Science.gov

Sample records for acid phosphoric acid

  1. Phosphoric acid

    Integrated Risk Information System (IRIS)

    Phosphoric acid ; CASRN 7664 - 38 - 2 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  2. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-08-17

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  3. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOEpatents

    Sopchak, David A.; Morse, Jeffrey D.; Upadhye, Ravindra S.; Kotovsky, Jack; Graff, Robert T.

    2010-12-21

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  4. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is...

  5. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  6. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  7. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  8. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  9. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  10. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food... GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance is generally recognized as safe when used...

  11. 21 CFR 582.1073 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Phosphoric acid. 582.1073 Section 582.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  12. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  13. 21 CFR 182.1073 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Phosphoric acid. 182.1073 Section 182.1073 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Substances § 182.1073 Phosphoric acid. (a) Product. Phosphoric acid. (b) Conditions of use. This substance...

  14. Colorimetric determination of phosphoric acid leakage for phosphoric acid-doped polybenzimidazole membrane fuel cell applications

    NASA Astrophysics Data System (ADS)

    Jeong, Yeon Hun; Jung, Ju Hae; Choi, Euiji; Han, Seungyoon; Begley, Alina Irene; Yoo, Sung Jong; Jang, Jong Hyun; Kim, Hyoung-Juhn; Nam, Suk Woo; Lee, Kwan-Young; Kim, Jin Young

    2015-12-01

    A simple and precise colorimetric method for analyzing phosphoric acid leakage in phosphoric acid-doped polybenzimidazole membrane fuel cells is described. The developed method is based on the colorimetric determination from a rapid formation of molybdenum blue color by the reduction reaction of molybdate ions in the presence of phosphoric acid in the acidic medium. The color is stable up to a few months and can be used for the sensitive and accurate detection of phosphoric acid electrolyte which is discharged from the fuel cell during operation. Tests with a wide concentration range of phosphate compounds showed that it permits determination of phosphoric acid up to nanogram quantities. The developed detection method assists monitoring the phosphoric acid contents and developing stable operation strategies of fuel cells.

  15. Acid distribution in phosphoric acid fuel cells

    SciTech Connect

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  16. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1982-01-01

    Platinum sintering on phosphoric acid fuel cell cathodes is discussed. The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst dispersed on a conductive carbon support to minimize both cathode polarization and fabrication costs. During operation, however, the active surface area of these electrodes decreases, which in turn leads to decreased cell performance. This loss of active surface area is a major factor in the degradation of fuel cell performance over time.

  17. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  18. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  19. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-ENG); or (c) Made of a stainless steel that resists corrosion...

  20. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion...

  1. 46 CFR 153.558 - Special requirements for phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for phosphoric acid. 153.558... Equipment Special Requirements § 153.558 Special requirements for phosphoric acid. A phosphoric acid... phosphoric acid tanks by the Commandant (CG-522); or (c) Made of a stainless steel that resists corrosion...

  2. Corrosion free phosphoric acid fuel cell

    DOEpatents

    Wright, Maynard K.

    1990-01-01

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  3. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  4. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  5. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  6. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  7. 40 CFR 721.10431 - Phosphoric acid esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid esters (generic). 721... Substances § 721.10431 Phosphoric acid esters (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as phosphoric acid esters (PMNs...

  8. 40 CFR 721.10685 - Phosphoric acid, mixed esters (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed esters (generic... Specific Chemical Substances § 721.10685 Phosphoric acid, mixed esters (generic). (a) Chemical substance... phosphoric acid, mixed esters (PMN P-13-170) is subject to reporting under this section for the...

  9. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  10. 40 CFR 721.6097 - Phosphoric acid derivative (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid derivative (generic... Specific Chemical Substances § 721.6097 Phosphoric acid derivative (generic name). (a) Chemical substance... phosphoric acid derivative (PMN P-95-284) is subject to reporting under this section for the significant...

  11. Phosphoric Acid Fuel Cell Technology Status

    NASA Technical Reports Server (NTRS)

    Simons, S. N.; King, R. B.; Prokopius, P. R.

    1981-01-01

    A review of the current phosphoric acid fuel cell system technology development efforts is presented both for multimegawatt systems for electric utility applications and for multikilowatt systems for on-site integrated energy system applications. Improving fuel cell performance, reducing cost, and increasing durability are the technology drivers at this time. Electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, and fuel selection are discussed.

  12. Stabilizing platinum in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Remick, R. J.

    1981-01-01

    The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.

  13. World wide IFC phosphoric acid fuel cell implementation

    SciTech Connect

    King, J.M. Jr

    1996-04-01

    International Fuel Cells, a subsidary of United technologies Corporation, is engaged in research and development of all types of fuel cell technologies and currently manufactures alkaline fuel cell power plants for the U.S. manned space flight program and natural gas fueled stationary power plants using phosphoric acid fuel cells. This paper describes the phosphoric acid fuel cell power plants.

  14. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, Gary A [Kennewick, WA; Smith, Jeffrey W [Lancaster, OH; Ihle, Nathan C [Walla Walla, WA

    1984-01-01

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH).sub.2 to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with portland cement to form concrete.

  15. Method for incorporating radioactive phosphoric acid solutions in concrete

    DOEpatents

    Wolf, G.A.; Smith, J.W.; Ihle, N.C.

    1982-07-08

    A method for incorporating radioactive phosphoric acid solutions in concrete is described wherein the phosphoric acid is reacted with Ca(OH)/sub 2/ to form a precipitate of hydroxyapatite and the hydroxyapatite is mixed with Portland cement to form concrete.

  16. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  17. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  18. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  19. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  20. 40 CFR 422.50 - Applicability; description of the defluorinated phosphoric acid subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... defluorinated phosphoric acid subcategory. 422.50 Section 422.50 Protection of Environment ENVIRONMENTAL... Defluorinated Phosphoric Acid Subcategory § 422.50 Applicability; description of the defluorinated phosphoric... defluorination of phosphoric acid. Wet process phosphoric acid is dehydrated by application of heat and...

  1. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty acid polyamine condensate, phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric...

  2. Proton Conductivity in Phosphoric Acid: The Role of Quantum Effects

    NASA Astrophysics Data System (ADS)

    Heres, M.; Wang, Y.; Griffin, P. J.; Gainaru, C.; Sokolov, A. P.

    2016-10-01

    Phosphoric acid has one of the highest intrinsic proton conductivities of any known liquids, and the mechanism of this exceptional conductivity remains a puzzle. Our detailed experimental studies discovered a strong isotope effect in the conductivity of phosphoric acids caused by (i) a strong isotope shift of the glass transition temperature and (ii) a significant reduction of the energy barrier by zero-point quantum fluctuations. These results suggest that the high conductivity in phosphoric acids is caused by a very efficient proton transfer mechanism, which is strongly assisted by quantum effects.

  3. Synthesis of novel acid electrolytes for phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Adcock, James L.

    1988-11-01

    A 40 millimole per hour scale aerosol direct fluorination reactor was constructed. F-Methyl F-4-methoxybutanoate and F-4-methoxybutanoyl fluoride were synthesized by aerosol direct fluorination of methyl 4-methoxybutanoate. Basic hydrolysis of the perfluorinated derivatives produce sodium F-4 methoxybutanoate which was pyrolyzed to F-3-methoxy-1-propene. Purification and shipment of 33 grams of F-3-methoxy-1-propene followed. Syntheses by analogous methods allowed production and shipment of 5 grams of F-3-ethoxy 1-propene, 18 grams of F-3-(2-methoxy.ethoxy) 1-propene, and 37 grams of F-3,3-dimethyl 1-butene. Eighteen grams of F-2,2-dimethyl 1-chloropropane was produced directly and shipped. As suggested by other contractors, 5 grams of F-3-methoxy 1-iodopropane, and 5 grams of F-3-(2-methoxy.ethoxy) 1-iodopropane were produced by converting the respective precursor acid sodium salts produced for olefin synthesis to the silver salts and pyrolyzing them with iodine. Each of these compounds was prepared for the first time by the aerosol fluorination process during the course of the contract. These samples were provided to other Gas Research Institute (GRI) contractors for synthesis of perfluorinated sulfur (VI) and phosphorous (V) acids.

  4. Phosphoric acid fuel cell platinum use study

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.

    1983-01-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  5. New applications for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stickles, R. P.; Breuer, C. T.

    1983-01-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on site total energy systems, industrial cogeneration, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting are power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  6. New applications for phosphoric acid fuel cells

    SciTech Connect

    Stickles, R.P.; Breuer, C.T.

    1983-11-01

    New applications for phosphoric acid fuel cells were identified and evaluated. Candidates considered included all possibilities except grid connected electric utility applications, on-site total energy systems, industrial co-generation, opportunistic use of waste hydrogen, space and military applications, and applications smaller than 10 kW. Applications identified were screened, with the most promising subjected to technical and economic evaluation using a fuel cell and conventional power system data base developed in the study. The most promising applications appear to be the underground mine locomotive and the railroad locomotive. Also interesting is power for robotic submersibles and Arctic villages. The mine locomotive is particularly attractive since it is expected that the fuel cell could command a very high price and still be competitive with the conventionally used battery system. The railroad locomotive's attractiveness results from the (smaller) premium price which the fuel cell could command over the conventional diesel electric system based on its superior fuel efficiency, and on the large size of this market and the accompanying opportunities for manufacturing economy.

  7. Phosphoric acid fuel cell platinum use study

    NASA Astrophysics Data System (ADS)

    Lundblad, H. L.

    1983-05-01

    The U.S. Department of Energy is promoting the private development of phosphoric acid fuel cell (PAFC) power plants for terrestrial applications. Current PAFC technology utilizes platinum as catalysts in the power electrodes. The possible repercussions that the platinum demand of PAFC power plant commercialization will have on the worldwide supply and price of platinum from the outset of commercialization to the year 2000 are investigated. The platinum demand of PAFC commercialization is estimated by developing forecasts of platinum use per unit of generating capacity and penetration of PAFC power plants into the electric generation market. The ability of the platinum supply market to meet future demands is gauged by assessing the size of platinum reserves and the capability of platinum producers to extract, refine and market sufficient quantities of these reserves. The size and timing of platinum price shifts induced by the added demand of PAFC commercialization are investigated by several analytical methods. Estimates of these price shifts are then used to calculate the subsequent effects on PAFC power plant capital costs.

  8. Solid-state actinide acid phosphites from phosphorous acid melts

    SciTech Connect

    Oh, George N.; Burns, Peter C.

    2014-07-01

    The reaction of UO{sub 3} and H{sub 3}PO{sub 3} at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH{sub 2}(CH{sub 3}){sub 2})[UO{sub 2}(HPO{sub 2}OH)(HPO{sub 3})]. This compound crystallizes in space group P2{sub 1}/n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO{sub 2}OH){sub 4} (An=U, Th) and of the mixed acid phosphite–phosphite U(HPO{sub 3})(HPO{sub 2}OH){sub 2}(H{sub 2}O)·2(H{sub 2}O). α- and β-An(HPO{sub 2}OH){sub 4} crystallize in space groups C2/c and P2{sub 1}/n, respectively, and comprise a three-dimensional network of An{sup 4+} cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO{sub 3})(HPO{sub 2}OH){sub 2}(H{sub 2}O){sub 2}·(H{sub 2}O) crystallizes in a layered structure in space group Pbca that is composed of An{sup 4+} cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized. - Graphical abstract: Reaction of UO{sub 3} and H{sub 3}PO{sub 3} at 100 °C and subsequent reaction with DMF produces crystals of (NH{sub 2}(CH{sub 3}){sub 2})[UO{sub 2}(HPO{sub 2}OH)(HPO{sub 3})] with a layered structure. Reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup and further solution-state reactions result in the crystallization of the actinide acid phosphites An(HPO{sub 2}OH){sub 4} (An=U, Th), with a three-dimensional network structure, and the mixed acid phosphite

  9. Solid-state actinide acid phosphites from phosphorous acid melts

    NASA Astrophysics Data System (ADS)

    Oh, George N.; Burns, Peter C.

    2014-07-01

    The reaction of UO3 and H3PO3 at 100 °C and subsequent reaction with dimethylformamide (DMF) produces crystals of the compound (NH2(CH3)2)[UO2(HPO2OH)(HPO3)]. This compound crystallizes in space group P21/n and consists of layers of uranyl pentagonal bipyramids that share equatorial vertices with phosphite units, separated by dimethylammonium. In contrast, the reaction of phosphorous acid and actinide oxides at 210 °C produces a viscous syrup. Subsequent dilution in solvents and use of standard solution-state methods results in the crystallization of two polymorphs of the actinide acid phosphites An(HPO2OH)4 (An=U, Th) and of the mixed acid phosphite-phosphite U(HPO3)(HPO2OH)2(H2O)·2(H2O). α- and β-An(HPO2OH)4 crystallize in space groups C2/c and P21/n, respectively, and comprise a three-dimensional network of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphite units, whereas U(HPO3)(HPO2OH)2(H2O)2·(H2O) crystallizes in a layered structure in space group Pbca that is composed of An4+ cations in square antiprismatic coordination corner-sharing with protonated phosphites and water ligands. We discuss our findings in using solid inorganic reagents to produce a solution-workable precursor from which solid-state compounds can be crystallized.

  10. Ionic conductivity and glass transition of phosphoric acids

    SciTech Connect

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan; Fan, Fei; Zawodzinski, Thomas; Sokolov, Alexei P

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  11. Materials characterization of phosphoric acid fuel cell system

    NASA Technical Reports Server (NTRS)

    Venkatesh, Srinivasan

    1986-01-01

    The component materials used in the fabrication of phosphoric acid fuel cells (PAFC) must have mechanical, chemical, and electrochemical stability to withstand the moderately high temperature (200 C) and pressure (500 kPa) and highly oxidizing nature of phosphoric acid. This study discusses the chemical and structural stability, performance and corrosion data on certain catalysts, catalyst supports, and electrode support materials used in PAFC applications.

  12. Ionic Ckonductivity and Glass Transition of Phosphoric Acids

    SciTech Connect

    Wang, Yangyang; Lane, Nathan A; Sun, Che-Nan; Fan, Fei; Zawodzinski, Thomas; Sokolov, Alexei P

    2013-01-01

    Here we report the low-temperature dielectric and viscoelastic properties of phosphoric acids in the range of H2O:P2O5 1.5 5. Both dielectric and viscosity measurements allow us to determine the glass-transition temperatures of phosphoric acids. The obtained glass-transition temperatures are in good agreement with previous differential scanning calorimetric measurements. Moreover, our analysis reveals moderate decoupling of ionic conductivity from structural relaxation in the vicinity of the glass transition.

  13. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty acid polyamine condensate... New Uses for Specific Chemical Substances § 721.6200 Fatty acid polyamine condensate, phosphoric acid... substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  14. Technology development for phosphoric acid fuel cell powerplant (phase 2)

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    The status of technology for the manufacturing and testing of 1200 sq. cm cell materials, components, and stacks for on-site integrated energy systems is assessed. Topics covered include: (1) preparation of thin layers of silicon carbide; (2) definition and control schemes for volume changes in phosphoric acid fuel cells; (3) preparation of low resin content graphite phenolic resin composites; (4) chemical corrosion of graphite-phenolic resin composites in hot phosphoric acid; (5) analysis of electrical resistance of composite materials for fuel cells; and (6) fuel cell performance and testing.

  15. PROCESS FOR RECOVERING URANIUM FROM AQUEOUS PHOSPHORIC ACID LIQUORS

    DOEpatents

    Schmitt, J.M.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from aqueous solutions. An acidic aqueous solution containing uranium values is contacted with an organic phase comprising an organic diluent and the reaction product of phosphorous pentoxide and a substantially pure dialkylphosphoric acid. The uranium values are transferred to the organic phase even from aqueous solutions containing a high concentration of strong uranium complexing agents such as phosphate ions. (AEC)

  16. The first catalytic asymmetric thioacetalization by chiral phosphoric acid catalysis.

    PubMed

    Yu, Jin-Sheng; Wu, Wen-Biao; Zhou, Feng

    2016-02-21

    We report here the first catalytic asymmetric thioacetalization of salicylaldehyde and dithiol. Chiral phosphoric acid STRIP C5 is identified as a powerful catalyst for this reaction to afford various chiral dithioacetals in high to excellent yields and enantioselectivities under mild conditions. PMID:26810819

  17. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  18. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-522). (f) The requirements...

  19. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-ENG). (f) The requirements...

  20. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-ENG). (f) The requirements...

  1. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-ENG). (f) The requirements...

  2. 46 CFR 151.50-23 - Phosphoric acid.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-23 Phosphoric acid. (a) The term... transported in bulk cargo tanks except upon authorization by the Commandant (CG-522). (f) The requirements...

  3. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this...

  4. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  5. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  6. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  7. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts (PMN P-91-818) is subject to reporting under this...

  8. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  9. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  10. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  11. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  12. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  13. 40 CFR 180.1210 - Phosphorous acid; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Phosphorous acid; exemption from the... Exemptions From Tolerances § 180.1210 Phosphorous acid; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of phosphorous acid and...

  14. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified as fatty acid polyamine condensate, phosphate ester salts (PMNs P-90-1984 and...

  15. Methodology for detecting residual phosphoric acid in polybenzoxazole fibers.

    PubMed

    Park, Eun Su; Sieber, John; Guttman, Charles; Rice, Kirk; Flynn, Kathleen; Watson, Stephanie; Holmes, Gale

    2009-12-01

    Because of the premature failure of in-service soft-body armor containing the ballistic fiber poly[(benzo-[1,2-d:5,4-d']-benzoxazole-2,6-diyl)-1,4-phenylene] (PBO), the Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology (NIST) initiated a research program to investigate the reasons for this failure and to develop testing methodologies and protocols to ensure that these types of failures do not reoccur. In a report that focused on the stability of the benzoxazole ring that is characteristic of PBO fibers, Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41, 4105-4116, showed that the benzoxazole ring was susceptible to hydrolytic degradation under acid conditions. Because of the processing conditions for the fibers, it is suspected by many researchers that residual phosphoric acid may cause degradation of the benzoxazole ring resulting in a reduction of ballistic performance. Prior to this work, no definitive data have indicated the presence of phosphoric acid since the residual phosphorus is not easily extracted and the processed fibers are known to incorporate phosphorus containing processing aids. Methods to efficiently extract phosphorus from PBO are described in this article. Further, characterization determined that the majority of the extractable phosphorus in PBO was attributed to the octyldecyl phosphate processing aid with some phosphoric acid being detected. Analysis by matrix assisted laser desorption ionization of model PBO oligomers indicates that the nonextractable phosphorus is attached to the PBO polymer chain as a monoaryl phosphate ester. The response of model aryl phosphates to NaOH exposure indicates that monoaryl phosphate ester is stable to NaOH washes used in the manufacturing process to neutralize the phosphoric acid reaction medium and to extract residual phosphorus impurities. PMID:19899783

  16. Methodology for detecting residual phosphoric acid in polybenzoxazole fibers.

    PubMed

    Park, Eun Su; Sieber, John; Guttman, Charles; Rice, Kirk; Flynn, Kathleen; Watson, Stephanie; Holmes, Gale

    2009-12-01

    Because of the premature failure of in-service soft-body armor containing the ballistic fiber poly[(benzo-[1,2-d:5,4-d']-benzoxazole-2,6-diyl)-1,4-phenylene] (PBO), the Office of Law Enforcement Standards (OLES) at the National Institute of Standards and Technology (NIST) initiated a research program to investigate the reasons for this failure and to develop testing methodologies and protocols to ensure that these types of failures do not reoccur. In a report that focused on the stability of the benzoxazole ring that is characteristic of PBO fibers, Holmes, G. A.; Rice, K.; Snyder, C. R. J. Mater. Sci. 2006, 41, 4105-4116, showed that the benzoxazole ring was susceptible to hydrolytic degradation under acid conditions. Because of the processing conditions for the fibers, it is suspected by many researchers that residual phosphoric acid may cause degradation of the benzoxazole ring resulting in a reduction of ballistic performance. Prior to this work, no definitive data have indicated the presence of phosphoric acid since the residual phosphorus is not easily extracted and the processed fibers are known to incorporate phosphorus containing processing aids. Methods to efficiently extract phosphorus from PBO are described in this article. Further, characterization determined that the majority of the extractable phosphorus in PBO was attributed to the octyldecyl phosphate processing aid with some phosphoric acid being detected. Analysis by matrix assisted laser desorption ionization of model PBO oligomers indicates that the nonextractable phosphorus is attached to the PBO polymer chain as a monoaryl phosphate ester. The response of model aryl phosphates to NaOH exposure indicates that monoaryl phosphate ester is stable to NaOH washes used in the manufacturing process to neutralize the phosphoric acid reaction medium and to extract residual phosphorus impurities.

  17. Enzymatic saccharification coupling with polyester recovery from cotton-based waste textiles by phosphoric acid pretreatment.

    PubMed

    Shen, Fei; Xiao, Wenxiong; Lin, Lili; Yang, Gang; Zhang, Yanzong; Deng, Shihuai

    2013-02-01

    In order to recycle the cotton-based waste textiles, a novel process was designed for pretreating waste textiles with phosphoric acid to recover polyester and fermentable sugar. The effects of pretreatment conditions including, phosphoric acid concentration, pretreatment temperature, time, and ratio of textiles and phosphoric acid were thoroughly investigated. Results indicated the mentioned four factors had significant influences on sugar and polyester recovery. Almost complete polyester recovery was achieved by enhancing phosphoric acid concentration, temperature and pretreatment time or reducing the ratio of textiles and phosphoric acid. However, these behaviors decreased the sugar recovery seriously. 100% polyester recovery with a maximum sugar recovery of 79.2% was achieved at the optimized conditions (85% phosphoric acid, 50°C, 7h, and the ratio of 1:15). According to the technical and cost-benefit analysis, it was technically feasible and potentially profitable to recover polyester and sugar from waste textiles by phosphoric acid pretreatment.

  18. Integral edge seals for phosphoric acid fuel cells

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.; Dunyak, Thomas J.

    1992-01-01

    A phosphoric acid fuel cell having integral edge seals formed by an elastomer permeating an outer peripheral band contiguous with the outer peripheral edges of the cathode and anode assemblies and the matrix to form an integral edge seal which is reliable, easy to manufacture and has creep characteristics similar to the anode, cathode and matrix assemblies inboard of the seals to assure good electrical contact throughout the life of the fuel cell.

  19. Status of commercial phosphoric acid fuel cell system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  20. Cathode catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  1. Full scale phosphoric acid fuel cell stack technology development

    NASA Technical Reports Server (NTRS)

    Christner, L.; Faroque, M.

    1984-01-01

    The technology development for phosphoric acid fuel cells is summarized. The preparation, heat treatment, and characterization of carbon composites used as bipolar separator plates are described. Characterization included resistivity, porosity, and electrochemical corrosion. High density glassy carbon/graphite composites performed well in long-term fuel cell endurance tests. Platinum alloy cathode catalysts and low-loaded platinum electrodes were evaluated in 25 sq cm cells. Although the alloys displayed an initial improvement, some of this improvement diminished after a few thousand hours of testing. Low platinum loading (0.12 mg/sq cm anodes and 0.3 mg/sq cm cathodes) performed nearly as well as twice this loading. A selectively wetproofed anode backing paper was tested in a 5 by 15 inch three-cell stack. This material may provide for acid volume expansion, acid storage, and acid lateral distribution.

  2. Effects of phosphoric acid on the lead-acid battery reactions

    NASA Astrophysics Data System (ADS)

    Ikeda, Osamu; Iwakura, Chiaki; Yoneyama, Hiroshi; Tamura, Hideo

    1986-10-01

    The addition of a small amount of phosphoric acid to 5 M H2SO4 (commercial electrolyte of lead-acid batteries) results in various positive effects on the lead-acid battery reactions: (1) depression of the corrosion rate of the lead substrate through a preferential formation of alpha-PbO2 on the substrate surface; (2) retardation of hard sulfate formation or of deactivation of active materials; and (3) change in the crystal morphology of PbSO2 formed on the discharge of PbO2. Most of these effects results from chemisorption of phosphoric acid on PbSO4 crystals produced in the discharge process of PbO2.

  3. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    Component development has resulted in routine molding of 12 in. by 17 in. bipolar plates with 80 percent acceptance. A 5 C per hour post-cure heating cycle for these plates was found to give blister free materials. Lowering the resin in a bipolar plate content from 32 percent to 22 percent decreases the resistivity more than 50 percent. Evaluation of the corrosion resistance of Novolak and Resol resins at 185 C in phosphoric acid indicates a slow etch. aerosol modified phenolics, however, decompose rapidly. Estimates of acid loss by the use of analytical expressions known as Margule, van Laar, and Wilson equations were not satisfactory. Experimental evaluation of the P4O10 vapor concentration of 103 wt percent acid at 191 C provided a value of 2 ppm. This value is based on a single experiment.

  4. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...

  5. 40 CFR 721.6200 - Fatty acid polyamine condensate, phosphoric acid ester salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical..., phosphoric acid ester salts. 721.6200 Section 721.6200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...

  6. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  7. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  8. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  9. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  10. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance... acid, yttrium(3+) salt (1:1) (PMN P-04-153; CAS No. 13990-54-0) is subject to reporting under...

  11. Determination of polyfluoroalkyl phosphoric acid diesters, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, perfluoroalkyl carboxylic acids, and perfluoroalkane sulfonic acids in lake trout from the Great Lakes region.

    PubMed

    Guo, Rui; Reiner, Eric J; Bhavsar, Satyendra P; Helm, Paul A; Mabury, Scott A; Braekevelt, Eric; Tittlemier, Sheryl A

    2012-11-01

    A comprehensive method to extract perfluoroalkyl carboxylic acids, perfluoroalkane sulfonic acids, perfluoroalkyl phosphonic acids, perfluoroalkyl phosphinic acids, and polyfluoroalkyl phosphoric acid diesters simultaneously from fish samples has been developed. The recoveries of target compounds ranged from 78 % to 121 %. The new method was used to analyze lake trout (Salvelinus namaycush) from the Great Lakes region. The results showed that the total perfluoroalkane sulfonate concentrations ranged from 0.1 to 145 ng/g (wet weight) with perfluorooctane sulfonate (PFOS) as the dominant contaminant. Concentrations in fish between lakes were in the order of Lakes Ontario ≈ Erie > Huron > Superior ≈ Nipigon. The total perfluoroalkyl carboxylic acid concentrations ranged from 0.2 to 18.2 ng/g wet weight. The aggregate mean perfluorooctanoic acid (PFOA) concentration in fish across all lakes was 0.045 ± 0.023 ng/g. Mean concentrations of PFOA were not significantly different (p > 0.1) among the five lakes. Perfluoroalkyl phosphinic acids were detected in lake trout from Lake Ontario, Lake Erie, and Lake Huron with concentration ranging from non-detect (ND) to 0.032 ng/g. Polyfluoroalkyl phosphoric acid diesters were detected only in lake trout from Lake Huron, at levels similar to perfluorooctanoic acid.

  12. Nitric-phosphoric acid treatment of TRU wastes

    SciTech Connect

    Smith, J.R.; Pierce, R.A.; Sturcken, E.F.

    1993-09-30

    A general process is being developed for the treatment of solid TRU and hazardous organic waste. Experimental data indicates that 100 lb/hr of aliphatic organic (plastics) and 1,000 lb/hr of non-aliphatic organic compounds can be quantitatively oxidized in a 1,000 gallon reaction vessel. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allows oxidation at temperatures up to 200{degrees}C and is relatively non-corrosive on 304-L stainless steel, especially at room temperature. Many organic materials have been completely oxidized to CO{sub 2}, CO, and inorganic acids in a 0.1M HNO{sub 3}/14.8M H{sub 3}PO{sub 4} solution. Addition of 0.001M Pd{sup 2+} reduces the CO to near 1% of the released carbon gases. To accomplish complete oxidation the solution temperature must be maintained above 130--150{degrees}C. Organic materials quantitatively destroyed include neoprene, cellulose, EDTA, TBP, tartaric acid, and nitromethane. The oxidation is usually complete in a few hours for soluble organic materials. The oxidation rate for non-aliphatic organic solids is moderately fast and surface area dependent. Polyethylene is quantitatively oxidized in 1.0M HNO{sub 3}/13.8M H{sub 3}PO{sub 4} solution while contained in pressure vessels heated with microwave energy. This is probably due to the high concentrations of NO{sub 2}{center_dot} obtained in the reaction environment.

  13. Technology Development for Phosphoric Acid Fuel Cell Powerplant, Phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1980-01-01

    The technology development for materials, cells, and reformers for on site integrated energy systems is described. The carbonization of 25 cu cm, 350 cu cm, and 1200 cu cm cell test hardware was accomplished and the performance of 25 cu cm fuel cells was improved. Electrochemical corrosion rates of graphite/phenolic resin composites in phosphoric acid were determined. Three cells (5 in by 15 in stacks) were operated for longer than 7000 hours. Specified endurance stacks completed a total of 4000 hours. An electrically heated reformer was tested and is to provide hydrogen for 23 cell fuel cell stack.

  14. Catalyst and electrode research for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  15. Commercial phosphoric acid fuel cell system technology development

    NASA Technical Reports Server (NTRS)

    Prokopius, P. R.; Warshay, M.; Simons, S. N.; King, R. B.

    1979-01-01

    A review of the current commercial phosphoric acid fuel cell system technology development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are the technology drivers at this time. The longstanding barrier to the attainment of these goals, which manifests itself in a number of ways, has been materials. The differences in approach among the three major participants (United Technologies Corporation (UTC), Westinghouse Electric Corporation/Energy Research Corporation (ERC), and Engelhard Industries) and their unique technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy are discussed.

  16. Effects of ultrasonic fields in the phosphoric acid process

    NASA Technical Reports Server (NTRS)

    Kowalska, E.; Mizera, J.; Jakobiec, H.

    1974-01-01

    A process of apatite decomposition with sulfuric acid was studied under the influence of ultrasound in the phosphoric acid production process. The studies were carried out with and without ultrasonic fields in the reaction mixture, which resembled the mixing ratio used in technical production processes. Ultrasound with a frequency of 20 kHz and an intensity of 1 W/sq cm was used in the studies. A very favorable ultrasonic effect upon the degree of apatite decomposition was observed. The ultrasonic field affects the shape of byproduct gypsum crystals. In the H3PO4 production process without ultrasound, the byproduct gypsum crystallizes as long, thin needles which cause problems in filtration. In the trials involving the application of wound, gypsum crystallized in the form of small platelets possessing a favorable ratio of length to width.

  17. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Partial phosphoric acid esters of polyester resins... of polyester resins. Partial phosphoric acid esters of polyester resins identified in this section... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol...

  18. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  19. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  20. 40 CFR 721.6110 - Alkyldi(alkyloxyhydroxypropyl) derivative, phosphoric acid esters, potassium salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) derivative, phosphoric acid esters, potassium salts. (a) Chemical substance and significant new uses subject...) derivative, phosphoric acid esters, potassium salts. 721.6110 Section 721.6110 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF...

  1. Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment.

    PubMed

    Isroi; Ishola, Mofoluwake M; Millati, Ria; Syamsiah, Siti; Cahyanto, Muhammad N; Niklasson, Claes; Taherzadeh, Mohammad J

    2012-01-01

    Oil palm empty fruit bunch (OPEFB) was pretreated using white-rot fungus Pleurotus floridanus, phosphoric acid or their combination, and the results were evaluated based on the biomass components, and its structural and morphological changes. The carbohydrate losses after fungal, phosphoric acid, and fungal followed by phosphoric acid pretreatments were 7.89%, 35.65%, and 33.77%, respectively. The pretreatments changed the hydrogen bonds of cellulose and linkages between lignin and carbohydrate, which is associated with crystallinity of cellulose of OPEFB. Lateral Order Index (LOI) of OPEFB with no pretreatment, with fungal, phosphoric acid, and fungal followed by phosphoric acid pretreatments were 2.77, 1.42, 0.67, and 0.60, respectively. Phosphoric acid pretreatment showed morphological changes of OPEFB, indicated by the damage of fibre structure into smaller particle size. The fungal-, phosphoric acid-, and fungal followed by phosphoric acid pretreatments have improved the digestibility of OPEFB's cellulose by 4, 6.3, and 7.4 folds, respectively. PMID:23247371

  2. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  3. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  4. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  5. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  6. 40 CFR 721.10140 - Phosphoric acid, tin (2+) salt (2:3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, tin (2+) salt (2:3... Specific Chemical Substances § 721.10140 Phosphoric acid, tin (2+) salt (2:3). (a) Chemical substance and...+) salt (2:3) (PMN P-06-33, CAS No. 15578-32-2) is subject to reporting under this section for...

  7. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1981-01-01

    The development of materials, cell components, and reformers for on site integrated energy systems is described. Progress includes: (1) heat-treatment of 25 sq cm, 350 sq cm and 1200 sq cm cell test hardware was accomplished. Performance of fuel cells is improved by using this material; (2) electrochemical and chemical corrosion rates of heat-treated and as-molded graphite/phenolic resin composites in phosphoric acid were determined; (3) three cell, 5 in. x 15 in. stacks operated for up to 10,000 hours and 12 in. x 17 in. five cell stacks were tested for 5,000 hours; (4) a three cell 5 in. x 15 in. stack with 0.12 mg Pt/sq cm anodes and 0.25 mg Pt/sq cm cathodes was operated for 4,500 hours; and (5) an ERC proprietary high bubble pressure matrix, MAT-1, was tested for up to 10,000 hours.

  8. Transmission electron microscopic examination of phosphoric acid fuel cell components

    NASA Technical Reports Server (NTRS)

    Pebler, A.

    1986-01-01

    Transmission electron microscopy (TEM) was used to physically characterize tested and untested phosphoric acid fuel cell (PAFC) components. Those examined included carbon-supported platinum catalysts, carbon backing paper, and Teflon-bonded catalyst layers at various stages of fabrication and after testing in pressurized PAFC's. Applicability of electron diffraction and electron energy loss spectroscopy for identifying the various phases was explored. The discussion focuses on the morphology and size distribution of platinum, the morphology and structural aspects of Teflon in catalyst layers, and the structural evidence of carbon corrosion. Reference is made to other physical characterization techniques where appropriate. A qualitative model of the catalyst layer that emerged from the TEM studies is presented.

  9. Corrosion-resistant catalyst supports for phosphoric acid fuel cells

    SciTech Connect

    Kosek, J.A.; Cropley, C.C.; LaConti, A.B.

    1990-01-01

    High-surface-area carbon blacks such as Vulcan XC-72 (Cabot Corp.) and graphitized carbon blacks such as 2700{degree}C heat-treated Black Pearls 2000 (HTBP) (Cabot Corp.) have found widespread applications as catalyst supports in phosphoric acid fuel cells (PAFCs). However, due to the operating temperatures and pressures being utilized in PAFCs currently under development, the carbon-based cathode catalyst supports suffer from corrosion, which decreases the performance and life span of a PAFC stack. The feasibility of using alternative, low-cost, corrosion-resistant catalyst support (CRCS) materials as replacements for the cathode carbon support materials was investigated. The objectives of the program were to prepare high-surface-area alternative supports and to evaluate the physical characteristics and the electrochemical stability of these materials. The O{sub 2} reduction activity of the platinized CRCS materials was also evaluated. 2 refs., 3 figs.

  10. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  11. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  12. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  13. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  14. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  15. 40 CFR 721.6100 - Phosphoric acid, C6-12-alkyl esters, compounds with 2-(dibutylamino) ethanol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, C6-12-alkyl esters... Significant New Uses for Specific Chemical Substances § 721.6100 Phosphoric acid, C6-12-alkyl esters... reporting. (1) The chemical substances identified as phosphoric acid, C6-12-alkyl esters, compounds with...

  16. Addition of Grape Seed Extract Renders Phosphoric Acid a Collagen-stabilizing Etchant.

    PubMed

    Liu, Y; Dusevich, V; Wang, Y

    2014-08-01

    Previous studies found that grape seed extract (GSE), which is rich in proanthocyanidins, could protect demineralized dentin collagen from collagenolytic activities following clinically relevant treatment. Because of proanthocyanidin's adverse interference to resin polymerization, it was believed that GSE should be applied and then rinsed off in a separate step, which in effect increases the complexity of the bonding procedure. The present study aimed to investigate the feasibility of combining GSE treatment with phosphoric acid etching to address the issue. It is also the first attempt to formulate collagen-cross-linking dental etchants. Based on Fourier-transformed infrared spectroscopy and digestion assay, it was established that in the presence of 20% to 5% phosphoric acid, 30 sec of GSE treatment rendered demineralized dentin collagen inert to bacterial collagenase digestion. Based on this positive result, the simultaneous dentin etching and collagen protecting of GSE-containing phosphoric acid was evaluated on the premise of a 30-second etching time. According to micro-Raman spectroscopy, the formulation containing 20% phosphoric acid was found to lead to overetching. Based on scanning and transmission electronic microscopy, this same formulation exhibited unsynchronized phosphoric acid and GSE penetration. Therefore, addition of GSE did render phosphoric acid a collagen-stabilizing etchant, but the preferable phosphoric acid concentration should be <20%. PMID:24935065

  17. Method for separating mono- and di-octylphenyl phosphoric acid esters

    DOEpatents

    Arnold, Jr., Wesley D.

    1977-01-01

    A method for separating mono-octylphenyl phosphoric acid ester and di-octylphenyl phosphoric acid ester from a mixture thereof comprises reacting the ester mixture with a source of lithium or sodium ions to form a mixture of the phosphate salts; contacting the salt mixture with an organic solvent which causes the dioctylphenyl phosphate salt to be dissolved in the organic solvent phase and the mono-octylphenyl phosphate salt to exist in a solid phase; separating the phases; recovering the phosphate salts from their respective phases; and acidifying the recovered salts to form the original phosphoric acid esters.

  18. Radionuclide concentrations in raw and purified phosphoric acids from Brazil and their processing wastes: implications for radiation exposures.

    PubMed

    da Conceição, Fabiano Tomazini; Antunes, Maria Lúcia Pereira; Durrant, Steven F

    2012-02-01

    Radionuclides from the U and Th natural series are present in alkaline rocks, which are used as feedstock in Brazil for the production of raw phosphoric acid, which can be considered as a NORM (naturally occurring radioactive material). As a result of the purification of raw phosphoric acid to food-grade phosphoric acid, two by-products are generated, i.e., solid and liquid wastes. Taking this into account, the main aim of this study was to evaluate the fluxes of natural radionuclide in the production of food-grade phosphoric acids in Brazil, to determine the radiological impact caused by ingestion of food-grade phosphoric acid, and to evaluate the solid waste environmental hazards caused by its application in crop soils. Radiological characterization of raw phosphoric acid, food-grade phosphoric acid, solid waste, and liquid waste was performed by alpha and gamma spectrometry. The (238)U, (234)U, (226)Ra, and (232)Th activity concentrations varied depending on the source of raw phosphoric acid. Decreasing radionuclides activity concentrations in raw phosphoric acids used by the producer of the purified phosphoric acid were observed as follows: Tapira (raw phosphoric acid D) > Catalão (raw phosphoric acids B and C) > Cajati (raw phosphoric acid A). The industrial purification process produces a reduction in radionuclide activity concentrations in food-grade phosphoric acid in relation to raw phosphoric acid produced in plant D and single raw phosphoric acid used in recent years. The most common use of food-grade phosphoric acid is in cola soft drinks, with an average consumption in Brazil of 72 l per person per year. Each liter of cola soft drink contains 0.5 ml of food-grade phosphoric acid, which gives an annual average intake of 36 ml of food-grade phosphoric acid per person. Under these conditions, radionuclide intake through consumption of food-grade phosphoric acid per year per person via cola soft drinks is not hazardous to human health in Brazil

  19. Design of a Brønsted acid with two different acidic sites: synthesis and application of aryl phosphinic acid-phosphoric acid as a Brønsted acid catalyst.

