Science.gov

Sample records for acid photoluminescence probing

  1. Probing the molecular character of periodic mesoporous organosilicates via photoluminescence of Lewis acid-base adducts.

    PubMed

    Thiel, Indre; Fedorov, Alexey; Verel, Rene; Yakunin, Sergii; Kovalenko, Maksym V; Copéret, Christophe

    2016-05-18

    Photoluminescence decay was used as a structure-sensitive method to compare the distribution of emitting sites in periodic mesoporous organosilicates (PMOs) to their respective molecular analogs. The observed close similarity of PL decays confirms the molecular nature of PMOs and high homogeneity of emitting sites. PMID:27156706

  2. Development of a Functional Ruthenium(II) Complex that Can Act as a Photoluminescent and Electrochemiluminescent Dual-signaling Probe for Hypochlorous Acid.

    PubMed

    Yu, Xiaojing; Zhang, Wenzhu; Ye, Zhiqiang; Song, Bo; Yuan, Jingli

    2015-07-01

    A functional ruthenium(II) complex that can act as a probe for response to hypochlorous acid (HOCl) in aqueous media with photoluminescence (PL) and electrochemiluminescence (ECL) dual-signals, [Ru(bpy)2(DB-phen)](PF6)2 [bpy: 2,2'-bipyridine; DB-phen: 5-(2,4-dimethoxybenzylamino)-1,10-phenanthroline)], has been designed and synthesized. The complex is highly luminescent both under the light excitation and the electrochemical induction. It can specifically react with HOCl in physiological pH aqueous media to afford its chlorinated derivative, [Ru(bpy)2(DBCA-phen)](PF6)2 [DBCA-phen: 5-(2,4-dimethoxybenzyl-chloroamino)- 1,10-phenanthroline], accompanied by remarkable decreases in its PL and ECL intensities. The PL and ECL abatements of [Ru(bpy)2(DB-phen)](PF6)2 show good linear correlation to the concentration of HOCl with detection limits at low micromolar concentration level, and the PL and ECL responses of the complex to HOCl are highly specific without interferences of other reactive oxygen/nitrogen species. These features enabled [Ru(bpy)2(DB-phen)](PF6)2 to be used as a probe for the highly selective and sensitive detection of HOCl in aqueous media with PL and ECL dual-modes. PMID:25962768

  3. Wide-field time-gated photoluminescence microscopy for fast ultrahigh-sensitivity imaging of photoluminescent probes.

    PubMed

    Razali, Wan A W; Sreenivasan, Varun K A; Bradac, Carlo; Connor, Mark; Goldys, Ewa M; Zvyagin, Andrei V

    2016-08-01

    Fluorescence microscopy is a fundamental technique for the life sciences, where biocompatible and photostable photoluminescence probes in combination with fast and sensitive imaging systems are continually transforming this field. A wide-field time-gated photoluminescence microscopy system customised for ultrasensitive imaging of unique nanoruby probes with long photoluminescence lifetime is described. The detection sensitivity derived from the long photoluminescence lifetime of the nanoruby makes it possible to discriminate signals from unwanted autofluorescence background and laser backscatter by employing a time-gated image acquisition mode. This mode enabled several-fold improvement of the photoluminescence imaging contrast of discrete nanorubies dispersed on a coverslip. It enabled recovery of the photoluminescence signal emanating from discrete nanorubies when covered by a layer of an organic fluorescent dye, which were otherwise invisible without the use of spectral filtering approaches. Time-gated imaging also facilitated high sensitivity detection of nanorubies in a biological environment of cultured cells. Finally, we monitor the binding kinetics of nanorubies to a functionalised substrate, which exemplified a real-time assay in biological fluids. 3D-pseudo colour images of nanorubies immersed in a highly fluorescent dye solution. Nanoruby photoluminescence is subdued by that of the dye in continuous excitation/imaging (left), however it can be recovered by time-gated imaging (right). At the bottom is schematic diagram of nanoruby assay in a biological fluid. PMID:27264934

  4. Functionalization of graphene oxide nanostructures improves photoluminescence and facilitates their use as optical probes in preclinical imaging

    NASA Astrophysics Data System (ADS)

    Prabhakar, Neeraj; Näreoja, Tuomas; von Haartman, Eva; Şen Karaman, Didem; Burikov, Sergey A.; Dolenko, Tatiana A.; Deguchi, Takahiro; Mamaeva, Veronika; Hänninen, Pekka E.; Vlasov, Igor I.; Shenderova, Olga A.; Rosenholm, Jessica M.

    2015-06-01

    Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are attractive for biomedical imaging such as low toxicity and stable photoluminescence. In this study, the nGOs were organically surface-modified with poly(ethylene glycol)-poly(ethylene imine) (PEG-PEI) copolymers tagged with folic acid as the affinity ligand for cancer cells expressing folate receptors. The functionalization enhanced both the cellular uptake and quantum efficiency of the photoluminescence as compared to non-modified nGOs. The nGOs exhibited an excitation dependent photoluminescence that facilitated their detection with a wide range of microscope configurations. The functionalized nGOs were non-toxic, they were retained in the stained cell population over a period of 8 days and they were distributed equally between daughter cells. We have evaluated their applicability in in vitro and in vivo (chicken embryo CAM) models to visualize and track migratory cancer cells. The good biocompatibility and easy detection of the functionalized nGOs suggest that they could address the limitations faced with quantum dots and organic fluorophores in long-term in vivo biomedical imaging.Recently reported photoluminescent nanographene oxides (nGOs), i.e. nanographene oxidised with a sulfuric/nitric acid mixture (SNOx method), have tuneable photoluminescence and are scalable, simple and fast to produce optical probes. This material belongs to the vast class of photoluminescent carbon nanostructures, including carbon dots, nanodiamonds (NDs), graphene quantum dots (GQDs), all of which demonstrate a variety of properties that are

  5. Functional nucleic acid probes and uses thereof

    DOEpatents

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  6. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N.; Park, Wounjhang; Cha, Jennifer N.

    2015-10-01

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent.Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on

  7. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.

    PubMed

    He, Liangcan; Mao, Chenchen; Cho, Suehyun; Ma, Ke; Xi, Weixian; Bowman, Christopher N; Park, Wounjhang; Cha, Jennifer N

    2015-11-01

    Combinations of rare earth doped upconverting nanoparticles (UCNPs) and gold nanostructures are sought as nanoscale theranostics due to their ability to convert near infrared (NIR) photons into visible light and heat, respectively. However, because the large NIR absorption cross-section of the gold coupled with their thermo-optical properties can significantly hamper the photoluminescence of UCNPs, methods to optimize the ratio of gold nanostructures to UCNPs must be developed and studied. We demonstrate here nucleic acid assembly methods to conjugate spherical gold nanoparticles (AuNPs) and gold nanostars (AuNSs) to silica-coated UCNPs and probe the effect on photoluminescence. These studies showed that while UCNP fluorescence enhancement was observed from the AuNPs conjugated UCNPs, AuNSs tended to quench fluorescence. However, conjugating lower ratios of AuNSs to UCNPs led to reduced quenching. Simulation studies both confirmed the experimental results and demonstrated that the orientation and distance of the UCNP with respect to the core and arms of the gold nanostructures played a significant role in PL. In addition, the AuNS-UCNP assemblies were able to cause rapid gains in temperature of the surrounding medium enabling their potential use as a photoimaging-photodynamic-photothermal agent. PMID:26427014

  8. Nucleic acid probes in diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Oberry, Phillip A.

    1991-01-01

    The need for improved diagnostic procedures is outlined and variations in probe technology are briefly reviewed. A discussion of the application of probe technology to the diagnosis of disease in animals and humans is presented. A comparison of probe versus nonprobe diagnostics and isotopic versus nonisotopic probes is made and the current state of sequence amplification is described. The current market status of nucleic acid probes is reviewed with respect to their diagnostic application in human and veterinary medicine. Representative product examples are described and information on probes being developed that offer promise as future products is discussed.

  9. Effects of water molecules on photoluminescence from hierarchical peptide nanotubes and water probing capability.

    PubMed

    Wang, Minjie; Xiong, Shijie; Wu, Xinglong; Chu, Paul K

    2011-10-01

    Photoluminescence (PL) spectra reveal that deficiency of water molecules in the channel cores of bioinspired hierarchical diphenylalanine ( L -Phe- L -Phe, FF) peptide nanotubes (PNTs) not only modifies the bandgap of the subnanometer crystalline structure formed by the self-assembly process, but also induces a characteristic ultraviolet PL peak the position of which is linearly proportional to the number of water molecules in the PNTs. Addition or loss of water molecules gives rise to the UV PL redshift or blueshift. Density functional theory calculation also confirms that addition of water molecules to the PNTs causes splitting of the valence-band peak, which corresponds to the shift and splitting of the observed UV PL peak. Water molecules play an important role in the biological properties of FF PNTs and the results demonstrate that the PL spectra can be used to probe the number of water molecules bonded to the FF molecules. PMID:22049551

  10. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    SciTech Connect

    Yuan, C. T. Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-12-21

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution.

  11. In situ temperature measurements of reaction spaces under microwave irradiation using photoluminescent probes.

    PubMed

    Ano, Taishi; Kishimoto, Fuminao; Sasaki, Ryo; Tsubaki, Shuntaro; Maitani, Masato M; Suzuki, Eiichi; Wada, Yuji

    2016-05-11

    We demonstrate two novel methods for the measurement of the temperatures of reaction spaces locally heated by microwaves, which have been applied here to two example systems, i.e., BaTiO3 particles covered with a SiO2 shell (BaTiO3-SiO2) and layered tungstate particles. Photoluminescent (PL) probes showing the temperature-sensitivity in their PL lifetimes are located in the nanospaces of the above systems. In the case of BaTiO3-SiO2 core-shell particles, rhodamine B is loaded into the mesopores of the SiO2 shell covering the BaTiO3 core, which generates the heat through the dielectric loss of microwaves. The inner nanospace temperature of the SiO2 shell is determined to be 28 °C higher than the bulk temperature under microwave irradiation at 24 W. On the other hand, Eu(3+) is immobilized in the interlayer space of layered tungstate as the PL probe, showing that the nanospace temperature of the interlayer is only 4 °C higher than the bulk temperature. This method for temperature-measurement is powerful for controlling microwave heating and elucidates the ambiguous mechanisms of microwave special effects often observed in chemical reactions, contributing greatly to the practical application of microwaves in chemistry and materials sciences. PMID:27136754

  12. Time-integrated photoluminescence and pump-probe reflection spectroscopy of Si doped InN thin films

    SciTech Connect

    Mohanta, Antaryami; Jang, Der-Jun Wang, Ming-Sung; Tu, L. W.

    2014-01-28

    Temperature and excitation power dependent time-integrated photoluminescence of Si doped InN thin films are investigated. Photoluminescence (PL) spectra at low temperatures are described by single emission peak ensued due to “free-to-bound” recombination; whereas PL spectra at higher temperatures above 150 K are characterized by both “band-to-band” and “free-to-bound” transition. Carrier dynamics of Si doped InN thin films is studied using pump-probe reflection spectroscopy at room temperature. The hot electron cooling process is well described by electron-electron scattering. The dependence of the hot electron cooling rate on total electron density shows sublinear to linear behavior with increase of background electron density. The variation of the carrier recombination lifetime with total electron density implicates the dominance of the defect-related nonradiative recombination channel over other recombination processes.

  13. Arrays of nucleic acid probes on biological chips

    DOEpatents

    Chee, Mark; Cronin, Maureen T.; Fodor, Stephen P. A.; Huang, Xiaohua X.; Hubbell, Earl A.; Lipshutz, Robert J.; Lobban, Peter E.; Morris, MacDonald S.; Sheldon, Edward L.

    1998-11-17

    DNA chips containing arrays of oligonucleotide probes can be used to determine whether a target nucleic acid has a nucleotide sequence identical to or different from a specific reference sequence. The array of probes comprises probes exactly complementary to the reference sequence, as well as probes that differ by one or more bases from the exactly complementary probes.

  14. Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids

    PubMed Central

    2012-01-01

    We report on an exhaustive and systematic study about the photoluminescent properties of nanoporous anodic alumina membranes fabricated by the one-step anodization process under hard conditions in oxalic and malonic acids. This optical property is analysed as a function of several parameters (i.e. hard anodization voltage, pore diameter, membrane thickness, annealing temperature and acid electrolyte). This analysis makes it possible to tune the photoluminescent behaviour at will simply by modifying the structural characteristics of these membranes. This structural tuning ability is of special interest in such fields as optoelectronics, in which an accurate design of the basic nanostructures (e.g. microcavities, resonators, filters, supports, etc.) yields the control over their optical properties and, thus, upon the performance of the nanodevices derived from them (biosensors, interferometers, selective filters, etc.) PMID:22515214

  15. Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy.

    PubMed

    Huang, Shengxi; Ling, Xi; Liang, Liangbo; Kong, Jing; Terrones, Humberto; Meunier, Vincent; Dresselhaus, Mildred S

    2014-10-01

    Two-dimensional molybdenum disulfide (MoS2) is a promising material for optoelectronic devices due to its strong photoluminescence emission. In this work, the photoluminescence of twisted bilayer MoS2 is investigated, revealing a tunability of the interlayer coupling of bilayer MoS2. It is found that the photoluminescence intensity ratio of the trion and exciton reaches its maximum value for the twisted angle 0° or 60°, while for the twisted angle 30° or 90° the situation is the opposite. This is mainly attributed to the change of the trion binding energy. The first-principles density functional theory analysis further confirms the change of the interlayer coupling with the twisted angle, which interprets our experimental results. PMID:25171263

  16. Probing protein stability with unnatural amino acids

    SciTech Connect

    Mendel, D.; Ellman, J.A.; Zhiyuh Chang; Veenstra, D.L.; Kollman, P.A.; Schultz, P.G. )

    1992-06-26

    Unnatural amino acid mutagenesis, in combination with molecular modeling and simulation techniques, was used to probe the effect of side chain structure on protein stability. Specific replacements at position 133 in T4 lysozyme included (1) leucine (wt), norvaline, ethylglycine, and alanine to measure the cost of stepwise removal of methyl groups from the hydrophobic core, (2) norvaline and O-methyl serine to evaluate the effects of side chain solvation, and (3) leucine, S,S-2-amino-4-methylhexanoic acid, and S-2-amino-3-cyclopentylpropanoic acid to measure the influence of packing density and side chain conformational entropy on protein stability. All of these factors (hydrophobicity, packing, conformational entropy, and cavity formation) significantly influence protein stability and must be considered when analyzing any structural change to proteins.

  17. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    PubMed Central

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  18. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid.

    PubMed

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-01-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing. PMID:23272786

  19. Photoluminescence emission of nanoporous anodic aluminum oxide films prepared in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Nourmohammadi, Abolghasem; Asadabadi, Saeid Jalali; Yousefi, Mohammad Hasan; Ghasemzadeh, Majid

    2012-12-01

    The photoluminescence emission of nanoporous anodic aluminum oxide films formed in phosphoric acid is studied in order to explore their defect-based subband electronic structure. Different excitation wavelengths are used to identify most of the details of the subband states. The films are produced under different anodizing conditions to optimize their emission in the visible range. Scanning electron microscopy investigations confirm pore formation in the produced layers. Gaussian analysis of the emission data indicates that subband states change with anodizing parameters, and various point defects can be formed both in the bulk and on the surface of these nanoporous layers during anodizing.

  20. Temperature-dependent photoluminescence of cadmium-free Cu-Zn-In-S quantum dot thin films as temperature probes.

    PubMed

    Wang, Lan; Kang, Xiaojiao; Huang, Lijian; Pan, Daocheng

    2015-12-21

    We reported temperature-dependent photoluminescence (PL) studies on Cu-Zn-In-S quantum dot (QD) thin films. In this paper, cadmium-free and luminescent Cu-Zn-In-S quantum dot thin films were in situ formed by thermal decomposition of molecular-based precursors in the open air, without need of the complicated quantum dot synthesis. Molecular-based precursor solutions were prepared by dissolving Cu2O, ZnO, and In(OH)3 in the ethanol solution of butylamine and carbon disulfide. The effects of sintering temperature, sintering time, and the concentration of capping agents on the photoluminescence properties of Cu-Zn-In-S QD thin films have been systematically investigated. It was found that alkali metal ions play an important role in enhancing the PL quantum yield of quantum dot thin films. The as-prepared QD thin films show composition-tunable emission in the range of 535 nm to 677 nm, and the absolute PL quantum yields can reach as high as 22.1%. All of the as-deposited QD thin films show a single-exponential decay to temperature, indicating that these cadmium-free QD thin films have high potential as temperature probes. PMID:26567537

  1. High excitation photoluminescence effects as a probing tool for the growth of Cu(In,Ga)Se2

    NASA Astrophysics Data System (ADS)

    Moret, Matthieu; Briot, Olivier; Gil, Bernard; Lepetit, Thomas; Arzel, Ludovic; Barreau, Nicolas

    2015-03-01

    Copper Indium Gallium deSelenide (Cu(In,Ga)Se2, CIGS) is a promising material for cost-efficient solar cells. Efficiencies above 20% have already been demonstrated in laboratory, and large area CIGS solar panels are already on the market. However, it is still an interesting issue to find efficient characterization techniques that can be used to validate the quality of the different layers at any step of the process, without having to process a complete cell and measure its electrical properties. In this work, we have deposited CIGS onto Mo coated soda lime glass by co-evaporation, using the so-called three step deposition process. Then, photoluminescence (PL) measurements were made on the samples, in the range of 10K to the room temperature, and the excitation intensity was varied in a very large range, in order to reach non-linear regime. We report the first observation of stimulated emission in mechanisms are discussed. The threshold at which sample photoluminescence changes from spontaneous to stimulated is well known to be sensitive to overall sample quality, and we propose to use this measurement as a probing tool for sample quality. This opens an interesting perspective for characterization of CIGS during solar cell processing.

  2. Electric Field Modulation of Semiconductor Quantum Dot Photoluminescence: Insights Into the Design of Robust Voltage-Sensitive Cellular Imaging Probes.

    PubMed

    Rowland, Clare E; Susumu, Kimihiro; Stewart, Michael H; Oh, Eunkeu; Mäkinen, Antti J; O'Shaughnessy, Thomas J; Kushto, Gary; Wolak, Mason A; Erickson, Jeffrey S; Efros, Alexander L; Huston, Alan L; Delehanty, James B

    2015-10-14

    The intrinsic properties of quantum dots (QDs) and the growing ability to interface them controllably with living cells has far-reaching potential applications in probing cellular processes such as membrane action potential. We demonstrate that an electric field typical of those found in neuronal membranes results in suppression of the QD photoluminescence (PL) and, for the first time, that QD PL is able to track the action potential profile of a firing neuron with millisecond time resolution. This effect is shown to be connected with electric-field-driven QD ionization and consequent QD PL quenching, in contradiction with conventional wisdom that suppression of the QD PL is attributable to the quantum confined Stark effect. PMID:26414396

  3. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  4. Mg acceptor level in InN epilayers probed by photoluminescence

    NASA Astrophysics Data System (ADS)

    Khan, N.; Nepal, N.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2007-07-01

    Mg-doped InN epilayers were grown on sapphire substrates by metal organic chemical vapor deposition. Effects of Mg concentration on the photoluminescence (PL) emission properties have been investigated. An emission line at ˜0.76eV, which was absent in undoped InN epilayers and was about 60meV below the band-to-band emission peak at ˜0.82eV, was observed to be the dominant emission in Mg-doped InN epilayers. The PL spectral peak position and the temperature dependent emission intensity corroborated each other and suggested that the Mg acceptor level in InN is about 60meV above the valance band maximum.

  5. Photoluminescence and quantum yields of organic/inorganic hybrids prepared through formic acid solvolysis

    NASA Astrophysics Data System (ADS)

    Fu, Lianshe; Sá Ferreira, R. A.; Fernandes, M.; Nunes, S. C.; de Zea Bermudez, V.; Hungerford, Graham; Rocha, J.; Carlos, L. D.

    2008-03-01

    Three undoped di-urea cross-linked poly(oxyethylene) (POE)/siloxane hybrid matrices, classed as di-ureasils, incorporating POE segments with different lengths were prepared through the carboxylic acid solvolysis sol-gel method using formic acid. The resulting hybrids were characterized by X-ray diffraction, Fourier transform mid-infrared spectroscopy, 29Si and cross-polarization 13C magic-angle spinning nuclear magnetic resonance and photoluminescence spectroscopy. The hybrids' structure is essentially independent of the polymer chain length and the materials are room temperature white-light emitters with emission quantum yields of ˜10 ± 1% and lifetime average values between 2 and 4 ns. For the di-ureasil host with short polymer chains the solvolysis method favours the increase of the PL quantum yields relatively to conventional sol-gel route.

  6. Photoluminescence Enhancement and Structure Repairing of Monolayer MoSe2 by Hydrohalic Acid Treatment.

    PubMed

    Han, Hau-Vei; Lu, Ang-Yu; Lu, Li-Syuan; Huang, Jing-Kai; Li, Henan; Hsu, Chang-Lung; Lin, Yung-Chang; Chiu, Ming-Hui; Suenaga, Kazu; Chu, Chih-Wei; Kuo, Hao-Chung; Chang, Wen-Hao; Li, Lain-Jong; Shi, Yumeng

    2016-01-26

    Atomically thin two-dimensional transition-metal dichalcogenides (TMDCs) have attracted much attention recently due to their unique electronic and optical properties for future optoelectronic devices. The chemical vapor deposition (CVD) method is able to generate TMDCs layers with a scalable size and a controllable thickness. However, the TMDC monolayers grown by CVD may incorporate structural defects, and it is fundamentally important to understand the relation between photoluminescence and structural defects. In this report, point defects (Se vacancies) and oxidized Se defects in CVD-grown MoSe2 monolayers are identified by transmission electron microscopy and X-ray photoelectron spectroscopy. These defects can significantly trap free charge carriers and localize excitons, leading to the smearing of free band-to-band exciton emission. Here, we report that the simple hydrohalic acid treatment (such as HBr) is able to efficiently suppress the trap-state emission and promote the neutral exciton and trion emission in defective MoSe2 monolayers through the p-doping process, where the overall photoluminescence intensity at room temperature can be enhanced by a factor of 30. We show that HBr treatment is able to activate distinctive trion and free exciton emissions even from highly defective MoSe2 layers. Our results suggest that the HBr treatment not only reduces the n-doping in MoSe2 but also reduces the structural defects. The results provide further insights of the control and tailoring the exciton emission from CVD-grown monolayer TMDCs. PMID:26716765

  7. Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes

    PubMed Central

    2015-01-01

    Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)–phenanthroline complex (Ru2+-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates good potential for application as a generalized biosensing detection modality since it is aqueous compatible. Multiple possibilities for charge transfer and/or energy transfer mechanisms exist within this type of assembly, and there is currently a limited understanding of the underlying photophysical processes in such biocomposite systems where nanomaterials are directly interfaced with biomolecules such as proteins. Here, we utilize redox reactions, steady-state absorption, PL spectroscopy, time-resolved PL spectroscopy, and femtosecond transient absorption spectroscopy (FSTA) to investigate PL quenching in biological assemblies of CdSe/ZnS QDs formed with peptide-linked Ru2+-phen. The results reveal that QD quenching requires the Ru2+ oxidation state and is not consistent with Förster resonance energy transfer, strongly supporting a charge transfer mechanism. Further, two colors of CdSe/ZnS core/shell QDs with similar macroscopic optical properties were found to have very different rates of charge transfer quenching, by Ru2+-phen with the key difference between them appearing to be the thickness of their ZnS outer shell. The effect of shell thickness was found to be larger than the effect of increasing distance between the QD and Ru2+-phen when using peptides of increasing persistence length. FSTA and time-resolved upconversion PL results further show that exciton quenching is a rather slow process consistent with other QD conjugate materials that undergo hole transfer. An improved understanding of the QD–Ru2+-phen system can allow for the design of more sophisticated

  8. Work Function Modification in P3HT H/J Aggregate Nanostructures Revealed by Kelvin Probe Force Microscopy and Photoluminescence Imaging.

    PubMed

    Baghgar, Mina; Barnes, Michael D

    2015-07-28

    We show that surface electronic properties of poly-3-hexylthiophene (P3HT) crystalline nanofibers as probed by Kelvin probe force microscopy (KPFM) depends sensitively on the degree of polymer packing order and dominant coupling type (e.g., H- or J-aggregate) as signaled by absorption or photoluminescence spectroscopy. Nominal HOMO energies between high molecular weight (J-aggregate) nanofibers and low-molecular weight (H-aggregate) nanofibers differ by ≈160 meV. This is consistent with shifts expected from H-type charge-transfer (CT) interactions that lower HOMO energies according to registration between thiophene moieties on adjacent polymer chains. These results show how KPFM combined with wavelength-resolved photoluminescence imaging can be used to extract information on "dark" (CT) interactions in polymer assemblies. PMID:26095304

  9. Photoluminescence probing of interface evolution with annealing in InGa(N)As/GaAs single quantum wells

    SciTech Connect

    Shao, Jun Qi, Zhen; Zhu, Liang; Chen, Xiren; Guo, Shaoling; Zhao, H.; Song, Yuxin; Zha, F.-X.; Wang, S. M.

    2015-10-28

    The effects of thermal annealing on the interfaces of InGa(N)As/GaAs single quantum wells (SQWs) are investigated by excitation-, temperature-, and magnetic field-dependent photoluminescence (PL). The annealing at 750 °C results in more significant blueshift and narrowing to the PL peak than that at 600 °C. Each of the PL spectra can be reproduced with two PL components: (i) the low-energy component (LE) keeps energetically unchanged, while the high-energy component (HE) moves up with excitation and shows at higher energy for the In{sub 0.375}Ga{sub 0.625}As/GaAs but crosses over with the LE at a medium excitation power for the In{sub 0.375}Ga{sub 0.625}N{sub 0.012}As{sub 0.988}/GaAs SQWs. The HE is broader than the corresponding LE, the annealing at 750 °C narrows the LE and HE and shrinks their energetic separation; (ii) the PL components are excitonic, and the InGaNAs shows slightly enhanced excitonic effects relative to the InGaAs SQW; (iii) no typical S-shape evolution of PL energy with temperature is detectable, and similar blueshift and narrowing are identified for the same annealing. The phenomena are mainly from the interfacial processes. Annealing improves the intralayer quality, enhances the interfacial In-Ga interdiffusion, and reduces the interfacial fluctuation. The interfacial interdiffusion does not change obviously by the small N content and hence similar PL-component narrowing and blueshift are observed for the SQWs after a nominally identical annealing. Comparison with previous studies is made and the PL measurements under different conditions are shown to be effective for probing the interfacial evolution in QWs.

  10. Chemically modified nucleic acids as immunodetectable probes in hybridization experiments.

    PubMed Central

    Tchen, P; Fuchs, R P; Sage, E; Leng, M

    1984-01-01

    Guanine residues in nucleic acids can be modified by treatment with N-acetoxy-N-2-acetylaminofluorene and its 7-iodo derivative in an in vitro nonenzymatic reaction. The modified nucleic acids (ribo or deoxyribo, single or double stranded) are recognized by specific antibodies. They can be immunoprecipitated or used as probes in hybridization experiments and detected by immunochemical techniques. Images PMID:6374657

  11. Selective Nucleic Acid Capture with Shielded Covalent Probes

    PubMed Central

    2013-01-01

    Nucleic acid probes are used for diverse applications in vitro, in situ, and in vivo. In any setting, their power is limited by imperfect selectivity (binding of undesired targets) and incomplete affinity (binding is reversible, and not all desired targets bound). These difficulties are fundamental, stemming from reliance on base pairing to provide both selectivity and affinity. Shielded covalent (SC) probes eliminate the longstanding trade-off between selectivity and durable target capture, achieving selectivity via programmable base pairing and molecular conformation change, and durable target capture via activatable covalent cross-linking. In pure and mixed samples, SC probes covalently capture complementary DNA or RNA oligo targets and reject two-nucleotide mismatched targets with near-quantitative yields at room temperature, achieving discrimination ratios of 2–3 orders of magnitude. Semiquantitative studies with full-length mRNA targets demonstrate selective covalent capture comparable to that for RNA oligo targets. Single-nucleotide DNA or RNA mismatches, including nearly isoenergetic RNA wobble pairs, can be efficiently rejected with discrimination ratios of 1–2 orders of magnitude. Covalent capture yields appear consistent with the thermodynamics of probe/target hybridization, facilitating rational probe design. If desired, cross-links can be reversed to release the target after capture. In contrast to existing probe chemistries, SC probes achieve the high sequence selectivity of a structured probe, yet durably retain their targets even under denaturing conditions. This previously incompatible combination of properties suggests diverse applications based on selective and stable binding of nucleic acid targets under conditions where base-pairing is disrupted (e.g., by stringent washes in vitro or in situ, or by enzymes in vivo). PMID:23745667

  12. Synthesis of highly photoluminescent carbon dots via citric acid and Tris for iron(III) ions sensors and bioimaging.

    PubMed

    Zhou, Ming; Zhou, Zhulong; Gong, Aihua; Zhang, Yan; Li, Qijun

    2015-10-01

    In this work, high quantum yield and strong photoluminescent carbon quantum dots (C-QDs) are successfully synthesized via a facile and green hydrothermal method using citric acid and Tris as precursors. The as-synthesized C-QDs with a quantum yield (QY) as high as 52% were characterized by UV, FT-IR, TEM, XPS and fluorescence spectroscope. TEM results show that C-QDs are mono-dispersed spherical particles and the diameter distribution of C-QDs is 2.8±1.1 nm. The extraordinary photoluminescent properties and low cytotoxicity of C-QDs were obtained through optical property characterization and cytotoxicity assay. In addition, we found that the as-prepared C-QDs had a high affinity for Fe(3+) ions and the response toward Fe(3+) ions was highly linear (R(2)=0.997) over the concentration range from 2 to 50 μM, which could provide an effective platform for portable detection of Fe(3+) ions. Also, it is demonstrated that the photoluminescent C-QDs display hypotoxicity and are biocompatible for use as biosensors in living cells. PMID:26078136

  13. Luminescent Probes for Ultrasensitive Detection of Nucleic Acids

    PubMed Central

    Krasnoperov, Lev N.; Marras, Salvatore A.E.; Kozlov, Maxim; Wirpsza, Laura; Mustaev, Arkady

    2010-01-01

    Novel amino-reactive derivatives of lanthanide-based luminescent labels of enhanced brightness and metal retention were synthesized and used for the detection of complementary DNA oligonucleotides by molecular beacons. Time-resolved acquisition of the luminescent signal that occurs upon hybridization of the probe to the target enabled the avoidance of short-lived background fluorescence, markedly enhancing the sensitivity of detection, which was less than 1 pM. This value is about 50 to 100 times more sensitive than the level achieved with conventional fluorescence-based molecular beacons, and is 10 to 60 times more sensitive than previously reported for other lanthanide-based hybridization probes. These novel luminescent labels should significantly enhance the sensitivity of all type of nucleic acid hybridization probes, and could dramatically improve the detection limit of other biopolymers and small compounds that are used in a variety of biological applications. PMID:20085336

  14. Effect of heat treatment on the structure of incorporated oxalate species and photoluminescent properties of porous alumina films formed in oxalic acid

    NASA Astrophysics Data System (ADS)

    Vrublevsky, I.; Jagminas, A.; Hemeltjen, S.; Goedel, W. A.

    2008-09-01

    The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of 'structural' oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.

  15. A carbon dot-based "off-on" fluorescent probe for highly selective and sensitive detection of phytic acid.

    PubMed

    Gao, Zhao; Wang, Libing; Su, Rongxin; Huang, Renliang; Qi, Wei; He, Zhimin

    2015-08-15

    We herein report a facile, one-step pyrolysis synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and lysine as the surface passivation reagent. The as-prepared CDs show narrow size distribution, excellent blue fluorescence and good photo-stability and water dispersivity. The fluorescence of the CDs was found to be effectively quenched by ferric (Fe(III)) ions with high selectivity via a photo-induced electron transfer (PET) process. Upon addition of phytic acid (PA) to the CDs/Fe(III) complex dispersion, the fluorescence of the CDs was significantly recovered, arising from the release of Fe(III) ions from the CDs/Fe(III) complex because PA has a higher affinity for Fe(III) ions compared to CDs. Furthermore, we developed an "off-on" fluorescence assay method for the detection of phytic acid using CDs/Fe(III) as a fluorescent probe. This probe enables the selective detection of PA with a linear range of 0.68-18.69 μM and a limit of detection (signal-to-noise ratio is 3) of 0.36 μM. The assay method demonstrates high selectivity, repeatability, stability and recovery ratio in the detection of the standard and real PA samples. We believe that the facile operation, low-cost, high sensitivity and selectivity render this CD-based "off-on" fluorescent probe an ideal sensing platform for the detection of PA. PMID:25829220

  16. Facile preparation of Gd3+ doped carbon quantum dots: Photoluminescence materials with magnetic resonance response as magnetic resonance/fluorescence bimodal probes

    NASA Astrophysics Data System (ADS)

    Ren, X. Y.; Yuan, X. X.; Wang, Y. P.; Liu, C. L.; Qin, Y.; Guo, L. P.; Liu, L. H.

    2016-07-01

    There are a few bimodal molecular imaging probes constructed by gadolinium (3+) ions in combination with carbon quantum dots (CQDs), and the reported ones show such obvious drawbacks as low luminous efficiency and weak MRI contrast. In the paper, a kind of CQDs photoluminescence materials with magnetic resonance response was prepared by hydrothermal method and employing gadopentetate monomeglumine (GdPM) as a precusor. Here, the GdPM plays a role of not only carbon source, but also gadolinium (3+) sources. When the GdPM aqueous solution with a concentration of 4 mg mL-1 was pyrolyzed under 220 °C and 2.0 MPa for 8 h, an optimal CQDs was obtained which are doped with gadolinium (3+) ions in both chelates and Gd2O3 (named as Gd3+-CQDs). The average diameter of the Gd3+-CQDs is about 1.6 nm, which show a high photoluminescence quantum yield of 7.1%, as well as high longitudinal relaxivity (r1) of 9.87 mM-1 s-1. And owing to the unconspicuous cell toxicity, the Gd3+-CQDs show big possibility for clinical application in magnetic resonance/fluorescence bimodal molecular imaging.

  17. Correlated high-resolution x-ray diffraction photoluminescence and atom probe tomography analysis of continuous and discontinuous InxGa1-xN quantum wells

    DOE PAGESBeta

    Ren, Xiaochen; Riley, James R.; Koleske, Daniel; Lauhon, Lincoln J.

    2015-07-14

    In this study, atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of InxGa1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APTmore » analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.« less

  18. Non-redox modulated fluorescence strategy for sensitive and selective ascorbic acid detection with highly photoluminescent nitrogen-doped carbon nanoparticles via solid-state synthesis.

    PubMed

    Zhu, Xiaohua; Zhao, Tingbi; Nie, Zhou; Liu, Yang; Yao, Shouzhuo

    2015-08-18

    Highly photoluminescent nitrogen-doped carbon nanoparticles (N-CNPs) were prepared by a simple and green route employing sodium alginate as a carbon source and tryptophan as both a nitrogen source and a functional monomer. The as-synthesized N-CNPs exhibited excellent water solubility and biocompatibility with a fluorescence quantum yield of 47.9%. The fluorescence of the N-CNPs was intensively suppressed by the addition of ascorbic acid (AA). The mechanism of the fluorescence suppression of the N-CNPs was investigated, and the synergistic action of the inner filter effect (IFE) and the static quenching effect (SQE) contributed to the intensive fluorescence suppression, which was different from those reported for the traditional redox-based fluorescent probes. Owing to the spatial effect and hydrogen bond between the AA and the groups on the N-CNP surface, excellent sensitivity and selectivity for AA detecting was obtained in a wide linear relationship from 0.2 μM to 150 μM. The detection limit was as low as 50 nM (signal-to-noise ratio of 3). The proposed sensing systems also represented excellent sensitivity and selectivity for AA analysis in human biological fluids, providing a valuable platform for AA sensing in clinic diagnostic and drug screening. PMID:26202861

  19. Probing interactions between plant virus movement proteins and nucleic acids.

    PubMed

    Tzfira, Tzvi; Citovsky, Vitaly

    2008-01-01

    Most plant viruses move between plant cells with the help of their movement proteins (MPs). MPs are multifunctional proteins, and one of their functions is almost invariably binding to nucleic acids. Presumably, the MP-nucleic acid interaction is directly involved in formation of nucleoprotein complexes that function as intermediates in the cell-to-cell transport of many plant viruses. Thus, when studying a viral MP, it is important to determine whether or not it binds nucleic acids, and to characterize the hallmark parameters of such binding, i.e., preference for single- or double-stranded nucleic acids and binding cooperativity and sequence specificity. Here, we present two major experimental approaches, native gel mobility shift assay and ultra violet (UV) light cross-linking, for detection and characterization of MP binding to DNA and RNA molecules. We also describe protocols for purification of recombinant viral MPs over-expressed in bacteria and production of different DNA and RNA probes for these binding assays. PMID:18370264

  20. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics.

    PubMed

    Chung, Heejae; Cho, Kyung-Sang; Koh, Weon-Kyu; Kim, Dongho; Kim, Jiwon

    2016-07-21

    Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization efficiencies which are determined by analyses of photoluminescence blinking dynamics. This result suggests that the composition of encapsulated QDs is closely associated with the charge trapping processes, and also provides an insight into the development of more environmentally friendly QD-based devices. PMID:27272126

  1. Composition-dependent trap distributions in CdSe and InP quantum dots probed using photoluminescence blinking dynamics

    NASA Astrophysics Data System (ADS)

    Chung, Heejae; Cho, Kyung-Sang; Koh, Weon-Kyu; Kim, Dongho; Kim, Jiwon

    2016-07-01

    Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization efficiencies which are determined by analyses of photoluminescence blinking dynamics. This result suggests that the composition of encapsulated QDs is closely associated with the charge trapping processes, and also provides an insight into the development of more environmentally friendly QD-based devices.Although Group II-VI quantum dots (QDs) have attracted much attention due to their wide range of applications in QD-based devices, the presence of toxic ions in II-VI QDs raises environmental concerns. To fulfill the demands of nontoxic QDs, synthetic routes for III-V QDs have been developed. However, only a few comparative analyses on optical properties of III-V QDs have been performed. In this study, the composition-related energetic trap distributions have been explored by using three different types of core/multishell QDs: CdSe-CdS (CdSe/CdS/ZnS), InP-ZnSe (InP/ZnSe/ZnS), and InP-GaP (InP/GaP/ZnS). It was shown that CdSe-CdS QDs have much larger trap densities than InP-shell QDs at higher energy states (at least 1Eg (band gap energy) above the lowest conduction band edge) based on probability density plots and Auger ionization

  2. Method for producing labeled single-stranded nucleic acid probes

    DOEpatents

    Dunn, John J.; Quesada, Mark A.; Randesi, Matthew

    1999-10-19

    Disclosed is a method for the introduction of unidirectional deletions in a cloned DNA segment. More specifically, the method comprises providing a recombinant DNA construct comprising a DNA segment of interest inserted in a cloning vector, the cloning vector having an f1 endonuclease recognition sequence adjacent to the insertion site of the DNA segment of interest. The recombinant DNA construct is then contacted with the protein pII encoded by gene II of phage f1 thereby generating a single-stranded nick. The nicked DNA is then contacted with E. coli Exonuclease III thereby expanding the single-stranded nick into a single-stranded gap. The single-stranded gapped DNA is then contacted with a single-strand-specific endonuclease thereby producing a linearized DNA molecule containing a double-stranded deletion corresponding in size to the single-stranded gap. The DNA treated in this manner is then incubated with DNA ligase under conditions appropriate for ligation. Also disclosed is a method for producing single-stranded DNA probes. In this embodiment, single-stranded gapped DNA, produced as described above, is contacted with a DNA polymerase in the presence of labeled nucleotides to fill in the gap. This DNA is then linearized by digestion with a restriction enzyme which cuts outside the DNA segment of interest. The product of this digestion is then denatured to produce a labeled single-stranded nucleic acid probe.

  3. Activity-Based Probe for N-Acylethanolamine Acid Amidase.

    PubMed

    Romeo, Elisa; Ponzano, Stefano; Armirotti, Andrea; Summa, Maria; Bertozzi, Fabio; Garau, Gianpiero; Bandiera, Tiziano; Piomelli, Daniele

    2015-09-18

    N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme. PMID:26102511

  4. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2002-01-01

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  5. Method for analyzing nucleic acids by means of a substrate having a microchannel structure containing immobilized nucleic acid probes

    DOEpatents

    Ramsey, J. Michael; Foote, Robert S.

    2003-12-09

    A method and apparatus for analyzing nucleic acids includes immobilizing nucleic probes at specific sites within a microchannel structure and moving target nucleic acids into proximity to the probes in order to allow hybridization and fluorescence detection of specific target sequences.

  6. Probing the Specificity Determinants of Amino Acid Recognition by Arginase

    SciTech Connect

    Shishova, E.; Di Costanzo, L; Emig, F; Ash, D; Christianson, D

    2009-01-01

    Arginase is a binuclear manganese metalloenzyme that serves as a therapeutic target for the treatment of asthma, erectile dysfunction, and atherosclerosis. In order to better understand the molecular basis of inhibitor affinity, we have employed site-directed mutagenesis, enzyme kinetics, and X-ray crystallography to probe the molecular recognition of the amino acid moiety (i.e., the ?-amino and ?-carboxylate groups) of substrate l-arginine and inhibitors in the active site of arginase I. Specifically, we focus on (1) a water-mediated hydrogen bond between the substrate ?-carboxylate and T135, (2) a direct hydrogen bond between the substrate ?-carboxylate and N130, and (3) a direct charged hydrogen bond between the substrate ?-amino group and D183. Amino acid substitutions for T135, N130, and D183 generally compromise substrate affinity as reflected by increased KM values but have less pronounced effects on catalytic function as reflected by minimal variations of kcat. As with substrate KM values, inhibitor Kd values increase for binding to enzyme mutants and suggest that the relative contribution of intermolecular interactions to amino acid affinity in the arginase active site is water-mediated hydrogen bond < direct hydrogen bond < direct charged hydrogen bond. Structural comparisons of arginase with the related binuclear manganese metalloenzymes agmatinase and proclavaminic acid amidinohydrolase suggest that the evolution of substrate recognition in the arginase fold occurs by mutation of residues contained in specificity loops flanking the mouth of the active site (especially loops 4 and 5), thereby allowing diverse guanidinium substrates to be accommodated for catalysis.

  7. New silver(I) coordination polymers constructed from pyrazine derivatives and aromatic carboxylic acids: Syntheses, structures and photoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Huang, Hua-Qi; Mei, Hong-Xin; Wang, Dan-Feng; Wang, Xiao-Xiang; Huang, Rong-Bin; Zheng, Lan-Sun

    2015-11-01

    Five one-dimensional to three-dimensional coordination polymers have been synthesized by 2-chlorobenzoic acid (HL1), 2-nitrobenzoic acid (HL2), o-toluic acid (HL3), 2,3,5-trimethylpyrazine (tpyz) and 2,3,5,6-tetramethylpyrazine (mpyz) in the presence of NH3·H2O in mixed solvents systems, namely, {Ag4(tpyz)2(L1)4}n (1), {Ag2(tpyz) (L2)2}n (2), {Ag2(tpyz) (L3)2}n (3), {Ag2(mpyz) (L1)2}n (4), {Ag(mpyz) (L2) (H2O)}n (5). All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Compound 1 shows a 3D framework. The tpyz ligand links 1D chain which was connected by silver atom and L1 anion into 3D framework. Compounds 2 and 4 possess a similar 2D network with (4, 4) topology. Complex 3 also exhibits a two-dimensional structure. There is a 1D silver chain in 3, which is the main difference from 2 and 4. So, 3 shows three-connected (4 8, 3) topology. For 5, only one oxygen of L2 coordinated to Ag(I) ions. The L2 anions were arranged in both sides of the chain, which was connected by silver atoms and mpyz ligands. Then, the uncoordinated carboxylate oxygen with coordinated water 1molecule oxygen through the hydrogen bond made the resultant structure to a 3D framework. Complexes 1-5 spanning from one-dimensional chains to three-dimensional framework suggest that carboxylates and the kinds of pyrazine derivatives play significant roles in the formation of such coordination architectures. The photoluminescence and thermogravimetric analysis (TGA) of the complexes were also investigated.

  8. Synthesis of hydrophobic photoluminescent carbon nanodots by using L-tyrosine and citric acid through a thermal oxidation route.

    PubMed

    Gude, Venkatesh

    2014-01-01

    Hydrophobic photoluminescent carbon nanodots (CNDs) were fabricated by using citric acid and L-tyrosine precursor molecules through a simple, facile thermal oxidation process in air. These CNDs (less than 4 nm in size) exhibited a characteristic excitation wavelength dependent emission and upconversion emission properties and are insoluble in water, but soluble in organic solvents. FTIR and (1)H NMR analyses showed a selective participation of L-tyrosine molecule during the carbonization process at 220 °C without a disturbance of its benzylic protons and aromatic phenyl ring bearing hydroxy group. TEM and XRD studies revealed a quasi-spherical morphology and poor-crystalline nature of CNDs. Because the presence of the hydroxy group of L-tyrosine is dominating at the surface, these CNDs are also soluble in water under basic conditions. The effects of base and silver nanoparticles on the luminescence properties of CNDs were studied and a quenching of fluorescence was observed. These tyrosine-passivated CNDs are applicable for both biologically and commercially. PMID:25247134

  9. Anodic luminescence, structural, photoluminescent, and photocatalytic properties of anodic oxide films grown on niobium in phosphoric acid

    NASA Astrophysics Data System (ADS)

    Stojadinović, Stevan; Tadić, Nenad; Radić, Nenad; Stefanov, Plamen; Grbić, Boško; Vasilić, Rastko

    2015-11-01

    This article reports on properties of oxide films obtained by anodization of niobium in phosphoric acid before and after the dielectric breakdown. Weak anodic luminescence of barrier oxide films formed during the anodization of niobium is correlated to the existence of morphological defects in the oxide layer. Small sized sparks generated by dielectric breakdown of formed oxide film cause rapid increase of luminescence intensity. The luminescence spectrum of obtained films on niobium under spark discharging is composed of continuum radiation and spectral lines caused by electronic spark discharging transitions in oxygen and hydrogen atoms. Oxide films formed before the breakdown are amorphous, while after the breakdown oxide films are partly crystalline and mainly composed of Nb2O5 hexagonal phase. The photocatalytic activity of obtained oxide films after the breakdown was investigated by monitoring the degradation of methyl orange. Increase of the photocatalytic activity with time is related to an increase of oxygen vacancy defects in oxide films formed during the process. Also, higher concentration of oxygen vacancy defects in oxide films results in higher photoluminescence intensity.

