosphatase (AP) isoforms, the dimer/tetramer equilibrium is dependent on the deglycosylation of glycosyl-phosphatidylinositol(GPI)-free APs, but not GPI-linked APs. This equilibrium does not affect the AP conformation as observed with CD. With regard to TNAPs, no data were available on the gene expression or nature of the 5'-non-translated leader exon of human KAP, as opposed to BAP and LAP genes. cDNA sequencing revealed that cortex/medulla KAP is genetically related to BAP, and medulla KAP to LAP. PMID:9020858

  10. Expression and phosphorylation of a three-repeat isoform of tau in transfected non-neuronal cells.

    PubMed Central

    Gallo, J M; Hanger, D P; Twist, E C; Kosik, K S; Anderton, B H

    1992-01-01

    The neuronal microtubule-associated protein, tau, is expressed as a set of isoforms containing either three or four tandemly repeated 31-amino-acid motifs in the C-terminal half of the molecule that can bind to microtubules. Three-repeat forms are the only ones expressed early in development. A single three-repeat isoform of tau has been stably expressed in non-neuronal cells which do not express endogenous tau. Chinese hamster ovary (CHO) cells were transfected with a full-length cDNA coding for the foetal form of human tau cloned downstream of the simian virus 40 (SV40) promoter, and a cell line constitutively expressing tau, CHO[pSVtau3], was isolated. Double-label immunofluorescence microscopy reveals that tau co-localizes with the microtubular network of normal or taxol-treated CHO[pSVtau3] cells, without inducing any dramatic change in cell morphology. Tau is expressed in CHO[pSVtau3] cells as three bands in SDS/PAGE recognized by antibodies to tau, the slow-migrating tau species being the most abundant. Tau also appears as three bands in a heat-stable fraction from CHO[pSVtau3] cells, but a single band of enhanced immunoreactivity is detected following treatment of this fraction with alkaline phosphatase. This single band co-migrates with the fast-migrating band of untreated fractions or whole-cell extracts. In conclusion, a three-repeat isoform of tau is capable of binding to microtubules in transfected non-neuronal cells; furthermore, in this system, the protein is phosphorylated in at least two different states inducing a reduced electrophoretic mobility. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1530572

  11. Biomarkers for the activation of calcium metabolism in dairy cows: elevation of tartrate-resistant acid phosphatase activity by lowering dietary cation-anion difference is associated with the prevention of milk fever.

    PubMed

    Kurosaki, Naotoshi; Yamato, Osamu; Sato, Jun; Naito, Yoshihisa; Mori, Fuminobu; Imoto, Seiichi; Maede, Yoshimitsu

    2007-03-01

    In our previous study, it was demonstrated that the administration of anion salts, which slightly lower the dietary cation-anion difference (DCAD), in the prepartum period is safe and effective for preventing milk fever in multiparous cows. In the present study, several biomarkers, which might show activation of Ca metabolism, were analyzed using stored samples in the previous study to investigate the mechanism of the preventive effect on milk fever by lowering DCAD. Changes in bone-specific alkaline phosphatase activity, osteocalcin and insulin-like growth factor I concentrations in serum were almost the same among the three groups of multiparous cows with or without the oral administration of anion salts, while the levels of these serum biomarkers in the group of primiparous cows (heifer group) were much higher compared with those in the three multiparous groups throughout the experimental period. Urinary deoxypyridinoline excretion was not a useful biomarker for dairy cows because it hardly changed during the peripartum period in all groups. However, serum tartrate-resistant acid phosphatase (TRAP) activity, which is known as a biomarker of osteoclast activity, was well associated with the administration of anion salts lowering DCAD because among the three multiparous groups, only the group of multiparous cows fed the anion salts (anion group) showed an increased level, which rose to the level in the heifer group, and was markedly higher than those in the other control groups of multiparous cows. The increased activity of serum TRAP in the anion group suggested that Ca in the plasma pool was mobilized smoothly from bone-bound Ca via mature osteoclasts at parturition, which might be due to prior activation under mild acidosis induced by slightly lowering DCAD. Therefore, TRAP was the best biomarker to monitor the activation of Ca metabolism in dairy cows fed anion salts.

  12. The Effect of Acetyl Salicylic Acid Induced Nitric Oxide Synthesis in the Normalization of Hypertension through the Stimulation of Renal Cortexin Synthesis and by the Inhibition of Dermcidin Isoform 2, A Hypertensive Protein Production.

    PubMed

    Ghosh, Rajeshwary; Bank, Sarbashri; Maji, Uttam K; Bhattacharya, Rabindra; Guha, Santanu; Khan, Nighat N; Sinha, A Kumar

    2014-09-01

    Currently, there is no specific medication for essential hypertension (EH), a major form of the condition, in man. As acetyl salicylic acid (aspirin) is reported to stimulate the synthesis of renal (r)-cortexin, an anti-essential hypertensive protein, and, as aspirin is reported to inhibit dermcidin isoform 2 (dermcidin), a causative protein for EH, the role of aspirin in the control of EH in man was studied. Oral administration of 150 mg aspirin/70 kg body weight in subjects with EH was found to reduce both the elevated systolic and diastolic blood pressures to normal levels within 3 h due to the normalization of dermcidin level in these subjects. The plasma cortexin level at day 0, 1, 30 and 90 were 0.5 pmol/ml, 155.5 pmol/ml, 160.2 pmol/ml, 190.5 pmol/ml respectively with increased NO synthesis (r=+0.994). In vitro studies demonstrated that the incubation of the goat kidney cortex cells with aspirin stimulated (r)-cortexin synthesis due to NO synthesis. It could be suggested that the use of aspirin might control EH in man.

  13. The Effect of Acetyl Salicylic Acid Induced Nitric Oxide Synthesis in the Normalization of Hypertension through the Stimulation of Renal Cortexin Synthesis and by the Inhibition of Dermcidin Isoform 2, A Hypertensive Protein Production

    PubMed Central

    Ghosh, Rajeshwary; Bank, Sarbashri; Maji, Uttam K.; Bhattacharya, Rabindra; Guha, Santanu; Khan, Nighat N.; Sinha, A. Kumar

    2014-01-01

    Currently, there is no specific medication for essential hypertension (EH), a major form of the condition, in man. As acetyl salicylic acid (aspirin) is reported to stimulate the synthesis of renal (r)-cortexin, an anti-essential hypertensive protein, and, as aspirin is reported to inhibit dermcidin isoform 2 (dermcidin), a causative protein for EH, the role of aspirin in the control of EH in man was studied. Oral administration of 150 mg aspirin/70 kg body weight in subjects with EH was found to reduce both the elevated systolic and diastolic blood pressures to normal levels within 3 h due to the normalization of dermcidin level in these subjects. The plasma cortexin level at day 0, 1, 30 and 90 were 0.5 pmol/ml, 155.5 pmol/ml, 160.2 pmol/ml, 190.5 pmol/ml respectively with increased NO synthesis (r=+0.994). In vitro studies demonstrated that the incubation of the goat kidney cortex cells with aspirin stimulated (r)-cortexin synthesis due to NO synthesis. It could be suggested that the use of aspirin might control EH in man. PMID:25324696

  14. A Network of Splice Isoforms for the Mouse

    PubMed Central

    Li, Hong-Dong; Menon, Rajasree; Eksi, Ridvan; Guerler, Aysam; Zhang, Yang; Omenn, Gilbert S.; Guan, Yuanfang

    2016-01-01

    The laboratory mouse is the primary mammalian species used for studying alternative splicing events. Recent studies have generated computational models to predict functions for splice isoforms in the mouse. However, the functional relationship network, describing the probability of splice isoforms participating in the same biological process or pathway, has not yet been studied in the mouse. Here we describe a rich genome-wide resource of mouse networks at the isoform level, which was generated using a unique framework that was originally developed to infer isoform functions. This network was built through integrating heterogeneous genomic and protein data, including RNA-seq, exon array, protein docking and pseudo-amino acid composition. Through simulation and cross-validation studies, we demonstrated the accuracy of the algorithm in predicting isoform-level functional relationships. We showed that this network enables the users to reveal functional differences of the isoforms of the same gene, as illustrated by literature evidence with Anxa6 (annexin a6) as an example. We expect this work will become a useful resource for the mouse genetics community to understand gene functions. The network is publicly available at: http://guanlab.ccmb.med.umich.edu/isoformnetwork. PMID:27079421

  15. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    PubMed

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  16. Enhancing Potato System Sustainability: Crop Rotation Impacts on Soil Phosphatase Activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato is a species with a low efficiency of acquiring soil P. Rotation crops may potentially influence P uptake by potato by increasing soil organic acids, phosphatase activity, and microbial biomass. However, this kind of information is very limited. We measured the activities of acid phosphatase,...

  17. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk.

    PubMed

    Nafikov, R A; Schoonmaker, J P; Korn, K T; Noack, K; Garrick, D J; Koehler, K J; Minick-Bormann, J; Reecy, J M; Spurlock, D E; Beitz, D C

    2013-09-01

    The main goal of this study was to develop tools for genetic selection of animals producing milk with a lower concentration of saturated fatty acids (SFA) and a higher concentration of unsaturated fatty acids (UFA). The reasons for changing milk fatty acid (FA) composition were to improve milk technological properties, such as for production of more spreadable butter, and milk nutritional value with respect to the potentially adverse effects of SFA on human health. We hypothesized that genetic polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) fatty acid transport protein gene and fatty acid binding protein (FABP)-3 and FABP-4 (FABP3 and FABP4) would affect the selectivity of FA uptake into, and FA redistribution inside, mammary epithelial cells, resulting in altered FA composition of bovine milk. The objectives of our study were to discover genetic polymorphisms in SLC27A6, FABP3, and FABP4, and to test those polymorphisms for associations with milk FA composition. The results showed that after pairwise comparisons between SLC27A6 haplotypes for significantly associated traits, haplotype H3 was significantly associated with 1.37 weight percentage (wt%) lower SFA concentration, 0.091 lower SFA:UFA ratio, and 0.17 wt% lower lauric acid (12:0) concentration, but 1.37 wt% higher UFA and 1.24 wt% higher monounsaturated fatty acid (MUFA) concentrations compared with haplotype H1 during the first 3 mo of lactation. Pairwise comparisons between FABP4 haplotypes for significantly associated traits showed that haplotype H3 was significantly associated with 1.04 wt% lower SFA concentration, 0.079 lower SFA:UFA ratio, 0.15 wt% lower lauric acid (12:0), and 0.27 wt% lower myristic acid (14:0) concentrations, but 1.04 wt% higher UFA and 0.91 wt% higher MUFA concentrations compared with haplotype H1 during the first 3 mo of lactation. Percentages of genetic variance explained by H3 versus H1 haplotype substitutions for SLC27A6 and FABP4 ranged from 2.50 to 4.86% and

  18. Transcriptional regulation of acetyl-CoA carboxylase α isoforms in dairy ewes during conjugated linoleic acid induced milk fat depression.

    PubMed

    Ticiani, E; Urio, M; Ferreira, R; Harvatine, K J; De Oliveira, D E

    2016-10-01

    Feeding trans-10, cis-12 CLA to lactating ewes reduces milk fat by down-regulating expression of enzymes involved in lipid synthesis in the mammary gland and increases adipose tissue lipogenesis. Acetyl-CoA carboxylase α (ACC-α) is a key regulated enzyme in de novo fatty acid synthesis and is decreased by CLA. In the ovine, the ACC-α gene is expressed from three tissue-specific promoters (PI, PII and PIII). This study evaluated promoter-specific ACC-α expression in mammary and adipose tissue of lactating cross-bred Lacaune/Texel ewes during milk fat depression induced by rumen-unprotected trans-10, cis-12 CLA supplement. In all, 12 ewes arranged in a completely randomized design were fed during early, mid and late lactation one of the following treatments for 14 days: Control (forage+0.9 kg of concentrate on a dry matter basis) and CLA (forage+0.9 kg of concentrate+27 g/day of CLA (29.9% trans-10, cis-12)). Mammary gland and adipose tissue biopsies were taken on day 14 for gene expression analysis by real-time PCR. Milk fat yield and concentration were reduced with CLA supplementation by 27%, 21% and 35% and 28%, 26% and 42% during early, mid and late lactation, respectively. Overall, our results suggest that trans-10, cis-12 CLA down-regulates mammary ACC-α gene expression by decreasing expression from PII and PIII in mammary gland and up-regulates adipose ACC-α gene expression by increasing expression from PI.

  19. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed Central

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-01-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  20. Investigation of potential mechanisms regulating protein expression of hepatic pyruvate dehydrogenase kinase isoforms 2 and 4 by fatty acids and thyroid hormone.

    PubMed

    Holness, Mark J; Bulmer, Karen; Smith, Nicholas D; Sugden, Mary C

    2003-02-01

    Liver contains two pyruvate dehydrogenase kinases (PDKs), namely PDK2 and PDK4, which regulate glucose oxidation through inhibitory phosphorylation of the pyruvate dehydrogenase complex (PDC). Starvation increases hepatic PDK2 and PDK4 protein expression, the latter occurring, in part, via a mechanism involving peroxisome proliferator-activated receptor-alpha (PPARalpha). High-fat feeding and hyperthyroidism, which increase circulating lipid supply, enhance hepatic PDK2 protein expression, but these increases are insufficient to account for observed increases in hepatic PDK activity. Enhanced expression of PDK4, but not PDK2, occurs in part via a mechanism involving PPAR-alpha. Heterodimerization partners for retinoid X receptors (RXRs) include PPARalpha and thyroid-hormone receptors (TRs). We therefore investigated the responses of hepatic PDK protein expression to high-fat feeding and hyperthyroidism in relation to hepatic lipid delivery and disposal. High-fat feeding increased hepatic PDK2, but not PDK4, protein expression whereas hyperthyroidism increased both hepatic PDK2 and PDK4 protein expression. Both manipulations decreased the sensitivity of hepatic carnitine palmitoyltransferase I (CPT I) to suppression by malonyl-CoA, but only hyperthyrodism elevated plasma fatty acid and ketone-body concentrations and CPT I maximal activity. Administration of the selective PPAR-alpha activator WY14,643 significantly increased PDK4 protein to a similar extent in both control and high-fat-fed rats, but WY14,643 treatment and hyperthyroidism did not have additive effects on hepatic PDK4 protein expression. PPARalpha activation did not influence hepatic PDK2 protein expression in euthyroid rats, suggesting that up-regulation of PDK2 by hyperthyroidism does not involve PPARalpha, but attenuated the effect of hyperthyroidism to increase hepatic PDK2 expression. The results indicate that hepatic PDK4 up-regulation can be achieved by heterodimerization of either PPARalpha or

  1. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp.

    PubMed

    Montgomery, D M; Dean, A C; Wiffen, P; Macaskie, L E

    1995-10-01

    The ability of a naturally occurring Citrobacter sp. to accumulate cadmium has been attributed to cellular precipitation of CdHPO4, utilizing HPO4(2-) liberated via the activity of an overproduced, Cd-resistant acid-type phosphatase. Phosphatase production and heavy metal accumulation by batch cultures of this strain (N14) and a phosphatase-deficient mutant were compared with two reference strains of Citrobacter freundii. Only strain N14 expressed a high level of acid phosphatase and accumulated lanthanum and uranyl ion enzymically. Acid phosphatase is regulated via carbon-starvation; although the C. freundii strains overexpressed phosphatase activity in carbon-limiting continuous culture, this was approximately 20-fold less than the activity of strain N14 grown similarly. Citrobacter strain N14 was originally isolated from a metal-contaminated soil environment; phosphatase overproduction and metal accumulation were postulated as a detoxification mechanism. However, application of Cd-stress, and enrichment for Cd-resistant C. freundii ('training'), reduced the phosphatase activity of this organism by about 50% as compared to Cd-unstressed cultures. The acid phosphatase of C. freundii and Citrobacter N14 had a similar pattern of resistance to some diagnostic reagents. The enzyme of the latter is similar to the PhoN acid phosphatase of Salmonella typhimurium described by other workers; the results are discussed with respect to the known phosphatases of the enterobacteria.

  2. Molecular genetic responses to lysergic acid diethylamide include transcriptional activation of MAP kinase phosphatase-1, C/EBP-beta and ILAD-1, a novel gene with homology to arrestins.

    PubMed

    Nichols, Charles D; Sanders-Bush, Elaine

    2004-08-01

    We recently demonstrated that the potent hallucinogenic drug lysergic acid diethylamide (LSD) dynamically influences the expression of a small collection of genes within the mammalian prefrontal cortex. Towards generating a greater understanding of the molecular genetic effects of hallucinogens and how they may relate to alterations in behavior, we have identified and characterized expression patterns of a new collection of three genes increased in expression by acute LSD administration. These genes were identified through additional screens of Affymetrix DNA microarrays and examined in experiments to assess dose-response, time course and the receptor mediating the expression changes. The first induced gene, C/EBP-beta, is a transcription factor. The second gene, MKP-1, suggests that LSD activates the MAP (mitogen activated protein) kinase pathway. The third gene, ILAD-1, demonstrates sequence similarity to the arrestins. The increase in expression of each gene was partially mediated through LSD interactions at 5-HT2A (serotonin) receptors. There is evidence of alternative splicing at the ILAD-1 locus. Furthermore, data suggests that various splice isoforms of ILAD-1 respond differently at the transcriptional level to LSD. The genes thus far found to be responsive to LSD are beginning to give a more complete picture of the complex intracellular events initiated by hallucinogens.

  3. The Extended Family of Protein Tyrosine Phosphatases.

    PubMed

    Alonso, Andrés; Nunes-Xavier, Caroline E; Bayón, Yolanda; Pulido, Rafael

    2016-01-01

    In higher eukaryotes, the Tyr phosphorylation status of cellular proteins results from the coordinated action of Protein Tyrosine Kinases (PTKs) and Protein Tyrosine Phosphatases (PTPs). PTPs have emerged as highly regulated enzymes with diverse substrate specificity, and proteins with Tyr-dephosphorylation or Tyr-dephosphorylation-like properties can be clustered as the PTPome. This includes proteins from the PTP superfamily, which display a Cys-based catalytic mechanism, as well as enzymes from other gene families (Asp-based phosphatases, His-based phosphatases) that have converged in protein Tyr-dephosphorylation-related functions by using non-Cys-based catalytic mechanisms. Within the Cys-based members of the PTPome, classical PTPs dephosphorylate specific phosphoTyr (pTyr) residues from protein substrates, whereas VH1-like dual-specificity PTPs dephosphorylate pTyr, pSer, and pThr residues, as well as nonproteinaceous substrates, including phosphoinositides and phosphorylated carbohydrates. In addition, several PTPs have impaired catalytic activity as a result of amino acid substitutions at their active sites, but retain regulatory functions related with pTyr signaling. As a result of their relevant biological activity, many PTPs are linked to human disease, including cancer, neurodevelopmental, and metabolic diseases, making these proteins important drug targets and molecular markers in the clinic. Here, a brief overview on the biochemistry and physiology of the different groups of proteins that belong to the mammalian PTPome is presented. PMID:27514797

  4. Two potential fish glycerol-3-phosphate phosphatases.

    PubMed

    Raymond, James A

    2015-06-01

    Winter-acclimated rainbow smelt (Osmerus mordax Mitchill) produce high levels of glycerol as an antifreeze. A common pathway to glycerol involves the enzyme glycerol-3-phosphate phosphatase (GPP), but no GPP has yet been identified in fish or any other animal. Here, two phosphatases assembled from existing EST libraries (from winter-acclimated smelt and cold-acclimated smelt hepatocytes) were found to resemble a glycerol-associated phosphatase from a glycerol-producing alga, Dunaliella salina, and a recently discovered GPP from a bacterium, Mycobacterium tuberculosis. Recombinant proteins were generated and were found to have GPP activity on the order of a few μMol Pi/mg enzyme/min. The two enzymes have acidic pH optima (~5.5) similar to that previously determined for GPP activity in liver tissue, with about 1/3 of their peak activities at neutral pH. The two enzymes appear to account for the GPP activity of smelt liver, but due to their reduced activities at neutral pH, their contributions to glycerol production in vivo remain unclear. Similar enzymes may be active in a glycerol-producing insect, Dendroctonus ponderosae.

  5. Spatial structure of oligopeptide PAP(248-261), the N-terminal fragment of the HIV enhancer prostatic acid phosphatase peptide PAP(248-286), in aqueous and SDS micelle solutions

    NASA Astrophysics Data System (ADS)

    Blokhin, Dmitriy S.; Filippov, Andrei V.; Antzutkin, Oleg N.; Karataeva, Farida Kh.; Klochkov, Vladimir V.