    PubMed

    Momiyama, N; Narumi, T; Terada, M

    2015-12-11

    A Brønsted acid with two different acidic sites, aryl phosphinic acid-phosphoric acid, has been synthesized. Its catalytic performance was assessed in the hetero-Diels-Alder reaction of aldehyde hydrates with Danishefsky's diene, achieving high reaction efficiency. PMID:26445921

  20. Dry compliant seal for phosphoric acid fuel cell

    DOEpatents

    Granata, Jr., Samuel J.; Woodle, Boyd M.

    1990-01-01

    A dry compliant overlapping seal for a phosphoric acid fuel cell preformed f non-compliant Teflon to make an anode seal frame that encircles an anode assembly, a cathode seal frame that encircles a cathode assembly and a compliant seal frame made of expanded Teflon, generally encircling a matrix assembly. Each frame has a thickness selected to accommodate various tolerances of the fuel cell elements and are either bonded to one of the other frames or to a bipolar or end plate. One of the non-compliant frames is wider than the other frames forming an overlap of the matrix over the wider seal frame, which cooperates with electrolyte permeating the matrix to form a wet seal within the fuel cell that prevents process gases from intermixing at the periphery of the fuel cell and a dry seal surrounding the cell to keep electrolyte from the periphery thereof. The frames may be made in one piece, in L-shaped portions or in strips and have an outer perimeter which registers with the outer perimeter of bipolar or end plates to form surfaces upon which flanges of pan shaped, gas manifolds can be sealed.

  1. Combined cycle phosphoric acid fuel cell electric power system

    SciTech Connect

    Mollot, D.J.; Micheli, P.L.

    1995-12-31

    By arranging two or more electric power generation cycles in series, combined cycle systems are able to produce electric power more efficiently than conventional single cycle plants. The high fuel to electricity conversion efficiency results in lower plant operating costs, better environmental performance, and in some cases even lower capital costs. Despite these advantages, combined cycle systems for the 1 - 10 megawatt (MW) industrial market are rare. This paper presents a low noise, low (oxides of nitrogen) NOx, combined cycle alternative for the small industrial user. By combining a commercially available phosphoric acid fuel cell (PAFC) with a low-temperature Rankine cycle (similar to those used in geothermal applications), electric conversion efficiencies between 45 and 47 percent are predicted. While the simple cycle PAFC is competitive on a cost of energy basis with gas turbines and diesel generators in the 1 to 2 MW market, the combined cycle PAFC is competitive, on a cost of energy basis, with simple cycle diesel generators in the 4 to 25 MW market. In addition, the efficiency and low-temperature operation of the combined cycle PAFC results in a significant reduction in carbon dioxide emissions with NO{sub x} concentration on the order of 1 parts per million (per weight) (ppmw).

  2. Advanced water-cooled phosphoric acid fuel cell development

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  3. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resins are prepared by the reaction of trimellitic anhydride with 2,2-dimethyl-1,3-propanediol followed by reaction of the resin thus produced with phosphoric acid anhydride to produce a resin having...

  4. Molten Carbonate and Phosphoric Acid Stationary Fuel Cells: Overview and Gap Analysis

    SciTech Connect

    Remick, R.; Wheeler, D.

    2010-09-01

    This report describes the technical and cost gap analysis performed to identify pathways for reducing the costs of molten carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) stationary fuel cell power plants.

  5. Enantioselective synthesis of benzazepinoindoles bearing trifluoromethylated quaternary stereocenters catalyzed by chiral spirocyclic phosphoric acids.

    PubMed

    Li, Xuejian; Chen, Di; Gu, Haorui; Lin, Xufeng

    2014-07-18

    The first highly enantioselective iso-Pictet-Spengler reaction of C-2-linked o-aminobenzylindoles with trifluoromethyl ketones was developed using chiral spirocyclic phosphoric acids as organocatalysts, which afforded optically active benzazepinoindoles bearing trifluoromethylated quaternary stereocenters. PMID:24890313

  6. Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules.

    PubMed

    Zheng, Anmin; Huang, Shing-Jong; Liu, Shang-Bin; Deng, Feng

    2011-09-01

    A brief review is presented on acidity characterization of solid acid catalysts by means of solid-state phosphor-31 magic-angle-spinning nuclear magnetic resonance ((31)P MAS NMR) spectroscopy using phosphor-containing molecules as probes. It is emphasized that such a simple approach using (31)P MAS NMR of adsorbed phosphorous probe molecules, namely trimethylphosphine (TMP) and trialkylphosphine oxides (R(3)PO), represents a unique technique in providing detailed qualitative and quantitative features, viz. type, strength, distribution, and concentration of acid sites in solid acid catalysts. In particular, it will be shown that when applied with a proper choice of probe molecules with varied sizes and results obtained from elemental analysis, the amounts and locations (intracrystalline vs. extracrystalline) of different types (Brønsted vs. Lewis) of acid sites may be determined. In addition, by incorporating the NMR results with that obtained from theoretical density functional theory (DFT) calculations, correlations between the (31)P chemical shifts (δ(31)P) and acidic strengths of Brønsted and Lewis acid sites may also be derived, facilitating a suitable acidity scale for solid acid catalysts.

  7. Nitrosyl induces phosphorous-acid dissociation in ruthenium(II).

    PubMed

    Truzzi, Daniela Ramos; Ferreira, Antonio Gilberto; da Silva, Sebastião Claudino; Castellano, Eduardo Ernesto; Lima, Francisco das Chagas Alves; Franco, Douglas Wagner

    2011-12-28

    The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ⇌ trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C). PMID:22027926

  8. Antimicrobial and cytotoxic effects of phosphoric acid solution compared to other root canal irrigants

    PubMed Central

    PRADO, Maíra; da SILVA, Emmanuel João Nogueira Leal; DUQUE, Thais Mageste; ZAIA, Alexandre Augusto; FERRAZ, Caio Cezar Randi; de ALMEIDA, José Flávio Affonso; GOMES, Brenda Paula Figueiredo de Almeida

    2015-01-01

    Phosphoric acid has been suggested as an irrigant due to its effectiveness in removing the smear layer. Objectives : The purpose of this study was to compare the antimicrobial and cytotoxic effects of a 37% phosphoric acid solution to other irrigants commonly used in endodontics. Material and Methods : The substances 37% phosphoric acid, 17% EDTA, 10% citric acid, 2% chlorhexidine (solution and gel), and 5.25% NaOCl were evaluated. The antimicrobial activity was tested against Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Actinomyces meyeri, Parvimonas micra, Porphyromonas gingivalis, and Prevotella nigrescens according to the agar diffusion method. The cytotoxicity of the irrigants was determined by using the MTT assay. Results : Phosphoric acid presented higher antimicrobial activity compared to the other tested irrigants. With regard to the cell viability, this solution showed results similar to those with 5.25% NaOCl and 2% chlorhexidine (gel and solution), whereas 17% EDTA and 10% citric acid showed higher cell viability compared to other irrigants. Conclusion : Phosphoric acid demonstrated higher antimicrobial activity and cytotoxicity similar to that of 5.25% NaOCl and 2% chlorhexidine (gel and solution). PMID:26018307

  9. Production of monosaccharides from napier grass by hydrothermal process with phosphoric acid.

    PubMed

    Takata, Eri; Tsutsumi, Ken; Tsutsumi, Yuji; Tabata, Kenji

    2013-09-01

    The production of monosaccharides from napier grass was investigated in the presence of acid catalysts using the hydrothermal process. When the napier grass was treated with 3 wt.% phosphoric acid at 160°C for 15min, the xylose yield reached 10.3 wt.%, corresponding to 72.0% of the xylan in it, whereas glucose was hardly obtained. A combined process was then conducted using an 85 wt.% phosphoric acid treatment at 60 °C for 1h followed by a hydrothermal treatment with 3 wt.% phosphoric acid. In the initial treatment with concentrated phosphoric acid the most of xylan was hydrolyzed to xylose, and the crystalline cellulose was converted to its amorphous form. The hydrolysis of cellulose to glucose was significantly enhanced during the following hydrothermal process with 3 wt.% phosphoric acid at 200 °C for 8 min. Consequently, 77.2% yield of xylose and 50.0% yield of glucose were obtained from the combined process.

  10. Optimizing ethanol and methane production from steam-pretreated, phosphoric acid-impregnated corn stover.

    PubMed

    Bondesson, Pia-Maria; Dupuy, Aurélie; Galbe, Mats; Zacchi, Guido

    2015-02-01

    Pretreatment is of vital importance in the production of ethanol and methane from agricultural residues. In this study, the effects of steam pretreatment with phosphoric acid on enzymatic hydrolysis (EH), simultaneous saccharification and fermentation (SSF), anaerobic digestion (AD) and the total energy output at three different temperatures were investigated. The effect of separating the solids for SSF and the liquid for AD was also studied and compared with using the whole slurry first in SSF and then in AD. Furthermore, the phosphoric acid was compared to previous studies using sulphuric acid or no catalyst. Using phosphoric acid resulted in higher yields than when no catalyst was used. However, compared with sulphuric acid, an improved yield was only seen with phosphoric acid in the case of EH. The higher pretreatment temperatures (200 and 210 °C) resulted in the highest yields after EH and SSF, while the highest methane yield was obtained with the lower pretreatment temperature (190 °C). The highest yield in terms of total energy recovery (78 %) was obtained after pretreatment at 190 °C, but a pretreatment temperature of 200 °C is, however, the best alternative since fewer steps are required (whole slurry in SSF and then in AD) and high product yields were obtained (76 %).

  11. Conversion of waste cellulose to ethanol. Phase 2: Reaction kinetics with phosphoric acid

    NASA Astrophysics Data System (ADS)

    Moeller, M. B.; Isbell, R. E.

    1982-05-01

    Waste cellulosic material can be hydrolyzed in dilute acid solution to produce fermentable sugars which can then be converted into ethanol. A laboratory investigation was made of the feasibility of using phosphoric acid as the hydrolysis catalyst. The hydrolysis reaction with phosphoric acid solutions was compared with the reaction employing the more conventional dilute sulfuric acid catalyst. The purpose of this research was to examine the hydrolysis step in a proposed process for the conversion of cellulose (from wood, newspapers, municipal solid waste, or other sources) into ethanol - by which a potentially valuable co-product, DICAL (dicalcium phosphate), might be made and sold with or without the lignin content as a fertilizer. The pertinent reaction kinetics for the acid catalyzed production of glucose from cellulose consists of consecutive, pseudo-first order reactions.

  12. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution.

    PubMed

    Liu, Hu; Zhang, Shengen; Pan, Dean; Tian, Jianjun; Yang, Min; Wu, Maolin; Volinsky, Alex A

    2014-05-15

    This paper is a comparative study of recycling rare earth elements from waste phosphor, which focuses on the leaching rate and the technical principle. The traditional and dual dissolution by hydrochloric acid (DHA) methods were compared. The method of dual dissolution by hydrochloric acid has been developed. The Red rare earth phosphor (Y0.95Eu0.05)2O3 in waste phosphor is dissolved during the first step of acid leaching, while the Green phosphor (Ce0.67Tb0.33MgAl11O19) and the Blue phosphor (Ba0.9Eu0.1MgAl10O17) mixed with caustic soda are obtained by alkali sintering. The excess caustic soda and NaAlO2 are removed by washing. The insoluble matter is leached by the hydrochloric acid, followed by solvent extraction and precipitation (the DHA method). In comparison, the total leaching rate of the rare earth elements was 94.6% by DHA, which is much higher than 42.08% achieved by the traditional method. The leaching rate of Y, Eu, Ce and Tb reached 94.6%, 99.05%, 71.45%, and 76.22%, respectively. DHA can decrease the consumption of chemicals and energy. The suggested DHA method is feasible for industrial applications.

  13. Phosphoric acid distribution and its impact on the performance of polybenzimidazole membranes

    NASA Astrophysics Data System (ADS)

    Mack, Florian; Heissler, Stefan; Laukenmann, Ruben; Zeis, Roswitha

    2014-12-01

    Phosphoric acid doped polybenzimidazole (PBI) is the most common membrane material for high-temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The PBI membrane is usually doped by immersion in hot phosphoric acid. Immersion time and acid temperature affect the doping level of the membrane. In this work we studied the influence of doping time and temperature on the ex-situ and in-situ proton conductivities of poly (2, 5-benzimidazole) (AB-PBI) membranes as well as the fuel cell performance. Confocal Raman microscopy was employed to spatially resolve the acid distribution within the AB-PBI membranes. Therefore the interactions between the basic nitrogen-sides of the AB-PBI polymer and the phosphoric acid protons were investigated. We found that membranes with a 6 h doping time had significantly higher proton conductivity than those doped for only 3 h. In terms of absolute acid up-take, however, the difference was rather small. This result shows that the doping level alone does not define the conductivity of the membrane. The conductivity is also influenced by the micro acid distribution within the membrane. Highest membrane conductivity and fuel cell performance with fumapem AM cross-linked membranes were achieved with a doping time of 6 h and a doping temperature of 120 °C.

  14. Technology development for phosphoric acid fuel cell powerplant, phase 2

    NASA Technical Reports Server (NTRS)

    Christner, L.

    1979-01-01

    A technique for producing an acid inventory control member by spraying FEP onto a partially screened carbon paper backing is discussed. Theoretical analysis of the acid management indicates that the vapor composition of 103% H3PO4 is approximately 1.0 ppm P4O10. An SEM evaluation of corrosion resistance of phenolic resins and graphite/phenolic resin composites in H3PO4 at 185 C shows specific surface etching. Carbonization of graphite/phenolic bipolar plates is achieved without blistering.

  15. Extraction equilibrium of indium(III) from nitric acid solutions by di(2-ethylhexyl)phosphoric acid dissolved in kerosene.

    PubMed

    Tsai, Hung-Sheng; Tsai, Teh-Hua

    2012-01-04

    The extraction equilibrium of indium(III) from a nitric acid solution using di(2-ethylhexyl) phosphoric acid (D2EHPA) as an acidic extractant of organophosphorus compounds dissolved in kerosene was studied. By graphical and numerical analysis, the compositions of indium-D2EHPA complexes in organic phase and stoichiometry of the extraction reaction were examined. Nitric acid solutions with various indium concentrations at 25 °C were used to obtain the equilibrium constant of InR₃ in the organic phase. The experimental results showed that the extraction distribution ratios of indium(III) between the organic phase and the aqueous solution increased when either the pH value of the aqueous solution and/or the concentration of the organic phase extractant increased. Finally, the recovery efficiency of indium(III) in nitric acid was measured.

  16. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES...

  17. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use...

  18. 21 CFR 175.260 - Partial phosphoric acid esters of polyester resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Partial phosphoric acid esters of polyester resins. 175.260 Section 175.260 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES...

  19. A chiral phosphoric acid catalyst for asymmetric construction of 1,3-dioxanes.

    PubMed

    Matsumoto, Akira; Asano, Keisuke; Matsubara, Seijiro

    2015-07-25

    A novel method of enantioselective 1,3-dioxane construction via a hemiacetalization/intramolecular oxy-Michael addition cascade by a chiral phosphoric acid catalyst was developed. The product was successfully transformed into an optically active 1,3-polyol motif, indicating that the proposed reaction can provide useful chiral building blocks for the de novo synthesis of polyketides. PMID:26103581

  20. Survey on aging on electrodes and electrocatalysts in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Hochmuth, J.

    1981-01-01

    The processes which contribute to the decay in performance of electrodes used in phosphoric acid fuel cell systems are discussed. Loss of catalytic surface area, corrosion of the carbon support, electrode structure degradation, electrolyte degradation, and impurities in the reactant streams are identified as the major areas for concern.

  1. Tuning transport selectivity of ionic species by phosphoric acid gradient in positively charged nanochannel membranes.

    PubMed

    Yang, Meng; Yang, Xiaohai; Wang, Kemin; Wang, Qing; Fan, Xin; Liu, Wei; Liu, Xizhen; Liu, Jianbo; Huang, Jin

    2015-02-01

    The transport of ionic species through a nanochannel plays important roles in fundamental research and practical applications of the nanofluidic device. Here, we demonstrated that ionic transport selectivity of a positively charged nanochannel membrane can be tuned under a phosphoric acid gradient. When phosphoric acid solution and analyte solution were connected by the positively charged nanochannel membrane, the faster-moving analyte through the positively charged nanochannel membrane was the positively charged dye (methylviologen, MV(2+)) instead of the negatively charged dye (1,5-naphthalene disulfonate, NDS(2-)). In other words, a reversed ion selectivity of the nanochannel membranes can be found. It can be explained as a result of the combination of diffusion, induced electroosmosis, and induced electrophoresis. In addition, the influencing factors of transport selectivity, including concentration of phosphoric acid, penetration time, and volume of feed solution, were also investigated. The results showed that the transport selectivity can further be tuned by adjusting these factors. As a method of tuning ionic transport selectivity by establishing phosphoric acid gradient, it will be conducive to improving the separation of ionic species. PMID:25557761

  2. Modification of vital wheat gluten with phosphoric acid to produce high free-solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid to produce natural superabsorbent gels. The gel properties are defined by Fourier Transform Infra-red (FTIR) spectroscopy, 2-dimensional gel electrophoresis (2DE), and uptake of water, salt solutions, and aqueous ethanol. Temperatures above 120'C and dry cond...

  3. Current legal and institutional issues in the commercialization of phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Nimmons, J. T.; Sheehy, K. D.; Singer, J. R.; Gardner, T. C.

    1982-01-01

    Legal and institutional factors affecting the development and commercial diffusion of phosphoric acid fuel cells are assessed. Issues for future research and action are suggested. Perceived barriers and potential opportunities for fuel cells in central and dispersed utility operations and on-site applications are reviewed, as well as the general concept of commercialization as applied to emerging energy technologies.

  4. Manual of phosphoric acid fuel cell power plant cost model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis.

  5. Modification of vital wheat gluten with phosphoric acid to produce high free solution capacity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat gluten reacts with phosphoric acid in the presence of urea to produce natural superabsorbent gels. Fourier Transform Infra-red (FT-IR) spectroscopy and two-dimensional gel electrophoresis (2DE) reveal chemical changes from the reaction. Temperatures above 120°C and dry conditions create the op...

  6. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  7. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  8. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, mixed mono- and... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  9. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6120 Phosphoric acid, 1,2-eth-a-ne... subject to reporting. (1) The chemical substance identified as phosphoric acid, 1,2-ethanediyl...

  10. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6120 Phosphoric acid, 1,2-eth-a-ne... subject to reporting. (1) The chemical substance identified as phosphoric acid, 1,2-ethanediyl...

  11. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6120 Phosphoric acid, 1,2-eth-a-ne... subject to reporting. (1) The chemical substance identified as phosphoric acid, 1,2-ethanediyl...

  12. Preliminary study on preparation of BCNO phosphor particles using citric acid as carbon source

    SciTech Connect

    Nuryadin, Bebeh W.; Pratiwi, Tripuspita; Faryuni, Irfana D.; Iskandar, Ferry Abdullah, Mikrajuddin; Khairurrijal; Ogi, Takashi; Okuyama, Kikuo

    2015-04-16

    A citric acid was used as a carbon source in the preparation of boron carbon oxy-nitride (BCNO) phosphor particles by a facile process. The preparation process was conducted at relatively low temperature 750 °C and at ambient pressure. The prepared BCNO phosphors showed a high photoluminescence (PL) performance at peak emission wavelength of 470 nm under excitation by a UV light 365 nm. The effects of carbon/boron and nitrogen/boron molar ratios on the PL properties were also investigated. The result showed that the emission spectra with a wavelength peak ranging from 444 nm to 496 nm can be obtained by varying carbon/boron ratios from 0.1 to 0.9. In addition, the observations showed that the BCNO phosphor material has two excitation peaks located at the 365 nm (UV) and 420 nm (blue). Based on these observations, we believe that the citric acid derived BCNO phosphor particles can be a promising inexpensive material for phosphor conversion-based white LED.

  13. Nitric-phosphoric acid oxidation of solid and liquid organic materials

    SciTech Connect

    Pierce, R.A.; Smith, J.R.; Poprik, D.C.

    1995-02-01

    Nitric-phosphoric acid oxidation has been developed specifically to address issues that face the Savannah River Site, other defense-related facilities, private industry, and small-volume generators such as university and medical laboratories. Initially tested to destroy and decontaminate SRS solid, Pu-contaminated job-control waste, the technology has also exhibited potential for remediating hazardous and mixed-hazardous waste forms. The process is unique to Savannah River and offers a valuable alternative to other oxidation processes that require extreme temperatures and/or elevated pressures. To address the broad categories of waste, many different organic compounds which represent a cross-section of the waste that must be treated have been successfully oxidized. Materials that have been quantitatively oxidized at atmospheric pressure below 180{degrees}C include neoprene, cellulose, EDTA, tributylphosphate, and nitromethane. More stable compounds such as benzoic acid, polyethylene, oils, and resins have been completely decomposed below 200{degrees}C and 10 psig. The process uses dilute nitric acid in a concentrated phosphoric acid media as the main oxidant for the organic compounds. Phosphoric acid allow nitric acid to be retained in solution well above its normal boiling point. The reaction forms NOx vapors which can be reoxidized and recycled using air and water. The addition of 0.001M Pd(II) reduces CO generation to near 1% of the released carbon gases. The advantages of this process are that it is straightforward, uses relatively inexpensive reagents, operates at relatively low temperature and pressure, and produces final solutions which are compatible with stainless steel equipment. For organic wastes, all carbon, hydrogen, and nitrogen are converted to gaseous products. If interfaced with an acid recovery system which converts NOx back to nitric acid, the net oxidizer would be oxygen from air.

  14. Efficacy of sodium hypochlorite, ethylenediaminetetraacetic acid, citric acid and phosphoric acid in calcium hydroxide removal from the root canal: a microscopic cleanliness evaluation.

    PubMed

    da Silva, Juliana Melo; Silveira, Amanda; Santos, Elizandra; Prado, Laiìs; Pessoa, Oscar F

    2011-12-01

    Rooted molars were subjected to standardized canal instrumentation to a master apical file (MAF). The samples were dressed with Ca(OH)(2), and after 7 days, teeth were reopened and Ca(OH)(2) medication was removed by 1 of 4 different experimental procedures: 2.5% sodium hypochlorite (NaOCl) (n = 10); 17% EDTA-T (n = 10); 10% citric acid (n = 10); or 37% phosphoric acid (n = 10). This was followed by reinstrumentation with MAF plus 15 mL saline solution. The roots were prepared for scanning electron microscopic analysis of the cervical, middle, and apical thirds. Statistical analysis was performed with the Kruskal-Wallis test. EDTA-T and phosphoric acid gave the best results in the apical third, with significant statistical differences compared with other groups. NaOCl gave the worst results. Irrigation with 17% EDTA-T and 37% phosphoric acid is more effective than sodium hypochlorite and citric acid in the removal of calcium hydroxide from the apical third.

  15. Lignin hydrolysis and phosphorylation mechanism during phosphoric acid-acetone pretreatment: a DFT study.

    PubMed

    Qin, Wu; Wu, Lingnan; Zheng, Zongming; Dong, Changqing; Yang, Yongping

    2014-12-18

    The study focused on the structural sensitivity of lignin during the phosphoric acid-acetone pretreatment process and the resulting hydrolysis and phosphorylation reaction mechanisms using density functional theory calculations. The chemical stabilities of the seven most common linkages (β-O-4, β-β, 4-O-5, β-1, 5-5, α-O-4, and β-5) of lignin in H3PO4, CH3COCH3, and H2O solutions were detected, which shows that α-O-4 linkage and β-O-4 linkage tend to break during the phosphoric acid-acetone pretreatment process. Then α-O-4 phosphorylation and β-O-4 phosphorylation follow a two-step reaction mechanism in the acid treatment step, respectively. However, since phosphorylation of α-O-4 is more energetically accessible than phosphorylation of β-O-4 in phosphoric acid, the phosphorylation of α-O-4 could be controllably realized under certain operational conditions, which could tune the electron and hole transfer on the right side of β-O-4 in the H2PO4- functionalized lignin. The results provide a fundamental understanding for process-controlled modification of lignin and the potential novel applications in lignin-based imprinted polymers, sensors, and molecular devices.

  16. Porous structure and surface chemistry of phosphoric acid activated carbon from corncob

    NASA Astrophysics Data System (ADS)

    Sych, N. V.; Trofymenko, S. I.; Poddubnaya, O. I.; Tsyba, M. M.; Sapsay, V. I.; Klymchuk, D. O.; Puziy, A. M.

    2012-11-01

    Active carbons have been prepared from corncob using chemical activation with phosphoric acid at 400 °C using varied ratio of impregnation (RI). Porous structure of carbons was characterized by nitrogen adsorption and scanning electron microscopy. Surface chemistry was studied by IR and potentiometric titration method. It has been shown that porosity development was peaked at RI = 1.0 (SBET = 2081 m2/g, Vtot = 1.1 cm3/g), while maximum amount of acid surface groups was observed at RI = 1.25. Acid surface groups of phosphoric acid activated carbons from corncob includes phosphate and strongly acidic carboxylic (pK = 2.0-2.6), weakly acidic carboxylic (pK = 4.7-5.0), enol/lactone (pK = 6.7-7.4; 8.8-9.4) and phenol (pK = 10.1-10.7). Corncob derived carbons showed high adsorption capacity to copper, especially at low pH. Maximum adsorption of methylene blue and iodine was observed for carbon with most developed porosity (RI = 1.0).

  17. Removal of heavy metals and lanthanides from industrial phosphoric acid process liquors

    SciTech Connect

    Koopman, C.; Witkamp, G.J.; Van Rosmalen, G.M.

    1999-11-01

    To diminish the discharge of heavy metals and lanthanides by the phosphoric acid industry, these impurities have to be removed from the mother liquor before their incorporation in the gypsum crystals. This can best be achieved by means of solvent extraction or ion exchange during the recrystallization of hemihydrate to dihydrate gypsum. Various commercial carriers and two ion-exchange resins were screened for their efficiency and selectivity. Light and heavy lanthanide ions are extracted from the recrystallization acid by didodecylnaphthalenesulfonic acid (Nacure 1052) and di(2-ethylhexyl)phosphoric acid (D2EHPA), and the heavy-metal ions by bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301) and by bis(2,4,4-trimethylpentyl)monothiophosphinic acid (Cyanex 302). Mercury is also extracted by the anion carriers tri(C{sub 8}-C{sub 10})amine (Alamine 336) and tri(C{sub 8}-C{sub 10}) monomethyl ammonium chloride (Aliquat 336). Both Dowex C-500 and Amberlite IR-120 extract lanthanide and heavy-metal ions. Unfortunately, D2EHPA, Nacure 1052, and the two ion-exchange resins also show affinity for ions present in much higher concentrations, like calcium or iron ions.

  18. Analytical applications of condensed phosphoric acid-I Determination of ferrous and total iron in iron ores after decomposition with condensed phosphoric acid.

    PubMed

    Mizoguchi, T; Ishii, H

    1978-06-01

    A simple method is described for the determination of ferrous and total iron in iron ores. Iron ores are dissolved by condensed phosphoric acid (CPA) very rapidly without any tedious and time-consuming manipulations such as elimination of silica and filtration. Under the proposed conditions (amount of sample 100 mg, amount of CPA added 10 g, heating temperature 290 degrees , heating time 30 min), magnetite, limonite and hematite are completely dissolved. The iron content can be determined in the presence of condensed phosphoric acid by titration with dichromate solution, if a slight modification is made. The total iron in iron ores, determined by the present method, is in agreement with that found by the JIS method. The ferrous iron in iron ores can be determined by dissolving the samples with CPA in a nitrogen atmosphere and titrating with dichromate solution. Chelatometric titration of iron after solvent extraction with MIBK from solutions prepared by use of CPA is found to be accurate for samples such as pyrite cinder. The ability of CPA to dissolve various materials has been investigated.

  19. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  20. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    SciTech Connect

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoric acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.

  1. Assessment of the environmental aspects of the DOE phosphoric acid fuel cell program

    NASA Technical Reports Server (NTRS)

    Lundblad, H. L.; Cavagrotti, R. R.

    1983-01-01

    The likely facets of a nationwide phosphoric acid fuel cell (PAFC) power plant commercial system are described. The beneficial and adverse environmental impacts produced by the system are assessed. Eleven specific system activities are characterized and evaluated. Also included is a review of fuel cell technology and a description of DOE's National Fuel Cell Program. Based on current and reasonably foreseeable PAFC characteristics, no environmental or energy impact factor was identified that would significantly inhibit the commercialization of PAFC power plant technology.

  2. Manual of phosphoric acid fuel cell stack three-dimensional model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    A detailed distributed mathematical model of phosphoric acid fuel cell stack have been developed, with the FORTRAN computer program, for analyzing the temperature distribution in the stack and the associated current density distribution on the cell plates. Energy, mass, and electrochemical analyses in the stack were combined to develop the model. Several reasonable assumptions were made to solve this mathematical model by means of the finite differences numerical method.

  3. Origins of Selectivity and General Model for Chiral Phosphoric Acid-Catalyzed Oxetane Desymmetrizations.

    PubMed

    Champagne, Pier Alexandre; Houk, K N

    2016-09-28

    The origins of the high enantioselectivity of chiral phosphoric acid-catalyzed oxetane desymmetrizations were investigated by density functional theory (DFT) calculations. Distortion of the catalyst structure, caused by steric crowding in the catalyst pocket of one enantiomeric transition state, is the main cause for stereochemical preference. A general model was developed to assist in the rational design of new catalysts for related transformations. PMID:27629045

  4. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications. PMID:27003825

  5. Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.

    PubMed

    Kwon, Oh-Min; Kim, Sung-Koo; Jeong, Gwi-Taek

    2016-07-01

    This study combined phosphoric acid-catalyzed pretreatment and enzymatic hydrolysis to produce biosugars from Gracilaria verrucosa as a potential renewable resource for bioenergy applications. We optimized phosphoric acid-catalyzed pretreatment conditions to 1:10 solid-to-liquid ratio, 1.5 % phosphoric acid, 140 °C, and 60 min reaction time, producing a 32.52 ± 0.06 % total reducing sugar (TRS) yield. By subsequent enzymatic hydrolysis, a 68.61 ± 0.90 % TRS yield was achieved. These results demonstrate the potential of phosphoric acid to produce biosugars for biofuel and biochemical production applications.

  6. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.

    PubMed

    Fathabadi, N; Vasheghani Farahani, M; Moradi, M; Hadadi, B

    2012-09-01

    Phosphate rock is used world wide for manufacturing phosphoric acid and several chemical fertilisers. It is known that the phosphate rock contains various concentrations of uranium, thorium, radium and their daughters. The subject of this study is the evaluation of the radiation exposure to workers in the phosphoric acid production plant due to technologically enhanced naturally occurring radioactive materials that can result from the presence of naturally occurring radioactive materials in phosphate ores used in the manufacturing of phosphoric acid. Radiation exposure due to direct gamma radiation, dust inhalation and radon gas has been investigated and external and internal doses of exposed workers have been calculated. Natural radioactivity due to (40)K, (226)Ra and (232)Th have been measured in phosphate rock, phosphogypsum, chemical fertilisers and other samples by gamma spectrometry system with a high-purity germanium. The average concentrations of (226)Ra and (40)K observed in the phosphate rock are 760 and 80 Bq kg(-1), respectively. Annual effective dose from external radiation had a mean value of ∼0.673 mSv y(-1). Dust sampling revealed greatest values in the storage area. The annual average effective dose from inhalation of long-lived airborne was 0.113 mSv y(-1). Radon gas concentrations in the processing plant and storage area were found to be of the same value as the background. In this study the estimated annual effective doses to workers were below 1 mSv y(-1). PMID:22361352

  7. Production of technical grade phosphoric acid from incinerator sewage sludge ash (ISSA).

    PubMed

    Donatello, S; Tong, D; Cheeseman, C R

    2010-01-01

    The recovery of phosphorus from sewage sludge ash samples obtained from 7 operating sludge incinerators in the UK using a sulfuric acid washing procedure to produce a technical grade phosphoric acid product has been investigated. The influences of reaction time, sulfuric acid concentration, liquid to solid ratio and source of ISSA on P recovery have been examined. The optimised conditions were the minimum stoichiometric acid requirement, a reaction time of 120 min and a liquid to solid ratio of 20. Under these conditions, average recoveries of between 72% and 91% of total phosphorus were obtained. Product filtrate was purified by passing through a cation exchange column, concentrated to 80% H(3)PO(4) and compared with technical grade H(3)PO(4) specifications. The economics of phosphate recovery by this method are briefly discussed.

  8. Wet Chemical Oxidation of Organic Waste Using Nitric-Phosphoric Acid Technology

    SciTech Connect

    Pierce, R.A.

    1998-10-06

    Experimental progress has been made in a wide range of areas which support the continued development of the nitric-phosphoric acid oxidation process for combustible, solid organic wastes. An improved understanding of the overall process operation has been obtained, acid recovery and recycle systems have been studied, safety issues have been addressed, two potential final waste forms have been tested, preliminary mass flow diagrams have been prepared, and process flowsheets have been developed. The flowsheet developed is essentially a closed-loop system which addresses all of the internally generated waste streams. The combined activities aim to provide the basis for building and testing a 250-400 liter pilot-scale unit. Variations of the process now must be evaluated in order to address the needs of the primary customer, SRS Solid Waste Management. The customer is interested in treating job control waste contaminated with Pu-238 for shipment to WIPP. As a result, variations for feed preparation, acid recycle, and final form manufacturing must be considered to provide for simpler processing to accommodate operations in high radiation and contamination environments. The purpose of this program is to demonstrate a nitric-phosphoric acid destruction technology which can treat a heterogeneous waste by oxidizing the solid and liquid organic compounds while decontaminating noncombustible items.

  9. Traveling Wave Ion Mobility Mass Spectrometry and Ab Initio Calculations of Phosphoric Acid Clusters

    NASA Astrophysics Data System (ADS)

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH] z+ or [(H3PO4)n - zH] z- , with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  10. Traveling wave ion mobility mass spectrometry and ab initio calculations of phosphoric acid clusters.

    PubMed

    Lavanant, Hélène; Tognetti, Vincent; Afonso, Carlos

    2014-04-01

    Positive and negative ion electrospray mass spectra obtained from 50 mM phosphoric acid solutions presented a large number of phosphoric acid clusters: [(H3PO4)n + zH](z+) or [(H3PO4)n - zH](z-), with n up to 200 and z up to 4 for positively charged clusters, and n up to 270 and z up to 7 for negatively charged cluster ions. Ion mobility experiments allowed very explicit separation of the different charge states. Because of the increased pressures involved in ion mobility experiments, dissociation to smaller clusters was observed both in the trap and transfer areas. Voltages along the ion path could be optimized so as to minimize this effect, which can be directly associated with the cleavage of hydrogen bonds. Having excluded the ion mobility times that resulted from dissociated ions, each cluster ion appeared at a single drift time. These drift times showed a linear progression with the number of phosphoric atoms for cluster ions of the same charge state. Cross section calculations were carried out with MOBCAL on DFT optimized geometries with different hydrogen locations and with three types of atomic charges. DFT geometry optimizations yielded roughly spherical structures. Our results for nitrogen gas interaction cross sections showed that values were dependent on the atomic charges definition used in the MOBCAL calculation. This pinpointed the necessity to define a clear theoretical framework before any comparative interpretations can be attempted with uncharacterized compounds.

  11. The Partitioning of Acetic, Formic, and Phosphoric Acids Between Liquid Water and Steam

    SciTech Connect

    Gruszkiewicz, M.S.; Marshall, S.L.; Palmer, D.A.; Simonson, J.M.

    1999-06-22

    The chemical carryover of impurities and treatment chemicals from the boiler to the steam phase, and ultimately to the low-pressure turbine and condenser, can be quantified based on laboratory experiments preformed over ranges of temperature, pH, and composition. The two major assumptions are that thermodynamic equilibrium is maintained and no deposition, adsorption or decomposition occurs. The most recent results on acetic, formic and phosphoric acids are presented with consideration of the effects of hydrolysis and dimerization reactions. Complications arising from thermal decomposition of the organic acids are discussed. The partitioning constants for these acids and other solutes measured in this program have been incorporated into a simple thermodynamic computer code that calculates the effect of chemical and mechanical carryover on the composition of the condensate formed to varying extents in the water/steam cycle.

  12. Recovery of organic extractant from secondary emulsions formed in the extraction of uranium from wet-process phosphoric acid

    SciTech Connect

    Korchnak, J.D.; Fett, R.H.G.

    1984-01-03

    Uranium in wet-process phosphoric acid is extracted with an organic extractant. The pregnant extractant is then centrifuged to separate contaminants from the extractant. Secondary emulsions obtained by separating the contaminants following centrifugation are mixed with water or an acid leaching solution. After mixing, the mixture is centrifuged to separate and recover extractant which is recycled for stripping.

  13. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  14. Quantum-chemical studies of dimethylformamide 1 : 1 complexes with phosphoric acid

    NASA Astrophysics Data System (ADS)

    Krest'yaninov, M. A.; Kiselev, M. G.; Safonova, L. P.

    2012-12-01

    The structures of two phosphoric acid conformations, dimethylformamide (DMFA), four protonated DMFA forms, and nine DMFA-H3PO4 complexes in which the proton acceptor is a oxygen or nitrogen atom of the DMFA molecule are optimized by DFT/B3LYP using the 6-31++G( d, p) basis set. The structural changes in DMFA that occur upon its protonation are discussed. The stabilization energy and transferred charge values upon the formation of a hydrogen bond are calculated for all of the studied complexes by means of NBO analysis. The potential energy surface is scanned to study the possibility of proton transfer.

  15. SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM PHOSPHORIC ACID

    DOEpatents

    Bailes, R.H.; Long, R.S.

    1958-11-01

    > A solvent extraction process is presented for recovering metal values including uranium, thorium, and other lanthanide and actinide elements from crude industrial phosphoric acid solutions. The process conslsts of contacting said solution with an immisclble organic solvent extractant containing a diluent and a material selected from the group consisting of mono and di alkyl phosphates, alkyl phosphonates and alkyl phosphites. The uranlum enters the extractant phase and is subsequently recovered by any of the methods known to the art. Recovery is improved if the phosphate solution is treated with a reducing agent such as iron or aluminum powder prior to the extraction step.

  16. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  17. Computer-based phosphoric acid fuel cell analytical tools Descriptions and usages

    NASA Technical Reports Server (NTRS)

    Lu, C.; Presler, A. F.

    1987-01-01

    Simulation models have been developed for the prediction of phosphoric acid fuel cell (PAFC) powerplant system performance under both transient and steady operation conditions, as well as for the design of component configurations and for optimal systems synthesis. These models, which are presently computer-implemented, are an engineering and a system model; the former being solved by the finite difference method to determine the balances and properties of different sections, and the latter using thermodynamic balances to set up algebraic equations that yield physical and chemical properties of the stream for one operating condition.