  10. Effects of 8-mer acidic peptide concentration on the morphology and photoluminescence of synthesized ZnO nanomaterials

    NASA Astrophysics Data System (ADS)

    Moon, Chung Hee; Tousi, Marzieh; Cheeney, Joseph; Ngo-Duc, Tam-Triet; Zuo, Zheng; Liu, Jianlin; Haberer, Elaine D.

    2015-11-01

    An 8-mer ZnO-binding peptide, VPGAAEHT, was identified using a M13 pVIII phage display library and employed as an additive during aqueous-based ZnO synthesis at 65 °C. Unlike most other well-studied ZnO-binding sequences which are strongly basic (pI > pH 7), the 8-mer peptide was overall acidic (pI < pH 7) in character, including only a single basic residue. The selected peptide strongly influenced ZnO nanostructure formation. Morphology and optical emission properties were found to be dependent on the concentration of peptide additive. Using lower peptide concentrations (<0.1 mM), single crystal hexagonal rods and platelets were produced, and using higher peptide concentrations (≥0.1 mM), polycrystalline layered platelets, yarn-like structures, and microspheres were assembled. Photoluminescence analysis revealed a characteristic ZnO band-edge peak, as well as sub-bandgap emission peaks. Defect-related green emission, typically associated with surface-related oxygen and zinc vacancies, was significantly reduced by the peptide additive, while blue emission, attributable to oxygen and zinc interstitials, emerged with increased peptide concentrations. Peptide-directed synthesis of ZnO materials may be useful for gas sensing and photocatalytic applications in which properly engineered morphology and defect levels have demonstrated enhanced performance.

  11. Method for replicating an array of nucleic acid probes

    DOEpatents

    Cantor, C.R.; Przetakiewicz, M.; Smith, C.L.; Sano, T.

    1998-08-18

    The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5{prime}- and/or 3{prime}-overhangs. 16 figs.

  12. Method for replicating an array of nucleic acid probes

    DOEpatents

    Cantor, Charles R.; Przetakiewicz, Marek; Smith, Cassandra L.; Sano, Takeshi

    1998-01-01

    The invention relates to the replication of probe arrays and methods for replicating arrays of probes which are useful for the large scale manufacture of diagnostic aids used to screen biological samples for specific target sequences. Arrays created using PCR technology may comprise probes with 5'- and/or 3'-overhangs.

  13. Effect of doping of calcium fluoride nanoparticles on the photoluminescence properties of europium complexes with benzoic acid derivatives as secondary ligands and 2-aminopyridine as primary ligand

    NASA Astrophysics Data System (ADS)

    Sharma, Garima; Narula, Anudeep Kumar

    2015-08-01

    The present article reports the synthesis of three Eu(III) complexes [Eu(BA)3(2-ap)] (1), [Eu(HBA)3(2-ap)] (2) and [Eu(ABA)3(2-ap)] (3) (BA = benzoic acid, HBA = 2-hydroxy benzoic acid, ABA = 2-amino benzoic acid and 2-ap = 2-aminopyridine) carried out in ethanol solution. The complexes were further doped with CaF2 nanoparticles and a change in the photoluminescence properties was observed. The compositions and structural investigation of the complexes were determined by elemental analysis and Fourier transform infrared spectroscopy (FTIR) which suggest the coordination of ligands with the central Eu(III) ion. The optical properties of the complexes were studied by Ultraviolet Visible absorption spectroscopy (UV-Vis) and photoluminescence studies (PL). The relative PL intensity was enhanced in the Eu(III) complexes doped with CaF2 nanoparticles as compared to the pure Eu(III) complexes, however the increase in intensity varied in the order of ligands ABA > HBA > BA. The photoluminescence lifetime decay curves also revealed the longer lifetime (τ) and higher quantum efficiency (η) for europium complexes with ABA ligands suggesting the efficient energy transfer and better sensitizing ability of the ligand to europium ion. The morphology of the synthesized compounds were studied by Scanning Electron Microscopy (SEM) revealing spherical morphology with agglomeration of the nanoparticles.

  14. Probing the carrier transfer processes in a self-assembled system with In0.3Ga0.7As/GaAs quantum dots by photoluminescence excitation spectroscopy

    NASA Astrophysics Data System (ADS)

    Podemski, Paweł; Pieczarka, Maciej; Maryński, Aleksander; Misiewicz, Jan; Löffler, Andreas; Höfling, Sven; Reithmaier, Johann Peter; Reitzenstein, Stephan; Sęk, Grzegorz

    2016-05-01

    In this report we present experimental studies on the energy transfer between the wetting layer and single large elongated In0.3Ga0.7As/GaAs quantum dots. We obtain insight into the electronic and optical properties of In0.3Ga0.7As/GaAs quantum dots by probing their confined electronic states via photoluminescence excitation spectroscopy on the single dot level. We demonstrate that the energy separation between the states of a quantum dot and the wetting layer states affects the carrier transfer efficiency - reduced transfer efficiency is observed for smaller dots with higher indium content. We also discuss the effects of the excited states and the trapping of carriers on confinement potential fluctuations of the wetting layer. Eventually, the transfer of charge carriers from localized wetting layer states to a single quantum dot is evidenced in temperature-dependent photoluminescence excitation spectroscopy.

  15. Revealing Nucleic Acid Mutations Using Förster Resonance Energy Transfer-Based Probes.

    PubMed

    Junager, Nina P L; Kongsted, Jacob; Astakhova, Kira

    2016-01-01

    Nucleic acid mutations are of tremendous importance in modern clinical work, biotechnology and in fundamental studies of nucleic acids. Therefore, rapid, cost-effective and reliable detection of mutations is an object of extensive research. Today, Förster resonance energy transfer (FRET) probes are among the most often used tools for the detection of nucleic acids and in particular, for the detection of mutations. However, multiple parameters must be taken into account in order to create efficient FRET probes that are sensitive to nucleic acid mutations. In this review; we focus on the design principles for such probes and available computational methods that allow for their rational design. Applications of advanced, rationally designed FRET probes range from new insights into cellular heterogeneity to gaining new knowledge of nucleic acid structures directly in living cells. PMID:27472344

  16. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1997-01-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided.

  17. Detection and isolation of nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1997-04-01

    A method for detecting a target nucleic acid sequence in a sample is provided using hybridization probes which competitively hybridize to a target nucleic acid. According to the method, a target nucleic acid sequence is hybridized to first and second hybridization probes which are complementary to overlapping portions of the target nucleic acid sequence, the first hybridization probe including a first complexing agent capable of forming a binding pair with a second complexing agent and the second hybridization probe including a detectable marker. The first complexing agent attached to the first hybridization probe is contacted with a second complexing agent, the second complexing agent being attached to a solid support such that when the first and second complexing agents are attached, target nucleic acid sequences hybridized to the first hybridization probe become immobilized on to the solid support. The immobilized target nucleic acids are then separated and detected by detecting the detectable marker attached to the second hybridization probe. A kit for performing the method is also provided. 7 figs.

  18. Fluorescence probe for the convenient and sensitive detection of ascorbic acid

    PubMed Central

    Matsuoka, Yuta; Yamato, Mayumi; Yamada, Ken-ichi

    2016-01-01

    Ascorbic acid is an important antioxidant that plays an essential role in the biosynthesis of numerous bioactive substances. The detection of ascorbic acid has traditionally been achieved using high-performance liquid chromatography and absorption spectrophotometry assays. However, the development of fluorescence probes for this purpose is highly desired because they provide a much more convenient and highly sensitive technique for the detection of this material. OFF-ON-type fluorescent probes have been developed for the detection of non-fluorescent compounds. Photo-induced electron transfer and fluorescence resonance energy transfer are the two main fluorescence quenching mechanisms for the detection of ascorbic acid, and several fluorescence probes have been reported based on redox-responsive metals and quantum dots. Profluorescent nitroxide compounds have also been developed as non-metal organic fluorescence probes for ascorbic acid. These nitroxide systems have a stable unpaired electron and can therefore react with ascorbic acid and a strong fluorescence quencher. Furthermore, recent synthetic advances have allowed for the synthesis of α-substituted nitroxides with varying levels of reactivity towards ascorbic acid. In this review, we have discussed the design strategies used for the preparation of fluorescent probes for ascorbic acid, with particular emphasis on profluorescent nitroxides, which are unique radical-based redox-active fluorescent probes. PMID:26798193

  19. Organic acids and protein compounds causing the photoluminescence properties of natural rubber membranes and the quenching phenomena from Au nanoparticle incorporation.

    PubMed

    Cabrera, Flávio C; Agostini, Deuber L S; Dos Santos, Renivaldo J; Guimarães, Francisco E G; Guerrero, Ariel R; Aroca, Ricardo F; Job, Aldo E

    2014-12-01

    Natural rubber membranes were fabricated using latex from Hevea brasiliensis trees (clone RRIM 600) by casting, and controlling the time and temperature of thermal treatment. Three temperatures were used: 65, 80 and 120 °C and the corresponding annealing times of 6, 8, 10 and 12 h. The centrifugation of the latex produces the constituent phases: solid rubber (F1), serum or protein components (F2) and bottom fraction (F3). The photoluminescence properties could be correlated with organic acid components of latex. Natural rubber membranes were used as the active substrate (reducing agent) for the incorporation of colloidal Au nanoparticles synthesized by in situ reduction at different times. The intensity of photoluminescence bands assigned to the natural rubber decreases with the increase in amount of nanoparticles present on the membrane surface. It can be assumed that Au nanoparticles may be formed by reduction of the Au cation reacting with functional groups that are directly related to photoluminescence properties. However, the quenching of fluorescence may be attributed to the formation of a large amount of metal nanostructures on the natural rubber surface. PMID:24760547

  20. Probe kit for identifying a base in a nucleic acid

    DOEpatents

    Fodor, Stephen P. A.; Lipshutz, Robert J.; Huang, Xiaohua

    2001-01-01

    Devices and techniques for hybridization of nucleic acids and for determining the sequence of nucleic acids. Arrays of nucleic acids are formed by techniques, preferably high resolution, light-directed techniques. Positions of hybridization of a target nucleic acid are determined by, e.g., epifluorescence microscopy. Devices and techniques are proposed to determine the sequence of a target nucleic acid more efficiently and more quickly through such synthesis and detection techniques.

  1. Detection and isolation of nucleic acid sequences using a bifunctional hybridization probe

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2000-01-01

    A method for detecting and isolating a target sequence in a sample of nucleic acids is provided using a bifunctional hybridization probe capable of hybridizing to the target sequence that includes a detectable marker and a first complexing agent capable of forming a binding pair with a second complexing agent. A kit is also provided for detecting a target sequence in a sample of nucleic acids using a bifunctional hybridization probe according to this method.

  2. An unnatural amino acid based fluorescent probe for phenylalanine ammonia lyase.

    PubMed

    Tian, Zhenlin; Zhu, Weiping; Xu, Yufang; Qian, Xuhong

    2014-08-21

    A fluorescent probe (2a-LP) based on an unnatural amino acid (UAA) is developed for the detection of phenylalanine ammonia lyase (PAL). In the presence of PAL, 2a-LP is catalytically deaminated to ortho-amino-transcinnamic acid (o-a-CA), which shows a remarkable “off–on” fluorescence signal. Thus, the probe 2a-LP enables direct visualization of the PAL activity in tomato under UV illumination and has potential in vitro assays. PMID:24971756

  3. Photoluminescence: A probe for short, medium and long-range self-organization order in ZrTiO{sub 4} oxide

    SciTech Connect

    Lucena, Poty R. de . E-mail: poty@liec.ufscar.br; Roberto Leite, Edson; Pontes, Fenelon M.; Longo, Elson; Pizani, Paulo S.; Arana Varela, Jose

    2006-12-15

    Photoluminescent disordered ZrTiO{sub 4} powders were obtained by the polymeric precursor soft-chemical method. This oxide system (ordered and disordered) was characterized by photoluminescence, Raman spectroscopy, X-ray diffraction, differential scanning calorimetry and UV-vis absorption experiments. The UV absorption tail formation in the disordered oxides was related to the diminution of optical band gap. In the disordered phase, this oxide displayed broad band photoluminescence caused by change in coordination number of titanium and zirconium with oxygen atoms. The gap decreased from 3.09eV in crystalline oxide to 2.16 eV in disordered oxide. The crystalline oxide presented an orthorhombic {alpha}-PbO{sub 2}-type structure in which Zr{sup 4+} and Ti{sup 4+} were randomly distributed in octahedral coordination polyhedra with oxygen atoms. The amorphous-crystalline transition occurred at almost 700 deg. C, at which point the photoluminescence vanished. The Raman peak at close to 80-200cm{sup -1} indicated the presence of locally ordered Ti-O{sub n} and Zr-O{sub n} polyhedra in disordered photoluminescent oxides.

  4. A rapid microwave synthesis of nitrogen-sulfur co-doped carbon nanodots as highly sensitive and selective fluorescence probes for ascorbic acid.

    PubMed

    Duan, Junxia; Yu, Jie; Feng, Suling; Su, Li

    2016-06-01

    A ultrafast one-step microwave-assisted method was developed for the synthesis of nitrogen-sulfur co-doped carbon nanodots (N,S-CDs) by using ethylenediamine as the carbon source and sulfamic acid as the surface passivation reagent. The morphology and the properties of N,S-CDs were explored by a series of techniques, such as high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption and fluorescence spectroscopy. The prepared N,S-CDs exhibit bright blue photoluminescence with a high fluorescence quantum yield (FLQY) up to 28%, and high stability and excellent water solubility. A N,S-CDs-based fluorescent probe was developed for sensitive detection ascorbic acid (AA) in the presence of Cu(2+), based on the mechanism that AA reduces Cu(2+) to Cu(+), then Cu(+) quenches the fluorescence of N,S-CDs through electron or energy transfer due to the interaction between Cu(+) and thiol ligand on the N,S-CDs surface. The observed linear response concentration range was from 0.057 to 4.0μM to AA with a detection limit as low as 18nM. The probe exhibited a highly selective response toward AA even in the presence of possible interfering substances, such as uric acid and citric acid. Moreover, these promising features made the sensing system used for the analysis of human serum and urine samples. PMID:27130124

  5. Application of locked nucleic acid-based probes in fluorescence in situ hybridization.

    PubMed

    Fontenete, Sílvia; Carvalho, Daniel; Guimarães, Nuno; Madureira, Pedro; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2016-07-01

    Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2'-O-methyl (2'-OMe) RNA modifications have on the probe that is targeting microorganisms is unknown. In this study, the melting and hybridization efficiency properties of 18 different probes in regards to their use in FISH for the detection of the 16S rRNA of Helicobacter pylori were compared. For the same sequence and target, probe length and the type of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2'-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall, these results have significant implications for the design and applications of LNA probes for the detection of microorganisms. PMID:26969040

  6. Phthalic acid chemical probes synthesized for protein-protein interaction analysis.

    PubMed

    Liang, Shih-Shin; Liao, Wei-Ting; Kuo, Chao-Jen; Chou, Chi-Hsien; Wu, Chin-Jen; Wang, Hui-Min

    2013-01-01

    Plasticizers are additives that are used to increase the flexibility of plastic during manufacturing. However, in injection molding processes, plasticizers cannot be generated with monomers because they can peel off from the plastics into the surrounding environment, water, or food, or become attached to skin. Among the various plasticizers that are used, 1,2-benzenedicarboxylic acid (phthalic acid) is a typical precursor to generate phthalates. In addition, phthalic acid is a metabolite of diethylhexyl phthalate (DEHP). According to Gene_Ontology gene/protein database, phthalates can cause genital diseases, cardiotoxicity, hepatotoxicity, nephrotoxicity, etc. In this study, a silanized linker (3-aminopropyl triethoxyslane, APTES) was deposited on silicon dioxides (SiO2) particles and phthalate chemical probes were manufactured from phthalic acid and APTES-SiO2. These probes could be used for detecting proteins that targeted phthalic acid and for protein-protein interactions. The phthalic acid chemical probes we produced were incubated with epithelioid cell lysates of normal rat kidney (NRK-52E cells) to detect the interactions between phthalic acid and NRK-52E extracted proteins. These chemical probes interacted with a number of chaperones such as protein disulfide-isomerase A6, heat shock proteins, and Serpin H1. Ingenuity Pathways Analysis (IPA) software showed that these chemical probes were a practical technique for protein-protein interaction analysis. PMID:23797655

  7. Methods of staining target chromosomal DNA employing high complexity nucleic acid probes

    DOEpatents

    Gray, Joe W.; Pinkel, Daniel; Kallioniemi, Ol'li-Pekka; Kallioniemi, Anne; Sakamoto, Masaru

    2006-10-03

    Methods and compositions for staining based upon nucleic acid sequence that employ nucleic acid probes are provided. Said methods produce staining patterns that can be tailored for specific cytogenetic analyses. Said probes are appropriate for in situ hybridization and stain both interphase and metaphase chromosomal material with reliable signals. The nucleic acid probes are typically of a complexity greater than 50 kb, the complexity depending upon the cytogenetic application. Methods and reagents are provided for the detection of genetic rearrangements. Probes and test kits are provided for use in detecting genetic rearrangements, particularly for use in tumor cytogenetics, in the detection of disease related loci, specifically cancer, such as chronic myelogenous leukemia (CML), retinoblastoma, ovarian and uterine cancers, and for biological dosimetry. Methods and reagents are described for cytogenetic research, for the differentiation of cytogenetically similar but genetically different diseases, and for many prognostic and diagnostic applications.

  8. Synthesis of nucleic acid probes on membrane supports: A procedure for the removal of unincorporated precursors

    SciTech Connect

    Bhat, S.P. )

    1990-01-01

    We have used DNA bound to small pieces of nylon membrane for the synthesis of radioactive probes. The DNA to be used for generating the probe(s) is first bound to nylon membranes and then introduced into the reaction mix. The labeling reaction takes place on the membrane and therefore allows easy removal of unincorporated precursors by simple washing for 1-2 min. The clean labeled probe is eluted from the membrane in formamide or in water and is ready for use. This DNA-membrane can be stored for reuse. Synthesis of probes on a solid support such as nylon membrane thus circumvents problems associated with chromatographic manipulations needed for the separation of labeled DNA from unicorporated precursors. Probes synthesized in this manner are as efficient in detecting nucleic acid sequences as those synthesized in solution.

  9. Synthesis of nucleic acid probes on membrane supports: a procedure for the removal of unincorporated precursors.

    PubMed

    Bhat, S P

    1990-01-01

    We have used DNA bound to small pieces of nylon membrane for the synthesis of radioactive probes. The DNA to be used for generating the probe(s) is first bound to nylon membranes and then introduced into the reaction mix. The labeling reaction takes place on the membrane and therefore allows easy removal of unincorporated precursors by simple washing for 1-2 min. The clean labeled probe is eluted from the membrane in formamide or in water and is ready for use. This DNA-membrane can be stored for reuse. Synthesis of probes on a solid support such as nylon membrane thus circumvents problems associated with chromatographic manipulations needed for the separation of labeled DNA from unicorporated precursors. Probes synthesized in this manner are as efficient in detecting nucleic acid sequences as those synthesized in solution. PMID:2321760

  10. Copper(II)-lanthanide(III) coordination polymers constructed from pyridine-2,5-dicarboxylic acid: Preparation, crystal structure and photoluminescence

    SciTech Connect

    Xia Zhengqiang; Wei Qing; Chen Sanping; Feng Xinming; Xie Gang; Qiao Chengfang; Zhang Guochun; Gao Shengli

    2013-01-15

    A series of 3d-4f heterometallic coordination polymers, formulated as {l_brace} [Cu{sub 3}Ln{sub 2}(pydc){sub 6}(H{sub 2}O){sub 12}]{center_dot}4H{sub 2}O{r_brace} {sub n} [Ln=Tb (1), Eu (2), Dy (3), Ho (4), Lu (5)], {l_brace} [CuNd{sub 2}(pydc){sub 4}(H{sub 2}O){sub 3}]{center_dot}H{sub 2}O{r_brace} {sub n} (6) and {l_brace} [Cu{sub 3}Pr{sub 2}(pydc){sub 6}(H{sub 2}O){sub 13}]{center_dot}4H{sub 2}O{r_brace} {sub n} (7) (where H{sub 2}pydc=pyridine-2,5-dicarboxylic acid), have been hydrothermally prepared by reactions of H{sub 2}pydc ligand with lanthanide ions in the presence of Cu(II) ion. X-ray crystal structure analysis reveals that these compounds exhibit rich structural chemistry. 1-5 are isomorphous and present a two-dimensional network constructed from Ln{sub 2}Cu{sub 2}L{sub 2}(H{sub 2}O){sub 2} SBU rings and CuL{sub 2}(H{sub 2}O) building blocks. In 6, two-dimensional ladder-like layers based on Nd(III) belts and CuL{sub 2}O{sub 2} units are assembled by H{sub 2}pydc ligands into a three-dimensional open framework. Polymer 7 displays a two-dimensional wave-like layer structure containing two distinct ring units, in which a new coordination mode of the pydc{sup 2-} ligand is observed. The results indicate that the coordination flexibility of the pydc{sup 2-} ligand and lanthanide contraction effect play cooperative roles in the formation of coordination polymers with different polymeric architectures. Compounds 1-2 exhibit intense green and red luminescence emission characteristics of Tb(III) and Eu(III), respectively. Furthermore, elemental analyses (EA), infrared spectra (IR) and thermogravimetric analyses (TGA) of these compounds were also studied. - Graphical abstract: Seven 3d-4f heterometallic coordination polymers were synthesized by reactions of H{sub 2}pydc with lanthanide metal ions in the presence of Cu{sup 2+}, the effects of Cu{sup 2+} on the structures and photoluminescent properties of Ln-pydc{sup 2-} systems were investigated. Highlights

  11. Facile Probe Design: Fluorescent Amphiphilic Nucleic Acid Probes without Quencher Providing Telomerase Activity Imaging Inside Living Cells.

    PubMed

    Jia, Yongmei; Gao, Pengcheng; Zhuang, Yuan; Miao, Mao; Lou, Xiaoding; Xia, Fan

    2016-06-21

    Nowadays, the probe with fluorophore but no quencher is promising for its simple preparation, environmental friendliness, and wide application scope. This study designs a new amphiphilic nucleic acid probe (ANAP) based on aggregation-caused quenching (ACQ) effect without any quencher. Upon binding with targets, the dispersion of hydrophobic part (conjugated fluorene, CF) in ANAP is enhanced as a signal-on model for proteins, nucleic acids, and small molecules detection or the aggregation of CF is enhanced as a signal-off model for ion detection. Meanwhile, because of the high specificity of ANAP, a one-step method is developed powerfully for monitoring the telomerase activity not only from the cell extracts but also from 50 clinic urine samples (positive results from 45 patients with bladder cancer and negative results from 5 healthy people). ANAPs can also readily enter into cells and exhibit a good performance for distinguishing natural tumor cells from the tumor cells pretreated by telomerase-related drugs or normal cells. In contrast to our previous results ( Anal. Chem. 2015 , 87 , 3890 - 3894 ), the present CF is a monomer which is just the structure unit of the previous fluorescent polymer. Since the accurate molecular structure and high DNA/CF ratio of the present CF, these advanced experiments obtain an easier preparation of probes, an improved sensitivity and specificity, and broader detectable targets. PMID:27223599

  12. Design and synthesis of an activity-based protein profiling probe derived from cinnamic hydroxamic acid.

    PubMed

    Ai, Teng; Qiu, Li; Xie, Jiashu; Geraghty, Robert J; Chen, Liqiang

    2016-02-15

    In our continued effort to discover new anti-hepatitis C virus (HCV) agents, we validated the anti-replicon activity of compound 1, a potent and selective anti-HCV hydroxamic acid recently reported by us. Generally favorable physicochemical and in vitro absorption, distribution, metabolism, and excretion (ADME) properties exhibited by 1 made it an ideal parent compound from which activity-based protein profiling (ABPP) probe 3 was designed and synthesized. Evaluation of probe 3 revealed that it possessed necessary anti-HCV activity and selectivity. Therefore, we have successfully obtained compound 3 as a suitable ABPP probe to identify potential molecular targets of compound 1. Probe 3 and its improved analogs are expected to join a growing list of ABPP probes that have made important contributions to not only the studies of biochemical and cellular functions but also discovery of selective inhibitors of protein targets. PMID:26753813

  13. Probing fatty acid metabolism in bacteria, cyanobacteria, green microalgae and diatoms with natural and unnatural fatty acids.

    PubMed

    Beld, Joris; Abbriano, Raffaela; Finzel, Kara; Hildebrand, Mark; Burkart, Michael D

    2016-04-22

    In both eukaryotes and prokaryotes, fatty acid synthases are responsible for the biosynthesis of fatty acids in an iterative process, extending the fatty acid by two carbon units every cycle. Thus, odd numbered fatty acids are rarely found in nature. We tested whether representatives of diverse microbial phyla have the ability to incorporate odd-chain fatty acids as substrates for their fatty acid synthases and their downstream enzymes. We fed various odd and short chain fatty acids to the bacterium Escherichia coli, cyanobacterium Synechocystis sp. PCC 6803, green microalga Chlamydomonas reinhardtii and diatom Thalassiosira pseudonana. Major differences were observed, specifically in the ability among species to incorporate and elongate short chain fatty acids. We demonstrate that E. coli, C. reinhardtii, and T. pseudonana can produce longer fatty acid products from short chain precursors (C3 and C5), while Synechocystis sp. PCC 6803 lacks this ability. However, Synechocystis can incorporate and elongate longer chain fatty acids due to acyl-acyl carrier protein synthetase (AasS) activity, and knockout of this protein eliminates the ability to incorporate these fatty acids. In addition, expression of a characterized AasS from Vibrio harveyii confers a similar capability to E. coli. The ability to desaturate exogenously added fatty acids was only observed in Synechocystis and C. reinhardtii. We further probed fatty acid metabolism of these organisms by feeding desaturase inhibitors to test the specificity of long-chain fatty acid desaturases. In particular, supplementation with thia fatty acids can alter fatty acid profiles based on the location of the sulfur in the chain. We show that coupling sensitive gas chromatography mass spectrometry to supplementation of unnatural fatty acids can reveal major differences between fatty acid metabolism in various organisms. Often unnatural fatty acids have antibacterial or even therapeutic properties. Feeding of short

  14. Studies towards the development of chemically synthesized non-radioactive biotinylated nucleic acid hybridization probes.

    PubMed Central

    Al-Hakim, A H; Hull, R

    1986-01-01

    Non-radioactive nucleic acid hybridization probes have been constructed in which the reporter group is long chain biotin chemically linked to a basic macromolecule (histone H1, cytochrome C or polyethyleneimine). The modified basic macromolecule which carries many biotin residues can, in turn, be covalently linked to nucleic acids (DNA) via the bifunctional cross-linking reagents, glutaraldehyde, 1,2,7,8-diepoxyoctane, bis (succinimidyl) suberate or bis (sulfonosuccinimidyl) suberate. This provides a very sensitive probe by which as little as between 10-50fg of target DNA can be visualized using dot-blot hybridization procedures in conjunction with avidin or streptavidin enzyme conjugates. PMID:3027670

  15. Auxiliary aromatic-acid effect on the structures of a series of Zn{sup II} coordination polymers: Syntheses, crystal structures, and photoluminescence properties

    SciTech Connect

    Xu Yanhong; Lan Yaqian; Shao Kuizhan; Su Zhongmin; Liao Yi

    2010-04-15

    Five novel Zn{sup II}-(pyridyl)imidazole derivative coordination polymers, [Zn(L){sub 2}] (1), [Zn{sub 2}(mu{sub 3}-OH)L(m-BDC)] (2), [Zn{sub 2}(mu{sub 3}-OH)L(p-BDC)].H{sub 2}O (3), [Zn{sub 2}L(BTC)(H{sub 2}O)].2.5H{sub 2}O (4) and [Zn{sub 3.5}(mu{sub 3}-OH)L{sub 2}(BTEC)(H{sub 2}O)].H{sub 2}O (5) (L=4-((2-(pyridine-2-yl)-1H-imidazol-1-yl)methyl)benzoic acid, p-H{sub 2}BDC=1,4-benzenedicarboxylic acid, m-H{sub 2}BDC=1,3-benzenedicarboxylic acid, H{sub 3}BTC=1,3,5-benzenetricarboxylic acid, H{sub 4}BTEC=1,2,4,5-benzenetetracarboxylic acid), were successfully synthesized under hydrothermal conditions through varying auxiliary aromatic-acid ligands and structurally characterized by X-ray crystallography. Compound 1 exhibits a 1D chain linked via double L bridges. Compound 2 features a well-known pcu topology with bent dicarboxylate ligand (m-H{sub 2}BDC) as an auxiliary ligand, while 3 displays a bcu network with linear dicarboxylate ligand (p-H{sub 2}BDC) as an auxiliary ligand. The structure of compound 4 is a novel 3D (3,5)-connected network with (4.6{sup 2})(4.6{sup 4}.8{sup 2}.10.12{sup 2}) topology. It is interesting that compound 5 shows an intricate (3,4,8)-connected framework with (4.6{sup 2})(4{sup 2}.6{sup 3}.8)(4{sup 2}.6{sup 4})(4{sup 2}.6{sup 18}.7.8{sup 6}.10) topology. In addition, their infrared spectra (IR), X-ray powder diffraction (XPRD) and photoluminescent properties were also investigated in detail. - Graphical abstract: Five novel Zn{sup II}-organic architectures have been hydrothermally synthesized through varying auxiliary aromatic-acid ligands and characterized by X-ray diffraction, the photoluminescence properties of compounds 1-5 were studied.

  16. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles.

    PubMed

    Tiwari, A; Dhoble, S J; Kher, R S

    2015-11-01

    Mercaptoethanol (ME), mercaptopropionic acid (MPA) and L-cysteine (L-Cys) having -SH functional groups were used as surface passivating agents for the wet chemical synthesis of ZnS nanoparticles. The effect of the thiol group on the optical and photoluminescence (PL) properties of ZnS nanoparticles was studied. L-Cysteine-capped ZnS nanoparticles showed the highest PL intensity among the studied capping agents, with a PL emission peak at 455 nm. The PL intensity was found to be dependent on the concentration of Zn(2+) and S(2-) precursors. The effect of buffer on the PL intensity of L-Cys-capped ZnS nanoparticles was also studied. UV/Vis spectra showed blue shifting of the absorption edge. PMID:25683960

  17. Design and evaluation of peptide nucleic acid probes for specific identification of Candida albicans.

    PubMed

    Kim, Hyun-Joong; Brehm-Stecher, Byron F

    2015-02-01

    Candida albicans is an important cause of systemic fungal infections, and rapid diagnostics for identifying and differentiating C. albicans from other Candida species are critical for the timely application of appropriate antimicrobial therapy, improved patient outcomes, and pharmaceutical cost savings. In this work, two 28S rRNA-directed peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) probes, P-Ca726 (targeting a novel region of the ribosome) and P-CalB2208 (targeting a previously reported region), were evaluated. Hybridization conditions were optimized by using both fluorescence microscopy (FM) and flow cytometry (FCM), and probes were screened for specificity and discriminative ability against a panel of C. albicans and various nontarget Candida spp. The performance of these PNA probes was compared quantitatively against that of DNA probes or DNA probe/helper combinations directed against the same target regions. Ratiometric analyses of FCM results indicated that both the hybridization quality and yield of the PNA probes were higher than those of the DNA probes. In FCM-based comparisons of the PNA probes, P-Ca726 was found to be highly specific, showing 2.5- to 5.5-fold-higher discriminatory power for C. albicans than P-CalB2208. The use of formamide further improved the performance of the new probe. Our results reinforce the significant practical and diagnostic advantages of PNA probes over their DNA counterparts for FISH and indicate that P-Ca726 may be used advantageously for the rapid and specific identification of C. albicans in clinical and related applications, especially when combined with FCM. PMID:25428160

  18. Design and Evaluation of Peptide Nucleic Acid Probes for Specific Identification of Candida albicans

    PubMed Central

    Kim, Hyun-Joong

    2014-01-01

    Candida albicans is an important cause of systemic fungal infections, and rapid diagnostics for identifying and differentiating C. albicans from other Candida species are critical for the timely application of appropriate antimicrobial therapy, improved patient outcomes, and pharmaceutical cost savings. In this work, two 28S rRNA-directed peptide nucleic acid-fluorescence in situ hybridization (PNA-FISH) probes, P-Ca726 (targeting a novel region of the ribosome) and P-CalB2208 (targeting a previously reported region), were evaluated. Hybridization conditions were optimized by using both fluorescence microscopy (FM) and flow cytometry (FCM), and probes were screened for specificity and discriminative ability against a panel of C. albicans and various nontarget Candida spp. The performance of these PNA probes was compared quantitatively against that of DNA probes or DNA probe/helper combinations directed against the same target regions. Ratiometric analyses of FCM results indicated that both the hybridization quality and yield of the PNA probes were higher than those of the DNA probes. In FCM-based comparisons of the PNA probes, P-Ca726 was found to be highly specific, showing 2.5- to 5.5-fold-higher discriminatory power for C. albicans than P-CalB2208. The use of formamide further improved the performance of the new probe. Our results reinforce the significant practical and diagnostic advantages of PNA probes over their DNA counterparts for FISH and indicate that P-Ca726 may be used advantageously for the rapid and specific identification of C. albicans in clinical and related applications, especially when combined with FCM. PMID:25428160

  19. Probing the Binding Site of Bile Acids in TGR5.

    PubMed

    Macchiarulo, Antonio; Gioiello, Antimo; Thomas, Charles; Pols, Thijs W H; Nuti, Roberto; Ferrari, Cristina; Giacchè, Nicola; De Franco, Francesca; Pruzanski, Mark; Auwerx, Johan; Schoonjans, Kristina; Pellicciari, Roberto

    2013-12-12

    TGR5 is a G-protein-coupled receptor (GPCR) mediating cellular responses to bile acids (BAs). Although some efforts have been devoted to generate homology models of TGR5 and draw structure-activity relationships of BAs, none of these studies has hitherto described how BAs bind to TGR5. Here, we present an integrated computational, chemical, and biological approach that has been instrumental to determine the binding mode of BAs to TGR5. As a result, key residues have been identified that are involved in mediating the binding of BAs to the receptor. Collectively, these results provide new hints to design potent and selective TGR5 agonists. PMID:24900622

  20. Structural variations and photoluminescent properties of a series of metal-organic frameworks constructed from 5-(4-carboxybenzoylamino)-isophthalic acid

    SciTech Connect

    Zhao, Wen; Zhang, Li-Juan; Zhao, Xiao-Li

    2013-06-01

    Five new metal-organic frameworks (MOFs) with 5-(4-carboxybenzoylamino)-isophthalic acid (H₃L), namely, [Cd₉L₆(DMA)₆]·4DMA (1), [Cd₃L₂(H₂O)₉]·4H₂O (2), [LaL(H₂O)₄]·2H₂O (3), [CeL(H₂O)₄]·H₂O (4) and [Tb(HL)(H₂L)(H₂O)₃]·5H₂O (5) (DMA=N,N-dimethylacetamide), have been synthesized. Complex 1 shows a three-dimensional architecture generated from linkage of Cd–O chains via L³⁻ ligands. Minor variations in synthetic conditions of 1 afforded 2, which features an interesting 2D→3D catenation architecture containing helical chains. Complexes 3 and 4 are isostructural and each feature a two-dimensional architecture constructed from the linkage of L³⁻ with Ln³⁺. Complex 5 displays a chain-like structure, of which the most interesting feature is the existence of free carboxylic acid (–COOH) group which may confer unique functionality. Moreover, the investigations of the thermal stability, powder X-ray diffractions and solid-state photoluminescent properties for these crystalline materials have been carried out. - Graphical Abstract: Solvothermal reactions of tricarboxylate ligand H₃L with Cd²⁺/Ln³⁺ has yielded a series of new MOFs containing interesting structural motifs. Highlights: • A tricarboxylate ligand whose coordinating functionalities are not symmetry equivalent is employed to construct MOFs. • Complex 2 features an interesting 2D→3D catenation architecture containing helical chains. • Complex 3 feature chain-like structure containing free – COOH group, which may confer unique functionality. • Photoluminescent properties and thermal behaviors for 1–5 have been reported.

  1. Correlated High-Resolution X-Ray Diffraction Photoluminescence and Atom Probe Tomography Analysis of Continuous and Discontinuous InxGa1-xN Quantum Wells

    SciTech Connect

    Ren, Xiaochen; Riley, James R.; Koleske, Daniel; Lauhon, Lincoln J.

    2015-07-14

    Atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of InxGa1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.

  2. Correlated high-resolution x-ray diffraction photoluminescence and atom probe tomography analysis of continuous and discontinuous InxGa1-xN quantum wells

    SciTech Connect

    Ren, Xiaochen; Riley, James R.; Koleske, Daniel; Lauhon, Lincoln J.

    2015-07-14

    In this study, atom probe tomography (APT) is used to characterize the influence of hydrogen dosing duringGaN barrier growth on the indium distribution of InxGa1-xN quantum wells, and correlatedmicro-photoluminescence is used to measure changes in the emission spectrum and efficiency. We found that relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Additionally, simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffractionanalysis for more accurate nondestructive measurements of composition.

  3. Correlated high-resolution x-ray diffraction, photoluminescence, and atom probe tomography analysis of continuous and discontinuous In{sub x}Ga{sub 1−x}N quantum wells

    SciTech Connect

    Ren, Xiaochen; Riley, James R.; Lauhon, Lincoln J.; Koleske, Daniel D.

    2015-07-13

    Atom probe tomography (APT) is used to characterize the influence of hydrogen dosing during GaN barrier growth on the indium distribution of In{sub x}Ga{sub 1−x}N quantum wells, and correlated micro-photoluminescence is used to measure changes in the emission spectrum and efficiency. Relative to the control growth, hydrogen dosing leads to a 50% increase in emission intensity arising from discontinuous quantum wells that are narrower, of lower indium content, and with more abrupt interfaces. Simulations of carrier distributions based on APT composition profiles indicate that the greater carrier confinement leads to an increased radiative recombination rate. Furthermore, APT analysis of quantum well profiles enables refinement of x-ray diffraction analysis for more accurate nondestructive measurements of composition.

  4. Bright photoluminescent hybrid mesostructured silica nanoparticles.

    PubMed

    Miletto, Ivana; Bottinelli, Emanuela; Caputo, Giuseppe; Coluccia, Salvatore; Gianotti, Enrica

    2012-07-28

    Bright photoluminescent mesostructured silica nanoparticles were synthesized by the incorporation of fluorescent cyanine dyes into the channels of MCM-41 mesoporous silica. Cyanine molecules were introduced into MCM-41 nanoparticles by physical adsorption and covalent grafting. Several photoluminescent nanoparticles with different organic loadings have been synthesized and characterized by X-ray powder diffraction, high resolution transmission electron microscopy and nitrogen physisorption porosimetry. A detailed photoluminescence study with the analysis of fluorescence lifetimes was carried out to elucidate the cyanine molecules distribution within the pores of MCM-41 nanoparticles and the influence of the encapsulation on the photoemission properties of the guests. The results show that highly stable photoluminescent hybrid materials with interesting potential applications as photoluminescent probes for diagnostics and imaging can be prepared by both methods. PMID:22706523

  5. [Study on recovery and its influencing factors of ferulic acid and tetramethylpyrazine in cerebral microdialysis probe].

    PubMed

    Liao, Wei-guo; Wang, Li-sheng; Fan, Wen-tao; Li, Zhou; Yu, Jian-ye; Liao, Feng-yun; Wu, Yin-ai; Ba, Wen-qiang; Wang, Ding

    2015-11-01

    To establish a method for detecting microdialysis recovery of tetramethylpyrazine (TMP) and ferulic acid (FA) and investigating the influencing factors, providing the basis for further in vivo microdialysis experiments. The concentration of FA and TMP in dialysates were determined by high pressure liquid chromatography ( HPLC) and probe recovery were calculated respectively. The influence of the flow rates, medium concentration, temperature and in vivo probe stability on the recovery of FA and TMP were investigated by using concentration difference method (incremental method and decrement method). The recovery obtained by incremental method were similar to by decrement method. The in vitro recovery rate of FA and TMP decreased with the increase of 1-2.5 μL min(-1), and increased obviously with the temperature of 25-42 degrees C under the same conditions. The concentration of FA and TMP had no obvious effect on the probe recovery under the same flow rate. In addition, the recovery of TMP and FA remained stable and showed similar trends under the condition of four concentration cycles, indicating that the intra day reproducibility of the concentration difference method was good. The recovery of brain microdialysis probes in vivo 8 h maintained a relatively stable, but certain differences existed between different brain microdialysis probes, demonstrating that each probe was required for recovery correction in vivo experiment. Microdialysis sampling can be used for the local brain pharmacokinetic study of FA and TMP, and retrodialysis method can be used in probe recovery of FA and TMP in vivo. PMID:27071270

  6. Bioavailability of xenobiotics in unsaturated soils – implications for nucleic acid based stable isotope probing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of stable isotopes to label phylogenetically informative biomolecules (phospholipid fatty acids, DNA, or RNA), typically referred to as stable isotope probing (SIP) has the potential of providing definitive evidence that a detected population is active in a specific process, if that process ...

  7. Nucleic acid probes as a diagnostic method for tick-borne hemoparasites of veterinary importance.

    PubMed

    Figueroa, J V; Buening, G M

    1995-03-01

    An increased number of articles on the use of nucleic acid-based hybridization techniques for diagnostic purposes have been recently published. This article reviews nucleic acid-based hybridization as an assay to detect hemoparasite infections of economic relevance in veterinary medicine. By using recombinant DNA techniques, selected clones containing inserts of Anaplasma, Babesia, Cowdria or Theileria genomic DNA sequences have been obtained, and they are now available to be utilized as specific, highly sensitive DNA or RNA probes to detect the presence of the hemoparasite DNA in an infected animal. Either in an isotopic or non-isotopic detection system, probes have allowed scientists to test for--originally in samples collected from experimentally infected animals and later in samples collected in the field--the presence of hemoparasites during the prepatent, patent, convalescent, and chronic periods of the infection in the host. Nucleic acid probes have given researchers the opportunity to carry out genomic analysis of parasite DNA to differentiate hemoparasite species and to identify genetically distinct populations among and within isolates, strains and clonal populations. Prevalence of parasite infection in the tick vector can now be accomplished more specifically with the nucleic acid probes. Lately, with the advent of the polymerase chain reaction technique, small numbers of hemoparasites can be positively identified in the vertebrate host and tick vector. These techniques can be used to assess the veterinary epidemiological situation in a particular geographical region for the planning of control measures. PMID:7597795

  8. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on-off-on probe for Ag+ ions

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Anil; Biswal, Mandakini; Mhamane, Dattakumar; Gokhale, Rohan; Patil, Shankar; Guin, Debanjan; Ogale, Satishchandra

    2014-09-01

    Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine.Graphene quantum dots (GQDs) are synthesized from bio-waste and are further modified to produce amine-terminated GQDs (Am-GQDs) which have higher dispersibility and photoluminescence intensity than those of GQDs. A strong fluorescence quenching of Am-GQDs (switch-off) is observed for a number of metal ions, but only for the Ag+ ions is the original fluorescence regenerated (switch-on) upon addition of l-cysteine. Electronic supplementary information (ESI) available: HRTEM images, GQD SAED patterns and EDAX analysis of Am-GQD@Ag. See DOI: 10.1039/c4nr02494j

  9. Utilizing a nano-sorbent for the selective solid-phase extraction of vanillic acid prior to its determination by photoluminescence spectroscopy.

    PubMed

    Abdolmohammad-Zadeh, Hossein; Mahmoudi-Kordi, Fatemeh; Rahmati, Manoochehr

    2014-12-01

    Vanillic acid (VA) is a phenolic acid, and acts as a natural antioxidant in fruits, vegetables and plants. The extraction and determination of trace levels of VA in plants is important, because stimulation of protein synthesis and activation of antioxidant enzymes occur in the presence of phenolic acids at trace levels. In this research, a photoluminescence spectroscopic method was developed for the quantification of VA in plant samples after separation and pre-concentration. Selective extraction of VA from aqueous solution was performed using a solid-phase extraction column packed with nickel-aluminum layered double hydroxide as a nano-sorbent. After elution of extracted analyte from the column using 3 mL of a 3 mol/L NaOH solution, its concentration was determined spectrofluorometrically at λ(em) = 357 nm with excitation at λ(ex) = 280 nm. The spectrofluorometry method gave a linear response for VA within the range 20.0-900.0 µg/L, with a correlation coefficient of 0.9982. The limit of detection and sorption capacity were 7.6 µg/L and 66.2 mg/g, respectively. The method was validated by comparing the obtained results with gas chromatographic data. This method was used to determine VA in Chenopodium album and Prangos asperula plants. PMID:24760699

  10. The effect of citric acid on morphology and photoluminescence properties of white light emitting ZnO-SiO2 nanocomposites

    NASA Astrophysics Data System (ADS)

    Sivakami, R.; Thiyagarajan, P.

    2016-07-01

    The white light emitting ZnO-SiO2 nanocomposites were synthesized by sol-gel combustion method using zinc nitrate, citric acid and tetraethoxysilane. To analyze the effect of fuel content on the photoluminescence properties of ZnO-SiO2 nanocomposites, the citric acid content was varied as 1, 5, and 10 moles with respect to one mole of zinc. The SEM images of the nanocomposites revealed the spherical, flower and platelet like morphology with variation in citric acid content and annealing temperatures. The ZnO-SiO2 nanocomposites prepared with various Zn:CA ratio excited at UV (280 nm), near UV (365 nm), violet (405 nm) and blue (465 nm) wavelength showed blue and greenish-yellow emission. Among all ratios, the ZnO-SiO2 nanocomposites with Zn:CA - 1:1 ratio showed the intense broad band emission compared to Zn:CA - 1:5 and 1:10 values. This particular composition of sample excited under violet (405 nm) LED source shows white light, as confirmed by the CIE chromaticity coordinates (x = 0.342, y = 0.318).

  11. Modeling aqueous ozone/UV process using oxalic acid as probe chemical.

    PubMed

    Garoma, Temesgen; Gurol, Mirat D

    2005-10-15

    A kinetic model that describes the removal of organic pollutants by an ozone/UV process is described. Oxalic acid, which reacts with a very low rate constant with ozone and relatively high rate constant with hydroxyl radical (OH*), was used as the probe chemical to model the process. The model was verified by experimental data on concentrations of oxalic acid and hydrogen peroxide (H202) under various experimental conditions, i.e., ozone gas dosage, UV light intensity, and varying oxalic acid concentrations. PMID:16295862

  12. Electronic Properties and Structure of Assemblies of CdSe Nanocrystal Quantum Dots and Ru-Polypyridine Complexes Probed by Steady State and Time-Resolved Photoluminescence

    SciTech Connect

    Koposov, Alexey Y.; Szymanski, Paul; Cardolaccia, Thomas; Meyer, Thomas J.; Klimov, Victor I.; Sykora, Milan

    2011-06-20

    Chemical and electronic interactions between CdSe nanocrystal quantum dots (NQDs) and Ru-polypyridine complexes are studied in solution. It is shown that photoluminescence (PL) can be used to effectively monitor the formation of NQD-complex assemblies in real time. It is also shown that with the aid of Langmuir isotherm modeling, the PL studies can be used to quantitatively characterize the composition of the assemblies and the strength of electronic interactions between their components. The approach demonstrated here is general and can be applied to other systems that combine semiconductor NQDs and appropriately functionalized organometallic or organic molecules interacting with NQDs via energy transfer, charge transfer, or other mechanisms leading to quenching of NQD emission.