    2014-07-01

    Prostatic acid phosphatase (PAP) is an enzyme that facilitates infection of cells by HIV. Its peptide fragment PAP(248-286) forms amyloid fibrils known as SEVI, which enhance attachment of the virus by viral adhesion to the host cell prior to receptor-specific binding via reducing the electrostatic repulsion between the membranes of the virus and the target cell. The secondary structure of PAP(248-286) in aqueous and SDS solutions can be divided into an N-terminal disordered region, an α-helical central part and an α/310-helical C-terminal region (Nanga et al., 2009). In this work, we used NMR spectroscopy to study the spatial structure of the isolated N-terminal fragment of PAP(248-286), PAP(248-261) (GIHKQKEKSRLQGG), in aqueous and SDS micelle solutions. Formation of a PAP(248-261)-SDS complex was confirmed by chemical shift alterations in the 1H NMR spectra of the peptide, as well as by the signs and values of Nuclear Overhauser Effect (NOE). In addition, the PAP(248-261) peptide does not form any specified secondary structure in either aqueous or SDS solutions.

  6. Radioimmunodetection of lymph node invasion in prostatic cancer. The use of iodine 123 (123I)-labeled monoclonal anti-prostatic acid phosphatase (PAP) 227 A F(ab')2 antibody fragments in vivo.

    PubMed

    Leroy, M; Teillac, P; Rain, J D; Saccavini, J C; Le Duc, A; Najean, Y

    1989-07-01

    The therapeutic indications in prostatic cancer depend on the regional and distant extension of the cancer and are difficult to assess before lymphadenectomy. Radioimmunodetection of lymph node involvement with monoclonal anti-prostatic acid phosphatase (PAP) antibodies can be proposed as a noninvasive alternative to lymphadenectomy. Fifteen patients with various stages of histologically proven prostatic cancer were examined by immunolymphoscintigraphy (ILS) before treatment to detect lymph node metastases. These patients had Stage A (n = 7), Stage B (n = 3), Stage C (n = 2), and Stage D (n = 3) tumors. They received between 100 and 400 micrograms of monoclonal antibody 227 A in the form of F(ab')2 fragments labeled with iodine 123 (123I). The antibody was injected directly into the periprostatic area. ILS images were obtained after 1, 3, 6, and 24 hours. Three days later, each patient underwent a lymphadenectomy for histologic examination. The results of the histologic examination and ILS were compared. In ten patients, the examination did not show any images capable of being interpreted as lymphadenopathy and histologic examination confirmed the integrity of the nodes examined. In five cases, scintigraphy suggested the presence of lymph node invasion by prostatic cancer and this was confirmed by histologic examination in three of the five cases. Overall, in terms of lymphadenopathy, this examination had a sensitivity of 100% and a specificity of 83%. Therefore, ILS appears to be capable of detecting lymph node metastases in prostatic cancer.

  7. A chronoamperometric screen printed carbon biosensor based on alkaline phosphatase inhibition for W(IV) determination in water, using 2-phospho-L-ascorbic acid trisodium salt as a substrate.

    PubMed

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-22

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was performed by means of a Lineweaver-Burk plot, showing a mixed kinetic inhibition.

  8. A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI) Determination in Water, Using 2-Phospho-l-Ascorbic Acid Trisodium Salt as a Substrate

    PubMed Central

    Alvarado-Gámez, Ana Lorena; Alonso-Lomillo, María Asunción; Domínguez-Renedo, Olga; Arcos-Martínez, María Julia

    2015-01-01

    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-l-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 μM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 μM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition. PMID:25621602

  9. A rapid and efficient method for the screening of acid phosphatase 1 in young tomato seedlings, and for the identification of root-knot nematode species using miniaturized polyacrylamide gel electrophoresis.

    PubMed

    Cap, G B; Roberts, P A

    1992-05-01

    A relatively rapid and highly sensitive miniaturized polyacrylamide gel electrophoresis technique is described for the analysis of certain isozymes from single cotyledons of tomato seedlings and from single females of the root-know nematode (Meloidogyne spp.). Homogenates from single tomato cotyledons (7, 14, 21, and 28 days old) were electrophoresed and stained for acid phosphatase 1 (Aps 1) activity. Cotyledons from plants of all the above age groups showed good Aps 1 activity. Nondestructive screening for tomato Aps 1 is therefore feasible, using very small samples, from as young as 7-day-old tomato seedlings. This could be of important use in expediting root-knot nematode resistance (based on the Aps 1-linked resistance gene Mi) screening for breeding programs, or F1 testing for seed production purposes. In addition, the mini-polyacrylamide gel electrophoresis technique was useful for determination of the Aps 1 allelic contribution to the total enzyme activity. The system was also used to detect malate dehydrogenase and esterase isozyme activity from single adult females of the four common root-knot nematodes, Meloidogyne arenaria, M. hapla, M. incognita, and M. javanica, with equally good results, enabling species discrimination.

  10. Structural Genomics of Protein Phosphatases

    SciTech Connect

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  11. Biotin carboxyl carrier protein isoforms in Brassicaceae oilseeds.

    PubMed

    Thelen, J J; Mekhedov, S; Ohlrogge, J B

    2000-12-01

    De novo fatty acid biosynthesis occurs predominantly in plastids. The committed step for this pathway is the production of malonyl-CoA catalysed by acetyl-CoA carboxylase (ACCase). In most plants, plastidial ACCase is a multisubunit complex minimally comprised of four polypeptides, which catalyse two reactions. In the simple oilseed plant, Arabidopsis thaliana, two cDNAs encoding biotin carboxyl carrier protein (BCCP) isoforms have been identified. The remaining three subunits of ACCase appear to be single gene members in A. thaliana [Mekhedov, Martinez de Ilarduya and Ohlrogge (2000) Plant Physiol. 122, 389-401]. Transcript and protein analyses indicate that BCCP isoform 1 is constitutively expressed while isoform 2 is predominantly expressed in developing seeds. The apparent masses of constitutive and seed-enriched BCCP isoforms agree with the apparent masses of recombinantly expressed isoforms 1 and 2, respectively. In a related oilseed, Brassica napus, multiple putative BCCP polypeptides were also observed in developing seeds. The presence of a divergent class of BCCP genes in A. thaliana and B. napus, coincident with appropriately sized biotin-containing proteins expressed specifically in developing seeds, suggests that these BCCPs play an evolutionarily conserved role in oil deposition.

  12. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    PubMed

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. PMID:25976841

  13. Sensitive and selective determining ascorbic acid and activity of alkaline phosphatase based on electrochemiluminescence of dual-stabilizers-capped CdSe quantum dots in carbon nanotube-nafion composite.

    PubMed

    Ma, Xiaolong; Zhang, Xin; Guo, Xinli; Kang, Qi; Shen, Dazhong; Zou, Guizheng

    2016-07-01

    Sensitive and selective determining bio-related molecule and enzyme play an important role in designing novel procedure for biological sensing and clinical diagnosis. Herein, we found that dual-stabilizers-capped CdSe quantum dots (QDs) in composite film of multi-walled carbon nanotubes (CNTs) and Nafion, displaying eye-visible monochromatic electrochemiluminescence (ECL) with fwhm of 37nm, which offers promising ECL signal for detecting ascorbic acid (AA) as well as the activity of alkaline phosphatase (ALP) in biological samples. It was also shown that the dual-stabilizers-capped CdSe QDs can preserve their highly passivated surface states with prolonged lifetime of excited states in Nafion mixtures, and facilitate electron-transfer ability of Nafion film along with CNTs. Compared with the QDs/GCE, the ECL intensity is enhanced 1.8 times and triggering potential shifted to lower energy by 0.12V on the CdSe-CNTs-Nafion/GCE. The ECL quenching degree increases with increasing concentration of AA in the range of 0.01-30nM with a limit of detection (LOD) of 5pM. The activity of ALP was determined indirectly according to the concentration of AA, generated in the hydrolysis reaction of l-ascorbic acid 2-phosphate sesquimagnesium (AA-P) in the presence of ALP as a catalyst, with an LOD of 1μU/L. The proposed strategy is favorable for developing simple ECL sensor or device with high sensitivity, spectral resolution and less electrochemical interference. PMID:27154663

  14. Glucose-6-phosphatase deficiency

    PubMed Central

    2011-01-01

    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  15. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  16. Protein tyrosine and serine–threonine phosphatases in the sea urchin, Strongylocentrotus purpuratus: Identification and potential functions

    PubMed Central

    Byrum, C.A.; Walton, K.D.; Robertson, A.J.; Carbonneau, S.; Thomason, R.T.; Coffman, J.A.; McClay, D.R.

    2011-01-01

    Protein phosphatases, in coordination with protein kinases, play crucial roles in regulation of signaling pathways. To identify protein tyrosine phosphatases (PTPs) and serine–threonine (ser–thr) phosphatases in the Strongylocentrotus purpuratus genome, 179 annotated sequences were studied (122 PTPs, 57 ser–thr phosphatases). Sequence analysis identified 91 phosphatases (33 conventional PTPs, 31 dual specificity phosphatases, 1 Class III Cysteine-based PTP, 1 Asp-based PTP, and 25 ser–thr phosphatases). Using catalytic sites, levels of conservation and constraint in amino acid sequence were examined. Nine of 25 receptor PTPs (RPTPs) corresponded to human, nematode, or fly homologues. Domain structure revealed that sea urchin-specific RPTPs including two, PTPRLec and PTPRscav, may act in immune defense. Embryonic transcription of each phosphatase was recorded from a high-density oligonucleotide tiling microarray experiment. Most RPTPs are expressed at very low levels, whereas nonreceptor PTPs (NRPTPs) are generally expressed at moderate levels. High expression was detected in MAP kinase phosphatases (MKPs) and numerous ser–thr phosphatases. For several expressed NRPTPs, MKPs, and ser–thr phosphatases, morpholino antisense-mediated knockdowns were performed and phenotypes obtained. Finally, to assess roles of annotated phosphatases in endomesoderm formation, a literature review of phosphatase functions in model organisms was superimposed on sea urchin developmental pathways to predict areas of functional activity. PMID:17087928

  17. The five glucose-6-phosphatase paralogous genes are differentially regulated by insulin alone or combined with high level of amino acids and/or glucose in trout hepatocytes.

    PubMed

    Lucie, Marandel; Weiwei, Dai; Stéphane, Panserat; Sandrine, Skiba-Cassy

    2016-04-01

    A recent analysis of the newly sequenced rainbow trout (Oncorhynchus mykiss) genome suggested that duplicated gluconeogenic g6pc paralogues, fixed in this genome after the salmonid-specific 4th whole genome duplication, may have a role in the setting up of the glucose-intolerant phenotype in this carnivorous species. This should be due to the sub- or neo-functionalization of their regulation. In the present short communication we thus addressed the question of the regulation of these genes by insulin, hormone involved in the glucose homeostasis, and its interaction with glucose and amino acids in vitro. The stimulation of trout hepatocytes with insulin revealed an atypical up-regulation of g6pcb2 ohnologues and confirmed the sub- or neo-functionalization of the five g6pc genes at least at the regulatory level. Intriguingly, when hepatocytes were cultured with high levels of glucose and/or AAs in presence of insulin, most of the g6pc paralogues were up-regulated. It strongly suggested a cross-talk between insulin and nutrients for the regulation of these genes. Moreover these results strengthened the idea that g6pc duplicated genes may significantly contribute to the setting up of the glucose-intolerant phenotype in trout via their atypical regulation by insulin alone or in interaction with nutrients. These findings open new perspectives to better understand in vivo glucose-intolerant phenotype in trout fed a high carbohydrate diet.

  18. Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Crowe, Mark L; Chalk, Alistair M; Waddell, Nic J; Kolle, Gabriel; Faulkner, Geoffrey J; Kodzius, Rimantas; Katayama, Shintaro; Wells, Christine; Kai, Chikatoshi; Kawai, Jun; Carninci, Piero; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Alternative transcripts of protein kinases and protein phosphatases are known to encode peptides with altered substrate affinities, subcellular localizations, and activities. We undertook a systematic study to catalog the variant transcripts of every protein kinase-like and phosphatase-like locus of mouse . Results By reviewing all available transcript evidence, we found that at least 75% of kinase and phosphatase loci in mouse generate alternative splice forms, and that 44% of these loci have well supported alternative 5' exons. In a further analysis of full-length cDNAs, we identified 69% of loci as generating more than one peptide isoform. The 1,469 peptide isoforms generated from these loci correspond to 1,080 unique Interpro domain combinations, many of which lack catalytic or interaction domains. We also report on the existence of likely dominant negative forms for many of the receptor kinases and phosphatases, including some 26 secreted decoys (seven known and 19 novel: Alk, Csf1r, Egfr, Epha1, 3, 5,7 and 10, Ephb1, Flt1, Flt3, Insr, Insrr, Kdr, Met, Ptk7, Ptprc, Ptprd, Ptprg, Ptprl, Ptprn, Ptprn2, Ptpro, Ptprr, Ptprs, and Ptprz1) and 13 transmembrane forms (four known and nine novel: Axl, Bmpr1a, Csf1r, Epha4, 5, 6 and 7, Ntrk2, Ntrk3, Pdgfra, Ptprk, Ptprm, Ptpru). Finally, by mining public gene expression data (MPSS and microarrays), we confirmed tissue-specific expression of ten of the novel isoforms. Conclusion These findings suggest that alternative transcripts of protein kinases and phosphatases are produced that encode different domain structures, and that these variants are likely to play important roles in phosphorylation-dependent signaling pathways. PMID:16507138

  19. [Phosphatase activity in Amoeba proteus at low pH].

    PubMed

    Sopina, V A

    2009-01-01

    In free-living Amoeba proteus (strain B), three forms of tartrate-sensitive phosphatase were revealed using PAGE of the supernatant of ameba homogenates obtained with 1% Triton X-100 or distilled water and subsequent staining of gels with 2-naphthyl phosphate as substrate (pH 4.0). The form with the highest mobility in the ameba supernatant was sensitive to all tested phosphatase activity modulators. Two other forms with the lower mobilities were completely or significantly inactivated not only by sodium L-(+)-tartrate, but also by L-(+)-tartaric acid, sodium orthovanadate, ammonium molybdate, EDTA, EGTA, o-phospho-L-tyrosine, DL-dithiotreitol, H2O2, 2-mercaptoethanol, and ions of heavy metals - Fe2+, Fe3+, and Cu2+. Based on results of inhibitory analysis, lysosome location in the ameba cell, and wide substrate specificity of these two forms, it has been concluded that they belong to nonspecific acid phosphomonoesterases (AcP, EC 3.1.3.2). This AcP is suggested to have both phosphomonoesterase and phosphotyrosyl-protein phosphatase activitis. Two ecto-phosphatases were revealed in the culture medium, in which amebas were cultivated. One of them was inhibited by the same reagents as the ameba tartrate-sensitive AcP and seems to be the AcP released into the culture medium in the process of exocytosis of the content of food vacuoles. In the culture medium, apart from this AcP, another phosphatase was revealed, which was not inhibited by any tested inhibitors of AcP and alkaline phosphatase. It cannot be ruled out that this phosphatase belong to the ecto-ATPases found in many protists; however, its ability to hydrolyze ATP has not yet been proven.

  20. Dephosphorylation of chicken cardiac myofibril C-protein by protein phosphatases 1 and 2A

    SciTech Connect

    Thysseril, T.J.; Hegazy, M.G.; Schlender, K.K.

    1987-05-01

    C-Protein, which is a regulatory component of cardiac muscle myofibrils, is phosphorylated in response to US -adrenergic agonists by a cAMP-dependent mechanism and dephosphorylated in response to cholinergic agonists. It is believed that the cAMP-dependent phosphorylation is due to cAMP-dependent protein kinase. The protein phosphatase(s) involved in the dephosphorylation of C-protein has not been determined. In this study, chicken cardiac C-protein was phosphorylated with the cAMP-dependent protein kinase to about 3 mol phosphate/mol C-protein. Incubation of (TSP)C-protein with the catalytic subunit of protein phosphatase 1 or 2A rapidly removed 30-40% of TS(P). Phosphopeptide maps and phosphoamino acid analysis revealed that the major site(s) dephosphorylated by either phosphatase was a phosphothreonine residue(s) located on the same tryptic peptide and on the same CNBr fragment. Increasing the incubation period or the phosphatase concentration did not result in any further dephosphorylation of C-protein by phosphatase 1, but phosphatase 2A completely dephosphorylated C-protein. Preliminary studies showed that the major protein phosphatase associated with the myofibril was phosphatase 2A. These results indicate the phosphatase 2A may be important in the regulation of the phosphorylation state of C-protein.

  1. Apolipoprotein E Isoforms and AMD.

    PubMed

    Toops, Kimberly A; Tan, Li Xuan; Lakkaraju, Aparna

    2016-01-01

    The cholesterol transporting protein apolipoprotein E (ApoE) occurs in three allelic variants in humans unlike in other species. The resulting protein isoforms E2, E3 and E4 exhibit differences in lipid binding, integrating into lipoprotein particles and affinity for lipoprotein receptors. ApoE isoforms confer genetic risk for several diseases of aging including atherosclerosis, Alzheimer's disease, and age-related macular degeneration (AMD). A single E4 allele increases the risk of developing Alzheimer's disease, whereas the E2 allele is protective. Intriguingly, the E4 allele is protective in AMD. Current thinking about different functions of ApoE isoforms comes largely from studies on Alzheimer's disease. These data cannot be directly extrapolated to AMD since the primary cells affected in these diseases (neurons vs. retinal pigment epithelium) are so different. Here, we propose that ApoE serves a fundamentally different purpose in regulating cholesterol homeostasis in the retinal pigment epithelium and this could explain why allelic risk factors are flipped for AMD compared to Alzheimer's disease.

  2. Identification and characterization of a novel retinal isoform of dystrophin

    SciTech Connect

    D`Souza, V.N.; Sigesmund, D.A.; Man, N.

    1994-09-01

    We have shown that dystrophin is required for normal function of the retina as measured by electroretinography (ERG). In these studies a genotype/phenotype correlation was found in which DMD/BMD patients with deletions in the central to distal region of the gene had abnormal ERGs, while patients with deletions in the 5{prime} end of the gene had a mild or normal retinal phenotype. A similar correlation was also observed in the mouse in which the mdx mouse having a mutation in exon 23 had a normal retinal phenotype, whereas the mdx{sup Cv3} mouse (mutation in intron 65) had an abnormal phenotype. Molecular analysis of both human and mouse retina indicated that at least two isoforms of dystrophin are expressed in the retina and localize to the outer plexiform layer, the synaptic junction between the photoreceptors, the bipolar cells, and the horizontal cells. Using a panel of monoclonal dystrophin antisera to analyze mdx mouse retina which does not contain full length dystrophin antisera, we showed that a shorter dystrophin isoform (approximately 260 kDa) was present and contained part of the rod, the cysteine-rich and C-terminal domains. The 5{prime} end of the transcript giving rise to this isoform was characterized and cloned using 5{prime}RACE. Sequence analysis indicated that this transcript contained a novel exon 1 consisting of 240 nucleotides and coded for a unique N-terminus of 13 amino acids. This isoform is distinct from the DP116 dystrophin isoform identified in peripheral nerve. From the functional analysis of DMD patients and dystrophic mice we conclude that this 260 kDa dystrophin isoform is required for normal retinal electrophysiology.