  18. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1981-01-01

    Four different samples of the cubic alloys W sub x-1 Ti sub x C sub 1-y were prepared and found to be active and CO tolerant. When the activities of these cubic alloys were weighted by the reciprocal of the square of the W exchange, they displayed magnitudes and dependence on bulk C deficiency comparable to those of highly active forms of WC. It is concluded that they may offer important insight into the nature of the active sites on, and means for improving the performance of, W-C anode catalysts for use in phosphoric acid fuel cells.

  19. Status of commercial phosphoric acid fuel cell power plant system development

    NASA Technical Reports Server (NTRS)

    Warshay, M.

    1987-01-01

    A technology development and commercial feasibility evaluation is presented for phosphoric acid fuel cells (PAFCs) applicable to electric utility operations. The correction of identified design deficiencies in the control card and water treatment subsystems is projected to be able to substantially increase average powerplant availability from the 63 percent achieved in recent field tests of a PAFC system. Current development work is proceeding under NASA research contracts at the output levels of a multimegawatt facility for electric utility use, a multikilowatt on-site integrated energy generation facility, and advanced electrocatalysts applicable to PAFCs.

  20. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  1. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Mcalister, A. J.

    1980-01-01

    Tungsten carbide, which is known to be active for hydrogen oxidation and CO tolerant has a hexagonal structure. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys Wx-1TixC were prepared and found to be active and CO tolerant. These alloys are of interest as possible phosphoric acid fuel cell catalysts. They also are of interest as opportunities to study the activity of W in a different crystalline environment and to correlate the activities of the surface sites with surface composition.

  2. Origin of Kinetic Resolution of Hydroxy Esters through Catalytic Enantioselective Lactonization by Chiral Phosphoric Acids.

    PubMed

    Changotra, Avtar; Sunoj, Raghavan B

    2016-08-01

    Kinetic resolution is a widely used strategy for separation and enrichment of enantiomers. Using density functional theory computations, the origin of how a chiral BINOL-phosphoric acid catalyzes the selective lactonization of one of the enantiomers of α-methyl γ-hydroxy ester is identified. In a stepwise mechanism, the stereocontrolling transition state for the addition of the hydroxyl group to the si face of the ester carbonyl in the case of the S isomer exhibits a network of more effective noncovalent interactions between the substrate and the chiral catalyst. PMID:27463593

  3. Influence of pH-control in phosphoric acid treatment of titanium oxide and their powder properties

    SciTech Connect

    Onoda, Hiroaki Matsukura, Aki

    2015-06-15

    Highlights: • The photocatalytic activity was suppressed by phosphoric acid treatment. • The obtained pigment had small particles with sub-micrometer size. • By phosphoric acid treatment, the smoothness of samples improved. - Abstract: Titanium oxide that has the photocatalytic activity is used as a white pigment for cosmetics. A certain degree of sebum on the skin is decomposed by the ultraviolet radiation in sunlight. In this work, titanium oxide was shaken with phosphoric acid at various pH to synthesize a novel white pigment for cosmetics. Their chemical composition, powder properties, photocatalytic activity, color phase, and smoothness were studied. The obtained materials indicated XRD peaks of titanium oxide, however, these peak intensity became weak by phosphoric acid treatment. These samples without heating and heated at 100 °C included the small particles with sub-micrometer size. The photocatalytic activity of the obtained powders became weak by phosphoric acid treatment at pH 4 and 5 to protect the sebum on the skin.

  4. Effect of fungal and phosphoric acid pretreatment on ethanol production from oil palm empty fruit bunches (OPEFB).

    PubMed

    Ishola, Mofoluwake M; Isroi; Taherzadeh, Mohammad J

    2014-08-01

    Oil palm empty fruit bunches (OPEFB), a lignocellulosic residue of palm oil industries was examined for ethanol production. Milled OPEFB exposed to simultaneous saccharification and fermentation (SSF) with enzymes and Saccharomyces cerevisiae resulted just in 14.5% ethanol yield compared to the theoretical yield. Therefore, chemical pretreatment with phosphoric acid, a biological pretreatment with white-rot fungus Pleurotus floridanus, and their combination were carried out on OPEFB prior to the SSF. Pretreatment with phosphoric acid, combination of both methods and just fungal pretreatment improved the digestibility of OPEFB by 24.0, 16.5 and 4.5 times, respectively. During the SSF, phosphoric acid pretreatment, combination of fungal and phosphoric acid pretreatment and just fungal pretreatment resulted in the highest 89.4%, 62.8% and 27.9% of the theoretical ethanol yield, respectively. However, the recovery of the OPEFB after the fungal pretreatment was 98.7%, which was higher than after phosphoric acid pretreatment (36.5%) and combined pretreatment (45.2%).

  5. Evaluating EDTA as a substitute for phosphoric acid-etching of enamel and dentin.

    PubMed

    Imbery, Terence A; Kennedy, Matthew; Janus, Charles; Moon, Peter C

    2012-01-01

    Matrix metalloproteinases (MMPs) are proteolytic enzymes released when dentin is acid-etched. The enzymes are capable of destroying unprotected collagen fibrils that are not encapsulated by the dentin adhesive. Chlorhexidine applied after etching inhibits the activation of released MMPs, whereas neutral ethylenediamine tetra-acetic acid (EDTA) prevents the release of MMPs. The purpose of this study was to determine if conditioning enamel and dentin with EDTA can be a substitute for treating acid-etching enamel and dentin with chlorhexidine. A column of composite resin was bonded to enamel and dentin after conditioning. Shear bond strengths were evaluated after 48 hours and after accelerated aging for three hours in 12% sodium hypochlorite. Shear bond strengths ranged from 15.6 MP a for accelerated aged EDTA enamel specimens to 26.8 MPa for dentin conditioned with EDTA and tested after 48 hours. A three-way ANOVA and a Tukey HSD test found statistically significant differences among the eight groups and the three independent variables (P < 0.05). EDTA was successfully substituted for phosphoric acid-etched enamel and dentin treated with chlorhexidine. Interactions of conditioning agent and aging were significant for dentin but not for enamel. In an effort to reduce the detrimental effects of MMPs, conditioning enamel and dentin with EDTA is an alternative to treating acid-etched dentin and enamel with chlorhexidine.

  6. Recovery of Uranium from Wet Phosphoric Acid by Solvent Extraction Processes

    DOE PAGES

    Beltrami, Denis; Cote, Gérard; Mokhtari, Hamid; Courtaud, Bruno; Moyer, Bruce A.; Chagnes, Alexandre

    2014-11-17

    Between 1951 and 1991, we developed about 17 processes to recover uranium from wet phosphoric acid (WPA), but the viability of these processes was subject to the variation of the uranium price market. Nowadays, uranium from WPA appears to be attractive due to the increase of the global uranium demand resulting from the emergence of developing countries. Moreover, the increasing demand provides impetus for a new look at the applicable technology with a view to improvements as well as altogether new approaches. This paper gives an overview on extraction processes developed in the past to recover uranium from wet phosphoricmore » acid (WPA) as well as the physicochemistry involved in these processes. Recent advances concerning the development of new extraction systems are also reported and discussed.« less

  7. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  8. Recovery of uranium from phosphoric acid medium by polymeric composite beads encapsulating organophosphorus extractants

    SciTech Connect

    Singh, D.K.; Yadav, K.K.; Varshney, L.; Singh, H.

    2013-07-01

    The present study deals with the preparation and evaluation of the poly-ethersulfone (PES) based composite beads encapsulating synergistic mixture of D2EHPA and Cyanex 923 (at 4:1 mole ratio) for the separation of uranium from phosphoric acid medium. SEM was used for the characterization of the composite materials. Addition of 1% PVA (polyvinyl alcohol) improved the internal morphology and porosity of the beads. Additionally, microscopic examination of the composite bead confirmed central coconut type cavity surrounded by porous polymer layer of the beads through which exchange of metal ions take place. Effect of various experimental variables including aqueous acidity, metal ion concentration in aqueous feed, concentration of organic extractant inside the beads, extractant to polymer ratio, liquid to solid (L/S) ratio and temperature on the extraction of uranium was studied. Increase in acidity (1-6 M), L/S ratio (1- 10), metal ion concentration (0.2-3 g/L U{sub 3}O{sub 8}) and polymer to extractant ratio (1:4 -1:10) led to decrease in extraction of uranium. At 5.5 M (comparable to wet process phosphoric acid concentration) the extraction of uranium was about 85% at L/S ratio 5. Increase in extractant concentration inside the bead resulted in enhanced extraction of metal ion. Increase in temperature in the range of 30 to 50 Celsius degrees increased the extraction, whereas further increase to 70 C degrees led to the decrease in extraction of uranium. Amongst various reagents tested, stripping of uranium was quantitative by 12% Na{sub 2}CO{sub 3} solution. Polymeric beads were found to be stable and reusable up-to 10 cycles of extraction/stripping. (authors)

  9. Optimizing the saccharification of sugar cane bagasse using dilute phosphoric acid followed by fungal cellulases.

    PubMed

    Geddes, C C; Peterson, J J; Roslander, C; Zacchi, G; Mullinnix, M T; Shanmugam, K T; Ingram, L O

    2010-03-01

    A low level of phosphoric acid (1% w/w on dry bagasse basis, 160 degrees C and above, 10 min) was shown to effectively hydrolyze the hemicellulose in sugar cane bagasse into monomers with minimal side reactions and to serve as an effective pre-treatment for the enzymatic hydrolysis of cellulose. Up to 45% of the remaining water-insoluble solids (WIS) was digested to sugar monomers by a low concentration of Biocellulase W (0.5 filter paper unit/gWIS) supplemented with beta-glucosidase, although much higher levels of cellulase (100-fold) were required for complete hydrolysis. After neutralization and nutrient addition, phosphoric acid syrups of hemicellulose sugars were fermented by ethanologenic Escherichia coli LY160 without further purification. Fermentation of these syrups was preceded by a lag that increased with increased pre-treatment temperature. Further improvements in organisms and optimization of steam treatments may allow the co-fermentation of sugars derived from hemicellulose and cellulose, eliminating need for liquid-solid separation, sugar purification, and separate fermentations.

  10. Development of mesoporosity during phosphoric acid activation of wood in steam atmosphere.

    PubMed

    Klijanienko, Aleksandra; Lorenc-Grabowska, Ewa; Gryglewicz, Grazyna

    2008-10-01

    Oak and birch were used as precursors to produce the activated carbons (ACs) with well-developed mesoporosity by phosphoric acid-promoted activation in a steam atmosphere. The effect of experimental variables such as the amount of activating agent, the soaking time and the type of wood on the development of porous structure upon heating at 480 degrees C was investigated. The materials were characterized by N2 adsorption at 77K, mercury porosimetry and elemental analysis. It was demonstrated that increasing impregnation ratio favors the development of micropores and small mesopores of 2-5nm, whereas the soaking time promotes the creation of large mesopores, between 10 and 50nm. Compared to birch, the oak activation using phosphoric acid in the same conditions gives ACs with lower mesopore volume and higher contribution of small mesopores that reflects the differences between both precursors in their biopolymer composition. The presence of steam in the H3PO4 activation process compared to nitrogen facilitates the development of mesoporosity to much higher extent for the birch than that of oak. The ACs prepared in this work show the BET surface area ranging from 800 to 2250m2g(-1), the total pore volume of 0.35-2.04cm3g(-1) with mesopore fraction between 0.06 and 0.68. PMID:18255286

  11. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.

    PubMed

    Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L

    2009-02-01

    In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year.

  12. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.

    PubMed

    Eberhardt, S H; Marone, F; Stampanoni, M; Büchi, F N; Schmidt, T J

    2014-11-01

    Synchrotron-based X-ray tomographic microscopy is investigated for imaging the local distribution and concentration of phosphoric acid in high-temperature polymer electrolyte fuel cells. Phosphoric acid fills the pores of the macro- and microporous fuel cell components. Its concentration in the fuel cell varies over a wide range (40-100 wt% H3PO4). This renders the quantification and concentration determination challenging. The problem is solved by using propagation-based phase contrast imaging and a referencing method. Fuel cell components with known acid concentrations were used to correlate greyscale values and acid concentrations. Thus calibration curves were established for the gas diffusion layer, catalyst layer and membrane in a non-operating fuel cell. The non-destructive imaging methodology was verified by comparing image-based values for acid content and concentration in the gas diffusion layer with those from chemical analysis.

  13. Fructo-oligosaccharide production from inulin through partial citric or phosphoric acid hydrolyses.

    PubMed

    Fontana, José Domingos; Grzybowski, Adelia; Tiboni, Marcela; Passos, Maurício

    2011-11-01

    Purified inulin from Dahlia tubers was partially hydrolyzed to form fructo-oligosaccharides by using citric or phosphoric acids (pH, 2.0-2.5) as mild acid catalysts. The ideal kinetic conditions to ensure a high yield of fructo-oligosaccharides relative to free fructose were a temperature range of 85°C-95°C, a hydrolysis time of 15-25 minutes, and a catalyst pH of 2.5. At the higher temperature and the longest hydrolysis time, an inversion of the product ratio occurred. Under these conditions, co-generation of hydroxymethylfurfural occurred, and it was eliminated by activated charcoal. Unlike in classic hydrolysis with hydrochloric or sulfuric acid, deionization of the actual hydrolysates was not necessary because the catalyst neutralization with common bases results in the formation of co-nutrients with alternative uses as foods or fermentation substrates. These whole hydrolysates can be advantageously added as nutraceuticals to carbonated beverages and acidic foods, such as soft drinks and yogurts. PMID:21663491

  14. Effect of impurities in wet-process phosphoric acids on DAP grades. [Diammonium phosphate

    SciTech Connect

    Achorn, F.P.; Dillard, E.F.; Frazier, A.W.; Salladay, D.G.

    1980-11-01

    Results of this study identify the main problems in meeting diammonium phosphate (DAP) grade specifications and suggest some possible solutions to these problems as follows: 1. The major source of grade deficiency in the commercial samples which were investigated was calcium. Some solutions to this problem are to maintain filter cloths in the phosphoric acid unit in good condition, operate the phosphoric acid unit at as low an acid temperature as consistent with good operation of this unit, and partially clarify the acid before it is used. 2. In the DAP unit the amount of Fe/sub 2/O/sub 3/ and F in the acid affects the content of C.I. P/sub 2/O/sub 5/ in the product. If the F:Fe/sub 2/O/sub 3/ wt ratio in the product can be kept above 2.3:1, probably the C.I.-P/sub 2/O/sub 5/ content of the product will be less than 0.1 percent. At lower F:Fe/sub 2/O/sub 3/ wt ratios, it is advantageous to have low retention times in the preneutralizer and ammoniator-granulator when the N:P mole ratio is 1.4:1 or higher. 3. Other data show that the N:P mole ratio in the slurry from the preneutralizer to the granulator must be above 1.4:1 to avoid nitrogen deficiencies. At lower ratios the product will contain some MAP; this causes nitrogen deficiency in the products. 4. The Mg and Al contents of the acids have less effect on grade deficiency than Ca and Fe. 5. To avoid highly viscous preneutralizer slurries when low preneutralizer retention times are used, ensure that there is sufficient F available (F:Fe/sub 2/O/sub 3/ wt ratio > 2.0:1) to combine with the Fe/sub 2/O/sub 3/ to form coarse crystals. An alternative to this latter suggestion is to replace the preneutralizer with a TVA pipe reactor which is partially installed in the granulator and discharges viscous slurry directly onto the bed of material in the granulator.

  15. Cassava starch maltodextrinization/monomerization through thermopressurized aqueous phosphoric acid hydrolysis.

    PubMed

    Fontana, J D; Passos, M; Baron, M; Mendes, S V; Ramos, L P

    2001-01-01

    Kinetic conditions were established for the depolymerization of cassava starch for the production of maltodextrins and glucose syrups. Thin-layer chromatography and high-performance liquid chromatography analyses corroborated that the proper H3PO4 strength and thermopressurization range (e.g., 142-170 degrees C; 2.8-6.8 atm) can be successfully explored for such hydrolytic purposes of native starch granules. Because phosphoric acid can be advantageously maintained in the hydrolysate and generates, after controlled neutralization with ammonia, the strategic nutrient triplet for industrial fermentations (C, P, N), this pretreatment strategy can be easily recognized as a recommended technology for hydrolysis and upgrading of starch and other plant polysaccharides. Compared to the classic catalysts, the mandatory desalting step (chloride removal by expensive anion-exchange resin or sulfate precipitation as the calcium-insoluble salt) can be avoided. Furthermore, properly diluted phosphoric acid is well known as an allowable additive in several popular soft drinks such as colas since its acidic feeling in the mouth is compatible and synergistic with both natural and artificial sweeteners. Glycosyrups from phosphorolyzed cassava starch have also been upgraded to high-value single-cell protein such as the pigmented yeast biomass of Xanthophyllomyces dendrorhous (Phaffia rhodozyma), whose astaxanthin (diketo-dihydroxy-beta-carotene) content may reach 0.5-1.0 mg/g of dry yeast cell. This can be used as an ideal complement for animal feeding as well as a natural staining for both fish farming (meat) and poultry (eggs). PMID:11963875

  16. Formation of titanium phosphate composites during phosphoric acid decomposition of natural sphene

    SciTech Connect

    Maslova, Marina V.; Rusanova, Daniela Naydenov, Valeri; Antzutkin, Oleg N.; Gerasimova, Lidia G.

    2008-12-15

    Decomposition of mineral sphene, CaTiOSiO{sub 4}, by H{sub 3}PO{sub 4} is investigated in detail. During the dissolution process, simultaneous calcium leaching and formation of titanium phosphate (TiP) take place. The main product of decomposition is a solid titanium phosphate-silica composite. The XRD, solid-sate NMR, IR, TGA, SEM and BET data were used to identify and characterize the composite as a mixture of crystalline Ti(HPO{sub 4}){sub 2}.H{sub 2}O and silica. When 80% phosphoric acid is used the decomposition degree is higher than 98% and calcium is completely transferred into the liquid phase. Formation of Ti(HPO{sub 4}){sub 2}.H{sub 2}O proceeds via formation of meta-stable titanium phosphate phases, Ti(H{sub 2}PO{sub 4})(PO{sub 4}).2H{sub 2}O and Ti(H{sub 2}PO{sub 4})(PO{sub 4}). The sorption affinities of TiP composites were examined in relation to caesium and strontium ions. A decrease of H{sub 3}PO{sub 4} concentration leads to formation of composites with greater sorption properties. The maximum sorption capacity of TiP is observed when 60% H{sub 3}PO{sub 4} is used in sphene decomposition. The work demonstrates a valuable option within the Ti(HPO{sub 4}){sub 2}.H{sub 2}O-SiO{sub 2} composite synthesis scheme, to use phosphoric acid flows for isolation of CaHPO{sub 4}.2H{sub 2}O fertilizer. - Graphical abstract: A new synthesis scheme for preparation of composite titanium phosphate (TiP) ion-exchangers upon one-stage decomposition process of natural sphene with phosphoric acid is presented. Syntheses of {alpha}-TiP-silica composites proceed via formation of meta-stable titanium phosphate phases. The concentration of H{sub 3}PO{sub 4} determines the porosity of final products and their sorption affinities.

  17. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  18. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution. PMID:16303218

  19. A Comparative Study of Phosphoric Acid-doped m-PBI Membranes

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Payzant, E Andrew; Meisner, Roberta A; Sumpter, Bobby G; Benicewicz, Brian

    2014-01-01

    Phosphoric acid (PA)-doped m-polybenzimidazole (PBI) membranes used in high temperature fuel cells and hydrogen pumps were prepared by a conventional imbibing process and a sol-gel fabrication process. A comparative study was conducted to investigate the critical properties of PA doping levels, ionic conductivities, mechanical properties, and molecular ordering. This systematic study found that sol-gel PA-doped m-PBI membranes were able to absorb higher acid doping levels and to achieve higher ionic conductivities than conventionally imbibed membranes when treated in an equivalent manner. Even at similar acid loadings, the sol-gel membranes exhibited higher ionic conductivities. Heat treatment of conventionally imbibed membranes with 29wt% solids caused a significant reduction in mechanical properties; conversely, sol-gel membranes exhibited an enhancement in mechanical properties. From X-ray structural studies and atomistic simulations, both conventionally imbibed and sol-gel membranes exhibited d-spacings of 3.5 and 4.6 , which were tentatively attributed to parallel ring stacking and staggered side-to-side packing, respectively, of the imidazole rings in these aromatic hetercyclic polymers. An anisotropic staggered side-to-side chain packing present in the conventional membranes may be root to the reduction in mechanical properties.

  20. Effect of EDTA and Phosphoric Acid Pretreatment on the Bonding Effectiveness of Self-Etch Adhesives to Ground Enamel

    PubMed Central

    Ibrahim, Ihab M.; Elkassas, Dina W.; Yousry, Mai M.

    2010-01-01

    Objectives: This in vitro study determined the effect of enamel pretreatment with phosphoric acid and ethylenediaminetetraacetic acid (EDTA) on the bond strength of strong, intermediary strong, and mild self-etching adhesive systems. Methods: Ninety sound human premolars were used. Resin composite cylinders were bonded to flat ground enamel surfaces using three self-etching adhesive systems: strong Adper Prompt L-Pop (pH=0.9–1.0), intermediary strong AdheSE (pH=1.6–1.7), and mild Frog (pH=2). Adhesive systems were applied either according to manufacturer instructions (control) or after pretreatment with either phosphoric acid or EDTA (n=10). After 24 hours, shear bond strength was tested using a universal testing machine at a cross-head speed of 0.5 mm/minute. Ultra-morphological characterization of the surface topography and resin/enamel interfaces as well as representative fractured enamel specimens were examined using scanning electron microscopy (SEM). Results: Neither surface pretreatment statistically increased the mean shear bond strength values of either the strong or the intermediary strong self-etching adhesive systems. However, phosphoric acid pretreatment significantly increased the mean shear bond strength values of the mild self-etching adhesive system. SEM examination of enamel surface topography showed that phosphoric acid pretreatment deepened the same etching pattern of the strong and intermediary strong adhesive systems but converted the irregular etching pattern of the mild self-etching adhesive system to a regular etching pattern. SEM examination of the resin/enamel interface revealed that deepening of the etching pattern was consistent with increase in the length of resin tags. EDTA pretreatment had a negligible effect on ultra-morphological features. Conclusions: Use of phosphoric acid pretreatment can be beneficial with mild self-etching adhesive systems for bonding to enamel. PMID:20922162

  1. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    SciTech Connect

    Wiberg, Gustav K. H. E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  2. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    SciTech Connect

    Uhrig, M.; Droste, W.; Wolf, D.

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  3. Evaluation of gas cooling for pressurized phosphoric acid fuel cell stacks

    NASA Technical Reports Server (NTRS)

    Farooque, M.; Skok, A. J.; Maru, H. C.; Kothmann, R. E.; Harry, R. W.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas cooling has already been demonstrated in atmospheric pressure stacks. This paper presents theoretical and experimental investigation of gas cooling for pressurized PAFC. Two approaches to gas cooling, Distributed Gas Cooling (DIGAS) and Separated Gas Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  4. Preparation and evaluation of advanced electrocatalysts for phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Stonehart, P.; Baris, J.; Pagliaro, P.

    1980-01-01

    Results are presented for hydrogen oxidation and hydrogen oxidation poisoned by carbon monoxide at levels between 0 and 30%. Due to the high activities that are now being observed for our platinum based electrocatalysts, the hydrogen concentrations were reduced to 10% levels in the gas supplies. Perturbation techniques were used to determine that a mechanism for the efficient operation of our porous gas diffusion electrodes is diffusion of the carbon monoxide out of the electrode structure through the electrolyte film on the electro-catalyst. A survey of the literature on platinum group materials (PGM) was carried out so that an identification of successful electrocatalysts could be made. Two PGM electrocatalysts were prepared and performance data for hydrogen oxidation in hot phosphoric acid in the presence of high carbon monoxide concentrations showed that they matched the best platinum on carbon electrocatalysts but with an electrocatalyst cost that was half of the platinum catalyst cost.

  5. Evaluation of Gas-Cooled Pressurized Phosphoric Acid Fuel Cells for Electric Utility Power Generation

    NASA Technical Reports Server (NTRS)

    Faroque, M.

    1983-01-01

    Gas cooling is a more reliable, less expensive and a more simple alternative to conventional liquid cooling for heat removal from the phosphoric acid fuel cell (PAFC). The feasibility of gas-cooling was already demonstrated in atmospheric pressure stacks. Theoretical and experimental investigations of gas-cooling for pressurized PAFC are presented. Two approaches to gas cooling, Distributed Gas-Cooling (DIGAS) and Separated Gas-Cooling (SGC) were considered, and a theoretical comparison on the basis of cell performance indicated SGC to be superior to DIGAS. The feasibility of SGC was experimentally demonstrated by operating a 45-cell stack for 700 hours at pressure, and determining thermal response and the effect of other related parameters.

  6. Analysis and evaluation of the possibility of introducing phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    1991-03-01

    Each step in the manufacture of fuel cells is reviewed. The possibility of cost reduction in the process is investigated. Additionally, the feasibility of providing financial assistance for fuel cell buyers is investigated. Also, the present status and the future outlook of fuel cell development are discussed. In Japan, phosphoric acid fuel cells are beginning demonstration testing. A 200 kW test plant, for commercial and remote island use, has finished its demonstration test favorably. The test run of an 11 mW plant, for the production of electric power, is being conducted by a private company. The manufacture of each of the fuel cell's subsystems is semi-automated at this time. The costs are estimated to be reduced to 60 - 80 percent of the present costs in a 10 mW/year plant and TO 50 - 60 percent of the present costs in a 100 mW/year plant.

  7. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  8. Flexible and Conducting Carbon Nanofibers Obtained from Electrospun Polyacrylonitrile/Phosphoric Acid Nanofibers.

    PubMed

    Lim, Baek Ho; Nirmala, R; Navamathavan, R; Kim, Hak Yong

    2016-01-01

    We report on the feasible synthesis of flexible and conductive carbon nanofibers by electrospinning process using polyacrylonitrile (PAN) and phosphoric acid (PA) as precursors. The carbon nanofibers were subsequently obtained by stabilization and carbonization of the electrospun PAN nanofibers. From SEM data, it was found that the electrospun PAN nanofibers showed a smooth surface and had an average diameter of approximately 200 nm. Afterwards, the electrospun PAN nanofibers were stabilized at 250 °C and heated at 900 °C for the carbonization process to obtain the carbon nanofibers. The carbonized PAN nanofibers exhibited a drastic improvement of electrical conduction. From Raman spectroscopy data, it was found that the carbonization at 900 °C gave a decrease of the intensity ratio of D and G peaks, indicating higher graphitic structure. PMID:27398565

  9. Porous texture of activated carbons prepared by phosphoric acid activation of woods

    NASA Astrophysics Data System (ADS)

    Díaz-Díez, M. A.; Gómez-Serrano, V.; Fernández González, C.; Cuerda-Correa, E. M.; Macías-García, A.

    2004-11-01

    Activated carbons (ACs) have been prepared using chestnut, cedar and walnut wood shavings from furniture industries located in the Comunidad Autónoma de Extremadura (SW Spain). Phosphoric acid (H3PO4) at different concentrations (i.e. 36 and 85 wt.%) has been used as activating agent. ACs have been characterized from the results obtained by N2 adsorption at 77 K. Moreover, the fractal dimension (D) has been calculated in order to determine the AC surface roughness degree. Optimal textural properties of ACs have been obtained by chemical activation with H3PO4 36 wt.%. This is corroborated by the slightly lower values of D for samples treated with H3PO4 85 wt.%.

  10. Method for the purification of bis (2-ethyl-hexyl)phosphoric acid

    DOEpatents

    Schulz, W.W.

    1974-02-19

    Foreign products including the neutral organophosphorous compounds and the iron salts normally present in commercial bis(2ethyl-hexyl) phosphoric acid(HDEHP), and the radiolytic degradation products of HDEHP on exposure of HDEHP to beta and gamma irradiation are removed from HDEHP containing one or more of such products by contacting the said foreign product containing HDEHP with a macroreticular anion exchange resin in base form whereby the DEHP- ion of HDEHP exchanges with the anion of the resin and is thus adsorbed on the resin and the said foreign products are not adsorbed and will pass through a bed of particles of the resin. The adsorbed DEHP- ion is then eluted from the resin and acidified to form and recover the purified HDEHP. (auth)

  11. Phosphoric acid pretreatment of Achyranthes aspera and Sida acuta weed biomass to improve enzymatic hydrolysis.

    PubMed

    Siripong, Premjet; Duangporn, Premjet; Takata, Eri; Tsutsumi, Yuji

    2016-03-01

    Achyranthes aspera and Sida acuta, two types of weed biomass are abundant and waste in Thailand. We focus on them as novel feedstock for bio-ethanol production because they contain high-cellulose content (45.9% and 46.9%, respectively) and unutilized material. Phosphoric acid (70%, 75%, and 80%) was employed for the pretreatment to improve by enzymatic hydrolysis. The pretreatment process removed most of the xylan and a part of the lignin from the weeds, while most of the glucan remained. The cellulose conversion to glucose was greater for pretreated A. aspera (86.2 ± 0.3%) than that of the pretreated S. acuta (82.2 ± 1.1%). Thus, the removal of hemicellulose significantly affected the efficiency of the enzymatic hydrolysis. The scanning electron microscopy images showed the exposed fibrous cellulose on the cell wall surface, and this substantial change of the surface structure contributed to improving the enzyme accessibility.

  12. Utilization of date stones for production of activated carbon using phosphoric acid

    SciTech Connect

    Haimour, N.M. . E-mail: nomanhaimour@hotmail.com; Emeish, S. . E-mail: s_emiesh@yahoo.com

    2006-07-01

    Date stone wastes have been utilized for production of activated carbon by chemical activation with phosphoric acid using a fluidized-bed reactor. The effects of the activation time, activation temperature, impregnation ratio, and particle size on the yield and the adsorptive capacity towards iodine were studied. The yield and the quality of the activated carbon prepared by using H{sub 3}PO{sub 4} were compared with that prepared from date stones using the same equipment, and under similar conditions by using ZnCl{sub 2} as an oxidizing agent. The maximum value of the iodine number of the activated carbon produced using H{sub 3}PO{sub 4} in this work was about 495 under the following conditions: impregnation ratio 0.4, activation time 60 min, activation temperature 800 deg. C, particle size 0.60 mm. The iodine number for the produced activated carbon was higher when phosphoric acid was used, compared to that when zinc chloride was used as impregnation reagent; however, the yield obtained when H{sub 3}PO{sub 4} was used was lower than the yield when ZnCl{sub 2} was used. The iodine number increases significantly with increasing the activation temperature. By increasing the impregnation ratio at the same temperature, the iodine number decreased sharply and an oscillation is noticed for all the cases but it was clearer at 800 deg. C. The average variation of the iodine number for the whole range of particle size used in this work is {+-}10%.

  13. IN-VITRO FORMATION OF PYROMORPHITE VIA REACTION OF PB SOURCES WITH SOFT-DRINK PHOSPHORIC ACID

    EPA Science Inventory

    The risk of Pb adsorption into the body may be greatly diminished when accompanied by a phosphate sink. One of the most labile, albeit not healthiest, forms of phosphate consumed in the human diet is derived from cola soft drinks that use phosphoric acid as a preservative and als...

  14. Efficacy of fungicide combinations, phosphoric acid, and plant extract from stinging nettle on potato late blight management and tuber yield

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Late blight, caused by Phytophthora infestans is a major constraint to potato production. Inadequate management of the disease has often resulted in heavy losses in various production regions. We assessed the efficacy of fungicides, phosphoric acid, and stinging nettle plant extract combinations for...

  15. Phosphoric acid-etching promotes bond strength and formation of acid-base resistant zone on enamel.

    PubMed

    Li, N; Nikaido, T; Alireza, S; Takagaki, T; Chen, J-H; Tagami, J

    2013-01-01

    This study examined the effect of phosphoric acid (PA) etching on the bond strength and acid-base resistant zone (ABRZ) formation of a two-step self-etching adhesive (SEA) system to enamel. An etch-and-rinse adhesive (EAR) system Single Bond (SB) and a two-step SEA system Clearfil SE Bond (SE) were used. Human teeth were randomly divided into four groups according to different adhesive treatments: 1) SB; 2) SE; 3) 35% PA etching→SE primer→SE adhesive (PA/SEp+a); (4) 35% PA etching→SE adhesive (PA/SEa). Microshear bond strength to enamel was measured and then statistically analyzed using one-way analysis of variance and the Tukey honestly significant difference test. The failure mode was recorded and analyzed by χ( 2 ) test. The etching pattern of the enamel surface was observed with scanning electron microscope (SEM). The bonded interface was exposed to a demineralizing solution (pH=4.5) for 4.5 hours and then 5% sodium hypochlorite with ultrasonication for 30 minutes. After argon-ion etching, the interfacial ultrastructure was observed using SEM. The microshear bond strength to enamel of the SE group was significantly lower (p<0.05) than that of the three PA-etched groups, although the latter three were not significantly different from one another. The ABRZ was detected in all the groups. In morphological observation, the ABRZ in the three PA-etched groups were obviously thicker compared with the SE group with an irregular wave-shaped edge.

  16. Active and Passive Application of the Phosphoric Acid on the Bond Strength of Lithium Disilicate.

    PubMed

    Giraldo, Tatiana Cardona; Villada, Vanessa Roldan; Castillo, Mauricio Peña; Gomes, Osnara Maria Mongruel; Bittencourt, Bruna Fortes; Dominguez, John Alexis

    2016-01-01

    The objective of this study was to evaluate the effect of passive or active phosphoric acid (PA) application after hydrofluoric acid (HA) treatment on the microshear bond strength of lithium disilicate. Thirty ceramic discs were made with IPS Emax 2 (10 mm thick and 10 mm diameter). The specimens were divided into 3 groups, A: 9.6% HA application; AF: 9.6% HA application + cleaning with 37% PA in passive mode and AFF: 9.6% HA application + cleaning with 37% PA in active mode. For the microshear test, four tygons (0.9 mm diameter and 0.2 mm high) were filled with resin cement (RelyX Ultimate) and placed on the ceramic disks. After testing, the fracture modes were examined under scanning electron microscopy. Data were analyzed by one-way ANOVA and Tukey's post test (α=0.05). The bond strength values were significantly higher in Group AFF (11.0±2.5 MPa) compared with group A (8.1±2.6 MPa) (p<0.002). AF group was not statistically different (9.4±2.5 MPa) from Group A. It was concluded that the active application of 37% PA after 9.6% HA increases the microshear bond strength values between the resin cement and lithium disilicate ceramic.

  17. Mechanistic insights into a BINOL-derived phosphoric acid-catalyzed asymmetric Pictet-Spengler reaction.

    PubMed

    Overvoorde, Lois M; Grayson, Matthew N; Luo, Yi; Goodman, Jonathan M

    2015-03-01

    The reaction of tryptamine and (2-oxocyclohexyl)acetic acid can be catalyzed by 3,3'-bis(triphenylsilyl)-1,1'-bi-2-naphthol phosphoric acid to give an asymmetric β-carboline. This reaction was first studied by Holloway et al. ( Org. Lett. 2010 , 12 , 4720 - 4723 ), but their mechanistic work did not explain the high stereoselectivity achieved. This study uses density functional theory and hybrid quantum mechanics/molecular mechanics calculations to investigate this reaction and provide a model to explain its outcome. The step leading to diastereo- and enantioselectivity is an asymmetric Pictet-Spengler reaction involving an N-acyliminium ion bound to the catalyst in a bidentate fashion. This interaction occurs via hydrogen bonds between the two terminal oxygen atoms of the catalyst phosphate group and the hydrogen atoms at N and C2 of the substrate indole group. These bonds hold the transition structure rigidly and thus allow the catalyst triphenylsilyl groups to influence the enantioselectivity. PMID:25654215

  18. Purification of industrial phosphoric acid (54 %) using Fe-pillared bentonite.

    PubMed

    Hamza, Wiem; Chtara, Chaker; Benzina, Mourad

    2016-08-01

    The current problem of excess impurities in industrial phosphoric acid (IPA) 54 % P2O5 makes phosphates industries look toward low-cost but efficient adsorbents. In the present study, iron-oxide-modified bentonite (Fe-PILB) was prepared and investigated as a possible adsorbent for the removal of organic matter (OM) like humic acid (HA), chromium (Cr(III)), and zinc (Zn(II)) from IPA aqueous solutions. These adsorbents were characterized using XRD, TEM, and BET. The adsorption of impurities is well described by the pseudo-second-order model. The results indicate that Fe-PILB has a good ability to resist co-existing anions and the low-pH condition of IPA and owns a relatively high-removal capacity of 80.42 and 25 % for OM, Cr(III), and Zn(II). The mechanism of adsorption may be described by the ligand and ion exchange that happened on the active sites. The selected order of adsorption OM > Cr(3+) > Zn(2+) showed the importance of the competitive phenomenon onto bentonite materials' pore adsorption. For the adsorption of OM at the low pH of IPA, H-bond complexation was the dominant mechanism. From the adsorption of heavy metals and OM complex compounds contained in IPA 54 % on Fe-PILB, the bridging of humic acid between bentonite and heavy metals (Zn(II) or Cr(III)) is proposed as the dominant adsorption mechanism (bentonite-HA-Me). Overall, the results obtained in this study indicate Fe-pillared bentonite possesses a potential for the practical application of impurity (OM, Zn(II), and Cr(III)) removal from IPA aqueous solutions. PMID:26514573

  19. One-Step Hydrothermal Synthesis of Butanetetracarboxylic Acid-Coated NaYF₄:Yb³⁺, Er³⁺ Upconversion Phosphors with Enhancement Upconversion Luminescence.

    PubMed

    Zhang, Liming; Mao, Lanlan; Lu, Zhuoxuan; Deng, Yan; He, Nongyue

    2016-01-01

    Butanetetracarboxylic acid (BTCA)/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have been successfully synthesized by a one-step hydrothermal method. The SEM and XRD results show the as-prepared phosphors exhibit main hexagonal lattice structures and uniform morphologies. FT-IR spectra confirm that the surface of as-prepared phosphors is inherently modified with the carboxyl groups. Under the excitation of 980 nm, it has been observed that BTCA/NaYF₄:Yb³⁺, Er³⁺ upconversion phosphors have a higher upconversion luminescence efficiency than that coated with citrate, ethylenediamine tetraacetic acid (EDTA), or polyacrylic acid (PAA). These results indicate that the BTCA/NaYF₄:Yb³⁺, Er³⁺ phosphors may have superior optical properties, and thus have great potential for biological applications. PMID:27398591

  20. Organic-inorganic interaction between hydroxyapatite and gelatin with the aging of gelatin in aqueous phosphoric acid solution.

    PubMed

    Chang, Myung Chul

    2008-11-01

    Hydroxyapatite (HAp)/gelatin (GEL) nanocomposite was prepared by the solution-precipitation process using Ca(OH)(2) in water and aqueous solution of H(3)PO(4) in GEL. Before the co precipitation process the GEL powders were dissolved in the aqueous phosphoric acid solution for the phosphorylation of GEL molecules. The chemical variation of the phosphorylated GEL macromolecules was investigated by using attenuated total reflection (ATR) measurement. The crystal growth of HAp became bigger with the long-time aging of the GEL molecules in the phosphoric acid solution, and it resulted from the reduction of length scale of the GEL molecules. The degree of the organic-inorganic interaction was decreased because of the degradation of the GEL macromolecules.