  13. Emission wavelength-dependent decay of the 9-anthroyloxy-fatty acid membrane probes.

    PubMed Central

    Matayoshi, E D; Kleinfeld, A M

    1981-01-01

    Using the phase-modulation technique, we have measured the fluorescence decay of 2- and 12-(9-anthroyloxy)-stearic acid (2- and 12-AS) and 16-(9-anthroyloxy)-palmitic acid (16-AP) bound to egg phosphatidylcholine vesicles or dissolved in nonpolar solvents. Heterogeneity analysis demonstrates that the decay is generally not monoexponential and exhibits large component variations across it emission spectrum. The mean decay time increases (and in parallel, the steady-state polarization decreases) monotonically with increasing wavelength from values at the blue end. The decay at the red side of the emission spectrum contains an exponential term with a negative amplitude, indicating that emission occurs from intermediates created in the excited-state. This behavior is interpreted as arising from intramolecular fluorophore relaxation occurring on the time scale of the fluorescence lifetime. We believe this to be the first study of wavelength-dependent fluorescent emission which is dominated by an intramolecular relaxation process. Although the three probes exhibit qualitatively similar effects, the emission band variations are greatest for 2-AS and smallest for 16-AP. The differences among the probes are not entirely due to environmental factors as demonstrated, for example, by the emission polarization differences observed in the isotropic solvent paraffin oil. In summary, while these findings point out some of the complexities in the 9-anthroyloxy-fatty acids as membrane probes, they also indicate how these complexities might be used as a sensitive measure of lipid-probe interaction. PMID:7260317

  14. Insights into 6‐Methylsalicylic Acid Bio‐assembly by Using Chemical Probes

    PubMed Central

    Parascandolo, James S.; Havemann, Judith; Potter, Helen K.; Huang, Fanglu; Riva, Elena; Connolly, Jack; Wilkening, Ina; Song, Lijiang; Leadlay, Peter F.

    2016-01-01

    Abstract Chemical probes capable of reacting with KS (ketosynthase)‐bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6‐methylsalicylic acid synthase (6‐MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6‐MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6‐MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities.

  15. Photoinduced spectral changes of photoluminescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Matulionytė, Marija; Marcinonytė, Raminta; Rotomskis, Ričardas

    2015-05-01

    Ultrasmall photoluminescent gold nanoclusters (Au NCs), composed of several atoms with sizes up to a few nanometers, have recently stimulated extensive interest. Unique molecule-like behaviors, low toxicity, and facile synthesis make photoluminescent Au NCs a very promising alternative to organic fluorophores and semiconductor quantum dots (QDs) in broad ranges of biomedical applications. However, using gold nanoparticles (Au NPs) for bioimaging might cause their degradation under continuous excitation with UV light, which might result in toxicity. We report spectral changes of photoluminescent 2-(N-morpholino) ethanesulfonic acid (MES)-coated (Au-MES) NCs under irradiation with UV/blue light. Photoluminescent water soluble Au-MES NCs with a photoluminescence (PL) band maximum at 476 nm (λex=420 nm) were synthesized. Under irradiation with 402 nm wavelength light the size of photoluminescent Au-MES NCs decreased (λem=430 nm). Irradiating the sample solution with 330 nm wavelength light, nonluminescent Au NPs were disrupted, and photoluminescent Au NCs (λem=476 nm) were formed. Irradiation with 330 nm wavelength light did not directly affect photoluminescent Au-MES NCs, however, increase in PL intensity indicated the formation of photoluminescent Au NCs from the disrupted nonluminescent Au NPs. This study gives a good insight into the photostability of MES-coated Au NPs under continuous excitation with UV/blue light.

  16. Photoinduced spectral changes of photoluminescent gold nanoclusters.

    PubMed

    Matulionytė, Marija; Marcinonytė, Raminta; Rotomskis, Ričardas

    2015-05-01

    Ultrasmall photoluminescent gold nanoclusters (Au NCs), composed of several atoms with sizes up to a few nanometers, have recently stimulated extensive interest. Unique molecule-like behaviors, low toxicity, and facile synthesis make photoluminescent Au NCs a very promising alternative to organic fluorophores and semiconductor quantum dots (QDs) in broad ranges of biomedical applications. However, using gold nanoparticles (Au NPs) for bioimaging might cause their degradation under continuous excitation with UV light, which might result in toxicity. We report spectral changes of photoluminescent 2-(N-morpholino) ethanesulfonic acid (MES)-coated (Au-MES) NCs under irradiation with UV/blue light. Photoluminescent water soluble Au- MES NCs with a photoluminescence (PL) band maximum at 476 nm (λex = 420 nm) were synthesized. Under irradiation with 402 nm wavelength light the size of photoluminescent Au-MES NCs decreased (λem = 430 nm). Irradiating the sample solution with 330 nm wavelength light, nonluminescent Au NPs were disrupted, and photoluminescent Au NCs (λem = 476 nm) were formed. Irradiation with 330 nm wavelength light did not directly affect photoluminescent Au-MES NCs, however, increase in PL intensity indicated the formation of photoluminescent Au NCs from the disrupted nonluminescent Au NPs. This study gives a good insight into the photostability of MES-coated Au NPs under continuous excitation with UV/blue light. PMID:25517487

  17. A novel ascorbic acid sensor based on the Fe3+/Fe2+ modulated photoluminescence of CdTe quantum dots@SiO2 nanobeads

    NASA Astrophysics Data System (ADS)

    Ma, Qiang; Li, Yang; Lin, Zi-Han; Tang, Guangchao; Su, Xing-Guang

    2013-09-01

    In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe2+ and Fe3+ on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe3+. Although both Fe2+ and Fe3+ could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe2+ and Fe3+. The PL intensity of the CdTe QD@silica nanobeads can be quenched by about 15% after the addition of Fe3+ (60 μmol L-1), while the PL intensity of the CdTe QD@silica nanobeads can be quenched about 49% after the addition of Fe2+ (60 μmol L-1). Therefore, the PL intensity of the CdTe QD@silica nanobeads decreased significantly when Fe3+ was reduced to Fe2+ by ascorbic acid. To confirm the strategy of PL modulation in this sensing system, trace H2O2 was introduced to oxidize Fe2+ to Fe3+. As a result, the PL intensity of the CdTe QD@silica nanobeads was partly recovered. The proposed sensor could be used for ascorbic acid sensing in the concentration range of 3.33-400 μmol L-1, with a detection limit (3σ) of 1.25 μmol L-1 The feasibility of the proposed sensor for ascorbic acid determination in tablet samples was also studied, and satisfactory results were obtained.In this paper, CdTe quantum dot (QD)@silica nanobeads were used as modulated photoluminescence (PL) sensors for the sensing of ascorbic acid in aqueous solution for the first time. The sensor was developed based on the different quenching effects of Fe2+ and Fe3+ on the PL intensity of the CdTe QD@ silica nanobeads. Firstly, the PL intensity of the CdTe QDs was quenched in the presence of Fe3+. Although both Fe2+ and Fe3+ could quench the PL intensity of the CdTe QDs, the quenching efficiency were quite different for Fe2+ and Fe3+. The PL intensity of the CdTe QD

  18. Resonant uv pump-probe spectroscopy of dipicolinic acid via impulsive excitation

    SciTech Connect

    Murawski, Robert K.; Rostovtsev, Yuri V.; Sariyanni, Zoe-Elizabeth; Sautenkov, Vladimir A.; Backus, Sterling; Raymondson, Daisy; Kapteyn, Henry C.; Murnane, Margaret M.; Scully, Marlan O.

    2008-02-15

    We present experimental evidence of coherent wave packet motion in dipicolinic acid (C{sub 7}H{sub 5}NO{sub 4}) which is an important marker molecule for bacterial spores. Resonant impulsive excitation is achieved by applying a uv pump pulse (267 nm, 16 fs) which has a duration that is shorter than the vibrational period of the molecules. The resulting dynamics is then probed with a weaker pulse of the same width and frequency. Evidence of the important 'fingerprint' region for this molecule (between 1000 cm{sup -1} and 1500 cm{sup -1}) is found in the transient absorption of the probe. We present simulations of the pump-probe experiment, based on the Liouville equation for the density matrix, and predict the optimal pulse width and detuning.

  19. Docosahexaenoic acid conjugated near infrared flourescence probe for in vivo early tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Siwen; Cao, Jie; Qin, Jingyi; Zhang, Xin; Achilefu, Samuel; Qian, Zhiyu; Gu, Yueqing

    2013-02-01

    Docosahexaenoic acid(DHA) is an omega-3 C22 natural fatty acid with six cis double bonds and as a constituent of membranes used as a precursor for metabolic and biochemical path ways. In this manuscript,we describe the synthesis of near-infrared(NIR) flourescence ICG-Der-01 labeled DHA for in vitro and vivo tumor targeting.The structure of the probe was intensively characterized by UV and MS. The in vitro and vivo tumor targeting abilities of the DHA-based NIR probes were investigeted in MCF-7 cells and MCF-7 xenograft mice model differently by confocal microscopy and CCD camera. The cell cytotoxicity were tested in tumor cells MCF-7 .The results shows that the DHA-based NIR probes have high affinity with the tumor both in vitro and vivo.In addition ,we also found that the DHA-based NIR probes have the apparent cytotoxicity on MCF-7 cells .which demonstrated that DHA was conjugated with other antitumor drug could increase the abilities of antirumor efficacy .So DHA-ICG-Der-01 is a promising optical agent for diagnosis of tumors especially in their early stage.

  20. A Locked Nucleic Acid Probe Based on Selective Salt-Induced Effect Detects Single Nucleotide Polymorphisms

    PubMed Central

    Zhang, Jing; Wu, Huizhe; Chen, Qiuchen; Zhao, Pengfei; Zhao, Haishan; Yao, Weifan; Wei, Minjie

    2015-01-01

    Detection of single based genetic mutation by using oligonucleotide probes is one of the common methods of detecting single nucleotide polymorphisms at known loci. In this paper, we demonstrated a hybridization system which included a buffer solution that produced selective salt-induced effect and a locked nucleic acid modified 12 nt oligonucleotide probe. The hybridization system is suitable for hybridization under room temperature. By using magnetic nanoparticles as carriers for PCR products, the SNPs (MDR1 C3435T/A) from 45 volunteers were analyzed, and the results were consistent with the results from pyrophosphoric acid sequencing. The method presented in this paper differs from the traditional method of using molecular beacons to detect SNPs in that it is suitable for research institutions lacking real-time quantitative PCR detecting systems, to detect PCR products at room temperature. PMID:26347880

  1. Reactivity, Selectivity, and Stability in Sulfenic Acid Detection: A Comparative Study of Nucleophilic and Electrophilic Probes.

    PubMed

    Gupta, Vinayak; Paritala, Hanumantharao; Carroll, Kate S

    2016-05-18

    The comparative reaction efficiencies of currently used nucleophilic and electrophilic probes toward cysteine sulfenic acid have been thoroughly evaluated in two different settings-(i) a small molecule dipeptide based model and (ii) a recombinant protein model. We further evaluated the stability of corresponding thioether and sulfoxide adducts under reducing conditions which are commonly encountered during proteomic protocols and in cell analysis. Powered by the development of new cyclic and linear C-nucleophiles, the unsurpassed efficiency in the capture of sulfenic acid under competitive conditions is achieved and thus holds great promise as highly potent tools for activity-based sulfenome profiling. PMID:27123991

  2. Cross-polarized optical absorption of single-walled carbon nanotubes probed by photoluminescence excitation spectroscopy, UV-Vis-IR and polarized Raman Scatterings

    NASA Astrophysics Data System (ADS)

    Maruyama, Shigeo

    2008-03-01

    Because of the depolarization effect, or so-called antenna effect, optical absorption of single-walled carbon nanotubes (SWNTs) is weak when excited by light polarized perpendicular to the nanotube axis. However, in photoluminescence (PL) excitation spectra of isolated SWNTs, PL peaks due to cross-polarized excitation can be clearly identified. By decomposing the cross-polarized component, the optical transition energy of E12 or E21 can be? measured, and the smaller exciton binding energy for perpendicular excitations is concluded [1]. Cross-polarized absorption is dominant in the absorption of a vertically aligned film of SWNTs [2] when excited from the top of the film. In our previous study, a pi-plasmon absorption at 5.25 eV was revealed in contrast to 4.5 eV for parallel excitation [3]. Resonant Raman scattering from such a film is also influenced by the cross-polarized excitation [4]. Even though a Kataura plot for the E33 and E44 range has been proposed by using such a vertically aligned film [5], polarized Raman scattering spectra reveal more complicated features in the system because of the small bundle size, typically 5-8 nanotubes [6]. References: [1] Y. Miyauchi, M. Oba, S. Maruyama, Phys. Rev. B 74 (2006) 205440. [2] Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura, T. Okubo, S. Maruyama, Chem. Phys. Lett. 385 (2004) 298. [3] Y. Murakami, E. Einarsson, T. Edamura, S. Maruyama, Phys. Rev. Lett. 94 (2005) 087402. [4] Y. Murakami, S. Chiashi, E. Einarsson, S. Maruyama, Phys. Rev. B 71 (2005) 085403. [5] P. T. Araujo, S. K. Doorn, S. Kilina, S. Tretiak, E. Einarsson, S. Maruyama, H. Chacham, M. A. Pimenta, A. Jorio, Phys. Rev. Lett. 88 (2007) 067401. [6] E. Einarsson, H. Shiozawa, C. Kramberger, M. H. Ruemmeli, A. Gruneis, T. Pichler, S. Maruyama, J. Phys. Chem. C (2007) published on Web.

  3. Site-specific incorporation of probes into RNA polymerase by unnatural-amino-acid mutagenesis and Staudinger-Bertozzi ligation

    PubMed Central

    Chakraborty, Anirban; Mazumder, Abhishek; Lin, Miaoxin; Hasemeyer, Adam; Xu, Qumiao; Wang, Dongye; Ebright, Yon W.; Ebright, Richard H.

    2015-01-01

    Summary A three-step procedure comprising (i) unnatural-amino-acid mutagenesis with 4-azido-phenylalanine, (ii) Staudinger-Bertozzi ligation with a probe-phosphine derivative, and (iii) in vitro reconstitution of RNA polymerase (RNAP) enables the efficient site-specific incorporation of a fluorescent probe, a spin label, a crosslinking agent, a cleaving agent, an affinity tag, or any other biochemical or biophysical probe, at any site of interest in RNAP. Straightforward extensions of the procedure enable the efficient site-specific incorporation of two or more different probes in two or more different subunits of RNAP. We present protocols for synthesis of probe-phosphine derivatives, preparation of RNAP subunits and the transcription initiation factor σ, unnatural amino acid mutagenesis of RNAP subunits and σ, Staudinger ligation with unnatural-amino-acid-containing RNAP subunits and σ, quantitation of labelling efficiency and labelling specificity, and reconstitution of RNAP. PMID:25665560

  4. Syntheses, structures, and photoluminescence of three-dimensional lanthanide coordination polymers with 2,5-pyridinedicarboxylic acid

    SciTech Connect

    Huang Yan; Song Yishan; Yan, Bing Shao Min

    2008-08-15

    Four new open-framework coordination polymers of lanthanide 2,5-pyridinedicarboxylates, with the formulas Pr2(pydc){sub 3}(H{sub 2}O){sub 2} (1), Ln(pydc)(Hpydc) (Ln=Tb (2), Er (3), Eu (5)), and Gd(pydc)(nic)(H{sub 2}O) (4) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid, Hnic=nicotinic acid), have been hydrothermally synthesized and four of them (except Eu (5)) have been structurally characterized. Complex 1 consists of two types of ligand-binding modes contributing to link the PrO{sub 7}N(H{sub 2}O) polyhedral chains to three-dimensional (3D) open-framework architecture. Complexes 2 and 3 are isostructural and feature unique 3D cage-like supramolecular frameworks remarkably different from that of 1, owing to the different ligand-bridging pattern. Complex 4, however, has the distinct 3D open-framework architecture due to the presence of unexpected nicotinate ligands, which may be derived from pydc ligands via in-situ decarboxylation under the hydrothermal condition. - Graphical abstract: Four new lanthanide coordination polymers have been hydrothermally synthesized by the reaction of 2,5-pyridinedicarboxylic acid with the corresponding lanthanide nitrates, and they show three types of 3D open-framework architecture. Complexes 2 and 5 show strong characteristic green (or red) luminescence and long lifetimes.

  5. Development of a new colorimetric and red-emitting fluorescent dual probe for G-quadruplex nucleic acids.

    PubMed

    Yan, Jin-Wu; Chen, Shuo-Bin; Liu, Hui-Yun; Ye, Wen-Jie; Ou, Tian-Miao; Tan, Jia-Heng; Li, Ding; Gu, Lian-Quan; Huang, Zhi-Shu

    2014-07-01

    A tailor-made colorimetric and red-emitting fluorescent dual probe for G-quadruplex nucleic acids was developed by incorporating a coumarin-hemicyanine fluorophore into an isaindigotone framework. The significant and distinct changes in both the color and fluorescence of this probe enable the label-free and visual detection of G-quadruplex structures. PMID:24841696

  6. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes.

    PubMed

    Jin, Dongri; Seo, Min-Ho; Huy, Bui The; Pham, Quoc-Thai; Conte, Maxwell L; Thangadurai, Daniel; Lee, Yong-Ill

    2016-03-15

    A convenient enzymatic optical method for uric acid detection was developed based on the fluorescence quenching of ligand-capped CdTe nanoparticles by H2O2 which was generated from the enzymatic reaction of uric acid. The interactions between the CdTe nanoparticles capped with different ligands (glutathione, 3-mercaptopropionic acid, and thioglycerol) and H2O2 were investigated. The fluorescence quenching studies of GSH-capped CdTe nanoparticles demonstrated an excellent sensitivity to H2O2. The effects of uric acid, uricase and H2O2 on the fluorescence intensity of CdTe nanoparticles were also explored. The detection conditions, reaction time, pH value, incubation period and the concentration of uricase and uric acid were optimized. The detection limit of uric acid was found to be 0.10 µM and the linear range was 0.22-6 µM under the optimized experimental conditions. These results typify that CdTe nanoparticles could be used as a fluorescent probe for uric acid detection. PMID:26433069

  7. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, H.U.G.; Gray, J.W.

    1995-06-27

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers and probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity. 18 figs.

  8. Fluorescence imaging of siRNA delivery by peptide nucleic acid-based probe.

    PubMed

    Sato, Takaya; Sato, Yusuke; Iwai, Kenta; Kuge, Shusuke; Teramae, Norio; Nishizawa, Seiichi

    2015-01-01

    We report on the use of a peptide nucleic acid (PNA)-based fluorescent probe for the analysis of siRNA delivery to living cells. The probe, Py-AA-TO, possesses thiazole orange (TO) and pyrene moieties in the C- and N-termini of PNA, and can function as a light-up probe capable of selective binding to 3'-overhanging nucleotides of target siRNAs. The affinity-labeling of the siRNAs with Py-AA-TO facilitates fluorescence imaging of cellular uptake of polymer-based carriers encapsulating the siRNAs (polyplexes) through endocytosis and subsequent sequestration into lysosome. In addition, flow cytometric measurements reveal that the monitoring of Py-AA-TO fluorescence inside the cells is successfully applicable to the analysis of the polyplex disassembly. These promising functions of Py-AA-TO are presented and discussed as a basis for the design of molecular probes for fluorescent imaging and quantitative analysis of the siRNA delivery process. PMID:25864675

  9. Repeat sequence chromosome specific nucleic acid probes and methods of preparing and using

    DOEpatents

    Weier, Heinz-Ulrich G.; Gray, Joe W.

    1995-01-01

    A primer directed DNA amplification method to isolate efficiently chromosome-specific repeated DNA wherein degenerate oligonucleotide primers are used is disclosed. The probes produced are a heterogeneous mixture that can be used with blocking DNA as a chromosome-specific staining reagent, and/or the elements of the mixture can be screened for high specificity, size and/or high degree of repetition among other parameters. The degenerate primers are sets of primers that vary in sequence but are substantially complementary to highly repeated nucleic acid sequences, preferably clustered within the template DNA, for example, pericentromeric alpha satellite repeat sequences. The template DNA is preferably chromosome-specific. Exemplary primers ard probes are disclosed. The probes of this invention can be used to determine the number of chromosomes of a specific type in metaphase spreads, in germ line and/or somatic cell interphase nuclei, micronuclei and/or in tissue sections. Also provided is a method to select arbitrarily repeat sequence probes that can be screened for chromosome-specificity.

  10. Submonolayer Uniformity of Type II InAs/GaInSb W-shaped Quantum Wells Probed by Full-Wafer Photoluminescence Mapping in the Mid-infrared Spectral Range.

    PubMed

    Dyksik, Mateusz; Motyka, Marcin; Sęk, Grzegorz; Misiewicz, Jan; Dallner, Matthias; Weih, Robert; Kamp, Martin; Höfling, Sven

    2015-12-01

    The spatial uniformity of GaSb- and InAs substrate-based structures containing type II quantum wells was probed by means of large-scale photoluminescence (PL) mapping realized utilizing a Fourier transform infrared spectrometer. The active region was designed and grown in a form of a W-shaped structure with InAs and GaInSb layers for confinement of electrons and holes, respectively. The PL spectra were recorded over the entire 2-in. wafers, and the parameters extracted from each spectrum, such as PL peak energy position, its linewidth and integrated intensity, were collected in a form of two-dimensional spatial maps. Throughout the analysis of these maps, the wafers' homogeneity and precision of the growth procedure were investigated. A very small variation of PL peak energy over the wafer indicates InAs quantum well width fluctuation of only a fraction of a monolayer and hence extraordinary thickness accuracy, a conclusion further supported by high uniformity of both the emission intensity and PL linewidth. PMID:26471481

  11. Ascorbic acid-functionalized Ag NPs as a probe for colorimetric sensing of glutathione

    NASA Astrophysics Data System (ADS)

    D'souza, Stephanie L.; Pati, Ranjan; Kailasa, Suresh Kumar

    2015-08-01

    In this work, we report the use of ascorbic acid-capped silver nanoparticles (AA-Ag NPs) as a probe for selective colorimetric detection of glutathione (GSH) in aqueous solution. This detection system was based on the GSH-induced aggregation of AA-Ag NPs, resulting in drastic changes in the absorption spectra and color of the AA-Ag NPs system. The GSH-induced AA-Ag NPs aggregation was confirmed by UV-visible spectrometry, dynamic light scattering (DLS) and transmission electron microscopic (TEM) techniques. Under optimal conditions, this method exhibited good linearity over the concentration ranges from 5.0 to 50 µM, with the limit of detection 2.4 × 10-7 M. This method was successfully applied to detect GSH in the presence of other biomolecules, which confirms that this probe can be used for the detection of GSH in real samples.

  12. Insights into 6‐Methylsalicylic Acid Bio‐assembly by Using Chemical Probes

    PubMed Central

    Parascandolo, James S.; Havemann, Judith; Potter, Helen K.; Huang, Fanglu; Riva, Elena; Connolly, Jack; Wilkening, Ina; Song, Lijiang; Leadlay, Peter F.

    2016-01-01

    Abstract Chemical probes capable of reacting with KS (ketosynthase)‐bound biosynthetic intermediates were utilized for the investigation of the model type I iterative polyketide synthase 6‐methylsalicylic acid synthase (6‐MSAS) in vivo and in vitro. From the fermentation of fungal and bacterial 6‐MSAS hosts in the presence of chain termination probes, a full range of biosynthetic intermediates was isolated and characterized for the first time. Meanwhile, in vitro studies of recombinant 6‐MSA synthases with both nonhydrolyzable and hydrolyzable substrate mimics have provided additional insights into substrate recognition, providing the basis for further exploration of the enzyme catalytic activities. PMID:26833898

  13. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    1998-01-01

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration.

  14. Identification of random nucleic acid sequence aberrations using dual capture probes which hybridize to different chromosome regions

    DOEpatents

    Lucas, J.N.; Straume, T.; Bogen, K.T.

    1998-03-24

    A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. 14 figs.

  15. Electrospun Poly(acrylic acid)/Silica Hydrogel Nanofibers Scaffold for Highly Efficient Adsorption of Lanthanide Ions and Its Photoluminescence Performance.

    PubMed

    Wang, Min; Li, Xiong; Hua, Weikang; Shen, Lingdi; Yu, Xufeng; Wang, Xuefen

    2016-09-14

    Combined with the features of electrospun nanofibers and the nature of hydrogel, a novel choreographed poly(acrylic acid)-silica hydrogel nanofibers (PAA-S HNFs) scaffold with excellent rare earth elements (REEs) recovery performance was fabricated by a facile route consisting of colloid-electrospinning of PAA/SiO2 precursor solution, moderate thermal cross-linking of PAA-S nanofiber matrix, and full swelling in water. The resultant PAA-S HNFs with a loose and spongy porous network structure exhibited a remarkable adsorption capacity of lanthanide ions (Ln(3+)) triggered by the penetration of Ln(3+) from the nanofiber surface to interior through the abundant water channels, which took full advantage of the internal adsorption sites of nanofibers. The effects of initial solution pH, concentration, and contact time on adsorption of Ln(3+) have been investigated comprehensively. The maximum equilibrium adsorption capacities for La(3+), Eu(3+), and Tb(3+) were 232.6, 268.8, and 250.0 mg/g, respectively, at pH 6, and the adsorption data were well-fitted to the Langmuir isotherm and pseudo-second-order models. The resultant PAA-S HNFs scaffolds could be regenerated successfully. Furthermore, the proposed adsorption mechanism of Ln(3+) on PAA-S HNFs scaffolds was the formation of bidentate carboxylates between carboxyl groups and Ln(3+) confirmed by FT-IR and XPS analysis. The well-designed PAA-S HNFs scaffold can be used as a promising alternative for effective REEs recovery. Moreover, benefiting from the unique features of Ln(3+), the Ln-PAA-S HNFs simultaneously exhibited versatile advantages including good photoluminescent performance, tunable emission color, and excellent flexibility and processability, which also hold great potential for applications in luminescent patterning, underwater fluorescent devices, sensors, and biomaterials, among others. PMID:27537710

  16. Synthesis and photoluminescence properties of silver(I) complexes based on N-benzoyl-L-glutamic acid and N-donor ligands with different flexibility

    NASA Astrophysics Data System (ADS)

    Yan, Ming-Jie; Feng, Qi; Song, Hui-Hua

    2016-05-01

    By changing the N-donor ancillary ligand, three novel silver (I) complexes {[Ag(HbzgluO) (4,4‧-bipy)]·H2O}n (1), {[Ag2(HbzgluO)2 (bpe)2]·2H2O}n (2) and {[Ag(HbzgluO)(bpp)]·2H2O}n (3) (H2bzgluO = N-benzoyl-L-glutamic acid, 4,4‧-bipy = 4,4ˊ-bipyridine, bpe = 1,2-di(4-pyridyl)ethane, bpp = 1,3-di(4-pyridyl)propane) were synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). In this study, the N-donor ligands are changed from rigidity (4,4‧-bipy), quasi-flexibility (bpe) to flexibility (bpp), the structures of complexes also change. Complex 1 features a 1D chain structure which is further linked together to construct a 2D supramolecular structure through hydrogen bonds. Complex 2 is a 1D double-chains configuration which eventually forms a 3D supramolecular network via hydrogen bonding interactions. Whereas, complex 3 exhibits a 2D pleated grid structure which is linked by hydrogen bonding interactions into a 3D supramolecular network. The present observations demonstrate that the modulation of coordination polymers with different structures can accomplish by changing the spacer length of N-donor ligands. In addition, the solid-state circular dichroism (CD) spectra indicated that compound 2 exhibited negative cotton effect which originated from the chiral ligands H2bzgluO and the solid-state fluorescence spectra of the three complexes demonstrated the auxiliary ligands have influence on the photoluminescence properties of the complexes.

  17. Metal-organic hybrid materials built with tetrachlorophthalate acid and different N-donor coligands: Structure diversity and photoluminescence

    NASA Astrophysics Data System (ADS)

    Xiao, Zhenyu; Yang, Xiao; Zhao, Siwei; Wang, Debao; Yang, Yu; Wang, Lei

    2016-02-01

    Eight new metal-organic hybrid materials, namely {Cd(Tcph)(4,4‧-bipy)1/2} (1), {[Cd2(Tcph)2(1,4-bimb)1/2(H2O)4]·H2O} (2), {Cd2(Tcph)2(1,4-bmimb)1/2(H2O)4} (3), {Cd(Tcph)(1,2-bmimb)} (4), {Cu(Tcph)(1,4-bimb)(H2O)} (5), {[Co(Tcph)(1,4-bimb)1/2(H2O)3]·(H2O)} (6), {Zn(Tcph)(1,2-bimb)} (7), {Cu2(Tcph)2(1,2-bimb)(H2O)4} (8), where Tcph=tetrachlorophthalate acid, 4,4‧-bipy=4,4‧-bipyridine, 1,4-bimb=1,4-bis(imidazol-1-ylmethyl)benzene, 1,4-bmimb=1,4-bis(2-methylimidazol-1-ylmethyl)benzene, 1,2-bimb=1,2-bis(imidazol-1-ylmethyl)-benzene, 1,2-bmimb=1,2-bis(2-methylimidazol-1-ylmethyl)benzene, have been synthesized and characterized. Their structures are determined by single crystal X-ray diffraction and further characterized by infrared spectra (IR) and thermogravimetric (TG) analyses. Complex 1, 4 and 7 display 2D layer structures. 1 possesses two-dimensional sheet containing an unusual [Cd(Tcph)] chains linked by 4,4‧-bipy co-ligand, while 4 and 7 hold the similar 4-connected 44-sql nets. Complex 2 and 3 feature a similar three dimensional (3D) internal compensation structure with a topology of {42·63·8}2{63}. 5 is a novel 2-fold self-penetrating 3D network with 4-coordinated 65·8-CdSO4 subnets. The ladder-like chains of 6 are further connected through O-H···O interactions to yield a 3D supramolecular structure. 8 is a discrete tetranuclear complex. The thermal stabilities of 1-8 and the luminescent properties of 1-4 and 7 in the solid state are also discussed.

  18. Quantitative approaches to monitor protein–nucleic acid interactions using fluorescent probes

    PubMed Central

    Pagano, John M.; Clingman, Carina C.; Ryder, Sean P.

    2011-01-01

    Sequence-specific recognition of nucleic acids by proteins is required for nearly every aspect of gene expression. Quantitative binding experiments are a useful tool to measure the ability of a protein to distinguish between multiple sequences. Here, we describe the use of fluorophore-labeled oligonucleotide probes to quantitatively monitor protein/nucleic acid interactions. We review two complementary experimental methods, fluorescence polarization and fluorescence electrophoretic mobility shift assays, that enable the quantitative measurement of binding affinity. We also present two strategies for post-synthetic end-labeling of DNA or RNA oligonucleotides with fluorescent dyes. The approaches discussed here are efficient and sensitive, providing a safe and accessible alternative to the more commonly used radio-isotopic methods. PMID:21098142

  19. Folic acid-conjugated europium complexes as luminescent probes for selective targeting of cancer cells.

    PubMed

    Quici, Silvio; Casoni, Alessandro; Foschi, Francesca; Armelao, Lidia; Bottaro, Gregorio; Seraglia, Roberta; Bolzati, Cristina; Salvarese, Nicola; Carpanese, Debora; Rosato, Antonio

    2015-02-26

    We report the synthesis of three optical probes (Eu(3+)⊂1, Eu(3+)⊂2, and Eu(3+)⊂3) having a luminescent Eu complex (signaling unit) bonded in different positions to folic acid (FA), the folate receptor (FR) targeting unit. The structures of the two regioisomers Eu(3+)⊂1 and Eu(3+)⊂2 were assigned by mass spectrometric experiments. The optical properties and stability of these probes were assessed in phosphate-buffered saline, cell culture medium, rat serum, and cellular lysate, and results indicated that they are chemically and photophysically stable. Cytotoxicity was studied with ovarian cancer cells having high (SKOV-3), intermediate (OVCAR-3), low (IGROV-1), or null (A2780) expression of FRs. The internalized probe, evaluated in SKOV-3, IGROV-1, and A2780 cells, was in the order Eu(3+)⊂2 > Eu(3+)⊂1 > Eu(3+)⊂3. No internalization was observed for A2780 cells. Such results, together with those obtained in competition experiments of FA versus Eu(3+)⊂2 and FA or Eu(3+)⊂2 versus (3)H-FA, indicate that internalization is receptor-mediated and that Eu(3+)⊂2 shows high selectivity and specificity for FR. PMID:25602505

  20. Designed diblock hairpin probes for the nonenzymatic and label-free detection of nucleic acid.

    PubMed

    Wen, Junlin; Chen, Junhua; Zhuang, Li; Zhou, Shungui

    2016-05-15

    The detection of nucleic acid sequences is of great importance in a variety of fields. An ultrasensitive DNA sensing platform is constructed using elaborately designed diblock hairpin probes (DHPs) that are composed of hairpin and poly-adenine blocks. The introduction of an initiator DNA target triggers the catalytic assembly of probes DHP1, DHP2 and DHP3 to fabricate numerous poly-adenine-tailed branched DNA junctions, which significantly amplify the signal of the target-DNA-recognizing event without any enzyme. Coupled to a gold nanoparticle-based colorimetric assay, the amplified recognition signal can be quantitatively detected or visually read with the naked eye. The combination of the high-efficiency target-catalyzed DHP assembly and sensitive gold-based colorimetric assay offers an ultrasensitive detection of DNA with a detection limit of 0.1 pM and a dynamic range from 0.01 to 5 pM. The proposed sensing platform can discriminate even single-base mutations. Moreover, the sensing platform can be expanded to detect pollutant-degrading-bacteria-specific DNA sequences. The proposed sensing system should offer an alternative approach for the detection of nucleic acids in the fields of microbiology, biogeochemistry, and environmental sciences. PMID:26765529

  1. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe.

    PubMed

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  2. Selective local lysis and sampling of live cells for nucleic acid analysis using a microfluidic probe

    PubMed Central

    Kashyap, Aditya; Autebert, Julien; Delamarche, Emmanuel; Kaigala, Govind V.

    2016-01-01

    Heterogeneity is inherent to biology, thus it is imperative to realize methods capable of obtaining spatially-resolved genomic and transcriptomic profiles of heterogeneous biological samples. Here, we present a new method for local lysis of live adherent cells for nucleic acid analyses. This method addresses bottlenecks in current approaches, such as dilution of analytes, one-sample-one-test, and incompatibility to adherent cells. We make use of a scanning probe technology - a microfluidic probe - and implement hierarchical hydrodynamic flow confinement (hHFC) to localize multiple biochemicals on a biological substrate in a non-contact, non-destructive manner. hHFC enables rapid recovery of nucleic acids by coupling cell lysis and lysate collection. We locally lysed ~300 cells with chemical systems adapted for DNA or RNA and obtained lysates of ~70 cells/μL for DNA analysis and ~15 cells/μL for mRNA analysis. The lysates were introduced into PCR-based workflows for genomic and transcriptomic analysis. This strategy further enabled selective local lysis of subpopulations in a co-culture of MCF7 and MDA-MB-231 cells, validated by characteristic E-cadherin gene expression in individually extracted cell types. The developed strategy can be applied to study cell-cell, cell-matrix interactions locally, with implications in understanding growth, progression and drug response of a tumor. PMID:27411740

  3. Boronic Acid: A Bio-Inspired Strategy To Increase the Sensitivity and Selectivity of Fluorescent NADH Probe.

    PubMed

    Wang, Lu; Zhang, Jingye; Kim, Beomsue; Peng, Juanjuan; Berry, Stuart N; Ni, Yong; Su, Dongdong; Lee, Jungyeol; Yuan, Lin; Chang, Young-Tae

    2016-08-24

    Fluorescent probes have emerged as an essential tool in the molecular recognition events in biological systems; however, due to the complex structures of certain biomolecules, it remains a challenge to design small-molecule fluorescent probes with high sensitivity and selectivity. Inspired by the enzyme-catalyzed reaction between biomolecule and probe, we present a novel combination-reaction two-step sensing strategy to improve sensitivity and selectivity. Based on this strategy, we successfully prepared a turn-on fluorescent reduced nicotinamide adenine dinucleotide (NADH) probe, in which boronic acid was introduced to bind with NADH and subsequently accelerate the sensing process. This probe shows remarkably improved sensitivity (detection limit: 0.084 μM) and selectivity to NADH in the absence of any enzymes. In order to improve the practicality, the boronic acid was further modified to change the measurement conditions from alkalescent (pH 9.5) to physiological environment (pH 7.4). Utilizing these probes, we not only accurately quantified the NADH weight in a health care product but also evaluated intracellular NADH levels in live cell imaging. Thus, these bio-inspired fluorescent probes offer excellent tools for elucidating the roles of NADH in biological systems as well as a practical strategy to develop future sensitive and selective probes for complicated biomolecules. PMID:27500425

  4. An aldehyde group-based P-acid probe for selective fluorescence turn-on sensing of cysteine and homocysteine.

    PubMed

    Yang, Chunlei; Wang, Xiu; Shen, Lei; Deng, Wenping; Liu, Haiyun; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2016-06-15

    A highly sensitive and selective turn on fluorescent probe P-acid-aldehyde (P-CHO) is developed for the determination of cysteine (Cys) and homocysteine (Hcy). The probe is designed and synthesized by incorporating the specific functional group aldehyde group for thiols into a stable π-conjugated material 4,4'-(2,5-dimethoxy-1,4-phenylene) bis(ethyne-2,1-diyl) dibenzoic acid (P-acid). The probe fluorescence is quenched through donor photoinduced electron transfer (d-PET) between the fluorophore (P-acid) and the recognition group (aldehyde group). In the presence of thiols, Cys and Hcy can selectively react with aldehyde group of the probe because the inhibition of d-PET between fluorophore and recognition group. Therefore, a turn-on fluorescent sensor was established for the fluorescence recovery. Under the optimized conditions, the fluorescence response of probe is directly proportional to the concentration of Cys in the range of 4-95 NM L(-1), with a detection limit 3.0 nM. In addition, the sensing system exhibits good selectively toward Cys and Hcy in the presence of other amino acids. It has been successfully applied for bioimaging of Cys and Hcy in living cells with low cell toxicity. PMID:26802748

  5. Radiolytic Modification and Reactivity of Amino Acid Residues Serving as Structural Probes for Protein Footprinting

    SciTech Connect

    Xu,G.; Chance, M.

    2005-01-01

    Hydroxyl radical-mediated protein footprinting is a convenient and sensitive technique for mapping solvent-accessible surfaces of proteins and examining the structure and dynamics of biological assemblies. In this study, the reactivities and tendencies to form easily detectible products for all 20 (common) amino acid side chains along with cystine are directly compared using various standards. Although we have previously reported on the oxidation of many of these residues, this study includes a detailed examination of the less reactive residues and better defines their usefulness in hydroxyl radical-mediated footprinting experiments. All 20 amino amides along with cystine and a few tripeptides were irradiated by -rays, the products were analyzed by electrospray mass spectrometry, and rate constants of modification were measured. The reactivities of amino acid side chains were compared based on their loss of mass spectral signal normalized to the rate of loss for Phe or Pro that were radiolyzed simultaneously to serve as internal standards. In this way, accurate quantitation of relative rates could be assured. A reactivity order of amino acid side chains was obtained as Cys > Met > Trp > Tyr > Phe > cystine > His > Leu, Ile > Arg, Lys, Val > Ser, Thr, Pro > Gln, Glu > Asp, Asn > Ala > Gly. Ala and Gly are far too unreactive to be useful probes in typical experiments and Asp and Asn are unlikely to be useful as well. Although Ser and Thr are more reactive than Pro, which is known to be a useful probe, their oxidation products are not easily detectible. Thus, it appears that 14 of the 20 side chains (plus cystine) are most likely to be useful in typical experiments. Since these residues comprise 65% of the sequence of a typical protein, the footprinting approach provides excellent coverage of the side-chain reactivity for proteins.

  6. Phylogenetic group- and species-specific oligonucleotide probes for single-cell detection of lactic acid bacteria in oral biofilms

    PubMed Central

    2011-01-01

    Background The purpose of this study was to design and evaluate fluorescent in situ hybridization (FISH) probes for the single-cell detection and enumeration of lactic acid bacteria, in particular organisms belonging to the major phylogenetic groups and species of oral lactobacilli and to Abiotrophia/Granulicatella. Results As lactobacilli are known for notorious resistance to probe penetration, probe-specific assay protocols were experimentally developed to provide maximum cell wall permeability, probe accessibility, hybridization stringency, and fluorescence intensity. The new assays were then applied in a pilot study to three biofilm samples harvested from variably demineralized bovine enamel discs that had been carried in situ for 10 days by different volunteers. Best probe penetration and fluorescent labeling of reference strains were obtained after combined lysozyme and achromopeptidase treatment followed by exposure to lipase. Hybridization stringency had to be established strictly for each probe. Thereafter all probes showed the expected specificity with reference strains and labeled the anticipated morphotypes in dental plaques. Applied to in situ grown biofilms the set of probes detected only Lactobacillus fermentum and bacteria of the Lactobacillus casei group. The most cariogenic biofilm contained two orders of magnitude higher L. fermentum cell numbers than the other biofilms. Abiotrophia/Granulicatella and streptococci from the mitis group were found in all samples at high levels, whereas Streptococcus mutans was detected in only one sample in very low numbers. Conclusions Application of these new group- and species-specific FISH probes to oral biofilm-forming lactic acid bacteria will allow a clearer understanding of the supragingival biome, its spatial architecture and of structure-function relationships implicated during plaque homeostasis and caries development. The probes should prove of value far beyond the field of oral microbiology, as many of

  7. Exploring the Hybridization Thermodynamics of Spherical Nucleic Acids to Tailor Probes for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Randeria, Pratik Shailesh

    Spherical nucleic acids (SNAs), three-dimensional nanoparticle conjugates composed of densely packed and highly oriented oligonucleotides around organic or inorganic nanoparticles, are an emergent class of nanostructures that show promise as single-entity agents for intracellular messenger RNA (mRNA) detection and gene regulation. SNAs exhibit superior biocompatibility and biological properties compared to linear oligonucleotides, enabling them to overcome many of the limitations of linear oligonucleotides for use in biomedical applications. However, the origins of these biologically attractive properties are not well understood. In this dissertation, the chemistry underlying one such property is studied in detail, and the findings are applied towards the rational design of more effective SNAs for diagnostic and therapeutic applications. Chapter 1 introduces the synthesis of SNAs, the unique properties that make them superior to linear nucleic acids for biomedicine, and previously studied applications of these structures. Chapter 2 focuses on quantitatively studying the impact of the chemical structure of the SNA on its ability to hybridize multiple complementary nucleic acids. This chapter lays the groundwork for understanding the factors that govern SNA hybridization thermodynamics and how to tailor SNAs to increase their binding affinity to target mRNA strands. Chapters 3 and 4 capitalize on this knowledge to engineer probes for intracellular mRNA detection and gene regulation applications. Chapter 3 reports the development of an SNA-based probe that can simultaneously report the expression level of two different mRNA transcripts in live cells and differentiate diseased cells from non-diseased cells. Chapter 4 investigates the use of topically-applied SNAs to down-regulate a critical mediator of impaired wound healing in diabetic mice to accelerate wound closure. This study represents the first topical therapeutic application of SNA nanotechnology to treat open

  8. Structural, electronic and photoluminescence properties of Eu3+-doped CaYAlO4 obtained by using citric acid complexes as precursors

    NASA Astrophysics Data System (ADS)

    Perrella, R. V.; Júnior, C. S. Nascimento; Góes, M. S.; Pecoraro, E.; Schiavon, M. A.; Paiva-Santos, C. O.; Lima, H.; Couto dos Santos, M. A.; Ribeiro, S. J. L.; Ferrari, J. L.

    2016-07-01

    The search for new materials that meet the current technological demands for photonic applications, make the Rare Earth ions embedded in inorganic oxides as excellent candidates for several technological devices. This work presents the synthesis of Eu3+-doped CaYAlO4 using citric acid as ligand to form a complex precursor. The methodology used has big draw due to its easy handling and low cost of the materials. The thermal analysis of viscous solutions was evaluated and the obtained compounds show the formation of a polycrystalline tetragonal phase. Rietveld refinement was used to understand the structural and the cell parameters of the crystalline phase as a function of temperature of heat-treatment. Crystallite size and microstrain were determined and were shown to have a direct relationship with the temperature of the heat-treatment. The band-gap of the CaYAlO4 doped with 1 and 10 mol% of Eu3+ showed values close to 4.30 eV, resulting in their transparency in the visible region between 330 and 750 nm. Besides the intense photoluminescence from Eu3+, a study was conducted to evaluate the possible position of the Eu3+ in the CaYAlO4 as host lattice. Lifetime of the emission decay from Eu3+ excited state 5D0 show that CaYAlO4 is a good host to rare earth ions, once it can avoid clustering of these ions in concentration as high as 10 mol%. The predictions of the sublevels of the 7F1 crystal field level are discussed through the method of equivalent nearest neighbours (MENN). The intensity parameters (Ωλ, λ = 2 and 4) are reproduced with physically reasonable values of average polarizabilities. The set of charge factors used in both calculations are in good agreement with the charge of the europium ion described by the Batista-Longo improved model (BLIM). The quantum efficiencies of the materials were calculated based on Judd-Ofelt theory. Based on the results obtained in this work, the materials have potential use in photonic devices such as lasers and solid

  9. A Sensitive Peptide Nucleic Acid Probe Assay for Detection of BRAF V600 Mutations in Melanoma.

    PubMed

    Chen, Tai-Long; Chang, John Wen-Cheng; Hsieh, Jia-Juan; Cheng, Hsin-Yi; Chiou, Chiuan-Chian

    Mutated v-Raf murine sarcoma viral oncogene homolog B (BRAF) is an important biomarker for the prediction of therapeutic efficacy of several anticancer drugs. The detection of BRAF mutation faces two challenges: Firstly, there are multiple types of mutations, and secondly, tumor samples usually contain various amounts of wild-type, normal tissues. Here, we describe a newly established method for sensitive detection of multiple types of BRAF V600 mutations in excess wild-type background. The method introduced a fluorophore-tagged peptide nucleic acid (PNA) to serve as both polymerase chain reaction (PCR) clamp and sensor probe, which inhibited the amplification of wild-type templates during PCR and revealed multiple types of mutant signals during melting analysis. We demonstrated the design and optimization process of the method, and applied it in the detection of BRAF mutations in 49 melanoma samples. This PNA probe assay method detected three types of mutations in 17 samples, and was much more sensitive than conventional PCR plus Sanger sequencing. PMID:27566656

  10. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    SciTech Connect

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  11. Using nitrile-derivatized amino acids as infrared probes of local environment.