  3. Computational Analysis Reveals a Successive Adaptation of Multiple Inositol Polyphosphate Phosphatase 1 in Higher Organisms Through Evolution

    PubMed Central

    Kilaparty, Surya P; Singh, Awantika; Baltosser, William H; Ali, Nawab

    2014-01-01

    Multiple inositol polyphosphate phosphatase 1 (Minpp1) in higher organisms dephosphorylates InsP6, the most abundant inositol phosphate. It also dephosphorylates less phosphorylated InsP5 and InsP4 and more phosphorylated InsP7 or InsP8. Minpp1 is classified as a member of the histidine acid phosphatase super family of proteins with functional resemblance to phytases found in lower organisms. This study took a bioinformatics approach to explore the extent of evolutionary diversification in Minpp1 structure and function in order to understand its physiological relevance in higher organisms. The human Minpp1 amino acid (AA) sequence was BLAST searched against available national protein databases. Phylogenetic analysis revealed that Minpp1 was widely distributed from lower to higher organisms. Further, we have identified that there exist four isoforms of Minpp1. Multiple computational tools were used to identify key functional motifs and their conservation among various species. Analyses showed that certain motifs predominant in higher organisms were absent in lower organisms. Variation in AA sequences within motifs was also analyzed. We found that there is diversification of key motifs and thus their functions present in Minpp1 from lower organisms to higher organisms. Another interesting result of this analysis was the presence of a glucose-1-phosphate interaction site in Minpp1; the functional significance of which has yet to be determined experimentally. The overall findings of our study point to an evolutionary adaptability of Minpp1 functions from lower to higher life forms. PMID:25574123

  4. Phosphatase activity on the cell wall of Fonsecaea pedrosoi.

    PubMed

    Kneipp, L F; Palmeira, V F; Pinheiro, A A S; Alviano, C S; Rozental, S; Travassos, L R; Meyer-Fernandes, J R

    2003-12-01

    The activity of a phosphatase was characterized in intact mycelial forms of Fonsecaea pedrosoi, a pathogenic fungus that causes chromoblastomycosis. At pH 5.5, this fungus hydrolyzed p-nitrophenylphosphate (p-NPP) to p-nitrophenol (p-NP) at a rate of 12.78 +/- 0.53 nmol p-NP per h per mg hyphal dry weight. The values of Vmax and apparent Km for p-NPP hydrolyses were measured as 17.89 +/- 0.92 nmol p-NP per h per mg hyphal dry weight and 1.57 +/- 0.26 mmol/l, respectively. This activity was inhibited at increased pH, a finding compatible with an acid phosphatase. The enzymatic activity was strongly inhibited by classical inhibitors of acid phosphatases such as sodium orthovanadate (Ki = 4.23 micromol/l), sodium molybdate (Ki = 7.53 micromol/l) and sodium fluoride (Ki = 126.78 micromol/l) in a dose-dependent manner. Levamizole (1 mmol/l) and sodium tartrate (10 mmol/l), had no effect on the enzyme activity. Cytochemical localization of the acid phosphatase showed electrondense cerium phosphate deposits on the cell wall, as visualized by transmission electron microscopy. Phosphatase activity in F. pedrosoi seems to be associated with parasitism, as sclerotic cells, which are the fungal forms mainly detected in chromoblastomycosis lesions, showed much higher activities than conidia and mycelia did. A strain of F. pedrosoi recently isolated from a human case of chromoblastomycosis also showed increased enzyme activity, suggesting that the expression of surface phosphatases may be stimulated by interaction with the host.

  5. Tyrosine phosphatases as key regulators of StAR induction and cholesterol transport: SHP2 as a potential tyrosine phosphatase involved in steroid synthesis.

    PubMed

    Cooke, Mariana; Mele, Pablo; Maloberti, Paula; Duarte, Alejandra; Poderoso, Cecilia; Orlando, Ulises; Paz, Cristina; Cornejo Maciel, Fabiana; Podestá, Ernesto J

    2011-04-10

    The phospho-dephosphorylation of intermediate proteins is a key event in the regulation of steroid biosynthesis. In this regard, it is well accepted that steroidogenic hormones act through the activation of serine/threonine (Ser/Thr) protein kinases. Although many cellular processes can be regulated by a crosstalk between different kinases and phosphatases, the relationship of Ser/Thr phosphorylation and tyrosine (Tyr)-dephosphorylation is a recently explored field in the regulation of steroid synthesis. Indeed in steroidogenic cells, one of the targets of hormone-induced Ser/Thr phosphorylation is a protein tyrosine phosphatase. Whereas protein tyrosine phosphatases were initially regarded as household enzymes with constitutive activity, dephosphorylating all the substrates they encountered, evidence is now accumulating that protein tyrosine phosphatases are tightly regulated by various mechanisms. Here, we will describe the role of protein tyrosine phosphatases in the regulation of steroid biosynthesis, relating them to steroidogenic acute regulatory protein, arachidonic acid metabolism and mitochondrial rearrangement.

  6. Determination of trace alkaline phosphatase by affinity adsorption solid substrate room temperature phosphorimetry based on wheat germ agglutinin labeled with 8-quinolineboronic acid phosphorescent molecular switch and prediction of diseases

    NASA Astrophysics Data System (ADS)

    Liu, Jia-Ming; Gao, Hui; Li, Fei-Ming; Shi, Xiu-Mei; Lin, Chang-Qing; Lin, Li-Ping; Wang, Xin-Xing; Li, Zhi-Ming

    2010-09-01

    The 8-quinolineboronic acid phosphorescent molecular switch (abbreviated as PMS-8-QBA. Thereinto, 8-QBA is 8-quinolineboronic acid, and PMS is phosphorescent molecular switch) was found for the first time. PMS-8-QBA, which was in the "off" state, could only emit weak room temperature phosphorescence (RTP) on the acetyl cellulose membrane (ACM). However, PMS-8-QBA turned "on" automatically for its changed structure, causing that the RTP of 8-QBA in the system increased, after PMS-8-QBA-WGA (WGA is wheat germ agglutinin) was formed by reaction between -OH of PMS-8-QBA and -COOH of WGA. More interesting is that the -NH 2 of PMS-8-QBA-WGA could react with the -COOH of alkaline phosphatase (AP) to form the affinity adsorption (AA) product WGA-AP-WGA-8-QBA-PMS (containing -NH-CO- bond), which caused RTP of the system to greatly increase. Thus, affinity adsorption solid substrate room temperature phosphorimetry using PMS-8-QBA as labelling reagent (PMS-8-QBA-AA-SSRTP) for the determination of trace AP was established. The method had many advantages, such as high sensitivity (the detection limit (LD) was 2.5 zg spot -1. For sample volume of 0.40 μl spot -1, corresponding concentration was 6.2 × 10 -18 g ml -1), good selectivity (the allowed concentration of coexisting material was higher, when the relative error was ±5%), high accuracy (applied to detection of AP content in serum samples, the result was coincided with those obtained by enzyme-linked immunoassay), which was suitable for the detection of trace AP content in serum samples and the forecast of human diseases. Meanwhile, the mechanism of PMS-8-QBA-AASSRTP was discussed. The new field of analytical application and clinic diagnosis technique of molecule switch are exploited, based on the phosphorescence characteristic of PMS-8-QBA, the AA reaction between WGA and AP, as well as the relation between AP content and human diseases. The research results promote the development and interpenetrate among molecule

  7. Inference of Isoforms from Short Sequence Reads

    NASA Astrophysics Data System (ADS)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  8. Yeast Acid Phosphatase in a Student Laboratory.

    ERIC Educational Resources Information Center

    Barbaric, Sloeodan; Ries, Blanka

    1988-01-01

    Examines the influence of enzyme and substrate concentrations, pH, temperature, and inhibitors on catalytic activity. Follows the influence of different phosphate concentrations in the growth medium on enzyme activity. Studies regulation of enzyme synthesis by repression. Includes methodology for six experiments. (MVL)

  9. Regulatory Divergence of Transcript Isoforms in a Mammalian Model System

    PubMed Central

    Thybert, David; Stefflova, Klara; Watt, Stephen; Flicek, Paul; Brazma, Alvis; Marioni, John C.; Odom, Duncan T.

    2015-01-01

    Phenotypic differences between species are driven by changes in gene expression and, by extension, by modifications in the regulation of the transcriptome. Investigation of mammalian transcriptome divergence has been restricted to analysis of bulk gene expression levels and gene-internal splicing. Using allele-specific expression analysis in inter-strain hybrids of Mus musculus, we determined the contribution of multiple cellular regulatory systems to transcriptome divergence, including: alternative promoter usage, transcription start site selection, cassette exon usage, alternative last exon usage, and alternative polyadenylation site choice. Between mouse strains, a fifth of genes have variations in isoform usage that contribute to transcriptomic changes, half of which alter encoded amino acid sequence. Virtually all divergence in isoform usage altered the post-transcriptional regulatory instructions in gene UTRs. Furthermore, most genes with isoform differences between strains contain changes originating from multiple regulatory systems. This result indicates widespread cross-talk and coordination exists among different regulatory systems. Overall, isoform usage diverges in parallel with and independently to gene expression evolution, and the cis and trans regulatory contribution to each differs significantly. PMID:26339903

  10. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus.

    PubMed

    Watthanasurorot, Apiruck; Jiravanichpaisal, Pikul; Liu, Haipeng; Söderhäll, Irene; Söderhäll, Kenneth

    2011-06-01

    The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam), encodes 9(Ig)-4(FNIII)-(Ig)-2(FNIII)-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV) infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.

  11. Characterization of multiple nestin isoforms in the goldfish brain.

    PubMed

    Venables, Maddie J; Navarro-Martín, Laia; Basak, Ajoy; Baum, Bernard R; Zhang, Dapeng; Trudeau, Vance L

    2016-09-01

    Nestin is an intermediate filament protein involved in neurogenesis in fish, mice, and humans. In this study we used rapid amplification of cDNA ends PCR to isolate goldfish nestin (nes). PCR analysis and sequencing revealed three different nes transcripts of 4003, 2446, and 2126 nucleotides, which are predicted to generate proteins of 860, 274, and 344 amino acids in length. Sequence analysis suggests that these nes transcripts are likely a result of alternative splicing. We next applied a multiple-antigenic peptide strategy to generate a goldfish-specific nestin antibody. Western blotting with this antibody together with mass spectrometry verified the presence of major nestin protein isoforms with differing molecular weights (~70, 40 and 30kDa). We further examined expression patterns of these nestin protein isoforms in different parts of the goldfish brain and pituitary and found the telencephalon to express all three isoforms at a distinct level and abundance. We report that multiple nestin isoforms are present indicating another level of complexity for the regulation of intermediate filaments in comparison to mammals. Studying the differential roles and regulation of these nestins could lead to a better understanding of cellular remodeling during neurogenesis and the unparalleled regenerative abilities after damage in the teleost CNS. PMID:27254106

  12. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria.

    PubMed

    Macaskie, L E; Bonthrone, K M; Rouch, D A

    1994-08-15

    A Citrobacter sp. was reported previously to accumulate heavy metals as cell-bound heavy metal phosphates. Metal uptake is mediated by the activity of a periplasmic acid-type phosphatase that liberates inorganic phosphate to provide the precipitant ligand for heavy metals presented to the cells. Amino acid sequencing of peptide fragments of the purified enzyme revealed significant homology to the phoN product (acid phosphatase) of some other enterobacteria. These organisms, together with Klebsiella pneumoniae, previously reported to produce acid phosphatase, were tested for their ability to remove uranium and lanthanum from challenge solutions supplemented with phosphatase substrate. The coupling of phosphate liberation to metal bioaccumulation was limited to the metal accumulating Citrobacter sp.; therefore the participation of species-specific additional factors in metal bioaccumulation was suggested.

  13. Biochemical characterization of the extracellular phosphatases produced by phosphorus-deprived Chlamydomonas reinhardtii.

    PubMed Central

    Quisel, J D; Wykoff, D D; Grossman, A R

    1996-01-01

    We have examined the extracellular phosphatases produced by the terrestrial green alga Chlamydomonas reinhardtii in response to phosphorus deprivation. Phosphorus-deprived cells increase extra-cellular alkaline phosphatase activity 300-fold relative to unstarved cells. The alkaline phosphatases are released into the medium by cell-wall-deficient strains and by wild-type cells after treatment with autolysin, indicating that they are localized to the periplasm. Anion-exchange chromatography and analysis by nondenaturing polyacrylamide gel electrophoresis revealed that there are two major inducible alkaline phosphatases. A calcium-dependent enzyme composed of 190-kD glycoprotein subunits accounts for 85 to 95% of the Alkaline phosphatase activity. This phosphatase has optimal activity at pH 9.5 and a Km of 120 to 262 microns for all physiological substrates tested, with the exception of phytic acid, which it cleaved with a 50-fold lower efficiency. An enzyme with optimal activity at pH 9 and no requirement for divalent cations accounts for 2 to 10% of the alkaline phosphatase activity. This phosphatase was only able to efficiently hydrolyze arylphosphates. The information reported here, in conjunction with the results of previous studies, defines the complement of extracellular phosphatases produced by phosphorus-deprived Chlamydomonas cells. PMID:8754684

  14. HuR antagonizes the effect of an intronic pyrimidine-rich sequence in regulating WT1 +/-KTS isoforms.

    PubMed

    Li, Hui; Hou, Shuai; Hao, Tian; Azam, Sikandar; Liu, Caigang; Shi, Lei; Lei, Haixin

    2015-01-01

    WT1 + KTS and -KTS isoforms only differ in 3 amino acids in protein sequence but show significant functional difference. The +/-KTS isoforms were generated by alternative usage of 2 adjacent 5' splice sites at RNA level, however, how these 2 isoforms are regulated is still elusive. Here we report the identification of an intronic pyrimidine-rich sequence that is critical for the ratio of +/-KTS isoforms, deletion or partial replacement of the sequence led to full/significant shift to -KTS isoform. To identify trans-factors that can regulate +/-KTS isoforms via the binding to the element, we performed RNP assembly using in vitro transcribed RNA with or without the pyrimidine-rich sequence. Mass spectrometry analysis of purified RNPs showed that the element associated with many splicing factors. Co-transfection of these factors with WT1 reporter revealed that HuR promoted the production of -KTS isoform at the reporter level. RNA immuno-precipitation experiment indicated that HuR interacted with the pyrimidine-rich element in WT1 intron 9. We further presented evidence that transient or stable over-expression of HuR led to enhanced expression of endogenous -KTS isoform. Moreover, knockdown of HuR resulted in decreased expression of endogenous -KTS isoform in 293T, SW620, SNU-387 and AGS cell lines. Together, these data indicate that HuR binds to the pyrimidine-rich sequence and antagonize its effect in regulating WT1 +/-KTS isoforms.

  15. Dynamic targeting of protein phosphatase 1 within the nuclei of living mammalian cells.

    PubMed

    Trinkle-Mulcahy, L; Sleeman, J E; Lamond, A I

    2001-12-01

    Protein phosphatase 1 (PP1) is expressed in mammalian cells as three closely related isoforms, alpha, beta/delta and gamma1, which are encoded by separate genes. It has yet to be determined whether the separate isoforms behave in a similar fashion or play distinct roles in vivo. We report here on analyses by fluorescence microscopy of functional and fluorescently tagged PP1 isoforms in live cells. PP1alpha and PP1gamma fluorescent protein fusions show largely complimentary localization patterns, particularly within the nucleus where tagged PP1gamma accumulates in the nucleolus, whereas tagged PP1alpha is primarily found in the nucleoplasm. Overexpression of NIPP1 (nuclear inhibitor of PP1), a PP1 targeting subunit that accumulates at interchromatin granule clusters in the nucleoplasm, results in a retargeting of both isoforms to these structures, indicating that steady-state localization is based, at least in part, on relative affinities for various targeting subunits. Photobleaching analyses show that PP1gamma is rapidly exchanging between the nucleolar, nucleoplasmic and cytoplasmic compartments. Fluorescence resonance energy transfer (FRET) analyses indicate that the direct interaction of the two proteins predominantly occurs at or near interchromatin granule clusters. These data indicate that PP1 isoforms are highly mobile in cells and can be dynamically (re)localized through direct interaction with targeting subunits. PMID:11739654

  16. PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context.

    PubMed

    Schmit, Fabienne; Utermark, Tamara; Zhang, Sen; Wang, Qi; Von, Thanh; Roberts, Thomas M; Zhao, Jean J

    2014-04-29

    There has been increasing interest in the use of isoform-selective inhibitors of phosphatidylinositide-3-kinase (PI3K) in cancer therapy. Using conditional deletion of the p110 catalytic isoforms of PI3K to predict sensitivity of cancer types to such inhibitors, we and others have demonstrated that tumors deficient of the phosphatase and tensin homolog (PTEN) are often dependent on the p110β isoform of PI3K. Because human cancers usually arise due to multiple genetic events, determining whether other genetic alterations might alter the p110 isoform requirements of PTEN-null tumors becomes a critical question. To investigate further the roles of p110 isoforms in PTEN-deficient tumors, we used a mouse model of ovarian endometrioid adenocarcinoma driven by concomitant activation of the rat sarcoma protein Kras, which is known to activate p110α, and loss of PTEN. In this model, ablation of p110β had no effect on tumor growth, whereas p110α ablation blocked tumor formation. Because ablation of PTEN alone is often p110β dependent, we wondered if the same held true in the ovary. Because PTEN loss alone in the ovary did not result in tumor formation, we tested PI3K isoform dependence in ovarian surface epithelium (OSE) cells deficient in both PTEN and p53. These cells were indeed p110β dependent, whereas OSEs expressing activated Kras with or without PTEN loss were p110α dependent. Furthermore, isoform-selective inhibitors showed a similar pattern of the isoform dependence in established Kras(G12D)/PTEN-deficient tumors. Taken together, our data suggest that, whereas in some tissues PTEN-null tumors appear to inherently depend on p110β, the p110 isoform reliance of PTEN-deficient tumors may be altered by concurrent mutations that activate p110α.

  17. Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily.

    PubMed

    Thaller, M C; Schippa, S; Rossolini, G M

    1998-07-01

    Members of a new molecular family of bacterial nonspecific acid phosphatases (NSAPs), indicated as class C, were found to share significant sequence similarities to bacterial class B NSAPs and to some plant acid phosphatases, representing the first example of a family of bacterial NSAPs that has a relatively close eukaryotic counterpart. Despite the lack of an overall similarity, conserved sequence motifs were also identified among the above enzyme families (class B and class C bacterial NSAPs, and related plant phosphatases) and several other families of phosphohydrolases, including bacterial phosphoglycolate phosphatases, histidinol-phosphatase domains of the bacterial bifunctional enzymes imidazole-glycerolphosphate dehydratases, and bacterial, eukaryotic, and archaeal phosphoserine phosphatases and threalose-6-phosphatases. These conserved motifs are clustered within two domains, separated by a variable spacer region, according to the pattern [FILMAVT]-D-[ILFRMVY]-D-[GSNDE]-[TV]-[ILVAM]-[AT S VILMC]-X-¿YFWHKR)-X-¿YFWHNQ¿-X( 102,191)-¿KRHNQ¿-G-D-¿FYWHILVMC¿-¿QNH¿-¿FWYGP¿-D -¿PSNQYW¿. The dephosphorylating activity common to all these proteins supports the definition of this phosphatase motif and the inclusion of these enzymes into a superfamily of phosphohydrolases that we propose to indicate as "DDDD" after the presence of the four invariant aspartate residues. Database searches retrieved various hypothetical proteins of unknown function containing this or similar motifs, for which a phosphohydrolase activity could be hypothesized.

  18. Molecular cloning, expression and single nucleotide polymorphisms of protein phosphatase 1 (PP1) in mandarin fish (Siniperca chuatsi).

    PubMed

    Cheng, Xiao-Yan; He, Shan; Liang, Xu-Fang; Song, Yi; Yuan, Xiao-Chen; Li, Ling; Wen, Zheng-Yong; Cai, Wen-Jing; Tao, Ya-Xiong

    2015-11-01

    In the wild, mandarin fish (Siniperca chuatsi) only feed on live prey fish, refusing dead prey. When reared in ponds, training will result in some mandarin fish accepting artificial diets. However, little is currently known about the molecular mechanism of the individual difference. Serine/threonine protein phosphatase 1 (PP1) is a suppressor of learning and long-term memory (LTM) in mammals. In the present study, the relationship between PP1 and the individual difference in acceptance of artificial diets in mandarin fish was investigated. The complete CDS (coding sequence) of four PP1 isoforms (PP1caa, PP1cab, PP1cb and PP1cc) were cloned in mandarin fish. The amino acid sequences of these PP1 isoforms are highly conserved in different species. The mRNA expressions of PP1caa and PP1cb in brain of artificial diet feeders were significantly higher than those in nonfeeders, suggesting the deficiency in the maintenance of long-term memory of its natural food habit (live prey fish). The SNP loci in PP1caa and PP1cb were also found to be associated with the individual difference in acceptance of artificial diets in mandarin fish. These SNPs of PP1caa and PP1cb genes could be useful markers for gene-associated breeding of mandarin fish, which could accept artificial diets. In conclusion, different mRNA expression and SNPs of PP1caa and PP1cb genes in feeders and nonfeeders of artificial diets might contribute to understanding the molecular mechanism of individual difference in acceptance of artificial diets in mandarin fish.