  1. Non-aqueous gel polymer electrolyte with phosphoric acid ester and its application for quasi solid-state supercapacitors

    NASA Astrophysics Data System (ADS)

    Łatoszyńska, Anna A.; Żukowska, Grażyna Zofia; Rutkowska, Iwona A.; Taberna, Pierre-Louis; Simon, Patrice; Kulesza, Pawel J.; Wieczorek, Władysław

    2015-01-01

    A mechanically-stable non-aqueous proton-conducting gel polymer electrolyte that is based on methacrylate monomers, is considered here for application in solid-state type supercapacitors. An electrochemical cell using activated carbon as active materials and the new gel polymer electrolyte has been characterized at room temperature using cyclic voltammetry, galvanostatic charge-discharge cycle tests as well as impedance spectroscopy. The use of phosphoric acid ester (instead of phosphoric acid) as a proton donor has led to an increase of both the operation voltage window (up to 1.3 V) and the electrolyte ionic conductivity (on the level of an order of magnitude). The resulting double layer capacitance of the microporous activated carbon was found to be as high as 120 F g-1; even more important, the supercapacitor utilizing non-aqueous proton-conducting gel polymer electrolyte is well-behaved in the wide temperature range (namely, from -40 to 80 °C).

  2. Enantiodivergent Atroposelective Synthesis of Chiral Biaryls by Asymmetric Transfer Hydrogenation: Chiral Phosphoric Acid Catalyzed Dynamic Kinetic Resolution.

    PubMed

    Mori, Keiji; Itakura, Tsubasa; Akiyama, Takahiko

    2016-09-12

    Reported herein is an enantiodivergent synthesis of chiral biaryls by a chiral phosphoric acid catalyzed asymmetric transfer hydrogenation reaction. Upon treatment of biaryl lactols with aromatic amines and a Hantzsch ester in the presence of chiral phosphoric acid, dynamic kinetic resolution (DKR) involving a reductive amination reaction proceeded smoothly to furnish both R and S isomers of chiral biaryls with excellent enantioselectivities by proper choice of hydroxyaniline derivative. This trend was observed in wide variety of substrates, and various chiral biphenyl and phenyl naphthyl adducts were synthesized with satisfactory enantioselectivities in enantiodivergent fashion. The enantiodivergent synthesis of synthetically challenging, chiral o-tetrasubstituted biaryls were also accomplished, and suggests high synthetic potential of the present method. PMID:27491630

  3. Removal of chromium(VI) from wastewater using phosphoric acid treated activated carbon

    NASA Astrophysics Data System (ADS)

    Suganthi, N.

    2013-06-01

    Activated carbon prepared by phosphoric acid treatment of tamarind nuts (seeds) was investigated for the removal of Cr(VI) from aqueous solutions. The characteristics of phosphorylated tamarind nut carbon (PTNC) were evaluated for porosity and surface area. The effect of contact time, pH, adsorbent dose and particle size variation were studied to evaluate the potential applicability of carbon for treating Cr(VI) containing wastewater. The adsorbent data were modeled by Langmiur and Freundlich classical adsorption isotherms. The kinetic studies showed that Cr(VI) adsorption on PTNC was in compliance with the pseudo-second-order kinetic model. Desorption studies indicated that ion-exchange mechanism was operating. The continuous adsorption was studied in glass columns of 2.5 cm diameter using electroplating wastewater to ascertain the practical applicability of PTNC in large scale. The mechanism of adsorption was found to be ion-exchange process and was supported by FTIR spectroscopy. The surface modification after adsorption was confirmed by SEM studies.

  4. Uranium control in phosphogypsum. [In wet-process phosphoric acid production

    SciTech Connect

    Hurst, F.J.; Arnold, W.D.

    1980-01-01

    In wet-process phosphoric acid plants, both previous and recent test results show that uranium dissolution from phosphate rock is significantly higher when the rock is acidulated under oxidizing conditions than under reducing conditions. Excess sulfate and excess fluoride further enhance the distribution of uranium to the cake. Apparently the U(IV) present in the crystal lattice of the apatite plus that formed by reduction of U(IV) by FE(II) during acidulation is trapped or carried into the crystal lattice of the calcium sulfate crystals as they form and grow. The amount of uranium that distributes to hemihydrate filter cake is up to seven times higher than the amount that distributes to the dihydrate cake. About 60% of the uranium in hemihydrate cakes can be readily leached after hydration of the cake, but the residual uranium (20 to 30%) is very difficult to remove economically. Much additional research is needed to develop methods for minimizing uranium losses to calcium filter cakes.

  5. Absorption of sulfur dioxide from simulated flue gas by polyethyleneimine-phosphoric acid solution.

    PubMed

    Bo, Wen; Li, Hongxia; Zhang, Junjie; Song, Xiangjia; Hu, Jinshan; Liu, Ce

    2016-12-01

    Clean fuel technologies have been widely developed in current society because fuel combustion can directly bring about the emission of hazardous gasses such as SO2. Flue gas desulfurization by polyethyleneimine (PEI)-phosphoric acid solution is an efficient desulfurization method. In this research, the PEI and the additive H3PO4 were used as absorption solution. SO2 was absorbed by the system and desorbed from the loaded solution. The cycle operation was also analyzed. Some technology conditions such as the concentration of PEI, the temperature, the gas flow rate, the concentration of SO2 and the pH value were experimentally researched. With the optimized process, the absorption efficiency of this system could reach 98% and the desorption efficiency was over 60%, showing good absorption/desorption capability. With this efficient approach, the present study may open a new window for developing high-performance absorbents which can make SO2 be well desorbed from the loaded solution and better reused in the flue gas desulfurization. PMID:27082307

  6. Conversion of spent solid phosphoric Acid catalyst to environmentally friendly fertilizer.

    PubMed

    Merwe, Werner van der

    2010-03-01

    Solid phosphoric acid (SPA) catalysts are widely used in the petroleum industry. Despite a high phosphorus content the spent catalyst is generally not reused. Moreover, due to the limited life spans that are achieved industrially, large quantities of spent catalyst requires disposal, often by landfill. SPA can be readily converted to fertilizer, but the presence of carbonaceous deposits on the catalyst presents a potential environmental hazard. This work demonstrates that these deposits are mostly polyaromatic (amorphous carbon) with smaller amounts of oxygenates and aliphatics. Neither the chemical makeup nor the physical structure of the catalyst or the presence of coke precludes it from use as fertilizer. Subsequently, the spent catalyst was milled, neutralized with lime and ammonium hydroxide, and then calcined to yield a phosphate-rich fertilizer. Toxicity characteristic leaching tests of the spent catalyst fertilizer showed low levels of metals and organics, establishing that no harmful compounds are likely to be absorbed into plant life or groundwater. A plant growth study of the spent catalyst fertilizer indicated that it is approximately as effective as superphosphate fertilizer when used in alkaline soil. The spent catalyst fertilizer is environmentally benign and economically efficient.

  7. Electrochemical behavior of lead alloys in sulfuric and phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Paleska, I.; Pruszkowska-Drachal, R.; Kotowski, J.; Dziudzi, A.; Milewski, J. D.; Kopczyk, M.; Czerwiński, A.

    The electrochemical behavior of lead, lead-antimony, and lead-calcium-aluminium-tin alloys has been studied in solutions containing various concentrations of sulfuric and phosphoric acids. The dependence of these electrode processes on some experimental conditions (mainly sweep rate and potential range) has been studied. The measurements were performed using a cyclic voltammetry technique. The study and the analysis of the morphology of alloys have been performed using a scanning electron microscope (SEM). Cyclic voltammograms of the lead-antimony alloy electrodes, similarly to pure lead electrode, also show the "anodic excursion" peak under some experimental conditions. Well defined current waves, corresponding to the oxidation and reduction processes of Sb, are observed, if the alloy surface is freshly abraded. The oxidation of antimony starts at potentials at which the formation of PbO takes place. The peak current of Sb oxidation reaction decreases during successive cycles, suggesting that Sb dissolves from the alloy surface during the first CV sweeps. Another explanation for this effect might be the formation of a PbSO 4 selective membrane.

  8. Conversion of spent solid phosphoric Acid catalyst to environmentally friendly fertilizer.

    PubMed

    Merwe, Werner van der

    2010-03-01

    Solid phosphoric acid (SPA) catalysts are widely used in the petroleum industry. Despite a high phosphorus content the spent catalyst is generally not reused. Moreover, due to the limited life spans that are achieved industrially, large quantities of spent catalyst requires disposal, often by landfill. SPA can be readily converted to fertilizer, but the presence of carbonaceous deposits on the catalyst presents a potential environmental hazard. This work demonstrates that these deposits are mostly polyaromatic (amorphous carbon) with smaller amounts of oxygenates and aliphatics. Neither the chemical makeup nor the physical structure of the catalyst or the presence of coke precludes it from use as fertilizer. Subsequently, the spent catalyst was milled, neutralized with lime and ammonium hydroxide, and then calcined to yield a phosphate-rich fertilizer. Toxicity characteristic leaching tests of the spent catalyst fertilizer showed low levels of metals and organics, establishing that no harmful compounds are likely to be absorbed into plant life or groundwater. A plant growth study of the spent catalyst fertilizer indicated that it is approximately as effective as superphosphate fertilizer when used in alkaline soil. The spent catalyst fertilizer is environmentally benign and economically efficient. PMID:20146419

  9. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.

    PubMed

    Gogoi, Sweety; Nath, Suresh K; Bordoloi, Shreemoyee; Dutta, Robin K

    2015-04-01

    Fluoride removal from groundwater has been studied by addition of dilute phosphoric acid (PA) to the influent water before limestone treatment through laboratory plug-flow column experiments and bench-scale plug-flow pilot tests. In this PA-enhanced limestone defluoridation (PAELD) technique, fluoride is removed from 0.526 mM to 0.50-52.60 μM in 3 h with near neutral final pH. The presence of PA increases the fluoride removal capacity of limestone to 1.10 mg/g compared to 0.39 mg/g reported in its absence. The changes in fluoride removal with variation in initial PA concentration, initial fluoride concentration and the final pH have been found to be statistically significant with p < 0.05. The estimated recurring cost is US$ ≈0.58/m(3) water. Simple scrubbing and rinsing is a preferable method for regeneration of limestone as it is almost equally effective with lime or NaOH. Sorption of fluoride by calcium phosphates produced in situ in the reactor is the dominant mechanism of fluoride removal in the PAELD. Precipitation of CaF2 and sorption of fluoride by the limestone also contribute to the fluoride removal. High efficiency, capacity, safety, environment-friendliness, low cost and simplicity of operation make the PAELD a potential technique for rural application. PMID:25621387

  10. Advanced water-cooled phosphoric acid fuel cell development. Final report

    SciTech Connect

    Not Available

    1992-09-01

    This program was conducted to improve the performance and minimize the cost of existing water-cooled phosphoric acid fuel cell stacks for electric utility and on-site applications. The goals for the electric utility stack technology were a power density of at least 175 watts per square foot over a 40,000-hour useful life and a projected one-of-a-kind, full-scale manufactured cost of less than $400 per kilowatt. The program adapted the existing on-site Configuration-B cell design to electric utility operating conditions and introduced additional new design features. Task 1 consisted of the conceptual design of a full-scale electric utility cell stack that meets program objectives. The conceptual design was updated to incorporate the results of material and process developments in Tasks 2 and 3, as well as results of stack tests conducted in Task 6. Tasks 2 and 3 developed the materials and processes required to fabricate the components that meet the program objectives. The design of the small area and 10-ft{sup 2} stacks was conducted in Task 4. Fabrication and assembly of the short stacks were conducted in Task 5 and subsequent tests were conducted in Task 6. The management and reporting functions of Task 7 provided DOE/METC with program visibility through required documentation and program reviews. This report describes the cell design and development effort that was conducted to demonstrate, by subscale stack test, the technical achievements made toward the above program objectives.

  11. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    SciTech Connect

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  12. Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2-siderite

    USGS Publications Warehouse

    Carothers, W.W.; Adami, L.H.; Rosenbauer, R.J.

    1988-01-01

    The equilibrium fractionation of O isotopes between synthetic siderite and water has been measured at temperatures ranging from 33?? to 197??C. The fractionation between siderite and water over this temperature range can be represented by the equation: 103 ln ?? = 3.13 ?? 106T-2 - 3.50. Comparison between the experimental and theoretical fractionations is favorable only at approximately 200??C; at lower temperatures, they generally differ by up to 2 permil. Siderite was prepared by the slow addition of ferrous chloride solutions to sodium bicarbonate solutions at the experimental temperatures. It was also used to determine the O isotope fractionation factors between phosphoric acid liberated CO2 and siderite. The fractionation factors for this pair at 25?? and 50??C are 1.01175 and 1.01075, respectively. Preliminary results of the measured C isotope fractionation between siderite and Co2 also indicate C isotopic equilibrium during precipitation of siderite. The measured distribution of 13C between siderite and CO2 coincides with the theoretical values only at about 120??C. Experimental and theoretical C fractionations differ up to 3 permil at higher and lower temperatures. ?? 1988.

  13. Immunohistochemical and ultrastructural evaluation of the effects of phosphoric acid etching on dentin proteoglycans.

    PubMed

    Oyarzún, A; Rathkamp, H; Dreyer, E

    2000-12-01

    It has been reported that phosphoric acid (PA) produces structural and molecular alterations in dentin collagen fibrils; however, no relevant information exists on the influence of etching with PA on dentin non-collagenous macromolecules. The present study investigated, by immunohistochemistry and ultrastructural histochemistry, the behavior of dentin proteoglycans (PG) after etching human dentin samples with 35% PA gel (thickened with colloidal silica) or with a 35% PA liquid for 15, 30 and 120 s. Immunolabeling with a mouse monoclonal anti-chondroitin sulfate antibody demonstrated that glycosaminoglycans (GAG) were preserved within dentinal tubules opened to the surface after etching with PA gel. In addition, the cationic tracer polyethyleneimine, used for the ultramicroscopic localization of PG anionic sites, revealed that treatment of dentin samples with PA gel preserved the polyanionic peritubular PG in the etched area. On the other hand, etching with the PA liquid produced loss of peritubular GAG and PG anionic sites in the etched dentin surface. The results obtained indicated that similar concentrations of PA in gel or liquid formulations differently affect the organization of dentin PG. The clinical significance of these in vitro findings and the structural and molecular interactions of dentin PG with adhesive systems are still unknown.

  14. Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid.

    PubMed

    Gogoi, Sweety; Nath, Suresh K; Bordoloi, Shreemoyee; Dutta, Robin K

    2015-04-01

    Fluoride removal from groundwater has been studied by addition of dilute phosphoric acid (PA) to the influent water before limestone treatment through laboratory plug-flow column experiments and bench-scale plug-flow pilot tests. In this PA-enhanced limestone defluoridation (PAELD) technique, fluoride is removed from 0.526 mM to 0.50-52.60 μM in 3 h with near neutral final pH. The presence of PA increases the fluoride removal capacity of limestone to 1.10 mg/g compared to 0.39 mg/g reported in its absence. The changes in fluoride removal with variation in initial PA concentration, initial fluoride concentration and the final pH have been found to be statistically significant with p < 0.05. The estimated recurring cost is US$ ≈0.58/m(3) water. Simple scrubbing and rinsing is a preferable method for regeneration of limestone as it is almost equally effective with lime or NaOH. Sorption of fluoride by calcium phosphates produced in situ in the reactor is the dominant mechanism of fluoride removal in the PAELD. Precipitation of CaF2 and sorption of fluoride by the limestone also contribute to the fluoride removal. High efficiency, capacity, safety, environment-friendliness, low cost and simplicity of operation make the PAELD a potential technique for rural application.

  15. Surface properties and early murine pre-osteoblastic cell responses of phosphoric acid modified titanium surface

    PubMed Central

    Osathanon, Thanaphum; Sawangmake, Chenphop; Ruangchainicom, Nanticha; Wutikornwipak, Pavitra; Kantukiti, Panisa; Nowwarote, Nunthawan; Pavasant, Prasit

    2015-01-01

    Aims The present study investigated the surface properties and murine pre-osteoblast cell (MC3T3-E1) responses of phosphoric acid (H3PO4) treated commercially pure titanium. Methods Titanium discs were treated with various concentration of H3PO4 (5%, 10%, and 20%; v/v) at 90 °C for 30 min. Surface properties were evaluated by profilometer, contact angle meter, and scanning electron microscopy (SEM) with energy dispersive X-rays. MC3T3-E1 attachment and spreading were evaluated by SEM and phalloidin immunohistochemistry staining. Results Surface roughness and wettability were not statistically difference among all experimental and control groups. Phosphate and oxygen were detected on H3PO4 treated surfaces. At 20 min, cell attachment was significantly higher in 10% and 20% H3PO4 treated groups compared to the control. Cells exhibited orientated-cytoskeleton fibers on 20% H3PO4 modified titanium surface. Though, there was no difference in cell spreading stage among all treatment groups. Conclusion H3PO4 treatment on titanium may influence early cell response, particularly on attachment and spreading. PMID:26937362

  16. Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication.

    PubMed

    Tang, Yanjun; Shen, Xiaochuang; Zhang, Junhua; Guo, Daliang; Kong, Fangong; Zhang, Nan

    2015-07-10

    Due to its amazing physicochemical properties and high environmental compatibility, cellulose nano-crystals (CNC) hold great promise for serving as a strategic platform for sustainable development. Now, there has been growing interest in the development of processes using waste or residual biomass as CNC source for addressing economic and environmental concerns. In the present work, a combined process involving phosphoric acid hydrolysis, enzymatic hydrolysis and sonication was proposed aiming to efficiently exact CNC from low-cost old corrugated container (OCC) pulp fiber. The effect of enzymatic hydrolysis on the yield and microstructure of resulting CNC was highlighted. Results showed that the enzymatic hydrolysis was effective in enhancing CNC yield after phosphoric acid hydrolysis. CNC was obtained with a yield of 23.98 wt% via the combined process with phosphoric acid concentration of 60 wt%, cellulase dosage of 2 mL (84 EGU) per 2g fiber and sonication intensity of 200 W. Moreover, the presence of enzymatic hydrolysis imparted the obtained CNC with improved dispersion, increased crystallinity and thermal stability.

  17. Lead immobilization using phosphoric acid in a smelter-contaminated urban soil.

    PubMed

    Yang, J; Mosby, D E; Casteel, S W; Blanchar, R W

    2001-09-01

    Transformation of soil lead (Pb) to pyromorphite, a lead phosphate, may be a cost-effective remedial strategy for immobilizing soil Pb and reducing Pb bioavailability. Soil treatment using phosphoric acid (H3PO4) was assessed for its efficacy to reduce Pb solubility and bioaccessibility. Soil containing 4,360 mg of Pb kg(-1), collected from a smelter-contaminated site in Joplin, MO, was reacted with 1,250, 2,500, 5,000, and 10,000 mg of P kg(-1) as H3PO4. The reaction was followed by measurements of Pb bioaccessibility, solubility products, and microprobe analyses. Soluble Pb concentration in the soil decreased with increasing H3PO4 addition. Adding 10,000 mg of P kg(-1) reduced bioaccessible Pb by 60%. The logarithm of bioaccessible Pb decreased as a linear function of increasing H3PO4 addition with an R2 of 0.989. A higher soil/solution ratio was required to extract bioaccessible Pb after the treatment. Microprobe analyses showed that the Pb particles contained P and Cl after the reaction, and the spectra generated by the wavelength-dispersive spectrometer were similar to those of synthetic chloropyromorphite. Lead solubility in the P-treated soil was less than predicted for hydroxypyromorphite [Pbs(PO4)3-OH] and greater than predicted for chloropyromorphite [Pbs(PO4)3Cl]. The P treatment caused approximately 23% redistribution of soil Pb from the clay and silt size fractions to the sand fraction. Soil treatment with H3PO4 resulted in the formation of a compound similar to chloropyromorphite and reduced bioaccessibility of soil Pb, which may have a potential as an in situ technique for Pb-contaminated soil remediation.

  18. Highly efficient heat recovery system for phosphoric acid fuel cells used for cooling telecommunication equipment

    NASA Astrophysics Data System (ADS)

    Ishizawa, Maki; Okada, Shigeru; Yamashita, Takashi

    To protect the global environment by using energy more efficiently, NTT is developing a phosphoric acid fuel cell (PAFC) energy system for telecommunication cogeneration systems. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy is used by absorption refrigerators to cool the telecommunication rooms throughout the year. We have recently developed a highly efficient system for recovering heat and water from the exhaust gases of a 200-kW (rated power) fuel cell. It is composed of a shell-and-tube type heat exchanger to recover high-temperature heat and a direct-contact cooler to recover the water efficiently and simply. The reformer and cathode exhaust gases from the fuel cell are first supplied to the heat exchanger and then to the cooler. The high-temperature (85-60°C) heat can be recovered, and the total efficiency including the heat recovered from the fuel-cell stack coolant can be improved by supplying the recovered heat to the dual-heat-input absorption refrigerator. The water needed for operating the fuel cell is also recovered from the exhaust gases. We are currently applying this heat and water recovery system to the PC25C-type fuel cell. Maximum total efficiency including electrical power efficiency is estimated to be 78% at the rated power of 200 kW: composed of 17% heat recovery for the fuel-cell stack coolant, 21% from the exhaust gas by improving the heat exchanger, and 40% from electrical conversion. Next, we plan to evaluate the usefulness of this heat recovery system for cooling telecommunication equipment.

  19. Effect of Phosphoric Acid Concentration on the Characteristics of Sugarcane Bagasse Activated Carbon

    NASA Astrophysics Data System (ADS)

    Adib, M. R. M.; Suraya, W. M. S. W.; Rafidah, H.; Amirza, A. R. M.; Attahirah, M. H. M. N.; Hani, M. S. N. Q.; Adnan, M. S.

    2016-07-01

    Impregnation method is one of the crucial steps involved in producing activated carbon using chemical activation process. Chemicals employed in this step is effective at decomposing the structure of material and forming micropores that helps in adsorption of contaminants. This paper explains thorough procedures that have been involved in producing sugarcane bagasse activated carbon (SBAC) by using 5%, 10%, 20%, 30% phosphoric acid (H3PO4) during the impregnation step. Concentration of H3PO4 used in the process of producing SBAC was optimized through several tests including bulk density, ash content, iodine adsorption and pore size diameter and the charactesristic of optimum SBAC produced has been compared with commercial activated carbon (CAC). Batch study has been carried out by using the SBAC produced from optimum condition to investigate the performance of SBAC in removal of turbidity and chemical oxygen demand (COD) from textile wastewater. From characteristic study, SBAC with 30% H3PO4 has shown the optimum value of bulk density, ash content, iodine adsorption and pore size diameter of 0.3023 g cm-3, 4.35%, 974.96 mg/g and 0.21-0.41 µm, respectively. These values are comparable to the characteristics of CAC. Experimental result from the batch study has been concluded that the SBAC has a promising potential in removing turbidity and COD of 75.5% and 66.3%, respectively which was a slightly lower than CAC which were able to remove 82.8% of turbidity and 70% of COD. As a conclusion, the SBAC is comparable with CAC in terms of their characteristics and the capability of removing contaminants from textile wastewater. Therefore, it has a commercial value to be used as an alternative of low-cost material in producing CAC.

  20. Transient responses of phosphoric acid fuel cell power plant system. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1983-01-01

    An analytical and computerized study of the steady state and transient response of a phosphoric acid fuel cell (PAFC) system was completed. Parametric studies and sensitivity analyses of the PAFC system's operation were accomplished. Four non-linear dynamic models of the fuel cell stack, reformer, shift converters, and heat exchangers were developed based on nonhomogeneous non-linear partial differential equations, which include the material, component, energy balance, and electrochemical kinetic features. Due to a lack of experimental data for the dynamic response of the components only the steady state results were compared with data from other sources, indicating reasonably good agreement. A steady state simulation of the entire system was developed using, nonlinear ordinary differential equations. The finite difference method and trial-and-error procedures were used to obtain a solution. Using the model, a PAFC system, that was developed under NASA Grant, NCC3-17, was improved through the optimization of the heat exchanger network. Three types of cooling configurations for cell plates were evaluated to obtain the best current density and temperature distributions. The steady state solutions were used as the initial conditions in the dynamic model. The transient response of a simplified PAFC system, which included all of the major components, subjected to a load change was obtained. Due to the length of the computation time for the transient response calculations, analysis on a real-time computer was not possible. A simulation of the real-time calculations was developed on a batch type computer. The transient response characteristics are needed for the optimization of the design and control of the whole PAFC system. All of the models, procedures and simulations were programmed in Fortran and run on IBM 370 computers at Cleveland State University and the NASA Lewis Research Center.

  1. Activity inhibition and its mitigation in high temperature proton exchange membrane fuel cells: The role of phosphoric acid, ammonium trifluoromethanesulfonate, and polyvinylidene difluoride

    NASA Astrophysics Data System (ADS)

    Holst-Olesen, Kaspar; Nesselberger, Markus; Perchthaler, Markus; Hacker, Viktor; Arenz, Matthias

    2014-12-01

    In the presented work we systematically study the influence of phosphoric acid, ammonium trifluoromethanesulfonate (ATFMS), and polyvinylidene difluoride (PVDF) on the oxygen reduction reaction (ORR) activity of carbon supported, Pt based catalysts. The influence of phosphoric acid is investigated in a mixed solution of perchloric acid with small amounts of phosphoric acid added. Thin-film rotating disk electrode (TF-RDE) measurements show that such a mixed electrolyte is advantageous as the oxygen reduction reaction (ORR) is inhibited without influencing the oxygen solubility in the electrolyte. In contrast to previous reports it is seen when investigating additives that ATFMS acts as a catalyst poison; whereas the results provide evidence of a better performance in case of the PVDF incorporated catalysts as compared to reference samples without PVDF. The technological relevance of the PVDF improvements and its stability over prolonged time was validated by membrane electrode assembly (MEA) tests.

  2. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production.

    PubMed

    El Afifi, E M; Hilal, M A; Attallah, M F; El-Reefy, S A

    2009-05-01

    The present work is directed to characterize the phosphogypsum (PG) wastes associated with phosphoric acid produced by the wet process in industrial facility for the production of fertilizers and chemicals in Egypt. The PG waste samples were characterized in terms of spectroscopic analysis (X-ray diffraction, X-ray fluorescence, IR spectra) and radiometric analysis (gamma- and alpha-measurements). The gamma-ray measurements showed that the average activity concentrations are 140+/-12.6, 459+/-36.7, 323+/-28.4, 8.3+/-0.76 and 64.3+/-4.1 Bq/kg for U-238, Ra-226, Pb-210, Th-232 and K-40, respectively. The alpha-particle measurements of uranium isotopes showed that the average activity concentrations of U-238, U-235 and U-234 were 153+/-9.8, 7+/-0.38, 152+/-10.4 Bq/kg, respectively. The average radiochemical recovery (%) of the destructive alpha-particle measurements is approximately 70% with a resolution (FWHM) of approximately 30 keV. Activity ratios of U-238/Ra-226 and U-238/Pb-210 were less than unity (i.e., <1) and equal to 0.31+/-0.02 and 0.47+/-0.16, respectively. The isotopic ratios of U-238/U-235 and U-238/U-234 (in PG and PR samples) were close to the normal values of approximately 21.7 and approximately 1, respectively and are not affected by the wet processing of phosphate rock (PR). The obtained results of PG waste samples were compared with phosphate rock (PR) samples. The radiation hazard indices are namely, radium activity index (Ra-Eq>370 Bq/kg), total absorbed gamma dose rate (D(gamma r)>5 nGy/h) and radon emanation fraction (Rn-EF>20%). Uncertainty of the sample counting was 95% confidence level of sigma. The results indicated the necessity to find suitable routes to decrease and/or redistribute the radionuclide of environmental interest (i.e., Ra-226) in PG wastes, consequently to reduce its radiation impacts in the surrounding environment.

  3. Characterization of phosphogypsum wastes associated with phosphoric acid and fertilizers production.

    PubMed

    El Afifi, E M; Hilal, M A; Attallah, M F; El-Reefy, S A

    2009-05-01

    The present work is directed to characterize the phosphogypsum (PG) wastes associated with phosphoric acid produced by the wet process in industrial facility for the production of fertilizers and chemicals in Egypt. The PG waste samples were characterized in terms of spectroscopic analysis (X-ray diffraction, X-ray fluorescence, IR spectra) and radiometric analysis (gamma- and alpha-measurements). The gamma-ray measurements showed that the average activity concentrations are 140+/-12.6, 459+/-36.7, 323+/-28.4, 8.3+/-0.76 and 64.3+/-4.1 Bq/kg for U-238, Ra-226, Pb-210, Th-232 and K-40, respectively. The alpha-particle measurements of uranium isotopes showed that the average activity concentrations of U-238, U-235 and U-234 were 153+/-9.8, 7+/-0.38, 152+/-10.4 Bq/kg, respectively. The average radiochemical recovery (%) of the destructive alpha-particle measurements is approximately 70% with a resolution (FWHM) of approximately 30 keV. Activity ratios of U-238/Ra-226 and U-238/Pb-210 were less than unity (i.e., <1) and equal to 0.31+/-0.02 and 0.47+/-0.16, respectively. The isotopic ratios of U-238/U-235 and U-238/U-234 (in PG and PR samples) were close to the normal values of approximately 21.7 and approximately 1, respectively and are not affected by the wet processing of phosphate rock (PR). The obtained results of PG waste samples were compared with phosphate rock (PR) samples. The radiation hazard indices are namely, radium activity index (Ra-Eq>370 Bq/kg), total absorbed gamma dose rate (D(gamma r)>5 nGy/h) and radon emanation fraction (Rn-EF>20%). Uncertainty of the sample counting was 95% confidence level of sigma. The results indicated the necessity to find suitable routes to decrease and/or redistribute the radionuclide of environmental interest (i.e., Ra-226) in PG wastes, consequently to reduce its radiation impacts in the surrounding environment. PMID:19272681

  4. Protecting-Group-Free Total Synthesis of (-)-Lycopodine via Phosphoric Acid Promoted Alkyne Aza-Prins Cyclization.

    PubMed

    Ma, Donghui; Zhong, Zhuliang; Liu, Zaimin; Zhang, Mingjie; Xu, Shiyan; Xu, Dengyu; Song, Dengpeng; Xie, Xingang; She, Xuegong

    2016-09-01

    A protecting-group-free route for the total synthesis of (-)-lycopodine was demonstrated in only 8 steps from Wade's fawcettimine enone (12 steps from commercial availiable (R)-(+)-pulegone). The key core of this alkaloid was constructed through a phosphoric acid promoted and highly stereocontrolled alkyne aza-Prins cyclization reaction, synchronously establishing the bridged B-ring and the C13 quaternary stereocenter. Importantly, the synthesis further features a new efficient approach for the preparation of other lycopodine-type alkaloids. PMID:27529730

  5. Modeling of facilitated transport of phenylalanine by emulsion liquid membranes with di(2-ethylhexyl)phosphoric acid as a carrier

    SciTech Connect

    Liu, X.; Liu, D.

    1998-12-01

    A mathematical model is developed in this paper to simulate the facilitated transport of phenylalanine (Phe) in emulsion liquid membrane (ELM) systems with di(2-ethylhexyl)phosphoric acid as a carrier. The model takes into account the mass transfer in both the external aqueous phase and the organic membrane phase interfacial reaction as well as membrane breakage during agitation. The model is tested by comparing theoretical predications with experimental results using Phe extraction by ELM processes. It is found that the model is valid for simulating the facilitated transport of Phe with ELM under various experimental conditions.

  6. Measurements of the effects of thermal contact resistance on steady state heat transfer in phosphoric-acid fuel cell stack

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Alkasab, Kalil A.

    1991-01-01

    The influence of the thermal contact resistance on the heat transfer between the electrode plates, and the cooling system plate in a phosphoric-acid fuel-cell stack was experimentally investigated. The investigation was conducted using a set-up that simulates the operating conditions prevailing in a phosphoric acid fuel-cell stack. The fuel-cell cooling system utilized three types of coolants, water, engine oil, and air, to remove excess heat generated in the cell electrode and to maintain a reasonably uniform temperature distribution in the electrode plate. The thermal contact resistance was measured as a function of pressure at the interface between the electrode plate and the cooling system plate. The interface pressure range was from 0 kPa to 3448 kPa, while the Reynolds number for the cooling limits varied from 15 to 79 for oil, 1165 to 6165 for water, and 700 to 6864 for air. Results showed that increasing the interface pressure resulted in a higher heat transfer coefficient.

  7. Improved detection of multi-phosphorylated peptides in the presence of phosphoric acid in liquid chromatography/mass spectrometry

    SciTech Connect

    Kim, Jeongkwon; Camp, David G.; Smith, Richard D.

    2004-02-18

    In contrast to lower phosphorylation states (e.g., the tryptic monophosphopeptide FQpSEEQQQTEDELQDK from bovine -casein), the specific detection of multi-phosphorylated peptides (e.g. the tetraphosphopeptide RELEELNVPGEIVEpSLpSpSpSEESITR from tryptic digestion of bovine -casein) has often been problematic for liquid chromatography-mass spectrometry analysis due to their high affinity for adsorption to exposed surfaces. We observed an enhancement in the overall detection of phosphopeptides upon addition of phosphoric acid (0.1% to 1.0%) to the sample solution; a 10-fold increase in sensitivity was measured for the detection of two tryptic phosphopeptides as well as a significant improvement in the detection of the tetraphosphopeptide. Using capillary LC with an ion trap tandem mass spectrometer for detection and identification, the achievable detection limits were 50 fmol and 50 pmol for the monophosphopeptide and the tetraphosphopeptide, respectively. Phosphoric acid is believed to act as a blocking agent to available silanol groups on both the silica capillary surface and the C-18-bonded silica surface.

  8. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  9. Fuel ethanol production from corn stover under optimized dilute phosphoric acid pretreatment and enzymatic hydrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol is a renewable oxygenated fuel. Dilute acid pretreatment is a promising pretreatment technology for conversion of lignocellulosic biomass to fuel ethanol. Generation of fermentable sugars from corn stover involves pretreatment and enzymatic saccharification. Pretreatment is crucial as nat...

  10. Analytical applications of condensed phosphoric acid-III Iodometric determination of sulphur after reduction of sulphate with sodium hypophosphite and either tin metal or potassium iodide in condensed phosphoric acid.

    PubMed

    Mizoguchi, T; Iwahori, H; Ishii, H

    1980-06-01

    Novel methods for the reduction of sulphate to hydrogen sulphide with hypophosphite-tin metal or hypophosphite-iodide in condensed phosphoric acid (CPA) are proposed. The reduction of sulphate with hypophosphite alone does not proceed quantitatively. Sulphate, however, is quantitatively decomposed with hypophosphite when tin metal or potassium iodide is used together with it. The determination of sulphur by the hypophosphite-tin metal-CPA and tin(II)-CPA methods is interfered with by copper on account of the stabilization of copper(I) sulphide, but this interference can be eliminated by adding iodide, e.g. potassium and lead salts. Alum and barytes are quantitatively decomposed within 15 min at 140 and 280 degrees , respectively. The hydrogen sulphide evolved is absorbed in zinc acetate solution at pH 4.5 and then determined by iodometry.

  11. Fluroide concentration in enamel treated with 50% phosphoric acid and NaF with subsequent decalcification in "acid-gel".

    PubMed

    Bohrer, J; Gedalia, I

    1980-06-01

    Fluoride concentration of enamel surfaces treated with 50% H3PO4, together with high NaF contents or etched with 50% H3PO4 followed by application with a water solution of high NaF content, was examined. In addition, the degree of decalcification and the fluoride content of subsequently incubated enamel samples in acid-gel at 37 degrees C were determined. Generally, incubation highly increased the fluoride contents of the etched and fluoridated (experimental), control (etched only), and untreated (vaseline) enamel samples. An increasing demineralization effect was observed in the samples of the following order: experimental, control, and baseline. It appears does not predispose to an increased caries challenge in vitro.

  12. Fine-sized Tb3Al5O12:Ce phosphor powders prepared by spray pyrolysis from spray solution with ethylenediaminetetraacetic acid

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Tae; Kim, Jung Hyun; Hong, Young Jun; Lee, Jung-Kul; Kang, Yun Chan

    2012-06-01

    Fine Tb2.91Al5O12:Ce0.09 (TAG:Ce) phosphor powders are prepared by spray pyrolysis from a spray solution with ethylenediaminetetraacetic acid (EDTA). EDTA is used as an organic additive to form hollow precursor powders as well as a chelating agent. The powders prepared from the spray solution with EDTA have mean sizes of 350, 400 and 604 nm at post-treatment temperatures of 1400°C, 1450°C and 1500°C, respectively. The phosphor powders prepared from the spray solution with EDTA have similar photoluminescence intensities at post-treatment temperatures of 1450°C and 1500°C. The photoluminescence intensity of the phosphor powders prepared from the spray solution with EDTA is 116% of that of the phosphor powders prepared from the spray solution without EDTA at a post-treatment temperature of 1450°C.

  13. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  14. Laser Fired Local Back Contact C-Si Solar Cells Using Phosphoric Acid for Back Surface Field

    NASA Astrophysics Data System (ADS)

    Balaji, Nagarajan; Park, Cheolmin; Ju, Minkyu; Lee, Seunghwan; Kim, Jungmo; Chung, Sungyoun; Raja, Jayapal; Yi, Junsin

    2015-04-01

    We report on a laser doping process for the formation of a local back surface field (BSF) using phosphoric acid (H3PO4) for n-type passivated emitter rear totally diffused silicon solar cells. The sheet resistance of the BSF layer was varied by changing the H3PO4 concentration. The BSF layer was passivated using SiN x . With the passivated BSF, the LBC solar cell shows an improved open circuit voltage. A laser power of 44 mW with 10 kHz resulted in a 45-Ω/sq BSF layer with effective lifetime of 290 μs and a higher V oc of 623 mV. With the optimized laser parameters, devices with the best electrical results yielded a short circuit current density of 36 mA/cm2 and an efficiency of 18.26%.

  15. Nitric-phosphoric acid etching effects on the surface chemical composition of CdTe thin film.

    NASA Astrophysics Data System (ADS)

    Irfan, Irfan; Ding, Huanjun; Xia, Wei; Lin, Hao; Tang, Ching W.; Gao, Yongli

    2009-03-01

    Nitric-phosphoric (NP) acid etching has been regarded as one of the most successful methods for the formation of low resistance back contact with the metal electrode in CdTe based solar cells. We report back surface chemical composition for eight different durations of NP etching of CdTe polycrystalline thin film. We studied the surfaces with x-ray photoemission spectroscopy (XPS), ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IEPS) and atomic force microscopy (AFM). Etching dependence on the back surface composition and electronic structure was observed. Valence and conduction band shifts relative to the Fermi level of the system with different etching duration were analyzed. The sample was left in open ambient condition for three weeks and XPS data were obtained again in order to study the difference in surface chemical composition with the pristine CdTe film. Unetched and highly etched part of the sample were sputtered and the depth profile analyzed.

  16. Luminescence properties of compounds of europium(III) with quinaldic acid and phosphor-containing neutral ligands

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.

    2016-06-01

    Luminescent complex mixed-ligand compounds of europium(III) with quinaldic acid and phosphor- containing neutral ligands have been obtained. Their composition and structure have been determined. The thermal and spectral-luminescent properties of the obtained complex mixed-ligand compounds of europium( III) have been studied. It is shown that, during thermolysis, a water molecule and neutral ligand are detached in two stages with endothermic effects. It is established that quinaldinate ion is coordinated to europium(III) ion in a bidentate fashion. The Stark structure of the 5 D 0-7 F j ( j = 0, 1, 2) transitions in low-temperature luminescence spectra of complex compounds of europium(III) has been analyzed.