    PubMed

    Getahun, Zelleka; Huang, Cheng-Yen; Wang, Ting; De León, Brenda; DeGrado, William F; Gai, Feng

    2003-01-15

    It is well-known that the C=N stretching vibration in acetonitrile is sensitive to solvent. Therefore, we proposed in this contribution to use this vibrational mode to report local environment of a particular amino acid in proteins or local environmental changes upon binding or folding. We have studied the solvent-induced frequency shift of two nitrile-derivatized amino acids, which are, AlaCN and PheCN, in H(2)O and tetrahydrofuran (THF), respectively. Here, THF was used to approximate a protein's hydrophobic interior because of its low dielectric constant. As expected, the C=N stretching vibrations of both AlaCN and PheCN shift as much as approximately 10 cm(-1) toward higher frequency when THF was replaced with H2O, indicative of the sensitivity of this vibration to solvation. To further test the utility of nitrile-derivatized amino acids as probes of the environment within a peptide, we have studied the binding between calmodulin (CaM) and a peptide from the CaM binding domain of skeletal muscle myosin light chain kinase (MLCK(579-595)), which contains a single PheCN. MLCK(579-595) binds to CaM in a helical conformation. When the PheCN was substituted on the polar side of the helix, which was partially exposed to water, the C=N stretching vibration is similar to that of PheCN in water. In constrast, when PheCN is introduced at a site that becomes buried in the interior of the protein, the C=N stretch is similar to that of PheCN in THF. Together, these results suggest that the C=N stretching vibration of nitrile-derivatized amino acids can indeed be used as local internal environmental markers, especially for protein conformational studies. PMID:12517152

  12. A highly selective turn-on fluorescent probe for hypochlorous acid based on hypochlorous acid-induced oxidative intramolecular cyclization of boron dipyrromethene-hydrazone.

    PubMed

    Chen, Wei-Chieh; Venkatesan, Parthiban; Wu, Shu-Pao

    2015-07-01

    A BODIPY-based fluorescent probe, HBP, was developed for the detection of hypochlorous acid based on the specific hypochlorous acid-promoted oxidative intramolecular cyclization of heterocyclic hydrazone in response to the amount of HOCl. The reaction is accompanied by a 41-fold increase in the fluorescent quantum yield (from 0.004 to 0.164). The fluorescence intensity of the reaction between HOCl and HBP is linear in the HOCl concentration range of 1-8 μM with a detection limit of 2.4 nM (S/N=3). Confocal fluorescence microscopy imaging using RAW264.7 cells showed that the new probe HBP could be used as an effective fluorescent probe for detecting HOCl in living cells. PMID:26043093

  13. A colorimetric and near-infrared fluorescent probe with high sensitivity and selectivity for acid phosphatase and inhibitor screening.

    PubMed

    Xu, Yongqian; Li, Benhao; Xiao, Liangliang; Ouyang, Jia; Sun, Shiguo; Pang, Yi

    2014-08-14

    A dual-channel including a colorimetric and fluorescent probe based on the aggregation-caused quenching (ACQ) and enzymolysis approach has been presented to screen acid phosphatase (ACP) and its inhibitor. Moreover, the ACP activity was determined by real time assay. PMID:24957006

  14. Novel molecular beacon DNA probes for protein-nucleic acid interaction studies

    NASA Astrophysics Data System (ADS)

    Li, Jianwei J.; Perlette, John; Fang, Xiaohong; Kelley, Shannon; Tan, Weihong

    2000-03-01

    We report a novel approach to study protein-nucleic acid interactions by using molecular beacons (MBs). Molecular beacons are hairpin-shaped DNA oligonucleotide probes labeled with a fluorophore and a quencher, and can report the presence of target DNA/RNA sequences. MBs can also report the existence of single-stranded DNA binding proteins (SSB) through non-sequence specific binding. The interaction between SSB and MB has resulted in significant fluorescence restoration of the MB. The fluorescence enhancement brought by SSB and by complementary DNA is very comparable. The molar ratio of the binding between SSB and the molecular beacon is 1:1 with a binding constant of 2 X 107 M-1. Using the MB-SSB binding, we are able to determine SSB at 2 X 10-10 M with a conventional spectrometer. We have also applied MB DNA probes for the analysis of an enzyme lactic dehydrogenase (LDH), and for the investigation of its binding properties with ssDNA. The biding process between MB and different isoenzymes of LDH has been studied. We also show that there are significant differences in MB binding affinity to different proteins, which will enable selective binding studies of a variety of proteins. This new approach is potentially useful for protein-DNA/RNA interaction studies that require high sensitivity, speed and convenience. The results also open the possibility of using easily obtainable, custom designed, modified DNA molecules for studies of drug interactions and targeting. Our results demonstrate that MB can be effectively used for sensitive protein quantitation and for efficient protein-DNA interaction studies. MB has the signal transduction mechanism built within the molecule, and can thus be used for quick protein assay development and for real-time measurements.

  15. Probe depth matters in dermal microdialysis sampling of benzoic acid after topical application: an ex vivo study in human skin.

    PubMed

    Holmgaard, R; Benfeldt, E; Bangsgaard, N; Sorensen, J A; Brosen, K; Nielsen, F; Nielsen, J B

    2012-01-01

    Microdialysis (MD) in the skin - dermal microdialysis (DMD) - is a unique technique for sampling of topically as well as systemically administered drugs at the site of action, e.g. sampling of dermatological drug concentrations in the dermis. Debate has concerned the existence of a correlation between the depth of the sampling device - the probe - in the dermis and the amount of drug sampled following topical drug administration. This study evaluates the relation between probe depth and drug sampling using dermal DMD sampling ex vivo in human skin. We used superficial (<1 mm), intermediate (1-2 mm) and deep (>2 mm) positioning of the linear MD probe in the dermis of human abdominal skin, followed by topical application of 4 mg/ml of benzoic acid (BA) in skin chambers overlying the probes. Dialysate was sampled every hour for 12 h and analysed for BA content by high-performance liquid chromatography. Probe depth was measured by 20-MHz ultrasound scanning. The area under the time-versus-concentration curve (AUC) describes the drug exposure in the tissue during the experiment and is a relevant parameter to compare for the 3 dermal probe depths investigated. The AUC(0-12) were: superficial probes: 3,335 ± 1,094 μg·h/ml (mean ± SD); intermediate probes: 2,178 ± 1,068 μg·h/ml, and deep probes: 1,159 ± 306 μg·h/ml. AUC(0-12) sampled by the superficial probes was significantly higher than that of samples from the intermediate and deeply positioned probes (p value <0.05). There was a significant inverse correlation between probe depth and AUC(0-12) sampled by the same probe (p value <0.001, r(2) value = 0.5). The mean extrapolated lag-times (±SD) for the superficial probes were 0.8 ± 0.1 h, for the intermediate probes 1.7 ± 0.5 h, and for the deep probes 2.7 ± 0.5 h, which were all significantly different from each other (p value <0.05). In conclusion, this paper demonstrates that there is an inverse relationship between the depth of the probe in the dermis

  16. Hybridization properties of long nucleic acid probes for detection of variable target sequences, and development of a hybridization prediction algorithm

    PubMed Central

    Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas

    2010-01-01

    One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443

  17. Quantification of syntrophic fatty acid-{beta}-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization

    SciTech Connect

    Hansen, K.H.; Ahring, B.K.; Raskin, L.

    1999-11-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-{beta}-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S.wolfei LYB was closely related to S.wolfei subsp. solfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-{beta}-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-{beta}-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, or which the majority was accounted for by the genus Syntrophomonas.

  18. Quantification of Syntrophic Fatty Acid-β-Oxidizing Bacteria in a Mesophilic Biogas Reactor by Oligonucleotide Probe Hybridization

    PubMed Central

    Hansen, Kaare H.; Ahring, Birgitte K.; Raskin, Lutgarde

    1999-01-01

    Small-subunit rRNA sequences were obtained for two saturated fatty acid-β-oxidizing syntrophic bacteria, Syntrophomonas sapovorans and Syntrophomonas wolfei LYB, and sequence analysis confirmed their classification as members of the family Syntrophomonadaceae. S. wolfei LYB was closely related to S. wolfei subsp. wolfei, but S. sapovorans did not cluster with the other members of the genus Syntrophomonas. Five oligonucleotide probes targeting the small-subunit rRNA of different groups within the family Syntrophomonadaceae, which contains all currently known saturated fatty acid-β-oxidizing syntrophic bacteria, were developed and characterized. The probes were designed to be specific at the family, genus, and species levels and were characterized by temperature-of-dissociation and specificity studies. To demonstrate the usefulness of the probes for the detection and quantification of saturated fatty acid-β-oxidizing syntrophic bacteria in methanogenic environments, the microbial community structure of a sample from a full-scale biogas plant was determined. Hybridization results with probes for syntrophic bacteria and methanogens were compared to specific methanogenic activities and microbial numbers determined with most-probable-number estimates. Most of the methanogenic rRNA was comprised of Methanomicrobiales rRNA, suggesting that members of this order served as the main hydrogen-utilizing microorganisms. Between 0.2 and 1% of the rRNA was attributed to the Syntrophomonadaceae, of which the majority was accounted for by the genus Syntrophomonas. PMID:10543784

  19. Effect of annealing on photoluminescence and optical properties of porous anodic alumina films formed in sulfuric acid for solar energy applications

    NASA Astrophysics Data System (ADS)

    Ghrib, Mondher; Ouertani, Rachid; Gaidi, Monir; Khedher, Najoua; Salem, Mohamed Ben; Ezzaouia, Hatem

    2012-04-01

    Photoluminescence and optical properties of porous oxide films formed by two-step aluminum anodization at a fixed current 200 mA have been investigated. It was found that the crystallographic structure depend strongly on the annealing temperature. X-ray diffraction (XRD) reveals an amorphisation of the porous oxide films after annealing. This evolution has been confirmed by Raman spectroscopy measurement. Spectroscopic ellipsometry (SE) in the UV-vis and near infra red (IR) spectra shows that refraction index n increases and the extinction coefficient k decreases with annealing temperature. This observation has been confirmed with reflectivity measurements. As a consequence the reflectivity reaches 97% when porous alumina films were annealed at 650 °C. Photoluminescence (PL) measurements show two PL peaks in the emission and excitation spectra. The first emission peak is centered at 460 nm (α-band) and the second (β-band) shifts from 500 to 525 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is located at 271 nm and the second shifts to longer wavelengths with increasing emission wavelength. The results indicate the existence of two PL centers. One is associated with oxygen adsorption at the pore wall and oxygen vacancies inside the alumina. The other is related to the adsorption of water and/or OH groups at the surface of the pore wall and to structure defects and sulfur inclusion inside the films.

  20. Near-infrared fluorescence probe for the determination of acid phosphatase and imaging of prostate cancer cells.

    PubMed

    Lin, Zihan; Liu, Ziping; Zhang, Hao; Su, Xingguang

    2015-03-01

    In this paper, we developed a near-infrared mercaptopropionic acid (MPA)-capped CuInS2 quantum dot (QD) fluorescence probe for the detection of acid phosphatases (ACP), which is an important biomarker and indicator of prostate cancer. The fluorescence of CuInS2 QDs could be quenched by Cu(2+), and then the addition of adenosine-5'-triphosphate (ATP) could effectively turn on the quenched fluorescence due to the strong interaction between Cu(2+) and ATP. The ACP could catalyze the hydrolysis of ATP, which would disassemble the complex of Cu(2+)-ATP. Therefore, the recovered fluorescence could be quenched again by the addition of ACP. In our method, the limit of detection (LOD) is considerably low for ACP detection in solution. Using the CuInS2 QDs fluorescence probe, we successfully performed in vitro imaging of human prostate cancer cells. PMID:25632410

  1. Detection and quantification of genetically modified organisms using very short, locked nucleic acid TaqMan probes.

    PubMed

    Salvi, Sergio; D'Orso, Fabio; Morelli, Giorgio

    2008-06-25

    Many countries have introduced mandatory labeling requirements on foods derived from genetically modified organisms (GMOs). Real-time quantitative polymerase chain reaction (PCR) based upon the TaqMan probe chemistry has become the method mostly used to support these regulations; moreover, event-specific PCR is the preferred method in GMO detection because of its high specificity based on the flanking sequence of the exogenous integrant. The aim of this study was to evaluate the use of very short (eight-nucleotide long), locked nucleic acid (LNA) TaqMan probes in 5'-nuclease PCR assays for the detection and quantification of GMOs. Classic TaqMan and LNA TaqMan probes were compared for the analysis of the maize MON810 transgene. The performance of the two types of probes was tested on the maize endogenous reference gene hmga, the CaMV 35S promoter, and the hsp70/cryIA(b) construct as well as for the event-specific 5'-integration junction of MON810, using plasmids as standard reference molecules. The results of our study demonstrate that the LNA 5'-nuclease PCR assays represent a valid and reliable analytical system for the detection and quantification of transgenes. Application of very short LNA TaqMan probes to GMO quantification can simplify the design of 5'-nuclease assays. PMID:18494480

  2. Visualization of the mycelia of wood-rotting fungi by fluorescence in situ hybridization using a peptide nucleic acid probe.

    PubMed

    Nakada, Yuji; Nakaba, Satoshi; Matsunaga, Hiroshi; Funada, Ryo; Yoshida, Makoto

    2013-01-01

    White rot fungus, Phanerochaete chrysosporium, and brown rot fungus, Postia placenta, grown on agar plates, were visualized by fluorescence in situ hybridization (FISH) using a peptide nucleic acid (PNA) probe. Mycelia grown on wood chips were also clearly detected by PNA-FISH following blocking treatment. To the best of our knowledge, this is the first report on the visualization of fungi in wood by FISH. PMID:23391931

  3. Theoretical study of the NLO responses of some natural and unnatural amino acids used as probe molecules.

    PubMed

    Derrar, S N; Sekkal-Rahal, M; Derreumaux, P; Springborg, M

    2014-08-01

    The first hyperpolarizabilities β of the natural aromatic amino acids tryptophan and tyrosine have been investigated using several methods and basis sets. Some of the theoretical results obtained were compared to the only experimental hyper-Rayleigh scattering data available. The sensitivity of tryptophan to its local environment was analyzed by constructing two-dimensional potential energy plots around the dipeptide tryptophan-lysine. Static hyperpolarizabilities β(0) of the found minima were calculated by a second-order Møller-Plesset (MP2) method in combination with the 6-31+G(d) basis set. Moreover, the efficiency of tryptophan and those of a series of unnatural amino acids as endogenous probe molecules were tested by calculating the nonlinear responses of some peptides. Impressive results were obtained for the amino acid ALADAN, which shows significantly improved nonlinear performance compared to other amino acids with weak nonlinear responses. PMID:25092242

  4. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid

    NASA Astrophysics Data System (ADS)

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (Cdbnd C) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210 nm) and the two well-resolved emission peaks separated by 140 nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50 s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution.

  5. pH-Sensitive Polymeric Micelle-based pH Probe for Detecting and Imaging Acidic Biological Environments

    PubMed Central

    Lee, Young Ju; Kang, Han Chang; Hu, Jun; Nichols, Joseph W.; Jeon, Yong Sun; Bae, You Han

    2012-01-01

    To overcome the limitations of monomeric pH probes for acidic tumor environments, this study designed a mixed micelle pH probe composed of polyethylene glycol (PEG)-b- poly(L-histidine) (PHis) and PEG-b-poly(L-lactic acid) (PLLA), which is well-known as an effective antitumor drug carrier. Unlike monomeric histidine and PHis derivatives, the mixed micelles can be structurally destabilized by changes in pH, leading to a better pH sensing system in nuclear magnetic resonance (NMR) techniques. The acidic pH-induced transformation of the mixed micelles allowed pH detection and pH mapping of 0.2–0.3 pH unit differences by pH-induced “on/off”-like sensing of NMR and magnetic resonance spectroscopy (MRS). The micellar pH probes sensed pH differences in non-biological phosphate buffer and biological buffers such as cell culture medium and rat whole blood. In addition, the pH-sensing ability of the mixed micelles was not compromised by loaded doxorubicin. In conclusion, PHis-based micelles could have potential as a tool to simultaneously treat and map the pH of solid tumors in vivo. PMID:22861824

  6. A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid.

    PubMed

    Zhou, Liyi; Lu, Dan-Qing; Wang, Qianqian; Hu, Shunqin; Wang, Haifei; Sun, Hongyan; Zhang, Xiaobing

    2016-09-01

    Hypochlorite anion, one of the biologically important reactive oxygen species, plays an essential role in diverse normal biochemical functions and abnormal pathological processes. Herein, an efficient high-resolution mitochondria-targeting ratiometric fluorescent probe for hypochlorous acid detection has been designed, synthesized and characterized. It is easily synthesized by the condensation reaction (CC) of a 2-(2-hydroxyphenyl) quinazolin-4(3H)-one fluorophore and a cyanine group (mitochondria-targeting), which made the whole molecular a large Stokes shift (210nm) and the two well-resolved emission peaks separated by 140nm. As a result, it is considered as a good candidate for high resolution hypochlorous acid imaging in live cells. The ratiometric fluorescent probe exhibited outstanding features of high sensitivity, high selectivity, rapid response time (within 50s), and excellent mitochondria-targeting ability. Moreover, the probe can also be successfully applied to imaging endogenously hypochlorous acid in the mitochondria of living cells with low cytotoxicity, and high resolution. PMID:27236136

  7. Detection of Sialic Acid-Utilising Bacteria in a Caecal Community Batch Culture Using RNA-Based Stable Isotope Probing

    PubMed Central

    Young, Wayne; Egert, Markus; Bassett, Shalome A.; Bibiloni, Rodrigo

    2015-01-01

    Sialic acids are monosaccharides typically found on cell surfaces and attached to soluble proteins, or as essential components of ganglioside structures that play a critical role in brain development and neural transmission. Human milk also contains sialic acid conjugated to oligosaccharides, glycolipids, and glycoproteins. These nutrients can reach the large bowel where they may be metabolised by the microbiota. However, little is known about the members of the microbiota involved in this function. To identify intestinal bacteria that utilise sialic acid within a complex intestinal community, we cultured the caecal microbiota from piglets in the presence of 13C-labelled sialic acid. Using RNA-based stable isotope probing, we identified bacteria that consumed 13C-sialic acid by fractionating total RNA in isopycnic buoyant density gradients followed by 16S rRNA gene analysis. Addition of sialic acid caused significant microbial community changes. A relative rise in Prevotella and Lactobacillus species was accompanied by a corresponding reduction in the genera Escherichia/Shigella, Ruminococcus and Eubacterium. Inspection of isotopically labelled RNA sequences suggests that the labelled sialic acid was consumed by a wide range of bacteria. However, species affiliated with the genus Prevotella were clearly identified as the most prolific users, as solely their RNA showed significantly higher relative shares among the most labelled RNA species. Given the relevance of sialic acid in nutrition, this study contributes to a better understanding of their microbial transformation in the intestinal tract with potential implications for human health. PMID:25816158

  8. A universal strategy for visual chiral recognition of α-amino acids with l-tartaric acid-capped gold nanoparticles as colorimetric probes.

    PubMed

    Song, Guoxin; Zhou, Fulin; Xu, Chunli; Li, Baoxin

    2016-02-01

    The ability to recognize and quantify the chirality of alpha-amino acids constitutes the basis of many critical areas for specific targeting in drug development and metabolite probing. It is still challenging to conveniently distinguish the enantiomer of amino acids largely due to the lack of a universal and simple strategy. In this work, we report a strategy for the visual recognition of α-amino acids. It is based on the chirality of l-tartaric acid-capped gold nanoparticles (l-TA-capped AuNPs, ca. 13 nm in diameter). All of 19 right-handed α-amino acids can induce a red-to-blue color change of l-TA-capped AuNP solution, whereas all of the left-handed amino acids (except cysteine) cannot. The chiral recognition can be achieved by the naked eye and a simple spectrophotometer. This method does not require complicated chiral modification, and excels through its low-cost, good availability of materials and its simplicity. Another notable feature of this method is its high generality, and this method can discriminate almost all native α-amino acid enantiomers. This versatile method could be potentially used for high-throughput chiral recognition of amino acids. PMID:26759834

  9. Detection of Chromosomal Inversions Using Non-Repetitive Nucleic Acid Probes

    NASA Technical Reports Server (NTRS)

    Bailey, Susan M. (Inventor); Ray, F. Andrew (Inventor); Goodwin, Edwin H. (Inventor); Bedford, Joel S. (Inventor); Cornforth, Michael N. (Inventor)

    2014-01-01

    A method and a kit for the identification of chromosomal inversions are described. Single-stranded sister chromatids are generated, for example by CO-FISH. A plurality of non-repetitive, labeled probes of relatively small size are hybridized to portions of only one of a pair of single-stranded sister chromatids. If no inversion exists, all of the probes will hybridize to a first chromatid. If an inversion has occurred, these marker probes will be detected on the sister chromatid at the same location as the inversion on the first chromatid.

  10. Detection of chromosomal inversions using non-repetitive nucleic acid probes

    NASA Technical Reports Server (NTRS)

    Bailey, Susan M. (Inventor); Ray, F. Andrew (Inventor); Goodwin, Edwin H. (Inventor); Bedford, Joel S. (Inventor); Cornforth, Michael N. (Inventor)

    2012-01-01

    A method for the identification of chromosomal inversions is described. Single-stranded sister chromatids are generated, for example by CO-FISH. A plurality of non-repetitive, labeled probes of relatively small size are hybridized to portions of only one of a pair of single-stranded sister chromatids. If no inversion exists, all of the probes will hybridize to a first chromatid. If an inversion has occurred, these marker probes will be detected on the sister chromatid at the same location as the inversion on the first chromatid.

  11. Human papillomavirus 35 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 35 hybridization probe comprising a member selected from the group consisting of (i) HPV 35 DNA or fragments thereof labelled with a marker and (ii) HPV 35 RNA or fragments thereof labelled with a marker.

  12. Human papillomavirus 56 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorinez, A.T.

    1990-03-13

    This patent describes an HPV 56 hybridization probe. It comprises: a member selected from the group consisting of HPV 56 DNA or fragments thereof labelled with a marker and HPV 56 RNA or fragments thereof labelled with a marker.

  13. Human papillomavirus 44 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 44 hybridization probe comprising a member selected from the group consisting of (1) HPV 44 DNA or fragments thereof labelled with a marker and (ii) HPV 44 RNA or fragments thereof labelled with a marker.

  14. Human papillomavirus 43 nucleic acid hybridization probes and methods for employing the same

    SciTech Connect

    Lorincz, A.T.

    1989-07-18

    This patent describes an HPV 43 hybridization probe comprising a member selected from the group consisting of (i) HPV 43 DNA or fragments thereof labelled with a marker and (ii) HPV 43 RNA or fragments thereof labelled with a marker.

  15. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    SciTech Connect

    Gray, Joe W.; Weier, Heinz-Ulrich

    2001-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  16. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    SciTech Connect

    Gray, Joe W.; Weier, Heinz-Ulrich

    1999-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  17. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    SciTech Connect

    Gray, Joe W.; Weier, Heinz-Ulrich

    1998-01-01

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences.

  18. Y chromosome specific nucleic acid probe and method for identifying the Y chromosome in SITU

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1999-03-30

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  19. Y chromosome specific nucleic acid probe and method for determining the Y chromosome in situ

    DOEpatents

    Gray, J.W.; Weier, H.U.

    1998-11-24

    A method for producing a Y chromosome specific probe selected from highly repeating sequences on that chromosome is described. There is little or no nonspecific binding to autosomal and X chromosomes, and a very large signal is provided. Inventive primers allowing the use of PCR for both sample amplification and probe production are described, as is their use in producing large DNA chromosome painting sequences. 9 figs.

  20. Nitrilotriacetic acid-coated magnetic nanoparticles as affinity probes for enrichment of histidine-tagged proteins and phosphorylated peptides.

    PubMed

    Li, Yi-Cheng; Lin, Ya-Shiuan; Tsai, Pei-Jane; Chen, Cheng-Tai; Chen, Wei-Yu; Chen, Yu-Chie

    2007-10-01

    We herein demonstrate superparamagnetic Fe3O4 nanoparticles coated with nitrilotriacetic acid derivative (NTA) that can bind with different immobilized metal ions are capable of probing diverse target species. Immobilized Ni(II) on the surfaces of the NTA-magnetic nanoparticles have the capability of selectively trapping histidine (His)-tagged proteins such as a mutated streptopain tagged with 6x His, i.e., C192S (MW approximately 42 kDa), from cell lysates. Enrichment was achieved by vigorously mixing the sample solution and the nanoparticles by pipetting in and out of a sample vial for only 30 s. After enrichment, the probe-target species could be readily isolated by magnetic separation. We also characterized the proteins enriched on the affinity probes using on-probe tryptic digestion under microwave irradiation for only 2 min, followed by matrix-assisted laser desorption/ionization mass spectrometry analysis. Using this enrichment and tryptic digestion, the target species can be rapidly enriched and characterized, reducing the time required for carrying out the complete analysis to less than 10 min. Furthermore, when either Zr(IV) or Ga (III) ions are immobilized on the surfaces of the NTA-magnetic nanoparticles, the nanoparticles have the capability of selectively enriching phosphorylated peptides from tryptic digests of alpha-, beta-caseins, and diluted milk. The detection limit for the tryptic digests of alpha- and beta-caseins is approximately 50 fmol. PMID:17784733

  1. Photoluminescence spectroscopy for the discernment of plants within animal diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identification of different animal diets of free ranging herbivores is of much interest. Spectroscopic probes offer the potential for real-time analyses compared to microphitological procedures. The inherent multi-dimensionality of photoluminescence spectroscopy (i.e., fluorescence and phosphoresce...

  2. Photoluminescence of Diamondoid Crystals

    SciTech Connect

    Clay, William; Sasagawa, Takao; Iwasa, Akio; Liu, Zhi; Dahl, Jeremy E.; Carlson, Robert M.K.; Kelly, Michael; Melos, Nicholas; Shen, Zhi-Xun; /Stanford U., Phys. Dept. /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab. /SIMES, Stanford

    2012-04-03

    The photoluminescence of diamondoids in the solid state is examined. All of the diamondoids are found to photoluminesce readily with initial excitation wavelengths ranging from 233 nm to 240 nm (5.3 eV). These excitation energies are more than 1 eV lower than any previously studied saturated hydrocarbon material. The emission is found to be heavily shifted from the absorption, with emission wavelengths of roughly 295 nm (4.2 eV) in all cases. In the dissolved state, however, no uorescence is observed for excitation wavelengths as short as 200 nm. We also discuss predictions and measurements of the quantum yield. Our predictions indicate that the maximum yield may be as high as 25%. Our measurement of one species, diamantane, gives a yield of 11%, the highest ever reported for a saturated hydrocarbon, even though it was likely not at the optimal excitation wavelength.

  3. DNA and RNA "traffic lights": synthetic wavelength-shifting fluorescent probes based on nucleic acid base substitutes for molecular imaging.

    PubMed

    Holzhauser, Carolin; Wagenknecht, Hans-Achim

    2013-08-01

    The DNA base substitute approach by the (S)-3-amino-1,2-propanediol linker allows placing two fluorophores in a precise way inside a given DNA framework. The double helical architecture around the fluorophores, especially the DNA-induced twist, is crucial for the desired photophysical interactions. Excitonic, excimer, and energy transfer interactions yield fluorescent DNA and RNA probes with dual emission color readout. Especially, our DNA and RNA "traffic light" that combines the green emission of TO with the red emission of TR represents an important tool for molecular imaging and can be applied as aptasensors and as probes to monitor the siRNA delivery into cells. The concept can be extended to the synthetically easier to access postsynthetic 2'-modifications and the NIR range. Thereby, the pool of tailor-made fluorescent nucleic acid conjugates can be extended. PMID:23796243

  4. A Far-Red Emitting Probe for Unambiguous Detection of Mobile Zinc in Acidic Vesicles and Deep Tissue†

    PubMed Central

    Rivera-Fuentes, Pablo; Wrobel, Alexandra T.; Zastrow, Melissa L.; Khan, Mustafa; Georgiou, John; Luyben, Thomas T.; Roder, John C.; Okamoto, Kenichi

    2015-01-01

    Imaging mobile zinc in acidic environments remains challenging because most small-molecule optical probes display pH-dependent fluorescence. Here we report a reaction-based sensor that detects mobile zinc unambiguously at low pH. The sensor responds reversibly and with a large dynamic range to exogenously applied Zn2+ in lysosomes of HeLa cells, endogenous Zn2+ in insulin granules of MIN6 cells, and zinc-rich mossy fiber boutons in hippocampal tissue from mice. This long-wavelength probe is compatible with the green-fluorescent protein, enabling multicolor imaging, and facilitates visualization of mossy fiber boutons at depths of >100 µm, as demonstrated by studies in live tissue employing two-photon microscopy. PMID:25815162

  5. A ratiometric fluorescent probe based on boron dipyrromethene and rhodamine Förster resonance energy transfer platform for hypochlorous acid and its application in living cells.

    PubMed

    Liu, Ying; Zhao, Zhi-Min; Miao, Jun-Ying; Zhao, Bao-Xiang

    2016-05-19

    We have developed a ratiometric fluorescent probe BRT based on boron dipyrromethene (BODIPY) and rhodamine-thiohydrazide Förster resonance energy transfer (FRET) platform for sensing hypochlorous acid (HOCl) with high selectivity and sensitivity. The probe can detect HOCl in 15 s with the detection limit of 38 nM. Upon mixing with HOCl the fluorescence colour of probe BRT changed from green to orange. Moreover, probe BRT was applied to successfully monitor HOCl in living RAW 264.7 cells. PMID:27126792

  6. Real-Time PCR Genotyping using Taqman Probes to Detect High Oleic Acid Peanuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oleic acid, a monounsaturated, omega-9 fatty acid is an important agronomic trait in peanut cultivars because it provides increased shelf life, improved flavor, enhanced fatty acid composition, and a beneficial effect on human health. Currently, most high oleic peanuts confer limited resistance to ...

  7. The Use of p-Aminobenzoic Acid as a Probe Substance for the Targeted Profiling of Glycine Conjugation.

    PubMed

    Nortje, Carla; van der Sluis, Rencia; van Dijk, Alberdina Aike; Erasmus, Elardus

    2016-03-01

    Glycine conjugation facilitates the metabolism of toxic aromatic acids, capable of disrupting mitochondrial integrity. Owing to the high exposure to toxic substrates, characterization of individual glycine conjugation capacity, and its regulatory factors has become increasingly important. Aspirin and benzoate have been employed for this purpose; however, adverse reactions, aspirin intolerance, and Reye's syndrome in children are substantial drawbacks. The goal of this study was to investigate p-aminobenzoic acid (PABA) as an alternative glycine conjugation probe. Ten human volunteers participated in a PABA challenge test, and p-aminohippuric acid (PAHA), p-acetamidobenzoic acid, and p-acetamidohippuric acid were quantified in urine. The glycine N-acyltransferase gene of the volunteers was also screened for two polymorphisms associated with normal and increased enzyme activity. All of the individuals were homozygous for increased enzyme activity, but excretion of PAHA varied significantly (16-56%, hippurate ratio). The intricacies of PABA metabolism revealed possible limiting factors and the potential of PABA as an indicator of Phase 0 biotransformation. PMID:26484797

  8. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    SciTech Connect

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  9. Probing the active center of benzaldehyde lyase with substitutions and the pseudo-substrate analog benzoylphosphonic acid methyl ester

    PubMed Central

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2009-01-01

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg2+ as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these type of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analog of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 Å (PDB ID: 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase. PMID:18570438

  10. Mercaptopropionic acid-capped CdTe quantum dots as fluorescence probe for the determination of salicylic acid in pharmaceutical products.

    PubMed

    Bunkoed, Opas; Kanatharana, Proespichaya

    2015-11-01

    Mercaptopropionic acid (MPA)-capped cadmium telluride (CdTe) quantum dot (QDs) fluorescent probes were synthesized in aqueous solution and used for the determination of salicylic acid. The interaction between the MPA-capped CdTe QDs and salicylic acid was studied using fluorescence spectroscopy and some parameters that could modify the fluorescence were investigated to optimize the measurements. Under optimum conditions, the quenched fluorescence intensity of MPA-capped CdTe QDs was linearly proportional to the concentration of salicylic acid in the range of 0.5-40 µg mL(-1) with a coefficient of determination of 0.998, and the limit of detection was 0.15 µg mL(-1). The method was successfully applied to the determination of salicylic acid in pharmaceutical products, and satisfactory results were obtained that were in agreement with both the high pressure liquid chromatography (HPLC) method and the claimed values. The recovery of the method was in the range 99 ± 3% to 105 ± 9%. The proposed method is simple, rapid, cost effective, highly sensitivity and eminently suitable for the quality control of pharmaceutical preparation. The possible mechanisms for the observed quenching reaction was also discussed. PMID:25683730

  11. Monitoring of ppm level humic acid in surface water using ZnO-chitosan nano-composite as fluorescence probe

    NASA Astrophysics Data System (ADS)

    Basumallick, Srijita; Santra, Swadeshmukul

    2015-05-01

    Surface water contains natural pollutants humic acid (HA) and fulvic acid at ppm level which form carcinogenic chloro-compounds during chlorination in water treatment plants. We report here synthesis of ZnO-chitosan (CS) nano-composites by simple hydrothermal technique and examined their application potential as fluorescent probe for monitoring ppm level HA. These ZnO-CS composites have been characterized by HRTEM, EDX, FTIR, AFM and Fluorescence Spectra. HRTEM images show the formation of ZnO-CS nano-composites of average diameter of 50-250 nm. Aqueous dispersions of these nano-composites show fluorescence emission at 395 nm when excited at 300 nm which is strongly quenched by ppm level HA indicating their possible use in monitoring ppm level HA present in surface water.

  12. Use of peptide nucleic acid probes for rapid detection and enumeration of viable bacteria in recreational waters and beach sand.

    PubMed

    Esiobu, Nwadiuto

    2006-01-01

    Environmental monitoring and public health risk assessments require methods that are rapid and quantitative with defined sensitivity and specificity thresholds. Although several molecular techniques have been developed to rapidly detect bacteria in complex matrices, the challenge to simultaneously detect and enumerate only viable cells remains a limiting factor to their routine application. This chapter describes the use of peroxidase-labeled peptide nucleic acid (PNA) probes to simultaneously detect and count live Staphylococcus aureus, a human pathogen in sea water and beach sand. Mixed bacteria from the environmental sample were immobilized on polyvinylidene difluoride membrane filters and allowed to form microcolonies during a 5-h incubation on Tryptic soy agar plates. PNA probes targeting species-specific regions of the 16S rRNA sequences of S. aureus were then used to hybridize the target bacteria in situ. Probes were detected by capturing chemiluminiscence on instant (e.g., Polaroid) films. Each viable cell (i.e., rRNA producing) is detected as a light spot from its microcolony on the film after scanning the image into a computer. This rapid in situ hybridization technique is simple and highly sensitive and could be developed into portable kits for monitoring pathogens and indicators in the environment. PMID:16957353

  13. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids

    PubMed Central

    Reichau, Sebastian; Blackmore, Nicola J.; Jiao, Wanting; Parker, Emily J.

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  14. Probing the Sophisticated Synergistic Allosteric Regulation of Aromatic Amino Acid Biosynthesis in Mycobacterium tuberculosis Using ᴅ-Amino Acids.

    PubMed

    Reichau, Sebastian; Blackmore, Nicola J; Jiao, Wanting; Parker, Emily J

    2016-01-01

    Chirality plays a major role in recognition and interaction of biologically important molecules. The enzyme 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAH7PS) is the first enzyme of the shikimate pathway, which is responsible for the synthesis of aromatic amino acids in bacteria and plants, and a potential target for the development of antibiotics and herbicides. DAH7PS from Mycobacterium tuberculosis (MtuDAH7PS) displays an unprecedented complexity of allosteric regulation, with three interdependent allosteric binding sites and a ternary allosteric response to combinations of the aromatic amino acids l-Trp, l-Phe and l-Tyr. In order to further investigate the intricacies of this system and identify key residues in the allosteric network of MtuDAH7PS, we studied the interaction of MtuDAH7PS with aromatic amino acids that bear the non-natural d-configuration, and showed that the d-amino acids do not elicit an allosteric response. We investigated the binding mode of d-amino acids using X-ray crystallography, site directed mutagenesis and isothermal titration calorimetry. Key differences in the binding mode were identified: in the Phe site, a hydrogen bond between the amino group of the allosteric ligands to the side chain of Asn175 is not established due to the inverted configuration of the ligands. In the Trp site, d-Trp forms no interaction with the main chain carbonyl group of Thr240 and less favourable interactions with Asn237 when compared to the l-Trp binding mode. Investigation of the MtuDAH7PSN175A variant further supports the hypothesis that the lack of key interactions in the binding mode of the aromatic d-amino acids are responsible for the absence of an allosteric response, which gives further insight into which residues of MtuDAH7PS play a key role in the transduction of the allosteric signal. PMID:27128682

  15. Carboxylic Acid Ionophores as Probes of the Role of Calcium in Biological Systems

    NASA Technical Reports Server (NTRS)

    Reed, P. W.

    1983-01-01

    The biological effects of calcium ionophores are described, focusing on arachidonic acid oxygenation, and the formation of a number of oxygenated metabolites of arachidonic acid. These metabolites are involved in a number of bodily functions, and their production may be regulated by calcium.

  16. Fluorescence in situ Hybridization method using Peptide Nucleic Acid probes for rapid detection of Lactobacillus and Gardnerella spp.

    PubMed Central

    2013-01-01

    Background Bacterial vaginosis (BV) is a common vaginal infection occurring in women of reproductive age. It is widely accepted that the microbial switch from normal microflora to BV is characterized by a decrease in vaginal colonization by Lactobacillus species together with an increase of Gardnerella vaginalis and other anaerobes. Our goal was to develop and optimize a novel Peptide Nucleic Acid (PNA) Fluorescence in situ Hybridization assay (PNA FISH) for the detection of Lactobacillus spp. and G. vaginalis in mixed samples. Results Therefore, we evaluated and validated two specific PNA probes by using 36 representative Lactobacillus strains, 22 representative G. vaginalis strains and 27 other taxonomically related or pathogenic bacterial strains commonly found in vaginal samples. The probes were also tested at different concentrations of G. vaginalis and Lactobacillus species in vitro, in the presence of a HeLa cell line. Specificity and sensitivity of the PNA probes were found to be 98.0% (95% confidence interval (CI), from 87.8 to 99.9%) and 100% (95% CI, from 88.0 to 100.0%), for Lactobacillus spp.; and 100% (95% CI, from 92.8 to 100%) and 100% (95% CI, from 81.5 to 100.0%) for G. vaginalis. Moreover, the probes were evaluated in mixed samples mimicking women with BV or normal vaginal microflora, demonstrating efficiency and applicability of our PNA FISH. Conclusions This quick method accurately detects Lactobacillus spp. and G. vaginalis species in mixed samples, thus enabling efficient evaluation of the two bacterial groups, most frequently encountered in the vagina. PMID:23586331

  17. Probing acid-amide intermolecular hydrogen bonding by NMR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Chaudhari, Sachin Rama; Suryaprakash, N.

    2012-05-01

    Benzene carboxylic acids and benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by 1H, 13C and 15N NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations.

  18. Label-free nucleic acids detection based on DNA templated silver nanoclusters fluorescent probe.

    PubMed

    Zhao, Haiyan; Wang, Lei; Zhu, Jing; Wei, Haiping; Jiang, Wei

    2015-06-01

    Based on DNA templated Ag NCs (DNA/Ag NCs) fluorescent probe, a label-free fluorescent method was developed for the detection of clinical significant DNA fragments from human immunodeficiency virus type 1 (HIV-1) DNA. Firstly, a hairpin probe, containing target DNA recognition sequence and guanine-rich sequence, was designed to hybridize with the target DNA and form a blunt 3'-terminus DNA duplex. Then, exonuclease III (Exo III) was employed to stepwise hydrolyze the mononucleotides from formed blunt 3'-terminus DNA duplex, releasing the target DNA and guanine-rich sequence. Finally, DNA/Ag NCs fluorescent probe was introduced to hybridize with the guanine-rich sequence, leading to an enhanced fluorescence signal for detection. The proposed method could detect as low as 2.9×10(-10) mol L(-1) HIV-1 DNA and exhibited excellent selectivity against mismatched target DNA. Furthermore, the method possessed perfect recoveries in cells lysate and human serum, showing potential to be used in biological samples. PMID:25863386

  19. Double-stem Hairpin Probe and Ultrasensitive Colorimetric Detection of Cancer-related Nucleic Acids

    PubMed Central

    Xu, Jianguo; Li, Hongling; Wu, Zai-Sheng; Qian, Jun; Xue, Chang; Jia, Lee

    2016-01-01

    The development of a versatile biosensing platform to screen specific DNA sequences is still an essential issue of molecular biology research and clinic diagnosis of genetic disease. In this work, we for the first time reported a double-stem hairpin probe (DHP) that was simultaneously engineered to incorporate a DNAzyme, DNAzyme's complementary fragment and nicking enzyme recognition site. The important aspect of this hairpin probe is that, although it is designed to have a long ds DNA fragment, no intermolecular interaction occurs, circumventing the sticky-end pairing-determined disadvantages encountered by classic molecular beacon. For the DHP-based colorimetric sensing system, as a model analyte, cancer-related DNA sequence can trigger a cascade polymerization/nicking cycle on only one oligonucleotide probe. This led to the dramatic accumulation of G-quadruplexes directly responsible for colorimetric signal conversion without any loss. As a result, the target DNA is capable of being detected to 1 fM (six to eight orders of magnitude lower than that of catalytic molecular beacons) and point mutations are distinguished by the naked eye. The described DHP as a-proof-of-concept would not only promote the design of colorimetric biosensors but also open a good way to promote the diagnosis and treatment of genetic diseases. PMID:26909108

  20. Double-stem Hairpin Probe and Ultrasensitive Colorimetric Detection of Cancer-related Nucleic Acids.

    PubMed

    Xu, Jianguo; Li, Hongling; Wu, Zai-Sheng; Qian, Jun; Xue, Chang; Jia, Lee

    2016-01-01

    The development of a versatile biosensing platform to screen specific DNA sequences is still an essential issue of molecular biology research and clinic diagnosis of genetic disease. In this work, we for the first time reported a double-stem hairpin probe (DHP) that was simultaneously engineered to incorporate a DNAzyme, DNAzyme's complementary fragment and nicking enzyme recognition site. The important aspect of this hairpin probe is that, although it is designed to have a long ds DNA fragment, no intermolecular interaction occurs, circumventing the sticky-end pairing-determined disadvantages encountered by classic molecular beacon. For the DHP-based colorimetric sensing system, as a model analyte, cancer-related DNA sequence can trigger a cascade polymerization/nicking cycle on only one oligonucleotide probe. This led to the dramatic accumulation of G-quadruplexes directly responsible for colorimetric signal conversion without any loss. As a result, the target DNA is capable of being detected to 1 fM (six to eight orders of magnitude lower than that of catalytic molecular beacons) and point mutations are distinguished by the naked eye. The described DHP as a-proof-of-concept would not only promote the design of colorimetric biosensors but also open a good way to promote the diagnosis and treatment of genetic diseases. PMID:26909108

  1. ω-Azido fatty acids as probes to detect fatty acid biosynthesis, degradation, and modification[S

    PubMed Central

    Pérez, Alexander J.; Bode, Helge B.

    2014-01-01

    FAs play a central role in the metabolism of almost all known cellular life forms. Although GC-MS is regarded as a standard method for FA analysis, other methods, such as HPLC/MS, are nowadays widespread but are rarely applied to FA analysis. Here we present azido-FAs as probes that can be used to study FA biosynthesis (elongation, desaturation) or degradation (β-oxidation) upon their uptake, activation, and metabolic conversion. These azido-FAs are readily accessible by chemical synthesis and their metabolic products can be easily detected after click-chemistry based derivatization with high sensitivity by HPLC/MS, contributing a powerful tool to FA analysis, and hence, lipid analysis in general. PMID:25013232

  2. Molecular recognition of α-cyclodextrin (CD) to choral amino acids based on methyl orange as a molecular probe

    NASA Astrophysics Data System (ADS)

    Yuexian, Fan; Yu, Yang; Shaomin, Shuang; Chuan, Dong

    2005-03-01

    The molecular recognition interaction of α-CD to chiral amino acids was investigated by using spectrophotometry based on methyl orange as a molecular probe. The molecular recognition ability depended on the inclusion formation constants. The molecular recognition of α-CD to aromatic amino acids was the order: DL-tryptophan > L-tryptophan > L-phenylalanine > L-tyrosine ≈ DL-β-3,4-dihydroxy-phenylalanine; whereas for aliphatic amino acids, the order was: L- iso-leucine > L-leucine ≈ L-methionine ≈ DL-mehtionine > D-leucine. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, Δ G, Δ H, Δ S, were determined. The experimental results indicated that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative or minor positive entropic contribution. The inclusion interaction between α-CD and amino acids satisfied the law of enthalpy-entropy compensation. The compensation temperature was 291 K.

  3. Molecular recognition of alpha-cyclodextrin (CD) to choral amino acids based on methyl orange as a molecular probe.

    PubMed

    Yuexian, Fan; Yu, Yang; Shaomin, Shuang; Chuan, Dong

    2005-03-01

    The molecular recognition interaction of alpha-CD to chiral amino acids was investigated by using spectrophotometry based on methyl orange as a molecular probe. The molecular recognition ability depended on the inclusion formation constants. The molecular recognition of alpha-CD to aromatic amino acids was the order: DL-tryptophan > L-tryptophan > L-phenylalanine > L-tyrosine approximately DL-beta-3,4-dihydroxy-phenylalanine; whereas for aliphatic amino acids, the order was: L-iso-leucine > L-leucine approximately L-methionine approximately DL-mehtionine > D-leucine. The effect of temperature on the inclusion interaction was examined and the thermodynamic parameters of inclusion process, delta G, delta H, delta S, were determined. The experimental results indicated that the inclusion process was an exothermic and enthalpy-driven process accompanied with a negative or minor positive entropic contribution. The inclusion interaction between alpha-CD and amino acids satisfied the law of enthalpy-entropy compensation. The compensation temperature was 291 K. PMID:15683802

  4. Effect of electron-donating substituent groups on aromatic ring on photoluminescence properties of complexes of benzoic acid-functionalized polysulfone with Eu(III) ions.