  19. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  20. Dairy products and the French paradox: Could alkaline phosphatases play a role?

    PubMed

    Lallès, Jean-Paul

    2016-07-01

    The French paradox - high saturated fat consumption but low incidence of cardiovascular disease (CVD) and mortality - is still unresolved and continues to be a matter of debate and controversy. Recently, it was hypothesised that the high consumption of dairy products, and especially cheese by the French population might contribute to the explanation of the French paradox, in addition to the "(red) wine" hypothesis. Most notably this would involve milk bioactive peptides and biomolecules from cheese moulds. Here, we support the "dairy products" hypothesis further by proposing the "alkaline phosphatase" hypothesis. First, intestinal alkaline phosphatase (IAP), a potent endogenous anti-inflammatory enzyme, is directly stimulated by various components of milk (e.g. casein, calcium, lactose and even fat). This enzyme dephosphorylates and thus detoxifies pro-inflammatory microbial components like lipopolysaccharide, making them unable to trigger inflammatory responses and generate chronic low-grade inflammation leading to insulin resistance, glucose intolerance, type-2 diabetes, metabolic syndrome and obesity, known risk factors for CVD. Various vitamins present in high amounts in dairy products (e.g. vitamins A and D; methyl-donors: folate and vitamin B12), and also fermentation products such as butyrate and propionate found e.g. in cheese, all stimulate intestinal alkaline phosphatase. Second, moulded cheeses like Roquefort contain fungi producing an alkaline phosphatase. Third, milk itself contains a tissue nonspecific isoform of alkaline phosphatase that may function as IAP. Milk alkaline phosphatase is present in raw milk and dairy products increasingly consumed in France. It is deactivated by pasteurization but it can partially reactivate after thermal treatment. Experimental consolidation of the "alkaline phosphatase" hypothesis will require further work including: systematic alkaline phosphatase activity measurements in dairy products, live dairy ferments and

  1. Two ancient bacterial-like PPP family phosphatases from Arabidopsis are highly conserved plant proteins that possess unique properties.

    PubMed

    Uhrig, R Glen; Moorhead, Greg B

    2011-12-01

    Protein phosphorylation, catalyzed by the opposing actions of protein kinases and phosphatases, is a cornerstone of cellular signaling and regulation. Since their discovery, protein phosphatases have emerged as highly regulated enzymes with specificity that rivals their counteracting kinase partners. However, despite years of focused characterization in mammalian and yeast systems, many protein phosphatases in plants remain poorly or incompletely characterized. Here, we describe a bioinformatic, biochemical, and cellular examination of an ancient, Bacterial-like subclass of the phosphoprotein phosphatase (PPP) family designated the Shewanella-like protein phosphatases (SLP phosphatases). The SLP phosphatase subcluster is highly conserved in all plants, mosses, and green algae, with members also found in select fungi, protists, and bacteria. As in other plant species, the nucleus-encoded Arabidopsis (Arabidopsis thaliana) SLP phosphatases (AtSLP1 and AtSLP2) lack genetic redundancy and phylogenetically cluster into two distinct groups that maintain different subcellular localizations, with SLP1 being chloroplastic and SLP2 being cytosolic. Using heterologously expressed and purified protein, the enzymatic properties of both AtSLP1 and AtSLP2 were examined, revealing unique metal cation preferences in addition to a complete insensitivity to the classic serine/threonine PPP protein phosphatase inhibitors okadaic acid and microcystin. The unique properties and high conservation of the plant SLP phosphatases, coupled to their exclusion from animals, red algae, cyanobacteria, archaea, and most bacteria, render understanding the function(s) of this new subclass of PPP family protein phosphatases of particular interest.

  2. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    PubMed

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  3. Phosphatase acitivity as biosignatures in terrestrial extreme environments

    NASA Astrophysics Data System (ADS)

    Kawai, Jun; Nakamoto, Saki; Hara, Masashi; Obayashi, Yumiko; Kaneko, Takeo; Mita, Hajime; Yoshimura, Yoshitaka; Takano, Yoshinori; Kobayashi, Kensei

    Since phosphate esters are essential for the terrestrial life, phosphatase activity can be a can-didate for biosignatures of biological activity. It has been recognized that terrestrial biosphere expands to such extreme environments as deep subsurface lithosphere, high temperature hot springs and stratosphere. We analyzed phosphatase activities in the samples obtained in ex-treme environments such as submarine hydrothermal systems and Antarctica , and discussed whether they can be used as biosignatures for extant life. Core samples and chimney samples were collected at Tarama Knoll in Okinawa Trough in 2009, both in a part of the Archaean Park Project. Surface soil samples are obtained at the Sites 1-8 near Showa Base in Antarctica during the 47th Japan Antarctic exploration mission in 2005-6. Alkaline Phosphatase activ-ity in sea water and in soil was measured spectrometrically by using 25 mM p-nitrophenyl phosphate (pH 8.0) as a substrate. Phosphatase activities in extracts were measured fluoro-metrically by using 4-methylumberyferryl phosphate as a substrate. Concentration of amino acids and their enantiomeric ratios were also determined by HPLC . Significant enzymatic ac-tivities were revealed in both some of the hydrothermal sub-vent systems and Antarctica soils, which is crucial evidence of vigorous microbial oasis. It is consistent with the fact that large enantiomeric excess of L-form amino acids were found in the same core sequences. Optimum temperatures of ALP in the chimney, Antarctica soil and YNU campus soil were 353 K, 313 K, and 333 K, respectively. The present results suggested that phosphatase activities,, together with amino acids, can be used as possible biosignatures for extant life.

  4. Protein Phosphatase 1α Interacting Proteins in the Human Brain

    PubMed Central

    Esteves, Sara L.C.; Domingues, Sara C.; da Cruz e Silva, Odete A.B.; da Cruz e Silva, Edgar F.

    2012-01-01

    Abstract Protein Phosphatase 1 (PP1) is a major serine/threonine-phosphatase whose activity is dependent on its binding to regulatory subunits known as PP1 interacting proteins (PIPs), responsible for targeting PP1 to a specific cellular location, specifying its substrate or regulating its action. Today, more than 200 PIPs have been described involving PP1 in panoply of cellular mechanisms. Moreover, several PIPs have been identified that are tissue and event specific. In addition, the diversity of PP1/PIP complexes can further be achieved by the existence of several PP1 isoforms that can bind preferentially to a certain PIP. Thus, PP1/PIP complexes are highly specific for a particular function in the cell, and as such, they are excellent pharmacological targets. Hence, an in-depth survey was taken to identify specific PP1α PIPs in human brain by a high-throughput Yeast Two-Hybrid approach. Sixty-six proteins were recognized to bind PP1α, 39 being novel PIPs. A large protein interaction databases search was also performed to integrate with the results of the PP1α Human Brain Yeast Two-Hybrid and a total of 246 interactions were retrieved. PMID:22321011

  5. Determination of liver microsomal glucose-6-phosphatase.

    PubMed

    Zak, B; Epstein, E; Baginski, E S

    1977-01-01

    A procedure for the determination of liver microsomal glucose-6-phosphatase is described. Homogenization and ultracentrifrigation were used to prepare a precipitate whose character was defined by monitoring the desire enzyme activity which serves as a marker. Activity of the enzyme was determined by means of a sensitive colorimetric reaction for the product, inorganic phosphate. Non-enzymatic hydrolysis problems with the substrate are minimized in this procedure by the masking action of citrate. The final heteropoly blue color appears to be considerably sensitized by interaction of phosphomolybdous ion with arsenite. The stability of the relatively labile enzyme was ensured by chelating any metals present with ethylene diamine tetraacetic acid. The overall results obtained by the procedure appear to be useful as an aid in the diagnosis of Type I glycogenosis, a glycogen storage disease called Von Gierke's disease. PMID:192125

  6. Cortisol modification of HeLa 65 alkaline phosphatase. Decreased phosphate content of the induced enzyme.

    PubMed

    Bazzell, K L; Price, G; Tu, S; Griffin, M

    1976-01-15

    Alkaline phosphatase activity of HeLa cells is increased 5-20-fold during growth in medium with cortisol. The increase in enzyme activity is due to an enhanced catalytic efficiency rather than an increase in alkaline phosphatase protein in induced cells. In the present study the chemical composition of control and induced forms of alkaline phosphatase were investigated to determine the enzyme modification that may be responsible for the increased catalytic activity. HeLa alkaline phosphatase is a phosphoprotein and the induced form of the enzyme has approximately one-half of the phosphate residues associated with control enzyme. The decrease in phosphate residues of the enzyme apparently alters its catalytic activity. Other chemical components of purified alkaline phosphatase from control and induced cells are similar; these include sialic acid, hexosamine and sulfhydryl residues. PMID:1248469

  7. The isolation of parvalbumin isoforms from the tail muscle of the American alligator (Alligator mississipiensis).

    PubMed

    Laney, E L; Shabanowitz, J; King, G; Hunt, D F; Nelson, D J

    1997-04-01

    Multiple parvalbumin isoforms have been detected in the tail (skeletal) muscle of the American alligator (Alligator mississipiensis). One of these isoforms (APV-1) has been highly purified and partially characterized. Protein purification involved mainly gel filtration and anion exchange chromatography, and characterization included gel electrophoresis, amino acid composition analysis, metal ion analysis, MALDI-TOF and ESI mass spectrometry, ultraviolet and fluorescence spectroscopy, and one- and two-dimensional 500 MHz proton NMR spectroscopy. The alligator isoforms are rich in phenylalanine and deficient in the other aromatic residues as is typical for parvalbumins. In fact, the one highly purified isoform that forms the basis of this study has only phenyl-alanine as an aromatic residue. Ion exchange chromatography further indicates that this isoform has a relatively high isoelectric point (pl approximately 5.0), indicating that it is an alpha-lineage parvalbumin. This alligator parvalbumin isoform is unusual in that it has an atypically high Ca2+ content (almost 3.0 mole of Ca2+ per mole of protein) following purification, a fact supported by terbium fluorescence titration experiments. Preliminary comparative analysis of the highly purified alligator parvalbumin isoform (in the Ca2-loaded state) by two-dimensional 1H-NMR (2D 1H TOCSY and 2D 1H NOESY) indicates that there is considerable similarity in structure between the alligator protein and a homologous protein obtained from the silver hake (a saltwater fish species). PMID:9076974

  8. Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate

    SciTech Connect

    Chou, J.Y.; Takahashi, S.

    1987-06-16

    HeLa S/sub 3/ cells produce an alkaline phosphatase indistinguishable from the enzyme from human term placenta. The phosphatase activity in these cells was induced by both prednisolone and sodium butyrate. Both agents stimulated de novo synthesis of the enzyme. The increase in phosphatase activity paralleled the increase in immunoactivity and biosynthesis of placental alkaline phosphatase. The fully processed phosphatase monomer in control, prednisolone-treated or butyrate-treated cells was a 64.5 K polypeptide, measured by both incorporation of L-(/sup 35/S)methionine into enzyme protein and active-site labeling. The 64.5K polypeptide was formed by the incorporation of additional N-acetylneuraminic acid moieties to a precursor polypeptide of 61.5K. However, this biosynthetic pathway was identified only in butyrate-treated cells. In prednisolone-treated cells, the processing of 61.5K to 64.5K monomer was accelerated, and the presence of the 61.5 precursor could only be detected by either neuraminidase or monensin treatment. Phosphatase mRNA which comigrated with the term placental alkaline phosphatase mRNA of 2.7 kilobases was induced in the presence of either prednisolone or butyrate. Alkaline phosphatase mRNA is untreated HeLa S/sub 3/ cells migrated slightly faster than the term placental alkaline phosphatase mRNA. Butyrate also induced a second still faster migrating alkaline phosphatase mRNA. Both prednisolone and butyrate increased the steady-state levels of placental alkaline phosphatase mRNA. The data indicate that the increase in phosphatase mRNA by prednisolone and butyrate resulted in the induction of alkaline phosphatase activity and biosynthesis in HeLa S/sub 3/ cells. Furthermore, both agents induced the expression of different alkaline phosphatase gene transcripts without altering its protein product.

  9. Catalytic and substrate promiscuity: distinct multiple chemistries catalysed by the phosphatase domain of receptor protein tyrosine phosphatase.

    PubMed

    Srinivasan, Bharath; Marks, Hanna; Mitra, Sreyoshi; Smalley, David M; Skolnick, Jeffrey

    2016-07-15

    The presence of latent activities in enzymes is posited to underlie the natural evolution of new catalytic functions. However, the prevalence and extent of such substrate and catalytic ambiguity in evolved enzymes is difficult to address experimentally given the order-of-magnitude difference in the activities for native and, sometimes, promiscuous substrate/s. Further, such latent functions are of special interest when the activities concerned do not fall into the domain of substrate promiscuity. In the present study, we show a special case of such latent enzyme activity by demonstrating the presence of two mechanistically distinct reactions catalysed by the catalytic domain of receptor protein tyrosine phosphatase isoform δ (PTPRδ). The primary catalytic activity involves the hydrolysis of a phosphomonoester bond (C─O─P) with high catalytic efficiency, whereas the secondary activity is the hydrolysis of a glycosidic bond (C─O─C) with poorer catalytic efficiency. This enzyme also displays substrate promiscuity by hydrolysing diester bonds while being highly discriminative for its monoester substrates. To confirm these activities, we also demonstrated their presence on the catalytic domain of protein tyrosine phosphatase Ω (PTPRΩ), a homologue of PTPRδ. Studies on the rate, metal-ion dependence, pH dependence and inhibition of the respective activities showed that they are markedly different. This is the first study that demonstrates a novel sugar hydrolase and diesterase activity for the phosphatase domain (PD) of PTPRδ and PTPRΩ. This work has significant implications for both understanding the evolution of enzymatic activity and the possible physiological role of this new chemistry. Our findings suggest that the genome might harbour a wealth of such alternative latent enzyme activities in the same protein domain that renders our knowledge of metabolic networks incomplete.

  10. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases

    PubMed Central

    Rietz, A; Spiers, JP

    2012-01-01

    The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs) ] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging crosstalk between these three systems. Although α- and β-adrenoceptor activation increases MMP but decreases TIMP expression, MMPs are implicated in the growth stimulatory effects of adrenoceptor activation through transactivation of epidermal growth factor receptor. Furthermore, they have recently been found to catalyse the proteolysis of β-adrenoceptors and modulate vascular tone. While the mechanisms underpinning these effects are not well defined, reversible protein phosphorylation by kinases and phosphatases may be key. In particular, PPP (Ser/Thr phosphatases) are not only critical in resensitization and internalization of adrenoceptors but also modulate MMP expression. The interrelationship is complex as isoprenaline (ISO) inhibits okadaic acid [phosphoprotein phosphatase type 1/phosphoprotein phosphatase type 2A (PP2A) inhibitor]-mediated MMP expression. While this may be simply due to its ability to transiently increase PP2A activity, there is evidence for MMP-9 that ISO prevents okadaic acid-mediated expression of MMP-9 through a β-arrestin, NF-κB-dependent pathway, which is abolished by knock-down of PP2A. It is essential that crosstalk between MMPs, adrenoceptors and PPP are investigated further as it will provide important insight into how adrenoceptors modulate cardiovascular remodelling, and may identify new targets for pharmacological manipulation of the MMP system. PMID:22364165

  11. Specific modulation of apoptosis and Bcl-xL phosphorylation in yeast by distinct mammalian protein kinase C isoforms.

    PubMed

    Saraiva, Lucília; Silva, Rui D; Pereira, Gil; Gonçalves, Jorge; Côrte-Real, Manuela

    2006-08-01

    Mammalian protein kinase C (PKC) isoforms have been subject of particular attention because of their ability to modulate apoptotic proteins. However, the roles played by each PKC isoform in apoptosis are still unclear. Here, expression of individual mammalian PKC isoforms in Saccharomyces cerevisiae is used as a new approach to study the role of each isoform in apoptosis. The four isoforms tested, excepting PKC-delta, stimulate S. cerevisiae acetic-acid-induced apoptosis essentially through a mitochondrial ROS-dependent pathway. However, their co-expression with Bcl-xL reveals a PKC-isoform-dependent modulation of Bcl-xL anti-apoptotic activity. A yeast pathway homologue to the mammalian SAPK/JNK is responsible for acetic-acid-induced Bcl-xL phosphorylation that is differently modulated by PKC isoforms. The data obtained suggest conservation of an ancient mechanism of apoptosis regulation in yeast and mammals and offer new insights into mammalian apoptosis modulation by PKC isoforms.

  12. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella.

    PubMed

    Chen, Xi'en; Lü, Shumin; Zhang, Yalin

    2014-01-01

    Protein phosphatase 5 (PP5), a unique member of serine/threonine phosphatases, regulates a variety of biological processes. We obtained full-length PP5 cDNAs from three lepidopteran insects, Helicoverpa armigera, Mythimna separata and Plutella xylostella, encoding predicted proteins of 490 (55.98 kDa), 490 (55.82 kDa) and 491 (56.07 kDa) amino acids, respectively. These sequences shared a high identity with other insect PP5s and contained the TPR (tetratricopeptide repeat) domains at N-terminal regions and highly conserved C-terminal catalytic domains. Tissue- and stage-specific expression pattern analyses revealed these three PP5 genes were constitutively expressed in all stages and in tested tissues with predominant transcription occurring at the egg and adult stages. Activities of Escherichia coli-produced recombinant PP5 proteins could be enhanced by almost 2-fold by a known PP5 activator: arachidonic acid. Kinetic parameters of three recombinant proteins against substrate pNPP were similar both in the absence or presence of arachidonic acid. Protein phosphatases inhibitors, okadaic acid, cantharidin, and endothall strongly impeded the activities of the three recombinant PP5 proteins, as well as exerted an inhibitory effect on crude protein phosphatases extractions from these three insects. In summary, lepidopteran PP5s share similar characteristics and are all sensitive to the protein phosphatases inhibitors. Our results also imply protein phosphatase inhibitors might be used in the management of lepidopteran pests. PMID:24823652

  13. Characterization of protein phosphatase 5 from three lepidopteran insects: Helicoverpa armigera, Mythimna separata and Plutella xylostella.

    PubMed

    Chen, Xi'en; Lü, Shumin; Zhang, Yalin

    2014-01-01

    Protein phosphatase 5 (PP5), a unique member of serine/threonine phosphatases, regulates a variety of biological processes. We obtained full-length PP5 cDNAs from three lepidopteran insects, Helicoverpa armigera, Mythimna separata and Plutella xylostella, encoding predicted proteins of 490 (55.98 kDa), 490 (55.82 kDa) and 491 (56.07 kDa) amino acids, respectively. These sequences shared a high identity with other insect PP5s and contained the TPR (tetratricopeptide repeat) domains at N-terminal regions and highly conserved C-terminal catalytic domains. Tissue- and stage-specific expression pattern analyses revealed these three PP5 genes were constitutively expressed in all stages and in tested tissues with predominant transcription occurring at the egg and adult stages. Activities of Escherichia coli-produced recombinant PP5 proteins could be enhanced by almost 2-fold by a known PP5 activator: arachidonic acid. Kinetic parameters of three recombinant proteins against substrate pNPP were similar both in the absence or presence of arachidonic acid. Protein phosphatases inhibitors, okadaic acid, cantharidin, and endothall strongly impeded the activities of the three recombinant PP5 proteins, as well as exerted an inhibitory effect on crude protein phosphatases extractions from these three insects. In summary, lepidopteran PP5s share similar characteristics and are all sensitive to the protein phosphatases inhibitors. Our results also imply protein phosphatase inhibitors might be used in the management of lepidopteran pests.

  14. Methods to distinguish various types of protein phosphatase activity

    SciTech Connect

    Brautigan, D.L.; Shriner, C.L.

    1988-01-01

    To distinguish the action of protein Tyr(P) and protein Ser(P)/Thr(P) phosphatases on /sup 32/P-labeled phosphoproteins in subcellular fractions different inhibitors and activators are utilized. Comparison of the effects of added compounds provides a convenient, indirect method to characterize dephosphorylation reactions. Protein Tyr(P) phosphatases are specifically inhibited by micromolar Zn2+ or vanadate, and show maximal activity in the presence of EDTA. The other class of cellular phosphatases, specific for protein Ser(P) and Thr(P) residues, are inhibited by fluoride and EDTA. In this class of enzymes two major functional types can be distinguished: those sensitive to inhibition by the heat-stable protein inhibitor-2 and not stimulated by polycations, and those not sensitive to inhibition and stimulated by polycations. Preparation of /sup 32/P-labeled Tyr(P) and Ser(P) phosphoproteins also is presented for the direct measurement of phosphatase activities in preparations by the release of acid-soluble (/sup 32/P)phosphate.