  17. Adsorption properties of biomass-based activated carbon prepared with spent coffee grounds and pomelo skin by phosphoric acid activation

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Ouyang, Feng

    2013-03-01

    Activated carbon prepared from spent coffee grounds and pomelo skin by phosphoric acid activation had been employed as the adsorbent for ethylene and n-butane at room temperature. Prepared activated carbon was characterized by means of nitrogen adsorption-desorption, X-ray powder diffraction, scanning electron microscope and Fourier transform infrared spectroscope. It was confirmed that pore structure played an important role during the adsorption testes. Adsorption isotherms of ethylene and n-butane fitted well with Langmuir equation. The prepared samples owned better adsorption capacity for n-butane than commercial activated carbon. Isosteric heats of adsorptions at different coverage were calculated through Clausius-Clapeyron equation. Micropore filling effect was explained in a thermodynamic way.

  18. Drastic Enhancement of Photocatalytic Activities over Phosphoric Acid Protonated Porous g-C3 N4 Nanosheets under Visible Light.

    PubMed

    Shi, Li; Chang, Kun; Zhang, Huabin; Hai, Xiao; Yang, Liuqing; Wang, Tao; Ye, Jinhua

    2016-08-01

    A simple method is developed to fabricate protonated porous graphitic carbon nitride nanosheets (P-PCNNS) by protonation-exfoliation of bulk graphitic carbon nitride (BCN) with phosphoric acid (H3 PO4 ). The H3 PO4 treatment not only helps to exfoliate the BCN into 2D ultrathin nanosheets with abundant micro- and mesopores, endowing P-PCNNS with more exposed active catalytic sites and cross-plane diffusion channels to facilitate the mass and charge transport, but also induces the protonation of carbon nitride polymer, leading to the moderate removal of the impurities of carbon species in BCN for the optimization of the aromatic π-conjugated system for better charge separation without changing its chemical structure. As a result, the P-PCNNS show much higher photocatalytic performance for hydrogen evolution and CO2 conversion than bare BCN and graphitic carbon nitride nanosheets. PMID:27410192

  19. Morphology of the diastereomeric salt of the alkaloid ephedrine and a chlorine substituted cyclic phosphoric acid (CLINAM)

    NASA Astrophysics Data System (ADS)

    Strom, C. S.; Leusen, F. J. J.; Geertman, R. M.; Ariaans, G. J. A.

    1997-01-01

    The morphology of the diastereomeric salt of the alkaloid ephedrine and a chlorine substituted cyclic phosphoric acid is studied theoretically by means of a first-principles application of Hartman's PBC theory. A rigorous graph-theoretic derivation of the F slices of CLINAM and 2,4-DICLINAM has yielded all possible growth layers and their orientations. The Coulomb and Van der Waals contributions to the energy quantities characterizing CLINAM are calculated, using the Ewald formulation adjusted to lamina shapes, exactly and free from adjustable parameters. Several schemes of computing partial charges, in combination with energy minimization techniques are used for computing the atomic point charges. The structural morphology follows from the total attachment energies. The theoretical growth habit depends sensitively on the choice of the employed atomic charge scheme. The theoretical morphology of CLINAM crystals is discussed in the light of experimental results.

  20. Determination of Activity Coefficients of di-(2-ethylhexyl) Phosphoric Acid Dimer in Select Organic Solvents Using Vapor Phase Osmometry

    SciTech Connect

    Michael F. Gray; Peter Zalupski; Mikael Nilsson

    2013-08-01

    Effective models for solvent extraction require accurate characterization of the nonideality effects for each component, including the extractants. In this study, the nonideal behavior of the industrial extractant di(2-ethylhexyl) phosphoric acid has been investigated using vapor pressure osmometry (VPO). From the osmometry data, activity coefficients for the HDEHP dimer were obtained based on a formulation of the regular solution theory of Scatchard and Hildebrand, and the Margules two- and three-suffix equations. The results show similarity with a slope-analysis based relation from previous literature, although important differences are highlighted. The work points towards VPO as a useful technique for this type of study, but care must be taken with the choice of standard and method of analysis.

  1. In the Bottlebrush Garden: The Structural Aspects of Coordination Polymer Phases formed in Lanthanide Extraction with Alkyl Phosphoric Acids.

    PubMed

    Ellis, Ross J; Demars, Thomas; Liu, Guokui; Niklas, Jens; Poluektov, Oleg G; Shkrob, Ilya A

    2015-09-01

    Coordination polymers (CPs) of metal ions are central to a large variety of applications, such as catalysis and separations. These polymers frequently occur as amorphous solids that segregate from solution. The structural aspects of this segregation remain elusive due to the dearth of the spectroscopic techniques and computational approaches suitable for probing such systems. Therefore, there is a lacking of understanding of how the molecular building blocks give rise to the mesoscale architectures that characterize CP materials. In this study we revisit a CP phase formed in the extraction of trivalent lanthanide ions by diesters of the phosphoric acid, such as the bis(2-ethylhexyl)phosphoric acid (HDEHP). This is a well-known system with practical importance in strategic metals refining and nuclear fuel reprocessing. A CP phase, referred to as a "third phase", has been known to form in these systems for half a century, yet the structure of the amorphous solid is still a point of contention, illustrating the difficulties faced in characterizing such materials. In this study, we follow a deductive approach to solving the molecular structure of amorphous CP phases, using semiempirical calculations to set up an array of physically plausible models and then deploying a suite of experimental techniques, including optical, magnetic resonance, and X-ray spectroscopies, to consecutively eliminate all but one model. We demonstrate that the "third phase" consists of hexagonally packed linear chains in which the lanthanide ions are connected by three O-P-O bridges, with the modifying groups protruding outward, as in a bottlebrush. The tendency to yield linear polynuclear oligomers that is apparent in this system may also be present in other systems yielding the "third phase", demonstrating how molecular geometry directs polymeric assembly in hybrid materials. We show that the packing of bridging molecules is central to directing the structure of CP phases and that by

  2. Bonding to enamel/dentin etched with phosphoric and hydrofluoric acids.

    PubMed

    Barghi, Nassar; Covington, Kendra; Fischer, Dan E; Herbold, Edward T

    2004-10-01

    Repairing porcelain intraorally allows clinicians to provide their patients with a conservative means of treating fractured or debonded restorations. This requires, however, the etching of both porcelain and tooth structure with etching solutions. It is thus relevant to understand the effect that different etching procedures have on shear bond strengths of composite resins to both dentin and enamel structures. Based on the results of this investigation, the authors recommend isolation of tooth structures and the etching of porcelain with hydrofluoric acid.

  3. Modeling the hydrolysis of perfluorinated compounds containing carboxylic and phosphoric acid ester functions and sulfonamide groups.

    PubMed

    Rayne, Sierra; Forest, Kaya

    2010-01-01

    Temperature-dependent rate constants were estimated for the acid- and base-catalyzed and neutral hydrolysis reactions of perfluorinated telomer acrylates (FTAcrs) and phosphate esters (FTPEs), and the S(N)1 and S(N)2 hydrolysis reactions of fluorotelomer iodides (FTIs). Under some environmental conditions, hydrolysis of monomeric FTAcrs could be rapid (half-lives of several years in marine systems and as low as several days in some landfills) and represent a dominant portion of their overall degradation. Abiotic hydrolysis of monomeric FTAcrs may be a significant contributor to current environmental loadings of fluorotelomer alcohols (FTOHs) and perfluoroalkyl carboxylic acids (PFCAs). Polymeric FTAcrs are expected to be hydrolyzed more slowly, with estimated half-lives in soil and natural waters ranging between several centuries to several millenia absent additional surface area limitations on reactivity. Poor agreement was found between the limited experimental data on FTPE hydrolysis and computational estimates, requiring more detailed experimental data before any further modeling can occur on these compounds or their perfluoroalkyl sulfonamidoethanol phosphate ester (PFSamPE) analogs. FTIs are expected to have hydrolytic half-lives of about 130 days in most natural waters, suggesting they may be contributing to substantial FTOH and PFCA inputs in aquatic systems. Perfluoroalkyl sulfonamides (PFSams) appear unlikely to undergo abiotic hydrolysis at the S-N, C-S, or N-C linkages under environmentally relevant conditions, although potentially facile S-N hydrolysis via intramolecular catalysis by ethanol and acetic acid amide substituents warrants further investigation. PMID:20390888

  4. Phosphorus-31 nuclear magnetic resonance chemical shifts of phosphoric acid derivatives.

    PubMed

    Wittmann, Z; Kovács, Z

    1985-07-01

    (31)P nuclear magnetic resonance chemical shifts of alkyi and alkylaryl phosphates, condensed phosphates, phosphoric arids and their salts, are reported. These are listed by classes of compounds so that relationships between chemical shifts and the substituent groups on phosphorus atoms can be recognized. These relationships are useful for qualitative identification of the specific compounds listed and of related compounds by extrapolation.

  5. Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm.

    PubMed

    Naeem, Asif; Akhtar, Muhammad; Ahmad, Waqar

    2013-01-01

    In calcareous soils, phosphorus (P) retention and immobilization take place due to precipitation and adsorption. Since soil pH is considered a major soil variable affecting the P sorption, an acidic P fertilizer could result in low P adsorption compared to alkaline one. Therefore, P adsorption from DAP and phosphoric acid (PA) required to produce desired soil solution P concentration was estimated using Freundlich sorption isotherms. Two soils from Faisalabad and T. T. Singh districts were spiked with 0, 10, and 20 % CaCO3 for 15 days. Freundlich adsorption isotherms (P = aC(b/a)) were constructed, and theoretical doses of PA and DAP to develop a desired soil solution P level (i.e., 0.20 mg L(-1)) were calculated. It was observed that P adsorption in soil increased with CaCO3. Moreover, at all the levels of CaCO3, P adsorption from PA was lower compared to that from DAP in both the soils. Consequently, lesser quantity of PA was required to produce desired solution P, 0.2 mg L(-1), compared to DAP. However, extrapolating the developed relationship between soil CaCO3 contents and quantity of fertilizer to other similar textured soils needs confirmation. PMID:24307878

  6. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.

    PubMed

    Rentería-Villalobos, Marusia; Vioque, Ignacio; Mantero, Juan; Manjón, Guillermo

    2010-09-15

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. (226)Ra and (210)Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 microm of high porosity, and could be easily mobilized by leaching and/or erosion.

  7. Surface layer erosion of natural caries lesions with phosphoric and hydrochloric acid gels in preparation for resin infiltration.

    PubMed

    Meyer-Lueckel, H; Paris, S; Kielbassa, A M

    2007-01-01

    The infiltration of proximal enamel lesions with low-viscosity light curing resins could be a viable approach to stop lesion progression. However, penetration of sealant might be hampered by the comparatively highly mineralized surface layers of natural lesions. Therefore, the aim of this study was to compare the efficacy of three different etching gels in removing the surface layer in various etching times. Extracted human molars and premolars showing proximal white spot lesions were cut across the demineralized areas. Ninety-six lesions expected from visual examination to be confined to the outer enamel (C1) were selected. The cut surface and half of each lesion were varnished, thus serving as control. Subsequently, the lesions were etched with either phosphoric (37%) or hydrochloric (5 or 15%) acid gel for 30-120 s (n = 8/group). Specimens were examined using confocal microscopy and transversal microradiography. Surface layer reduction was significantly increased in lesions etched with 15% HCl gel for 90 and 120 s compared to those etched with H(3)PO(4) gel for 30-120 s (p < 0.05). No significant differences regarding the depths of erosion in the lesions compared to sound enamel could be observed (p > 0.05). An effective reduction in the surface layer of natural enamel caries can be achieved by etching with 15% hydrochloric acid gel for 90-120 s.

  8. Radiological, chemical and morphological characterizations of phosphate rock and phosphogypsum from phosphoric acid factories in SW Spain.

    PubMed

    Rentería-Villalobos, Marusia; Vioque, Ignacio; Mantero, Juan; Manjón, Guillermo

    2010-09-15

    In this work, radiological, chemical, and also morphological characterization was performed in phosphate rock and phosphogypsum samples, in order to understand the behavior of toxic elements. Characterization was carried out using X-ray diffraction (XRD), X-ray fluorescence (XRF), gamma spectrometry and scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). Our results show that the phosphate rock was mainly composed of fluorapatite, calcite, perovskite, quartz, magnetite, pyrite and kaolinite, whereas phosphogypsum only exhibited dihydrated calcium sulfate. The activity concentration of U-series radioisotopes in phosphate rock was around 1640 Bq/kg. (226)Ra and (210)Pb tend to be distributed into phosphogypsum by up to 80%, whereas the fraction of U-isotopes is 10%. The most abundant trace elements in phosphate rock were Sr, Cr, V, Zn, Y, Ni and Ba. Some elements, such as Ba, Cd, Cu, La, Pb, Se, Sr, Th and Y, were enriched in the phosphogypsum. This enrichment may be attributed to an additional input associated to the sulfuric acid used for the phosphoric acid production. Furthermore, results from SEM-EDX demonstrated that toxic elements are not distributed homogeneously into phosphogypsum. Most of these elements are concentrated in particles <20 microm of high porosity, and could be easily mobilized by leaching and/or erosion. PMID:20537794

  9. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  10. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    PubMed

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  11. 1,2-Dichlorobenzene Pretreatment via Phosphoric Acid-Mediated Fenton Reagent.

    PubMed

    Richmond, Mark D

    2015-07-01

    A large industrial water resource recovery facility needed to significantly reduce the amount of 1,2-dichlorobenzene (ODCB) entering its biological treatment units. Numerous Advanced Oxidation Processes (AOPs) were considered based on literature and industry reports. Many AOPs appear to be incompatible with some of the native species present in groundwater or wastewater matrices. Iron, in particular, is often viewed as a nuisance increasing the complexity of the overall treatment scheme. The approach used in the current study was to incorporate the new AOP into the existing groundwater matrix and facilities as much as possible. To that end, native iron was exploited as the reaction catalyst, an acid was selected to fit with current macro nutrient needs of the biotreatment units, and the reactor was designed to require minimum modification of the existing facilities. The "green chemical" (Noyori, 2003) treatment process selected was demonstrated at full-scale, achieving good agreement with the results of prior laboratory studies. Up to eighty percent destruction of ODCB was demonstrated in a new pretreatment unit whose effluent fit seamlessly with the existing bioreactors. PMID:26163501

  12. Extraction and isolation of TPE from other elements on ion exchangers in aqueous and aqueous-organic solutions of phosphoric acid

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Stepushkina, V.V.

    1988-07-01

    The behavior of Am-Es and other actinides on anion and cation exchange resins in aqueous and aqueous-organic solutions of phosphoric acid has been studied in a wide range of concentration of various components of the solution. The sorptivity of transplutonium elements (TPE) on anion exchangers from dilute H/sub 3/PO/sub 4/ with a concentration less than or equal to 1 M in presence of organic solvents (alcohols, ketones, etc.) and on cation exchangers from concentrated H/sub 3/PO/sub 4/ has been found to be significant. The possibility of use of phosphoric acid solutions for isolation of TPE from Th, Pa, U, Np, Pu, and Zr and separation of TPE in different oxidation states in presence of a high-purity oxidant has been shown.

  13. Research and development of a phosphoric acid fuel cell/battery power source integrated in a test-bed bus. Final report

    SciTech Connect

    1996-05-30

    This project, the research and development of a phosphoric acid fuel cell/battery power source integrated into test-bed buses, began as a multi-phase U.S. Department of Energy (DOE) project in 1989. Phase I had a goal of developing two competing half-scale (25 kW) brassboard phosphoric acid fuel cell systems. An air-cooled and a liquid-cooled fuel cell system were developed and tested to verify the concept of using a fuel cell and a battery in a hybrid configuration wherein the fuel cell supplies the average power required for operating the vehicle and a battery supplies the `surge` or excess power required for acceleration and hill-climbing. Work done in Phase I determined that the liquid-cooled system offered higher efficiency.

  14. Effect of sodium sulfite, carboxylic monomer, and phosphoric acid etching on bonding of tri-n-butylborane initiated resin to human enamel.

    PubMed

    Nogawa, Hiroshi; Koizumi, Hiroyasu; Akazawa, Nobutaka; Hiraba, Haruto; Nakamura, Mitsuo; Matsumura, Hideo

    2015-03-01

    The purpose of the present study is evaluation of bonding durability of tri-n-butylborane (TBB) initiated resin without 4-methacryloyloxyethyl trimellitate anhydride (4-META) joined to human enamel. Ground human enamel was bonded with TBB resin under six surface conditions: 1) as ground, 2) primed with Teeth Primer, 3) sodium sulfite solution, 4) 4-META solution, 5) acetone-water, and 6) phosphoric acid etching. Pre- and post-thermocycling bond strengths and change in strength after thermocycling were compared. Etching enamel with 35-45% phosphoric acid enhanced bonding durability between enamel and TBB-initiated resin. Priming with Teeth Primer or 4-META solution improved bond strength between enamel and TBB-initiated resin. Sodium sulfite had little effect on enamel bonding in the present bonding systems. PMID:25807904

  15. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm × 12 mm × 8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  16. Maximum power output and load matching of a phosphoric acid fuel cell-thermoelectric generator hybrid system

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohang; Wang, Yuan; Cai, Ling; Zhou, Yinghui

    2015-10-01

    Based on the current models of phosphoric acid fuel cells (PAFCs) and thermoelectric generators (TGs), a new hybrid system is proposed, in which the effects of multi-irreversibilities resulting from the activation, concentration, and ohmic overpotentials in the PAFC, Joule heat and heat leak in the TG, finite-rate heat transfer between the TG and the heat reservoirs, and heat leak from the PAFC to the environment are taken into account. Expressions for the power output and efficiency of the PAFC, TG, and hybrid system are analytically derived and directly used to discuss the performance characteristics of the hybrid system. The optimal relationship between the electric currents in the PAFC and TG is obtained. The maximum power output is numerically calculated. It is found that the maximum power output density of the hybrid system will increase about 150 Wm-2, compared with that of a single PAFC. The problem how to optimally match the load resistances of two subsystems is discussed. Some significant results for practical hybrid systems are obtained.

  17. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10‑4 μg ml‑1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  18. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA

    NASA Astrophysics Data System (ADS)

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10-4 μg ml-1 in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the ‘real-world’ environment.

  19. Some aromatic hydrazone derivatives as inhibitors for the corrosion of C-steel in phosphoric acid solution.

    PubMed

    Fouda, Abd El-Aziz S; Al-Sarawy, Ahmed A; Radwan, Mohamed S

    2006-01-01

    The effect of furfural benzoylhydrazone and its derivatives (I-VII) as corrosion inhibitors for C-steel in 1M phosphoric acid solution has been studied by weight-loss and galvanostatic polarization techniques. A significant decrease in the corrosion rate of C-steel was observed in the presence of the investigated inhibitors. This study revealed that, the inhibition efficiency increases with increasing the inhibitor concentration, and the addition of iodide ions enhances it to a considerable extent. The effect of temperature on the inhibition efficiency of these compounds was studied using weight-loss method. Activation energy (E(a)*) and other thermodynamic parameters for the corrosion process were calculated and discussed. The galvanostatic polarization data indicated that, the inhibitors were of mixed-type, but the cathode is more polarized than the anode. The adsorption of these compounds on C-steel surface has been found to obey Frumkin's adsorption isotherm. The mechanism of inhibition was discussed in the light of the chemical structure of the undertaken inhibitors.

  20. Field assessment of treatment efficacy by three methods of phosphoric acid application in lead-contaminated urban soil.

    PubMed

    Yang, John; Mosby, David

    2006-07-31

    In situ soil treatment using phosphoric acid (H(3)PO(4)) may be an effective remedial technology for immobilizing soil Pb and reducing Pb risk to human health and ecosystem. The treatment efficacy of three H(3)PO(4) application methods was assessed in a smelter-contaminated urban soil located in the Jasper County Superfund Site, Missouri. Soil, with an average of 3529 mg Pb kg(-1) and in the 2- by 4-m plot size, was treated with H(3)PO(4) at a rate of 10 g P kg(-1) in four replicates by each of three methods: rototilling; surface application; pressure injection. Three soil cores, 2.5-cm diameter and 30-cm long, were taken from each plot before and 90 days after treatment and analyzed for soluble P, bioaccessible Pb and solid-Pb speciation. Applications of H(3)PO(4) induced the heterogeneity of soluble P in soil, with the highest concentrations in the surface. Three application methods mixed the H(3)PO(4) more effectively in the horizontals than the verticals of treated soil zone. The H(3)PO(4) applications significantly reduced Pb bioaccessibility in the soil, which was influenced by the concentrations of soil soluble P and solid-Pb species. The risk reductions of soil Pb were achieved by formation of pyromorphites or pyromorphite-like minerals. The rototilling appears to be the most effective treatment method in context of the homogeneity of soluble P and the reduction of Pb bioaccessibility in treated soil.

  1. Phase Structure Transition and Properties of Salt-Free Phosphoric Acid/Non-ionic Surfactants in Water.

    PubMed

    Wang, Lihuan; Zhao, Wenrong; Dong, Renhao; Hao, Jingcheng

    2016-08-23

    Precise control of phase structure transition for the synthesis of multi-dimensional soft materials is a fascinating target in amphiphilic molecule self-assembly. Here, we demonstrate a spontaneous formation of a closely packed lamellar phase consisting of uni- and multi-lamellar vesicles through the incorporation of a small amount of an extractant, di(2-ethylhexyl)phosphoric acid (DEHPA), into the highly swollen, planar lamellar phase of a non-ionic tetraethylene glycol monododecyl ether (C12EO4) surfactant in water. It is figured out that the introduction of negative membrane charges results in the electrostatic repulsion among the lamellae, which suppresses the Helfrich undulation and induces a phase structure transition from planar lamellae to closely packed vesicles. Our results provide important insight into amphiphilic molecule self-assembly, where additives and pH can satisfy the opportunities for the precise tuning of the lamellar structures, which makes a way for the development of lamellar soft materials. PMID:27490998

  2. Low thermal budget n-type doping into Ge(001) surface using ultraviolet laser irradiation in phosphoric acid solution

    NASA Astrophysics Data System (ADS)

    Takahashi, Kouta; Kurosawa, Masashi; Ikenoue, Hiroshi; Sakashita, Mitsuo; Takeuchi, Wakana; Nakatsuka, Osamu; Zaima, Shigeaki

    2016-02-01

    We have investigated phosphorus (P) doping into Ge(001) surfaces by using ultraviolet laser irradiation in phosphoric acid solution at room temperature. We demonstrated that the diffusion depth of P in Ge and the concentration of electrically activated P can be controlled by the number of laser shots. Indeed, a high concentration of electrically activated P of 2.4 × 1019 cm-3 was realized by 1000-times laser shots at a laser energy of 1.0 J/cm2, which is comparable or better than the counterparts of conventional n-type doping using a high thermal budget over 600 °C. The generation current is dominant in the reverse bias condition for the laser-doped pn-junction diodes independent on the number of laser shots, thus indicating low-damage during the pn-junction formation. These results open up the possibility for applicable low thermal budget doping process for Ge-based devices fabricated on flexible substrates as well as Si electronics.

  3. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA.

    PubMed

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10(-4) μg ml(-1) in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the 'real-world' environment.

  4. Valoniopsis pachynema Extract as a Green Inhibitor for Corrosion of Brass in 0.1 N Phosphoric Acid Solution

    NASA Astrophysics Data System (ADS)

    Selva Kumar, R.; Chandrasekaran, V.

    2016-04-01

    The effect of marine alga Valoniopsis pachynema extract on corrosion inhibition of brass in phosphoric acid was investigated by weight-loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy studies. The inhibition efficiency is found to increase with increasing concentration of extract and decreases with rise in temperature. The activation energy, thermodynamic parameters (free energy, enthalpy, and entropy change) and kinetic parameters (rate constant and half-life) for inhibition process were calculated. These thermodynamic and kinetic parameters indicate a strong interaction between the inhibitor and the brass surface. The inhibition is assumed to occur via adsorption of inhibitor molecules on brass surface, which obeys Temkin adsorption isotherm. The adsorption of inhibitor on the brass surface is exothermic, physical, and spontaneous, and follows first-order kinetics. The polarization measurements showed that the inhibitor behaves as a mixed type inhibitor and the higher inhibition surface coverage on the brass was predicted. Inhibition efficiency values were found to show good trend with weight-loss method, potentiodynamic polarization, and electrochemical impedance spectroscopy studies. Surface study techniques (FT-IR and SEM) were carried out to ascertain the inhibitive nature of the algal extract on the brass surface.

  5. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA.

    PubMed

    Jang, Kuewhan; You, Juneseok; Park, Chanhoo; Park, Hyunjun; Choi, Jaeyeong; Choi, Chang-Hwan; Park, Jinsung; Lee, Howon; Na, Sungsoo

    2016-09-01

    Recent advancements of nanomaterials have inspired numerous scientific and industrial applications. Zinc oxide nanowires (ZnO NWs) is one of the most important nanomaterials due to their extraordinary properties. However, studies performed over the past decade have reported toxicity of ZnO NWs. Therefore, there has been increasing demand for effective detection of ZnO NWs. In this study, we propose a method for the detection of ZnO NW using a quartz crystal microbalance (QCM) and DNA probes. The detection method is based on the covalent interaction between ZnO NWs and the phosphoric acid group of single-stranded DNA (i.e., linker DNA), and DNA hybridization between the linker DNA and the probe DNA strand on the QCM electrode. Rapid, high sensitivity, in situ detection of ZnO NWs was demonstrated for the first time. The limit of detection was 10(-4) μg ml(-1) in deionized water, which represents a sensitivity that is 100000 times higher than the toxic ZnO NW concentration level. Moreover, the selectivity of the ZnO NW detection method was demonstrated by comparison with other types of nanowires and the method was able to detect ZnO NWs in tap water sensitively even after stored for 14 d in a refrigerator. The performance of our proposed method was sufficient to achieve detection of ZnO NW in the 'real-world' environment. PMID:27479871

  6. Determination of free silica in dust particles: effect of particle size for the X-ray diffraction and phosphoric acid methods.

    PubMed

    Yabuta, Juji; Ohta, Hisayosi

    2003-07-01

    The X-ray diffraction method and the phosphoric acid method are widely used to determine the fraction of free silica (mainly quartz and other silica polymorphs) in respirable dust sampled in working environments in Japan. In this study, we clarified the size effect of quartz dust for the X-ray diffraction method and the phosphoric acid method using size controlled quartz samples. The quartz samples were classified into 6 fractions with different size ranges: 1 microm and smaller, 1 to 3 microm, 3 to 5 microm, 5 to 7 microm, 7 to 10 microm and 10 microm and larger. Both of the determination methods were affected by the particle size, and especially particles smaller than 3 microm fairly dissolved in hot phosphoric acid and reduced X-ray diffraction intensity remarkably. If the content of these fine particles in the standard quartz sample is lower than that of the test samples, the fraction of free silica may be underestimated by these methods. For this reason, the standard quartz sample should have a representative size distribution of the field samples. The dust samples containing quartz were collected at a foundry and dissolved by phosphoric acid to remove non-quartz materials. The size fractions of dissolved samples were 50% for 5-10 microm, 25% for 3-5 microm, 20% for 1-3 microm and 5% for 1 microm and smaller. As the size distribution is similar to the present standard sample widely used in Japan, we concluded that the standard sample is suitable for these determination methods. PMID:12916756

  7. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s. PMID:27315775

  8. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  9. 40 CFR 721.6120 - Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, 1,2-eth-a-ne-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. 721.6120 Section 721.6120 Protection of Environment...-diyl tet-ra-kis(2-chloro-1-meth-yl-ethyl) ester. (a) Chemical substances and significant new...

  10. Influence of duration of phosphoric acid pre-etching on bond durability of universal adhesives and surface free-energy characteristics of enamel.

    PubMed

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Takamizawa, Toshiki; Watanabe, Hidehiko; Johnson, William W; Latta, Mark A; Miyazaki, Masashi

    2016-08-01

    The purpose of this study was to evaluate the influence of duration of phosphoric acid pre-etching on the bond durability of universal adhesives and the surface free-energy characteristics of enamel. Three universal adhesives and extracted human molars were used. Two no-pre-etching groups were prepared: ground enamel; and enamel after ultrasonic cleaning with distilled water for 30 s to remove the smear layer. Four pre-etching groups were prepared: enamel pre-etched with phosphoric acid for 3, 5, 10, and 15 s. Shear bond strength (SBS) values of universal adhesive after no thermal cycling and after 30,000 or 60,000 thermal cycles, and surface free-energy values of enamel surfaces, calculated from contact angle measurements, were determined. The specimens that had been pre-etched showed significantly higher SBS and surface free-energy values than the specimens that had not been pre-etched, regardless of the aging condition and adhesive type. The SBS and surface free-energy values did not increase for pre-etching times of longer than 3 s. There were no significant differences in SBS values and surface free-energy characteristics between the specimens with and without a smear layer. The results of this study suggest that phosphoric acid pre-etching of enamel improves the bond durability of universal adhesives and the surface free-energy characteristics of enamel, but these bonding properties do not increase for phosphoric acid pre-etching times of longer than 3 s.

  11. Chiral phosphoric acid catalyzed highly enantioselective Friedel-Crafts alkylation reaction of C3-substituted indoles to β,γ-unsaturated α-ketimino esters.

    PubMed

    Bi, Bo; Lou, Qin-Xin; Ding, Yu-Yang; Chen, Sheng-Wei; Zhang, Sha-Sha; Hu, Wen-Hui; Zhao, Jun-Ling

    2015-02-01

    A highly enantioselective C2 Friedel-Crafts alkylation reaction of 3-substituted indoles to β,γ-unsaturated α-ketimino esters has been developed. This reaction was efficiently catalyzed by a chiral phosphoric acid catalyst. The corresponding C2-substituted indole derivatives, bearing an α-ketimino ester motif, were obtained in moderate to high yields (up to 93%) and with high enantioselectivities (up to >99% ee). PMID:25594307

  12. A fuel cell operating between room temperature and 250 °C based on a new phosphoric acid based composite electrolyte

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Xu, Xiaoxiang; Tao, Shanwen; Irvine, John T. S.

    A phosphoric acid based composite material with core-shell microstructure has been developed to be used as a new electrolyte for fuel cells. A fuel cell based on this electrolyte can operate at room temperature indicating leaching of H 3PO 4 with liquid water is insignificant at room temperature. This will help to improve the thermal cyclability of phosphoric acid based electrolyte to make it easier for practical use. The conductivity of this H 3PO 4-based electrolyte is stable at 250 °C with addition of the hydrophilic inorganic compound BPO 4 forming a core-shell microstructure which makes it possible to run a PAFC at a temperature above 200 °C. The core-shell microstructure retains after the fuel cell measurements. A power density of 350 mW/cm 2 for a H 2/O 2 fuel cell has been achieved at 200 °C. The increase in operating temperature does not have significant benefit to the performance of a H 2/O 2 fuel cell. For the first time, a composite electrolyte material for phosphoric acid fuel cells which can operate in a wide range of temperature has been evaluated but certainly further investigation is required.

  13. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks.

    PubMed

    Wei, Meng; Chen, Jiajun; Wang, Xingwei

    2016-08-01

    Testing of sequential soil washing in triplicate using typical chelating agent (Na2EDTA), organic acid (oxalic acid) and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated by heavy metals close to a mining area. The aim of the testing was to improve removal efficiency and reduce mobility of heavy metals. The sequential extraction procedure and further speciation analysis of heavy metals demonstrated that the primary components of arsenic and cadmium in the soil were residual As (O-As) and exchangeable fraction, which accounted for 60% and 70% of total arsenic and cadmium, respectively. It was determined that soil washing agents and their washing order were critical to removal efficiencies of metal fractions, metal bioavailability and potential mobility due to different levels of dissolution of residual fractions and inter-transformation of metal fractions. The optimal soil washing option for arsenic and cadmium was identified as phosphoric-oxalic acid-Na2EDTA sequence (POE) based on the high removal efficiency (41.9% for arsenic and 89.6% for cadmium) and the minimal harmful effects of the mobility and bioavailability of the remaining heavy metals.

  14. Removal of arsenic and cadmium with sequential soil washing techniques using Na2EDTA, oxalic and phosphoric acid: Optimization conditions, removal effectiveness and ecological risks.

    PubMed

    Wei, Meng; Chen, Jiajun; Wang, Xingwei

    2016-08-01

    Testing of sequential soil washing in triplicate using typical chelating agent (Na2EDTA), organic acid (oxalic acid) and inorganic weak acid (phosphoric acid) was conducted to remediate soil contaminated by heavy metals close to a mining area. The aim of the testing was to improve removal efficiency and reduce mobility of heavy metals. The sequential extraction procedure and further speciation analysis of heavy metals demonstrated that the primary components of arsenic and cadmium in the soil were residual As (O-As) and exchangeable fraction, which accounted for 60% and 70% of total arsenic and cadmium, respectively. It was determined that soil washing agents and their washing order were critical to removal efficiencies of metal fractions, metal bioavailability and potential mobility due to different levels of dissolution of residual fractions and inter-transformation of metal fractions. The optimal soil washing option for arsenic and cadmium was identified as phosphoric-oxalic acid-Na2EDTA sequence (POE) based on the high removal efficiency (41.9% for arsenic and 89.6% for cadmium) and the minimal harmful effects of the mobility and bioavailability of the remaining heavy metals. PMID:27179243

  15. Characterization of Hybrid Polyhedral Oligomeric Silsesquioxane (POSS)-Polybenzimidazole (PBI)-Phosphoric Acid (PA) Materials Intended for Proton Exchange Membranes (PEM)

    NASA Astrophysics Data System (ADS)

    Bubeck, Robert; Stark, Edmund; Decker, Berryinne; Hartmann-Thompson, Claire

    2013-03-01

    Isophthalic acid and 3,3'-diaminobenzidine (DAB) were polymerized in the presence of polyphosphoric acid (PPA) and various additives, degree of polymerization was monitored by viscosity and torque change measurements, and membranes were prepared by casting the reaction solution and allowing PPA to hydrolyze to PA under ambient conditions. As a function of relative humidity, the membranes were characterized for (1) acid content, (2) in-plane conductivity and (3) complex shear modulus G* obtained via oscillatory parallel plate dynamic mechanical spectroscopy. The addition of sulfonated octaphenyl polyhedral oligomeric silsesquixane (S-POSS) to m-polybenzimidazole (PBI)-phosphoric acid (PA) membranes resulted in increased in-plane proton conductivity at high temperatures (120-150 °C) and increased G* relative to a m-PBI control membrane and to m-PBI control membranes carrying comparable weight loadings of non-proton conducting octaphenyl-POSS nanoadditive or silica.

  16. Highly proton conductive phosphoric acid-nonionic surfactant lyotropic liquid crystalline mesophases and application in graphene optical modulators.

    PubMed

    Tunkara, Ebrima; Albayrak, Cemal; Polat, Emre O; Kocabas, Coskun; Dag, Ömer

    2014-10-28

    Proton conducting gel electrolytes are very important components of clean energy devices. Phosphoric acid (PA, H(3)PO(4) · H2O) is one of the best proton conductors, but needs to be incorporated into some matrix for real device applications, such as into lyotropic liquid crystalline mesophases (LLCMs). Herein, we show that PA and nonionic surfactant (NS, C(12)H(25)(OCH(2)CH(2))(10)OH, C(12)E(10)) molecules self-assemble into PANS-LLCMs and display high proton conductivity. The content of the PANS-LLCM can be as high 75% H(3)PO(4) · H2O and 25% 10-lauryl ether (C(12)H(25)(OCH(2)CH(2))(10)OH, C(12)E(10)), and the mesophase follows the usual LLC trend, bicontinuous cubic (V1)-normal hexagonal (H1)-micelle cubic (I1), by increasing the PA concentration in the media. The PANS-LLCMs are stable under ambient conditions, as well as at high (up to 130 °C) and low (-100 °C) temperatures with a high proton conductivity, in the range of 10(-2) to 10(-6) S/cm. The mesophase becomes a mesostructured solid with decent proton conductivity below -100 °C. The mesophase can be used in many applications as a proton-conducting media as well as a phosphate source for the synthesis of various metal phosphates. As an application, we demonstrate a graphene-based optical modulator using supercapacitor structure formed by graphene electrodes and a PANS electrolyte. A PANS-LLC electrolyte-based supercapacitor enables efficient optical modulation of graphene electrodes over a range of wavelengths, from 500 nm to 2 μm, under ambient conditions.

  17. Effect of the application time of phosphoric acid and self-etch adhesive systems to sclerotic dentin

    PubMed Central

    MENA-SERRANO, Alexandra Patricia; GARCIA, Eugenio Jose; PEREZ, Miguel Muñoz; MARTINS, Gislaine Cristine; GRANDE, Rosa Helena Miranda; LOGUERCIO, Alessandro Dourado; REIS, Alessandra

    2013-01-01

    Objectives: To evaluate the effect of application time on the resin-dentin bond strength (µTBS) and etching pattern of adhesive systems applied on sclerotic dentine. Material and Methods: A total of forty-two bovine incisors had their roots removed. The 1-step self-etch GO (SDI), the 2-step self-etch Adper SE Bond (3MESPE) and the 35% phosphoric acid (3MESPE) from the 2-step etch-and-rinse Adper Single Bond 2 (3MESPE) were applied on the bovine incisal surfaces according to the manufacturer's instructions or duplicating the recommended conditioning time. After adhesive application, thirty teeth were restored with composite resin, stored for 24 h in distilled water at 37º C, and sectioned into resin-dentin bonded sticks (0.8 mm2) and tested according to the µTBS at 0.5 mm/min. The etching pattern of the remaining twelve teeth (n=4 for each material) was examined under scanning electron microscopy. Each tooth was divided into a buccal-to-lingual direction into three thirds, and each third randomly assigned to the groups: control (no treatment), according to the manufacturers' instructions and duplicating the recommended application time. The µTBS and the relative percentage of the tubule area opening were evaluated by two-way repeated measures ANOVA and Tukey's tests (α=0.05). Results: The duplication of the conditioning time favored only the GO adhesive (p<0.05). Both application methods significantly increased the tubule area opening (p<0.05) compared to the controls. Conclusions: The efficacy of duplicating the conditioning time was only effective for the 1-step self-etch adhesive system tested. PMID:23739856

  18. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view.

  19. Environmental, health, and safety issues of fuel cells in transportation. Volume 1: Phosphoric acid fuel-cell buses

    SciTech Connect

    Ring, S

    1994-12-01

    The U.S. Department of Energy (DOE) chartered the Phosphoric Acid Fuel-Cell (PAFC) Bus Program to demonstrate the feasibility of fuel cells in heavy-duty transportation systems. As part of this program, PAFC- powered buses are being built to meet transit industry design and performance standards. Test-bed bus-1 (TBB-1) was designed in 1993 and integrated in March 1994. TBB-2 and TBB-3 are under construction and should be integrated in early 1995. In 1987 Phase I of the program began with the development and testing of two conceptual system designs- liquid- and air-cooled systems. The liquid-cooled PAFC system was chosen to continue, through a competitive award, into Phase H, beginning in 1991. Three hybrid buses, which combine fuel-cell and battery technologies, were designed during Phase III. After completing Phase II, DOE plans a comprehensive performance testing program (Phase HI) to verify that the buses meet stringent transit industry requirements. The Phase III study will evaluate the PAFC bus and compare it to a conventional diesel bus. This NREL study assesses the environmental, health, and safety (EH&S) issues that may affect the commercialization of the PAFC bus. Because safety is a critical factor for consumer acceptance of new transportation-based technologies the study focuses on these issues. The study examines health and safety together because they are integrally related. In addition, this report briefly discusses two environmental issues that are of concern to the Environmental Protection Agency (EPA). The first issue involves a surge battery used by the PAFC bus that contains hazardous constituents. The second issue concerns the regulated air emissions produced during operation of the PAFC bus.