    PubMed

    Gao, Baojiao; Chen, Lulu; Chen, Tao

    2015-10-14

    By molecular design and via polymer reactions, methoxybenzoic acid (MOBA) and hydroxybenzoic acid (HBA) were bonded onto the side chains of polysulfone (PSF) for preparing two benzoic acid-functionalized PSFs, PSF-MOBA and PSF-HBA, respectively. Based on full characterization of their structures, the two macromolecule ligands were made to coordinate to Eu(3+) ions, and two binary polymer-rare earth complexes, PSF-(MOBA)3-Eu(III) and PSF-(HBA)3-Eu(III), were obtained. At the same time, using phenanthroline (Phen) as a second small-molecule ligand, the corresponding two ternary complexes, PSF-(MOBA)3-Eu(III)-Phen1 and PSF-(HBA)3-Eu(III)-Phen1, were also prepared. The photo physical behaviors of these complexes were examined in depth, and the luminescent properties of these prepared polymer-rare earth complexes were mainly investigated. The experimental results show that the two electron-donating substituent groups on the aromatic ring of the bonded benzoic acid significantly affect the luminescence properties of these complexes of benzoic acid-functionalized PSF and Eu(III) ions, and they can effectively strengthen the fluorescence emission intensities of the complexes. The possible reason is that through the p-π conjugative effect, the two electron-donating substituent groups can remarkably decline the triplet state energy levels of the bonded ligand MOBA and HBA, and strengthen the matching degree of energy between the triplet state energy level of the ligand and the resonant energy level of Eu(III) ions, resulting in the enhancement of fluorescence emission intensities of the complexes. Besides, the fluorescence emissions of the binary complexes are stronger than those of the corresponding ternary complexes because of the synergistic coordination effect of Phen with the macromolecular ligand. PMID:26355714

  5. Photoluminescence of a Plasmonic Molecule.

    PubMed

    Huang, Da; Byers, Chad P; Wang, Lin-Yung; Hoggard, Anneli; Hoener, Ben; Dominguez-Medina, Sergio; Chen, Sishan; Chang, Wei-Shun; Landes, Christy F; Link, Stephan

    2015-07-28

    Photoluminescent Au nanoparticles are appealing for biosensing and bioimaging applications because of their non-photobleaching and non-photoblinking emission. The mechanism of one-photon photoluminescence from plasmonic nanostructures is still heavily debated though. Here, we report on the one-photon photoluminescence of strongly coupled 50 nm Au nanosphere dimers, the simplest plasmonic molecule. We observe emission from coupled plasmonic modes as revealed by single-particle photoluminescence spectra in comparison to correlated dark-field scattering spectroscopy. The photoluminescence quantum yield of the dimers is found to be surprisingly similar to the constituent monomers, suggesting that the increased local electric field of the dimer plays a minor role, in contradiction to several proposed mechanisms. Aided by electromagnetic simulations of scattering and absorption spectra, we conclude that our data are instead consistent with a multistep mechanism that involves the emission due to radiative decay of surface plasmons generated from excited electron-hole pairs following interband absorption. PMID:26165983

  6. Probing Protein Structure by Amino Acid-Specific Covalent Labeling and Mass Spectrometry

    PubMed Central

    Mendoza, Vanessa Leah; Vachet, Richard W.

    2009-01-01

    For many years, amino acid-specific covalent labeling has been a valuable tool to study protein structure and protein interactions, especially for systems that are difficult to study by other means. These covalent labeling methods typically map protein structure and interactions by measuring the differential reactivity of amino acid side chains. The reactivity of amino acids in proteins generally depends on the accessibility of the side chain to the reagent, the inherent reactivity of the label and the reactivity of the amino acid side chain. Peptide mass mapping with ESI- or MALDI-MS and peptide sequencing with tandem MS are typically employed to identify modification sites to provide site-specific structural information. In this review, we describe the reagents that are most commonly used in these residue-specific modification reactions, details about the proper use of these covalent labeling reagents, and information about the specific biochemical problems that have been addressed with covalent labeling strategies. PMID:19016300

  7. Probing Phosphorus Efficient Low Phytic Acid Content Soybean Genotypes with Phosphorus Starvation in Hydroponics Growth System.

    PubMed

    Kumar, Varun; Singh, Tiratha Raj; Hada, Alkesh; Jolly, Monica; Ganapathi, Andy; Sachdev, Archana

    2015-10-01

    Phosphorus is an essential nutrient required for soybean growth but is bound in phytic acid which causes negative effects on both the environment as well as the animal nutrition. Lowering of phytic acid levels is associated with reduced agronomic characteristics, and relatively little information is available on the response of soybean plants to phosphorus (P) starvation. In this study, we evaluated the effects of different P starvation concentrations on the phytic acid content, growth, and yield of seven mutant genotypes along with the unirradiated control, JS-335, in a hydroponics growth system. The low phytic acid containing mutant genotypes, IR-JS-101, IR-DS-118, and IR-V-101, showed a relatively high growth rate in low P concentration containing nutrient solution (2 μM), whereas the high P concentration (50 μM) favored the growth of IR-DS-111 and IR-DS-115 mutant genotypes containing moderate phytate levels. The mutant genotypes with high phytic acid content, IR-DS-122, IR-DS-114, and JS-335, responded well under P starvation and did not have any significant effect on the growth and yield of plants. Moreover, the reduction of P concentration in nutrient solution from 50 to 2 μM also reduced the phytic acid content in the seeds of all the soybean genotypes under study. The desirable agronomic performance of low phytic acid containing mutant genotype IR-DS-118 reported in this study suggested it to be a P-efficient genotype which could be considered for agricultural practices under P limiting soils. PMID:26239443

  8. Ancillary ligand-assisted assembly of C3-symmetric 4,4‧,4″-nitrilotribenzoic acid with divalent Zn2+ ions: Syntheses, topological structures, and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Cui, Li-Ting; Niu, Yan-Fei; Han, Jie; Zhao, Xiao-Li

    2015-07-01

    4,4‧,4″-nitrilotribenzoic acid (H3L), a C3-symmetric ligand, was found to self-assemble into two polymorphs driven by intermolecular hydrogen-bonding interactions. Reactions of this ligand with Zn2+ under solvothermal conditions resulted in four new coordination polymers bearing interesting structural motifs: [Zn2(L)2(py)2]·2(H2NMe2)+·DMF·2H2O (1), [Zn2(L)(H2L)(bipy)]·1.5H2O·Guest (2), [Zn2(L)2(bipy)]·2(H2NMe2)+·2DMF (3), and [Zn3(L)2(bpa)]·2H2O·Guest (4) (H3L=4,4‧,4‧‧-nitrilotribenzoic acid, DMF=dimethylformamide, py=pyridine, bipy=4,4‧-bipyridine, bpa=1,2-bis(4-pyridyl)diazene). Single-crystal structural analysis revealed that compound 1 exhibits a rare example of twofold interpenetrating anionic 3D (3,3)-net framework containing helical channels, whereas in 2, the 3D pillar-layer structure generated from bipy-pillared Zn2(L)(H2L) layer is further reinforced by intermolecular hydrogen bonding among pairs of free -COOH units. Compound 3 shows an interesting entangled architecture of 2D→3D parallel polycatenation consisting five-coordinated Zn2+ ions. Compound 4 displays a 3D pillar-layer framework with trimeric Zn3(CO2)6 serving as secondary building unit (SBU). The syntheses, structures, thermal stabilities, powder X-ray diffractions and solid-state photoluminescence properties for these crystalline materials have been carried out. In addition, supramolecular assembly of H3L under solvothermal conditions will also be addressed.

  9. Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry.

    PubMed

    Bruns, Emily A; Greaves, John; Finlayson-Pitts, Barbara J

    2012-06-21

    Vapor pressures of low volatility compounds are important parameters in several atmospheric processes, including the formation of new particles and the partitioning of compounds between the gas phase and particles. Understanding these processes is critical for elucidating the impacts of aerosols on climate, visibility, and human health. Dicarboxylic acids are an important class of compounds in the atmosphere for which reported vapor pressures often vary by more than an order of magnitude. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS), a relatively new atmospheric pressure ionization technique, is applied for the first time to the measurement of vapor pressures and heats of sublimation of a series of dicarboxylic acids. Pyrene was also studied because its vapor pressures and heat of sublimation are relatively well-known. The heats of sublimation measured using ASAP-MS were in good agreement with published values. The vapor pressures, assuming an evaporation coefficient of unity, were typically within a factor of ∼3 lower than published values made at similar temperatures for most of the acids. The underestimation may be due to diffusional constraints resulting from evaporation at atmospheric pressure. However, this study establishes that ASAP-MS is a promising new technique for such measurements. PMID:22432524

  10. Facilitating unambiguous NMR assignments and enabling higher probe density through selective labeling of all methyl containing amino acids.

    PubMed

    Proudfoot, Andrew; Frank, Andreas O; Ruggiu, Fiorella; Mamo, Mulugeta; Lingel, Andreas

    2016-05-01

    The deuteration of proteins and selective labeling of side chain methyl groups has greatly enhanced the molecular weight range of proteins and protein complexes which can be studied using solution NMR spectroscopy. Protocols for the selective labeling of all six methyl group containing amino acids individually are available, however to date, only a maximum of five amino acids have been labeled simultaneously. Here, we describe a new methodology for the simultaneous, selective labeling of all six methyl containing amino acids using the 115 kDa homohexameric enzyme CoaD from E. coli as a model system. The utility of the labeling protocol is demonstrated by efficiently and unambiguously assigning all methyl groups in the enzymatic active site using a single 4D (13)C-resolved HMQC-NOESY-HMQC experiment, in conjunction with a crystal structure. Furthermore, the six fold labeled protein was employed to characterize the interaction between the substrate analogue (R)-pantetheine and CoaD by chemical shift perturbations, demonstrating the benefit of the increased probe density. PMID:27130242

  11. Insertion of fluorescent fatty acid probes into the outer membranes of the pathogenic spirochaetes Treponema pallidum and Borrelia burgdorferi.

    PubMed

    Cox, D L; Radolf, J D

    2001-05-01

    The authors examined the ability of octadecanoyl (C(18)), hexadecanoyl (C(16)) and dodecanoyl (C(12)) fatty acid (FA) conjugates of 5-aminofluorescein (OAF, HAF and DAF, respectively) to insert into the outer membranes (OMs) of Treponema pallidum, Borrelia burgdorferi and Escherichia coli. Biophysical studies have demonstrated that these compounds stably insert into phospholipid bilayers with the acyl chain within the hydrophobic interior of the apical leaflet and the hydrophilic fluorescein moiety near the phospholipid head groups. Consistent with the known poor intrinsic permeability of the E. coli OM to hydrophobic compounds and surfactants, E. coli was not labelled with any of the FA probes. OAF inserted more readily into OMs of B. burgdorferi than into those of T. pallidum, although both organisms were completely labelled at concentrations at or below 2 microg ml(-1). Intact spirochaetes were labelled with OAF but not with antibodies against known periplasmic antigens, thereby confirming that the probe interacted exclusively with the spirochaetal OMs. Separate experiments in which organisms were cooled to 4 degrees C (i.e. below the OM phase-transition temperatures) indicated that labelling with OAF was due to insertion of the probe into the OMs. B. burgdorferi, but not T. pallidum, was labelled by relatively high concentrations of HAF and DAF. Taken as a whole, these findings support the prediction that the lack of lipopolysaccharide renders T. pallidum and B. burgdorferi OMs markedly more permeable to lipophilic compounds than their Gram-negative bacterial counterparts. The data also raise the intriguing possibility that these two pathogenic spirochaetes obtain long-chain FAs, nutrients they are unable to synthesize, by direct permeation of their OMs. PMID:11320119

  12. Computer simulations of the electron spin resonance spectra of steroid and fatty acid nitroxide probes in bilayer systems

    NASA Astrophysics Data System (ADS)

    Eviatar, Hadass; van der Heide, Uulke A.; Levine, Yehudi K.

    1995-02-01

    Monte Carlo dynamics (MCD) techniques are used to simulate the orientational behavior and rotational motion of probe molecules in lipid bilayers. The trajectories of molecular orientations generated from the simulations are then used to calculate the order parameters and the orientational time correlation functions. The behavior of the time correlation functions is compared with the predictions of the rotational diffusion (RDM) and the compound motion (CM) models. The MCD trajectories are also used to produce electron-spin resonance (ESR) spectra, employing a recently developed time-domain algorithm. Two questions which have been the subject of debate in the literature are addressed. The first question concerns the discrepancy between the ability of motional models to describe ESR spectra and fluorescence depolarization measurements on rigid molecules in vesicles—while the RDM does an excellent job of fitting the former, the latter require the CM to describe them properly. It is argued that the key to resolving this lies in the fact that the ESR line shapes are sensitive to the tumbling motions of the long molecular axes as well as to rotational motions about them, while fluorescence anisotropy is blind for the latter. The rotation about the long molecular axis introduces a fast decay into the correlation functions in a way independent of the tumbling motion of the axis. The second question concerns the fidelity of reporting by fatty acid spin probes in lipid bilayers. It is shown that the motion of the bulky hydrophillic doxyl group does not, in fact, reflect the motion of the chains about it and consequently these spin probes cannot be considered good reporters for these applications.

  13. Array of nucleic acid probes on biological chips for diagnosis of HIV and methods of using the same

    DOEpatents

    Chee, Mark; Gingeras, Thomas R.; Fodor, Stephen P. A.; Hubble, Earl A.; Morris, MacDonald S.

    1999-01-19

    The invention provides an array of oligonucleotide probes immobilized on a solid support for analysis of a target sequence from a human immunodeficiency virus. The array comprises at least four sets of oligonucleotide probes 9 to 21 nucleotides in length. A first probe set has a probe corresponding to each nucleotide in a reference sequence from a human immunodeficiency virus. A probe is related to its corresponding nucleotide by being exactly complementary to a subsequence of the reference sequence that includes the corresponding nucleotide. Thus, each probe has a position, designated an interrogation position, that is occupied by a complementary nucleotide to the corresponding nucleotide. The three additional probe sets each have a corresponding probe for each probe in the first probe set. Thus, for each nucleotide in the reference sequence, there are four corresponding probes, one from each of the probe sets. The three corresponding probes in the three additional probe sets are identical to the corresponding probe from the first probe or a subsequence thereof that includes the interrogation position, except that the interrogation position is occupied by a different nucleotide in each of the four corresponding probes.

  14. Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy.

    PubMed

    Juen, Michael Andreas; Wunderlich, Christoph Hermann; Nußbaumer, Felix; Tollinger, Martin; Kontaxis, Georg; Konrat, Robert; Hansen, D Flemming; Kreutz, Christoph

    2016-09-19

    In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear (13) C and (1) H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific (2) H and (13) C labeling, spin topologies are introduced into DNA and RNA that make (1) H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for (1) H RD experiments of nucleic acids. PMID:27533469

  15. Water uptake of internally mixed ammonium sulfate and dicarboxylic acid particles probed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2013-05-01

    Tropospheric aerosols are usually mixtures of inorganic and organic compounds in variable proportions, and the relative amount of organic fraction can influence the hygroscopic properties of the particles. Infrared spectra of submicrometer internally mixed dry particles of ammonium sulfate (AS) with various dicarboxylic acids (oxalic, malonic, maleic, glutaric and pimelic) have been measured in an aerosol flow tube at several solute mass ratios. The spectra show a notable broadening in the bandwidth of sulfate ion ν3 vibrational band near 1115 cm-1 with respect to pure AS. We attribute these perturbations, that are biggest at AS/organic acid mass ratio near unity, to intermolecular interactions between inorganic ions and organic acid molecules in the internally mixed solids. The water uptake behavior of internally mixed particles has been measured by recording the infrared integrated absorbance of liquid water as a function of relative humidity (RH). The amount of water present in the particles prior to deliquescence correlates partially with the water solubilities of the dicarboxylic acids, and also with the relative magnitudes of intermolecular interactions in the internally mixed dry solids. Phase change of ammonium sulfate in the internally mixed particles with RH has been spectrally monitored, and it is shown that water uptaken before full deliquescence produces structural changes in the particles that are revealed by their vibrational spectra.

  16. Proficient Detection of Multi-Drug-Resistant Mycobacterium tuberculosis by Padlock Probes and Lateral Flow Nucleic Acid Biosensors.

    PubMed

    Pavankumar, Asalapuram R; Engström, Anna; Liu, Jie; Herthnek, David; Nilsson, Mats

    2016-04-19

    Tuberculosis is a major communicable disease. Its causative agent, Mycobacterium tuberculosis, becomes resistant to antibiotics by acquisition of point mutations in the chromosome. Multi-drug-resistant tuberculosis (MDR-TB) is an increasing public health threat, and prompt detection of such strains is of critical importance. As rolling circle amplification of padlock probes can be used to robustly distinguish single-nucleotide variants, we combined this technique with a sensitive lateral flow nucleic acid biosensor to develop a rapid molecular diagnostic test for MDR-TB. A proof-of-concept test was established for detection of the most common mutations [rpoB 531 (TCG/TTG) and katG 315 (AGC/ACC)] causing MDR-TB and verification of loss of the respective wild type. The molecular diagnostic test produces visual signals corresponding to the respective genotypes on lateral flow strips in approximately 75 min. By detecting only two mutations, the test can detect about 60% of all MDR-TB cases. The padlock probe-lateral flow (PLP-LF) test is the first of its kind and can ideally be performed at resource-limited clinical laboratories. Rapid information about the drug-susceptibility pattern can assist clinicians to choose suitable treatment regimens and take appropriate infection control actions rather than prescribing empirical treatment, thereby helping to control the spread of MDR-TB in the community. PMID:26985774

  17. QuShape: Rapid, accurate, and best-practices quantification of nucleic acid probing information, resolved by capillary electrophoresis

    PubMed Central

    Karabiber, Fethullah; McGinnis, Jennifer L.; Favorov, Oleg V.; Weeks, Kevin M.

    2013-01-01

    Chemical probing of RNA and DNA structure is a widely used and highly informative approach for examining nucleic acid structure and for evaluating interactions with protein and small-molecule ligands. Use of capillary electrophoresis to analyze chemical probing experiments yields hundreds of nucleotides of information per experiment and can be performed on automated instruments. Extraction of the information from capillary electrophoresis electropherograms is a computationally intensive multistep analytical process, and no current software provides rapid, automated, and accurate data analysis. To overcome this bottleneck, we developed a platform-independent, user-friendly software package, QuShape, that yields quantitatively accurate nucleotide reactivity information with minimal user supervision. QuShape incorporates newly developed algorithms for signal decay correction, alignment of time-varying signals within and across capillaries and relative to the RNA nucleotide sequence, and signal scaling across channels or experiments. An analysis-by-reference option enables multiple, related experiments to be fully analyzed in minutes. We illustrate the usefulness and robustness of QuShape by analysis of RNA SHAPE (selective 2′-hydroxyl acylation analyzed by primer extension) experiments. PMID:23188808

  18. Use of enrichments and nucleic acid probes in monitoring bioremediation of a deep trichloroethylene plume

    SciTech Connect

    Brockman, F.; Payne, W.; Workman, D.; Soong, A.; Manley, S.; Sun, W.; Ogram, A.

    1994-12-31

    The field site was manipulated with injection of air (control experiment), 1% methane (in air), pulsing of air only and 4% methane, and pulsing of 4% methane supplemented with gaseous forms of nitrogen and phosphorus. Gases were injected through a horizontal well into the aquifer and a vacuum was established in a second horizontal well in the vadose zone. Following each injection regime, sediment samples from the contaminated region were analyzed. Analyses included most-probable-number enrichments for physiological groups known or suspected to degrade trichloroethylene (TCE) and per-chloroethylene (PCE), TCE and PCE removal from enrichments, and DNA extraction and hybridization with various gene probes corresponding to enzymes known to degrade TCE or TCE metabolites.

  19. Adaptation and Validation of E-Probe Diagnostic Nucleic Acid Analysis for Detection of Escherichia coli O157:H7 in Metagenomic Data from Complex Food Matrices.

    PubMed

    Blagden, Trenna; Schneider, William; Melcher, Ulrich; Daniels, Jon; Fletcher, Jacqueline

    2016-04-01

    The Centers for Disease Control and Prevention recently emphasized the need for enhanced technologies to use in investigations of outbreaks of foodborne illnesses. To address this need, e-probe diagnostic nucleic acid analysis (EDNA) was adapted and validated as a tool for the rapid, effective identification and characterization of multiple pathogens in a food matrix. In EDNA, unassembled next generation sequencing data sets from food sample metagenomes are queried using pathogen-specific sequences known as electronic probes (e-probes). In this study, the query of mock sequence databases demonstrated the potential of EDNA for the detection of foodborne pathogens. The method was then validated using next generation sequencing data sets created by sequencing the metagenome of alfalfa sprouts inoculated with Escherichia coli O157:H7. Nonspecific hits in the negative control sample indicated the need for additional filtration of the e-probes to enhance specificity. There was no significant difference in the ability of an e-probe to detect the target pathogen based upon the length of the probe set oligonucleotides. The results from the queries of the sample database using E. coli e-probe sets were significantly different from those obtained using random decoy probe sets and exhibited 100% precision. The results support the use of EDNA as a rapid response methodology in foodborne outbreaks and investigations for establishing comprehensive microbial profiles of complex food samples. PMID:27052861

  20. Poly(o-phenylenediamine) colloid-quenched fluorescent oligonucleotide as a probe for fluorescence-enhanced nucleic acid detection.

    PubMed

    Tian, Jingqi; Li, Hailong; Luo, Yonglan; Wang, Lei; Zhang, Yingwei; Sun, Xuping

    2011-02-01

    In this Letter, we demonstrate that chemical oxidation polymerization of o-phenylenediamine (OPD) by potassium bichromate at room temperature results in the formation of submicrometer-scale poly(o-phenylenediamine) (POPD) colloids. Such colloids can absorb and quench dye-labeled single-stranded DNA (ssDNA) very effectively. In the presence of a target, a hybridization event occurs, which produces a double-stranded DNA (dsDNA) that detaches from the POPD surface, leading to recovery of dye fluorescence. With the use of an oligonucleotide (OND) sequence associated with human immunodeficiency virus (HIV) as a model system, we demonstrate the proof of concept that POPD colloid-quenched fluorescent OND can be used as a probe for fluorescence-enhanced nucleic acid detection with selectivity down to single-base mismatch. PMID:21186809

  1. Probing inclusion complexes of cyclodextrins with amino acids by physicochemical approach.

    PubMed

    Roy, Mahendra Nath; Roy, Aditi; Saha, Subhadeep

    2016-10-20

    Formations of host-guest inclusion complexes of two natural amino acids, viz., l-Leucine and l-Isoleucine as guests with α and β-cyclodextrins have been investigated which include diverse applications in modern science such as controlled delivery in the field of pharmaceuticals, food processing etc. Surface tension and conductivity studies establish the formation of inclusion complexes with 1:1 stoichiometry. The interactions of cyclodextrins with amino acids have been supported by density, viscosity, refractive index, hydration and solvation number measurements indicating higher degree of inclusion in case of α-cyclodextrin. l-Leucine interacts more with the hydrophobic cavity of cyclodextrin than its isomer. With the help of stability constant by NMR titration, hydrophobic effect, H-bonds and structural effects the formations of inclusion complexes have been explained. PMID:27474589

  2. Protein adsorption on piezoelectric poly(L-lactic) acid thin films by scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Barroca, Nathalie; Vilarinho, Paula M.; Daniel-da-Silva, Ana Luisa; Wu, Aiying; Fernandes, Maria Helena; Gruverman, Alexei

    2011-03-01

    Up until now, no direct evidence of protein adsorption processes associated with polar activity of a piezoelectric has been reported. This work presents the experimental evidence of the protein adsorption process' dependence on the surface polarization of a piezoelectric by showing at the local scale that the process of protein adsorption is highly favored in the poled areas of a piezoelectric polymer such as poly(L-lactic) acid.

  3. Using modern tools to probe the structure-function relationship of fatty acid synthases

    PubMed Central

    Burkart, Michael D.

    2015-01-01

    Fatty acid biosynthesis is essential to life and represents one of the most conserved pathways in Nature, preserving the same handful of chemical reactions over all species. Recent interest in the molecular details of the de novo fatty acid synthase (FAS) has been heightened by demand for renewable fuels and the emergence of multidrug resistant bacterial strains. Central to FAS is the acyl carrier protein (ACP), a protein chaperone that shuttles the growing acyl chain between catalytic enzymes within the FAS. Human efforts to alter fatty acid biosynthesis for oil production, chemical feedstock or antimicrobial purposes has been met with limited success in part due to a lack of detailed molecular information behind the ACP-partner protein interactions inherent to the pathway. This review will focus on recently developed tools for the modification of ACP and analysis of protein-protein interactions, such as mechanism-based crosslinking, and the studies exploiting them. Discussion specific to each enzymatic domain focuses first on mechanism and known inhibitors, followed by available structures and known interactions with ACP. While significant unknowns remain, new understandings into the intricacies of FAS point to future advances in manipulating this complex molecular factory. PMID:25676190

  4. Photoluminescence by Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.

    2005-12-01

    In this dissertation talk, I will report on our study of interstellar dust through the process of photoluminescence (PL). We present the discovery of a new band of dust PL, blue luminescence (BL) with λ peak ˜ 370 nm in the proto-planetary nebula known as the Red Rectangle (RR). We attribute this to fluorescence by small, 3-4-ringed polycyclic aromatic hydrocarbon (PAH) molecules. Further analysis reveals additional independent evidence for the presence of small PAHs in this nebula. Detection of BL using long-slit spectroscopic observations in other ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR. We present the spatial distribution of the BL in these nebulae and find that the BL is spatially correlated with IR emission structures attributed to aromatic emission features (AEFs), attributed to PAHs. The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE), known now for over twenty five years, remains unidentified. We constrain the character of the ERE carrier by determining the wavelengths of the radiation that initiates the ERE -- λ < 118 nm. We note that under interstellar conditions most PAH molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. I will also present first results from ongoing work: Using narrow-band imaging, we present the optical detection of the circum-binary disk of the RR in the light of the BL, and show that the morphology of the BL and ERE emissions in the RR nebula are almost mutually exclusive. It is very suggestive to attribute them to different ionization stages of the same family of carriers such as PAH molecules. Financial support for this study was provided through NSF Grant AST0307307 to The University of Toledo.

  5. Photoluminescence by Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Vijh, U. P.

    2005-08-01

    In this dissertation, we report on our study of interstellar dust through the process of photoluminescence (PL). We present the discovery of a new band of dust PL, blue luminescence (BL) with λpeak˜370 nm in the proto-planetary nebula known as the Red Rectangle (RR). We attribute this to fluorescence by small, 3-4-ringed polycyclic aromatic hydrocarbon (PAH) molecules. Further analysis reveals additional independent evidence for the presence of small PAHs in this nebula. Detection of BL using long-slit spectroscopic observations in other ordinary reflection nebulae suggests that the BL carrier is an ubiquitous component of the ISM and is not restricted to the particular environment of the RR. We present the spatial distribution of the BL in these nebulae and find that the BL is spatially correlated with IR emission structures attributed to aromatic emission features (AEFs), attributed to PAHs. The carrier of the dust-associated photoluminescence process causing the extended red emission (ERE), known now for over twenty five years, remains unidentified. We constrain the character of the ERE carrier by determining the wavelengths of the radiation that initiates the ERE -- λ < 118 nm. We note that under interstellar conditions most PAH molecules are ionized to the di-cation stage by photons with E > 10.5 eV and that the electronic energy level structure of PAH di-cations is consistent with fluorescence in the wavelength band of the ERE. In the last few chapters of the dissertation we present first results from ongoing work: i) Using narrow-band imaging, we present the optical detection of the circum-binary disk of the RR in the light of the BL, and show that the morphology of the BL and ERE emissions in the RR nebula are almost mutually exclusive. It is very suggestive to attribute them to different ionization stages of the same family of carriers such as PAH molecules. ii) We also present a pure spectrum of the BL free of scattered light, resolved into seven

  6. Diverse Cd(II) compounds based on N-benzoyl-L-glutamic acid and N-donor ligands: Structures and photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Ma, Ning; Guo, Wei-Ying; Song, Hui-Hua; Yu, Hai-Tao

    2016-01-01

    Five new Cd(II) coordination polymers with N-benzoyl-L-glutamic acid (H2bzgluO) and different N-donor ligands, [Cd(bzgluO)(2,2‧-bipy)(H2O)]n (1), [Cd(bzgluO)(2,4‧-bipy)2(H2O)·3H2O]n (2), [Cd(bzgluO)(phen)·H2O]n (3), [Cd(bzgluO)(4,4‧-bipy)(H2O)]n (4), [Cd(bzgluO)(bpp)(H2O)·2H2O]n (5) were synthesized (2,2‧-bipy=2,2‧-bipyridine, 2,4‧-bipy=2,4‧-bipyridine, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine, bpp=1,3-di(4-pyridyl)propane). Compounds 1-2 exhibit a 1D single-chain structure. Compound 1 generates a 2D supramolecular structure via π-π stacking and hydrogen bonding, 3D architecture of compound 2 is formed by hydrogen bonding. Compound 3 features a 1D double-chain structure, which are linked by π-π interactions into a 2D supramolecular layer. Compounds 4-5 display a 2D network structure. Neighboring layers of 4 are extended into a 3D supramolecular architecture through hydrogen bonding. The structural diversity of these compounds is attributed to the effect of ancillary N-donor ligands and coordination modes of H2bzgluO. Luminescent properties of 1-5 were studied at room temperature. Circular dichroism of compounds 1, 2 and 5 were investigated.

  7. Protein induced fluorescence enhancement (PIFE) for probing protein–nucleic acid interactions

    PubMed Central

    Hwang, Helen

    2014-01-01

    Single molecule studies of protein–nucleic acid interactions shed light on molecular mechanisms and kinetics involved in protein binding, translocation, and unwinding of DNA and RNA substrates. In this review, we provide an overview of a single molecule fluorescence method, termed “protein induced fluorescence enhancement” (PIFE). Unlike FRET where two dyes are required, PIFE employs a single dye attached to DNA or RNA to which an unlabeled protein is applied. We discuss both ensemble and single molecule studies in which PIFE was utilized. PMID:24056732

  8. Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures.

    PubMed

    Yokoyama, S; Inagaki, F; Miyazawa, T

    1981-05-12

    An advanced method was developed for lanthanide-probe analyses of the conformations of flexible biomolecules such as nucleotides. The new method is to determine structure parameters (such as internal-rotation angles) and population parameters for local conformational equilibria of flexible sites, together with standard deviations of these parameters. As the prominent advantage of this method, the interrelations among local conformations of flexible sites may be quantitatively elucidated from the experimental data of lanthanide-induced shifts and relaxations and vicinal coupling constants. As a structural unit of ribonucleic acids, the molecular conformations and conformational equilibria of uridine 3'-monophosphate in aqueous solution were analyzed. The stable local conformers about the C3'-O3' bond are the G+ (phi' = 281 +/- 11 degrees) and G- (phi' = 211 +/- 8 degrees) forms. The internal rotation about the C3'-O3' bond and the ribose-ring puckering are interrelated; 97 +/- 5% of the C3'-endo ribose ring is associated with the G- form while 70 +/- 22% o the C2'-endo ribose ring is associated with the G+ form. An interdependency also exists between the internal rotation about the C4'-C5' bond and the ribose-ring puckering. These short-range conformational interrelations are probably important in controlling the dynamic aspects of ribonucleic acid structures. PMID:6166319

  9. Mitochondrial, acidic, and cytosolic pHs determination by ³¹P NMR spectroscopy: design of new sensitive targeted pH probes.

    PubMed

    Culcasi, Marcel; Thétiot-Laurent, Sophie; Atteia, Ariane; Pietri, Sylvia

    2015-01-01

    (31)P nuclear magnetic resonance (NMR) is a unique technique to monitor noninvasively the energetics of living systems at real time through the detection of a variety of phosphorylated metabolites. Using adequately designed α-aminophosphonates as external probes, we have shown earlier that (31)P NMR can also give access simultaneously to the accurate pH of cytosolic and acidic compartments in normal and stressed cultured cells or isolated perfused organs, a feature that was not possible using endogenous inorganic phosphate as the probe. More recently, we obtained a series of derivatives of these new pH probes that incorporate a triphenylphosphonium cation as a specific vector to the mitochondrion. Here, we describe the synthesis, (31)P NMR pH titrating properties in buffers, and application in cultures of the green alga Chlamydomonas reinhardtii of two of these mitochondria-targeted pH probes in comparison with one nonvectorized, yet still informative α-aminophosphonate. PMID:25634273

  10. Adaptation and validation of E-probe diagnostic nucleic acid analysis for detection of Escherichia coli O157:H7 in metagenomic data of complex food matrices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foodborne pathogens are an increasing problem threatening the US food supply. The need for rapid sensitive diagnostic tools that can address multiple types and taxonomic classes of foodbourne pathogens is growing. This paper describes the adaptation of E-probe Diagnostic Nucleic acid Analysis (EDNA)...

  11. ESTIMATION OF BACTERIAL CELL NUMBERS IN HUMIC ACID-RICH SALT MARSH SEDIMENTS WITH PROBES DIRECTED TO 16S RIBOSOMAL DNA

    EPA Science Inventory

    The feasibility of using probes directed towards ribosomal DNAs (rDNAs) as a quantitative approach to estimating cell numbers was examined and applied to study the structure of a bacterial community in humic acid-rich salt marsh sediments. Hybridizations were performed with membr...

  12. New Real-Time PCR Assay Using Locked Nucleic Acid Probes To Assess Prevalence of ParC Mutations in Fluoroquinolone-Susceptible Streptococcus pneumoniae Isolates from France

    PubMed Central

    Decousser, Jean-Winoc; Methlouthi, Imen; Pina, Patrick; Collignon, Anne; Allouch, Pierre

    2006-01-01

    A real-time PCR assay with locked nucleic acid probes was developed to screen mutations at codons 79 and 83 of the Streptococcus pneumoniae parC gene. Only silent mutations were detected among 236 French invasive fluoroquinolone-susceptible strains. This test could be useful for some high-risk patients or in national surveys. PMID:16569894

  13. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe.

    PubMed

    Wang, Jian; Chang, Yong; Wu, Wen Bi; Zhang, Pu; Lie, Shao Qing; Huang, Cheng Zhi

    2016-05-15

    Clinically, the amount of uric acid (UA) in biological fluids is closely related to some diseases such as hyperuricemia and gout, thus it is of great significance to sense UA in clinical samples. In this work, red gold nanoclusters (AuNCs) with relatively high fluorescence quantum yield and strong fluorescence emission were facilely available using bovine serum albumin (BSA) as template. The fluorescence of BSA-protected AuNCs can be sensitively quenched by H2O2, which is further capable of sensing UA through the specific catalytic oxidation with uricase, since it generates stoichiometric quantity of H2O2 by-product. The proposed assay allows for the selective detection of UA in the range of 10-800 μM with a detection limit of 6.6 μM, which is applicable to sense UA in clinical samples with satisfactory results, suggesting its great potential for diagnostic purposes. PMID:26992526

  14. Trifluorosubstrates as mechanistic probes for an FMN-dependent l-2-hydroxy acid-oxidizing enzyme.

    PubMed

    Lederer, Florence; Vignaud, Caroline; North, Paul; Bodevin, Sabrina

    2016-09-01

    A controversy exists with respect to the mechanism of l-2-hydroxy acid oxidation by members of a family of FMN-dependent enzymes. A so-called carbanion mechanism was initially proposed, in which the active site histidine abstracts the substrate α-hydrogen as a proton, followed by electron transfer from the carbanion to the flavin. But an alternative mechanism was not incompatible with some results, a mechanism in which the active site histidine instead picks up the substrate hydroxyl proton and a hydride transfer occurs. Even though more recent experiments ruling out such a mechanism were published (Rao & Lederer (1999) Protein Science 7, 1531-1537), a few authors have subsequently interpreted their results with variant enzymes in terms of a hydride transfer. In the present work, we analyse the reactivity of trifluorolactate, a substrate analogue, with the flavocytochrome b2 (Fcb2) flavodehydrogenase domain, compared to its reactivity with an NAD-dependent lactate dehydrogenase (LDH), for which this compound is known to be an inhibitor (Pogolotti & Rupley (1973) Biochem. Biophys. Res. Commun, 55, 1214-1219). Indeed, electron attraction by the three fluorine atoms should make difficult the removal of the α-H as a hydride. We also analyse the reactivity of trifluoropyruvate with the FMN- and NAD-dependent enzymes. The results substantiate a different effect of the fluorine substituents on the two enzymes compared to their normal substrates. In the discussion we analyse the conclusions of recent papers advocating a hydride transfer mechanism for the family of l-2-hydroxy acid oxidizing FMN-dependent enzymes. PMID:27155230

  15. Ancillary ligand-assisted assembly of C{sub 3}-symmetric 4,4′,4″-nitrilotribenzoic acid with divalent Zn{sup 2+} ions: Syntheses, topological structures, and photoluminescence properties

    SciTech Connect

    Cui, Li-Ting; Niu, Yan-Fei; Han, Jie; Zhao, Xiao-Li

    2015-07-15

    4,4′,4″-nitrilotribenzoic acid (H{sub 3}L), a C{sub 3}-symmetric ligand, was found to self-assemble into two polymorphs driven by intermolecular hydrogen-bonding interactions. Reactions of this ligand with Zn{sup 2+} under solvothermal conditions resulted in four new coordination polymers bearing interesting structural motifs: [Zn{sub 2}(L){sub 2}(py){sub 2}]·2(H{sub 2}NMe{sub 2}){sup +}·DMF·2H{sub 2}O (1), [Zn{sub 2}(L)(H{sub 2}L)(bipy)]·1.5H{sub 2}O·Guest (2), [Zn{sub 2}(L){sub 2}(bipy)]·2(H{sub 2}NMe{sub 2}){sup +}·2DMF (3), and [Zn{sub 3}(L){sub 2}(bpa)]·2H{sub 2}O·Guest (4) (H{sub 3}L=4,4′,4′′-nitrilotribenzoic acid, DMF=dimethylformamide, py=pyridine, bipy=4,4′-bipyridine, bpa=1,2-bis(4-pyridyl)diazene). Single-crystal structural analysis revealed that compound 1 exhibits a rare example of twofold interpenetrating anionic 3D (3,3)-net framework containing helical channels, whereas in 2, the 3D pillar-layer structure generated from bipy-pillared Zn{sub 2}(L)(H{sub 2}L) layer is further reinforced by intermolecular hydrogen bonding among pairs of free –COOH units. Compound 3 shows an interesting entangled architecture of 2D→3D parallel polycatenation consisting five-coordinated Zn{sup 2+} ions. Compound 4 displays a 3D pillar-layer framework with trimeric Zn{sub 3}(CO{sub 2}){sub 6} serving as secondary building unit (SBU). The syntheses, structures, thermal stabilities, powder X-ray diffractions and solid-state photoluminescence properties for these crystalline materials have been carried out. In addition, supramolecular assembly of H{sub 3}L under solvothermal conditions will also be addressed. - Graphical abstract: Supramolecular assembly of 4,4′,4′′-nitrilotribenzoic acid and its ligand behavior toward Zn{sup 2+} were investigated, which exhibit two polymorphs of the free acid and four metal coordination polymers bearing interesting structural motifs. - Highlights: • Two polymorphs of H{sub 3}L showing different hydrogen

  16. Probing the interaction of caffeic acid with ZnO nanoparticles.

    PubMed

    Belay, Abebe; Kim, Hyung Kook; Hwang, Yoon-Hwae

    2016-05-01

    The binding of ZnO nanoparticles (NPs) and caffeic acid (CFA) was investigated using fluorescence quenching, UV/vis absorption spectrscopy, Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) at different temperatures. The study results indicated fluorescence quenching between ZnO NPs and CFA rationalized in terms of a static quenching mechanism or the formation of non-fluorescent CFA-ZnO. From fluorescence quenching spectral analysis, the binding constant (Ka ), number of binding sites (n) and thermodynamic properties were determined. Values of the quenching (KSV ) and binding (Ka ) constants decrease with increasing temperature and the number of binding sites n = 2. The thermodynamic parameters determined using Van't Hoff equation indicated that binding occurs spontaneously involving the hydrogen bond, and van der Waal's forces played a major role in the reaction of ZnO NPs with CFA. The FTIR, TEM and DLS measurements also indicated differences in the structure, morphology and size of CFA, ZnO NPs and their corresponding CFA-ZnO. Copyright © 2015 John Wiley & Sons, Ltd. PMID:27037967

  17. Probing 3D Collective Cancer Invasion Using Double-Stranded Locked Nucleic Acid Biosensors.

    PubMed

    Dean, Zachary S; Elias, Paul; Jamilpour, Nima; Utzinger, Urs; Wong, Pak Kin

    2016-09-01

    Cancer is a leading cause of death worldwide and metastases are responsible for over 90% of human cancer deaths. There is an urgent need to develop novel therapeutics for suppressing cancer invasion, the initial step of metastasis. Nevertheless, the regulation of cancer invasion is poorly understood due to a paucity of tools for monitoring the invasion process in 3D microenvironments. Here, we report a double-stranded locked nucleic acid (dsLNA) biosensor for investigating 3D collective cancer invasion. By incorporating multiphoton microscopy and the dsLNA biosensor, we perform dynamic single cell gene expression analysis while simultaneously characterizing the biomechanical interaction between the invading sprouts and the extracellular matrix. Gene profiling of invasive leader cells and detached cells suggest distinctive signaling mechanisms involved in collective and individual invasion in the 3D microenvironment. Our results underscore the involvement of Notch signaling in 3D collective cancer invasion, which warrants further investigation toward antimetastasis therapy in the future. PMID:27529634

  18. Probing Gαi1 Protein Activation at Single Amino Acid Resolution

    PubMed Central

    Sun, Dawei; Maeda, Shoji; Matkovic, Milos; Mendieta, Sandro; Mayer, Daniel; Dawson, Roger; Schertler, Gebhard F.X.; Madan Babu, M.; Veprintsev, Dmitry B.

    2016-01-01

    We present comprehensive single amino acid resolution maps of the residues stabilising the human Gαi1 subunit in nucleotide- and receptor-bound states. We generated these maps by measuring the effects of alanine mutations on the stability of Gαi1 and of the rhodopsin-Gαi1 complex. We identified stabilization clusters in the GTPase and helical domains responsible for structural integrity and the conformational changes associated with activation. In activation cluster I, helices α1 and α5 pack against strands β1-3 to stabilize the nucleotide-bound states. In the receptor-bound state, these interactions are replaced by interactions between α5 and strands β4-6. Key residues in this cluster are Y320, crucial for the stabilization of the receptor-bound state, and F336, which stabilizes nucleotide-bound states. Destabilization of helix α1, caused by rearrangement of this activation cluster, leads to the weakening of the inter-domain interface and release of GDP. PMID:26258638

  19. Chromatographic analysis of the effects of fatty acids and glycation on binding by probes for Sudlow sites I and II to human serum albumin.

    PubMed

    Anguizola, Jeanethe; Debolt, Erin; Suresh, D; Hage, David S

    2016-05-15

    The primary endogenous ligands of human serum albumin (HSA) are non-esterified fatty acids, with 0.1-2mol of fatty acids normally being bound to HSA. In type II diabetes, fatty acid levels in serum are often elevated, and the presence of high glucose results in an increase in the non-enzymatic glycation of HSA. High-performance affinity chromatography (HPAC) was used to examine the combined effects of glycation and the presence of long chain fatty acids on the binding of HSA with R-warfarin and l-tryptophan (i.e., probes for Sudlow sites I and II, the major sites for drugs on this protein). Zonal elution competition studies were used to examine the interactions of myristic acid, palmitic acid and stearic acid with these probes on HSA. It was found that all these fatty acids had direct competition with R-warfarin at Sudlow site I of normal HSA and glycated HSA, with the glycated HSA typically having stronger binding for the fatty acids at this site. At Sudlow site II, direct competition was observed for all the fatty acids with l-tryptophan when using normal HSA, while glycated HSA gave no competition or positive allosteric interactions between these fatty acids and l-tryptophan. These data indicated that glycation can alter the interactions of drugs and fatty acids at specific binding sites on HSA. The results of this study should lead to a better understanding of how these interactions may change during diabetes and demonstrate how HPAC can be used to examine drug/solute-protein interactions in complex systems. PMID:26468085

  20. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    PubMed Central

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  1. Triplex-Forming Peptide Nucleic Acid Probe Having Thiazole Orange as a Base Surrogate for Fluorescence Sensing of Double-stranded RNA.

    PubMed

    Sato, Takaya; Sato, Yusuke; Nishizawa, Seiichi

    2016-08-01

    We have developed a new fluorescent sensing probe for double-stranded RNA (dsRNA) by integrating thiazole orange (TO) as a base surrogate into triplex-forming PNA. Our probe forms the thermally stable triplex with the target dsRNA at acidic pH; and the triplex formation is accompanied by the remarkable light-up response of the TO unit. The binding of our probe to the target dsRNA proceeds very rapidly, allowing real-time monitoring of the triplex formation. Importantly, we found the TO base surrogate in our probe functions as a universal base for the base pair opposite the TO unit in the triplex formation. Furthermore, the TO unit is significantly more responsive for the fully matched dsRNA sequence compared to the mismatch-containing sequences, which enables the analysis of the target dsRNA sequence at the single-base pair resolution. The binding and sensing functions of our probe are described for the development of fluorescent probes applicable to sensing biologically relevant dsRNA. PMID:27442229

  2. High-affinity homologous peptide nucleic acid probes for targeting a quadruplex-forming sequence from a MYC promoter element.

    PubMed

    Roy, Subhadeep; Tanious, Farial A; Wilson, W David; Ly, Danith H; Armitage, Bruce A

    2007-09-18

    Guanine-rich DNA and RNA sequences are known to fold into secondary structures known as G-quadruplexes. Recent biochemical evidence along with the discovery of an increasing number of sequences in functionally important regions of the genome capable of forming G-quadruplexes strongly indicates important biological roles for these structures. Thus, molecular probes that can selectively target quadruplex-forming sequences (QFSs) are envisioned as tools to delineate biological functions of quadruplexes as well as potential therapeutic agents. Guanine-rich peptide nucleic acids have been previously shown to hybridize to homologous DNA or RNA sequences forming PNA-DNA (or RNA) quadruplexes. For this paper we studied the hybridization of an eight-mer G-rich PNA to a quadruplex-forming sequence derived from the promoter region of the MYC proto-oncogene. UV melting analysis, fluorescence assays, and surface plasmon resonance experiments reveal that this PNA binds to the MYC QFS in a 2:1 stoichiometry and with an average binding constant Ka = (2.0 +/- 0.2) x 10(8) M(-1) or Kd = 5.0 nM. In addition, experiments carried out with short DNA targets revealed a dependence of the affinity on the sequence of bases in the loop region of the DNA. A structural model for the hybrid quadruplex is proposed, and implications for gene targeting by G-rich PNAs are discussed. PMID:17718513

  3. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe.