  15. The relationship between human skeletal muscle pyruvate dehydrogenase phosphatase activity and muscle aerobic capacity.

    PubMed

    Love, Lorenzo K; LeBlanc, Paul J; Inglis, J Greig; Bradley, Nicolette S; Choptiany, Jon; Heigenhauser, George J F; Peters, Sandra J

    2011-08-01

    Pyruvate dehydrogenase (PDH) is a mitochondrial enzyme responsible for regulating the conversion of pyruvate to acetyl-CoA for use in the tricarboxylic acid cycle. PDH is regulated through phosphorylation and inactivation by PDH kinase (PDK) and dephosphorylation and activation by PDH phosphatase (PDP). The effect of endurance training on PDK in humans has been investigated; however, to date no study has examined the effect of endurance training on PDP in humans. Therefore, the purpose of this study was to examine differences in PDP activity and PDP1 protein content in human skeletal muscle across a range of muscle aerobic capacities. This association is important as higher PDP activity and protein content will allow for increased activation of PDH, and carbohydrate oxidation. The main findings of this study were that 1) PDP activity (r(2) = 0.399, P = 0.001) and PDP1 protein expression (r(2) = 0.153, P = 0.039) were positively correlated with citrate synthase (CS) activity as a marker for muscle aerobic capacity; 2) E1α (r(2) = 0.310, P = 0.002) and PDK2 protein (r(2) = 0.229, P =0.012) are positively correlated with muscle CS activity; and 3) although it is the most abundant isoform, PDP1 protein content only explained ∼ 18% of the variance in PDP activity (r(2) = 0.184, P = 0.033). In addition, PDP1 in combination with E1α explained ∼ 38% of the variance in PDP activity (r(2) = 0.383, P = 0.005), suggesting that there may be alternative regulatory mechanisms of this enzyme other than protein content. These data suggest that with higher muscle aerobic capacity (CS activity) there is a greater capacity for carbohydrate oxidation (E1α), in concert with higher potential for PDH activation (PDP activity). PMID:21596918

  16. The RCN1-encoded A subunit of protein phosphatase 2A increases phosphatase activity in vivo

    NASA Technical Reports Server (NTRS)

    Deruere, J.; Jackson, K.; Garbers, C.; Soll, D.; Delong, A.; Evans, M. L. (Principal Investigator)

    1999-01-01

    Protein phosphatase 2A (PP2A), a heterotrimeric serine/threonine-specific protein phosphatase, comprises a catalytic C subunit and two distinct regulatory subunits, A and B. The RCN1 gene encodes one of three A regulatory subunits in Arabidopsis thaliana. A T-DNA insertion mutation at this locus impairs root curling, seedling organ elongation and apical hypocotyl hook formation. We have used in vivo and in vitro assays to gauge the impact of the rcn1 mutation on PP2A activity in seedlings. PP2A activity is decreased in extracts from rcn1 mutant seedlings, and this decrease is not due to a reduction in catalytic subunit expression. Roots of mutant seedlings exhibit increased sensitivity to the phosphatase inhibitors okadaic acid and cantharidin in organ elongation assays. Shoots of dark-grown, but not light-grown seedlings also show increased inhibitor sensitivity. Furthermore, cantharidin treatment of wild-type seedlings mimics the rcn1 defect in root curling, root waving and hypocotyl hook formation assays. In roots of wild-type seedlings, RCN1 mRNA is expressed at high levels in root tips, and accumulates to lower levels in the pericycle and lateral root primordia. In shoots, RCN1 is expressed in the apical hook and the basal, rapidly elongating cells in etiolated hypocotyls, and in the shoot meristem and leaf primordia of light-grown seedlings. Our results show that the wild-type RCN1-encoded A subunit functions as a positive regulator of the PP2A holoenzyme, increasing activity towards substrates involved in organ elongation and differential cell elongation responses such as root curling.

  17. Discrete phosphorylated Retinoblastoma protein isoform expression in mouse tooth development

    PubMed Central

    Zhang, Weibo; Vazquez, Betsy; Andreeva, Viktoria; Spear, Daisy; Kong, Elizabeth; Hinds, Philip W.; Yelick, Pamela C.

    2015-01-01

    It is widely accepted that Retinoblastoma protein (pRb) phosphorylation plays a central role in mediating cell cycle G1/S stage transition, together with E2 promoter-binding factors (E2F). The binding of pRb to E2F is controlled by the sequential and cumulative phosphorylation of pRb at various amino acids. In addition to the well characterized roles for pRb as a tumor suppressor, pRb has more recently been implicated in osteoprogenitor and other types of stem cell maintenance, proliferation and differentiation, thereby influencing the morphogenesis of developing organs. In this study, we present data characterizing the expression of three phosphorylated pRb (ppRb) isoforms - ppRbS780, ppRbS795, and ppRbS807/811- in developing mouse molar and incisor tooth buds. Also, we analyzed the co-localization of pRb isoforms and histone H3 expression in incisor tooth buds. Our results reveal distinct developmental expression patterns for individual ppRb isoforms in differentiating dental epithelial and dental mesenchymal cells, suggesting discrete functions for each in tooth development. PMID:22476877

  18. [Phosphoprotein phosphatase nonspecifically hydrolyzes CoA].

    PubMed

    Reziapkin, V I; Moiseenok, A G

    1988-01-01

    CoA hydrolysis was studied by a homogenous phosphoprotein phosphatase (EC 3.1 3.16) preparation from bovine spleen nuclei at pH 5.8. Phosphoprotein phosphatase catalyzed hydrolysis of the CoA 3'-phosphoester bond to form dephospho-CoA and Pi. The Km value for phosphoprotein phosphatase with CoA as substrate was 3.7 mM, the specific activity - 0.26 mmol Pi.min-1.mg-1. Phosphoprotein phosphatase did not essentially catalyze the calcium pantothenate hydrolysis (not more than 2% as compared with the CoA hydrolysis rate). PMID:2849829

  19. Protein phosphatases in pancreatic islets

    PubMed Central

    Ortsäter, Henrik; Grankvist, Nina; Honkanen, Richard E.; Sjöholm1, Åke

    2014-01-01

    The prevalence of diabetes is increasing rapidly world-wide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis. PMID:24681827

  20. Structural differences between C-terminal regions of tropomyosin isoforms

    PubMed Central

    Śliwińska, Małgorzata

    2013-01-01

    Tropomyosins are actin-binding regulatory proteins which overlap end-to-end along the filament. High resolution structures of the overlap regions were determined for muscle and non-muscle tropomyosins in the absence of actin. Conformations of the junction regions bound to actin are unknown. In this work, orientation of the overlap on actin alone and on actin–myosin complex was evaluated by measuring FRET distances between a donor (AEDANS) attached to tropomyosin and an acceptor (DABMI) bound to actin’s Cys374. Donor was attached to the Cys residue introduced by site-directed mutagenesis near the C-terminal half of the overlap. The recombinant alpha-tropomyosin isoforms used in this study – skeletal muscle skTM, non-muscle TM2 and TM5a, and chimeric TM1b9a had various amino acid sequences of the N- and C-termini involved in the end-to-end overlap. The donor-acceptor distances calculated for each isoform varied between 36.4 Å and 48.1 Å. Rigor binding of myosin S1 increased the apparent FRET distances of skTM and TM2, but decreased the distances separating TM5a and TM1b9a from actin. The results show that isoform-specific sequences of the end-to-end overlaps determine orientations and dynamics of tropomyosin isoforms on actin. This can be important for specificity of tropomyosin in the regulation of actin filament diverse functions. PMID:24167776

  1. In Vivo Regulatory Phosphorylation of Novel Phosphoenolpyruvate Carboxylase Isoforms in Endosperm of Developing Castor Oil Seeds1

    PubMed Central

    Tripodi, Karina E.; Turner, William L.; Gennidakis, Sam; Plaxton, William C.

    2005-01-01

    Our previous research characterized two phosphoenolpyruvate (PEP) carboxylase (PEPC) isoforms (PEPC1 and PEPC2) from developing castor oil seeds (COS). The association of a shared 107-kD subunit (p107) with an immunologically unrelated bacterial PEPC-type 64-kD polypeptide (p64) leads to marked physical and kinetic differences between the PEPC1 p107 homotetramer and PEPC2 p107/p64 heterooctamer. Here, we describe the production of antiphosphorylation site-specific antibodies to the conserved p107 N-terminal serine-6 phosphorylation site. Immunoblotting established that the serine-6 of p107 is phosphorylated in COS PEPC1 and PEPC2. This phosphorylation was reversed in vitro following incubation of clarified COS extracts or purified PEPC1 or PEPC2 with mammalian protein phosphatase type 2A and is not involved in a potential PEPC1 and PEPC2 interconversion. Similar to other plant PEPCs examined to date, p107 phosphorylation increased PEPC1 activity at pH 7.3 by decreasing its Km(PEP) and sensitivity to l-malate inhibition, while enhancing glucose-6-P activation. By contrast, p107 phosphorylation increased PEPC2's Km(PEP) and sensitivity to malate, glutamic acid, and aspartic acid inhibition. Phosphorylation of p107 was promoted during COS development (coincident with a >5-fold increase in the I50 [malate] value for total PEPC activity in desalted extracts) but disappeared during COS desiccation. The p107 of stage VII COS became fully dephosphorylated in planta 48 h following excision of COS pods or following 72 h of dark treatment of intact plants. The in vivo phosphorylation status of p107 appears to be modulated by photosynthate recently translocated from source leaves into developing COS. PMID:16169958

  2. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    ERIC Educational Resources Information Center

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  3. Prostate-specific acid phosphatase versus acid phosphatase in monitoring patients with prostate cancer.

    PubMed

    Killian, C S; Vargas, F P; Slack, N H; Murphy, G P; Chu, T M

    1982-01-01

    Serial levels of PAP and AcP activity were compared for their relative values in monitoring 57 early and 33 advanced prostate cancer patients. Several findings regarding the patients' disease status and the enzyme levels have been observed that may be beneficial to therapeutic management of these patients. They are: [1] an elevated PAP activity in disease recurrence and disease progression generally precedes an elevated AcP activity, and thus represents a more sensitive index for patients with early and advanced disease; [2] serial mean levels of PAP activity greater than the mean + 3 SD are more predictive for disease recurrence and progression than are those of AcP activity in both groups of patients; [3] PAP activity is a more sensitive monitor for changes in objective treatment response than is AcP activity; and [4] PAP is more specific than AcP for prostate, thus offering a more reliable marker to identify metastasis of unknown origin, or to confirm metastasis derived from a primary prostate tumor that may have been suggested by other non-prostate-specific marker[s]. In addition, data suggest a favorable prognosis for patients receiving therapy as inferred by a serial mean of PAP activity that is less than mean + 3 SD. PMID:6953924

  4. Regulated expression of a calmodulin isoform alters growth and development in potato.

    PubMed

    Poovaiah, B W; Takezawa, D; An, G; Han, T J

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodulin isoform on plant growth and development. Eight genomic clones of potato calmodulin (PCM1 to 8) have been isolated and characterized (Takezawa et al., 1995). Among the potato calmodulin isoforms studied, PCM1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM1 fused to the CaMV 35S promoter. Transgenic plants showing a moderate increase in PCM1 mRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM1 mRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM1 mRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM1 protein in transgenic plants, indicating that the expression of both mRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM1 alters growth and development in potato plants.

  5. Palmitoylation of the three isoforms of human endothelin-converting enzyme-1.

    PubMed Central

    Schweizer, A; Löffler, B M; Rohrer, J

    1999-01-01

    Endothelin-converting enzyme-1 (ECE-1) is a membrane-bound metalloprotease that catalyses the conversion of inactive big endothelins into active endothelins. Here we have examined whether the three isoforms of human ECE-1 (ECE-1a, ECE-1b and ECE-1c) are modified by the covalent attachment of the fatty acid palmitate and have evaluated a potential functional role of this modification. To do this, wild-type and mutant enzymes were expressed and analysed by metabolic labelling with [3H]palmitate, immunoprecipitation and SDS/PAGE. All three ECE-1 isoforms were found to be palmitoylated via hydroxylamine-sensitive thioester bonds. In addition, the isoforms showed similar levels of acylation. Cys46 in ECE-1a, Cys58 in ECE-1b and Cys42 in ECE-1c were identified as sites of palmitoylation and each of these cysteines accounted for all the palmitoylation that occured in the corresponding isoform. Immunofluorescence analysis demonstrated further that palmitoylated and non-palmitoylated ECE-1 isoforms had the same subcellular localizations. Moreover, complete solubility of the three isoforms in Triton X-100 revealed that palmitoylation does not target ECE-1 to cholesterol and sphingolipid-rich membrane domains or caveolae. The enzymic activities of ECE-1a, ECE-1b and ECE-1c were also not significantly affected by the absence of palmitoylation. PMID:10359648

  6. Regulated Expression of a Calmodulin Isoform Alters Growth and Development in Potato

    NASA Technical Reports Server (NTRS)

    Poovaiah, B. W.; Takezawa, D.; An, G.; Han, T.-J.

    1996-01-01

    A transgene approach was taken to study the consequences of altered expression of a calmodutin iso-form on plant growth and development. Eight genomic clones of potato calmodulin (PCM 1 to 8) have been isolated and characterized. Among the potato calmodulin isoforms studied, PCM 1 differs from the other isoforms because of its unique amino acid substitutions. Transgenic potato plants were produced carrying sense construct of PCM 1 fused to the CAMV 35S promoter. Transgenic plants showing a moderate increase in PCM 1 MRNA exhibited strong apical dominance, produced elongated tubers, and were taller than the controls. Interestingly, the plants expressing the highest level of PCM 1 MRNA did not form underground tubers. Instead, these transgenic plants produced aerial tubers when allowed to grow for longer periods. The expression of different calmodulin isoforms (PCM 1, 5, 6, and 8) was studied in transgenic plants. Among the four potato calmodulin isoforms, only the expression of PCM 1 MRNA was altered in transgenic plants, while the expression of other isoforms was not significantly altered. Western analysis revealed increased PCM 1 protein in transgenic plants, indicating that the expression of both MRNA and protein are altered in transgenic plants. These results suggest that increasing the expression of PCM 1 alters growth and development in potato plants.

  7. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus.

    PubMed

    Stefanoni Rubio, P J; Godoy, M S; Della Mónica, I F; Pettinari, M J; Godeas, A M; Scervino, J M

    2016-01-01

    The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (L-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon-nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P.

  8. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    PubMed Central

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2008-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 nucleotides of exon 2 by use of an alternative 5’ splice site, resulting in a premature termination codon and possible nonsense-mediated decay of IIC mRNA. Low levels of the IIC isoform were detected by RT-PCR and Southern analysis of COL2A1 cDNA amplified from differentiating rabbit and human MSCs. A second novel transcript, named IID, arises by use of another 5’ alternative splice site in intron 2. The IID isoform contains exon 2 plus 3 nucleotides, resulting in the insertion of an additional amino acid. The IID isoform was co-expressed with the IIA isoform during chondrogenesis, and was approximately one-third as abundant. Deletion of the IIC alternative 5’ splice site from a COL2A1 mini-gene construct resulted in a significant increase in the IIA:IIB ratio. A mutant mini-gene that inhibited production of the IID isoform, however, had differential effects on the production of the IIA and IIB isoforms: this was apparently related to the differentiation status of the cell type used. These data suggest that COL2A1 mRNA abundance and other aspects of chondrocyte differentiation may be regulated by the use of these previously undetermined alternative splice sites. PMID:18023161

  9. Kinetic properties of alternatively spliced isoforms of laccase-2 from Tribolium castaneum and Anopheles gambiae

    PubMed Central

    Gorman, Maureen J.; Sullivan, Lucinda I.; Nguyen, Thi D. T.; Dai, Huaien; Arakane, Yasuyuki; Dittmer, Neal T.; Syed, Lateef U.; Li, Jun; Hua, Duy H.; Kanost, Michael R.

    2011-01-01

    Laccase-2 is a highly conserved multicopper oxidase that functions in insect cuticle pigmentation and tanning. In many species, alternative splicing gives rise to two laccase-2 isoforms. A comparison of laccase-2 sequences from three orders of insects revealed eleven positions at which there are conserved differences between the A and B isoforms. Homology modeling suggested that these eleven residues are not part of the substrate binding pocket. To determine whether the isoforms have different kinetic properties, we compared the activity of laccase-2 isoforms from Tribolium castaneum and Anopheles gambiae. We partially purified the four laccases as recombinant enzymes and analyzed their ability to oxidize a range of laccase substrates. The predicted endogenous substrates tested were dopamine, N-acetyldopamine (NADA), N-β-alanyldopamine (NBAD) and dopa, which were detected in T. castaneum previously and in A. gambiae as part of this study. Two additional diphenols (catechol and hydroquinone) and one non-phenolic substrate (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)) were also tested. We observed no major differences in substrate specificity between the A and B isoforms. Dopamine, NADA and NBAD were oxidized with catalytic efficiencies ranging from 51 – 550 min−1 mM−1. These results support the hypothesis that dopamine, NADA and NBAD are endogenous substrates for both isoforms of laccase-2. Catalytic efficiencies associated with dopa oxidation were low, ranging from 8 – 30 min−1 mM−1; in comparison, insect tyrosinase oxidized dopa with a catalytic efficiency of 201 min−1 mM−1. We found that dopa had the highest redox potential of the four endogenous substrates, and this property of dopa may explain its poor oxidation by laccase-2. We conclude that laccase-2 splice isoforms are likely to oxidize the same substrates in vivo, and additional experiments will be required to discover any isoform-specific functions. PMID:22198355

  10. Phosphoinositide Phosphatases in Cell Biology and Disease

    PubMed Central

    Liu, Yang; Bankaitis, Vytas A.

    2010-01-01

    Phosphoinositides are essential signaling molecules linked to a diverse array of cellular processes in eukaryotic cells. The metabolic interconversions of these phospholipids are subject to exquisite spatial and temporal regulation executed by arrays of phosphatidylinositol (PtdIns) and phosphoinositide-metabolizing enzymes. These include PtdIns- and phosphoinositide-kinases that drive phosphoinositide synthesis, and phospholipases and phosphatases that regulate phosphoinositide degradation. In the past decade, phosphoinositide phosphatases have emerged as topics of particular interest. This interest is driven by the recent appreciation that these enzymes represent primary mechanisms for phosphoinositide degradation, and because of their ever-increasing connections with human diseases. Herein, we review the biochemical properties of six major phosphoinositide phosphatases, the functional involvements of these enzymes in regulating phosphoinositide metabolism, the pathologies that arise from functional derangements of individual phosphatases, and recent ideas concerning the involvements of phosphoinositide phosphatases in membrane traffic control. PMID:20043944

  11. Phosphonate monoesters on a thiacalix[4]arene framework as potential inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Trush, Viacheslav V; Kharchenko, Sergiy G; Tanchuk, Vsevolod Yu; Kalchenko, Vitaly I; Vovk, Andriy I

    2015-09-01

    Monoester derivatives of thiacalix[4]arene tetrakis(methylphosphonic) acid were found to be capable of inhibiting protein tyrosine phosphatase 1B. In addition, these compounds can strongly bind to human serum albumin. PMID:26205135

  12. Molecular cloning, expression and immunological characterisation of Lol p 5C, a novel allergen isoform of rye grass pollen demonstrating high IgE reactivity.

    PubMed

    Suphioglu, C; Mawdsley, D; Schäppi, G; Gruehn, S; de Leon, M; Rolland, J M; O'Hehir, R E

    1999-12-01

    A novel isoform of a major rye grass pollen allergen Lol p 5 was isolated from a cDNA expression library. The new isoform, Lol p 5C, shares 95% amino acid sequence identity with Lol p 5A. Both isoforms demonstrated shared antigenic activity but different allergenic activities. Recombinant Lol p 5C demonstrated 100% IgE reactivity in 22 rye grass pollen sensitive patients. In comparison, recombinant Lol p 5A showed IgE reactivity in less than 64% of the patients. Therefore, Lol p 5C represents a novel and highly IgE-reactive isoform allergen of rye grass pollen.