  20. Effects of phosphoric acid sprayed into an incinerator furnace on the flue gas pressure drop at fabric filters.

    PubMed

    Takahashi, Shigetoshi; Hwang, In-Hee; Matsuto, Toshihiko

    2016-06-01

    Fabric filters are widely used to remove dust from flue gas generated by waste incineration. However, a pressure drop occurs at the filters, caused by growth of a dust layer on the filter fabric despite regular cleaning by pulsed-jet air. The pressure drop at the fabric filters leads to energy consumption at induced draft fan to keep the incinerator on negative pressure, so that its proper control is important to operate incineration facility efficiently. The pressure drop at fabric filters decreased whenever phosphoric acid wastewater (PAW) was sprayed into an incinerator for treating industrial waste. Operational data obtained from the incineration facility were analyzed to determine the short- and long-term effects of PAW spraying on the pressure drop. For the short-term effect, it was confirmed that the pressure drop at the fabric filters always decreased to 0.3-1.2kPa within about 5h after spraying PAW. This effect was expected to be obtained by about one third of present PAW spraying amount. However, from the long-term perspective, the pressure drop showed an increase in the periods of PAW spraying compared with periods for which PAW spraying was not performed. The pressure drop increase was particularly noticeable after the initial PAW spraying, regardless of the age and type of fabric filters used. These results suggest that present PAW spraying causes a temporary pressure drop reduction, leading to short-term energy consumption savings; however, it also causes an increase of the pressure drop over the long-term, degrading the overall operating conditions. Thus, appropriate PAW spraying conditions are needed to make effective use of PAW to reduce the pressure drop at fabric filters from a short- and long-term point of view. PMID:27040089

  1. Solvent effect on proton transfer in the complexes of N,N-dimethylformamide with sulfuric and phosphoric acid: A DFT investigation

    NASA Astrophysics Data System (ADS)

    Fedorova, Irina V.; Krestyaninov, Michael A.; Kiselev, Michael G.; Safonova, Lyubov P.

    2016-02-01

    Ab initio quantum-chemical calculations of structure and energies of the complexes of N,N-dimethylformamide (DMF) with sulfuric (H2SO4) and phosphoric (H3PO4) acids have been carried out. It has been found that the hydrogen bond between H2SO4 and DMF molecules is a little shorter and stronger than that between H3PO4 and DMF. The H-bond strength is different both in acid-acid and (acid)n-DMF complexes for n = 1, 2. The polar solvent effect is taken into account by using the CPCM approach. The differences of geometric parameters of the H-bonds in the gas phase and DMF are analyzed. The potential energy surface (PES) of the proton transfer reaction in acid-DMF and (acid)2-DMF complexes was calculated. The calculations have shown that the gas phase PES has a single distinct minimum (with the exception of the (H2SO4)2-DMF). In DMF, the proton transfer reaction takes place in all complexes, if OACID … ODMF distance is constrained. The solvent effect favors a proton transfer from sulfuric acid to oxygen atom of DMF molecule and formation of stable ionic pairs.

  2. A new oxidimetric reagent: potassium dichromate in a strong phosphoric acid medium-VI Potentiometric titration of vanadium(III) alone and in mixture with vanadium(IV).

    PubMed

    Rao, G G; Rao, P K

    1966-09-01

    Vanadium(III) can be titrated at room temperature with potassium dichromate in an 8-12M phosphoric acid medium. Two potential breaks are observed in 12M phosphoric add with 0.2N potassium dichromate, the first corresponding to the oxidation of vanadium(III) to vanadium(IV) and the second to the oxidation of vanadium(IV) to vanadium(V). In titrations with 0.05N dichromate only the first break in potential is clearly observed. The method has been extended to the titration of mixtures of vanadium(III) and vanadium(IV). Conditions have also been found for the visual titration of vanadium(III) using ferroln or barium diphenylamine sulphonate as indicator.

  3. Mechanistic investigation of the influence of phosphoric and boric acids in the formation of homogeneous Ni-P/ZnO@SiO2 coatings.

    PubMed

    Sharifalhoseini, Zahra; Entezari, Mohammad H; Shahidi, Mohsen

    2016-02-15

    High agglomeration of the nanoparticles and low volume fraction of nanosized inert particles within the nanocomposite thin films are found as the practical problems. In our previous work, silica coated ZnO nanoparticles (ZnO@SiO2 NPs) were synthesized to prevent dissolution of the ZnO nanoparticles (ZnO NPs) in the electrolytic Ni bath. The high agglomeration of these core-shell particles led to an unequal particle distribution in the deposit matrix. In this work, we aimed to prepare a highly homogeneous nanocomposite coating by stabilizing the nanoparticles in the medium. Adding the buffering agents, including phosphoric and boric acids to the medium, disclosed their new aspect of these inorganic acids in the prevention of particle agglomeration. The corrosion study of the resulting well-dispersed Ni-P/Zn@SiO2 nanocomposite coating confirmed a significant increase in anticorrosion performance. This increase was about 2.3 times compared to the previously prepared coating. Moreover, the probable mechanisms of phosphoric and boric acids in particle stability through the steric or/and electrostatic repulsion at the interfaces between the colloidal nanoparticles (ZnO@SiO2 NPs) and the electrolyte solution were investigated in detail. PMID:26658358

  4. Mechanistic investigation of the influence of phosphoric and boric acids in the formation of homogeneous Ni-P/ZnO@SiO2 coatings.

    PubMed

    Sharifalhoseini, Zahra; Entezari, Mohammad H; Shahidi, Mohsen

    2016-02-15

    High agglomeration of the nanoparticles and low volume fraction of nanosized inert particles within the nanocomposite thin films are found as the practical problems. In our previous work, silica coated ZnO nanoparticles (ZnO@SiO2 NPs) were synthesized to prevent dissolution of the ZnO nanoparticles (ZnO NPs) in the electrolytic Ni bath. The high agglomeration of these core-shell particles led to an unequal particle distribution in the deposit matrix. In this work, we aimed to prepare a highly homogeneous nanocomposite coating by stabilizing the nanoparticles in the medium. Adding the buffering agents, including phosphoric and boric acids to the medium, disclosed their new aspect of these inorganic acids in the prevention of particle agglomeration. The corrosion study of the resulting well-dispersed Ni-P/Zn@SiO2 nanocomposite coating confirmed a significant increase in anticorrosion performance. This increase was about 2.3 times compared to the previously prepared coating. Moreover, the probable mechanisms of phosphoric and boric acids in particle stability through the steric or/and electrostatic repulsion at the interfaces between the colloidal nanoparticles (ZnO@SiO2 NPs) and the electrolyte solution were investigated in detail.

  5. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid.

    PubMed

    Rodier, Marion; Li, Qingfeng; Berg, Rolf Willestofte; Bjerrum, Niels Janniksen

    2016-07-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case the scattering ratios between water and reference ν1 Q-branches were found to be 1.20 ± 0.03 and 0.40 ± 0.02 for H2 and CH4, respectively.

  6. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid.

    PubMed

    Rodier, Marion; Li, Qingfeng; Berg, Rolf Willestofte; Bjerrum, Niels Janniksen

    2016-07-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a reference gas (either hydrogen or methane) at a known pressure (typically ∼0.5 bar). By comparing the Raman signals from the water vapor and the references, the water pressure was determined as a function of temperature. A considerable amount of data on the vapor pressure of phosphoric acid are available in the literature, to which our results could successfully be compared. A record value of the vapor pressure, 3.40 bar, was determined at 210 ℃. The method required a determination of the precise Raman scattering ratios between the substance, water, and the used reference gas, hydrogen or methane. In our case the scattering ratios between water and reference ν1 Q-branches were found to be 1.20 ± 0.03 and 0.40 ± 0.02 for H2 and CH4, respectively. PMID:27273974

  7. Shear Bond Strength of an Etch-and-rinse Adhesive to Er:YAG Laser- and/or Phosphoric Acid-treated Dentin

    PubMed Central

    Davari, Abdolrahim; Sadeghi, Mostafa; Bakhshi, Hamid

    2013-01-01

    Background and aims. Er:YAG laser irradiation has been claimed to improve the adhesive properties of dentin; therefore, it has been proposed as an alternative to acid etching. The aim of this in vitro study was to investigate the shear bond strength of an etch-and-rinse adhesive system to dentin surfaces following Er:YAG laser and/or phosphoric acid etching. Materials and methods. The roots of 75 sound maxillary premolars were sectioned below the CEJ and the crowns were embedded in auto-polymerizing acrylic resin with the buccal surfaces facing up. The buccal surfaces were ground using a diamond bur and polished until the dentin was exposed; the samples were randomly divided into five groups (n=15) according to the surface treatment: (1) acid etching; (2) laser etching; (3) laser etching followed by acid etching; (4) acid etching followed by laser etching and (5) no acid etching and no laser etching (control group). Composite resin rods (Point 4, Kerr Co) were bonded to treated dentin surfaces with an etch-and-rise adhesive system (Optibond FL, Kerr Co) and light-cured.After storage for two weeks at 37°C and 100% humidity and then thermocycling, bond strength was measured with a Zwick Universal Testing Machine at a crosshead speed of 1 mm/min. Data was analyzed using parametric and non-parametric tests (P<0.05). Results. Mean shear bond strength for acid etching (20.1±1.8 MPa) and acid+laser (15.6±3.5 MPa) groups were significantly higher than those for laser+acid (15.6±3.5 MPa), laser etching (14.1±3.4 MPa) and control (8.1±2.1 MPa) groups. However, there were no significant differences between acid etching and acid+laser groups, and between laser+acid and laser groups. Conclusion. When the cavity is prepared by bur, it is not necessary to etch the dentin surface by Er:YAG laser following acid etching and acid etching after laser etching. PMID:23875083

  8. Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes.

    PubMed

    Pérez-López, Rafael; Alvarez-Valero, Antonio M; Nieto, José Miguel

    2007-09-30

    Presently, about 3 million tonnes of phosphogypsum are being generated annually in Spain as by-product from phosphoric acid in a fertilizer factory located in Huelva (southwestern Iberian Peninsula). Phosphate rock from Morocco is used as raw material in this process. Phosphogypsum wastes are stored in a stack containing 100Mt (approximately 1200ha of surface) over salt marshes of an estuary formed by the confluence of the Tinto and Odiel rivers, less than 1km away from the city centre. A very low proportion of this waste is used to improve fertility of agricultural soils in the area of the Guadalquivir river valley (Seville, SW Spain). The chemical speciation of potentially toxic elements (Ba, Cd, Cu, Ni, Sr, U and Zn) in phosphogypsum and phosphate rock was performed using the modified BCR-sequential extraction procedure, as described by the European Community Bureau of Reference (1999). This study has been done with the main of: (1) evaluate changes in the mobility of metals during the production of phosphoric acid; (2) estimate the amount of mobile metals that can affect the environmental surrounding; and (3) verify the environmentally safe use of phosphogypsum as an amendment to agricultural soils. The main environmental concern associated to phosphoric acid production is that Uranium, a radiotoxic element, is transferred from the non-mobile fraction in the phosphate rock to the bioavailable fraction in phosphogypsum in a rate of 23%. Around 21% of Ba, 6% of Cu and Sr, 5% of Cd and Ni, and 2% of Zn are also contained in the water-soluble phase of the final waste. Considering the total mass of phosphogypsum, the amount of metals easily soluble in water is approximately 6178, 3089, 1931, 579, 232, 193 and 77t for Sr, U, Ba, Zn, Ni, Cu and Cd, respectively. This gives an idea of the pollution potential of this waste. PMID:17683858

  9. Organic acids inhibit the formation of pyromorphite and Zn-phosphate in phosphorous amended Pb- and Zn-contaminated soil.

    PubMed

    Debela, F; Arocena, J M; Thring, R W; Whitcombe, T

    2013-02-15

    Pyromorphite (PY) and some zinc phosphates (Zn-P) are very sparingly soluble minerals and hence can immobilize Pb and Zn in contaminated soils. However, mechanisms leading to the poor efficiency of PY and Zn-P formation in contaminated soils amended with P still remain unclear. We studied the influence of two low molecular weight organic acids (LMWOA) - oxalic acid and citric acid and diethylene triamine pentaacetic acid (DTPA) - in PY and Zn-P formation in a P-amended contaminated soil. Despite the high levels of metals (∼4% Pb and 21% Zn) in the study soil, the addition of up to 1% inorganic P transformed only up to 37% and 17% of the total Pb and Zn to PY and Zn-P, respectively. Semi-quantitative estimates from a linear combination fitting of X-ray absorption near edge spectra (LC-XANES fitting) showed that the formation of PY decreased from 37% to 3% of the total Pb in the presence of oxalic acid and the addition of 1% P. The reduced PY formation may be associated with the increase in organic-bound Pb from 9% to 54% and decrease in carbonate associated Pb from 42% to 12% with oxalic acid addition as indicated by a chemical sequential extraction (SE) technique. Citric acid seemed to have a less adverse effect in PY formation than oxalic acid. Our data also suggests both oxalic and citric acids have less adverse effects on the efficiency of Zn-P formation. From this study we conclude that the abundance of LMWOA in soil environments can be one factor contributing to the poor efficiency of P amendments practices to effectively immobilize Pb and Zn in metal contaminated soils.

  10. Impact of the substrate loading regime and phosphoric acid supplementation on performance of biogas reactors and microbial community dynamics during anaerobic digestion of chicken wastes.

    PubMed

    Belostotskiy, Dmitry E; Ziganshina, Elvira E; Siniagina, Maria; Boulygina, Eugenia A; Miluykov, Vasili A; Ziganshin, Ayrat M

    2015-10-01

    This study evaluates the effects of increasing organic loading rate (OLR) and decreasing hydraulic retention time (HRT) as well as phosphoric acid addition on mesophilic reactors' performance and biogas production from chicken wastes. Furthermore, microbial community composition in reactors was characterized by a 16S rRNA gene-based pyrosequencing analysis. Each step of increasing OLR impacted on the activity of microorganisms what caused a temporary decrease in biogas production. The addition of phosphoric acid resulted in the increased biogas production with values between 361 and 447 mL g(VS)(-1) from day 61 to day 74 compared to control reactor (309-350 mL g(VS)(-1)). With reactors' operation, Bacteroidetes phylotypes were noticeably replaced with Firmicutes representatives, and significant increase of Clostridium sp. was identified. Within Euryarchaeota, Methanosarcina sp. dominated in all analyzed samples, in which high ammonium levels were detected (3.4-4.9 NH4(+)-N g L(-1)). These results can help in better understanding the anaerobic digestion process of simultaneously ammonium/phosphate-rich substrates.

  11. Oxidations of organic matter present in the phosphoric acid 54% by the ozone: characterization of groups carbonyls upstream and downstream of the ozonation

    NASA Astrophysics Data System (ADS)

    Linda, D.; Louati, A.; Chtara, C.; Kabadou, A.

    2012-02-01

    This study was focused on the oxidation of organic matter in phosphoric acid 54% by ozone. In order to understand the mechanisms involved in this process, the identification of this matter upstream and downstream of the ozonation was necessary. For the identification, after an extraction by a mixture (dichloro-methanol), the organic phase was divided into two parts: the residue and the extract:-The residue was studied by infrared spectroscopy Fourier Transform (IR-TF). It contains Kérogène which is a mixture of saturated hydrocarbons with high molecular weights. The absorption bands of the FT-IR showed that the residue contains also quantities of amino that correspond to the remains of dinoflagellate cysts, which are abundant in sediments.-The extract has been the subject of a detailed study by, chromatography on silica column, IR-TF spectroscopy and CG-SM. The passage of this extract on a silica column yielded two fractions (saturated fraction and polar fraction). Both of these fractions were analyzed by CG-SM. The yield of the reduction of the organic matter content in the phosphoric acid 54% could not exceed 29%. Therefore, we can conclude that the reduction in the rate of organic matter remains limited by the fact that some compounds are inert towards ozone.

  12. Effect of cavity preparation method on microtensile bond strength of a self-etching primer vs phosphoric acid etchant to enamel.

    PubMed

    de Souza-Zaroni, Wanessa Christine; Delfino, Carina Sinclér; Ciccone-Nogueira, Juliane Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-10-01

    This study evaluated the effect of cavity preparation using air abrasion or carbide bur on bond strength to enamel treated with a self-etching primer (Tyrian SPE) or a phosphoric acid etchant. Twenty-four molars were divided into three groups: high-speed; standard handpiece (ST air abrasion) or supersonic handpiece (SP air abrasion) of the same air-abrasive system. The enamel surfaces were treated with one of the two etchants and the same adhesive agent One Step Plus, and then composite buildups were done with Filtek Z250. After 24 h at 37 degrees C, beams (0.8 mm2) were obtained and subjected to tensile stress in a universal testing machine (0.5 mm/min). The data were submitted to analysis of variance and Tukey's test (P < 0.05). For the conditioning agents, it was observed that the specimens conditioned with phosphoric acid presented superior results than the specimens that used Tyrian SPE. For the preparation techniques, it was verified that the SP air abrasion groups showed the highest bond strengths and carbide-bur groups presented the lowest bond strengths when the specimens were conditioned with Tyrian SPE. It can be concluded that the influence of the cavity preparation method was dependent on the conditioning system used, only when using carbide-bur preparation technique.

  13. The effect of ethoxyquin on the quality of ground poultry mortality carcasses preserved by lactic acid fermentation and phosphoric acid stabilization.

    PubMed

    Middleton, T F; Ferket, P R; Boyd, L C

    2001-08-01

    Fermentation and acidification have been shown to preserve the protein quality of ground poultry coproducts, but the effects of these processes on their lipid stability are unknown, especially in the presence of an antioxidant. To evaluate the effects of these treatments on lipid quality, ground poultry mortality carcasses, with and without an addition of 500 ppm ethoxyquin, were stabilized for 14 and 45 d by lactic acid fermentation or acidification with 2.76, 5.07, 7.35, or 9.65% feed-grade H3PO4. Ethoxyquin treatment significantly (P < 0.001) improved the oxidative stability of lipids from all storage treatments. However, the addition of ethoxyquin increased (P < 0.001) the levels of volatile N (VN) from 2.51 to 3.18% in products stored for 45 d and resulted in an increase (P < 0.001) in free fatty acids in all ensiled products. Ethoxyquin addition had no effect (P > 0.120) on the fatty acid profile of products stored for 14 d but significantly increased (P < 0.001) the levels of stearic (C18:0) and arachidonic acids (C20:4) in products stored for 45 d. In this experiment, the addition of ethoxyquin to preservation systems for the short-term storage of poultry mortality carcasses improved the lipid quality of the ground material without compromising the protein quality or affecting proximate analysis parameters. However, the increased oxidative stability of mortality silage materials that contain ethoxyquin may contribute to enhanced microbial or enzymatic activities that result in proteolytic or lypolytic breakdown products following longer periods of storage. PMID:11495468

  14. Combining octyl(phenyl)-N,N-diisobutyl-carbamoylmethylphosphine oxide and bis-(2-ethylhexyl)phosphoric acid extractants for recovering transuranic elements from irradiated nuclear fuel

    SciTech Connect

    Lumetta, Gregg J.; Carter, Jennifer C.; Gelis, Artem V.; Vandegrift, George F.

    2009-10-14

    Advanced concepts for closing the nuclear fuel cycle include separating Am and Cm from other fuel components. Separating these elements from the lanthanide elements at an industrial scale remains a significant technical challenge. We describe here a chemical system in which a neutral extractant--octyl(phenyl)-N,N-diisobutyl-carbamoylmethyl-phosphine oxide (CMPO)--is combined with an acidic extractant--bis-(2-ethylhexyl)phosphoric acid (HDEHP)--to form a single process solvent (with dodecane as the diluent) for separating Am and Cm from the other components of irradiated nuclear fuel. Continuous variation experiments in which the relative CMPO and HDEHP concentrations are varied indicate a synergistic relationship between the two extractants in the extraction of Am from buffered diethylenetriaminepentaacetic acid (DTPA) solutions. A solvent mixture consisting or 0.1 M CMPO + 1 M HDEHP in dodecane offers acceptable extraction efficiency for the trivalent lanthanides and actinides from 1 M HNO3 while maintaining good lanthanide/actinide separation factors in the stripping regime (buffered DTPA solutions with pH 3.5 to 4). Using citrate buffer instead of lactate buffer results in improved lanthanide/actinide separation factors.

  15. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dilute H3PO4 (0.0 - 2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using a central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzym...

  16. ELECTRIC POWER GENERATION USING A PHOSPHORIC ACID FUEL CELL ON A MUNICIPAL SOLID WASTE LANDFILL GAS STREAM

    EPA Science Inventory

    The report gives results of tests to verify the performance of a landfill gas pretreatment unit (GPU) and a phorsphoric acid fuel cell system. The complete system removes contaminants from landfill gas and produces electricity for on-site use or connection to an electric grid. Th...

  17. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production.

    PubMed

    Avci, Ayse; Saha, Badal C; Dien, Bruce S; Kennedy, Gregory J; Cotta, Michael A

    2013-02-01

    Dilute H(3)PO(4) (0.0-2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzymatic digestion while minimizing formation of furans, which are potent inhibitors of fermentation. The maximum glucose yield (85%) was obtained after enzymatic hydrolysis of corn stover pretreated with 0.5% (v/v) acid at 180°C for 15min while highest yield for xylose (91.4%) was observed from corn stover pretreated with 1% (v/v) acid at 160°C for 10min. About 26.4±0.1g ethanol was produced per L by recombinant Escherichia coli strain FBR5 from 55.1±1.0g sugars generated from enzymatically hydrolyzed corn stover (10%, w/w) pretreated under a balanced optimized condition (161.81°C, 0.78% acid, 9.78min) where only 0.4±0.0g furfural and 0.1±0.0 hydroxylmethyl furfural were produced.

  18. Goldilocks Catalysts: Computational Insights into the Role of the 3,3' Substituents on the Selectivity of BINOL-Derived Phosphoric Acid Catalysts.

    PubMed

    Reid, Jolene P; Goodman, Jonathan M

    2016-06-29

    BINOL-derived phosphoric acids provide effective asymmetric catalysis for many organic reactions. Catalysts based on this scaffold show a large structural diversity, especially in the 3,3' substituents, and little is known about the molecular requirements for high selectivity. As a result, selection of the best catalyst for a particular transformation requires a trial and error screening process, as the size of the 3,3' substituents is not simply related to their efficacy: the right choice is neither too large nor too small. We have developed an approach to identify and quantify structural features on the catalyst that determine selectivity. We show that the application of quantitative steric parameters (a new measure, AREA(θ), and rotation barrier) to an imine hydrogenation reaction allows the identification of catalyst features necessary for efficient stereoinduction, validated by QM/MM hybrid calculations. PMID:27227372

  19. ELECTROCHEMICAL PROPERTIES, MECHANICAL TESTING, AND GEL MORPHOLOGY STUDY OF PHOSPHORIC ACID-DOPED META-POLYBENZIMIDAZOLE MEMBRANES VIA CONVENTIONALLY IMBIBING AND THE SOL-GEL PROCESS

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Benicewicz, Brian

    2009-01-01

    Proton exchange membrane (PEM) research has been directed at phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes since the 1990s. PEM fuel cells based on PA-doped PBI membranes produced via a sol-gel transition process have achieved lifetimes >10,000hrs with low degradation rates. It has been suggested that the gel morphology of the PA-doped PBI membranes is responsible for their excellent electrochemical performance. Thus, a study has been underway to characterize the microstructure of PA-doped PBI membranes, and to correlate structure with performance. However, PA-doped PBI membranes present special challenges for microscopy analysis, as these membranes are extremely sensitive to the electron beam and high vacuum conditions. This paper will discuss and compare the mechanical, electrochemical, and cryo-SEM analyses of PA-doped meta-PBI membranes produced via conventional imbibing and the sol-gel process.

  20. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Haining; Lu, Shanfu; Guo, Zhibin; Rao, Siyuan; Xiu, Ruijie; Xiang, Yan

    2015-07-01

    A high-temperature proton exchange membrane, poly(ethersulphone)-poly(vinyl pyrrolidone) (PES-PVP) blend membrane is successfully prepared by scalable polymer blending method. The physical properties of blend membrane are characterized by DSC, TG and tensile strength test. The DSC and TG results indicate PES-PVP blend membranes possess excellent thermal stability. After phosphoric acid (PA) doping treatment, the blend membrane shows enhanced proton conductivity. PA doping level and volume swelling ratio of the blend membrane are found to be positively related to the PVP content. A high proton conductivity of 0.21 S/cm is achieved at 180 °C for PA doped PES-PVP 80% with a PA doping level of 9.1. PEM fuel cell based on PA doped PES-PVP 80% membrane shows a high power density of 850 mW/cm2 and outstanding stability at 180 °C without extra humidification.

  1. Growth of thin, c-axis oriented Sr-doped LaP3O9 electrolyte membranes in condensed phosphoric acid solutions

    NASA Astrophysics Data System (ADS)

    Hatada, Naoyuki; Takahashi, Kota; Adachi, Yoshinobu; Uda, Tetsuya

    2016-08-01

    Proton-conducting Sr-doped LaP3O9 has potential application as electrolytes in intermediate temperature fuel cells, but reduction of the electrical resistance of the electrolyte membranes is necessary for practical applications. In this study, we focused on reducing the resistance by reducing the electrolyte thickness, while maintaining a preferable microstructure for proton conduction (c-axis orientation and absence of the small-crystal layer). Thin, c-axis oriented Sr-doped LaP3O9 membranes were successfully obtained in condensed phosphoric acid solutions by a novel "two-step precipitation method". In this method, Sr-doped LaP3O9 powder was artificially deposited on the surface of the carbon paper supports as seeds, and then columnar crystals were grown "downward" in the solutions. We expect that this method will be utilized to produce LaP3O9 electrolyte membranes with lower electrical resistance.

  2. FT-IR spectral, DFT studies and detailed vibrational assignment on N,N',N"-tris(2-aminoethyl)-phosphoric acid triamide.

    PubMed

    Unsalan, O; Szolnoki, B; Toldy, A; Marosi, G

    2012-12-01

    Structure of N,N',N"-tris(2-aminoethyl)-phosphoric acid triamide (TEDAP), which is a phosphorus-containing reactive amine crosslinking agent and flame retardant material as well, identified by Fourier transform infrared (FT-IR) spectroscopy and quantum chemical calculations. The FT-IR spectrum of TEDAP, being a recently synthesized new compound, has been recorded in the 4000-650 cm(-1) region for the first time. The molecular geometry and vibrational wavenumbers of the compound in its ground state have been calculated by using Density Functional Theory (DFT) using B3LYP functional with 6-311++G(d,p) basis set. All calculations were performed with Gaussian09 software. The obtained vibrational wavenumbers and optimized geometric parameters were seen to be in good agreement with the experimental data. Furthermore, assignments of each vibrational mode were interpreted in terms of potential energy distributions (PED) in detail.

  3. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.

    PubMed

    Zeng, Jijiao; Tong, Zhaohui; Wang, Letian; Zhu, J Y; Ingram, Lonnie

    2014-02-01

    The structure of lignin after dilute phosphoric acid plus steam explosion pretreatment process of sugarcane bagasse in a pilot scale and the effect of the lignin extracted by ethanol on subsequent cellulose hydrolysis were investigated. The lignin structural changes caused by pretreatment were identified using advanced nondestructive techniques such as gel permeation chromatography (GPC), quantitative (13)C, and 2-D nuclear magnetic resonance (NMR). The structural analysis revealed that ethanol extractable lignin preserved basic lignin structure, but had relatively lower amount of β-O-4 linkages, syringyl/guaiacyl units ratio (S/G), p-coumarate/ferulate ratio, and other ending structures. The results also indicated that approximately 8% of mass weight was extracted by pure ethanol. The bagasse after ethanol extraction had an approximate 22% higher glucose yield after enzyme hydrolysis compared to pretreated bagasse without extraction.

  4. The effect of phosphoric acid concentration on the synthesis of nano-whiskers of calcium metaphosphate by chemical precipitation Method

    NASA Astrophysics Data System (ADS)

    Yao, Nengjian; Zhang, Yin; Kong, Deshuang; Zhu, Jianping; Tao, Yaqiu; Qiu, Tai

    2011-10-01

    Calcium metaphosphate (CMP) nano-whiskers were produced by a chemical precipitation method. In order to produce nano-powders, CMP was prepared by the mixing of two precursors, calcium oxide (CaO) and phosphate acid (H3PO4). Sparingly soluble chemicals, the Ca/P ratio of the mixture was set to be 0.50 to produce stoichiometric CMP, were chemical agitated in phosphate acid solution. At least 3 hours of pre-hydrolysis of phosphorus precursor were required to obtain CMP phase. The CMP powders were dried in a drying oven at 60 °C for 7 days and then followed by a heat treatment at 390 °C for 8hours. The obtained powder was analyzed using XRD, XRF, FT-IR, SEM, TG-DTA, Zeta Potential Meter, Specific Surface Area, and Particle Size Analyzer. The results showed that obtained CMP nano-whiskers have a significantly powder characteristics.

  5. Sources, solubility, and acid processing of aerosol iron and phosphorous over the South China Sea: East Asian dust and pollution outflows vs. Southeast Asian biomass burning

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Gong, G.-C.; Shiah, F.-K.; Hung, C.-C.; Kao, S.-J.; Zhang, R.; Chen, W.-N.; Chen, C.-C.; Chou, C. C.-K.; Lin, Y.-C.; Lin, F.-J.; Lin, S.-H.

    2014-08-01

    Iron and phosphorous are essential to marine microorganisms in vast regions in oceans worldwide. Atmospheric inputs are important allochthonous sources of Fe and P. The variability in airborne Fe deposition is hypothesized to serve an important function in previous glacial-interglacial cycles, contributing to the variability in atmospheric CO2 and ultimately the climate. Understanding the mechanisms underlying the mobilization of airborne Fe and P from insoluble to soluble forms is critical to evaluate the biogeochemical effects of these elements. In this study, we present a robust power-law correlation between fractional Fe solubility and non-sea-salt-sulfate / Total-Fe (nss-sulfate / FeT) molar ratio independent of distinct sources of airborne Fe of natural and/or anthropogenic origins over the South China Sea. This area receives Asian dust and pollution outflows and Southeast Asian biomass burning. This correlation is also valid for nitrate and total acids, demonstrating the significance of acid processing in enhancing Fe mobilization. Such correlations are also found for P, yet source dependent. These relationships serve as straightforward parameters that can be directly incorporated into available atmosphere-ocean coupling models that facilitate the assessment of Fe and P fertilization effects. Although biomass burning activity may supply Fe to the bioavailable Fe pool, pyrogenic soils are possibly the main contributors, not the burned plants. This finding warrants a multidisciplinary investigation that integrates atmospheric observations with the resulting biogeochemistry in the South China Sea, which is influenced by atmospheric forcings and nutrient dynamics with monsoons.

  6. Separation of berkelium (IV) from trivalent transplutonium elements on ion-exchangers in solutions of phosphoric acid

    SciTech Connect

    Guseva, L.I.; Stepushkina, V.V.; Tikhomirova, G.S.

    1985-01-01

    The dependences of Am, Cm, Bk, Cf and Es behavior on anion- and cation-exchangers in solutions of 0.1-8.0 M H/sub 3/PO/sub 4/ on acid concentration and oxidant content in solution (KBrO/sub 3/) or in resin (PbO/sub 2/) have been studied. Significant differences in distribution coefficients of Bk and other transplutonium elements (TPE) have been found that can be explained by Bk oxidation to the tetravalent state. A simple and effective method of Bk (IV) separation from trivalent TPE has been developed. The method was applied to the isolation of isotopes Bk-249 and Bk-250; the purification factor of Bk (IV) from other TPE is 10/sup 4/-10/sub 6/ per cycle. The possibility of Bk separation from bromate and phosphate ions by its sorption on a cation-exchanger from diluted H/sub 3/PO/sub 4/ solutions with subsequent desorption by the mineral acid has been shown. 20 references, 8 figures.

  7. DISTRIBUTION OF LANTHANIDE AND ACTINIDE ELEMENTS BETWEEN BIS-(2-ETHYLHEXYL)PHOSPHORIC ACID AND BUFFERED LACTATE SOLUTIONS CONTAINING SELECTED COMPLEXANTS

    SciTech Connect

    Rudisill, Tracy S.; Diprete, David P.; Thompson, Major C.

    2013-04-15

    With the renewed interest in the closure of the nuclear fuel cycle, the TALSPEAK process is being considered for the separation of Am and Cm from the lanthanide fission products in a next generation reprocessing plant. However, an efficient separation requires tight control of the pH which likely will be difficult to achieve on a large scale. To address this issue, we measured the distribution of lanthanide and actinide elements between aqueous and organic phases in the presence of complexants which were potentially less sensitive to pH control than the diethylenetriaminepentaacetic (DTPA) used in the process. To perform the extractions, a rapid and accurate method was developed for measuring distribution coefficients based on the preparation of lanthanide tracers in the Savannah River National Laboratory neutron activation analysis facility. The complexants tested included aceto-, benzo-, and salicylhydroxamic acids, N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), and ammonium thiocyanate (NH{sub 4}SCN). The hydroxamic acids were the least effective of the complexants tested. The separation factors for TPEN and NH{sub 4}SCN were higher, especially for the heaviest lanthanides in the series; however, no conditions were identified which resulted in separations factors which consistently approached those measured for the use of DTPA.

  8. Mixed Acid Oxidation

    SciTech Connect

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  9. Thermopressurized diluted phosphoric acid pretreatment of ligno(hemi)cellulose to make free sugars and nutraceutical oligosaccharides.

    PubMed

    Tiboni, Marcela; Grzybowski, Adelia; Baldo, Gizele Rejane; Dias, Edson Flausino; Tanner, Robert D; Kornfield, Julia Ann; Fontana, José Domingos

    2014-06-01

    Ligno(hemi)cellulosics (L(h)Cs) as sugarcane bagasse and loblolly pine sawdust are currently being used to produce biofuels such as bioethanol and biobutanol through fermentation of free sugars that are often obtained enzymatically. However, this bioconversion requires a pretreatment to solubilize the hemicellulose fractions, thus facilitating the action of the cellulolytic enzymes. Instead of the main free monosaccharides used in these current models, the modulation of thermopressurized orthophosphoric acid as a pretreatment, in the ranges of 3-12 atm and pH 1.5-2.5, can produce nondigestible oligosaccharides (NDOS) such as xylo-oligosaccharides (XOS) because heteroxylan is present in both types of hardwood and softwood hemicelluloses. A comparative thin-layer chromatographic analysis of the hydrolytic products showed the best conditions for NDOS production to be 7 atm/water, pH 2.25 and 2.50, and 8.5 atm/water for both sources. Particular hydrolysates from 7 atm (171 °C) at pHs 2.25 and 2.50 both for cane bagasse and pine sawdust, with respective oligosaccharide contents of 57 and 59 %, once mixed in a proportion of 1:1 for each plant source, were used in vitro as carbon sources for Bifidobacterium or Lactobacillus. Once both bacteria attained the stationary phase of growth, an unforeseen feature emerged: the preference of B. animalis for bagasse hydrolysates and, conversely, the preference of L. casei for pine hydrolysates. Considering the fact that nutraceutical oligosaccharides from both hemicelluloses correspond to higher value-added byproducts, the technology using a much diluted thermopressurized orthophosphoric acid pretreatment becomes an attractive choice for L(h)Cs. PMID:24747989

  10. Comparison of Buffer Effect of Different Acids During Sandstone Acidizing

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham; Hamid, Mohamed Ali

    2015-04-01

    The most important concern of sandstone matrix acidizing is to increase the formation permeability by removing the silica particles. To accomplish this, the mud acid (HF: HCl) has been utilized successfully for many years to stimulate the sandstone formations, but still it has many complexities. This paper presents the results of laboratory investigations of different acid combinations (HF: HCl, HF: H3PO4 and HF: HCOOH). Hydrofluoric acid and fluoboric acid are used to dissolve clays and feldspar. Phosphoric and formic acids are added as a buffer to maintain the pH of the solution; also it allows the maximum penetration of acid into the core sample. Different tests have been performed on the core samples before and after the acidizing to do the comparative study on the buffer effect of these acids. The analysis consists of permeability, porosity, color change and pH value tests. There is more increase in permeability and porosity while less change in pH when phosphoric and formic acids were used compared to mud acid. From these results it has been found that the buffer effect of phosphoric acid and formic acid is better than hydrochloric acid.

  11. Microscopic and mesoscopic structural features of an activated carbon sample, prepared from sorghum via activation by phosphoric acid

    SciTech Connect

    Temleitner, László; Pusztai, László; Rubio-Arroyo, Manuel F.; Aguilar-López, Sergio; Pizio, Orest

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► Preparation of a new activated carbon sample from sorghum. ► Characterization by adsorption/desorption methods. ► Determination of the structure by synchrotron X-ray diffraction. ► The sample is amorphous and contains distorted graphene fragments. ► A characteristic nanoscale distance is established from the radial distribution function. -- Abstract: An acidic chemical activation procedure has been used for preparing activated carbon with a surface area exceeding 1000 m{sup 2}/g from sorghum. In order to reveal structural features, synchrotron X-ray diffraction measurements have been performed. The structure of the material has been characterized by the total scattering structure factor and the radial distribution function describing short-range arrangement of atoms at distances of the order of a few atomic diameters as well as correlations at a longer scale, of the order of nanometers. The atomic arrangement has been found to be consistent with that of amorphous graphite-like carbon. As far as the mesoscopic structure is concerned, the presence of a characteristic distance is suggested on the basis of the clear nanometer scale oscillations of the radial distribution function, which distance may be assigned as the mesopore size in the material. It is suggested that the approach devized here may later be applied routinely for other activated carbon samples, too, for characterizing atomic and nanoscale order simultaneously.

  12. A new facile route for synthesizing of graphene oxide using mixture of sulfuric-nitric-phosphoric acids as intercalating agent

    NASA Astrophysics Data System (ADS)

    Panwar, Vinay; Chattree, Ananya; Pal, Kaushik

    2015-09-01

    In this work, graphene oxide (GO) has been prepared through three different processes namely, eco-friendly Hummers method, modification in improved Hummers method and a new approach. This new approach has been designed by changing some processing parameters and intercalating agent for significant reduction in processing time and to improve the quantity of GO in comparison to the other two methods. This has been achieved through better oxidization of graphite using nitric-sulfuric acid (HNO3-H2SO4) as intercalating agent. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, Atomic Force Microscopy (AFM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy, and Thermogravimetric analysis (TGA) are used to characterize the GO prepared through different processes. These characterizations have confirmed an improved exfoliation of graphite, using addition of HNO3 in intercalating agent, in a short processing time and bring on higher yield of GO via this new process.