    PubMed

    Barros, Ana E B; Carvalho, Francisco A O; Alves, Fernanda R; Carvalho, José W P; Tabak, Marcel

    2015-03-01

    Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been monitored in the presence of denaturant agents. 8-Anilino-1-naphtalene-sulfonic acid (ANS) was used, and spectroscopic and hydrodynamic studies were developed. Dodecyltrimethylammonium bromide (DTAB) induces an increase in ANS fluorescence emission intensity, with maximum emission wavelength blue-shifted from 517 to 493 nm. Two transitions are noticed, at 2.50 and 9.50 mmol/L of DTAB, assigned to ANS interaction with pre-micellar aggregates and micelles, respectively. In oxy-HbGp, ANS binds to protein sites less exposed to solvent, as compared to DTAB micelles. In DTAB-HbGp-ANS ternary system, at pH 7.0, protein aggregation, oligomeric dissociation and unfolding were observed, while, at pH 5.0, aggregation is absent. DTAB induced unfolding process displays two transitions, one due to oligomeric dissociation and the second one, probably, to the denaturation of dissociated subunits. Moreover, guanidine hydrochloride and urea concentrations above 1.5 and 4.0 mol/L, respectively, induce the full HbGp denaturation, with reduction of ANS-bound oxy-HbGp hydrophobic patches, as noticed by fluorescence quenching up to 1.0 and 5.0 mol/L of denaturants. Our results show clearly the differences in probe sensitivity to the surfactant, in the presence and absence of protein, and new insights into the denaturant effects on HbGp unfolding. PMID:25546245

  4. Synthesis of fluorescent D-amino acids (FDAAs) and their use for probing peptidoglycan synthesis and bacterial growth in situ

    PubMed Central

    Kuru, Erkin; Tekkam, Srinivas; Hall, Edward

    2015-01-01

    Fluorescent D-amino acids (FDAAs) are efficiently incorporated into the peptidoglycan of diverse bacterial species at the sites of active peptidoglycan biosynthesis, allowing specific and covalent probing of bacterial growth with minimal perturbation. Here, we provide a protocol for the synthesis of four FDAAs emitting light in blue, green or red and for their use in peptidoglycan labeling of live bacteria. Our modular synthesis protocol gives easy access to a library of different FDAAs made with commercially available fluorophores. FDAAs can be synthesized in a typical chemistry laboratory in 2–3 days. The simple labeling procedure involves addition of the FDAAs to the bacterial sample for the desired labeling duration and stopping further label incorporation by fixation or by washing away excess dye. We discuss several scenarios for the use of these labels including short or long labeling durations, and the combination of different labels in pure culture or complex environmental samples. Depending on the experiment, FDAA labeling can take as little as 30 s for a rapidly growing species such as Escherichia coli. PMID:25474031

  5. Application of steered molecular dynamics (SMD) to study DNA drug complexes and probing helical propensity of amino acids

    NASA Astrophysics Data System (ADS)

    Orzechowski, Marek; Cieplak, Piotr

    2005-05-01

    We present the preliminary results of two computer experiments involving the application of an external force to molecular systems. In the first experiment we simulated the process of pulling out a simple intercalator, the 9-aminoacridine molecule, from its complex with a short DNA oligonucleotide in aqueous solution. Removing a drug from the DNA is assumed to be an opposite process to the complex formation. The force and energy profiles suggest that formation of the DNA-9-aminoacridine complex is preferred when the acridine approaches the DNA from the minor groove rather than the major groove side. For a given mode of pulling the intercalation process is also shown to be nucleotide sequence dependent. In another computer experiment we performed a series of molecular dynamics simulations for stretching short, containing 15 amino acids, helical polypeptides in aqueous solution using an external force. The purpose of these simulations is to check whether this type of approach is sensitive enough to probe the sequence dependent helical propensity of short polypeptides.

  6. The application of peptide nucleic acid probes for rapid detection and enumeration of eubacteria, Staphylococcus aureus and Pseudomonas aeruginosa in recreational beaches of S. Florida.

    PubMed

    Esiobu, Nwadiuto; Mohammed, Renuka; Echeverry, Andrea; Green, Melissa; Bonilla, Tonya; Hartz, Aaron; McCorquodale, Don; Rogerson, Andrew

    2004-05-01

    A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, Staphylococcus aureus and Pseudomonas aeruginosa, was achieved within 6-8 h of processing. Following 5 h of incubation on TSA, soybean peroxidase-labeled peptide nucleic acid probes (Boston Probes, Boston, MA) targeting species-specific 16S rRNA sequences of P. aeruginosa and S. aureus were used to hybridize microcolonies of the target species in-situ. In addition, a universal probe for 16S rRNA sequences was used to target the eubacteria. Probes were detected after a light generating reaction with a chemiluminescent substrate and their presence recorded on Polaroid film. The probes showed limited cross-reactivity with mixed indigenous bacteria extracted from seawater and sand by shaking with phosphate-buffered saline (PBS). Specificity and cross-reactivity was tested on the reference bacterial genera Pseudomonas, Staphylococcus, Vibrio, Shigella, Salmonella, Acinetobacter, Enterobacter, Escherichia and Citrobacter. These tests confirmed that the probes were specific for the microorganisms of interest and were unaffected by high salt levels. The results of the PNA chemiluminescent in situ hybridization were compared with traditional plate count methods (PCM) for total 'freshwater' eubacteria, S. aureus and P. aeruginosa. Counts of eubacteria and S. aureus were comparable with numbers obtained from traditional plate counts but levels of P. aeruginosa were higher with PNA than with PCM. It is possible that PNA is more sensitive than PCM because it can detect microcolonies on the agar surface that never fully develop with the plate count method. We conclude that the in situ hybridization technique used here represents an important potential tool for the rapid monitoring of novel indicator organisms in

  7. Development of a BODIPY-based ratiometric fluorescent probe for hypochlorous acid and its application in living cells.

    PubMed

    Wang, Xuzhe; Zhou, Li; Qiang, Fei; Wang, Feiyi; Wang, Rui; Zhao, Chunchang

    2016-03-10

    A BODIPY-based ratiometric fluorescent probe for HOCl has been designed based on the transduction of thioether to sulfoxide function. This probe features a marked absorption and emission blue-shift upon the HOCl-promoted rapid transduction, enabling the highly selective and ratiometric detection. In addition, the probe works excellently within a wide pH range of 4-10, addressing the existing pH dependency issue. Living cells studies demonstrate that the probe is cell membrane permeable and can be employed successfully to image endogenous HOCl generation in macrophage cells. PMID:26893093

  8. Investigation of the distribution of acidity strength in zeolites by temperature-programmed desorption of probe molecules. 2. Dealuminated Y-type zeolites

    SciTech Connect

    Karge, H.G.; Dondur, V. ); Weitkamp, J. )

    1991-01-10

    The acidity of dealuminated hydrogen forms of Y-type zeolites (Si/Al = 2.4-8.6) is determined by temperature-programmed desorption of ammonia or pyridine, which is monitored through a mass spectrometer. Four types of acidic sites are indicated by ammonia, viz., weak Broensted and/or Lewis centers and medium and strong Broensted and strong Lewis sites. In contrast, pyridine, after sample activation at 675 K, probed only two types of sites, i.e., medium and strong Broensted sites. This difference is ascribed to different accessibility of sites for the two probe molecules. From the desorption spectra (i) the fractional coverage of the various sites, (ii) the most frequent energies of activation, {anti E}{sub d}, for desorption, and (iii) the probability functions of the activation energies are derived by using a previously described method of evaluation.

  9. A unique "turn-on" fluorescence signalling strategy for highly specific detection of ascorbic acid using carbon dots as sensing probe.

    PubMed

    Fong, Jessica Fung Yee; Chin, Suk Fun; Ng, Sing Muk

    2016-11-15

    Carbon dots (CDs) that showed strong blue fluorescence were successfully synthesised from sodium alginate via furnace pyrolysis. The single step pyrolytic synthesis was simple to perform while yielded CDs with high photostability, good water solubility and minimum by-products. In order to design the probe with "turn-on" sensing capability, the CDs were screened against a series of metal cations to first "turn-off" the fluorescence. It was found that ferric ions (Fe(3+)) were most responsive and effective in quenching the fluorescence of CDs. Based on this observation, the conditioning of the probe was performed to ensure the fluorescence was completely quenched, while not overloading the system with Fe(3+). At the optimised condition, the CDs-Fe(3+) mixture served as a highly specific detection probe for ascorbic acid (AA). The analytical potential of the probe was evaluated and showed a good linear range of response for AA concentration of 24-40μg/mL. The selectivity study against other possible co-existing species was carried out and proved that our unique "turn-on" fluorescence signalling strategy was highly effective and selective towards AA as the target analyte. The probe was demonstrated for quantification of AA in real samples, which was the commercially available vitamin C supplement. The result showed good accuracy with minimum deviation from standard method adopted for validation purpose. PMID:27290666

  10. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes

    PubMed Central

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  11. Unravelling the Bacterial Vaginosis-Associated Biofilm: A Multiplex Gardnerella vaginalis and Atopobium vaginae Fluorescence In Situ Hybridization Assay Using Peptide Nucleic Acid Probes.

    PubMed

    Hardy, Liselotte; Jespers, Vicky; Dahchour, Nassira; Mwambarangwe, Lambert; Musengamana, Viateur; Vaneechoutte, Mario; Crucitti, Tania

    2015-01-01

    Bacterial vaginosis (BV), a condition defined by increased vaginal discharge without significant inflammation, is characterized by a change in the bacterial composition of the vagina. Lactobacillus spp., associated with a healthy vaginal microbiome, are outnumbered by BV-associated organisms. These bacteria could form a polymicrobial biofilm which allows them to persist in spite of antibiotic treatment. In this study, we examined the presence of Gardnerella vaginalis and Atopobium vaginae in vaginal biofilms using Peptide Nucleic Acid (PNA) probes targeting these bacteria. For this purpose, we developed three new PNA probes for A. vaginae. The most specific A. vaginae probe, AtoITM1, was selected and then used in an assay with two existing probes, Gard162 and BacUni-1, to evaluate multiplex FISH on clinical samples. Using quantitative polymerase chain reaction (qPCR) as the gold standard, we demonstrated a sensitivity of 66.7% (95% confidence interval: 54.5% - 77.1%) and a specificity of 89.4% (95% confidence interval: 76.1% - 96%) of the new AtoITM1 probe. FISH enabled us to show the presence of a polymicrobial biofilm in bacterial vaginosis, in which Atopobium vaginae is part of a Gardnerella vaginalis-dominated biofilm. We showed that the presence of this biofilm is associated with high bacterial loads of A. vaginae and G. vaginalis. PMID:26305575

  12. Radioluminescence and photoluminescence of Th:CaF2 crystals

    PubMed Central

    Stellmer, Simon; Schreitl, Matthias; Schumm, Thorsten

    2015-01-01

    We study thorium-doped CaF2 crystals as a possible platform for optical spectroscopy of the 229Th nuclear isomer transition. We anticipate two major sources of background signal that might cover the nuclear spectroscopy signal: VUV-photoluminescence, caused by the probe light, and radioluminescence, caused by the radioactive decay of 229Th and its daughters. We find a rich photoluminescence spectrum at wavelengths above 260 nm, and radioluminescence emission above 220 nm. This is very promising, as fluorescence originating from the isomer transition, predicted at a wavelength shorter than 200 nm, could be filtered spectrally from the crystal luminescence. Furthermore, we investigate the temperature-dependent decay time of the luminescence, as well as thermoluminescence properties. Our findings allow for an immediate optimization of spectroscopy protocols for both the initial search for the nuclear transition using synchrotron radiation, as well as future optical clock operation with narrow-linewidth lasers. PMID:26502749

  13. Radioluminescence and photoluminescence of Th:CaF2 crystals.

    PubMed

    Stellmer, Simon; Schreitl, Matthias; Schumm, Thorsten

    2015-01-01

    We study thorium-doped CaF2 crystals as a possible platform for optical spectroscopy of the (229)Th nuclear isomer transition. We anticipate two major sources of background signal that might cover the nuclear spectroscopy signal: VUV-photoluminescence, caused by the probe light, and radioluminescence, caused by the radioactive decay of (229)Th and its daughters. We find a rich photoluminescence spectrum at wavelengths above 260 nm, and radioluminescence emission above 220 nm. This is very promising, as fluorescence originating from the isomer transition, predicted at a wavelength shorter than 200 nm, could be filtered spectrally from the crystal luminescence. Furthermore, we investigate the temperature-dependent decay time of the luminescence, as well as thermoluminescence properties. Our findings allow for an immediate optimization of spectroscopy protocols for both the initial search for the nuclear transition using synchrotron radiation, as well as future optical clock operation with narrow-linewidth lasers. PMID:26502749

  14. Fluorescence determination of DNA with 1-pyrenebutyric acid nanoparticles coated with β-cyclodextrin as a fluorescence probe

    NASA Astrophysics Data System (ADS)

    Wang, Lun; Bian, Guirong; Wang, Leyu; Dong, Ling; Chen, Hongqi; Xia, Tingting

    2005-04-01

    A novel ultrasonication method has been successfully developed for the preparation of 1-pyrenebutyric acid (PBAC)/β-cyclodextrin(β-CD) complex nanoparticles. The as-prepared nanoparticles are characterized by transmission electron microscopy (TEM), fluorescence excitation and emission spectroscopy. Complex nanoparticles prepared with ultrasonication are smaller and better dispersed than single PBAC nanoparticles. At pH 3.0, the relative fluorescence intensity of complex nanoparticles of PBAC/β-CD can be quenched by the concentration of DNA. Based on this, a novel fluorimetric method has been developed for rapid determination of DNA. In comparison with single organic fluorophores, these nanoparticle probes are better water-solubility, more stable and do not suffer from blinking. Under optimum conditions, the calibration graphs are linear over the range 0.2-15 μg mL -1 for calf thymus DNA (ct-DNA) and 0.3-12 μg mL -1 for fish sperm DNA (fs-DNA). The corresponding detection limit is 0.01 μg mL -1 for ct-DNA and 0.02 μg mL -1 for fs-DNA. The relative standard deviation of seven replicate measurements is 1.2% for 2.0 μg mL -1 ct-DNA and 1.4% for 2.0 μg mL -1 fs-DNA, respectively. The method is simple and sensitive. The recovery and relative standard deviation are very satisfactory. A mechanism proposed to explain the process also has been studied.

  15. Analysis of protein-protein interactions in MCF-7 and MDA-MB-231 cell lines using phthalic acid chemical probes.

    PubMed

    Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein-protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641

  16. Analysis of Protein–Protein Interactions in MCF-7 and MDA-MB-231 Cell Lines Using Phthalic Acid Chemical Probes

    PubMed Central

    Liang, Shih-Shin; Wang, Tsu-Nai; Tsai, Eing-Mei

    2014-01-01

    Phthalates are a class of plasticizers that have been characterized as endocrine disrupters, and are associated with genital diseases, cardiotoxicity, hepatotoxicity, and nephrotoxicity in the GeneOntology gene/protein database. In this study, we synthesized phthalic acid chemical probes and demonstrated differing protein–protein interactions between MCF-7 cells and MDA-MB-231 breast cancer cell lines. Phthalic acid chemical probes were synthesized using silicon dioxide particle carriers, which were modified using the silanized linker 3-aminopropyl triethoxyslane (APTES). Incubation with cell lysates from breast cancer cell lines revealed interactions between phthalic acid and cellular proteins in MCF-7 and MDA-MB-231 cells. Subsequent proteomics analyses indicated 22 phthalic acid-binding proteins in both cell types, including heat shock cognate 71-kDa protein, ATP synthase subunit beta, and heat shock protein HSP 90-beta. In addition, 21 MCF-7-specific and 32 MDA-MB-231 specific phthalic acid-binding proteins were identified, including related proteasome proteins, heat shock 70-kDa protein, and NADPH dehydrogenase and ribosomal correlated proteins, ras-related proteins, and members of the heat shock protein family, respectively. PMID:25402641

  17. Systematic safety evaluation on photoluminescent carbon dots

    PubMed Central

    2013-01-01

    Photoluminescent carbon dots (C-dots) were prepared using the improved nitric acid oxidation method. The C-dots were characterized by tapping-mode atomic force microscopy, and UV–vis absorption spectroscopy. The C-dots were subjected to systematic safety evaluation via acute toxicity, subacute toxicity, and genotoxicity experiments (including mouse bone marrow micronuclear test and Salmonella typhimurium mutagenicity test). The results showed that the C-dots were successfully prepared with good stability, high dispersibility, and water solubility. At all studied C-dot dosages, no significant toxic effect, i.e., no abnormality or lesion, was observed in the organs of the animals. Therefore, the C-dots are non-toxic to mice under any dose and have potential use in fluorescence imaging in vivo, tumor cell tracking, and others. PMID:23497260

  18. Systematic safety evaluation on photoluminescent carbon dots

    NASA Astrophysics Data System (ADS)

    Wang, Kan; Gao, Zhongcai; Gao, Guo; Wo, Yan; Wang, Yuxia; Shen, Guangxia; Cui, Daxiang

    2013-03-01

    Photoluminescent carbon dots (C-dots) were prepared using the improved nitric acid oxidation method. The C-dots were characterized by tapping-mode atomic force microscopy, and UV-vis absorption spectroscopy. The C-dots were subjected to systematic safety evaluation via acute toxicity, subacute toxicity, and genotoxicity experiments (including mouse bone marrow micronuclear test and Salmonella typhimurium mutagenicity test). The results showed that the C-dots were successfully prepared with good stability, high dispersibility, and water solubility. At all studied C-dot dosages, no significant toxic effect, i.e., no abnormality or lesion, was observed in the organs of the animals. Therefore, the C-dots are non-toxic to mice under any dose and have potential use in fluorescence imaging in vivo, tumor cell tracking, and others.

  19. New organically templated photoluminescence iodocuprates(I)

    SciTech Connect

    Hou Qin; Zhao Jinjing; Zhao Tianqi; Jin Juan; Yu Jiehui; Xu Jiqing

    2011-07-15

    Two types of organic cyclic aliphatic diamine molecules piperazine (pip) and 1,3-bis(4-piperidyl)propane (bpp) were used, respectively, to react with an inorganic mixture of CuI and KI in the acidic CH{sub 3}OH solutions under the solvothermal conditions, generating finally three new organically templated iodocuprates as 2-D layered [(Hpip)Cu{sub 3}I{sub 4}] 1, 1-D chained [tmpip][Cu{sub 2}I{sub 4}] 2 (tmpip=N,N,N',N'-tetramethylpiperazinium) and dinuclear [H{sub 2}bpp]{sub 2}[Cu{sub 2}I{sub 5}] I.2H{sub 2}O 3. Note that the templating agent tmpip{sup 2+} in compound 2 originated from the in situ N-alkylation reaction between the pip molecule and the methanol solvent. The photoluminescence analysis indicates that the title compounds emit the different lights: yellow for 1, blue for 2 and yellow-green for 3, respectively. - Graphical abstract: The solvothermal self-assemblies of CuI, KI and pip/bpp in acidic CH{sub 3}OH solutions created three iodocuprates 2-D layered [(Hpip)Cu{sub 3}I{sub 4}] 1, 1-D chained [tmpip][Cu{sub 2}I{sub 4}] 2 and dinuclear [H{sub 2}bpp]{sub 2}[Cu{sub 2}I{sub 5}] I.2H{sub 2}O 3. Highlights: > A new layered iodocuprate(I) with 20-membered rings was hydrothermally prepared. > A simple approach to prepare the new organic templating agent was reported. > Photoluminescence analysis indicates the emission for iodocuprate(I) is associated with the Cu...Cu interactions.

  20. On the pH-dependent quenching of quantum dot photoluminescence by redox active dopamine.

    PubMed

    Ji, Xin; Palui, Goutam; Avellini, Tommaso; Na, Hyon Bin; Yi, Chongyue; Knappenberger, Kenneth L; Mattoussi, Hedi

    2012-04-01

    We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine-isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from

  1. Red photoluminescence BCNO synthesized from graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Kang, Yue; Chu, Zeng-yong; Ma, Tian; Li, Wei-ping; Zhang, Dong-jiu; Tang, Xiao-yu

    2016-01-01

    In this paper, we demonstrate the conversion of graphene oxide (GO) into boron carbon oxynitride (BCNO) hybrid nanosheets via a reaction with boric acid and urea, during which the boron and nitrogen atoms are incorporated into graphene nanosheets. The experimental results reveal that GO is important for the photoluminescence (PL) BCNO phosphor particles. More importantly, in this system, the prepared BCNO phosphors can be used to prepare the materials needed for red light emitting diodes (LEDs).

  2. Photoluminescence quenching in a polymer thin-film field-effect luministor

    NASA Astrophysics Data System (ADS)

    Dyreklev, P.; Inganas, O.; Paloheimo, J.; Stubb, H.

    1992-03-01

    Photoluminescence quenching is observed in thin films of poly(3-hexylthiophene) and Langmuir-Blodgett films of poly(3-hexylthiophene)/arachidic acid due to the injection of positive charges in the polymer. Charge injection was made in a polymer field-effect transistor. The quenching is discussed in terms of polarons/bipolarons acting as recombination centra for the excitons and suppress the photoluminescence. The inverse phenomenon, luminescence enhancement by depletion of charges, is also achieved.

  3. Indole-3-acetic acid biosensor based on G-rich DNA labeled AuNPs as chemiluminescence probe coupling the DNA signal amplification

    NASA Astrophysics Data System (ADS)

    Hun, Xu; Mei, Zhenghua; Wang, Zhouping; He, Yunhua

    2012-09-01

    A highly sensitive chemiluminescence (CL) method for detection of phytohormone indole-3-acetic acid (IAA) was developed by using G-rich DNA labeled gold nanoparticles (AuNPs) as CL probe coupling the DNA signal amplification technology. The IAA antibody was immobilized on carboxyl terminated magnetic beads (MBs). In the presence of IAA, antibody labeled AuNPs were captured by antibody functionalized MBs. The DNA on AuNPs is released by a ligand exchange process induced by the addition of DTT. The released DNA is then acted as the linker and hybridized with the capture DNA on MBs and probe DNA on AuNPs CL probe. The CL signal is obtained via the instantaneous derivatization reaction between a specific CL reagent, 3,4,5-trimethoxyl-phenylglyoxal (TMPG), and the G-rich DNA on AuNPs CL probe. IAA can be detected in the concentration range from 0.02 ng/mL to 30 ng/mL, and the limit of detection is 0.01 ng/mL.

  4. A label-free fluorescent probe based on DNA-templated silver nanoclusters and exonuclease III-assisted recycling amplification detection of nucleic acid.

    PubMed

    Yang, Wen; Tian, Jianniao; Ma, Yefei; Wang, Lijun; Zhao, Yanchun; Zhao, Shulin

    2015-11-01

    A number of specific nucleic acids are closely related with many serious diseases, in the current research, a platform taking advantage of exonuclease III (Exo III) to realize double recycling amplification and label-free fluorescent DNA-templated silver nanoclusters (DNA-AgNCs) for detecting of nucleic acid had been developed. In this method, a molecular beacon (MB) with 3'-protruding termini and a single-stranded cytosine-rich (C-rich) probe were designed that coexist stably with Exo III. Once the target DNA appeared, portion of the MB could hybridize with target DNA and was digested by Exo III, which allowed the release of target DNA and a residual sequence. Subsequently, the residual sequence could trigger the Exo III to digest C-rich probe, and the DNA-AgNCs was not able to be synthesized because of the C-rich probe was destroyed; finally the fluorescent of solution was quenched. This assay enables to monitor human hemochromatosis gene (as a model) with high sensitivity, the detection limit is as low as 120 pM compared with other fluorescence DNA-AgNCs methods, this assay also exhibits superior specificity even against single base mismatch. The strategy is applied to detect human hemochromatosis gene in real human serum samples successfully. PMID:26572843

  5. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    PubMed Central

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  6. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals.

    PubMed

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-01-01

    In this work we report on temperature-dependent photoluminescence measurements (15-300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system. PMID:27296771

  7. Photoluminescent thermometry based on europium-activated calcium sulphide.

    PubMed

    Samulski, T V; Chopping, P T; Haas, B

    1982-01-01

    A photoluminescent thermometer, based on the transient emission response of a europium-activated calcium sulphide phosphor, is described in detail. This optical thermometry system has special advantages for temperature measurements in microwave and RF fields and potential application in electromagnetically induced clinical hyperthermia. A laboratory system has been constructed which utilises a fibreoptic probe with external diameter 0.8 mm. A system temperature resolution of 0.1 degree C has been achieved in the range 37-47 degrees C. PMID:6965160

  8. Temperature-dependent photoluminescence of surface-engineered silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Mitra, Somak; Švrček, Vladimir; Macias-Montero, Manual; Velusamy, Tamilselvan; Mariotti, Davide

    2016-06-01

    In this work we report on temperature-dependent photoluminescence measurements (15–300 K), which have allowed probing radiative transitions and understanding of the appearance of various transitions. We further demonstrate that transitions associated with oxide in SiNCs show characteristic vibronic peaks that vary with surface characteristics. In particular we study differences and similarities between silicon nanocrystals (SiNCs) derived from porous silicon and SiNCs that were surface-treated using a radio-frequency (RF) microplasma system.

  9. Cellular delivery of quantum dot-bound hybridization probe for detection of intracellular pre-microRNA using chitosan/poly(γ-glutamic acid) complex as a carrier.

    PubMed

    Geng, Yao; Lin, Dajie; Shao, Lijia; Yan, Feng; Ju, Huangxian

    2013-01-01

    A quantum dot (QD)-bound hybridization probe was designed for detection of intracellular pre-miRNA using chitosan (CS)/poly(γ-glutamic acid) (γ-PGA) complex as a gene vector. The probe was prepared by assembling thiolated RNA to gold nanoparticle (Au NP) via Au-S bond and then binding 3'-end amine of the RNA to the carboxy group capped on quantum dot surface. The QD-RNA-Au NP probe was assembled on the vector by mixing with aqueous γ-PGA solution and then CS solution to construct a gene delivery system for highly effective cellular uptake and delivery. After the probe was released from CS/γ-PGA complex to the cytoplasm by electrostatic repulsion at intracellular pH, it hybridized with pre-miRNA precursor as target. The formed product was then cleaved by RNase III Dicer, leading to the separation of QDs from Au NPs and fluorescence emission of QDs, which could be detected by confocal microscopic imaging to monitor the amount of the intracellular pre-miRNA precursor. The in vitro assays revealed that the QD-RNA-Au NP was a robust, sensitive and selective probe for quantitative detection of target pre-miRNA. Using MDA-MB231 and MCF-7 breast cancer cells as models, the relative amount of pre-miRNA let-7a could be successfully compared. Since the amount of miRNA is related to the progress and prognosis of cancer, this strategy could be expected to hold promising application potential in medical research and clinical diagnostics. PMID:23762388

  10. Thioglycolic Acid-Capped CdS Quantum Dots Conjugated to α-Amylase as a Fluorescence Probe for Determination of Starch at Low Concentration.

    PubMed

    Tayebi, Mahnoush; Tavakkoli Yaraki, Mohammad; Mogharei, Azadeh; Ahmadieh, Mahnaz; Tahriri, Mohammadreza; Vashaee, Daryoosh; Tayebi, Lobat

    2016-09-01

    In the present research, water soluble thioglycolic acid-capped CdS quantum dots (QDs) were synthesized by chemical precipitation method. The characteristics of prepared quantum dots were determined using X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). The obtained results revealed that CdS QDs have 5.60 nm crystallite size, hexagonal wurtzite structure and spherical morphology with less than 10 nm diameter. The photoluminescence (PL) spectroscopy was performed in order to study the effect of the presence of starch solutions. Blue emission peaks were positioned at 488 nm and its intensity quenched by increasing the concentration of starch solutions. The result of PL quenches in range of studied concentrations (0-100 ppm) was best described by Michaelis-Menten model. The amount of Michaelis constant (Km) for immobilized α-amylase in this system was about 68.08 ppm which showed a great tendency of enzyme to hydrolyze the starch as substrate. Finally, the limit of detection (LOD) was found to be about 2.24 ppm. PMID:27392974

  11. A naphthalene-based two-photon fluorescent probe for selective and sensitive detection of endogenous hypochlorous acid.

    PubMed

    Zhou, Xiao-Hong; Jiang, Yu-Ren; Zhao, Xiong-Jie; Guo, Dong

    2016-11-01

    An efficient naphthalene-based two-photon fluorescent probe for endogenous HClO has been reported in the present study, which consists of a 6-(2-benzothiazolyl)-2-naphthalenol fluorophore connected with a 4-aminophenol (the fluorescence quenching and response group). This probe exhibits a high selectivity and excellent sensitivity with a detection limit of 7.6nM over other reactive oxygen species and analyte species, and the fluorescence intensity enhanced 103-fold when responsed. Furthermore, it was successfully used for two-photon imaging of endogenous HClO in live cells with high-resolution. PMID:27591640

  12. Neuronal acid-induced [Zn²⁺]i elevations calibrated using the low-affinity ratiometric probe FuraZin-1.

    PubMed

    Kiedrowski, Lech

    2015-11-01

    The experiments were carried out on primary cultures of murine cortical neurons from cryopreserved preparations obtained from embryonic-day-16 fetuses. To calibrate acid-induced intracelluar [Zn(2+) ] ([Zn(2+) ]i ) elevations, a low affinity (Kd = 39 μM at pH 6.1) ratiometric Zn(2+) probe, FuraZin-1, was used. A pHi drop from 7.2 to 6.1 caused [Zn(2+) ]i elevations reaching 2 μM; when the thiol-reactive agent N-ethylmaleimide (NEM) was subsequently applied, [Zn(2+) ]i increased further to 5.6 μM; analogous acid- and NEM-induced [Zn(2+) ]i elevations could also be detected but not calibrated, using the high affinity Zn(2+) probe FluoZin-3. The data indicate that NEM causes Zn(2+) release from ligands that chelate Zn(2+) at pH 6.1. ATP could also chelate Zn(2+) at pH 6.1 because its pKa is about 6.8. Therefore, it was tested whether an ATP depletion affects the acid-induced [Zn(2+) ]i elevations. The ATP depletion was induced by inhibiting mitochondrial and glycolytic ATP production. Interestingly, an almost complete ATP depletion (confirmed using a luciferin/luciferase assay) failed to affect the acid-induced [Zn(2+) ]i increases. These data suggest that the total amount of Zn(2+) accumulated in intracellular ATP-dependent stores (Zn(2+) -ATP complexes and organelles that accumulate Zn(2+) in an ATP-dependent manner) is negligible compared to the amount of Zn(2+) accumulated in the acid-sensitive intracellular ligands. In vitro, upon acidification, Zn(2+) -cysteine complexes release Zn(2+) and ATP chelates the released Zn(2+) . However, in vivo (cultured neurons), an ATP depletion failed to enhance acid-induced [Zn(2+) ]i elevations. These [Zn(2+) ]i elevations were calibrated using a low affinity ratiometric probe FuraZin-1; they reached 2 µM levels and increased to 5 µM when a thiol-reactive agent, N-ethylmaleimide, compromised Zn(2+) binding by cysteines. PMID:26263185

  13. Sensitive, Efficient Quantitation of 13C-Enriched Nucleic Acids via Ultrahigh-Performance Liquid Chromatography–Tandem Mass Spectrometry for Applications in Stable Isotope Probing

    PubMed Central

    Wilhelm, Roland; Szeitz, András; Klassen, Tara L.

    2014-01-01

    Stable isotope probing (SIP) of nucleic acids is a powerful tool for studying the functional traits of microbial populations within complex communities, but SIP involves a number of technical challenges. Many of the difficulties in DNA-SIP and RNA-SIP experiments can be effectively overcome with an efficient, sensitive method for quantitating the isotopic enrichment of nucleic acids. Here, we present a sensitive method for quantitating 13C enrichment of nucleic acids, requiring a few nanograms of sample, and we demonstrate its utility in typical DNA-SIP and RNA-SIP experiments. All five nucleobases (adenine, guanine, cytosine, thymine, and uracil) were separated and detected by using ultrahigh-performance liquid chromatography–tandem mass spectrometry. We detected all isotopic species in samples with as low as 1.5 atom% 13C above natural abundance, using 1-ng loadings. Quantitation was used to characterize the isotopic enrichment kinetics of cellulose- and lignin-based microcosm experiments and to optimize the recovery of enriched nucleic acids. Application of our method will minimize the quantity of expensive isotopically labeled substrates required and reduce the risk of failed experiments due to insufficient recovery of labeled nucleic acids for sequencing library preparation. PMID:25217022

  14. Fluorescence In Situ Hybridization Using Peptide Nucleic Acid Probes for Rapid Detection of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. paratuberculosis in Potable-Water Biofilms

    PubMed Central

    Lehtola, Markku J.; Torvinen, Eila; Miettinen, Ilkka T.; Keevil, C. William

    2006-01-01

    Here, we present for the first time a high-affinity peptide nucleic acid (PNA) oligonucleotide sequence for detecting Mycobacterium avium bacteria, including the opportunistically pathogenic subspecies M. avium subsp. avium, M. avium subsp. paratuberculosis, and M. avium subsp. silvaticum, by the fluorescence in situ hybridization (FISH) method. There is evidence that M. avium subsp. avium especially is able to survive and grow in drinking-water biofilms and possibly transmit via drinking water. The designed PNA probe (MAV148) specificity was tested with several bacterial species, including other mycobacteria and mycolic acid-containing bacteria. From the range of bacterial strains tested, only M. avium subsp. avium and M. avium subsp. paratuberculosis strains were hybridized. The PNA FISH method was applied successfully to detect M. avium subsp. avium spiked in water samples and biofilm established within a Propella biofilm reactor fed with potable water from a distribution supply. PMID:16391126

  15. How Cation-Pi Interactions Enhance and Structure the Binding of Metal Ions to Amino Acids and Peptides. Dialanine Probed by Irmpd Spectroscopy as a Prime Example

    NASA Astrophysics Data System (ADS)

    Dunbar, Robert C.; Steill, Jeffrey; Oomens, Jos

    2010-06-01

    Spectroscopic examination of metalated amino acids and model peptides in the infrared region gives incisive conformational information. The role of cation-pi interactions of the metal ions with aromatic amino acids in structuring the complexes and enforcing particular architectures is being clarified by such experiments using IRMPD action spectroscopy as the experimental probe. The presence of multiple aromatic groups as in dialanine gives particularly stringent conformational stabilization. Comparing spectroscopic peak shifts across a range of alkali and alkaline earth metal ions, ranging from lithium to cesium, and from calcium to barium, allows us to view the systematic relations between normal mode frequencies and ion/peptide interactions. The spectra of the ions were acquired by irradiating the cell of the Fourier-transform ion cyclotron resonance mass spectrometer with infrared light from the FELIX free electron laser at wavelengths in the approximate range 500 to 1900 cm-1.

  16. 3,4,9,10-perylenetetracarboxylic acid/hemin nanocomposites act as redox probes and electrocatalysts for constructing a pseudobienzyme-channeling amplified electrochemical aptasensor.

    PubMed

    Yuan, Yali; Yuan, Ruo; Chai, Yaqin; Zhuo, Ying; Gan, Xianxue; Bai, Lijuan

    2012-10-29

    A simple wet-chemical strategy for the synthesis of 3,4,9,10-perylenetetracarboxylic acid (PTCA)/hemin nanocomposites through π-π interactions is demonstrated. Significantly, the hemin successfully conciliates PTCA redox activity with a pair of well-defined redox peaks and intrinsic peroxidase-like activity, which provides potential application of the PTCA self-derived redox activity as redox probes. Additionally, PTCA/hemin nanocomposites exhibit a good membrane-forming property, which not only avoids the conventional fussy process for redox probe immobilization, but also reduces the participation of the membrane materials that act as a barrier of electron transfer. On the basis of these unique properties, a pseudobienzyme-channeling amplified electrochemical aptasensor is developed that is coupled with glucose oxidase (GOx) for thrombin detection by using PTCA/hemin nanocomposites as redox probes and electrocatalysts. With the addition of glucose to the electrolytic cell, the GOx on the aptasensor surface bioelectrocatalyzed the reduction of glucose to produce H(2)O(2), which in turn was electrocatalyzed by the PTCA/hemin nanocomposites. Cascade schemes, in which an enzyme is catalytically linked to another enzyme, can produce signal amplification and therefore increase the biosensor sensitivity. As a result, a linear relationship for thrombin from 0.005 to 20 nM and a detection limit of 0.001 nM were obtained. PMID:23001991

  17. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Hao, Yan-Hong; Liu, Ming-Zhou; Yue, Jiang; Ni, Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-09-01

    Cytochrome P450 metabolites of arachidonic acid (AA) belong to eicosanoids and are potent lipid mediators of inflammation. It is well-known that eicosanoids play an important role in numerous pathophysiological processes. Therefore, quantitative analysis of cytochrome P450 metabolites of AA, including hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatreinoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs) can provide crucial information to uncover underlying mechanisms of cytochrome P450 metabolites of AA related diseases. Herein, we developed a highly sensitive method to identify and quantify HETEs, EETs, and DHETs in lipid extracts of biological samples based on stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. To this end, a pair of stable isotope probes, 2-dimethylaminoethylamine (DMED) and d4-2-dimethylaminoethylamine (d4-DMED), were utilized to facilely label eicosanoids. The heavy labeled eicosanoid standards were prepared and used as internal standards for quantification to minimize the matrix and ion suppression effects in mass spectrometry analysis. In addition, the detection sensitivities of DMED labeled eicosanoids improved by 3-104 folds in standard solution and 5-138 folds in serum matrix compared with unlabeled analytes. Moreover, a good separation of eicosanoids isomers was achieved upon DMED labeling. The established method provided substantial sensitivity (limit of quantification at sub-picogram), high specificity, and broad linear dynamics range (3 orders of magnitude). We further quantified cytochrome P450 metabolites of AA in rat liver, heart, brain tissues and human serum using the developed method. The results showed that 19 eicosanoids could be distinctly detected and the contents of 11-, 15-, 16-, 20-HETE, 5,6-EET, and 14,15-EET in type 2 diabetes mellitus patients and 5-, 11-, 12-, 15-, 16-, 20-HETE, 8,9-EET, and 5,6-DHET in myeloid leukemia patients had significant changes

  18. Photoluminescence of Conjugated Star Polymers

    NASA Astrophysics Data System (ADS)

    Ferguson, J. B.; Prigodin, N. V.; Epstein, A. J.; Wang, F.

    2000-10-01

    Higher dimensionality "star" polymers provide new properties beyond those found in their linear analogs. They have been used to improving electronic properties for nonlinear optics through exciton transfer and molecular antenna structures for example (M. Kawa, J. M. J. Frechet, Chem. Mater. 10, 286 (1998).). We report on photoluminescence properties of star polymers with a hyperbranched core (both hyperbranched phenlyene and hyperbranched triphenylamine) and polyhexylthiophene arms. The arm is a conjugated oligomer of polythiophene that has been investigated extensively for metallic like conductivity when doped as well as utilized in field effect transistors in its undoped form (A. Tsumara, H. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1986).). The cores are respectively, a nonconjugated polymer in the case of hyperbranched phenlyene and a conjugated polymer in the case of hyperbranched triphenylamine. The photoluminesce spectrum (λ_max at 575 nm) is identical for both star polymers with the two electronically different hyperbranched cores and for linear polythiophene alone. We conclude the wave functions of the core and arms do not strongly interact to form states different from their individual states and excitons formed on the hyperbranched cores migrate to the lower bandgap polythiophene before recombining.

  19. Fluorescence sensing of phosdrin pesticide by the luminescent Eu(III)- and Tb(III)-bis(coumarin-3-carboxylic acid) probes.

    PubMed

    Hussein, Belal H M; Khairy, Gasser M; Kamel, Rasha M

    2016-04-01

    Luminescence quenching of the Eu(III)- and Tb(III)-bis (coumarin-3-carboxylic acid) (Ln(III)-(CCA)2) probes has been studied in the presence of organophosphorus or organochlorine pesticides; Phosdrin (P1), Malathion (P2), Profenofos (P3), Formothion (P4), Heptachlor (P5), and Endosulfan (P6). The luminescence intensity of lanthanide complex probes Ln(III)-(CCA)2 decreases as the concentration of the Phosdrin pesticide increases, while the other investigated pesticides have no significant influence on the lanthanide fluorescent intensities. It is observed that the quenching of Eu(III) and Tb(III)-coumarin-3-carboxylic acid by Phosdrin proceeds via static quenching processes according to Stern-Volmer plot. The binding constants (K) and the thermodynamic parameters of the interaction of Ln(III)-(CCA)2 with Phosdrin have been determined. A direct method for the determination of the Phosdrin in ethanol has been developed based on the luminescence changes of the Ln(III)-(CCA)2-phosdrin ternary complexes. The detection limits of P1 were 6.28 and 1.07 μM in case of Eu(III) and Tb(III)-complex, respectively. The influence of various interfering species on the detection of P1 has been investigated to assess the analytical applicability of the method. The new method was applied to determine the Phosdrin pesticide in different types of water samples. PMID:26802539

  20. Fluorescence sensing of phosdrin pesticide by the luminescent Eu(III)- and Tb(III)-bis(coumarin-3-carboxylic acid) probes

    NASA Astrophysics Data System (ADS)

    Hussein, Belal H. M.; Khairy, Gasser M.; Kamel, Rasha M.

    2016-04-01

    Luminescence quenching of the Eu(III)- and Tb(III)-bis (coumarin-3-carboxylic acid) (Ln(III)-(CCA)2) probes has been studied in the presence of organophosphorus or organochlorine pesticides; Phosdrin (P1), Malathion (P2), Profenofos (P3), Formothion (P4), Heptachlor (P5), and Endosulfan (P6). The luminescence intensity of lanthanide complex probes Ln(III)-(CCA)2 decreases as the concentration of the Phosdrin pesticide increases, while the other investigated pesticides have no significant influence on the lanthanide fluorescent intensities. It is observed that the quenching of Eu(III) and Tb(III)-coumarin-3-carboxylic acid by Phosdrin proceeds via static quenching processes according to Stern-Volmer plot. The binding constants (K) and the thermodynamic parameters of the interaction of Ln(III)-(CCA)2 with Phosdrin have been determined. A direct method for the determination of the Phosdrin in ethanol has been developed based on the luminescence changes of the Ln(III)-(CCA)2-phosdrin ternary complexes. The detection limits of P1 were 6.28 and 1.07 μM in case of Eu(III) and Tb(III)-complex, respectively. The influence of various interfering species on the detection of P1 has been investigated to assess the analytical applicability of the method. The new method was applied to determine the Phosdrin pesticide in different types of water samples.

  1. A Selective Imidazoline-2-thione-Bearing Two-Photon Fluorescent Probe for Hypochlorous Acid in Mitochondria.

    PubMed

    Xu, Qingling; Heo, Cheol Ho; Kim, Jin A; Lee, Hye Sue; Hu, Ying; Kim, Dayoung; Swamy, Kunemadihalli Mathada Kotraiah; Kim, Gyoungmi; Nam, Sang-Jip; Kim, Hwan Myung; Yoon, Juyoung

    2016-06-21

    Hypochlorite (OCl(-)) plays a key role in the immune system and is involved in various diseases. Accordingly, direct detection of endogenous OCl(-) at the subcellular level is important for understanding inflammation and cellular apoptosis. In the current study, a two-photon fluorescent off/on probe (PNIS) bearing imidazoline-2-thione as an OCl(-) recognition unit and triphenylphosphine (TPP) as a mitochondrial-targeting group was synthesized and examined for its ability to image mitochondrial OCl(-) in situ. This probe, based on the specific reaction between imidazoline-2-thione and OCl(-), displayed a selective fluorescent off/on response to OCl(-) with the various reactive oxygen species in a physiological medium. PNIS was successfully applied to image of endogenously produced mitochondrial OCl(-) in live RAW 264.7 cells via two-photon microscopy. PMID:27212708

  2. Fluorescence In Situ Hybridization Method Using a Peptide Nucleic Acid Probe for Identification of Salmonella spp. in a Broad Spectrum of Samples ▿

    PubMed Central

    Almeida, C.; Azevedo, N. F.; Fernandes, R. M.; Keevil, C. W.; Vieira, M. J.

    2010-01-01

    A fluorescence in situ hybridization (FISH) method for the rapid detection of Salmonella spp. using a novel peptide nucleic acid (PNA) probe was developed. The probe theoretical specificity and sensitivity were both 100%. The PNA-FISH method was optimized, and laboratory testing on representative strains from the Salmonella genus subspecies and several related bacterial species confirmed the predicted theoretical values of specificity and sensitivity. The PNA-FISH method has been successfully adapted to detect cells in suspension and is hence able to be employed for the detection of this bacterium in blood, feces, water, and powdered infant formula (PIF). The blood and PIF samples were artificially contaminated with decreasing pathogen concentrations. After the use of an enrichment step, the PNA-FISH method was able to detect 1 CFU per 10 ml of blood (5 × 109 ± 5 × 108 CFU/ml after an overnight enrichment step) and also 1 CFU per 10 g of PIF (2 × 107 ± 5 × 106 CFU/ml after an 8-h enrichment step). The feces and water samples were also enriched according to the corresponding International Organization for Standardization methods, and results showed that the PNA-FISH method was able to detect Salmonella immediately after the first enrichment step was conducted. Moreover, the probe was able to discriminate the bacterium in a mixed microbial population in feces and water by counter-staining with 4′,6-diamidino-2-phenylindole (DAPI). This new method is applicable to a broad spectrum of samples and takes less than 20 h to obtain a diagnosis, except for PIF samples, where the analysis takes less than 12 h. This procedure may be used for food processing and municipal water control and also in clinical settings, representing an improved alternative to culture-based techniques and to the existing Salmonella PNA probe, Sal23S10, which presents a lower specificity. PMID:20453122

  3. Optimization of peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) for the detection of bacteria: The effect of pH, dextran sulfate and probe concentration.

    PubMed

    Rocha, Rui; Santos, Rita S; Madureira, Pedro; Almeida, Carina; Azevedo, Nuno F

    2016-05-20

    Fluorescence in situ hybridization (FISH) is a molecular technique widely used for the detection and characterization of microbial populations. FISH is affected by a wide variety of abiotic and biotic variables and the way they interact with each other. This is translated into a wide variability of FISH procedures found in the literature. The aim of this work is to systematically study the effects of pH, dextran sulfate and probe concentration in the FISH protocol, using a general peptide nucleic acid (PNA) probe for the Eubacteria domain. For this, response surface methodology was used to optimize these 3 PNA-FISH parameters for Gram-negative (Escherichia coli and Pseudomonas fluorescens) and Gram-positive species (Listeria innocua, Staphylococcus epidermidis and Bacillus cereus). The obtained results show that a probe concentration higher than 300nM is favorable for both groups. Interestingly, a clear distinction between the two groups regarding the optimal pH and dextran sulfate concentration was found: a high pH (approx. 10), combined with lower dextran sulfate concentration (approx. 2% [w/v]) for Gram-negative species and near-neutral pH (approx. 8), together with higher dextran sulfate concentrations (approx. 10% [w/v]) for Gram-positive species. This behavior seems to result from an interplay between pH and dextran sulfate and their ability to influence probe concentration and diffusion towards the rRNA target. This study shows that, for an optimum hybridization protocol, dextran sulfate and pH should be adjusted according to the target bacteria. PMID:27021959

  4. Probe assembly

    SciTech Connect

    Avera, C.J.