  13. Specificity of a protein phosphatase inhibitor from rabbit skeletal muscle.

    PubMed Central

    Cohen, P; Nimmo, G A; Antoniw, J F

    1977-01-01

    A hear-stable protein, which is a specific inhibitor of protein phosphatase-III, was purified 700-fold from skeletal muscle by a procedure that involved heat-treatment at 95 degrees C, chromatography on DEAE-cellulose and gel filtration on Sephadex G-100. The final step completely resolved the protein phosphatase inhibitor from the protein inhibitor of cyclic AMP-dependent protein kinase. The phosphorylase phosphatase, beta-phosphorylase kinase phosphatase, glycogen synthase phosphatase-1 and glycogen synthase phosphatase-2 activities of protein phosphatase-III [Antoniw, J. F., Nimmo, H. G., Yeaman, S. J. & Cohen, P.(1977) Biochem.J. 162, 423-433] were inhibited in a very similar manner by the protein phosphatase inhibitor and at least 95% inhibition was observed at high concentrations of inhibitor. The two forms of protein phosphatase-III, termed IIIA and IIIB, were equally susceptible to the protein phosphatase inhibitor. The protein phosphatase inhibitor was at least 200 times less effective in inhibiting the activity of protein phosphatase-I and protein phosphatase-II. The high degree of specificity of the inhibitor for protein phosphatase-III was used to show that 90% of the phosphorylase phosphatase and glycogen synthase phosphatase activities measured in muscle extracts are catalysed by protein phosphatase-III. Protein phosphatase-III was tightly associated with the protein-glycogen complex that can be isolated from skeletal muscle, whereas the protein phosphatase inhibitor and protein phosphatase-II were not. The results provide further evidence that the enzyme that catalyses the dephosphorylation of the alpha-subunit of phosphorylase kinase (protein phosphatase-II) and the enzyme that catalyses the dephosphorylation of the beta-subunit of phosphorylase kinase (protein phosphatase-III) are distinct. The results suggest that the protein phosphatase inhibitor may be a useful probe for differentiating different classes of protein phosphatases in mammalian

  14. CD45 Isoform Profile Identifies Natural Killer (NK) Subsets with Differential Activity

    PubMed Central

    Krzywinska, Ewelina; Cornillon, Amelie; Allende-Vega, Nerea; Vo, Dang-Nghiem; Rene, Celine; Lu, Zhao-Yang; Pasero, Christine; Olive, Daniel; Fegueux, Nathalie; Ceballos, Patrick; Hicheri, Yosr; Sobecki, Michal; Rossi, Jean-François; Cartron, Guillaume; Villalba, Martin

    2016-01-01

    The leucocyte-specific phosphatase CD45 is present in two main isoforms: the large CD45RA and the short CD45RO. We have recently shown that distinctive expression of these isoforms distinguishes natural killer (NK) populations. For example, co-expression of both isoforms identifies in vivo the anti tumor NK cells in hematological cancer patients. Here we show that low CD45 expression associates with less mature, CD56bright, NK cells. Most NK cells in healthy human donors are CD45RA+CD45RO-. The CD45RA-RO+ phenotype, CD45RO cells, is extremely uncommon in B or NK cells, in contrast to T cells. However, healthy donors possess CD45RAdimRO- (CD45RAdim cells), which show immature markers and are largely expanded in hematopoietic stem cell transplant patients. Blood borne cancer patients also have more CD45RAdim cells that carry several features of immature NK cells. However, and in opposition to their association to NK cell progenitors, they do not proliferate and show low expression of the transferrin receptor protein 1/CD71, suggesting low metabolic activity. Moreover, CD45RAdim cells properly respond to in vitro encounter with target cells by degranulating or gaining CD69 expression. In summary, they are quiescent NK cells, with low metabolic status that can, however, respond after encounter with target cells. PMID:27100180

  15. Characterization of the phosphatidylinositol-glycan membrane anchor of human placental alkaline phosphatase

    SciTech Connect

    Howard, A.D.; Berger, J.; Gerber, L.; Familletti, P.; Udenfriend, S.

    1987-09-01

    Placental alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) is a member of a diverse group of membrane proteins whose attachment to the lipid bilayer is mediated by a phosphatidylinositol-glycan. To investigate structural aspects of the glycolipid anchor, cultured WISH cells were used because, they produce the enzyme in abundant quantities. When cell suspensions were incubated with purified phosphatidylinositol-specific phospholipase C, most of the placental alkaline phosphatase was released from membranes in a hydrophilic form. On incubation of the cells with (/sup 14/C)ethanolamine, (/sup 14/C)myristic acid, or myo(/sup 3/H)inositol, each was incorporated into the phosphatase near the carboxyl terminus, showing that these components, which are found in other phosphatidylinositol membrane-linked proteins, are also present in placental alkaline phosphatase.

  16. Protein phosphatase 2A in stretch-induced endothelial cell proliferation

    NASA Technical Reports Server (NTRS)

    Murata, K.; Mills, I.; Sumpio, B. E.

    1996-01-01

    We previously proposed that activation of protein kinase C is a key mechanism for control of cell growth enhanced by cyclic strain [Rosales and Sumpio (1992): Surgery 112:459-466]. Here we examined protein phosphatase 1 and 2A activity in bovine aortic endothelial cells exposed to cyclic stain. Protein phosphatase 2A activity in the cytosol was decreased by 36.1% in response to cyclic strain for 60 min, whereas the activity in the membrane did not change. Treatment with low concentration (0.1 nM) of okadaic acid enhanced proliferation of both static and stretched endothelial cells in 10% fetal bovine serum. These data suggest that protein phosphatase 2A acts as a growth suppressor and cyclic strain may enhance cellular proliferation by inhibiting protein phosphatase 2A as well as stimulating protein kinase C.

  17. A Subtle Alternative Splicing Event Gives Rise to a Widely Expressed Human RNase k Isoform

    PubMed Central

    Karousis, Evangelos D.; Sideris, Diamantis C.

    2014-01-01

    Subtle alternative splicing leads to the formation of RNA variants lacking or including a small number of nucleotides. To date, the impact of subtle alternative splicing phenomena on protein biosynthesis has been studied in frame-preserving incidents. On the contrary, mRNA isoforms derived from frame-shifting events were poorly studied and generally characterized as non-coding. This work provides evidence for a frame-shifting subtle alternative splicing event which results in the production of a novel protein isoform. We applied a combined molecular approach for the cloning and expression analysis of a human RNase κ transcript (RNase κ-02) which lacks four consecutive bases compared to the previously isolated RNase κ isoform. RNase κ-02 mRNA is expressed in all human cell lines tested end encodes the synthesis of a 134-amino-acid protein by utilizing an alternative initiation codon. The expression of RNase κ-02 in the cytoplasm of human cells was verified by Western blot and immunofluorescence analysis using a specific polyclonal antibody developed on the basis of the amino-acid sequence difference between the two protein isoforms. The results presented here show that subtle changes during mRNA splicing can lead to the expression of significantly altered protein isoforms. PMID:24797913

  18. Partial purification and characterization of an enzyme from pea nuclei with protein tyrosine phosphatase activity.

    PubMed

    Guo, Y L; Roux, S J

    1995-01-01

    A pea (Pisum sativum L.) nuclear enzyme with protein tyrosine phosphatase activity has been partially purified and characterized. The enzyme has a molecular mass of 90 kD as judged by molecular sieve column chromatography and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Like animal protein tyrosine phosphatases it can be inhibited by low concentrations of molybdate and vanadate. It is also inhibited by heparin and spermine but not by either the acid phosphatase inhibitors citrate and tartrate or the protein serine/threonine phosphatase inhibitor okadaic acid. The enzyme does not require Ca2+, Mg2+, or Mn2+ for its activity but is stimulated by ethylenediaminetetraacetate and by ethyleneglycolbis(beta-aminoethyl ether)-N,N'-tetraacetic acid. It dephosphorylates phosphotyrosine residues on the four different 32P-tyrosine-labeled peptides tested but not the phosphoserine/threonine residues on casein and histone. Like some animal protein tyrosine phosphatases, it has a variable pH optimum depending on the substrate used: the optimum is 5.5 when the substrate is [32P]tyrosine-labeled lysozyme, but it is 7.0 when the substrate is [32P]tyrosine-labeled poly(glutamic acid, tyrosine). It has a Km of 4 microM when the lysozyme protein is used as a substrate.

  19. Absolute Quantification of Endogenous Ras Isoform Abundance

    PubMed Central

    Mageean, Craig J.; Griffiths, John R.; Smith, Duncan L.; Clague, Michael J.; Prior, Ian A.

    2015-01-01

    Ras proteins are important signalling hubs situated near the top of networks controlling cell proliferation, differentiation and survival. Three almost identical isoforms, HRAS, KRAS and NRAS, are ubiquitously expressed yet have differing biological and oncogenic properties. In order to help understand the relative biological contributions of each isoform we have optimised a quantitative proteomics method for accurately measuring Ras isoform protein copy number per cell. The use of isotopic protein standards together with selected reaction monitoring for diagnostic peptides is sensitive, robust and suitable for application to sub-milligram quantities of lysates. We find that in a panel of isogenic SW48 colorectal cancer cells, endogenous Ras proteins are highly abundant with ≥260,000 total Ras protein copies per cell and the rank order of isoform abundance is KRAS>NRAS≥HRAS. A subset of oncogenic KRAS mutants exhibit increased total cellular Ras abundance and altered the ratio of mutant versus wild type KRAS protein. These data and methodology are significant because Ras protein copy number is required to parameterise models of signalling networks and informs interpretation of isoform-specific Ras functional data. PMID:26560143

  20. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    PubMed Central

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  1. Isoform of castor oleate hydroxylase

    DOEpatents

    Shanklin, John; Whittle, Edward J.

    2005-12-13

    The present invention relates to oleate hydroxylase genes, proteins, and methods of their use. The present invention also relates to methods of using the oleate hydroxylase genes and proteins, including in their expression in transgenic organisms and in the production of hydroxylated fatty acids.

  2. Characterization of the major phosphofructokinase-dephosphorylating protein phosphatases from Ascaris suum muscle.

    PubMed

    Daum, G; Schmid, B; MacKintosh, C; Cohen, P; Hofer, H W

    1992-07-13

    In contrast to the mammalian enzyme, PFK from the nematode Ascaris suum is activated following phosphorylation (Daum et al. (1986) Biochem. Biophys. Res. Commun. 139, 215-221) catalyzed by a cAMP-dependent protein kinase (Thalhofer et al. (1988) J. Biol. Chem. 263, 952-957). In the present report, we describe the characterization of the major PFK dephosphorylating phosphatases from Ascaris muscle. Two of these phosphatases exhibit apparent M(r) values of 174,000 and 126,000, respectively, and are dissociated to active 33 kDa proteins by ethanol precipitation. Denaturing electrophoresis of each of the enzyme preparations showed two bands of M(r) 33,000 and 63,000. The enzymes are classified as type 2A phosphatases according to their inhibition by subnanomolar concentrations of okadaic acid, the lack of inhibition by heat-stable phosphatase inhibitors 1 and 2, and their preference for the alpha- rather than for the beta-subunit of phosphorylase kinase. Like other type 2A phosphatases, they exhibit broad substrate specificities, are activated by divalent cations and polycations, and inhibited by fluoride, inorganic phosphate and adenine nucleotides. In addition, we have found that PFK is also dephosphorylated by an unusual protein phosphatase. This exhibits kinetic properties similar to type 2A protein phosphatases, but has a distinctly lower sensitivity towards inhibition by okadaic acid (IC50 approx. 20 nM). Partial purification of the enzyme provided evidence that it is composed of a 30 kDa catalytic subunit and probably two other subunits (molecular masses 66 and 72 kDa). The dephosphorylation of PFK by protein phosphatases is strongly inhibited by heparin. This effect, however, is substrate-specific and does not occur with Ascaris phosphorylase a. PMID:1321672

  3. Functional characterization of two members of histidine phosphatase superfamily in Mycobacterium tuberculosis

    PubMed Central

    2013-01-01

    Background Functional characterization of genes in important pathogenic bacteria such as Mycobacterium tuberculosis is imperative. Rv2135c, which was originally annotated as conserved hypothetical, has been found to be associated with membrane protein fractions of H37Rv strain. The gene appears to contain histidine phosphatase motif common to both cofactor-dependent phosphoglycerate mutases and acid phosphatases in the histidine phosphatase superfamily. The functions of many of the members of this superfamily are annotated based only on similarity to known proteins using automatic annotation systems, which can be erroneous. In addition, the motif at the N-terminal of Rv2135c is ‘RHA’ unlike ‘RHG’ found in most members of histidine phosphatase superfamily. These necessitate the need for its experimental characterization. The crystal structure of Rv0489, another member of the histidine phosphatase superfamily in M. tuberculosis, has been previously reported. However, its biochemical characteristics remain unknown. In this study, Rv2135c and Rv0489 from M. tuberculosis were cloned and expressed in Escherichia coli with 6 histidine residues tagged at the C terminal. Results Characterization of the purified recombinant proteins revealed that Rv0489 possesses phosphoglycerate mutase activity while Rv2135c does not. However Rv2135c has an acid phosphatase activity with optimal pH of 5.8. Kinetic parameters of Rv2135c and Rv0489 are studied, confirming that Rv0489 is a cofactor dependent phosphoglycerate mutase of M. tuberculosis. Additional characterization showed that Rv2135c exists as a tetramer while Rv0489 as a dimer in solution. Conclusion Most of the proteins orthologous to Rv2135c in other bacteria are annotated as phosphoglycerate mutases or hypothetical proteins. It is possible that they are actually phosphatases. Experimental characterization of a sufficiently large number of bacterial histidine phosphatases will increase the accuracy of the automatic

  4. Regulation of synthesis and oxidation of fatty acids by adiponectin receptors (AdipoR1/R2) and insulin receptor substrate isoforms (IRS-1/-2) of the liver in a nonalcoholic steatohepatitis animal model.

    PubMed

    Matsunami, Tokio; Sato, Yukita; Ariga, Satomi; Sato, Takuya; Shimomura, Toshiko; Kashimura, Haruka; Hasegawa, Yuki; Yukawa, Masayoshi

    2011-06-01

    Nonalcoholic steatohepatitis (NASH) is one of the most frequent causes of abnormal liver dysfunction associated with synthesis and oxidation of fatty acids. Adiponectin receptors (AdipoR1/R2) and insulin receptor substrates (IRS-1/-2) are known as modulators of these fatty acid metabolisms in the liver; however, the regulatory roles of these receptors in the synthesis and oxidation of fatty acids are unclear in the liver of NASH. In this study, we examined the roles of hepatic AdipoR1/R2 and IRS-1/-2 in NASH using an animal model. After feeding a high-fat and high-cholesterol diet to obese fa/fa Zucker rats for 8 weeks, rats showed fatty liver spontaneously with inflammation and fibrosis that are characteristic of NASH. The expression levels of AdipoR1/R2 and IRS-2 were significantly decreased, whereas IRS-1 was significantly increased, in NASH. As a result of the decrease of AdipoR1/R2 expression, the messenger RNA expression levels of genes located downstream of AdipoR1/R2, adenosine monophosphate-activated protein kinase α1/α2, which inhibits fatty acid synthesis, and peroxisome proliferator-activated receptor α, which activates fatty acid oxidation, also decreased. Expression level of sterol regulatory element binding protein-1c was found to be elevated, suggesting the up-regulation of IRS-1, and resulted in increased fatty acid synthesis. Furthermore, increase of forkhead box protein A2 expression was observed, which might be associated with the down-regulation of IRS-2, facilitating fatty acid oxidation. Taken together, increased synthesis and oxidation of fatty acids by up- or down-regulation of AdipoR or IRS may contribute to the progression of NASH. Thus, AdipoR and IRS might be crucially important regulators for the synthesis and oxidation of fatty acids in the liver of NASH.

  5. Conformational difference in human IgG2 disulfide isoforms revealed by hydrogen/deuterium exchange mass spectrometry.

    PubMed

    Zhang, Aming; Fang, Jing; Chou, Robert Y-T; Bondarenko, Pavel V; Zhang, Zhongqi

    2015-03-17

    Both recombinant and natural human IgG2 antibodies have several different disulfide bond isoforms, which possess different global structures, thermal stabilities, and biological activities. A detailed mapping of the structural difference among IgG2 disulfide isoforms, however, has not been established. In this work, we employed hydrogen/deuterium exchange mass spectrometry to study the conformation of three major IgG2 disulfide isoforms known as IgG2-B, IgG2-A1, and IgG2-A2 in two recombinant human IgG2 monoclonal antibodies. By comparing the protection factors between amino acid residues in isoforms B and A1 (the classical form), we successfully identified several local regions in which the IgG2-B isoform showed more solvent protection than the IgG2-A1 isoform. On the basis of three-dimensional structural models of IgG2, these identified regions were located on the Fab domains, close to the hinge, centered on the side where the two Fab arms faced each other in spatial proximity. We speculated that in the more solvent-protected B isoform, the two Fab arms were brought into contact by the nonclassical disulfide bonds, resulting in a more compact global structure. Loss of Fab domain flexibility in IgG2-B could limit its ability to access cell-surface epitopes, leading to reduced antigen binding potency. The A2 isoform was previously found to have disulfide linkages similar to those of the classical A1 isoform, but with different biophysical behaviors. Our data indicated that, compared to IgG2-A1, IgG2-A2 had less solvent protection in some heavy-chain Fab regions close the hinge, suggesting that the A2 isoform had more flexible Fab domains. PMID:25730439

  6. Functional characterization of the human 1-acylglycerol-3-phosphate-O-acyltransferase isoform 10/glycerol-3-phosphate acyltransferase isoform 3

    PubMed Central

    Sukumaran, Suja; Barnes, Robert I; Garg, Abhimanyu; Agarwal, Anil K

    2016-01-01

    Synthesis of phospholipids can occur de novo or via remodeling of the existing phospholipids. Synthesis of triglycerides, a form of energy storage in cells, is an end product of these pathways. Several 1-acylglycerol-3-phosphate-O-acyltransferases (AGPATs) acylate lysophosphatidic acid (LPA) at the sn-2 (carbon 2) position to produce phosphatidic acid (PA). These enzymes are involved in phospholipids and triglyceride synthesis through an evolutionary conserved process involving serial acylations of glycerol-3-phosphate. We cloned a cDNA predicted to be an AGPAT isoform (AGPAT10). This cDNA has been recently identified as glycerol-3-phosphate-O-acyltransferase isoform 3 (GPAT3). When this AGPAT10/GPAT3 cDNA was expressed in Chinese Hamster ovary cells, the protein product localizes to the endoplasmic reticulum. In vitro enzymatic activity using lysates of human embryonic kidney-293 cells infected with recombinant AGPAT10/GPAT3 adenovirus show that the protein has a robust AGPAT activity with an apparent Vmax of 2 nmol/min per mg protein, but lacks GPAT enzymatic activity. This AGPAT has similar substrate specificities for LPA and acyl-CoA as shown for another known isoform, AGPAT2. We further show that when overexpressed in human Huh-7 cells depleted of endogenous AGPAT activity by sh-RNA-AGPAT2-lentivirus, the protein again demonstrates AGPAT activity. These observations strongly suggest that the cDNA previously identified as GPAT3 has AGPAT activity and thus we prefer to identify this clone as AGPAT10 as well. PMID:19318427

  7. TPIP: a novel phosphoinositide 3-phosphatase.

    PubMed Central

    Walker, S M; Downes, C P; Leslie, N R

    2001-01-01

    The PTEN (phosphatase and tensin homologue deleted on chromosome 10) tumour suppressor is a phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)] 3-phosphatase that plays a critical role in regulating many cellular processes by antagonizing the phosphoinositide 3-kinase signalling pathway. We have identified and characterized two human homologues of PTEN, which differ with respect to their subcellular localization and lipid phosphatase activities. The previously cloned, but uncharacterized, TPTE (transmembrane phosphatase with tensin homology) is localized to the plasma membrane, but lacks detectable phosphoinositide 3-phosphatase activity. TPIP (TPTE and PTEN homologous inositol lipid phosphatase) is a novel phosphatase that occurs in several differentially spliced forms of which two, TPIP alpha and TPIP beta, appear to be functionally distinct. TPIP alpha displays similar phosphoinositide 3-phosphatase activity compared with PTEN against PtdIns(3,4,5)P(3), PtdIns(3,5)P(2), PtdIns(3,4)P(2) and PtdIns(3)P, has N-terminal transmembrane domains and appears to be localized on the endoplasmic reticulum. This is unusual as most signalling-lipid-metabolizing enzymes are not integral membrane proteins. TPIP beta, however, lacks detectable phosphatase activity and is cytosolic. TPIP has a wider tissue distribution than the testis-specific TPTE, with specific splice variants being expressed in testis, brain and stomach. TPTE and TPIP do not appear to be functional orthologues of the Golgi-localized and more distantly related murine PTEN2. We suggest that TPIP alpha plays a role in regulating phosphoinositide signalling on the endoplasmic reticulum, and might also represent a tumour suppressor and functional homologue of PTEN in some tissues. PMID:11716755

  8. Human HDAC isoform selectivity achieved via exploitation of the acetate release channel with structurally unique small molecule inhibitors

    SciTech Connect

    Whitehead, Lewis; Dobler, Markus R.; Radetich, Branko; Zhu, Yanyi; Atadja, Peter W.; Claiborne, Tavina; Grob, Jonathan E.; McRiner, Andrew; Pancost, Margaret R.; Patnaik, Anup; Shao, Wenlin; Shultz, Michael; Tichkule, Ritesh; Tommasi, Ruben A.; Vash, Brian; Wang, Ping; Stams, Travis

    2013-11-20

    Herein we report the discovery of a family of novel yet simple, amino-acid derived class I HDAC inhibitors that demonstrate isoform selectivity via access to the internal acetate release channel. Isoform selectivity criteria is discussed on the basis of X-ray crystallography and molecular modeling of these novel inhibitors bound to HDAC8, potentially revealing insights into the mechanism of enzymatic function through novel structural features revealed at the atomic level.