  13. Enhanced photocatalytic activity of Cl-residual rutile TiO2 nanorods after targeted co-modification with phosphoric and boric acids.

    PubMed

    Wu, Jing; Cui, Haiqin; Zhang, Xuliang; Luan, Yunbo; Jing, Liqiang

    2015-06-28

    The promotion of O2 adsorption on semiconductor surfaces for effectively capturing photogenerated electrons in the photocatalytic degradation of pollutants is highly desired. In this study, the targeted co-modification of residual chlorine rutile TiO2 nanorods with phosphoric and boric acids has been accomplished for the first time by simple wet chemical processes. The key to targeted co-modification is to connect -P-OH and -B-OH to the Cl-residual TiO2 surfaces by -Ti-OH and -Ti-Cl, respectively, consequently forming -Ti-O-P-OH and -Ti-Cl:B-OH ends. By means of the atmosphere-controlled surface photovoltage spectroscopy, the degrees for capturing photogenerated electrons by the adsorbed O2 as receptors on the resulting TiO2 nanorods are quantitatively analyzed. It is confirmed that the targeted co-modification could greatly promote the capture of the photogenerated electrons compared to the phosphate and borate modification alone. This is attributed to increased amounts of adsorbed O2 based on electrochemical O2 reduction and O2 temperature-programmed desorption measurements, further leading to the enhanced separation of photogenerated charges, characterized by an increase in the amount of produced hydroxyl radicals. This is responsible for the obviously enhanced photocatalytic activity of TiO2 nanorods towards the degradation of colorless gas-phase acetaldehyde and liquid-phase phenol. This work would provide us a feasible route for the co-modification with inorganic acids to synthesize efficient nanosized TiO2-based photocatalysts.

  14. Dicationic ion-pairing of phosphoric acid diesters post-liquid chromatography and subsequent determination by electrospray positive ionization-tandem mass spectrometry.

    PubMed

    Chu, Shaogang; Chen, Da; Letcher, Robert J

    2011-11-01

    Several organophosphate triesters are widely used as flame retardants and can be metabolized to dibutyl (DBP), diphenyl (DPhP), di(2-ethylhexyl) (DEHP) and di(1,3-dichloro-2-propyl) (or bis(1,3-dichloro-2-propyl); DDCPP) phosphoric acid, respectively. A highly sensitive liquid chromatography-electrospray ionization(+)-triple quadrupole mass spectrometry (LC-ESI(+)-QQQ-MS/MS) based analysis method was presently developed. In this method the target compounds were separated with a C(18)-based reversed phase LC column, and decamethonium hydroxide (dicatonic reagent) was introduced post-LC to form ion-pairs, which were subsequently detected by ESI(+). For the phosphate acid diester ion-pairs, the mass spectra showed the most abundant ion to be [(CH(3))(2)N(CH(2))(10)N(CH(3))(3)](+), with lesser abundances of [[M-H](-)[(CH(3))(3)N(CH(2))(9)CH(2)](2+)](+) and [CH(2)CH(CH(2))(8)N(CH(3))(3)](+). For DDCPP, the fragment ions of [[Cl](-)[(CH(3))(3)N(CH(2))(10)N(CH(3))(3)](2+)](+) and [[Cl](-)[(CH(3))(3)N(CH(2))(9)CH(2)](2+)](+) could also be observed. The limits of quantitation (LOQs) by LC-ESI(+)-MS/MS (based on multiple reaction monitoring) were 0.14, 0.03, 0.14 and 0.02 ng/mL for DPhP, DBP, DDCPP and DEHP, respectively. The response was highly linearly correlated (r>0.995) with concentration over the range of the LOD to 1000 ng/mL. The matrix effect on ESI+ was negligible for the samples in experiment of in vitro metabolism using rat liver microsomes. PMID:21945623

  15. Features of the Thermodynamics of Trivalent Lanthanide/Actinide Distribution Reactions by Tri-n-Octylphosphine Oxide and Bis(2-EthylHexyl) Phosphoric Acid

    SciTech Connect

    Travis S. Grimes; Peter R. Zalupski

    2014-11-01

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a mono-functional solvating ligand (tri-n-octyl phosphine oxide - TOPO). Stability constants for successive nitrato complexes (M(NO3)x3-x (aq) where M is Eu3+, Am3+ or Cm3+) were determined to assist in the calculation of the extraction constant, Kex, for the metal ions under study. Enthalpies of extraction (?Hextr) for the lanthanide series (excluding Pm3+) and Am3+ by TOPO have been measured using isothermal titration calorimetry. The observed ?Hextr were found to be constant at ~29 kJ mol-1across the series from La3+-Er3+, with a slight decrease observed from Tm3+-Lu3+. These heats were found to be consistent with enthalpies determined using van ’t Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (?G, ?H, ?S) was calculated for Eu(NO3)3, Am(NO3)3 and Cm(NO3)3 extraction by TOPO and Am3+ and Cm3+ extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ?Hextr, presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques.

  16. Central metal ion exchange in a coordination polymer based on lanthanide ions and di(2-ethylhexyl)phosphoric acid: exchange rate and tunable affinity.

    PubMed

    Tasaki-Handa, Yuiko; Abe, Yukie; Ooi, Kenta; Tanaka, Mikiya; Wakisaka, Akihiro

    2014-01-01

    In this paper the exchange of lanthanide(III) ions (Ln(3+)) between a solution and a coordination polymer (CP) of di(2-ethylhexyl)phosphoric acid (Hdehp), [Ln(dehp)3], is studied. Kinetic and selectivity studies suggest that a polymeric network of [Ln(dehp)3] has different characteristics than the corresponding monomeric complex. The reaction rate is remarkably slow and requires over 600 h to reach in nearly equilibrium, and this can be explained by the polymeric crystalline structure and high valency of Ln(3+). The affinity of the exchange reaction reaches a maximum with the Ln(3+) possessing an ionic radius 7% smaller than that of the central Ln(3+), therefore, the affinity of the [Ln(dehp)3] is tunable based on the choice of the central metal ion. Such unique affinity, which differs from the monomeric complex, can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The latter likely becomes predominant for Ln(3+) exchange when the ionic radius of the ion in solution is smaller than the original Ln(3+) by more than 7%. Structural studies suggest that the incoming Ln(3+) forms a new phase though an exchange reaction, and this could plausibly cause the structural strain.

  17. Folic Acid

    MedlinePlus

    Folic acid is a B vitamin. It helps the body make healthy new cells. Everyone needs folic acid. For women who may get pregnant, it is really important. Getting enough folic acid before and during pregnancy can prevent major birth ...

  18. Folic Acid

    MedlinePlus

    Folic acid is used to treat or prevent folic acid deficiency. It is a B-complex vitamin needed by ... Folic acid comes in tablets. It usually is taken once a day. Follow the directions on your prescription label ...

  19. Amino acids

    MedlinePlus

    ... amino acids are: histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan , and valine. Nonessential amino acids "Nonessential" means that our bodies produce an amino ...

  20. Acid Rain.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1987-01-01

    Provides some background information on acid deposition. Includes a historical perspective, describes some effects of acid precipitation, and discusses acid rain in the United Kingdom. Contains several experiments that deal with the effects of acid rain on water quality and soil. (TW)

  1. Acid rain

    SciTech Connect

    Not Available

    1985-01-01

    This report has four parts: they discuss acid rain in relation to acid soils, agriculture, forests, and aquatic ecosystems. Among findings: modern sources of acid deposition from the atmosphere for all the acid soils in the world, nor even chiefly responsible for those of northern U.S. Agriculture has its problems, but acid precipitation is probably not one of them. More research is needed to determine to what extent acid precipitation is responsible for forest declines and for smaller detrimental effects on forest growth where no damage to the foliage is evident. Many lakes and streams are extremely sensitive to added acids.

  2. Features of the thermodynamics of trivalent lanthanide/actinide distribution reactions by tri-n-octylphosphine oxide and bis(2-ethylhexyl) phosphoric acid.

    PubMed

    Grimes, Travis S; Zalupski, Peter R; Martin, Leigh R

    2014-11-01

    A new methodology has been developed to study the thermochemical features of the biphasic transfer reactions of trisnitrato complexes of lanthanides and americium by a monofunctional solvating ligand (tri-n-octylphosphine oxide, TOPO). Stability constants for successive nitrato complexes (M(NO3)x(3-x)(aq) where M is Eu(3+), Am(3+), or Cm(3+)) were determined to assist in the calculation of the extraction constant, K(ex), for the metal ions under study. Enthalpies of extraction (ΔH(extr)) for the lanthanide series (excluding Pm(3+)) and Am(3+) by TOPO have been measured using isothermal titration calorimetry. The observed ΔH(extr) were found to be constant at ~29 kJ mol(-1) across the series from La(3+) to Er(3+), with a slight decrease observed from Tm(3+) to Lu(3+). These heats were found to be consistent with enthalpies determined using van't Hoff analysis of temperature dependent extraction studies. A complete set of thermodynamic parameters (ΔG, ΔH, ΔS) was calculated for Eu(NO3)3, Am(NO3)3, and Cm(NO3)3 extraction by TOPO and Am(3+) and Cm(3+) extraction by bis(2-ethylhexyl) phosphoric acid (HDEHP). A discussion comparing the energetics of these systems is offered. The measured biphasic extraction heats for the transplutonium elements, ΔH(extr), presented in these studies are the first ever direct measurements offered using two-phase calorimetric techniques. PMID:25315891

  3. Phosphorus-containing fluorinated organics: polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluorophosphonates (PFPAs), and perfluorophosphinates (PFPIAs) in residential indoor dust.

    PubMed

    De Silva, Amila O; Allard, Cody N; Spencer, Christine; Webster, Glenys M; Shoeib, Mahiba

    2012-11-20

    Indoor dust is thought to be a source of human exposure to perfluorocarboxylates (PFCAs) and perfluorosulfonates (PFSAs), but exposures to emerging organofluorine compounds, including precursors to PFCAs and PFSAs via indoor dust, remain unknown. We report an analytical method for measuring several groups of emerging phosphorus-containing fluorinated compounds, including polyfluoroalkyl phosphoric acid diesters (diPAP), perfluorophosphonates (PFPA), and perfluorophosphinates (PFPIA), as well as perfluoroethylcyclohexane sulfonate (PFECHS) in indoor dust. This method was used to analyze diPAP, PFPA, and PFPIA levels in 102 residential dust samples collected in 2007-2008 from Vancouver, Canada. The results indicated a predominant and ubiquitous presence of diPAPs (frequency of detection 100%, mean and median ΣdiPAPs 7637 and 2215 ng/g). Previously measured median concentrations of perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), and fluorotelomer alcohols (FTOHs) in the same samples were 14-74 times lower than ΣdiPAP levels, i.e. 71 ng/g PFOS, 30 ng/g PFOA, and 152 ng/g ΣFTOHs. PFPAs and PFPIAs were detected in 62% and 85% of samples, respectively, at concentrations nearly 3 orders of magnitude lower than diPAPs (median 2.3 ng/g ΣPFPAs and 2.3 ng/g ΣPFPIAs). PFECHS was detected in only 8% of dust samples. To the best of our knowledge, this is the first report of these compounds in indoor dust. In this study, diPAP concentrations represented 98% ± 7% of the total measured analytes in the dust samples. Detection of diPAPs at such high concentrations in indoor dust may represent an important and as-yet unrecognized indirect source of PFCA exposure in humans, given the identified biotransformation pathways. Identifying the sources of diPAPs to the indoor environment is a priority for future research to improve air quality in households.

  4. Lanthanide ion exchange properties of a coordination polymer consisting of di(2-ethylhexyl) phosphoric acid and trivalent metal ions (Ce3+, Fe3+, or Al3+).

    PubMed

    Ooi, Kenta; Tasaki-Handa, Yuiko; Abe, Yukie; Wakisaka, Akihiko

    2014-03-28

    Three kinds of coordination polymers ([M(dehp)3], M = Ce, Fe, or Al) were prepared by mixing the sodium form (Na(dehp)) of di(2-ethylhexyl) phosphoric acid and MCl3 in an ethanol-water binary mixture. They have monoclinic crystalline structure with similar lattice parameters. The lanthanide ion (Ln(3+) = La(3+), Sm(3+), Dy(3+), or Yb(3+)) exchange properties were studied in a 20 : 80 vol% ethanol-water binary mixture containing 2 mM Ln(NO3)3 at room temperature. The rate of Ln(3+) adsorption is relatively slow; it requires over 3 weeks to reach equilibrium. [M(dehp)3] has different Ln(3+) affinities depending on the kind of central metal ions: the affinity order at 3 week adsorption is Yb(3+) < La(3+) < Dy(3+) < Sm(3+) for [Ce(dehp)3], La(3+) < Sm(3+) < Dy(3+) < Yb(3+) for [Fe(dehp)3], and La(3+) < Sm(3+), Dy(3+), Yb(3+) for [Al(dehp)3]. The difference in affinity order can be explained by two factors: the coordination preference and steric strain caused by the polymeric structure. The chemical and structural analyses suggested that the Ln(3+) adsorption progresses first by the central M(3+)/Ln(3+) exchange, followed by a morphological change to a rod-like or fibrous form by a solid phase reaction. In the case of [Fe(dehp)3], the eluted Fe(3+) may be hydrolyzed and precipitated as amorphous iron hydroxide.

  5. Characterization and application of expanded graphite modified with phosphoric acid and glucose for the removal of Ni(II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Zhang, Jian; Xu, Xiaoli; Zhang, Jie; Liu, Hai; Guo, Zizhang; Kang, Yan; Li, Yiran; Xu, Jingtao

    2015-12-01

    Three kinds of modified expanded graphite (EG), impregnated with phosphoric acid (H3PO4) (P-EG), impregnated with glucose (G-EG), and impregnated with H3PO4 and glucose (G-P-EG), were prepared under a low temperature (150 °C). The adsorption capacity of G-P-EG (Qm = 7.016 mg/g) is much higher than original expanded graphite (EG Qm = 0.423 mg/g) and other two kinds of modified expanded graphite (P-EG Qm = 0.770 mg/g; G-EG Qm = 0.507 mg/g). The physicochemical properties of EG and G-P-EG were characterized by N2 adsorption/desorption, Boehm's titration and X-ray photoelectron spectroscopy (XPS). EG exhibited higher values of BET surface area (11.357 m2/g) and total pore volume (0.0303 cm3/g) than that of G-P-EG (4.808 m3/g and 0.0109 cm3/g). However, the results of Bohm's titration and XPS showed that G-P-EG contained more surface oxygen-containing functional groups. The Ni(II) adsorption equilibrium data agreed well with the Langmuir model. And the experimental data of EG and G-P-EG fitted better by pseudo-second order model. Based on the results of batch adsorption experiments and XPS analysis, there were several possible mechanisms for Ni(II) adsorption on the G-P-EG, including chemical adsorption, cation exchange, electrostatic attraction and surface complication.

  6. Surface modification with phosphoric acid of SiO2/Nb2O5 prepared by the sol-gel method: structural-textural and acid sites studies and an ion exchange model.

    PubMed

    Francisco, M S P; Cardoso, W S; Gushikem, Y; Landers, R; Kholin, Y V

    2004-09-28

    In this work, the structural and textural properties of the SiO2/Nb2O5 system prepared by the sol-gel method and then modified by phosphoric acid were studied. The different materials were prepared, with three different mol % Nb2O5 (2.5, 5.0, and 7.5 mol %), and calcined in the temperature range of 423-1273 K. BET specific surface area determinations, scanning electron microscopy connected to a X-ray emission analyzer, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS) were used for the investigation. For the lowest temperature of calcination (423 K), the mesopores and micropores of the modified material were blocked, resulting in a decrease of the specific surface area compared to the SBET values obtained for the SiNb matrix. Under intermediate temperatures of calcination (423-873 K), the modified material acquired textural stability. By XPS analysis, the presence of the dihydrogenphosphate species was identified, the P/Nb atomic ratios being independent of the thermal treatment. 31P magic angle spinning NMR confirmed the XPS data and also showed that the chemical shift of the (H2PO4)- ions strongly depended on the crystallization degree of the Nb2O5. Structural thermal stability was also shown by the presence of Brønsted acid sites in the modified material calcined at high temperature (1273 K). The thermal stability is directly associated with obtainment of the same value for K+ exchange capacity (0.74 mmol g(-1), average value) for the modified materials calcined at 423 and 1273 K. The chemical analyses of phosphorus for the modified materials were made by using the inductively coupled plasma. The value was 0.36 mmol g(-1), corroborating the presence of (H2PO4)- ions. The ion exchange isotherms presented an S-shaped form characteristic of energetically heterogeneous ion exchangers, permitting application of a model of fixed polydentate centers, in which ion exchange took place. PMID:15379496

  7. Aminocaproic Acid

    MedlinePlus

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  8. Ethacrynic Acid

    MedlinePlus

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  9. Aristolochic Acids

    MedlinePlus

    ... Sciences NIH-HHS www.niehs.nih.gov Aristolochic Acids Key Points Report on Carcinogens Status Known to be human carcinogens Aristolochia Clematitis Aristolochic Acids n Known human carcinogens n Found in certain ...

  10. Obeticholic Acid

    MedlinePlus

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  11. Acid mucopolysaccharides

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  12. Fatty acids - trans fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  13. Aspartic acid

    MedlinePlus

    ... Hormone production and release Normal nervous system function Plant sources of aspartic acid include: Legumes such as soybeans, garbanzo beans, and lentils Peanuts, almonds, walnuts, and flaxseeds Animal ...

  14. Usnic acid.

    PubMed

    Ingólfsdóttir, K

    2002-12-01

    Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that is commercially available. Usnic acid is uniquely found in lichens, and is especially abundant in genera such as Alectoria, Cladonia, Usnea, Lecanora, Ramalina and Evernia. Many lichens and extracts containing usnic acid have been utilized for medicinal, perfumery, cosmetic as well as ecological applications. Usnic acid as a pure substance has been formulated in creams, toothpaste, mouthwash, deodorants and sunscreen products, in some cases as an active principle, in others as a preservative. In addition to antimicrobial activity against human and plant pathogens, usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory and analgesic activity. Ecological effects, such as antigrowth, antiherbivore and anti-insect properties, have also been demonstrated. A difference in biological activity has in some cases been observed between the two enantiomeric forms of usnic acid. Recently health food supplements containing usnic acid have been promoted for use in weight reduction, with little scientific support. The emphasis of the current review is on the chemistry and biological activity of usnic acid and its derivatives in addition to rational and ecologically acceptable methods for provision of this natural compound on a large scale.

  15. Acid rain

    SciTech Connect

    Elsworth, S.

    1985-01-01

    This book was written in a concise and readable style for the lay public. It's purpose was to make the public aware of the damage caused by acid rain and to mobilize public opinion to favor the elimination of the causes of acid rain.

  16. Acid rain

    SciTech Connect

    White, J.C. )

    1988-01-01

    This book presents the proceedings of the third annual conference sponsored by the Acid Rain Information Clearinghouse (ARIC). Topics covered include: Legal aspects of the source-receptor relationship: an energy perspective; Scientific uncertainty, agency inaction, and the courts; and Acid rain: the emerging legal framework.

  17. How Acidic Is Carbonic Acid?

    PubMed

    Pines, Dina; Ditkovich, Julia; Mukra, Tzach; Miller, Yifat; Kiefer, Philip M; Daschakraborty, Snehasis; Hynes, James T; Pines, Ehud

    2016-03-10

    Carbonic, lactic, and pyruvic acids have been generated in aqueous solution by the transient protonation of their corresponding conjugate bases by a tailor-made photoacid, the 6-hydroxy-1-sulfonate pyrene sodium salt molecule. A particular goal is to establish the pK(a) of carbonic acid H2CO3. The on-contact proton transfer (PT) reaction rate from the optically excited photoacid to the carboxylic bases was derived, with unprecedented precision, from time-correlated single-photon-counting measurements of the fluorescence lifetime of the photoacid in the presence of the proton acceptors. The time-dependent diffusion-assisted PT rate was analyzed using the Szabo-Collins-Kimball equation with a radiation boundary condition. The on-contact PT rates were found to follow the acidity order of the carboxylic acids: the stronger was the acid, the slower was the PT reaction to its conjugate base. The pK(a) of carbonic acid was found to be 3.49 ± 0.05 using both the Marcus and Kiefer-Hynes free energy correlations. This establishes H2CO3 as being 0.37 pK(a) units stronger and about 1 pK(a) unit weaker, respectively, than the physiologically important lactic and pyruvic acids. The considerable acid strength of intact carbonic acid indicates that it is an important protonation agent under physiological conditions. PMID:26862781

  18. Acid rain

    SciTech Connect

    Sweet, W.

    1980-06-20

    Acid precipitation includes not only rain but also acidified snow, hail and frost, as well as sulfur and nitrogen dust. The principal source of acid precipitation is pollution emitted by power plants and smelters. Sulfur and nitrogen compounds contained in the emissions combine with moisture to form droplets with a high acid content - sometimes as acidic as vinegar. When sufficiently concentrated, these acids can kill fish and damage material structures. Under certain circumstances they may reduce crop and forest yields and cause or aggravate respiratory diseases in humans. During the summer, especially, pollutants tend to collect over the Great Lakes in high pressure systems. Since winds typically are westerly and rotate clockwise around high pressure systems, the pollutants gradually are dispersed throughout the eastern part of the continent.

  19. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications.

  20. Acid rain

    SciTech Connect

    Bess, F.D.

    1980-01-01

    The acid rain problem in the northeastern U.S. has been growing in severity and geographical areas affected. Acid rain has damaged, or will result in damage to visibility, physical structures and materials, aquatic life, timber, crops, and soils. The principal causes of acid rain in the northeastern U.S. are sulfur oxide and nitrogen oxide emissions from large power plants and smelters in the Ohio River Valley. Immediate corrective action and appropriate research are needed to reduce acid precipitation. Short-term programs that will define the rate of environmental deterioration, remaining environmental capacity to resist sudden deterioration, mechanisms of acid rain formation, and costs of various control options must be developed. (3 maps, 13 references, 1 table)

  1. Asparagusic acid.

    PubMed

    Mitchell, Stephen C; Waring, Rosemary H

    2014-01-01

    Asparagusic acid (1,2-dithiolane-4-carboxylic acid) is a simple sulphur-containing 5-membered heterocyclic compound that appears unique to asparagus, though other dithiolane derivatives have been identified in non-food species. This molecule, apparently innocuous toxicologically to man, is the most probable culprit responsible for the curious excretion of odorous urine following asparagus ingestion. The presence of the two adjacent sulphur atoms leads to an enhanced chemical reactivity, endowing it with biological properties including the ability to substitute potentially for α-lipoic acid in α-keto-acid oxidation systems. This brief review collects the scattered data available in the literature concerning asparagusic acid and highlights its properties, intermediary metabolism and exploratory applications. PMID:24099657

  2. Acid fog

    SciTech Connect

    Hileman, B.

    1983-03-01

    Fog in areas of southern California previously thought to be pollution-free has been shown to have a pH as low as 1.69. It has been found to be most acidic after smoggy days, suggesting that it forms on the aerosol associated with the previously exiting smog. Studies on Whiteface Mountain in the Adirondacks show that fog water is often 10 times as acidic as rainwater. As a result of their studies, California plans to spend $4 million on acid deposition research in the coming year. (JMT)

  3. Tranexamic Acid

    MedlinePlus

    ... is used to treat heavy bleeding during the menstrual cycle (monthly periods) in women. Tranexamic acid is in ... tablets for more than 5 days in a menstrual cycle or take more than 6 tablets in a ...

  4. Mefenamic Acid

    MedlinePlus

    ... as mefenamic acid may cause ulcers, bleeding, or holes in the stomach or intestine. These problems may ... like coffee grounds, blood in the stool, or black and tarry stools.Keep all appointments with your ...

  5. Acid Precipitation

    ERIC Educational Resources Information Center

    Likens, Gene E.

    1976-01-01

    Discusses the fact that the acidity of rain and snow falling on parts of the U.S. and Europe has been rising. The reasons are still not entirely clear and the consequences have yet to be well evaluated. (MLH)

  6. Acidic precipitation

    SciTech Connect

    Martin, H.C.

    1987-01-01

    At the International Symposium on Acidic Precipitation, over 400 papers were presented, and nearly 200 of them are included here. They provide an overview of the present state of the art of acid rain research. The Conference focused on atmospheric science (monitoring, source-receptor relationships), aquatic effects (marine eutrophication, lake acidification, impacts on plant and fish populations), and terrestrial effects (forest decline, soil acidification, etc.).

  7. Review of HxPyOz-Catalyzed H + OH Recombination in Scramjet Nozzle Expansions; and Possible Phosphoric Acid Enhancement of Scramjet Flameholding, from Extinction of H3PO4 + H2 - Air Counterflow Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald

    2005-01-01

    Recent detailed articles by Twarowski indicate that small quantities of phosphorus oxides and acids in the fuel-rich combustion products of H2 + phosphine (PH3) + air should significantly catalyze H, OH and O recombination kinetics during high-speed nozzle expansions -- to reform H2O, release heat, and approach equilibrium more rapidly and closely than uncatalyzed kinetics. This paper is an initial feasibility study to determine (a) if addition of phosphoric acid vapor (H3PO4) to a H2 fuel jet -- which is much safer than using PH3 -- will allow combustion in a high-speed scramjet engine test without adverse effects on localized flameholding, and (b) if phosphorus-containing exhaust emissions are environmentally acceptable. A well-characterized axisymmetric straight-tube opposed jet burner (OJB) tool is used to evaluate H3PO4 addition effects on the air velocity extinction limit (flame strength) of a H2 versus air counterflow diffusion flame. Addition of nitric oxide (NO), also believed to promote catalytic H-atom recombination, was evaluated for comparison. Two to five mass percent H3PO4 in the H2 jet increased flame strength 4.2%, whereas airside addition decreased it 1%. Adding 5% NO to the H2 caused a 2% decrease. Products of H-atom attack on H3PO4 produced an intense green chemiluminescence near the stagnation point. The resultant exothermic production of phosphorus oxides and acids, with accelerated H-atom recombination, released sufficient heat near the stagnation point to increase flame strength. In conclusion, the addition of H3PO4 vapor (or more reactive P sources) to hydrogen in scramjet engine tests may positively affect flameholding stability in the combustor and thrust production during supersonic expansion -- a possible dual benefit with system design / performance implications. Finally, a preliminary assessment of possible environmental effects indicates that scramjet exhaust emissions should consist of phosphoric acid aerosol, with gradual

  8. Activation of carboxylic acids in asymmetric organocatalysis.

    PubMed

    Monaco, Mattia Riccardo; Poladura, Belén; Diaz de Los Bernardos, Miriam; Leutzsch, Markus; Goddard, Richard; List, Benjamin

    2014-07-01

    Organocatalysis, catalysis using small organic molecules, has recently evolved into a general approach for asymmetric synthesis, complementing both metal catalysis and biocatalysis. Its success relies to a large extent upon the introduction of novel and generic activation modes. Remarkably though, while carboxylic acids have been used as catalyst directing groups in supramolecular transition-metal catalysis, a general and well-defined activation mode for this useful and abundant substance class is still lacking. Herein we propose the heterodimeric association of carboxylic acids with chiral phosphoric acid catalysts as a new activation principle for organocatalysis. This self-assembly increases both the acidity of the phosphoric acid catalyst and the reactivity of the carboxylic acid. To illustrate this principle, we apply our concept in a general and highly enantioselective catalytic aziridine-opening reaction with carboxylic acids as nucleophiles.

  9. Salicylic acids

    PubMed Central

    Hayat, Shamsul; Irfan, Mohd; Wani, Arif; Nasser, Alyemeni; Ahmad, Aqil

    2012-01-01

    Salicylic acid is well known phytohormone, emerging recently as a new paradigm of an array of manifestations of growth regulators. The area unleashed yet encompassed the applied agriculture sector to find the roles to strengthen the crops against plethora of abiotic and biotic stresses. The skipped part of integrated picture, however, was the evolutionary insight of salicylic acid to either allow or discard the microbial invasion depending upon various internal factors of two interactants under the prevailing external conditions. The metabolic status that allows the host invasion either as pathogenesis or symbiosis with possible intermediary stages in close systems has been tried to underpin here. PMID:22301975

  10. Acid-functionalized polyolefin materials and their use in acid-promoted chemical reactions

    DOEpatents

    Oyola, Yatsandra; Tian, Chengcheng; Bauer, John Christopher; Dai, Sheng

    2016-06-07

    An acid-functionalized polyolefin material that can be used as an acid catalyst in a wide range of acid-promoted chemical reactions, wherein the acid-functionalized polyolefin material includes a polyolefin backbone on which acid groups are appended. Also described is a method for the preparation of the acid catalyst in which a precursor polyolefin is subjected to ionizing radiation (e.g., electron beam irradiation) of sufficient power and the irradiated precursor polyolefin reacted with at least one vinyl monomer having an acid group thereon. Further described is a method for conducting an acid-promoted chemical reaction, wherein an acid-reactive organic precursor is contacted in liquid form with a solid heterogeneous acid catalyst comprising a polyolefin backbone of at least 1 micron in one dimension and having carboxylic acid groups and either sulfonic acid or phosphoric acid groups appended thereto.

  11. Stearic Acid

    ERIC Educational Resources Information Center

    Young, Jay A.

    2004-01-01

    A chemical laboratory information profile (CLIP) is presented for the chemical, stearic acid. The profile lists the chemical's physical and harmful characteristics, exposure limits, and symptoms of major exposure, for the benefit of teachers and students, who use the chemical in the laboratory.

  12. Trichloroacetic acid

    Integrated Risk Information System (IRIS)

    Trichloroacetic acid ( TCA ) ; CASRN 76 - 03 - 9 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Nonca

  13. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  14. Selenious acid

    Integrated Risk Information System (IRIS)

    Selenious acid ; CASRN 7783 - 00 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic E

  15. Dichloroacetic acid

    Integrated Risk Information System (IRIS)

    Dichloroacetic acid ; CASRN 79 - 43 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  16. Cacodylic acid

    Integrated Risk Information System (IRIS)

    Cacodylic acid ; CASRN 75 - 60 - 5 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  17. Benzoic acid

    Integrated Risk Information System (IRIS)

    Benzoic acid ; CASRN 65 - 85 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  18. Formic acid

    Integrated Risk Information System (IRIS)

    Formic acid ; CASRN 64 - 18 - 6 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  19. [Hyaluronic acid].

    PubMed

    Pomarede, N

    2008-01-01

    Hyaluronic Acid (HA) is now a leader product in esthetic procedures for the treatment of wrinkles and volumes. The structure of HA, its metabolism, its physiological function are foremost breaking down then its use in aesthetic dermatology: steps of injection, possible side effects, benefits and downsides of the use of HA in aesthetic dermatology.

  20. Hydroxycarboxylic acids and salts

    DOEpatents

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  1. Methylmalonic acid blood test

    MedlinePlus

    ... acid is a substance produced when proteins, called amino acids, in the body break down. The health care ... Cederbaum S, Berry GT. Inborn errors of carbohydrate, ammonia, amino acid, and organic acid metabolism. In: Gleason CA, Devaskar ...

  2. Folic Acid and Pregnancy

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Folic Acid and Pregnancy KidsHealth > For Parents > Folic Acid and ... before conception and during early pregnancy . About Folic Acid Folic acid, sometimes called folate, is a B ...

  3. Rapid method of separating Am(VI) from transplutonium and rare-earth elements on a cation exchanger in phosphoric acid

    SciTech Connect

    Tikhomirova, G.S.; Guseva, L.I.

    1988-07-01

    Measurements have been made on cation-exchanger sorption of americium, other actinoids, and certain rare-earth elements from 0.1-2.0 M H/sub 3/PO/sub 4/ when the elements have been oxidized with ammonium persulfate alone or mixed with silver phosphate. There are considerable differences in behavior between the americium and the other elements on account of its being oxidized to a higher valency state. Measurements have been made on the effects of acid and oxidant concentrations and of the oxidation and elution conditions on the americium yield when the exchanger is treated with H/sub 3/PO/sub 4/. Optimum oxidation conditions have been chosen, and a rapid method has been devised for separating americium(VI) from other transplutonium elements and REE on Dowex 50 /times/ 8, where the eluent is 0.1-1.0 M H/sub 3/PO/sub 4/ plus 0.05 M (NH/sub 4/)/sub 2/S/sub 2/O/sub 8/.

  4. Determination of ultra-micro amounts of sulfur in igneous rocks by spectrofluorimetry using 2-(o-hydroxyphenyl) benzoxazole derivatization and tin(II)-strong phosphoric acid-assisted reduction.

    PubMed

    Hong, Y D; Namgung, S W; Yoshida, M; Malik, A

    2000-02-01

    A new and very sensitive method was developed for the determination of ultra-micro amounts of sulfur in igneous rock samples. The sulfur compounds in an igneous rock sample are reduced and released in the form of hydrogen sulfide by heating with a tin(II)-strong phosphoric acid (SPA) reagent. The liberated hydrogen sulfide is carried by a flow of nitrogen into a copper(II) absorbing solution to obtain a precipitate of copper(II) sulfide. The remaining copper(II) ion forms a chelate with 2-(o-hydroxyphenyl)benzoxazole (HPB) and quenches the fluorescence of HPB. The amount of sulfide is determined by measuring the HPB fluorescence intensity. The optimum reaction conditions were stoichiometrically investigated. By the present method using 0.1-0.2 g of rock sample, ultramicro amounts of sulfur (0.1-12.8 mug) could be quantitatively separated, collected, and determined with a relative standard deviation of 1.37% for a sample containing 5.7 mug of sulfur (95% confidence level). PMID:18967860

  5. Determination of ultra-micro amounts of sulfur in igneous rocks by spectrofluorimetry using 2-(o-hydroxyphenyl) benzoxazole derivatization and tin(II)-strong phosphoric acid-assisted reduction.

    PubMed

    Hong, Y D; Namgung, S W; Yoshida, M; Malik, A

    2000-02-01

    A new and very sensitive method was developed for the determination of ultra-micro amounts of sulfur in igneous rock samples. The sulfur compounds in an igneous rock sample are reduced and released in the form of hydrogen sulfide by heating with a tin(II)-strong phosphoric acid (SPA) reagent. The liberated hydrogen sulfide is carried by a flow of nitrogen into a copper(II) absorbing solution to obtain a precipitate of copper(II) sulfide. The remaining copper(II) ion forms a chelate with 2-(o-hydroxyphenyl)benzoxazole (HPB) and quenches the fluorescence of HPB. The amount of sulfide is determined by measuring the HPB fluorescence intensity. The optimum reaction conditions were stoichiometrically investigated. By the present method using 0.1-0.2 g of rock sample, ultramicro amounts of sulfur (0.1-12.8 mug) could be quantitatively separated, collected, and determined with a relative standard deviation of 1.37% for a sample containing 5.7 mug of sulfur (95% confidence level).

  6. Decoupling of dynamic processes in surfactant-based liquid mixtures: the case of lithium-containing bis(2-ethylhexyl)phosphoric acid/bis(2-ethylhexyl)amine systems.

    PubMed

    Nicotera, Isabella; Oliviero Rossi, Cesare; Turco Liveri, Vincenzo; Calandra, Pietro

    2014-07-22

    Pure surfactant liquids and their binary mixtures, because of the amphiphilic nature of the molecules involved, can exhibit nanosegregation and peculiar transport properties. The idea that inspired this work is that the possibility of including in such media salts currently used for technological applications should lead to a synergy between the properties of the salt and those of the medium. Therefore, the dynamic features of bis(2-ethylhexyl)amine (BEEA) and bis(2-ethylhexyl)phosphoric acid (HDEHP) liquid mixtures were investigated as a function of composition and temperature by (1)H nuclear magnetic resonance (NMR) spectroscopy and rheometry. Inclusion of litium trifluoromethanesulfonate (LiT) has been investigated by infrared spectroscopy, pulsed field gradient NMR, and conductimetry methods to highlight the solubilizing and confining properties of these mixtures as well as the lithium conductivity. It was found that BEEA/HDEHP binary liquid mixtures show zero-threshold percolating self-assembly with a maximum in viscosity and a minimum in molecular diffusion at a 1:1 composition. Dissolution of LiT in such system can occur via confinement in the locally self-assembled polar domains. Despite this confinement, Li(+) conduction is scarcely dependent on the medium composition because of the possibility of a field-induced hopping decoupled by the structural and dynamical features of the medium.

  7. Understanding Acid Rain

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    The term acid rain describes rain, snow, or fog that is more acidic than normal precipitation. To understand what acid rain is, it is first necessary to know what an acid is. Acids can be defined as substances that produce hydrogen ions (H+), when dissolved in water. Scientists indicate how acidic a substance is by a set of numbers called the pH…

  8. Precipitation: its acidic nature.

    PubMed

    Frohliger, J O; Kane, R

    1975-08-01

    A comparison of the free hydrogen ion concentration and the total hydrogen ion concentration of rain samples shows that rain is a weak acid. The weak acid nature of rain casts doubt on the concepts that the acidity of rain is increasing and that these increases are due to strong acids such as sulfuric acid.

  9. Incorporation and distribution of dihomo-gamma-linolenic acid, arachidonic acid, and eicosapentaenoic acid in cultured human keratinocytes

    SciTech Connect

    Punnonen, K.; Puustinen, T.; Jansen, C.T.

    1986-02-01

    Human keratinocytes in culture were labelled with /sup 14/C-dihomo-gamma-linolenic acid, /sup 14/C-arachidonic acid or /sup 14/C-eicosapentaenoic acid. All three eicosanoid precursor fatty acids were effectively incorporated into the cells. In phospholipids most of the radioactivity was recovered, in neutral lipids a substantial amount, and as free unesterified fatty acids only a minor amount. Most of the radioactivity was found in phosphatidylethanolamine which was also the major phospholipid as measured by phosphorous assay. The incorporation of dihomo-gamma-linolenic acid and arachidonic acid into lipid subfractions was essentially similar. Eicosapentaenoic acid was, however, much less effectively incorporated into phosphatidylinositol + phosphatidylserine and, correspondingly, more effectively into triacylglycerols as compared to the two other precursor fatty acids. Once incorporated, the distribution of all three precursor fatty acids was relatively stable, and only minor amounts of fatty acids were released into the culture medium during short term culture (two days). Our study demonstrates that eicosanoid precursor fatty acids are avidly taken up by human keratinocytes and esterified into membrane lipids. The clinical implication of this finding is that dietary manipulations might be employed to cause changes in the fatty acid composition of keratinocytes.

  10. Amino Acid Metabolism Disorders

    MedlinePlus

    ... defects & other health conditions > Amino acid metabolism disorders Amino acid metabolism disorders E-mail to a friend Please ... baby’s newborn screening may include testing for certain amino acid metabolism disorders. These are rare health conditions that ...

  11. Carbolic acid poisoning

    MedlinePlus

    Phenol poisoning; Phenylic acid poisoning; Hydroxybenzene poisoning; Phenic acid poisoning; Benzenol poisoning ... Below are symptoms of carbolic acid poisoning in different parts of the ... urine Decreased urine output No urine output EYES, EARS, ...

  12. Azelaic Acid Topical

    MedlinePlus

    Azelaic acid gel is used to clear the bumps, lesions, and swelling caused by rosacea (a skin disease that ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat acne. Azelaic acid ...

  13. Uric acid test (image)

    MedlinePlus

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  14. Facts about Folic Acid

    MedlinePlus

    ... Information For... Media Policy Makers Facts About Folic Acid Language: English Español (Spanish) Recommend on Facebook Tweet ... of the baby's brain and spine. About folic acid Folic acid is a B vitamin. Our bodies ...