    1981-01-06

    A hand-held probe assembly, suitable for monitoring a radioactive fibrinogen tracer, is disclosed comprising a substantially cylindrically shaped probe handle having an open end. The probe handle is adapted to be interconnected with electrical circuitry for monitoring radioactivity that is sensed or detected by the probe assembly. Mounted within the probe handle is a probe body assembly that includes a cylindrically shaped probe body inserted through the open end of the probe handle. The probe body includes a photomultiplier tube that is electrically connected with a male connector positioned at the rearward end of the probe body. Mounted at the opposite end of the probe body is a probe head which supports an optical coupler therewithin. The probe head is interconnected with a probe cap which supports a detecting crystal. The probe body assembly, which consists of the probe body, the probe head, and the probe cap is supported within the probe handle by means of a pair of compressible o-rings which permit the probe assembly to be freely rotatable, preferably through 360*, within the probe handle and removable therefrom without requiring any disassembly.

  5. Exploring a 2-Naphthoic Acid Template for the Structure-Based Design of P2Y14 Receptor Antagonist Molecular Probes

    PubMed Central

    2015-01-01

    The P2Y14 receptor (P2Y14R), one of eight P2Y G protein-coupled receptors (GPCR), is involved in inflammatory, endocrine, and hypoxic processes and is an attractive pharmaceutical target. The goal of this research is to develop high-affinity P2Y14R fluorescent probes based on the potent and highly selective antagonist 4-(4-(piperidin-4-yl)-phenyl)-7-(4-(trifluoromethyl)-phenyl)-2-naphthoic acid (6, PPTN). A model of hP2Y14R based on recent hP2Y12R X-ray structures together with simulated antagonist docking suggested that the piperidine ring is suitable for fluorophore conjugation while preserving affinity. Chain-elongated alkynyl or amino derivatives of 6 for click or amide coupling were synthesized, and their antagonist activities were measured in hP2Y14R-expressing CHO cells. Moreover, a new Alexa Fluor 488 (AF488) containing derivative 30 (MRS4174, Ki = 80 pM) exhibited exceptionally high affinity, as compared to 13 nM for the alkyne precursor 22. A flow cytometry assay employing 30 as a fluorescent probe was used to quantify specific binding to P2Y14R. Known P2Y receptor ligands inhibited binding of 30 with properties consistent with their previously established receptor selectivities and affinities. These results illustrate that potency in this series of 2-naphthoic acid derivatives can be preserved by chain functionalization, leading to highly potent fluorescent molecular probes for P2Y14R. Such conjugates will be useful tools in expanding the SAR of this receptor, which still lacks chemical diversity in its collective ligands. This approach demonstrates the predictive power of GPCR homology modeling and the relevance of newly determined X-ray structures to GPCR medicinal chemistry. PMID:25299434

  6. A novel adenosine-based molecular beacon probe for room temperature nucleic acid rapid detection in cotton thread device.

    PubMed

    Du, Ting-E; Wang, Yiyun; Zhang, Yi; Zhang, Tian; Mao, Xun

    2015-02-25

    We used cotton thread as substrate to develop a novel room temperature DNA detection device for low-cost, sensitive and rapid detection of a human genetic disease, hereditary tyrosinemia type I related DNA sequences. A novel adenosine based molecular beacon (ABMB) probe modified on gold nanoparticle was used as reporter probe. In the presence of coralyne, a small molecule which can react with adenosines, the ABMB would form a hairpin structure just like traditional molecular beacon used extensively. In the presence of target DNA sequences, the hairpin structure of ABMB modified on gold nanoparticles will be opened and the biotin group modified at one end of the DNA probes will be released and react with the streptavidin immobilized on the test zone of the cotton thread. The response of the thread based DNA test device is linear over the range of 2.5-100 nM complementary DNA. The ability of our developed device for discriminating the single base mismatched DNA related to a human genetic disease, hereditary tyrosinemia type I, was improved comparing with previous report. It is worth mentioning that the whole assay procedure for DNA test is performed under room temperature which simplified the assay procedures greatly. PMID:25702276

  7. Giant blue shifted photoluminescence peak from the edges of CVD grown monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Yore, Alexander; Crumrine, Wendy; Smithe, Kirby; Pop, Eric; Wang, Bin; Newaz, Akm

    To probe the electronic and optical properties of direct band-gap monolayer transition metal dichalcogenides, such as band structure and excitons, micro-photoluminescence spectroscopy has become an attractive and standard tool. Here, we present our experimental work on spatial scanning of photoluminescence of monolayer MoS2 grown by chemical vapor deposition (CVD) using an ultrasmall blue laser (wavelength 405 nm) beam spot with beam diameter as small as ~ 200 nm. We have observed a giant blue shift, as large as ~ 40 nm or ~ 100 meV, of the A-excitonic peak in the photoluminescence spectra from the edges when compared to luminescence from the inside. This giant blue shift may result from the following: (i) compressive strain at the edges; (ii) the enhanced dielectric screening caused by the increased electron density at the metallic Mo-edges; and (iii) chemical impurities.

  8. Mechanism-Based Inactivation of Cytochrome P450 2C9 by Tienilic Acid and (±)-Suprofen: A Comparison of Kinetics and Probe Substrate Selection

    PubMed Central

    Hutzler, J. Matthew; Balogh, Larissa M.; Zientek, Michael; Kumar, Vikas; Tracy, Timothy S.

    2009-01-01

    In vitro experiments were conducted to compare kinact, KI and inactivation efficiency (kinact/KI) of cytochrome P450 (P450) 2C9 by tienilic acid and (±)-suprofen using (S)-flurbiprofen, diclofenac, and (S)-warfarin as reporter substrates. Although the inactivation of P450 2C9 by tienilic acid when (S)-flurbiprofen and diclofenac were used as substrates was similar (efficiency of ∼9 ml/min/μmol), the inactivation kinetics were characterized by a sigmoidal profile. (±)-Suprofen inactivation of (S)-flurbiprofen and diclofenac hydroxylation was also described by a sigmoidal profile, although inactivation was markedly less efficient (∼1 ml/min/μmol). In contrast, inactivation of P450 2C9-mediated (S)-warfarin 7-hydroxylation by tienilic acid and (±)-suprofen was best fit to a hyperbolic equation, where inactivation efficiency was moderately higher (10 ml/min/μmol) and ∼3-fold higher (3 ml/min/μmol), respectively, relative to that of the other probe substrates, which argues for careful consideration of reporter substrate when mechanism-based inactivation of P450 2C9 is assessed in vitro. Further investigations into the increased inactivation seen with tienilic acid relative to that with (±)-suprofen revealed that tienilic acid is a higher affinity substrate with a spectral binding affinity constant (Ks) of 2 μM and an in vitro half-life of 5 min compared with a Ks of 21 μM and a 50 min in vitro half-life for (±)-suprofen. Lastly, a close analog of tienilic acid with the carboxylate functionality replaced by an oxirane ring was devoid of inactivation properties, which suggests that an ionic binding interaction with a positively charged residue in the P450 2C9 active site is critical for recognition and mechanism-based inactivation by these close structural analogs. PMID:18838506

  9. Field-Based Stable Isotope Probing Reveals the Identities of Benzoic Acid-Metabolizing Microorganisms and Their In Situ Growth in Agricultural Soil▿

    PubMed Central

    Pumphrey, Graham M.; Madsen, Eugene L.

    2008-01-01

    We used a combination of stable isotope probing (SIP), gas chromatography-mass spectrometry-based respiration, isolation/cultivation, and quantitative PCR procedures to discover the identity and in situ growth of soil microorganisms that metabolize benzoic acid. We added [13C]benzoic acid or [12C]benzoic acid (100 μg) once, four times, or five times at 2-day intervals to agricultural field plots. After monitoring 13CO2 evolution from the benzoic acid-dosed soil, field soils were harvested and used for nucleic acid extraction and for cultivation of benzoate-degrading bacteria. Exposure of soil to benzoate increased the number of culturable benzoate degraders compared to unamended soil, and exposure to benzoate shifted the dominant culturable benzoate degraders from Pseudomonas species to Burkholderia species. Isopycnic separation of heavy [13C]DNA from the unlabeled fraction allowed terminal restriction fragment length polymorphism (T-RFLP) analyses to confirm that distinct 16S rRNA genes were localized in the heavy fraction. Phylogenetic analysis of sequenced 16S rRNA genes revealed a predominance (15 of 58 clones) of Burkholderia species in the heavy fraction. Burkholderia sp. strain EBA09 shared 99.5% 16S rRNA sequence similarity with a group of clones representing the dominant RFLP pattern, and the T-RFLP fragment for strain EBA09 and a clone from that cluster matched the fragment enriched in the [13C]DNA fraction. Growth of the population represented by EBA09 during the field-dosing experiment was demonstrated by using most-probable-number-PCR and primers targeting EBA09 and the closely related species Burkholderia hospita. Thus, the target population identified by SIP not only actively metabolized benzoic acid but reproduced in the field upon the addition of the substrate. PMID:18469130

  10. Changing interfaces: Photoluminescent ZnO nanoparticle powders in different aqueous environments

    NASA Astrophysics Data System (ADS)

    Kocsis, Krisztina; Niedermaier, Matthias; Bernardi, Johannes; Berger, Thomas; Diwald, Oliver

    2016-10-01

    We transformed vapor phase grown ZnO nanoparticle powders into aqueous ZnO nanoparticle dispersions and studied the impact of associated microstructure and interface property changes on their spectroscopic properties. With photoluminescence (PL) spectroscopy, we probed oxygen interstitials Oi2 - in the near surface region and tracked their specific PL emission response at hvEM = 2.1 eV during the controlled conversion of the solid-vacuum into the solid-liquid interface. While oxygen adsorption via the gas phase does affect the intensity of the PL emission bands, the O2 contact with ZnO nanoparticles across the solid-liquid interface does not. Moreover, we found that the near band edge emission feature at hvEM = 3.2 eV gains relative intensity with regard to the PL emission features in the visible light region. Searching for potential PL indicators that are specific to early stages of particle dissolution, we addressed for aqueous ZnO nanoparticle dispersions the effect of formic acid adsorption. In the absence of related spectroscopic features, we were able to consistently track ZnO nanoparticle dissolution and the concomitant formation of solvated Zinc formate species by means of PL and FT-IR spectroscopy, dynamic light scattering, and zeta potential measurements. For a more consistent and robust assessment of nanoparticle properties in different continuous phases, we discuss characterization challenges and potential pitfalls that arise upon replacing the solid-gas with the solid-liquid interface.

  11. Thio-ketosides of sialic acid containing aryl azides: potential photo-affinity probes for analysis of neuraminidases and sialic acid binding proteins

    SciTech Connect

    Warner, T.G.; Lee, L.A.

    1986-05-01

    To date, only a single report describing the synthesis of thio-ketosides of sialic acid has appeared. In this procedure, the pseudo thiourea of acetoneuraminic acid methyl ester (NTU) was used to prepare the sodium thiolate salt. However, in their hands, the preparation of NTU was not straight-forward, and in subsequent reactions thio glycosides were not obtained. Therefore, they have developed an alternate route for introduction of the sulfhydryl group and have prepared novel thio-ketosides with aryl azides. The thio linkage is advantageous since it is not easily cleaved by neuraminidases and it allows incorporation of /sup 35/S as a convenient radioactive label. 2-deoxy-2-S-acetyl-4,7,8,9,- tetra-0-acetyl-N-acetyl neuraminic acid methyl ester was prepared (70% yield) from 2-chloro aceto- neuraminic acid methyl ester and potassium thioacetate in acetone at room temperature (RT) for 90 min. Selective hydrolysis of the thio acetate group was accomplished with equimolar sodium methoxide in DMF. After 10 min at RT, 4-fluoro-3-nitrophenyl azide was added and reaction continued for 60 min. Silicic acid purification, base hydrolysis, and gel filtration chromatography, gave 2'-deoxy-2'-(2-nitro-4-azido-thiophenyl)-..cap alpha..-D-N-acetyl neuraminic acid (35% yield). Other thio-arylazido ketosides were prepared similarly.

  12. Analysis of oxyluciferin photoluminescence pathways in aqueous solutions.

    PubMed

    Hiyama, Miyabi; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Koga, Nobuaki

    2015-01-01

    We evaluated the pK(a) values of oxyluciferin and its conjugate acids and bases theoretically with the help of experimental correction values, from which free energies for the first excited and the ground states of all the species were estimated. On the basis of these results, we calculated pH-dependent absorption spectra, where the relative absorption intensities of various species strongly depend on photoexcitation energy, and we further analyzed the photoluminescence pathways of oxyluciferin in aqueous solutions with various pH. In the case of 350 nm photoexcitation, in particular, experiments have shown that dominant emission color is green and it attenuates with pH decreasing, while blue (3 < pH < 8) and red (pH < 3) emissions appear. Our present results clarify the pathways of these photoluminescence depending on the pH values and thus should be useful in further analyses of photoluminescence pathways for other photoexcitation wavelength in comparison with experiments. PMID:25334091

  13. Di- and triarylmethylium ions as probes for the ambident reactivities of carbanions derived from 5-benzylated Meldrum's acid.

    PubMed

    Chen, Xi; Tan, Yue; Berionni, Guillaume; Ofial, Armin R; Mayr, Herbert

    2014-08-25

    The kinetics of the reactions of carbocations with carbanions 1 derived from 5-benzyl-substituted Meldrum's acids 1-H (Meldrum's acid = 2,2-dimethyl-1,3-dioxane-4,6-dione) were investigated by UV/Vis spectroscopic methods. Benzhydryl cations Ar2CH(+) added exclusively to C-5 of the Meldrum's acid moiety. As the second-order rate constants (kC) of these reactions in DMSO followed the linear free-energy relationship lg k = sN (N+E), the nucleophile-specific reactivity parameters N and sN for the carbanions 1 could be determined. In contrast, trityl cations Ar3C(+) reacted differently. While tritylium ions of low electrophilicity (E<-2) reacted with 1 through rate-determining β-hydride abstraction, more Lewis acidic tritylium ions initially reacted at the carbonyl oxygen of 1 to form trityl enolates, which subsequently reionized and eventually yielded triarylmethanes and 5-benzylidene Meldrum's acids by hydride transfer. PMID:25099696

  14. Multiwell Assay for the Analysis of Sugar Gut Permeability Markers: Discrimination of Sugar Alcohols with a Fluorescent Probe Array Based on Boronic Acid Appended Viologens.

    PubMed

    Resendez, Angel; Panescu, Priera; Zuniga, Ruth; Banda, Isaac; Joseph, Jorly; Webb, Dominic-Luc; Singaram, Bakthan

    2016-05-17

    With the aim of discerning between different sugar and sugar alcohols of biomedical relevance, such as gut permeability, arrays of 2-component probes were assembled with up to six boronic acid-appended viologens (BBVs): 4,4'-o-BBV, 3,3'-o-BBV, 3,4'-o-BBV, 4,4'-o,m-BBV, 4,7'-o-PBBV, and pBoB, each coupled to the fluorophore 8-hydroxypyrene, 1,3,6-trisulfonic acid trisodium salt (HPTS). These probes were screened for their ability to discriminate between lactulose, l-rhamnose, 3-O-methyl-d-glucose, and xylose. Binding studies of sugar alcohols mannitol, sorbitol, erythritol, adonitol, arabitol, galactitol, and xylitol revealed that diols containing threo-1,2-diol units have higher affinity for BBVs relative diols containing erythro-1,2 units. Those containing both threo-1,2- and 1,3-syn diol motifs showed high affinity for boronic acid binding. Fluorescence from the arrays were examined by principle component analysis (PCA) and linear discriminant analysis (LDA). Arrays with only three BBVs sufficed to discriminate between sugars (e.g., lactulose) and sugar alcohols (e.g., mannitol), establishing a differential probe. Compared with 4,4'-o-BBV, 2-fold reductions in lower limits of detection (LOD) and quantification (LOQ) were achieved for lactulose with 4,7-o-PBBV (LOD 41 μM, LOQ 72 μM). Using a combination of 4,4'-o-BBV, 4,7-o-PBBV, and pBoB, LDA statistically segregated lactulose/mannitol (L/M) ratios from 0.1 to 0.5, consistent with values encountered in small intestinal permeability tests. Another triad containing 3,3'-o-BBV, 4,4'-o-BBV, and 4,7-o-PBBV also discerned similar L/M ratios. This proof-of-concept demonstrates the potential for BBV arrays as an attractive alternate to HPLC to analyze mixtures of sugars and sugar alcohols in biomedical applications and sheds light on structural motifs that make this possible. PMID:27116118

  15. Probing the steric requirements of the γ-aminobutyric acid aminotransferase active site with fluorinated analogues of vigabatrin

    PubMed Central

    Juncosa, Jose I.; Groves, Andrew P.; Xia, Guoyao; Silverman, Richard B.

    2012-01-01

    We have synthesized three analogues of 4-amino-5-fluorohexanoic acids as potential inactivators of γ-aminobutyric acid aminotransferase (GABA-AT), which were designed to combine the potency of their shorter chain analogue, 4-amino-5-fluoropentanoic acid (AFPA), with the greater enzyme selectivity of the antiepileptic vigabatrin (Sabril®). Unexpectedly, these compounds failed to inactivate or inhibit the enzyme, even at high concentrations. On the basis of molecular modeling studies, we propose that the GABA-AT active site has an accessory binding pocket that accommodates the vinyl group of vigabatrin and the fluoromethyl group of AFPA, but is too narrow to support the extra width of one distal methyl group in the synthesized analogues. PMID:23306054

  16. Propane conversion on Ga-HZSM-5: Effect of aging on the dehydrogenating and acid functions using pyridine as an IR probe

    SciTech Connect

    Meriaudeau, P.; Naccache, C. ); Abdul Hamid, S.B. )

    1993-02-01

    Gallium-loaded zeolite (Ga-HZSM-5) catalysts have been extensively studied in the recent past, not only in respect of their interesting catalytic activity in the aromatization of C[sub 3]-C[sub 5] alkanes (Cyclar Process) but also in respect of theoretical considerations. There is clear evidence that in the reaction of alkanes these catalysts behave as bifunctional catalysts, the acid function being provided by the protons and the dehydrogenation function deriving from Ga[sub 2]O[sub 3] or Ga[sup n+] ions in ionic-exchange positions. Ga-HZSM-5 catalysts deactivate with time on-stream. The deactivation can result from poisoning of the acid centers and/or the dehydrogenating sites by coke deposition or from sintering or phase transformation of the dehydrogenating gallium species. The aim of the present study was to investigate the possible modifications of Ga centers and H[sup +] sites which may result from the propane reaction. The active centers were studied by infrared spectroscopy of adsorbed pyridine, pyridine adsorption being used to probe both H[sup +] and Al, Ga Lewis-acid centers. 11 refs., 2 figs., 1 tab.

  17. Probing thermal stability of the β-lactoglobulin-oleic acid complex by fluorescence spectroscopy and molecular modeling

    NASA Astrophysics Data System (ADS)

    Simion (Ciuciu), Ana-Maria; Aprodu, Iuliana; Dumitrașcu, Loredana; Bahrim, Gabriela Elena; Alexe, Petru; Stănciuc, Nicoleta

    2015-09-01

    Bovine β-lactoglobulin is able to interact with different bioactive compounds, thus being an important candidate in the development of delivery systems with improved functionality. The heat induced changes in the β-lactoglobulin-oleic acid complex were examined by means of fluorescence spectroscopy and molecular modeling techniques. Fluorescence spectroscopy results indicated a rigid protein structure in the temperature range 25-70 °C, whereas at temperatures over 75 °C, the rearrangements of the polypeptide chains led to higher exposure of hydrophobic residues. The most significant increase of the accessible surface area with temperature increase was identified in case of Tyr99 and Tyr102. The phase diagram method indicated an all or none transition between two conformations. Due to conformational changes, no contact between Ile56 or Lys60 and the fatty acid could be identified at 85 °C, but new non-bonding interaction were established with Ile12 and Val15. The results obtained in this study provide important details about thermal induced changes in the conformation of β-lactoglobulin-oleic acid complex. Significant conformational changes were registered above 75 °C, suggesting the possibility of obtaining highly functional complexes between whey proteins and natural unsaturated fatty acids.

  18. Probing metal ion complexation with salicylic acid and its derivatives with excited state proton transfer and luminescence anisotropy

    SciTech Connect

    Wang, Z.; Friedrich, D.M.; Ainsworth, C.C.

    1996-10-01

    Salicylic acid and its derivatives in which the phenolic proton is preserved show a characteristic dual fluorescence: one band in the UV, due to a {open_quotes}normal{close_quotes} excited state emission, and the other in the visible range, is assigned to excited state intramolecular proton transfer (ESIPT). The transition energy, quantum yield and fluorescence lifetime as well as fluorescence anisotropy are sensitive to the solvent environment, temperature and properties of the substituents (complexation) at the phenolic and carboxylic oxygens. The ESIPT band disappears in molecules in which the intramolecular hydrogen bond between phenolic hydrogen and the carbonyl oxygen is prohibited. In this work, the complexation of Na(I), Ca(II), Al(III) and La(III) with salicylic acid, 3-hydroxybenzoic acid, methylsalicylate and anisic acid in both aqueous and non-aqueous solvents has been studied by absorption and steady state luminescence spectroscopy, picosecond to nanosecond luminescence lifetimes and luminescence anisotropy measurements in a range of solvent and in ethanol at 77 K. Speciation in these complex systems, binding characteristics between the metal ion and the ligand, and ligand-centered energetics are discussed in terms of the spectroscopic properties, luminescence and anisotropy decay kinetics.

  19. Probing High School Students' Cognitive Structures and Key Areas of Learning Difficulties on Ethanoic Acid Using the Flow Map Method

    ERIC Educational Resources Information Center

    Zhou, Qing; Wang, Tingting; Zheng, Qi

    2015-01-01

    The purpose of this study was primarily to explore high school students' cognitive structures and to identify their learning difficulties on ethanoic acid through the flow map method. The subjects of this study were 30 grade 1 students from Dong Yuan Road Senior High School in Xi'an, China. The interviews were conducted a week after the students…

  20. A potential fluorescent probe: Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detection of Hg(2+) and biothiols.

    PubMed

    Dong, Jiang Xue; Song, Xiao Fang; Shi, Yan; Gao, Zhong Feng; Li, Bang Lin; Li, Nian Bing; Luo, Hong Qun

    2016-07-15

    Maillard reactions and their fluorescent products have drawn much attention in the fields of food and life science, however, the application of fluorescent products separated from the reaction as an indicator for detection of certain substances in sensor field has not been mentioned. In this article, we report on an easy-to-synthesize and water-soluble fluorescent probe separated from the typical Maillard reaction products of glutathione and ascorbic acid, with excellent stability and high quantum yield (18.2%). The further application of the probe has been explored for dual detection of Hg(2+) and biothiols including cysteine, homocysteine, and glutathione, which is based on Hg(2+)-induced fluorescence quenching of the Maillard reaction fluorescent products (MRFPs) and the fluorescence recovery as the introduction of biothiols. This sensing system exhibits a good selectivity and sensitivity, and the linear ranges for Hg(2+), cysteine, homocysteine, and glutathione are 0.05-12, 0.5-10, 0.3-20, and 0.3-20μM, respectively. The detection limits for Hg(2+), cysteine, homocysteine, and glutathione are 22, 47, 96, and 30nM at a signal-to-noise ratio of 3, respectively. Furthermore, the practical applications of this sensor for Hg(2+) and biothiols determination in water samples and human plasma sample have been demonstrated with satisfactory results. PMID:27015151

  1. Single glass nanopore-based regenerable sensing platforms with a non-immobilized polyglutamic acid probe for selective detection of cupric ions.

    PubMed

    Chen, Lizhen; He, Haili; Xu, Xiaolong; Jin, Yongdong

    2015-08-19

    A single glass capillary nanopore-based sensing platform for rapid and selective detection of cupric ions is demonstrated by utilizing polyglutamic acid (PGA) as a non-immobilized probe. The detection is based on the significant decrease of ionic current through nanopore and the reversal of ion current rectification responses induced by the chelated cupric ions on the probes when in the presence of cupric ions. PGA shows high selectivity for detecting cupric ions rather than other metal ions. The sensitivity of the sensing platform can be improved about 1-2 orders of magnitude by employing asymmetric salt gradients during the measurements. And the PGA-based nanopore sensing platform shows excellent regenerability for Cu(2+) sensing applications. In addition, the method is found effective and reliable for the detection of cupric ions in real samples with small volume down to 20 μL. This nanopore-based sensing platform will find promising practical applications for the detection of cupric ions. PMID:26343431

  2. Synthesis of a novel fluorescent probe and investigation on its interaction with nucleic acid and analytical application

    NASA Astrophysics Data System (ADS)

    Wu, Menghui; Wu, Wenqiang; Lian, Xiaoan; Lin, Xucong; Xie, Zenghong

    2008-12-01

    A novel fluorescent probe N-( N-(2-(4-morpholinyl)ethyl)-4-acridinecarboxamide)-α-alanine ( N-( N-(ME)-4-ACA)-α-ALA) was synthesized. The structure was characterized by 1H NMR, MS, elemental analysis, fluorescent and ultraviolet spectra. This new compound exhibited high binding affinity to DNA, intense fluorescence and high water solubility. Experiment indicated that the fluorescent intensity was quenched when DNA was added. A method for DNA determination based on the quenching fluorescence ( λex = 258 nm, λem = 451 nm) of N-( N-(ME)-4-ACA)-α-ALA was established. Under optimal conditions (pH 7.2, CN-( N-(ME)-4-ACA)-α-ALA = 3 × 10 -6 mol L -1), the linear range is 0.1-4.0 μg mL -1 for both fish semen (fsDNA) and calf thymus DNA (ct-DNA). The corresponding determination limits are 4.6 ng mL -1 for fsDNA and 5.1 ng mL -1 for ct-DNA, respectively. The relative standard deviation is 1.0%. Thus this compound can be used as a DNA fluorescent probe. The experiments proved that the interaction mode between N-( N-(ME)-4-ACA)-α-ALA and DNA was groove binding. The modified Rosenthal's graphical method gave the binding constant of 1.0 × 10 6 L mol -1 and a binding size of 0.31 base pairs per bound drug molecule.

  3. Genotyping of velvet antlers for identification of country of origin using mitochondrial DNA and fluorescence melting curve analysis with locked nucleic acid probes.

    PubMed

    Ahn, Jeong Jin; Kim, Youngjoo; Hong, Ji Young; Kim, Gi Won; Hwang, Seung Yong

    2016-07-01

    Velvet antlers are used medicinally in Asia and possess various therapeutic effects. Prices are set according to the country of origin, which is unidentifiable to the naked eye, and therefore counterfeiting is prevalent. Additionally, antlers of the Canadian elk, which can generate chronic wasting disease, are prevalently smuggled and distributed in the market. Thus, a method for identifying the country of origin of velvet antlers was developed, using polymorphisms in mitochondrial DNA, fluorescence melting curve analysis and analysis of locked nucleic acids (LNA). This combined method is capable of identifying five genotypes of velvet antlers in a single experiment using two probes. It also has advantages in multiplexing, simplicity and efficiency in genotyping, when compared to real-time PCR or microarrays. The developed method can be used to improve identification rates in the velvet antler market and, by extension, research based on polymorphisms in DNA sequences. PMID:26094991

  4. Probing pH and pressure effects on the apomyoglobin heme pocket with the 2'-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid fluorophore.

    PubMed Central

    Sire, O; Alpert, B; Royer, C A

    1996-01-01

    The environmentally sensitive fluorophore 2'-(N,N-dimethylamino)-6-naphthoyl-4-trans-cyclohexanoic acid (DANCA) has been used to probe the apomyoglobin heme pocket. The unexpected polarity of this domain is generally interpreted as arising from dynamic dipolar relaxation of the peptide dipoles surrounding the heme pocket. In the present work we reexamine the photophysical properties of DANCA in a variety of solvents and complexed with apomyoglobin (apoMb) to further probe the heme pocket environment as a function of external solvent conditions. Absorption and excitation spectra in a number of solvents are consistent with the well-known pi*<--pi (LE) and pi*<--n (CT) electronic absorption transitions observed for naphthylamine derivatives. Dual emission is also a well-documented property of such derivatives. Based on the time scale of the heterogeneity in the decay of the DANCA fluorophore observed in a series of solvents, we propose that the emission properties of DANCA in apoMb are not uniquely attributable to dynamic relaxation events, but also reflect dual emission from both a long-lived, red CT state and the shorter-lived, blue LE state. The pH studies in the range of pH 5-9 of the emission properties of DANCA in apoMb support this hypothesis. They also suggest a specific interaction of DANCA with one or both of the pocket histidyl residues, which leads to a drastic static quenching and red shift of the bound DANCA fluorescence upon protonation. Similar effects are observed with increasing pressure, indicating that these two perturbations alter the DANCA-apoMb complex in a similar fashion. The pressure-induced form of the protein is distinct both energetically and structurally from the previously characterized acid intermediate, in that it is populated above pH 5 and retains a significant degree of integrity of the heme pocket. PMID:8744328

  5. Time-Resolved Photoluminescence and Photovoltaics

    SciTech Connect

    Metzger, W. K.; Ahrenkiel, R. K.; Dippo, P.; Geisz, J.; Wanlass, M. W.; Kurtz, S.

    2005-01-01

    The time-resolved photoluminescence (TRPL) technique and its ability to characterize recombination in bulk photovoltaic semiconductor materials are reviewed. Results from a variety of materials and a few recent studies are summarized and compared.

  6. Differentiating among plant spectra by combining pH dependent photoluminescence spectroscopy with multi-way principal component analysis (MPCA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowing the botanical composition of the standing crop is essential for managing ecosystem health and herbivory. Photoluminescence spectroscopic probes offer the potential for real-time measurements of animal diet composition. Spectral emission signatures (excitation at 365 nm) from three different ...

  7. Dopamine-functionalized InP/ZnS quantum dots as fluorescence probes for the detection of adenosine in microfluidic chip

    PubMed Central

    Ankireddy, Seshadri Reddy; Kim, Jongsung

    2015-01-01

    Microbeads are frequently used as solid supports for biomolecules such as proteins and nucleic acids in heterogeneous microfluidic assays. Chip-based, quantum dot (QD)-bead-biomolecule probes have been used for the detection of various types of DNA. In this study, we developed dopamine (DA)-functionalized InP/ZnS QDs (QDs-DA) as fluorescence probes for the detection of adenosine in microfluidic chips. The photoluminescence (PL) intensity of the QDs-DA is quenched by Zn2+ because of the strong coordination interactions. In the presence of adenosine, Zn2+ cations preferentially bind to adenosine, and the PL intensity of the QDs-DA is recovered. A polydimethylsiloxane-based microfluidic chip was fabricated, and adenosine detection was confirmed using QDs-DA probes. PMID:26347351

  8. Estimation of free energy barriers in the cytoplasmic and mitochondrial aspartate aminotransferase reactions probed by hydrogen-exchange kinetics of C alpha-labeled amino acids with solvent

    SciTech Connect

    Julin, D.A.; Wiesinger, H.; Toney, M.D.; Kirsch, J.F. )

    1989-05-02

    The existence of the postulated quinonoid intermediate in the cytoplasmic aspartate amino-transferase catalyzed transamination of aspartate to oxaloacetate was probed by determining the extent of transfer of tritium from the C alpha position of tritiated L-aspartate to pyridoxamine 5'-phosphate in single turnover experiments in which washout from the back-reaction was obviated by product trapping. The maximum amount of transferred tritium observed was 0.7%, consistent either with a mechanism in which a fraction of the net transamination reaction proceeds through a quinonoid intermediate or with a mechanism in which this intermediate is formed off the main reaction pathway. It is shown that transfer of labeled hydrogen from the amino acid to cofactor cannot be used to differentiate a stepwise from a concerted transamination mechanism. The amount of tritium transferred is a function of the rate constant for torsional equilibration about the epsilon-amino group of Lys-258, the presumptive abstractor of the C alpha proton; the relative rate constants for hydrogen exchange with solvent versus cofactor protonation; and the tritium isotope effect on this ratio. The free energy barriers facing the covalent intermediate between aldimine and keto acid product (i.e., ketimine and possibly quinonoid) were evaluated relatively by comparing the rates of C alpha-hydrogen exchange in starting amino acid with the rates of keto acid formation. The value of theta (= kexge/kprod) was found to be 2.6 for the reaction of cytoplasmic isozyme with aspartate and ca. 0.5 for that of the mitochondrial form with glutamate.

  9. Hexagonal cobalt oxyhydroxide-carbon dots hybridized surface: high sensitive fluorescence turn-on probe for monitoring of ascorbic acid in rat brain following brain ischemia.

    PubMed

    Li, Linbo; Wang, Chao; Liu, Kangyu; Wang, Yuhan; Liu, Kun; Lin, Yuqing

    2015-03-17

    In this study, we report a novel and efficient fluorescence probe synthesized by Tris(hydroxymethyl)aminomethane-derived carbon dots (CDs)-modified hexagonal cobalt oxyhydroxide(CoOOH) nanoflakes (Tris-derived CDs-CoOOH) for monitoring of cerebral ascorbic acid (AA) in brain microdialysate. The as-prepared Tris-derived CDs with the fluorescence quantum yield of 7.3% are prepared by a one-step pyrolysis strategy of the sole precursor and used as the signal output. After being hybridized with CoOOH nanoflakes to form Tris-derived CDs-CoOOH, the luminescence of the Tris-derived CDs can be efficiently quenched by CoOOH via fluorescence resonance energy transfer (FRET). Due to the specific redox reaction between the enediol group of AA and hexagonal CoOOH nanoflakes, AA can reduce the hexagonal CoOOH nanoflakes in the Tris-derived CDs-CoOOH and lead to collapse of the hybrized structure, then the release of Tris-derived CDs, and thus finally the fluorescence recovery. Moreover, cobalt ions (II), generated by CoOOH nanoflakes oxidizing AA, almost have no obvious interference on the fluorescence probe, i.e., Tris-derived CDs, which could be ascribed to the surface of Tris-derived CDs containing a few strong chelation groups such as amino/carboxyl/thiol groups, instead of plenty of -OH groups with weak chelation with Co(2+). On the basis of this feature, the Tris-derived CDs-CoOOH fluorescent probe demonstrates a linear range from 100 nM to 20 μM with the detection limit of ∼50 nM, i.e., with an improved sensitivity toward AA detection. Compared with other turn-on fluorescent methods using convenient fluorophore-nitroxide fluorescent probes for detection of AA, the method demonstrated here possesses a facial synthesis route, lower limit of detection, and wider linear range, which validates sensing of AA in the cerebral systems during the calm/ischemia process. This study provides a fluorescence assay for the simple yet facial detection of AA in the cerebral systems and

  10. Probing the "additive effect" in the proline and proline hydroxamic acid catalyzed asymmetric addition of nitroalkanes to cyclic enones.

    PubMed

    Hanessian, Stephen; Govindan, Subramaniyan; Warrier, Jayakumar S

    2005-11-01

    The effect of chirality and steric bulk of 2,5-disubstituted piperazines as additives in the conjugate addition of 2-nitropropane to cyclohexenone, catalyzed by l-proline, was investigated. Neither chirality nor steric bulk affects the enantioselectivity of addition, which gives 86-93% ee in the presence of achiral and chiral nonracemic 2,5-disubstituted piperazines. Proline hydroxamic acid is shown for the first time to be an effective organocatalyst in the same Michael reaction. PMID:16189834

  11. Gold-catalysed cross-coupling between aryldiazonium salts and arylboronic acids: probing the usefulness of photoredox conditions.

    PubMed

    Cornilleau, Thomas; Hermange, Philippe; Fouquet, Eric

    2016-08-21

    The synthesis of biaryl compounds from aryldiazonium salts and arylboronic acids was achieved using PPh3AuCl as catalyst, CsF as base and acetonitrile as solvent. Combined to photosensitizers, irradiation by blue LEDs allowed accelerating the reaction and expanding its scope. Various functional groups were compatible including bromoaryls, iodoaryls, aldehydes and alcohols. A 2-iodobenzyl alcohol moiety was smoothly introduced by this method, enabling its consecutive isotopic labelling by a Pd-catalysed alkoxycarbonylation. PMID:27452177

  12. Human serum albumin-mimetic chromatography based hexadecyltrimethylammonium bromide as a novel direct probe for protein binding of acidic drugs.

    PubMed

    Salary, Mina; Hadjmohammadi, Mohammadreza

    2015-10-10

    Human serum albumin (HSA) is the most important drug carrier in humans mainly binding acidic drugs. Negatively charged compounds bind more strongly to HSA than it would be expected from their lipophilicity alone. With the development of new acidic drugs, there is a high need for rapid and simple protein binding screening technologies. Biopartitioning micellar chromatography (BMC) is a mode of micellar liquid chromatography, which can be used as an in vitro system to model the biopartitioning process of drugs when there are no active processes. In this study, a new kind of BMC using hexadecyltrimethylammonium bromide (CTAB) as micellar mobile phases was used for the prediction of protein binding of acidic drugs based on the similar property of CTAB micelles to HSA. The use of BMC is simple, reproducible and can provide key information about the pharmacological behavior of drugs such as protein binding properties of new compounds during the drug discovery process. The relationships between the MLC retention data of a heterogeneous set of 17 acidic and neutral drugs and their plasma protein binding parameter were studied and second-order polynomial models obtained in two different concentrations (0.07 and 0.09M) of CTAB. However, the developed models are only being able to distinguish between strongly and weakly binding drugs. Also, the developed models were characterized by both the descriptive and predictive ability (R(2)=0.885, RCV(2)=0.838 and R(2)=0.898, RCV(2)=0.859 for 0.07 and 0.09M CTAB, respectively). The application of the developed model to a prediction set demonstrated that the model was also reliable with good predictive accuracy. PMID:25988296

  13. Ge Nanocluster Enhanced Er Photoluminescence

    NASA Astrophysics Data System (ADS)

    Guzman, Julian; Chrzan, Daryl C.; Haller, Eugene E.

    2010-03-01

    We investigated the enhancement of the Er^3+ photoluminescence (PL) at 1540 nm by the incorporation of Ge nanoclusters into Er-doped silica using ion beams. We found that the Er^3+ PL enhancement is due to the presence of Ge and not to the radiation damage from the ion-implantation process. We determined that the Er^3+ PL depends on the Ge content, postgrowth annealing, and crystallinity of the Ge nanoclusters. Furthermore, we observed that the Er^3+ PL signal is maximized after annealing at 685 C for 1 h. This is the temperature at which Ge nanoclusters begin to crystallize. Transmission electron microscopy studies were conducted to determine the size distribution of the Ge nanoclusters. Moreover, extended X-ray absorption fine structure measurements performed at the Ge-K and Er-LIII edges revealed that there is negligible Ge-Er bonding. This suggests that Er is either fully oxidized or that it is not located in the Ge nanoclusters. Therefore, we believe that the energy transfer process from the Ge nanoclusters to the Er ions occurs through a non-optical resonant dipole transfer (F"orster ProcessfootnotetextT. F"orster, Discuss. Faraday Soc. 27, 7 (1959). similar to what has been proposed for the Si nanocrystal case.footnotetextM. Fujii, M. Yoshida, S. Hayashi, and K. Yamamoto, J. Appl. Phys. 84, 4525 (1998).

  14. Photoluminescence from the Wigner Crystal.

    NASA Astrophysics Data System (ADS)

    Kodiyalam, S.; Fertig, H. A.; Das Sarma, S.

    1997-03-01

    We calculate within the harmonic approximation and first order time dependent perturbation theory the line shape of the photoluminescence spectrum corresponding to the recombination of an electron from a 2-d Wigner crystal with a hole bound to an acceptor atom. The recombination process is modeled as a sudden perturbation of the Hamiltonian for the x-y degrees of freedom of the electrons. Using the theoretical results of Dodonov and Manko, (Proc. Lebedev Phys. Inst., 183), 263 (1987) we are able to include in the perturbation, in addition to changes in the equilibrium positions of electrons, changes in the curvatures of the harmonically approximated potential. The computed line shapes are similar to that seen in a recent experiment by Kukushkin (I.V. Kukushkin, V.I. Falko, R.J. Haug, K. von Klitzing, K. Eberl and K. Totemayer, Phys. Rev. Lett. 72), 3594 (1994) et al - they have a faster rising as compared to the falling edge. However, for recombination processes beginning with the perfect Wigner lattice the spectral width is only ~ frac1 3 of that observed in experiment^3 whereas inclusion of disorder due to already recombined electrons results in the width being greater than in the experiment^3 by a factor of ~ 3. We speculate on the possible mechanisms that may lead to better agreement with experiment.

  15. Photoluminescence from the Wigner Crystal.

    NASA Astrophysics Data System (ADS)

    Kodiyalam, S.; Price, R.; Fertig, H. A.; Das Sarma, S.

    1996-03-01

    Motivated by recent experiments on radiative recombination of two-dimensional electrons in acceptor δ-doped GaAs/AlGaAs heterojunctions (I.V. Kukushkin, V.I. Falko, R.J. Haug, K. von Klitzing, K. Eberl and K. Totemayer, Phys. Rev. Lett. 72), 3594 (1994) as well as the success of a harmonic solid model (P. Johansson and J.M. Kinaret, Phys. Rev. Lett. 71), 1435 (1993) in describing tunneling between two-dimensional electron systems, we calculate within the harmonic approximation and sudden perturbation theory the photoluminescence spectrum from the recombination process. The potential for both the perturbed and unperturbed hamiltonians is computed using a recent algorithm for molecular dynamics which is expected to result in the classical ground state. (V.A. Schweigert and F.M. Peeters, Phys. Rev. B 51), 7700 (1995) Using the theoretical results of Dodonov and Manko (Proc. Lebedev Phys. Inst., 183), 263 (1987), we are able to include in the perturbation, in addition to changes in the equilibrium positions of electrons, changes in curvatures of the potential. Supported by NSF and the U.S. ONR

  16. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2.

    PubMed

    Dempsey, Daniel R; Carpenter, Anne-Marie; Ospina, Santiago Rodriguez; Merkler, David J

    2015-11-01

    Arylalkylamine N-acyltransferase like 2 (AANATL2) catalyzes the formation of N-acylarylalkylamides from the corresponding acyl-CoA and arylalkylamine. The N-acylation of biogenic amines in Drosophila melanogaster is a critical step for the inactivation of neurotransmitters, cuticle sclerotization, and melatonin biosynthesis. In addition, D. melanogaster has been used as a model system to evaluate the biosynthesis of fatty acid amides: a family of potent cell signaling lipids. We have previously showed that AANATL2 catalyzes the formation of N-acylarylakylamides, including long-chain N-acylserotonins and N-acyldopamines. Herein, we define the kinetic mechanism for AANATL2 as an ordered sequential mechanism with acetyl-CoA binding first followed by tyramine to generate the ternary complex prior to catalysis. Bell shaped kcat,app - acetyl-CoA and (kcat/Km)app - acetyl-CoA pH-rate profiles identified two apparent pKa,app values of ∼7.4 and ∼8.9 that are critical to catalysis, suggesting the AANATL2-catalyzed formation of N-acetyltyramine occurs through an acid/base chemical mechanism. Site-directed mutagenesis of a conserved glutamate that corresponds to the catalytic base for other D. melanogaster AANATL enzymes did not produce a substantial depression in the kcat,app value nor did it abolish the pKa,app value attributed to the general base in catalysis (pKa ∼7.4). These data suggest that AANATL2 catalyzes the formation of N-acylarylalkylamides using either different catalytic residues or a different chemical mechanism relative to other D. melanogaster AANATL enzymes. In addition, we constructed other site-directed mutants of AANATL2 to help define the role of targeted amino acids in substrate binding and/or enzyme catalysis. PMID:26476413

  17. Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes

    NASA Astrophysics Data System (ADS)

    Martins, Rodrigo; Baptista, Pedro; Raniero, Leandro; Doria, Gonçalo; Silva, Leonardo; Franco, Ricardo; Fortunato, Elvira

    2007-01-01

    Amorphous/nanocrystalline silicon pi 'ii'n devices fabricated on micromachined glass substrates are integrated with oligonucleotide-derivatized gold nanoparticles for a colorimetric detection method. The method enables the specific detection and quantification of unamplified nucleic acid sequences (DNA and RNA) without the need to functionalize the glass surface, allowing for resolution of single nucleotide differences between DNA and RNA sequences—single nucleotide polymorphism and mutation detection. The detector's substrate is glass and the sample is directly applied on the back side of the biosensor, ensuring a direct optical coupling of the assays with a concomitant maximum photon capture and the possibility to reuse the sensor.

  18. Probing Nucleic Acid Interactions and Pre-mRNA Splicing by Förster Resonance Energy Transfer (FRET) Microscopy

    PubMed Central

    Šimková, Eva; Staněk, David

    2012-01-01

    Förster resonance energy transfer (FRET) microscopy is a powerful technique routinely used to monitor interactions between biomolecules. Here, we focus on the techniques that are used for investigating the structure and interactions of nucleic acids (NAs). We present a brief overview of the most commonly used FRET microscopy techniques, their advantages and drawbacks. We list experimental approaches recently used for either in vitro or in vivo studies. Next, we summarize how FRET contributed to the understanding of pre-mRNA splicing and spliceosome assembly. PMID:23203103

  19. Characterisation of embroidered 3D electrodes by use of anthraquinone-1,5-disulfonic acid as probe system

    NASA Astrophysics Data System (ADS)

    Aguiló-Aguayo, Noemí; Bechtold, Thomas

    2014-05-01

    New electrode designs are required for electrochemical applications such as batteries or fuel cells. Embroidered 3D Cu porous electrodes with a geometric surface of 100 cm2 are presented and characterised by means of the anthraquinone-1,5-disfulfonic acid (AQDS2-) redox system in alkaline solution. The electrochemical behaviour of the 3D electrode is established by the comparison of cyclic voltammetry responses using a micro cell and a 100 cm2 plane Cu-plate electrode. Dependencies of the peak currents and peak-to-peak potential separation on scan rate and AQDS2- concentration are studied. The AQDS2- characterisation is also performed by means of spectroelectrochemical experiments.

  20. Probing the Active Site of MIO-dependent Aminomutases, Key Catalysts in the Biosynthesis of amino Acids Incorporated in Secondary Metabolites

    SciTech Connect

    Cooke, H.; Bruner, S

    2010-01-01

    The tyrosine aminomutase SgTAM produces (S)-{beta}-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form {alpha},{beta}-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the {alpha},{beta}-unsaturated intermediates to form {beta}-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis.

  1. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid.