  9. Altered serum levels of the osteoclast-specific TRACP 5b isoform in Chinese children undergoing orthodontic treatment.

    PubMed

    Tang, Stephanie J; Meikle, Murray C; MacLaine, James K; Wong, Ricky W K; Rabie, Bakr M

    2013-04-01

    Orthodontic tooth movement is dependent upon the ability of mechanical forces to induce remodelling activity within the tooth-supporting alveolar bone. In view of the importance of bone resorption in mediating tooth movement, the aim of this study was to establish if alterations in the osteoclast-specific bone marker tartrate-resistant acid phosphatase (TRACP) 5b could be detected in the sera of patients undergoing orthodontic treatment. The sample consisted of 14 subjects (10 girls and 4 boys) aged 10.5-16.5 years (mean 12.6 years) being treated with fixed appliances and a distalizing headgear. Venous blood samples (3 ml) were collected from the cubital vein pre-treatment (T0) and 2, 4, and 6 months into treatment (T1-T3); serum TRACP 5b levels were quantified using a solid-phase immunofixed enzyme activity assay. When the data were pooled and treated cross-sectionally, a significant increase in immunoreactive TRACP 5b was detected at 2 months (T1) indicating increased bone resorptive activity. However, when the serum profiles of individual patients were recorded longitudinally, a very different pattern emerged, not all patients following the same trend. This is not surprising given normal anatomical variation and differences between the patients in age, gender, and mechanotherapy. Designed as a pilot to demonstrate 'proof of principle', this study is the first to show that the TRACP 5b isoform can be detected in the sera of patients undergoing orthodontic treatment. It further suggests that serum bone marker measurements offer a simple and minimally invasive method for correlating the findings of laboratory and animal experimentation with clinical data.

  10. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  11. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  12. Ratiometric electrochemical detection of alkaline phosphatase.

    PubMed

    Goggins, Sean; Naz, Christophe; Marsh, Barrie J; Frost, Christopher G

    2015-01-11

    A novel ferrocene-derived substrate for the ratiometric electrochemical detection of alkaline phosphatase (ALP) was designed and synthesised. It was demonstrated to be an excellent electrochemical substrate for the ALP-labelled enzyme-linked immunosorbent assay (ELISA).

  13. Uncoupling of 3'-phosphatase and 5'-kinase functions in budding yeast. Characterization of Saccharomyces cerevisiae DNA 3'-phosphatase (TPP1).

    PubMed

    Vance, J R; Wilson, T E

    2001-05-01

    Polynucleotide kinase is a bifunctional enzyme containing both DNA 3'-phosphatase and 5'-kinase activities seemingly suited to the coupled repair of single-strand nicks in which the phosphate has remained with the 3'-base. We show that the yeast Saccharomyces cerevisiae is able to repair transformed dephosphorylated linear plasmids by non-homologous end joining with considerable efficiency independently of the end-processing polymerase Pol4p. Homology searches and biochemical assays did not reveal a 5'-kinase that would account for this repair, however. Instead, open reading frame YMR156C (here named TPP1) is shown to encode only a polynucleotide kinase-type 3'-phosphatase. Tpp1p bears extensive similarity to the ancient L-2-halo-acid dehalogenase and DDDD phosphohydrolase superfamilies, but is specific for double-stranded DNA. It is present at high levels in cell extracts in a functional form and so does not represent a pseudogene. Moreover, the phosphatase-only nature of this gene is shared by Saccharomyces mikatae YMR156C and Arabidopsis thaliana K15M2.3. Repair of 3'-phosphate and 5'-hydroxyl lesions is thus uncoupled in budding yeast as compared with metazoans. Repair of transformed dephosphorylated plasmids, and 5'-hydroxyl blocking lesions more generally, likely proceeds by a cycle of base removal and resynthesis.

  14. Multiple Functions of the Eya Phosphotyrosine Phosphatase

    PubMed Central

    2015-01-01

    Eyes absent (Eya), a protein conserved from plants to humans and best characterized as a transcriptional coactivator, is also the prototype for a novel class of eukaryotic aspartyl protein tyrosine phosphatases. This minireview discusses recent breakthroughs in elucidating the substrates and cellular events regulated by Eya's tyrosine phosphatase function and highlights some of the complexities, new questions, and surprises that have emerged from efforts to understand how Eya's unusual multifunctionality influences developmental regulation and signaling. PMID:26667035

  15. Genome-wide promoter binding profiling of protein phosphatase-1 and its major nuclear targeting subunits.

    PubMed

    Verheyen, Toon; Görnemann, Janina; Verbinnen, Iris; Boens, Shannah; Beullens, Monique; Van Eynde, Aleyde; Bollen, Mathieu

    2015-07-13

    Protein phosphatase-1 (PP1) is a key regulator of transcription and is targeted to promoter regions via associated proteins. However, the chromatin binding sites of PP1 have never been studied in a systematic and genome-wide manner. Methylation-based DamID profiling in HeLa cells has enabled us to map hundreds of promoter binding sites of PP1 and three of its major nuclear interactors, i.e. RepoMan, NIPP1 and PNUTS. Our data reveal that the α, β and γ isoforms of PP1 largely bind to distinct subsets of promoters and can also be differentiated by their promoter binding pattern. PP1β emerged as the major promoter-associated isoform and shows an overlapping binding profile with PNUTS at dozens of active promoters. Surprisingly, most promoter binding sites of PP1 are not shared with RepoMan, NIPP1 or PNUTS, hinting at the existence of additional, largely unidentified chromatin-targeting subunits. We also found that PP1 is not required for the global chromatin targeting of RepoMan, NIPP1 and PNUTS, but alters the promoter binding specificity of NIPP1. Our data disclose an unexpected specificity and complexity in the promoter binding of PP1 isoforms and their chromatin-targeting subunits. PMID:25990731

  16. Probing the Surface of Human Carbonic Anhydrase for Clues towards the Design of Isoform Specific Inhibitors

    PubMed Central

    Pinard, Melissa A.

    2015-01-01

    The alpha carbonic anhydrases (α-CAs) are a group of structurally related zinc metalloenzymes that catalyze the reversible hydration of CO2 to HCO3−. Humans have 15 different α-CAs with numerous physiological roles and expression patterns. Of these, 12 are catalytically active, and abnormal expression and activities are linked with various diseases, including glaucoma and cancer. Hence there is a need for CA isoform specific inhibitors to avoid off-target CA inhibition, but due to the high amino acid conservation of the active site and surrounding regions between each enzyme, this has proven difficult. However, residues towards the exit of the active site are variable and can be exploited to design isoform selective inhibitors. Here we discuss and characterize this region of “selective drug targetability” and how these observations can be utilized to develop isoform selective CA inhibitors. PMID:25811028

  17. The Ki-67 and RepoMan mitotic phosphatases assemble via an identical, yet novel mechanism

    PubMed Central

    Kumar, Ganesan Senthil; Gokhan, Ezgi; De Munter, Sofie; Bollen, Mathieu; Vagnarelli, Paola; Peti, Wolfgang; Page, Rebecca

    2016-01-01

    Ki-67 and RepoMan have key roles during mitotic exit. Previously, we showed that Ki-67 organizes the mitotic chromosome periphery and recruits protein phosphatase 1 (PP1) to chromatin at anaphase onset, in a similar manner as RepoMan (Booth et al., 2014). Here we show how Ki-67 and RepoMan form mitotic exit phosphatases by recruiting PP1, how they distinguish between distinct PP1 isoforms and how the assembly of these two holoenzymes are dynamically regulated by Aurora B kinase during mitosis. Unexpectedly, our data also reveal that Ki-67 and RepoMan bind PP1 using an identical, yet novel mechanism, interacting with a PP1 pocket that is engaged only by these two PP1 regulators. These findings not only show how two distinct mitotic exit phosphatases are recruited to their substrates, but also provide immediate opportunities for the design of novel cancer therapeutics that selectively target the Ki-67:PP1 and RepoMan:PP1 holoenzymes. DOI: http://dx.doi.org/10.7554/eLife.16539.001 PMID:27572260

  18. The Ki-67 and RepoMan mitotic phosphatases assemble via an identical, yet novel mechanism.

    PubMed

    Kumar, Ganesan Senthil; Gokhan, Ezgi; De Munter, Sofie; Bollen, Mathieu; Vagnarelli, Paola; Peti, Wolfgang; Page, Rebecca

    2016-01-01

    Ki-67 and RepoMan have key roles during mitotic exit. Previously, we showed that Ki-67 organizes the mitotic chromosome periphery and recruits protein phosphatase 1 (PP1) to chromatin at anaphase onset, in a similar manner as RepoMan (Booth et al., 2014). Here we show how Ki-67 and RepoMan form mitotic exit phosphatases by recruiting PP1, how they distinguish between distinct PP1 isoforms and how the assembly of these two holoenzymes are dynamically regulated by Aurora B kinase during mitosis. Unexpectedly, our data also reveal that Ki-67 and RepoMan bind PP1 using an identical, yet novel mechanism, interacting with a PP1 pocket that is engaged only by these two PP1 regulators. These findings not only show how two distinct mitotic exit phosphatases are recruited to their substrates, but also provide immediate opportunities for the design of novel cancer therapeutics that selectively target the Ki-67:PP1 and RepoMan:PP1 holoenzymes. PMID:27572260

  19. Protein-tyrosine phosphatases: biological function, structural characteristics, and mechanism of catalysis.

    PubMed

    Zhang, Z Y

    1998-01-01

    The protein-tyrosine phosphatases (PTPases) superfamily consists of tyrosine-specific phosphatases, dual specificity phosphatases, and the low-molecular-weight phosphatases. They are modulators of signal transduction pathways that regulate numerous cell functions. Malfunction of PTPases have been linked to a number of oncogenic and metabolic disease states, and PTPases are also employed by microbes and viruses for pathogenicity. There is little sequence similarity among the three subfamilies of phosphatases. Yet, three-dimensional structural data show that they share similar conserved structural elements, namely, the phosphate-binding loop encompassing the PTPase signature motif (H/V)C(X)5R(S/T) and an essential general acid/base Asp residue on a surface loop. Biochemical experiments demonstrate that phosphatases in the PTPase superfamily utilize a common mechanism for catalysis going through a covalent thiophosphate intermediate that involves the nucleophilic Cys residue in the PTPase signature motif. The transition states for phosphoenzyme intermediate formation and hydrolysis are dissociative in nature and are similar to those of the solution phosphate monoester reactions. One strategy used by these phosphatases for transition state stabilization is to neutralize the developing negative charge in the leaving group. A conformational change that is restricted to the movement of a flexible loop occurs during the catalytic cycle of the PTPases. However, the relationship between loop dynamics and enzyme catalysis remains to be established. The nature and identity of the rate-limiting step in the PTPase catalyzed reaction requires further investigation and may be dependent on the specific experimental conditions such as temperature, pH, buffer, and substrate used. In-depth kinetic and structural analysis of a representative number of phosphatases from each group of the PTPase superfamily will most likely continue to yield insightful mechanistic information that may be

  20. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis.

    PubMed

    Ramesh, M; Bharatam, Prasad V

    2012-02-01

    Three dimensional pharmacophoric maps were generated for each isoforms of CYP2C9, CYP2D6 and CYP3A4 separately using independent training sets consist of highly potent substrates (seven substrates for each isoform). HipHop module of CATALYST software was used in the generation of pharmacophore models. The best pharmacophore model was chosen out of the several models on the basis of (i) highest ranking score, (ii) better fit value among training set, (iii) capability to screen substrates from data set and (iv) efficiency to identify the isoform specificity. The individual pharmacophore models (CYP2C9-hypo1, CYP2D6-hypo1 and CYP3A4-hypo1) are characterized by the pharmacophoric features XZDH, RPZH and XYZHH for the CYP2C9, CYP2D6 and CYP3A4 respectively. Each of the chosen models was validated by using data sets of CYP substrates. This comparative study of CYP substrates demonstrates the importance of acidic character along with HBD and HBAl features for CYP2C9, basic character with ring aromatic features for CYP2D6 and hydrophobic features for CYP3A4. Acidity, basicity and hydrophobicity features arising from the functional groups of the substrates are also responsible for demonstrating CYP isoform specificity. Hence, these chemical features are incorporated in the decision tree along with pharmacophore maps. Finally, a decision tree based on chemical features and pharmacophore features was generated to identify the isoform specificity of novel query molecule toward the three isoforms. PMID:21562823

  1. CYP isoform specificity toward drug metabolism: analysis using common feature hypothesis.

    PubMed

    Ramesh, M; Bharatam, Prasad V

    2012-02-01

    Three dimensional pharmacophoric maps were generated for each isoforms of CYP2C9, CYP2D6 and CYP3A4 separately using independent training sets consist of highly potent substrates (seven substrates for each isoform). HipHop module of CATALYST software was used in the generation of pharmacophore models. The best pharmacophore model was chosen out of the several models on the basis of (i) highest ranking score, (ii) better fit value among training set, (iii) capability to screen substrates from data set and (iv) efficiency to identify the isoform specificity. The individual pharmacophore models (CYP2C9-hypo1, CYP2D6-hypo1 and CYP3A4-hypo1) are characterized by the pharmacophoric features XZDH, RPZH and XYZHH for the CYP2C9, CYP2D6 and CYP3A4 respectively. Each of the chosen models was validated by using data sets of CYP substrates. This comparative study of CYP substrates demonstrates the importance of acidic character along with HBD and HBAl features for CYP2C9, basic character with ring aromatic features for CYP2D6 and hydrophobic features for CYP3A4. Acidity, basicity and hydrophobicity features arising from the functional groups of the substrates are also responsible for demonstrating CYP isoform specificity. Hence, these chemical features are incorporated in the decision tree along with pharmacophore maps. Finally, a decision tree based on chemical features and pharmacophore features was generated to identify the isoform specificity of novel query molecule toward the three isoforms.

  2. Assessing the Biological Activity of the Glucan Phosphatase Laforin.

    PubMed

    Romá-Mateo, Carlos; Raththagala, Madushi; Gentry, Mathew S; Sanz, Pascual

    2016-01-01

    Glucan phosphatases are a recently discovered family of enzymes that dephosphorylate either starch or glycogen and are essential for proper starch metabolism in plants and glycogen metabolism in humans. Mutations in the gene encoding the only human glucan phosphatase, laforin, result in the fatal, neurodegenerative, epilepsy known as Lafora disease. Here, we describe phosphatase assays to assess both generic laforin phosphatase activity and laforin's unique glycogen phosphatase activity. PMID:27514803

  3. Role of cysteines in mammalian VDAC isoforms' function.

    PubMed

    De Pinto, Vito; Reina, Simona; Gupta, Ankit; Messina, Angela; Mahalakshmi, Radhakrishnan

    2016-08-01

    In this mini-review, we analyze the influence of cysteines in the structure and activity of mitochondrial outer membrane mammalian VDAC isoforms. The three VDAC isoforms show conserved sequences, similar structures and the same gene organization. The meaning of three proteins encoded in different chromosomes must thus be searched for subtle differences at the amino acid level. Among others, cysteine content is noticeable. In humans, VDAC1 has 2, VDAC2 has 9 and VDAC3 has 6 cysteines. Recent works have shown that, at variance from VDAC1, VDAC2 and VDAC3 exhibit cysteines predicted to protrude towards the intermembrane space, making them a preferred target for oxidation by ROS. Mass spectrometry in VDAC3 revealed that a disulfide bridge can be formed and other cysteine oxidations are also detectable. Both VDAC2 and VDAC3 cysteines were mutagenized to highlight their role in vitro and in complementation assays in Δporin1 yeast. Chemico-physical techniques revealed an important function of cysteines in the structural stabilization of the pore. In conclusion, the works available on VDAC cysteines support the notion that the three proteins are paralogs with a similar pore-function and slightly different, but important, ancillary biological functions. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi. PMID:26947058

  4. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.

    PubMed

    Zhang, Xiao-Ning; Mount, Stephen M

    2009-07-01

    The serine-arginine-rich (SR) proteins constitute a conserved family of pre-mRNA splicing factors. In Arabidopsis (Arabidopsis thaliana), they are encoded by 19 genes, most of which are themselves alternatively spliced. In the case of SR45, the use of alternative 3' splice sites 21 nucleotides apart generates two alternatively spliced isoforms. Isoform 1 (SR45.1) has an insertion relative to isoform 2 (SR45.2) that replaces a single arginine with eight amino acids (TSPQRKTG). The biological implications of SR45 alternative splicing have been unclear. A previously described loss-of-function mutant affecting both isoforms, sr45-1, shows several developmental defects, including defects in petal development and root growth. We found that the SR45 promoter is highly active in regions with actively growing and dividing cells. We also tested the ability of each SR45 isoform to complement the sr45-1 mutant by overexpression of isoform-specific green fluorescent protein (GFP) fusion proteins. As expected, transgenic plants overexpressing either isoform displayed both nuclear speckles and GFP fluorescence throughout the nucleoplasm. We found that SR45.1-GFP complements the flower petal phenotype, but not the root growth phenotype. Conversely, SR45.2-GFP complements root growth but not floral morphology. Mutation of a predicted phosphorylation site within the alternatively spliced segment, SR45.1-S219A-GFP, does not affect complementation. However, a double mutation affecting both serine-219 and the adjacent threonine-218 (SR45.1-T218A + S219A-GFP) behaves like isoform 2, complementing the root but not the floral phenotype. In conclusion, our study provides evidence that the two alternatively spliced isoforms of SR45 have distinct biological functions. PMID:19403727

  5. Isoform switch of pyruvate kinase M1 indeed occurs but not to pyruvate kinase M2 in human tumorigenesis.

    PubMed

    Zhan, Cheng; Yan, Li; Wang, Lin; Ma, Jun; Jiang, Wei; Zhang, Yongxing; Shi, Yu; Wang, Qun

    2015-01-01

    Muscle type of pyruvate kinase (PKM) is one of the key mediators of the Warburg effect and tumor metabolism. Due to alternative splicing, there are at least 12 known isoforms of the PKM gene, of which PKM1 and PKM2 are two major isoforms with only a 23 amino acid sequenced difference but quite different characteristics and functions. It was previously thought the isoform switch from PKM1 to PKM2 resulted in high PKM2 expression in tumors, providing a great advantage to tumor cells. However, this traditional view was challenged by two recent studies; one study claimed that this isoform switch does not occur during the Warburg effect; the other study asserted that the isoform switch is tissue-specific. Here, we re-analyzed the RNA sequencing data of 25 types of human tumors from The Cancer Genome Atlas Data Portal, and confirmed that PKM2 was the major isoform in the tumors and was highly elevated in addition to the entire PKM gene. We further demonstrated that the expression level of PKM1 significantly declined even though there was substantially increased expression of the entire PKM gene. The proportion of PKM1 in total transcript variants also significantly declined in tumors but the proportion of PKM2 did not change accordingly. Therefore, we conclude that the isoform switch of PKM1 does indeed occur, but it switches to other isoforms rather than PKM2. Considering the change in the expression levels of PKM1, PKM2 and the entire PKM gene, we propose that the upregulation of PKM2 is primarily due to elevated transcriptional levels of the entire PKM gene, instead of the isoform switch.