  15. Acid Lipase Disease

    MedlinePlus

    ... Awards Enhancing Diversity Find People About NINDS NINDS Acid Lipase Disease Information Page Synonym(s): Cholesterol Ester Storage ... Trials Related NINDS Publications and Information What is Acid Lipase Disease ? Acid lipase disease or deficiency occurs ...

  16. Electrochemical characteristics of acid electrolytes for fuel cells

    NASA Astrophysics Data System (ADS)

    Adzic, R.; Gervasio, D.; Kanamura, K.; Razaq, A.; Razaq, M.; Yeager, Ernest B.

    1990-01-01

    Five topics investigated by the Gas Research Institute (GRI) contractors at Case Western Reserve University (CWRU) during the past year included: (1) electrochemical evaluation of perfluorinated electrolyte, (2) the Nafion solid polymer electrolyte (SPE) fuel cell, (3) electrochemistry of single crystal Pt electrodes in acid solution, (4) catalytic effects of adatoms entrapped on electrode surfaces by bipolar or monopolar ion exchange membrane layers, (5) investigations of the Fleischmann-Pons phenomenon. The principal objective of the project is to evaluate new acid electrolytes. Electrochemical evaluation was made for two bisphosphonic acids as a replacement for phosphoric acid as a fuel cell electrolyte, and also a bis-sulfonyl carbon acid as an additive to concentrated phosphoric acid electrolyte for acid H2-O2 fuel cells. Electrochemical characteristics were found for these new perfluorinated acids.

  17. Synthesis of Hydroxymethylenebisphosphonic Acid Derivatives in Different Solvents.

    PubMed

    Nagy, Dávid Illés; Grün, Alajos; Garadnay, Sándor; Greiner, István; Keglevich, György

    2016-01-01

    The syntheses of hydroxymethylenebisphosphonic acid derivatives (dronic acid derivatives) starting from the corresponding substituted acetic acids and P-reagents, mainly phosphorus trichloride and phosphorous acid are surveyed according to the solvents applied. The nature of the solvent is a critical point due to the heterogeneity of the reaction mixtures. This review sheds light on the optimum choice and ratio of the P-reactants, and on the optimum conditions. PMID:27529200

  18. Reactivity of aminophosphonic acids. Oxidative dephosphonylation of 1-aminoalkylphosphonic acids by aqueous halogens.

    PubMed

    Drabowicz, Józef; Jordan, Frank; Kudzin, Marcin H; Kudzin, Zbigniew H; Stevens, Christian V; Urbaniak, Paweł

    2016-02-01

    The reactions of 1-aminoalkylphosphonic acids with bromine-water, chlorine-water and iodine-water were investigated. The formation of phosphoric(v) acid, as a result of a halogen-promoted cleavage of the Cα-P bond, accompanied by nitrogen release, was observed. The dephosphonylation of 1-aminoalkylphosphonic acids was found to occur quantitatively. In the reactions of 1-aminoalkylphosphonic acids with other halogen-water reagents investigated by (31)P NMR, scission of the Cα-P bond was also observed, the reaction rates being comparable for bromine and chlorine, but much slower for iodine.

  19. Acid tolerance in amphibians

    SciTech Connect

    Pierce, B.A.

    1985-04-01

    Studies of amphibian acid tolerance provide information about the potential effects of acid deposition on amphibian communities. Amphibians as a group appear to be relatively acid tolerant, with many species suffering increased mortality only below pH 4. However, amphibians exhibit much intraspecific variation in acid tolerance, and some species are sensitive to even low levels of acidity. Furthermore, nonlethal effects, including depression of growth rates and increases in developmental abnormalities, can occur at higher pH.

  20. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO{sub 2}, highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO{sub 4}/2.5M H{sub 3}PO{sub 4} solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO{sub 2} (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  1. Acid-permanganate oxidation of potassium tetraphenylboron

    SciTech Connect

    Smith, J.R.

    1993-02-01

    Scoping experiments have been performed which show that potassium tetraphenylboron (KTPB) is rapidly oxidized by permanganate in acidic solutions at room temperature. The main Products are CO[sub 2], highly oxidized organic compounds related to tartaric and tartronic acids, boric acid, and potassium phosphate (when phosphoric acid is used as the source of acid). One liter of 0.6M NaMnO[sub 4]/2.5M H[sub 3]PO[sub 4] solution will destroy up to 8 grams of KTPB. The residual benzene concentration has been measured to be less than the RCRA limit of 0.5 ppm. Approximately 30% of the organic material is released as CO[sub 2] (trace CO) and 0.16% as benzene vapor. The reaction is well behaved, no foaming or spattering. Tests were performed from .15M to near 1M permanganate. The phosphoric acid concentration was maintained at a concentration at least three times that of the permanganate since an excess of acid was desired and this is the ratio that these two reagents are consumed in the oxidation.

  2. Bioconversions of ferulic acid, an hydroxycinnamic acid.

    PubMed

    Mathew, Sindhu; Abraham, T Emilia

    2006-01-01

    Ferulic acid is the most abundant hydroxycinnamic acid in the plant world and is ester linked to arabinose, in various plant polysaccharides such as arabinoxylans and pectins. It is a precursor to vanillin, one of the most important aromatic flavor compound used in foods, beverages, pharmaceuticals, and perfumes. This article presents an overview of the various biocatalytic routes, focusing on the relevant biotransformations of ferulic acid using plant sources, microorganisms, and enzymes.

  3. An Effective Acid Combination for Enhanced Properties and Corrosion Control of Acidizing Sandstone Formation

    NASA Astrophysics Data System (ADS)

    Umer Shafiq, Mian; Khaled Ben Mahmud, Hisham

    2016-03-01

    To fulfill the demand of the world energy, more technologies to enhance the recovery of oil production are being developed. Sandstone acidizing has been introduced and it acts as one of the important means to increase oil and gas production. Sandstone acidizing operation generally uses acids, which create or enlarge the flow channels of formation around the wellbore. In sandstone matrix acidizing, acids are injected into the formation at a pressure below the formation fracturing pressure, in which the injected acids react with mineral particles that may restrict the flow of hydrocarbons. Most common combination is Hydrofluoric Acid - Hydrochloric with concentration (3% HF - 12% HCl) known as mud acid. But there are some problems associated with the use of mud acid i.e., corrosion, precipitation. In this paper several new combinations of acids were experimentally screened to identify the most effective combination. The combinations used consist of fluoboric, phosphoric, formic and hydrofluoric acids. Cores were allowed to react with these combinations and results are compared with the mud acid. The parameters, which are analyzed, are Improved Permeability Ratio, strength and mineralogy. The analysis showed that the new acid combination has the potential to be used in sandstone acidizing.

  4. 46 CFR 153.1052 - Carriage of other cargoes in acid tanks.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., hydrochloric acid, or phosphoric acid with out specific authorization from the Commandant (CG-ENG). ... 46 Shipping 5 2013-10-01 2013-10-01 false Carriage of other cargoes in acid tanks. 153.1052... Special Cargo Procedures § 153.1052 Carriage of other cargoes in acid tanks. No person shall load or...

  5. 46 CFR 153.1052 - Carriage of other cargoes in acid tanks.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., hydrochloric acid, or phosphoric acid with out specific authorization from the Commandant (CG-ENG). ... 46 Shipping 5 2012-10-01 2012-10-01 false Carriage of other cargoes in acid tanks. 153.1052... Special Cargo Procedures § 153.1052 Carriage of other cargoes in acid tanks. No person shall load or...

  6. 46 CFR 153.1052 - Carriage of other cargoes in acid tanks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., hydrochloric acid, or phosphoric acid with out specific authorization from the Commandant (CG-522). ... 46 Shipping 5 2011-10-01 2011-10-01 false Carriage of other cargoes in acid tanks. 153.1052... Special Cargo Procedures § 153.1052 Carriage of other cargoes in acid tanks. No person shall load or...

  7. 46 CFR 153.1052 - Carriage of other cargoes in acid tanks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., hydrochloric acid, or phosphoric acid with out specific authorization from the Commandant (CG-522). ... 46 Shipping 5 2010-10-01 2010-10-01 false Carriage of other cargoes in acid tanks. 153.1052... Special Cargo Procedures § 153.1052 Carriage of other cargoes in acid tanks. No person shall load or...

  8. Acid Thunder: Acid Rain and Ancient Mesoamerica

    ERIC Educational Resources Information Center

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  9. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    This communication notes the actual magnitude of the acidity in acidic fog particles and suggests a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air.

  10. Method for the isolation of citric acid and malic acid in Japanese apricot liqueur for carbon stable isotope analysis.

    PubMed

    Akamatsu, Fumikazu; Hashiguchi, Tomokazu; Hisatsune, Yuri; Oe, Takaaki; Kawao, Takafumi; Fujii, Tsutomu

    2017-02-15

    A method for detecting the undeclared addition of acidic ingredients is required to control the authenticity of Japanese apricot liqueur. We developed an analytical procedure that minimizes carbon isotope discrimination for measurement of the δ(13)C values of citric and malic acid isolated from Japanese apricot liqueur. Our results demonstrated that freeze-drying is preferable to nitrogen spray-drying, because it does not significantly affect the δ(13)C values of citric acid and results in smaller isotope discrimination for malic acid. Both 0.1% formic acid and 0.2% phosphoric acid are acceptable HPLC mobile phases for the isolation of citric and malic acid, although the δ(13)C values of malic acid exhibited relatively large variation compared with citric acid following isolation using either mobile phase. The developed procedure allows precise δ(13)C measurements of citric and malic acid isolated from Japanese apricot liqueur. PMID:27664615

  11. Method for the isolation of citric acid and malic acid in Japanese apricot liqueur for carbon stable isotope analysis.

    PubMed

    Akamatsu, Fumikazu; Hashiguchi, Tomokazu; Hisatsune, Yuri; Oe, Takaaki; Kawao, Takafumi; Fujii, Tsutomu

    2017-02-15

    A method for detecting the undeclared addition of acidic ingredients is required to control the authenticity of Japanese apricot liqueur. We developed an analytical procedure that minimizes carbon isotope discrimination for measurement of the δ(13)C values of citric and malic acid isolated from Japanese apricot liqueur. Our results demonstrated that freeze-drying is preferable to nitrogen spray-drying, because it does not significantly affect the δ(13)C values of citric acid and results in smaller isotope discrimination for malic acid. Both 0.1% formic acid and 0.2% phosphoric acid are acceptable HPLC mobile phases for the isolation of citric and malic acid, although the δ(13)C values of malic acid exhibited relatively large variation compared with citric acid following isolation using either mobile phase. The developed procedure allows precise δ(13)C measurements of citric and malic acid isolated from Japanese apricot liqueur.

  12. Lactic acid test

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  13. Omega-6 Fatty Acids

    MedlinePlus

    ... types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean ... from studying specific omega-6 fatty acids or plant oils containing omega-6 fatty acids. See the separate ...

  14. Fatty acid analogs

    DOEpatents

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  15. Deoxycholic Acid Injection

    MedlinePlus

    Deoxycholic acid injection is used to improve the appearance and profile of moderate to severe submental fat ('double chin'; fatty tissue located under the chin). Deoxycholic acid injection is in a class of medications called ...

  16. Aminocaproic Acid Injection

    MedlinePlus

    Aminocaproic acid injection is used to control bleeding that occurs when blood clots are broken down too quickly. This ... the baby is ready to be born). Aminocaproic acid injection is also used to control bleeding in ...

  17. Zoledronic Acid Injection

    MedlinePlus

    ... acid (Reclast) is used to prevent or treat osteoporosis (condition in which the bones become thin and ... Zoledronic acid (Reclast) is also used to treat osteoporosis in men, and to prevent or treat osteoporosis ...

  18. Uric Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Uric Acid Share this page: Was this page helpful? Also known as: Serum Urate; UA Formal name: Uric Acid Related tests: Synovial Fluid Analysis , Kidney Stone Analysis , ...

  19. Methylmalonic Acid Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Methylmalonic Acid Share this page: Was this page helpful? Also known as: MMA Formal name: Methylmalonic Acid Related tests: Vitamin B12 and Folate , Homocysteine , Intrinsic ...

  20. Hydrochloric acid poisoning

    MedlinePlus

    Hydrochloric acid is a clear, poisonous liquid. It is highly corrosive, which means it immediately causes severe ... discusses poisoning due to swallowing or breathing in hydrochloric acid. This article is for information only. Do ...

  1. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  2. PRODUCTION OF TRIFLUOROACETIC ACID

    DOEpatents

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  3. Quantity of acid in acid fog

    SciTech Connect

    Deal, W.J.

    1983-07-01

    The chemical composition of fog particles has become of considerable interest, because of both the possibility of interpreting atmospheric- chemistry processes in fog particles in terms of the principles of aqueous chemistry and the potential health effects of species present in fog particles. The acidity of fog particles has received wide attention. This communication noted the actual magnitude of the excess acidity in acidic fog particles and suggested a possible line of inquiry into the health effects of such fog so that it can be determined whether a typical fog is detrimental or beneficial relative to dry air. (DP)

  4. Acid Rain Study Guide.

    ERIC Educational Resources Information Center

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  5. The Acid Rain Reader.

    ERIC Educational Resources Information Center

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  6. What Is Acid Rain?

    ERIC Educational Resources Information Center

    Likens, Gene E.

    2004-01-01

    Acid rain is the collective term for any type of acidified precipitation: rain, snow, sleet, and hail, as well as the presence of acidifying gases, particles, cloud water, and fog in the atmosphere. The increased acidity, primarily from sulfuric and nitric acids, is generated as a by-product of the combustion of fossil fuels such as coal and oil.…

  7. [alpha]-Oxocarboxylic Acids

    ERIC Educational Resources Information Center

    Kerber, Robert C.; Fernando, Marian S.

    2010-01-01

    Several [alpha]-oxocarboxylic acids play key roles in metabolism in plants and animals. However, there are inconsistencies between the structures as commonly portrayed and the reported acid ionization constants, which result because the acids are predominantly hydrated in aqueous solution; that is, the predominant form is RC(OH)[subscript 2]COOH…

  8. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  9. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Nucleic acid detection assays

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  11. Cleavage of nucleic acids

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  12. Cleavage of nucleic acids

    SciTech Connect

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  13. Editorial: Acid precipitation

    SciTech Connect

    1995-09-01

    This editorial focuses on acid rain and the history of public and governmental response to acid rain. Comments on a book by Gwineth Howell `Acid Rain and Acid Waters` are included. The editor feels that Howells has provide a service to the environmental scientific community, with a textbook useful to a range of people, as well as a call for decision makers to learn from the acid rain issue and use it as a model for more sweeping global environmental issues. A balance is needed among several parameters such as level of evidence, probability that the evidence will lead to a specific direction and the cost to the global community. 1 tab.

  14. [Safety of folic acid].

    PubMed

    Ströhle, Alexander; Wolters, Maike; Hahn, Andreas

    2015-08-01

    Improving dietary folate intake is a central public health goal. However, critical voices have become louder warning of too high intake of folic acid. Safety concerns of a high folic acid exposure are usually limited to synthetic folic acid contained in drugs and food supplements. Against this background, the present article focuses on two matters: (a) How do the absorption and metabolism of synthetic folic acid differ from that of other folates? (b) How has the longterm safety of folic acid to be judged, especially regarding the risk of colorectal cancer, autism, asthma, impaired immune defence, masking vitamin B12 deficiency and interactions with the methotrexate metabolism?

  15. Amino acid analysis

    NASA Technical Reports Server (NTRS)

    Winitz, M.; Graff, J. (Inventor)

    1974-01-01

    The process and apparatus for qualitative and quantitative analysis of the amino acid content of a biological sample are presented. The sample is deposited on a cation exchange resin and then is washed with suitable solvents. The amino acids and various cations and organic material with a basic function remain on the resin. The resin is eluted with an acid eluant, and the eluate containing the amino acids is transferred to a reaction vessel where the eluant is removed. Final analysis of the purified acylated amino acid esters is accomplished by gas-liquid chromatographic techniques.

  16. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  17. Nucleic acid detection kits

    DOEpatents

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  18. Acidic Ionic Liquids.

    PubMed

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition. PMID:27175515

  19. Boric acid and boronic acids inhibition of pigeonpea urease.

    PubMed

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  20. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  1. Process for the preparation of lactic acid and glyceric acid

    DOEpatents

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  2. Well acidizing compositions and methods

    SciTech Connect

    Swanson, B. L.

    1980-12-23

    Gelled acidic compositions suitable for matrix acidizing or fracture acidizing of subterranean formations are provided comprising water, a water-dispersible polymeric viscosifier such as a polymer of acrylamide, an acid, and a polyphenolic material such as lignite.

  3. Bile acids but not acidic acids induce Barrett's esophagus.

    PubMed

    Sun, Dongfeng; Wang, Xiao; Gai, Zhibo; Song, Xiaoming; Jia, Xinyong; Tian, Hui

    2015-01-01

    Barrett's esophagus (BE) is associated with the development of esophageal adenocarcinoma (EAC). Bile acids (BAs) refluxing into the esophagus contribute to esophageal injury, which results in BE and subsequent EAC. We developed two animal models to test the role of BAs in the pathogenesis of BE. We surgically generated BA reflux, with or without gastric acid, in rats. In a second experiment, we fed animals separately with BAs and gastric acid. Pathologic changes were examined and the expression of Muc2 and Cdx2 in BE tissue was tested by immunostaining. Inflammatory factors in the plasma, as well as differentiation genes in BE were examined through highly sensitive ELISA and semi-quantitative RT-PCR techniques. We found that BAs are sufficient for the induction of esophagitis and Barrett's-like metaplasia in the esophagus. Overexpression of inflammatory cells, IL-6, and TNF-α was observed both in animals fed with BAs and surgically generated BA reflux. Furthermore, elevated levels of Cdx2, Muc2, Bmp4, Kit19, and Tff2 (differentiation genes in BE) were found in BA-treated rats. In conclusion, BAs, but not gastric acid, are a major causative factor for BE. We confirmed that BAs contribute to the development of BE by inducing the inflammatory response in the esophagus. Inhibiting BAs may be a promising therapy for BE.

  4. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  5. Acid-Base Homeostasis.

    PubMed

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  6. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  7. Enzymatic gallic acid esterification.

    PubMed

    Weetal, H H

    1985-02-01

    Gallic acid esters of n-propyl and amyl alcohols have been produced by enzymatic synthesis in organic solvents using immobilized tannase. Studies indicate that maximum esterification of gallic acid occurs with amyl alcohol. The enzyme shows broad alcohol specificity. However, the enzyme exhibits absolute specificity for the acid portion of the ester. Studies were carried out on K(m), V(max), pH, and temperature optima.

  8. Amino acids and proteins.

    PubMed

    van Goudoever, Johannes B; Vlaardingerbroek, Hester; van den Akker, Chris H; de Groof, Femke; van der Schoor, Sophie R D

    2014-01-01

    Amino acids and protein are key factors for growth. The neonatal period requires the highest intake in life to meet the demands. Those demands include amino acids for growth, but proteins and amino acids also function as signalling molecules and function as neurotransmitters. Often the nutritional requirements are not met, resulting in a postnatal growth restriction. However, current knowledge on adequate levels of both amino acid as well as protein intake can avoid under nutrition in the direct postnatal phase, avoid the need for subsequent catch-up growth and improve later outcome.

  9. USGS Tracks Acid Rain

    USGS Publications Warehouse

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  10. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  11. Recovery of organic acids

    DOEpatents

    Verser, Dan W.; Eggeman, Timothy J.

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  12. Mutant fatty acid desaturase

    DOEpatents

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  13. Amino Acid Crossword Puzzle

    ERIC Educational Resources Information Center

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  14. Toxicology of Perfluoroalkyl acids

    EPA Science Inventory

    The Perfluoroalkyl acids(PFAAs) area a family of organic chemicals consisting of a perflurinated carbon backbone (4-12in length) and a acidic functional moiety (Carboxylate or sulfonate). These compounds have excellent surface-tension reducing properties and have numerous industr...

  15. Uric acid - blood

    MedlinePlus

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test if you have had or are about to have certain types of chemotherapy. Rapid weight loss, which may occur with such treatments, can increase the amount of uric acid in ...

  16. Bile acid transporters

    PubMed Central

    Dawson, Paul A.; Lan, Tian; Rao, Anuradha

    2009-01-01

    In liver and intestine, transporters play a critical role in maintaining the enterohepatic circulation and bile acid homeostasis. Over the past two decades, there has been significant progress toward identifying the individual membrane transporters and unraveling their complex regulation. In the liver, bile acids are efficiently transported across the sinusoidal membrane by the Na+ taurocholate cotransporting polypeptide with assistance by members of the organic anion transporting polypeptide family. The bile acids are then secreted in an ATP-dependent fashion across the canalicular membrane by the bile salt export pump. Following their movement with bile into the lumen of the small intestine, bile acids are almost quantitatively reclaimed in the ileum by the apical sodium-dependent bile acid transporter. The bile acids are shuttled across the enterocyte to the basolateral membrane and effluxed into the portal circulation by the recently indentified heteromeric organic solute transporter, OSTα-OSTβ. In addition to the hepatocyte and enterocyte, subgroups of these bile acid transporters are expressed by the biliary, renal, and colonic epithelium where they contribute to maintaining bile acid homeostasis and play important cytoprotective roles. This article will review our current understanding of the physiological role and regulation of these important carriers. PMID:19498215

  17. Analysis of Organic Acids.

    ERIC Educational Resources Information Center

    Griswold, John R.; Rauner, Richard A.

    1990-01-01

    Presented are the procedures and a discussion of the results for an experiment in which students select unknown carboxylic acids, determine their melting points, and investigate their solubility behavior in water and ethanol. A table of selected carboxylic acids is included. (CW)

  18. Omega-3 Fatty Acids

    MedlinePlus

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the amount of triglycerides (a fat-like ... people with very high triglycerides. Omega-3 fatty acids are in a class of medications called antilipemic ...

  19. Toxicology of Perfluoroalkyl Acids*

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs) are a family of organic chemicals consisting of a perfluorinated carbon backbone (4-12 in length) and an acidic functional moiety (carboxylate or sulfonate). These compounds are chemically stable, have excellent surface-tension reducing properties...

  20. Salicylic Acid Topical

    MedlinePlus

    ... skin blemishes in people who have acne. Topical salicylic acid is also used to treat skin conditions that involve scaling or overgrowth of skin ... water for 15 minutes.Do not apply topical salicylic acid to skin that is broken, red, swollen, irritated, or infected. ...

  1. Uric acid and hypertension.

    PubMed

    Feig, Daniel I

    2011-09-01

    A link between serum uric acid and the development of hypertension was first hypothesized in the 1870s. Although numerous epidemiologic studies in the 1980s and 1990s suggested an association, relatively little attention was paid to it until recently. Animal models have suggested a two-step pathogenesis by which uric acid initially activates the renin angiotensin system and suppresses nitric oxide, leading to uric acid-dependent increase in systemic vascular resistance, followed by a uric acid-mediated vasculopathy, involving renal afferent arterioles, resulting in a late sodium-sensitive hypertension. Initial clinical trials in young patients have supported these mechanisms in young patients but do not yet support pharmacologic reduction of serum uric acid as first-line therapy for hypertension.

  2. Biosynthesis of pulcherriminic acid

    PubMed Central

    MacDonald, J. C.

    1965-01-01

    1. Candida pulcherrima was grown on a complex medium to which various compounds had been added to determine their effect on the biosynthesis of pulcherriminic acid. Most of the pulcherriminic acid synthesized by C. pulcherrima PRL2019 was derived from the l-[1-14C]leucine added to the medium. 2. The cyclic dipeptide of l-leucine (cyclo-l-leucyl-l-leucyl) was shown, by trapping experiments involving cycloleucyl-leucyl isomers, to be synthesized by strain PRL2019. Cyclo-l-leucyl-l-leucyl was derived from l-leucine and was converted into pulcherriminic acid. Cyclo-l-leucyl-l-leucyl was a precursor of pulcherriminic acid in strain PRL2007 also. 3. The results supported the hypothesis that pulcherriminic acid is derived from l-leucine and that cyclo-l-leucyl-l-leucyl is an intermediate in the biosynthesis. PMID:5837792

  3. Structural and Electrical Characterization of Protonic Acid Doped Polyaniline

    NASA Astrophysics Data System (ADS)

    Shaktawat, Vinodini; Saxena, Narendra S.; Sharma, Kananbala; Sharma, Thaneshwar P.

    2008-04-01

    Polyaniline doped with different protonic acids were chemically synthesized using ammonium persulfate (APS) as an oxidant. These samples were characterized through X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, which confirms the amorphous nature and acid doping, respectively. Electrical conduction in these samples has been studied through the measurement of I-V characteristics at room temperature as well as in the temperature range from 313 K to 413 K. So obtained characteristic curves were found to be nonlinear. The conductivity of phosphoric acid doped polyaniline sample is higher as compared to HCl doped polyaniline and pure polyaniline. Temperature dependence of conductivity suggests a semiconducting nature with increase in temperature. Activation energies have been found to be 50.86, 25.74 and 21.05 meV for pure polyaniline (base), polyaniline doped with hydrochloric, phosphoric acid, respectively.

  4. Total syntheses of cis-cyclopropane fatty acids: dihydromalvalic acid, dihydrosterculic acid, lactobacillic acid, and 9,10-methylenehexadecanoic acid.

    PubMed

    Shah, Sayali; White, Jonathan M; Williams, Spencer J

    2014-12-14

    cis-Cyclopropane fatty acids (cis-CFAs) are widespread constituents of the seed oils of subtropical plants, membrane components of bacteria and protozoa, and the fats and phospholipids of animals. We describe a systematic approach to the synthesis of enantiomeric pairs of four cis-CFAs: cis-9,10-methylenehexadecanoic acid, lactobacillic acid, dihydromalvalic acid, and dihydrosterculic acid. The approach commences with Rh2(OAc)4-catalyzed cyclopropenation of 1-octyne and 1-decyne, and hinges on the preparative scale chromatographic resolution of racemic 2-alkylcycloprop-2-ene-1-carboxylic acids using a homochiral Evan's auxiliary. Saturation of the individual diastereomeric N-cycloprop-2-ene-1-carbonylacyloxazolidines, followed by elaboration to alkylcyclopropylmethylsulfones, allowed Julia-Kocienski olefination with various ω-aldehyde-esters. Finally, saponification and diimide reduction afforded the individual cis-CFA enantiomers. PMID:25321346

  5. Use of super acids to digest chrysotile and amosite asbestos in simple mixtures or matrices found in building materials compositions

    SciTech Connect

    Sugama, T.; Petrakis, L.; Webster, R.P.

    1999-12-21

    A composition for converting asbestos-containing material to environmentally benign components is provided. The composition comprises a fluoro acid decomposing agent which can be applied to either amosite-containing thermal insulation or chrysotile-containing fire-proof material or to any asbestos-containing material which includes of chrysotile and amosite asbestos. The fluoro acid decomposing agent includes FP{sub 0}(OH){sub 2}, hexafluorophosphoric acid, a mixture of hydrofluoric and phosphoric acid and a mixture of hexafluorophosphoric acid and phosphoric acid. A method for converting asbestos-containing material to environmentally benign components is also provided.

  6. Gluconic acid production.

    PubMed

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  7. Trans Fatty Acids

    NASA Astrophysics Data System (ADS)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  8. Sulfuric Acid on Europa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain.

    This image is based on data gathered by Galileo's near infrared mapping spectrometer.

    Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks.

    Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  9. Strongly Acidic Auxin Indole-3-Methanesulfonic Acid

    PubMed Central

    Cohen, Jerry D.; Baldi, Bruce G.; Bialek, Krystyna

    1985-01-01

    A radiochemical synthesis is described for [14C]indole-3-methanesulfonic acid (IMS), a strongly acidic auxin analog. Techniques were developed for fractionation and purification of IMS using normal and reverse phase chromatography. In addition, the utility of both Fourier transform infrared spectrometry and fast atom bombardment mass spectrometry for analysis of IMS has been demonstrated. IMS was shown to be an active auxin, stimulating soybean hypocotyl elongation, bean first internode curvature, and ethylene production. IMS uptake by thin sections of soybean hypocotyl was essentially independent of solution pH and, when applied at a 100 micromolar concentration, IMS exhibited a basipetal polarity in its transport in both corn coleoptile and soybean hypocotyl sections. [14C]IMS should, therefore, be a useful compound to study fundamental processes related to the movement of auxins in plant tissues and organelles. PMID:16664007

  10. Acidic solvent extraction of gossypol from cottonseed meal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to expand the use of cottonseed meal in animal feeding, extraction of the meal gossypol was studied with acetic acetone- and ethanol-based solutions. Phosphoric acid was added to hydrolyze and release gossypol bound within the meal. Both solvent systems were effective at reducing gossypo...

  11. Understanding acid rain

    SciTech Connect

    Budiansky, S.

    1981-06-01

    The complexities of the phenomenon of acid rain are described. Many factors, including meteorology, geology, chemistry, and biology, all play parts. Varying weather, varying soils, the presence of other pollutants and species differences all act to blur the connections between industrial emissions, acid rain, and environmental damage. Some experts believe that the greatest pH shock to lakes occurs during snow melt and runoff in the spring; others believe that much of the plant damage ascribed to acid rain is actually due to the effects of ozone. Much work needs to be done in the area of sampling. Historical data are lacking and sampling methods are not sufficiently accurate. (JMT)

  12. Understanding Acid Base Disorders.

    PubMed

    Gomez, Hernando; Kellum, John A

    2015-10-01

    The concentration of hydrogen ions is regulated in biologic solutions. There are currently 3 recognized approaches to assess changes in acid base status. First is the traditional Henderson-Hasselbalch approach, also called the physiologic approach, which uses the relationship between HCO3(-) and Pco2; the second is the standard base excess approach based on the Van Slyke equation. The third approach is the quantitative or Stewart approach, which uses the strong ion difference and the total weak acids. This article explores the origins of the current concepts framing the existing methods to analyze acid base balance.

  13. Acid rain and soil.

    PubMed

    vanLoon, G W

    1984-08-01

    A summary of important chemical properties of soil is given and the way in which acid rain may affect these properties is discussed. Acid rain may suppress microbiological decomposition and nitrification processes, thus influencing the nutrient status of soils. It has also been found that soil organic matter is less soluble in more acid solutions. Changed nutrient availability patterns are predicted in a low pH environment and enhanced leaching of essential elements from the soil exchange complex has been observed. Increased solubility of potentially toxic elements such as aluminium may also occur from soils which have been exposed to acidified rainfall.

  14. Disorders of Amino Acid Metabolism

    MedlinePlus

    ... Aspiration Syndrome Additional Content Medical News Disorders of Amino Acid Metabolism By Lee M. Sanders, MD, MPH NOTE: ... Metabolic Disorders Disorders of Carbohydrate Metabolism Disorders of Amino Acid Metabolism Disorders of Lipid Metabolism Amino acids are ...

  15. Pantothenic acid and biotin

    MedlinePlus

    ... well as other nutrients, are provided in the Dietary Reference Intakes (DRIs) developed by the Food and Nutrition Board ... level that is thought to ensure enough nutrition. Dietary Reference Intakes for pantothenic acid: Age 0 to 6 months: ...

  16. Amino Acid Metabolism Disorders

    MedlinePlus

    Metabolism is the process your body uses to make energy from the food you eat. Food is ... One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup ...

  17. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  18. Folic acid - test

    MedlinePlus

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider ...

  19. Nitric acid poisoning

    MedlinePlus

    Symptoms from swallowing nitric acid may include: Abdominal pain - severe Burns to skin or mouth Drooling Fever Mouth pain - severe Rapid drop in blood pressure (shock) Throat swelling, which leads to breathing difficulty ...

  20. [Hydrofluoric acid burns].

    PubMed

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated. PMID:27189091

  1. Difficult Decisions: Acid Rain.

    ERIC Educational Resources Information Center

    Miller, John A.; Slesnick, Irwin L.

    1989-01-01

    Discusses some of the contributing factors and chemical reactions involved in the production of acid rain, its effects, and political issues pertaining to who should pay for the clean up. Supplies questions for consideration and discussion. (RT)

  2. Hyaluronic acid fillers.

    PubMed

    Monheit, Gary D; Coleman, Kyle M

    2006-01-01

    Although hyaluronic acids are a relatively new treatment for facial lines and wrinkles, they have provided numerous advances in the area of cosmetic surgery. This article discusses the inherent properties of hyaluronic acid fillers that make them ideal for treatment of facial lines. It encompasses a review of the current literature on U.S. Food and Drug Administration-approved hyaluronic acid fillers and the role that each of these fillers currently has in facial cosmetics. This article also discusses the potential pitfalls and adverse effects that can be associated with using hyaluronic acids for filling facial lines. Finally, it serves as an overview of current techniques for clinical assessment of patients as well as administration and treatment of facial lines and wrinkles.

  3. Boric acid poisoning

    MedlinePlus

    Borax poisoning ... The main symptoms of boric acid poisoning are blue-green vomit, diarrhea, and a bright red rash on the skin. Other symptoms may include: Blisters Collapse Coma Convulsions Drowsiness ...

  4. Stomach acid test

    MedlinePlus

    Gastric acid secretion test ... The test is done after you have not eaten for a while so fluid is all that remains in ... injected into your body. This is done to test the ability of the cells in the stomach ...

  5. Aminolevulinic Acid Topical

    MedlinePlus

    ... under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated ...

  6. Amino Acids and Chirality

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  7. (Acid rain workshop)

    SciTech Connect

    Turner, R.S.

    1990-12-05

    The traveler presented a paper entitled Susceptibility of Asian Ecosystems to Soil-Mediated Acid Rain Damage'' at the Second Workshop on Acid Rain in Asia. The workshop was organized by the Asian Institute of Technology (Bangkok, Thailand), Argonne National Laboratory (Argonne, Illinois), and Resource Management Associates (Madison, Wisconsin) and was sponsored by the US Department of Energy, the United Nations Environment Program, the United Nations Economic and Social Commission for Asia and the Pacific, and the World Bank. Papers presented on the first day discussed how the experience gained with acid rain in North America and Europe might be applied to the Asian situation. Papers describing energy use projections, sulfur emissions, and effects of acid rain in several Asian countries were presented on the second day. The remaining time was allotted to discussion, planning, and writing plans for a future research program.

  8. Folic acid in diet

    MedlinePlus

    ... a regular supply of the vitamin in the foods you eat. ... vitamins have been added to the food. Many foods are now fortified with folic acid. Some of these are enriched breads, cereals, flours, ...

  9. Valproic Acid and Pregnancy

    MedlinePlus

    ... in the treatment of epilepsy, and to treat bipolar disorder and migraines. I have been taking valproic acid ... that women with seizure disorders and women with bipolar disorder might have menstrual problems and difficulty getting pregnant. ...

  10. Citric acid urine test

    MedlinePlus

    ... The test is used to diagnose renal tubular acidosis and evaluate kidney stone disease. Normal Results The ... level of citric acid may mean renal tubular acidosis and a tendency to form calcium kidney stones. ...

  11. Folic Acid Quiz

    MedlinePlus

    ... more easily than natural food folate. Close × Answer: D CORRECT: Folic acid reduces the risk for spina ... g., orange juice and green vegetables). Close × Answer: D CORRECT: Spina bifida and anencephaly are neural tube ...

  12. Hydrofluoric acid poisoning

    MedlinePlus

    ... your skin or eyes, you may have: Blisters Burns Pain Vision loss Hydrofluoric acid poisoning can have ... urine tests Camera down the throat to see burns in the esophagus and the stomach (endoscopy) Fluids ...

  13. Portable nucleic acid thermocyclers.

    PubMed

    Almassian, David R; Cockrell, Lisa M; Nelson, William M

    2013-11-21

    A nucleic acid thermal cycler is considered to be portable if it is under ten pounds, easily carried by one individual, and battery powered. Nucleic acid amplification includes both polymerase chain reaction (e.g. PCR, RT-PCR) and isothermal amplification (e.g. RPA, HDA, LAMP, NASBA, RCA, ICAN, SMART, SDA). There are valuable applications for portable nucleic acid thermocyclers in fields that include clinical diagnostics, biothreat detection, and veterinary testing. A system that is portable allows for the distributed detection of targets at the point of care and a reduction of the time from sample to answer. The designer of a portable nucleic acid thermocycler must carefully consider both thermal control and the detection of amplification. In addition to thermal control and detection, the designer may consider the integration of a sample preparation subsystem with the nucleic acid thermocycler. There are a variety of technologies that can achieve accurate thermal control and the detection of nucleic acid amplification. Important evaluation criteria for each technology include maturity, power requirements, cost, sensitivity, speed, and manufacturability. Ultimately the needs of a particular market will lead to user requirements that drive the decision between available technologies.

  14. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination. PMID:26227050

  15. Neutron Nucleic Acid Crystallography.

    PubMed

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  16. Utilization of acid tars

    SciTech Connect

    Frolov, A.F.; Denisova, T.L.; Aminov, A.N.

    1987-01-01

    Freshly produced acid tar (FPAT), obtained as refinery waste in treating petroleum oils with sulfuric acid and oleum, contains 80% or more sulfuric acid. Of such tars, pond acid tars, which contain up to 80% neutral petroleum products and sulfonated resins, are more stable, and have found applications in the production of binders for paving materials. In this article the authors are presenting results obtained in a study of the composition and reactivity of FPAT and its stability in storage in blends with asphalts obtained in deasphalting operations, and the possibility of using the FPAT in road construction has been examined. In this work, wastes were used which were obtained in treating the oils T-750, KhF-12, I-8A, and MS-14. Data on the change in group chemical composition of FPAT are shown, and the acidity, viscosity, needle penetration, and softening point of acid tars obtained from different grades of oils are plotted as functions of the storage time. It is also shown that the fresh and hardened FPATs differ in their solubilities in various solvents.

  17. Method for isolating nucleic acids

    SciTech Connect

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  18. Acidification and Acid Rain

    NASA Astrophysics Data System (ADS)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  19. Discovery of essential fatty acids

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2015-01-01

    Dietary fat was recognized as a good source of energy and fat-soluble vitamins by the first part of the 20th century, but fatty acids were not considered to be essential nutrients because they could be synthesized from dietary carbohydrate. This well-established view was challenged in 1929 by George and Mildred Burr who reported that dietary fatty acid was required to prevent a deficiency disease that occurred in rats fed a fat-free diet. They concluded that fatty acids were essential nutrients and showed that linoleic acid prevented the disease and is an essential fatty acid. The Burrs surmised that other unsaturated fatty acids were essential and subsequently demonstrated that linolenic acid, the omega-3 fatty acid analog of linoleic acid, is also an essential fatty acid. The discovery of essential fatty acids was a paradigm-changing finding, and it is now considered to be one of the landmark discoveries in lipid research. PMID:25339684

  20. Boric acid catalyzed chemoselective esterification of alpha-hydroxycarboxylic acids.

    PubMed

    Houston, Todd A; Wilkinson, Brendan L; Blanchfield, Joanne T

    2004-03-01

    Boric acid catalyzes the selective esterification of alpha-hydroxycarboxylic acids without causing significant esterification to occur with other carboxylic acids. The procedure is simple, high-yielding, and applicable to the esterification of alpha-hydroxy carboxylates in the presence of other carboxylic acids including beta-hydroxyacids within the same molecule. [reaction: see text