  6. Muscular tissues of the squid Doryteuthis pealeii express identical myosin heavy chain isoforms: an alternative mechanism for tuning contractile speed.

    PubMed

    Shaffer, Justin F; Kier, William M

    2012-01-15

    The speed of muscle contraction is largely controlled at the sarcomere level by the ATPase activity of the motor protein myosin. Differences in amino acid sequence in catalytically important regions of myosin yield different myosin isoforms with varying ATPase activities and resulting differences in cross-bridge cycling rates and interfilamentary sliding velocities. Modulation of whole-muscle performance by changes in myosin isoform ATPase activity is regarded as a universal mechanism to tune contractile properties, especially in vertebrate muscles. Invertebrates such as squid, however, may exhibit an alternative mechanism to tune contractile properties that is based on differences in muscle ultrastructure, including variable myofilament and sarcomere lengths. To determine definitively whether contractile properties of squid muscles are regulated via different myosin isoforms (i.e. different ATPase activities), the nucleotide and amino acid sequences of the myosin heavy chain from the squid Doryteuthis pealeii were determined from the mantle, arm, tentacle, fin and funnel retractor musculature. We identified three myosin heavy chain isoforms in squid muscular tissues, with differences arising at surface loop 1 and the carboxy terminus. All three isoforms were detected in all five tissues studied. These results suggest that the muscular tissues of D. pealeii express identical myosin isoforms, and it is likely that differences in muscle ultrastructure, not myosin ATPase activity, represent the most important mechanism for tuning contractile speeds.

  7. Glutamine synthetase isoforms in nitrogen-fixing soybean nodules: distinct oligomeric structures and thiol-based regulation.

    PubMed

    Masalkar, Pintu D; Roberts, Daniel M

    2015-01-16

    Legume root nodule glutamine synthetase (GS) catalyzes the assimilation of ammonia produced by nitrogen fixation. Two GS isoform subtypes (GS1β and GS1γ) are present in soybean nodules. GS1γ isoforms differ from GS1β isoforms in terms of their susceptibility to reversible inhibition by intersubunit disulfide bond formation between C159 and C92 at the shared active site at subunit interfaces. Although nodule GS enzymes share 86% amino acid sequence identity, analytical ultracentrifugation experiments showed that GS1γ is a dodecamer, whereas the GS1β is a decamer. It is proposed that this difference contributes to the differential thiol sensitivity of each isoform, and that GS1γ1 may be a target of thiol-based regulation.

  8. Saccharomyces cerevisiae protein phosphatase 2A performs an essential cellular function and is encoded by two genes.

    PubMed Central

    Sneddon, A A; Cohen, P T; Stark, M J

    1990-01-01

    Two genes (PPH21 and PPH22) encoding the yeast homologues of protein serine-threonine phosphatase 2A have been cloned from a Saccharomyces cerevisiae genomic library using a rabbit protein phosphatase 2A cDNA as a hybridization probe. The PPH genes are genetically linked on chromosome IV and are predicted to encode polypeptides each with 74% amino acid sequence identity to rabbit type 2A protein phosphatase, indicating once again the extraordinarily high degree of sequence conservation shown by protein-phosphatases from different species. The two PPH genes show less than 10% amino acid sequence divergence from each other and while disruption of either PPH gene alone is without any major effect, the double disruption is lethal. This indicates that protein phosphatase 2A activity is an essential cellular function in yeast. Measurement of type 2A protein phosphatase activity in yeast strains lacking one or other of the genes indicates that they account for most, if not all, protein phosphatase 2A activity in the cell. Images Fig. 5. PMID:2176150

  9. Phosphate solubilization potential and phosphatase activity of rhizospheric trichoderma spp.

    PubMed

    Anil, Kapri; Lakshmi, Tewari

    2010-07-01

    Trichoderma sp., a well known biological control agent against several phytopathogens, was tested for its phosphate (P) solubilizing potential. Fourteen strains of Trichoderma sp. were isolated from the forest tree rhizospheres of pinus, deodar, bamboo, guava and oak on Trichoderma selective medium. The isolates were tested for their in-vitro P-solubilizing potential using National Botanical Research Institute Phosphate (NBRIP) broth containing tricalcium phosphate (TCP) as the sole P source, and compared with a standard culture of T. harzianum. All the cultures were found to solubilize TCP but with varying potential. The isolate DRT-1 showed maximum amount of soluble phosphate (404.07 εg.ml(-1)), followed by the standard culture of T. harzianum (386.42 εg.ml(-1)) after 96 h of incubation at 30±1(0)C. Extra-cellular acid and alkaline phosphatases of the fungus were induced only in the presence of insoluble phosphorus source (TCP). High extra-cellular alkaline phosphatase activity was recorded for the isolate DRT-1 (14.50 U.ml(-1)) followed by the standard culture (13.41 U.ml(-1)) at 72h. The cultures showed much lesser acid phosphatase activities. Under glasshouse conditions, Trichoderma sp. inoculation increased chickpea (Cicer arietinum) growth parameters including shoot length, root length, fresh and dry weight of shoot as well as roots, in P-deficient soil containing only bound phosphate (TCP). Shoot weight was increased by 23% and 33% by inoculation with the isolate DRT-1 in the soil amended with 100 and 200 mg TCP kg(-1) soil, respectively, after 60 d of sowing. The study explores high P-solubilizing potential of Trichoderma sp., which can be exploited for the solubilization of fixed phosphates present in the soil, thereby enhancing soil fertility and plant growth.

  10. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.

    PubMed

    Majumder, Shyam Prasad; Das, Amal Chandra

    2016-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil.

  11. Phosphate-solubility and phosphatase activity in Gangetic alluvial soil as influenced by organophosphate insecticide residues.

    PubMed

    Majumder, Shyam Prasad; Das, Amal Chandra

    2016-04-01

    An experiment was conducted under laboratory conditions to investigate the effect of four organophosphate insecticides, viz. monocrotophos, profenophos, quinalphos and triazophos at their field application rates (0.75, 1.0, 0.5 and 0.6 kg a.i.ha(-1), respectively), on the growth and activities of phosphate solubilizing microorganisms in relation to availability of insoluble phosphates in the Gangetic alluvial soil of West Bengal, India. The proliferation of phosphate solubilizing microorganisms was highly induced with profenophos (38.3%), while monocrotophos exerted maximum stimulation (20.8%) towards the solubility of insoluble phosphates in soil. The phosphatase activities of the soil (both acid phosphatase and alkaline phosphatase) were significantly increased due to the incorporation of the insecticides in general, and the augmentation was more pronounced with quinalphos (43.1%) followed by profenophos (27.6%) for acid phosphatase, and with monocrotophos (25.2%) followed by profenophos (16.1%) for alkaline phosphatase activity in soil. The total phosphorus was highly retained by triazophos (19.9%) followed by monocrotophos (16.5%), while incorporation of triazophos and quinalphos manifested greater availability of water soluble phosphorus in soil. PMID:26720809

  12. Bacterial-like PPP protein phosphatases

    PubMed Central

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, “bacterial-like” enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the “eukaryotic-like” phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research. PMID:24675170

  13. Seleninate in Place of Phosphate: Irreversible Inhibition of Protein Tyrosine Phosphatases

    SciTech Connect

    Abdo, Mohannad; Liu, Sijiu; Zhou, Bo; Walls, Chad D.; Wu, Li; Knapp, Spencer; Zhang, Zhong-Yin

    2009-02-16

    A homotyrosine based seleninic acid irreversibly inhibits protein tyrosine phosphatases by forming a covalent selenosulfide linkage with the active site cysteine sulfhydryl specifically. The details of the event are revealed by model synthetic studies and by kinetic, mass spectrometric, and crystallographic characterization.

  14. Highly sensitive detection of alkaline phosphatase using molecular beacon probes based on enzymatic polymerization.

    PubMed

    Ma, Changbei

    2012-06-01

    We have developed a new methodology for highly sensitive alkaline phosphatase assay using molecular beacon probes. No incubation step is needed to obtain a limit of detection for ALP of 2×10(-16) M. Furthermore, ALP inhibition by the inhibitor okadaic acid is shown, demonstrating the potential for high-throughput screening for inhibitors.

  15. Lysyl oxidase isoforms in gastric cancer.

    PubMed

    Añazco, Carolina; Delgado-López, Fernando; Araya, Paulina; González, Ileana; Morales, Erik; Pérez-Castro, Ramón; Romero, Jacqueline; Rojas, Armando

    2016-09-01

    Gastric cancer (GC) is the fifth most frequent cancer in the world and shows the highest incidence in Latin America and Asia. An increasing amount of evidence demonstrates that lysyl oxidase isoforms, a group of extracellular matrix crosslinking enzymes, should be considered as potential biomarkers and therapeutic targets in GC. In this review, we focus on the expression levels of lysyl oxidase isoforms, its functions and the clinical implications in GC. Finding novel proteins related to the processing of these extracellular matrix enzymes might be helpful in the design of new therapies, which, in combination with classic pharmacology, could be used to delay the progress of this aggressive cancer and offer a wider temporal window for clinical intervention. PMID:27564724

  16. Inhibition of sucrose phosphatase by sucrose

    PubMed Central

    Hawker, J. S.

    1967-01-01

    1. Partially purified sucrose phosphatase from immature stem tissue of sugarcane is inhibited by sucrose. The enzyme was also inhibited by maltose, melezitose and 6-kestose but not by eight other sugars, including glucose and fructose. 2. The relative effectiveness of sucrose, maltose and melezitose as inhibitors is different for sucrose phosphatase from different plants. 3. The inhibition of the sugar-cane enzyme by sucrose was shown to be partially competitive. The Ki for sucrose is about 10mm. 4. Melezitose is also a partially competitive inhibitor of the enzyme but the inhibition by maltose is probably mixed. 5. The possibility that sucrose controls both the rate of accumulation of sucrose in stems of sugar-cane and sucrose synthesis in leaves by inhibiting sucrose phosphatase is discussed. PMID:4291490

  17. A specific sucrose phosphatase from plant tissues

    PubMed Central

    Hawker, J. S.; Hatch, M. D.

    1966-01-01

    1. A phosphatase that hydrolyses sucrose phosphate (phosphorylated at the 6-position of fructose) was isolated from sugar-cane stem and carrot roots. With partially purified preparations fructose 6-phosphate, glucose 6-phosphate, fructose 1-phosphate, glucose 1-phosphate and fructose 1,6-diphosphate are hydrolysed at between 0 and 2% of the rate for sucrose phosphate. 2. The activity of the enzyme is increased fourfold by the addition of Mg2+ ions and inhibited by EDTA, fluoride, inorganic phosphate, pyrophosphate, Ca2+ and Mn2+ ions. Sucrose (50mm) reduces activity by 60%. 3. The enzyme exhibits maximum activity between pH6·4 and 6·7. The Michaelis constant for sucrose phosphate is between 0·13 and 0·17mm. 4. At least some of the specific phosphatase is associated with particles having the sedimentation properties of mitochondria. 5. A similar phosphatase appears to be present in several other plant species. PMID:4290548

  18. Structural Basis of Dscam Isoform Specificity

    SciTech Connect

    Meijers,R.; Puettmann-Holgado, R.; Skiniotis, G.; Liu, J.; Walz, T.; Wang, J.; Schmucker, D.

    2007-01-01

    The Dscam gene gives rise to thousands of diverse cell surface receptors1 thought to provide homophilic and heterophilic recognition specificity for neuronal wiring and immune responses. Mutually exclusive splicing allows for the generation of sequence variability in three immunoglobulin ecto-domains, D2, D3 and D7. We report X-ray structures of the amino-terminal four immunoglobulin domains (D1-D4) of two distinct Dscam isoforms. The structures reveal a horseshoe configuration, with variable residues of D2 and D3 constituting two independent surface epitopes on either side of the receptor. Both isoforms engage in homo-dimerization coupling variable domain D2 with D2, and D3 with D3. These interactions involve symmetric, antiparallel pairing of identical peptide segments from epitope I that are unique to each isoform. Structure-guided mutagenesis and swapping of peptide segments confirm that epitope I, but not epitope II, confers homophilic binding specificity of full-length Dscam receptors. Phylogenetic analysis shows strong selection of matching peptide sequences only for epitope I. We propose that peptide complementarity of variable residues in epitope I of Dscam is essential for homophilic binding specificity.

  19. Promoting Uranium Immobilization by the Activities of Microbial Phosphatases

    SciTech Connect

    Martinez, Robert J.; Beazley, Melanie J.; Wilson, Jarad J.; Taillefert, Martial; Sobecky, Patricia A.

    2005-04-05

    The overall goal of this project is to examine the role of nonspecific phosphohydrolases present in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of radionuclides through the production of uranium [U(VI)] phosphate precipitates. Specifically, we hypothesize that the precipitation of U(VI) phosphate minerals may be promoted through the microbial release and/or accumulation of PO{sub 4}{sup 3-}. During this phase of the project we have been conducting assays to determine the effects of pH, inorganic anions and organic ligands on U(VI) mineral formation and precipitation when FRC bacterial isolates were grown in simulated groundwater medium. The molecular characterization of FRC isolates has also been undertaken during this phase of the project. Analysis of a subset of gram-positive FRC isolates cultured from FRC soils (Areas 1, 2 and 3) and background sediments have indicated a higher percentage of isolates exhibiting phosphatase phenotypes (i.e., in particular those surmised to be PO{sub 4}{sup 3-}-irrepressible) relative to isolates from the reference site. A high percentage of strains that exhibited such putatively PO{sub 4}{sup 3-}-irrepressible phosphatase phenotypes were also resistant to the heavy metals lead and cadmium. Previous work on FRC strains, including Arthrobacter, Bacillus and Rahnella spp., has demonstrated differences in tolerance to U(VI) toxicity (200 {micro}M) in the absence of organophosphate substrates. For example, Arthrobacter spp. exhibited the greatest tolerance to U(VI) while the Rahnella spp. have been shown to facilitate the precipitation of U(VI) from solution and the Bacillus spp. demonstrate the greatest sensitivity to acidic conditions and high concentrations of U(VI). PCR-based detection of FRC strains are being conducted to determine if non-specific acid phosphatases of the known molecular classes [i.e., classes A, B and C] are present in these FRC isolates. Additionally, these

  20. Identification of calmodulin isoform-specific binding peptides from a phage-displayed random 22-mer peptide library.

    PubMed

    Choi, Ji Young; Lee, Sang Hyoung; Park, Chan Young; Heo, Won Do; Kim, Jong Cheol; Kim, Min Chul; Chung, Woo Sik; Moon, Byeong Cheol; Cheong, Yong Hwa; Kim, Cha Young; Yoo, Jae Hyuk; Koo, Ja Choon; Ok, Hyun Mi; Chi, Seung-Wook; Ryu, Seong-Eon; Lee, Sang Yeol; Lim, Chae Oh; Cho, Moo Je

    2002-06-14

    Plants express numerous calmodulin (CaM) isoforms that exhibit differential activation or inhibition of CaM-dependent enzymes in vitro; however, their specificities toward target enzyme/protein binding are uncertain. A random peptide library displaying a 22-mer peptide on a bacteriophage surface was constructed to screen peptides that specifically bind to plant CaM isoforms (soybean calmodulin (ScaM)-1 and SCaM-4 were used in this study) in a Ca2+-dependent manner. The deduced amino acid sequence analyses of the respective 80 phage clones that were independently isolated via affinity panning revealed that SCaM isoforms require distinct amino acid sequences for optimal binding. SCaM-1-binding peptides conform to a 1-5-10 ((FILVW)XXX(FILV) XXXX(FILVW)) motif (where X denotes any amino acid), whereas SCaM-4-binding peptide sequences conform to a 1-8-14 ((FILVW)XXXXXX(FAILVW)XXXXX(FILVW)) motif. These motifs are classified based on the positions of conserved hydrophobic residues. To examine their binding properties further, two representative peptides from each of the SCaM isoform-binding sequences were synthesized and analyzed via gel mobility shift assays, Trp fluorescent spectra analyses, and phosphodiesterase competitive inhibition experiments. The results of these studies suggest that SCaM isoforms possess different binding sequences for optimal target interaction, which therefore may provide a molecular basis for CaM isoform-specific function in plants. Furthermore, the isolated peptide sequences may serve not only as useful CaM-binding sequence references but also as potential reagents for studying CaM isoform-specific function in vivo.

  1. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network

    PubMed Central

    Moriyama, Tetsuji; Tanaka, Shu; Nakayama, Yasumune; Fukumoto, Masahiro; Tsujimura, Kenji; Yamada, Kohji; Bamba, Takeshi; Yoneda, Yoshihiro; Fukusaki, Eiichiro; Oka, Masahiro

    2016-01-01

    Transaldolase 1 (TALDO1) is a rate-limiting enzyme involved in the pentose phosphate pathway, which is traditionally thought to occur in the cytoplasm. In this study, we found that the gene TALDO1 has two translational initiation sites, generating two isoforms that differ by the presence of the first 10 N-terminal amino acids. Notably, the long and short isoforms were differentially localised to the cell nucleus and cytoplasm, respectively. Pull-down and in vitro transport assays showed that the long isoform, unlike the short one, binds to importin α and is actively transported into the nucleus in an importin α/β-dependent manner, demonstrating that the 10 N-terminal amino acids are essential for its nuclear localisation. Additionally, we found that these two isoforms can form homo- and/or hetero-dimers with different localisation dynamics. A metabolite analysis revealed that the subcellular localisation of TALDO1 is not crucial for its activity in the pentose phosphate pathway. However, the expression of these two isoforms differentially affected the levels of various metabolites, including components of the tricarboxylic acid cycle, nucleotides, and sugars. These results demonstrate that the nucleocytoplasmic distribution of TALDO1, modulated via alternative translational initiation and dimer formation, plays an important role in a wide range of metabolic networks. PMID:27703206

  2. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    SciTech Connect

    Tsedensodnom, Orkhontuya; Koga, Hironori; Rosenberg, Stephen A.; Nambotin, Sarah B.; Carroll, John J.; Wands, Jack R.; Kim, Miran

    2011-04-15

    The Wnt/{beta}-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/{beta}-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms from four HCC cell lines. Functional analysis following transfection and expression in HCC cells revealed distinct effects on the phenotype. The TCF-4J isoform expression produced striking features of malignant transformation characterized by high cell proliferation rate, migration and colony formation even though its transcriptional activity was low. In contrast, the TCF-4K isoform displayed low TCF transcriptional activity; cell proliferation rate and colony formation were reduced as well. Interestingly, TCF-4J and TCF-4K differed by only five amino acids (the SxxSS motif). Thus, these studies suggest that conserved splicing motifs may have a major influence on the transcriptional activity and functional properties of TCF-4 isoforms and alter the characteristics of the malignant phenotype.

  3. Identification of a Novel C-Terminal Truncated WT1 Isoform with Antagonistic Effects against Major WT1 Isoforms

    PubMed Central

    Tatsumi, Naoya; Hojo, Nozomi; Sakamoto, Hiroyuki; Inaba, Rena; Moriguchi, Nahoko; Matsuno, Keiko; Fukuda, Mari; Matsumura, Akihide; Hayashi, Seiji; Morimoto, Soyoko; Nakata, Jun; Fujiki, Fumihiro; Nishida, Sumiyuki; Nakajima, Hiroko; Tsuboi, Akihiro; Oka, Yoshihiro; Hosen, Naoki; Sugiyama, Haruo; Oji, Yusuke

    2015-01-01

    The Wilms’ tumor gene WT1 consists of 10 exons and encodes a zinc finger transcription factor. There are four major WT1 isoforms resulting from alternative splicing at two sites, exon 5 (17AA) and exon 9 (KTS). All major WT1 isoforms are overexpressed in leukemia and solid tumors and play oncogenic roles such as inhibition of apoptosis, and promotion of cell proliferation, migration and invasion. In the present study, a novel alternatively spliced WT1 isoform that had an extended exon 4 (designated as exon 4a) with an additional 153 bp (designated as 4a sequence) at the 3’ end was identified and designated as an Ex4a(+)WT1 isoform. The insertion of exon 4a resulted in the introduction of premature translational stop codons in the reading frame in exon 4a and production of C-terminal truncated WT1 proteins lacking zinc finger DNA-binding domain. Overexpr