    PubMed

    Wang, Haiyan; Lu, Qiujun; Hou, Yuxin; Liu, Yalan; Zhang, Youyu

    2016-08-01

    Sulfur, nitrogen co-doped carbon dots (S, N co-doped C-dots) as highly selective fluorescent probe for uric acid (UA) detection were designed. The S, N co-doped C-dots with high quantum yield of 73.1% were prepared by hydrothermal method. It was found that the fluorescence of S, N co-doped C-dots was quenched apparently by hydroxyl radicals from Fenton reaction between H2O2 and Fe(2+). The production of H2O2 originated from the oxidization of UA by uricase. Therefore, an optical biosensor was developed for the detection of UA based on Fenton reaction and enzymatic reaction. Under the optimized conditions, two linear relationships between the ratio of fluorescence quenching of the C-dots and UA concentration were found in the range of 0.08-10µM and 10-50µM, respectively. The detection limit was down to 0.07µM. Moreover, the proposed biosensor was successfully applied to the detection of uric acid in human serum samples. PMID:27216657

  2. Folic acid-targeted magnetic Tb-doped CeF3 fluorescent nanoparticles as bimodal probes for cellular fluorescence and magnetic resonance imaging.

    PubMed

    Ma, Zhi-Ya; Liu, Yu-Ping; Bai, Ling-Yu; An, Jie; Zhang, Lin; Xuan, Yang; Zhang, Xiao-Shuai; Zhao, Yuan-Di

    2015-10-01

    Magnetic fluorescent nanoparticles (NPs) have great potential applications for diagnostics, imaging and therapy. We developed a facile polyol method to synthesize multifunctional Fe3O4@CeF3:Tb@CeF3 NPs with small size (<20 nm), high water solubility and good biocompatibility. The NPs were modified by ligand exchange reactions with citric acid (CA) to obtain carboxyl-functionalized NPs (Fe3O4@CeF3:Tb@CeF3-COOH). Folic acid (FA) as an affinity ligand was then covalently conjugated onto NPs to yield Fe3O4@CeF3:Tb@CeF3-FA NPs. They were then applied as multimodal imaging agents for simultaneous in vitro targeted fluorescence imaging and magnetic resonance imaging (MRI) of HeLa cells with overexpressed folate receptors (FR). The results indicated that these NPs had strong luminescence and enhanced T2-weighted MR contrast and would be promising candidates as multimodal probes for both fluorescence and MRI imaging. PMID:26299897

  3. Probing the active site of MIO-dependent aminomutases, key catalysts in the biosynthesis of beta-amino acids incorporated in secondary metabolites.

    PubMed

    Cooke, Heather A; Bruner, Steven D

    2010-09-01

    The tyrosine aminomutase SgTAM produces (S)-ss-tyrosine from L-tyrosine in the biosynthesis of the enediyne antitumor antibiotic C-1027. This conversion is promoted by the methylideneimidazole-5-one (MIO) prosthetic group. MIO was first identified in the homologous family of ammonia lyases, which deaminate aromatic amino acids to form alpha,ss-unsaturated carboxylates. Studies of substrate specificity have been described for lyases but there have been limited reports in altering the substrate specificity of aminomutases. Furthermore, it remains unclear as to what structural properties are responsible for catalyzing the presumed readdition of the amino group into the alpha,ss-unsaturated intermediates to form ss-amino acids. Attempts to elucidate specificity and mechanistic determinants of SgTAM have also proved to be difficult as it is recalcitrant to perturbations to the active site via mutagenesis. An X-ray cocrystal structure of the SgTAM mutant of the catalytic base with L-tyrosine verified important substrate binding residues as well as the enzymatic base. Further mutagenesis revealed that removal of these crucial interactions renders the enzyme inactive. Proposed structural determinants for mutase activity probed via mutagenesis, time-point assays and X-ray crystallography revealed a complicated role for these residues in maintaining key quaternary structure properties that aid in catalysis. PMID:20577998

  4. Detection of Human Ig G Using Photoluminescent Porous Silicon Interferometer.

    PubMed

    Cho, Bomin; Kim, Seongwoong; Woo, Hee-Gweon; Kim, Sungsoo; Sohn, Honglae

    2015-02-01

    Photoluminescent porous silicon (PSi) interferometers having dual optical properties, both Fabry-Pérot fringe and photolumincence (PL), have been developed and used as biosensors for detection of Human Immunoglobin G (Ig G). PSi samples were prepared by electrochemical etching of p-type silicon under white light exposure. The surface of PSi was characterized using a cold field emission scanning electron microscope. The sensor system studied consisted of a single layer of porous silicon modified with Protein A. The system was probed with various fragments of aqueous human immunoglobin G (Ig G) analyte. Both reflectivity and PL were simultaneously measured under the exposure of human Ig G. An increase of optical thickness and decrease of PL were obtained under the exposure of human Ig G. Detection limit of 500 fM was observed for the human Ig G. PMID:26353616

  5. A novel magnetic field probing technique for determining state of health of sealed lead-acid batteries

    NASA Astrophysics Data System (ADS)

    Khare, Neeta; Singh, Pritpal; Vassiliou, John K.

    2012-11-01

    State of Health (SOH) is a critical index for a Sealed Lead-Acid (SLA) battery diagnostic which provides the information about battery replacement and aging effects. SOH is a complex function of chemical parameters of a battery such as stratification in electrolyte, electrode structure (sulfation and hard sulfation) in addition to electrical parameters of a battery. This paper describes a method of online determination of stratification, electrode structure, electrode polarization and current profile within the battery under the influence of a magnetic field. An AC magnetic field is used as a noninvasive tool during battery cycles. An induced emf in a secondary coil (SCV) is used as a measure of change in the magnetic field. The H+ proton density varies with change in sulfuric acid (electrolyte) concentration during battery cycles. The magnetic flux lines are affected by the density of H+ protons whose magnetic dipole moments try to align along the magnetic flux lines. The stratification is seen by a 12% decrease in magnetic flux linking from the top to the bottom of the electrolyte in a battery. Additional experimental results demonstrate the variation in magnetic flux linking which correlates with current profile across the electrode and electrode structure.

  6. Mefenamic acid anti-inflammatory drug: probing its polymorphs by vibrational (IR and Raman) and solid-state NMR spectroscopies.

    PubMed

    Cunha, Vanessa R R; Izumi, Celly M S; Petersen, Philippe A D; Magalhães, Alviclér; Temperini, Marcia L A; Petrilli, Helena M; Constantino, Vera R L

    2014-04-24

    This work deals with the spectroscopic (supported by quantum chemistry calculations), structural, and morphological characterization of mefenamic acid (2-[(2,3-(dimethylphenyl)amino] benzoic acid) polymorphs, known as forms I and II. Polymorph I was obtained by recrystallization in ethanol, while form II was reached by heating form I up to 175 °C, to promote the solid phase transition. Experimental and theoretical vibrational band assignments were performed considering the presence of centrosymmetric dimers. Besides band shifts in the 3345-3310 cm(-1) range, important vibrational modes to distinguish the polymorphs are related to out-of-phase and in-phase N-H bending at 1582 (Raman)/1577 (IR) cm(-1) and 1575 (Raman)/1568 (IR) cm(-1) for forms I and II, respectively. In IR spectra, bands assigned to N-H bending out of plane are observed at 626 and 575 cm(-1) for polymorphs I and II, respectively. Solid-state (13)C NMR spectra pointed out distinct chemical shifts for the dimethylphenyl group: 135.8 to 127.6 ppm (carbon bonded to N) and 139.4 to 143.3 ppm (carbon bonded to methyl group) for forms I and II, respectively. PMID:24654805

  7. Use of Dimedone-Based Chemical Probes for Sulfenic Acid Detection: Methods to Visualize and Identify Labeled Proteins

    PubMed Central

    Nelson, Kimberly J.; Klomsiri, Chananat; Codreanu, Simona G.; Soito, Laura; Liebler, Daniel C.; Rogers, LeAnn C.; Daniel, Larry W.; Poole, Leslie B.

    2013-01-01

    Reversible thiol modification is a major component of the modulation of cell-signaling pathways by reactive oxygen species. Hydrogen peroxide, peroxynitrite, or lipid hydroperoxides are all able to oxidize cysteines to form cysteine sulfenic acids; this reactive intermediate can be directly reduced to thiol by cellular reductants such as thioredoxin or further participate in disulfide bond formation with glutathione or cysteine residues in the same or another protein. To identify the direct protein targets of cysteine modification and the conditions under which they are oxidized, a series of dimedone-based reagents linked to affinity or fluorescent tags have been developed that specifically alkylate and trap cysteine sulfenic acids. In this chapter, we provide detailed methods using one of our biotin-tagged reagents, DCP-Bio1, to identify and monitor proteins that are oxidized in vitro and in vivo. Using streptavidin-linked agarose beads, this biotin-linked reagent can be used to affinity capture labeled proteins. Stringent washing of the beads prior to elution minimizes the contamination of the enriched material with unlabeled proteins through coimmunoprecipitation or nonspecific binding. In particular, we suggest including DTT in one of the washes to remove proteins covalently linked to biotinylated proteins through a disulfide bond, except in cases where these linked proteins are of interest. We also provide methods for targeted approaches monitoring cysteine oxidation in individual proteins, global approaches to follow total cysteine oxidation in the cell, and guidelines for proteomic analyses to identify novel proteins with redox sensitive cysteines. PMID:20513473

  8. Probing the adsorption of weak acids on graphite using amplitude modulation-frequency modulation atomic force microscopy.

    PubMed

    Moustafa, Ahmed M A; Huang, Jun; McPhedran, Kerry N; Zeng, Hongbo; El-Din, Mohamed Gamal

    2015-03-17

    Recent thermodynamics calculations and adsorption isotherms showed that the adsorption of a self-assembled layer (SAL) of ionized weak acids to carbon was attributed to the negatively charged hydrogen bonding (-CAHB), yet the direct visualization and characterization of this adsorption behavior have not been reported. Here, an amplitude modulation-frequency modulation atomic force microscopy (AM-FM AFM) technique was applied to discriminate the adsorption of decanoic acids (DA) on highly ordered pyrolytic graphite (HOPG). Thermodynamics calculations revealed that the adsorption of SAL was driven by the formation of -CAHB with negatively charged functional groups of HOPG. Multilayer adsorption could occur over the adsorbed ionized SAL, leading to the development of aggregates. AM-FM AFM imaging showed that the adsorption of the DA molecules forming aggregates occurred only for the HOPG-functionalized steps, while DA molecules were found to adsorb over the entire functionalized HOPG surface after water-plasma treatment, as evident from the frequency shifts identified in AFM images. PMID:25710305

  9. Development of a Fatty Acid and RNA Stable Isotope Probing-Based Method for Tracking Protist Grazing on Bacteria in Wastewater ▿

    PubMed Central

    Kuppardt, Steffen; Chatzinotas, Antonis; Kästner, Matthias

    2010-01-01

    Removal of potential pathogenic bacteria, for example, during wastewater treatment, is effected by sorption, filtration, natural die-off, lysis by viruses, and grazing by protists, but the actual contribution of grazing has never been assessed quantitatively. A methodical approach for analyzing the grazing of protists on 13C-labeled prey bacteria was developed which enables mass balances of the carbon turnover to be drawn, including yield estimation. Model experiments for validating the approach were performed in closed microcosms with the ciliate Uronema sp. and 13C-labeled Escherichia coli as model prey. The transfer of bacterial 13C into grazing protist biomass was investigated by fatty acid (FA) and RNA stable isotope probing (SIP). Uronema sp. showed ingestion rates of ∼390 bacteria protist−1 h−1, and the temporal patterns of 13C assimilation from the prey bacteria to the protist FA were identified. Nine fatty acids specific for Uronema sp. were found (20:0, i20:0, 22:0, 24:0, 20:1ω9c, 20:1ω9t, 22:1ω9c, 22:1ω9t, and 24:1). Four of these fatty acids (22:0, 20:1ω9t, 22:1ω9c, and 22:1ω9t) were enriched very rapidly after 3 h, indicating grazing on bacteria without concomitant cell division. Other fatty acids (20:0, i20:0, and 20:1ω9c) were found to be indicative of growth with cell division. The fatty acids were found to be labeled with a percentage of labeled carbon (atoms percent [atom%]) up to 50. Eighteen percent of the E. coli-derived 13C was incorporated into Uronema biomass, whereas 11% was mineralized. Around 5 mol bacterial carbon was necessary in order to produce 1 mol protist carbon (yx/s ≈ 0.2), and the temporal pattern of 13C labeling of protist rRNA was also shown. A consumption of around 1,000 prey bacteria (∼98 atom% 13C) per protist cell appears to be sufficient to provide detectable amounts of label in the protist RNA. The large shift in the buoyant density fraction of 13C-labeled protist RNA demonstrated a high incorporation

  10. Spectrophotometric probe

    DOEpatents

    Prather, W.S.; O'Rourke, P.E.

    1994-08-02

    A support structure is described bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe. 3 figs.

  11. Spectrophotometric probe

    DOEpatents

    Prather, William S.; O'Rourke, Patrick E.

    1994-01-01

    A support structure bearing at least one probe for making spectrophotometric measurements of a fluid using a source of light and a spectrophotometer. The probe includes a housing with two optical fibers and a planoconvex lens. A sleeve bearing a mirror surrounds the housing. The lens is separated from the mirror by a fixed distance, defining an interior space for receiving a volume of the fluid sample. A plurality of throughholes extending through the sleeve communicate between the sample volume and the exterior of the probe, all but one hole bearing a screen. A protective jacket surrounds the probe. A hollow conduit bearing a tube is formed in the wall of the probe for venting any air in the interior space when fluid enters. The probe is held at an acute angle so the optic fibers carrying the light to and from the probe are not bent severely on emergence from the probe.

  12. A photoluminescence technique for detection of gunshot residue.

    PubMed

    Jones, P F; Nesbitt, R S

    1975-04-01

    Rapid, convenient detection of gunshot residue on the hands of a suspect, following a shooting, can be accomplished by the photoluminescence determination of the presence of lead (Pb) and antimony (Sb), which originate in the cartiridge primer. Following the firing of a gun, the backs of both hands are washed in a stream of distilled water. Each hand washing is filtered, and the residue collected on a membrane filter is dissolved in hydrochloric acid. Lead(II)and Sb(III) form chloride ion complexes with the acid, which luminesce strongly upon selective ultraviolet excitation at low temperature. Upon excitation, the Pb and Sb complexes emit light with maxima at wavelengths characteristic for the two metallic elements. By the use of this procedure, it is possible to detect as little as 1.0 ng of Pb and 10 ng of Sb. The total time for sample collection and analysis is less than 30 min. PMID:1123593

  13. Effects of macromolecular crowding on a small lipid binding protein probed at the single-amino acid level.

    PubMed

    Pérez Santero, Silvia; Favretto, Filippo; Zanzoni, Serena; Chignola, Roberto; Assfalg, Michael; D'Onofrio, Mariapina

    2016-09-15

    Macromolecular crowding is a distinctive feature of the cellular interior, influencing the behaviour of biomacromolecules. Despite significant advancements in the description of the effects of crowding on global protein properties, the influence of cellular components on local protein attributes has received limited attention. Here, we describe a residue-level systematic interrogation of the structural, dynamic, and binding properties of the liver fatty acid binding protein (LFABP) in crowded solutions. Two-dimensional NMR spectral fingerprints and relaxation data were collected on LFABP in the presence of polymeric and biomolecular crowders. Non-interacting crowders produced minimal site-specific spectral perturbations on ligand-free and lipid-bound LFABP. Conformational adaptations upon ligand binding reproduced those observed in dilute solution, but a perturbation of the free oleate state resulted in less favorable uptake. When LFABP engaged in direct interactions with background molecules, changes in local chemical environments were detected for residues of the internal binding pocket and of the external surface. Enhanced complexity was introduced by investigating LFABP in cell lysates, and in membrane-bounded compartments. LFABP was able to capture ligands from prokaryotic and eukaryotic cell lysates, and from artificial cells (water-in-oil emulsion droplets). The data suggest that promiscuous interactions are a major factor influencing protein function in the cell. PMID:27457417

  14. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins

    PubMed Central

    Nusrat, Saima; Siddiqi, Mohammad Khursheed; Zaman, Masihuz; Zaidi, Nida; Ajmal, Mohammad Rehan; Alam, Parvez; Qadeer, Atiyatul; Abdelhameed, Ali Saber

    2016-01-01

    Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra. PMID:27391941

  15. A Comprehensive Spectroscopic and Computational Investigation to Probe the Interaction of Antineoplastic Drug Nordihydroguaiaretic Acid with Serum Albumins.

    PubMed

    Nusrat, Saima; Siddiqi, Mohammad Khursheed; Zaman, Masihuz; Zaidi, Nida; Ajmal, Mohammad Rehan; Alam, Parvez; Qadeer, Atiyatul; Abdelhameed, Ali Saber; Khan, Rizwan Hasan

    2016-01-01

    Exogenous drugs that are used as antidote against chemotheray, inflammation or viral infection, gets absorbed and interacts reversibly to the major serum transport protein i.e. albumins, upon entering the circulatory system. To have a structural guideline in the rational drug designing and in the synthesis of drugs with greater efficacy, the binding mechanism of an antineoplastic and anti-inflammatory drug Nordihydroguaiaretic acid (NDGA) with human and bovine serum albumins (HSA & BSA) were examined by spectroscopic and computational methods. NDGA binds to site II of HSA with binding constant (Kb) ~105 M-1 and free energy (ΔG) ~ -7.5 kcal.mol-1. It also binds at site II of BSA but with lesser binding affinity (Kb) ~105 M-1 and ΔG ~ -6.5 kcal.mol-1. The negative value of ΔG, ΔH and ΔS for both the albumins at three different temperatures confirmed that the complex formation process between albumins and NDGA is spontaneous and exothermic. Furthermore, hydrogen bonds and hydrophobic interactions are the main forces involved in complex formation of NDGA with both the albumins as evaluated from fluorescence and molecular docking results. Binding of NDGA to both the albumins alter the conformation and causes minor change in the secondary structure of proteins as indicated by the CD spectra. PMID:27391941

  16. Probing the Influence of Protecting Groups on the Anomeric Equilibrium in Sialic Acid Glycosides with the Persistent Radical Effect

    PubMed Central

    2015-01-01

    A method for the investigation of the influence of protecting groups on the anomeric equilibrium in the sialic acid glycosides has been developed on the basis of the equilibration of O-sialyl hydroxylamines by reversible homolytic scission of the glycosidic bond following the dictates of the Fischer–Ingold persistent radical effect. It is found that a trans-fused 4O,5N-oxazolidinone group stabilizes the equatorial glycoside, i.e., reduces the anomeric effect, when compared to the 4O,5N-diacetyl protected systems. This effect is discussed in terms of the powerful electron-withdrawing nature of the oxazolidinone system, which in turn is a function of its strong dipole moment in the mean plane of the pyranose ring system. The new equilibration method displays a small solvent effect and is most pronounced in less polar media consistent with the anomeric effect in general. The unusual (for anomeric radicals) poor kinetic selectivity of anomeric sialyl radicals is discussed in terms of the planar π-type structure of these radicals and of competing 1,3-diaxial interactions in the diastereomeric transition states for trapping on the α- and β-faces of the radical. PMID:24606062

  17. Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe.

    PubMed

    Zhou, Ying; Zhao, Hong; Li, Chang; He, Peng; Peng, Wenbo; Yuan, Longfei; Zeng, Lixi; He, Yujian

    2012-08-15

    A facile, selective and highly sensitive method is proposed for colorimetric detection of manganese ions using 4-mercaptobenzoic acid (4-MBA) and melamine (MA) modified silver nanoparticles (AgNPs). The presence of Mn(2+) induces the aggregation of AgNPs through cooperative metal-ligand interaction, resulting in a color change from bright yellow to purple. The cofunctionalized AgNPs showed obvious advantages over the ones functionalized only by 4-MBA or MA in terms of selectivity. Mn(2+) could be monitored by colorimetric response of AgNPs by a UV-vis spectrophotometer or even naked eyes. The absorbance ratio (A(550 nm)/A(408 nm)) is linear with the concentration of Mn(2+) ranging from 5×10(-7) mol/L to 1×10(-5) mol/L with a correlation coefficient of 0.993, and the detection limit is as low as 5×10(-8) mol/L. Particularly, this cost-effective process also allowed rapid and simple determination of the Mn(2+) in drinking water. PMID:22841088

  18. Probing structural features of Alzheimer's amyloid-β pores in bilayers using site-specific amino acid substitutions.

    PubMed

    Capone, Ricardo; Jang, Hyunbum; Kotler, Samuel A; Kagan, Bruce L; Nussinov, Ruth; Lal, Ratnesh

    2012-01-24

    A current hypothesis for the pathology of Alzheimer's disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits. Here, using planar lipid bilayers and molecular dynamics (MD) simulations, we show that amino acid substitutions can be used to infer which residues are essential for channel structure. We created two Aβ(1-42) peptides with point mutations: F19P and F20C. The substitution of Phe19 with Pro inhibited channel conductance. MD simulation suggests a collapsed pore of F19P channels at the lower bilayer leaflet. The kinks at the Pro residues in the pore-lining β-strands induce blockage of the solvated pore by the N-termini of the chains. The cysteine mutant is capable of forming channels, and the conductance behavior of F20C channels is similar to that of the wild type. Overall, the mutational analysis of the channel activity performed in this work tests the proposition that the channels consist of a β-sheet rich organization, with the charged/polar central strand containing the mutation sites lining the pore, and the C-terminal strands facing the hydrophobic lipid tails. A detailed understanding of channel formation and its structure should aid studies of drug design aiming to control unregulated Aβ-dependent ion fluxes. PMID:22242635

  19. ANTS-anchored Zn-Al-CO3-LDH particles as fluorescent probe for sensing of folic acid

    NASA Astrophysics Data System (ADS)

    Liu, Pengfei; Liu, Dan; Liu, Yanhuan; Li, Lei

    2016-09-01

    A novel fluorescent nanosensor for detecting folic acid (FA) in aqueous media has been developed based on 8-aminonaphthalene-1,3,6-trisulfonate (ANTS) anchored to the surface of Zn-Al-CO3-layered double hydroxides (LDH) particles. The nanosensor showed high fluorescence intensity and good photostability due to a strong coordination interaction between surface Zn2+ ions of Zn-Al-CO3-LDH and N atoms of ANTS, which were verified by result of X-ray photoelectron spectroscopy (XPS). ANTS-anchored on the surface of Zn-Al-CO3-LDH restricted the intra-molecular rotation leading to ANTS-anchored J-type aggregation emission enhancement. ANTS-anchored Zn-Al-CO3-LDH particles exhibited highly sensitive and selective response to FA over other common metal ions and saccharides present in biological fluids. The proposed mechanism was that oxygen atoms of -SO3 groups in ANTS-anchored on the surface of Zn-Al-CO3-LDH were easily collided by FA molecules to form potential hydrogen bonds between ANTS-anchored and FA molecules, which could effectively quench the ANTS-anchored fluorescence. Under the simulated physiological conditions (pH of 7.4), the fluorescence quenching was fitted to Stern-Volmer equation with a linear response in the concentration range of 1 μM to 200 μM with a limit of detection of 0.1 μM. The results indicate that ANTS-anchored Zn-Al-CO3-LDH particles can afford a very sensitive system for the sensing FA in aqueous solution.

  20. Photoluminescence of a quantum-dot molecule

    SciTech Connect

    Kruchinin, Stanislav Yu.; Rukhlenko, Ivan D.; Baimuratov, Anvar S.; Leonov, Mikhail Yu.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii K.

    2015-01-07

    The coherent coupling of quantum dots is a sensitive indicator of the energy and phase relaxation processes taking place in the nanostructure components. We formulate a theory of low-temperature, stationary photoluminescence from a quantum-dot molecule composed of two spherical quantum dots whose electronic subsystems are resonantly coupled via the Coulomb interaction. We show that the coupling leads to the hybridization of the first excited states of the quantum dots, manifesting itself as a pair of photoluminescence peaks with intensities and spectral positions strongly dependent on the geometric, material, and relaxation parameters of the quantum-dot molecule. These parameters are explicitly contained in the analytical expression for the photoluminescence differential cross section derived in the paper. The developed theory and expression obtained are essential in interpreting and analyzing spectroscopic data on the secondary emission of coherently coupled quantum systems.

  1. Biopolymer-mediated analyte detection via photoluminescence modulation of single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Heller, Daniel

    Single-walled carbon nanotubes (SWNT) have unique photo-physical properties which, through the work in this dissertation, are investigated and harnessed to produce optical sensors with unique capabilities. Early studies of the modulation of SWNT optical properties---both photoluminescence and resonance Raman scattering---demonstrate their tunable nature. Solution dispersed SWNT are sorted by length and the photoluminescence quantum yield is shown to increase nonlinearly with length, suggesting that SWNT ends quench the exciton. The change in Raman scattering cross section and resonant window is mapped as a function of SWNT aggregation, as well as sonochemical effects on photoluminescence. Nanotube photoluminescence and scattering are then detected, via imaging and spectrometry, from within live murine macrophage cells, and shown to be extremely resilient, demonstrating the potential of nanotube-based molecular probes and biosensors. The work culminates in several major findings in optical sensing. We show that a nanotube-ds(GT)15 DNA complex can detect genotoxic analytes by solvatochromism, and measure this from within live cells and tissues in real-time. We find that such optical signals can be multiplexed, resulting in analyte fingerprinting, and a bioanalyte can be detected at the single-molecule level stochastic operation of such sensors. These concepts are employed to detect, identify, and measure bioanalytes, such as reactive oxygen species, as well as explosives, such as TNT and RDX, with single-molecule sensitivity.

  2. Molecular interactions between organized surface-confined monolayers and vapor-phase probe molecules. 8. Reactions between acid-terminated self-assembled monolayers and vapor-phase bases

    SciTech Connect

    Yang, H.C.; Dermody, D.L.; Xu, C.; Crooks, R.M.; Ricco, A.J.

    1996-02-07

    We present the results of a study of the interactions between three different acid-terminated self-assembled monolayer(SAM) surfaces and three basic vapor-phase probe molecules. The SAMs are composed of 4-mercaptobenzoic acid (MBA), 3-mercaptopropionic acid(MPA), and 11-mercaptoundecanoic acid (MUA), and the vapor-phase probes are, in order of increasing solution-phase acidity, decylamine, pyridine, and pyrazine. Our results are based on data from surface infrared spectroscopy and thickness-shear mode mass sensors. We find that all three SAMs irreversibly bind approximately one monolayer of decylamine, although there are slight differences that correlate with the structural nuances of the SAMs. The MPA and MBA SAMs bind decylamine through an electrostatic interaction brought about by transfer of a proton from the acid to the base. Because the MUA SAM is more impenetrable than the others, complete proton transfer is hindered, and binding of decylamine arises through a combination of proton transfer and strong hydrogen bonding. In the presence of its vapor, pyridine adsorbs to MBA surfaces at near-monolayrer coverage, but upon N{sub 2} purging about two-thirds of it desorbs. Only one-half monolayer of pyrazine, which is less basic than pyridine, adsorbs to the MBA SAM, and upon N{sub 2} purging, about two-thirds of it desorbs. The aliphatic acid SAMs follow a similar trend. 40 refs., 10 figs., 2 tabs.

  3. Highly photoluminescent MoO(x) quantum dots: Facile synthesis and application in off-on Pi sensing in lake water samples.

    PubMed

    Xiao, Sai Jin; Zhao, Xiao Jing; Zuo, Jun; Huang, Hai Qing; Zhang, Li

    2016-02-01

    Molybdenum oxide (MoOx) is a well-studied transition-metal semiconductor material, and has a wider band gap than MoS2 which makes it become a promising versatile probe in a variety of fields, such as gas sensor, catalysis, energy storage ect. However, few MoOx nanomaterials possessing photoluminescence have been reported until now, not to mention the application as photoluminescent probes. Herein, a one-pot method is developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs) in which commercial molybdenum disulfide powder and hydrogen peroxide (H2O2) are involved as the precursor and oxidant, respectively. Compared with current synthesis methods, the proposed one has the advantages of rapid, one-pot, easily prepared, environment friendly as well as strong photoluminescence. The obtained MoOx QDs is further utilized as an efficient photoluminescent probe, and a new off-on sensor has been constructed for phosphate (Pi) determination in complicated lake water samples, attributed to the fact that the binding affinity of Eu(3+) ions to the oxygen atoms from Pi is much higher than that from the surface of MoOx QDs. Under the optimal conditions, a good linear relationship was found between the enhanced photoluminescence intensity and Pi concentration in the range of 0.1-160.0 μM with the detection limit of 56 nM (3σ/k). The first application of the photoluminescent MoOx nanomaterials for ion photochemical sensing will open the gate of employing MoOx nanomaterials as versatile probes in a variety of fields, such as chemi-/bio-sensor, cell imaging, biomedical and so on. PMID:26772134

  4. Effect of Glucose on the Fatty Acid Composition of Cupriavidus necator JMP134 during 2,4-Dichlorophenoxyacetic Acid Degradation: Implications for Lipid-Based Stable Isotope Probing Methods▿†

    PubMed Central

    Lerch, Thomas Z.; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André

    2011-01-01

    Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [13C]2,4-D, [13C]glucose, or mixtures of both substrates alternatively labeled with 13C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the 13C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments. PMID:21856833

  5. Probing the interaction induced conformation transitions in acid phosphatase with cobalt ferrite nanoparticles: Relation to inhibition and bio-activity of Chlorella vulgaris acid phosphatase.

    PubMed

    Ahmad, Farooq; Zhou, Xing; Yao, Hongzhou; Zhou, Ying; Xu, Chao

    2016-09-01

    The present study explored the interaction and kinetics of cobalt ferrite nanoparticles (NPs) with acid phosphatase (ACP) by utilizing diverse range of spectroscopic techniques. The results corroborate, the CoFe2O4 NPs cause fluorescence quenching in ACP by static quenching mechanism. The negative values of van't Hoff thermodynamic expressions (ΔH=-0.3293Jmol(-1)K(-1) and ΔG=-3.960kJmol(-1)K(-1)) corroborate the spontaneity and exothermic nature of static quenching. The positive value of ΔS (13.2893Jmol(-1)K(-1)) corroborate that major contributors of higher and stronger binding affinity among CoFe2O4 NPs with ACP were electrostatic. In addition, FTIR, UV-CD, UV-vis spectroscopy and three dimensional fluorescence (3D) techniques confirmed that CoFe2O4 NPs binding induces microenvironment perturbations leading to secondary and tertiary conformation changes in ACP to a great extent. Furthermore, synchronous fluorescence spectroscopy (SFS) affirmed the comparatively significant changes in microenvironment around tryptophan (Trp) residue by CoFe2O4 NPs. The effect of CoFe2O4 NPs on the activation kinetics of ACP was further examined in Chlorella vulgaris. Apparent Michaelis constant (Km) values of 0.57 and 26.5mM with activation energy values of 0.538 and 3.428kJmol(-1) were determined without and with 200μM CoFe2O4 NPs. Apparent Vmax value of -7Umml(-1) corroborate that enzyme active sites were completely captured by the NPs leaving no space for the substrate. The results confirmed that CoFe2O4 NPs ceased the activity by unfolding of ACP enzyme. This suggests CoFe2O4 NPs perturbed the enzyme activity by transitions in conformation and hence the metabolic activity of ACP. This study provides the pavement for novel and simple approach of using sensitive biomarkers for sensing NPs in environment. PMID:27209386

  6. Photoluminescence method of testing double heterostructure wafers

    SciTech Connect

    Besomi, P.R.; Wilt, D.P.

    1984-04-10

    Under photoluminescence (PL) excitation, the lateral spreading of photo-excited carriers can suppress the photoluminescence signal from double heterostructure (DH) wafers containing a p-n junction. In any DH with a p-n junction in the active layer, PL is suppressed if the power of the excitation source does not exceed a threshold value. This effect can be advantageously used for a nondestructive optical determination of the top cladding layer sheet conductance as well as p-n junction misplacement, important parameters for injection lasers and LEDs.

  7. Non-Bleaching Photoluminescent Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zou, Lu; Kim, Chanjoong; Girgis, Emad; Khalil, Wagdy K. B.

    2013-03-01

    We report a new type of photoluminescent magnetic nanoparticles produced by a very simple process. The nanoparticle consists of an ordinary magnetic nanoparticle as core and a non-toxic polymer shell. The biocompatibility is evaluated using in-vivo tests on mice. They are non-bleaching photoluminescent without any addition of fluorophores, such as quantum dots or fluorescent dyes that can be toxic and easily photobleached, respectively. This work provides a low-cost, bio-safe, non-bleaching alternative of conventional fluoroscent magnetic nanoparticles which covers a wide range of applications, from bio-imaging to biomedical diagnostics and therapeutics, such as hyperthermia.

  8. Measurement of non-DLVO force on a silicon substrate coated with ammonium poly(acrylic acid) using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Isobe, Toshihiro; Nakano, Yosuke; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi

    2009-07-01

    The repulsive force originating from steric hindrance of polymers in aqueous solvent was investigated using scanning probe microscopy (SPM). The contact angle (CA) of ammonium poly(acrylic acid) (PAA) solution on the Si surface was measured to estimate the state of the Si substrate. Results of CA measurement show that the Si surface was fully covered with PAA at 0.1 mass% in aqueous solution. The interaction force between the Si tip and the wafer was estimated using the SPM force curve mode. The force curve measured in the ion-exchanged purified water showed the typical relation predicted by Derjaguin-Landau-Verway-Overbeek (DLVO) theory. However, the force curve shape in the 0.1 mass% PAA solution was significantly different. Only a repulsive force was observed at less than about 4 nm of separation distance between the Si wafer and cantilever tip. This distance originated from the steric repulsions of PAA adsorbed onto the Si wafer and cantilever tip.

  9. Porous silicon: electrochemical microstructuring, photoluminescence, and covalent modificaiton

    NASA Astrophysics Data System (ADS)

    Prigozhin, Maxim B.; Shiwsankar, Pauline; Algar, W. Russ; Krull, Ulrich J.

    2008-06-01

    Interest in porous silicon (PS) has increased dramatically over the past two decades due to aspects such as photoluminescence due to quantum confinement, large surface area, and micro/nanoscale architecture. In this work, <111> p-type silicon wafers have been electrochemically etched with ethanolic solutions of hydrofluoric acid. Discrete surface domains showing luminescence were observed. The domains were typically many tens of micrometers in size and had a height of about 6-8 μm. Interestingly, central round wells of 10-30 μm diameter were observed to form within domains. Investigation of luminescence in depth profile of the wells was done using confocal fluorescence microscopy, and the results indicated that the domains were fully porous and luminescent throughout the entire depth. Spectrally, the peak fluorescence emission was in the range of 550-750 nm and the spectra had an average FWHM equal to about 150 nm. Covalent attachment of organic monolayers to the porous silicon surfaces was done to try and passivate against oxidation, and also to explore the possibilities of bioconjugation and tuning of the photoluminescence wavelength. A reaction of hydrogen terminated silicon with ω-undecylenyl alcohol was done using irradiation by a UV source, and successful derivatization was confirmed with IR spectroscopy. Bulk electrochemical etching of silicon provided a method to generate distributed luminescent structures suitable for compartmentalization of reactions within wells of micrometer dimensions without the use of spatially resolved fabrication methodologies such as epitaxial deposition, lithography, or ion beam technologies.

  10. Diagnostic meaning of intestinal wall photoluminescence changes

    NASA Astrophysics Data System (ADS)

    Besaha, R. M.; Hrynchuk, F. V.; Polyansky, I. Y.

    2006-05-01

    Diagnostics of inflammatory-destructive diseases of the abdominal cavity organs is performed by the determined spectra of luminescence of venous blood plasma. The shift of the photoluminescence maximum beginning with the wave-length 469 nm into short-wave zone proves the presence of the acute inflammatory-destructive diseases and exacerbation of the pathological process.

  11. Blue photoluminescent carbon nanodots from limeade.

    PubMed

    Suvarnaphaet, Phitsini; Tiwary, Chandra Sekhar; Wetcharungsri, Jutaphet; Porntheeraphat, Supanit; Hoonsawat, Rassmidara; Ajayan, Pulickel Madhavapanicker; Tang, I-Ming; Asanithi, Piyapong

    2016-12-01

    Carbon-based photoluminescent nanodot has currently been one of the promising materials for various applications. The remaining challenges are the carbon sources and the simple synthetic processes that enhance the quantum yield, photostability and biocompatibility of the nanodots. In this work, the synthesis of blue photoluminescent carbon nanodots from limeade via a single-step hydrothermal carbonization process is presented. Lime carbon nanodot (L-CnD), whose the quantum yield exceeding 50% for the 490nm emission in gram-scale amounts, has the structure of graphene core functionalized with the oxygen functional groups. The micron-sized flake of the as-prepared L-CnD powder exhibits multicolor emission depending on an excitation wavelength. The L-CnDs are demonstrated for rapidly ferric-ion (Fe(3+)) detection in water compared to Fe(2+), Cu(2+), Co(2+), Zn(2+), Mn(2+) and Ni(2+) ions. The photoluminescence quenching of L-CnD solution under UV light is used to distinguish the Fe(3+) ions from others by naked eyes as low concentration as 100μM. Additionally, L-CnDs provide exceptional photostability and biocompatibility for imaging yeast cell morphology. Changes in morphology of living yeast cells, i.e. cell shape variation, and budding, can be observed in a minute-period until more than an hour without the photoluminescent intensity loss. PMID:27612786

  12. Molybdenum disulfide quantum dots as a photoluminescence sensing platform for 2,4,6-trinitrophenol detection.

    PubMed

    Wang, Yong; Ni, Yongnian

    2014-08-01

    Transition metal chalcogenides, especially molybdenum disulfide (MoS2), have recently attracted wide attention from researchers as graphene-analogous materials. However, until now, little literature has reported the synthesis of photoluminescent MoS2 materials and their applications in analytical chemistry. We herein presented a facile bottom-up hydrothermal route for the synthesis of photoluminescent MoS2 quantum dots (QDs) by using sodium molybdate and cysteine as precursors. The prepared MoS2 QDs were characterized by transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, photoluminescence spectroscopy, and UV-vis spectroscopy. The MoS2 QDs were then used as photoluminescent probes to construct a photoluminescence (PL) quenching sensor for detection of 2,4,6-trinitrophenol (TNP). The TNP sensor presented a wide linear range from 0.099 to 36.5 μM with a high detection limit of 95 nM. Furthermore, the sensor displayed a high sensitivity toward TNP over other structurally similar compounds like 2,4,6-trinitrotoluene, p-chlorophenol, phenol, and 2,6-di-tert-butyl-4-methylphenol. To understand the origin of the high sensitivity, we assessed the emission wavelength-dependent PL quenching behavior of MoS2 QDs by the above five compounds using Stem-Volmer equation in detail. The results showed that the novel approach we put forward can satisfactorily explain the interaction mechanisms between MoS2 QDs and the five compounds, and the high sensitivity for TNP very likely originated from a combination of the PL resonance energy transfer, electronic energy transfer, and electrostatic interactions between MoS2 QDs and TNP. Finally, the sensor was successfully applied for detection of TNP in water samples and test papers. PMID:25001878

  13. Central-metal exchange, improved catalytic activity, photoluminescence properties of a new family of d(10) coordination polymers based on the 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid ligand.

    PubMed

    Wang, Huarui; Huang, Chao; Han, Yanbing; Shao, Zhichao; Hou, Hongwei; Fan, Yaoting

    2016-05-01

    The rigid and planar tetracarboxylic acid 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid (H4L), incorporating a triazole group, has been used with no or different pyridine-based linkers to construct a family of d(10) coordination polymers, namely, {[H2N(CH3)2]3[Cd3(L)2(HCOO)]}n (), {[Cd2(L)(py)6]·H2O}n (), {[H2N(CH3)2] [Cd2(L)(HCOO)(H2O)4]}n (), {[Zn(H2L)]·H2O}n (), and {[Zn(H2L)(4,4'-bipy)0.5]·C2H5OH·H2O}n () (py = pyridine, 4,4'-bipy = 4,4'-bipyridine). constructs a 3D porous network containing two kinds of channels: one is filled with coordinated HCOO(-) anions, and the other with [H2N(CH3)2](+) cations. The framework of can be described as a rare (5,6,7)-connected net with the Schläfli symbol of (4(12)·5·6(2))(4(5)·5(3)·6(2))2(4(8)·5(3)·6(8)·8(2))2. The Cd(ii) ions in are connected through the carboxylate ligands to form a 2D layer, with aperture dimensions of ∼15.1 Å × 16.2 Å. The network of features a 3D (3,4)-connected (6·8·10)2(6·8(3)·10(2)) topology. A 3D network with the (4(2)·6·8(3)) topology of possesses an open 1D channel with the free volume of 29.2%. is a 2D layer structure with the (4(2)·6(3)·8)(4(2)·6) topology. The fluorescence lifetime τ values of are on the nanosecond timescale at room temperature. In particular, central-metal exchange in leads to a series of isostructural M(ii)-Cd frameworks [M = Cu (), Co (), Ni ()] showing improved catalytic activity for the synthesis of 1,4,5,6-tetrahydropyrimidine derivatives. Based on this, a plausible mechanism for the catalytic reaction has been proposed and the reactivity-structure relationship has been further clarified. PMID:27063339

  14. Syntheses, structures and photoluminescent properties of Zn(Ⅱ)/Co(Ⅱ) coordination polymers based on flexible tetracarboxylate ligand of 5,5‧-(butane-1,4-diyl)-bis(oxy)-di isophthalic acid

    NASA Astrophysics Data System (ADS)

    Gao, Yan-Peng; Guo, Le; Dong, Wei; Jia, Min; Zhang, Jing-Xue; Sun, Zhong; Chang, Fei

    2016-08-01

    Three new mixed-ligand metal-organic frameworks based on 5,5‧-(butane-1,4- diyl)-bis(oxy)-diisophthalic acid and transitional metal cations with the help of two ancillary bridging N-donor pyridyl and imidazole linkers, [Zn(L)0.5(4,4‧-bpy)]·2(H2O) (1), [M(L)0.5(bib)]·4(H2O) (M = Zn (2), Co (3)), (4,4‧-bpy=4,4‧-bipyridine, bib=1,4-bis (1H-imidazol-1-yl)-butane), have been synthesized under solvothermal conditions. Their structures and properties were determined by single-crystal and powder X-ray diffraction analyses, IR spectra, elemental analyses and thermogravimetric analyses (TGA). Compounds 1-3 display a 3D 3-fold interpenetrated frameworks linked by the L4- ligands, ancillary N-donor linkers and the free water molecules in the crystal lattice. Topological analysis reveals that 1-3 are a (4,4)-connected bbf topology net with the (64·82)(66) topology. The effects of the L4- anions, the N-donor ligands, and the metal ions on the structures of the coordination polymers have been discussed. Furthermore, luminescence properties and thermogravimetric properties of these compounds were investigated.

  15. Effect of chemical heterogeneity on photoluminescence of graphite oxide treated with S-/N-containing modifiers

    NASA Astrophysics Data System (ADS)

    Ebrahim, Amani M.; Rodríguez-Castellón, Enrique; Montenegro, José María; Bandosz, Teresa J.

    2015-03-01

    Graphite oxide (GO) obtained using Hummers method was modified by hydrothermal treatment either with sulfanilic acid or polystyrene (3-ammonium) sulfonate at 100 °C or 85 °C, respectively. Both modifiers contain sulfur in the oxidized forms and nitrogen in the reduced forms. The materials were characterized using FTIR, XPS, thermal analysis, potentiometric titration and SEM. Their photoluminescent properties and their alteration with an addition of Ag+ were also measured. As a result of these modifications nitrogen was introduced to the graphene layers as amines, imides, amides, and sulfur as sulfones and sulfonic acids. Moreover, the presence of polyaniline was detected. This significantly affected the polarity, acid-base character, and conductivity of the materials. Apparently carboxylic groups of GO were involved in the surface reactions. The modified GOs lost their layered structure and the modifications resulted in the high degree of structural and chemical heterogeneity. Photoluminescence in visible light was recorded and linked to the presence of heteroatoms. For the polystyrene (3-ammonium) sulfonate modified sample addition of Ag+ quenched the photoluminescence at low wavelength showing sensitivity as a possible optical detector. No apparent effect was found for the sulfanilic acid modified sample.

  16. A turn-on highly selective and ultrasensitive determination of copper (II) in an aqueous medium using folic acid capped gold nanoparticles as the probe

    NASA Astrophysics Data System (ADS)

    Vasimalai, N.; Prabhakarn, A.; John, S. Abraham

    2013-12-01

    This paper describes a ‘turn-on’ fluorescent determination of Cu(II) in an aqueous medium using folic acid capped gold nanoparticles (FA-AuNPs) as the probe. The FA-AuNPs were synthesized by the wet chemical method and were characterized by UV-visible, fluorescence, HR-TEM, XRD, zeta potential, and DLS techniques. The FA-AuNPs show an absorption maximum at 510 nm and an emission maximum at 780 nm (λex: 510 nm). On adding 10 μM Cu(II), the wine-red color of FA-AuNPs changed to purple and the absorbance at 510 nm decreased. The observed changes were ascribed to the aggregation of AuNPs. This was confirmed by DLS and HR-TEM studies. Interestingly, the emission intensity of FA-AuNPs was enhanced even in the presence of a picomolar concentration of Cu(II). Based on the enhancement of the emission intensity, the concentration of Cu(II) was determined. The FA-AuNPs showed an extreme selectivity towards the determination of 10 nM Cu(II) in the presence of 10 000-fold higher concentration of interferences except EDTA and the carboxylate anion. A good linearity was observed from 10 × 10-9 to 1 × 10-12 M Cu(II), and the detection limit was found to be 50 fM l-1 (S/N = 3). The proposed method was successfully applied to determine Cu(II) in real samples. The results obtained were validated with ICP-AES.

  17. Enhanced Photoluminescence Property for Quantum Dot-Gold Nanoparticle Hybrid

    NASA Astrophysics Data System (ADS)

    Huang, Qianqian; Chen, Jing; Zhao, Jian; Pan, Jiangyong; Lei, Wei; Zhang, Zichen

    2015-10-01

    In this paper, we have synthesized ZnCdSeS quantum dots (QDs)-gold nanoparticle (Au NPs) hybrids in aqueous solution via bi-functional linker mercaptoacetic acid (MPA). The absorption peaks of ZnCdSeS QDs and Au are both located at 520 nm. It is investigated that PL intensity of QD-Au hybrid can be affected by the amounts of Au and pH value of hybrid solution. The located surface plasmon resonance (LSPR) effect of QD-Au NPs has been demonstrated by increased fluorescence intensity. The phenomenon of fluorescence enhancement can be maximized under the optimized pH value of 8.5. LSPR-enhanced photoluminescence property of QD-Au hybrid will be beneficial for the potential applications in the area of biological imaging and detection.

  18. Enhanced Photoluminescence Property for Quantum Dot-Gold Nanoparticle Hybrid.

    PubMed

    Huang, Qianqian; Chen, Jing; Zhao, Jian; Pan, Jiangyong; Lei, Wei; Zhang, Zichen

    2015-12-01

    In this paper, we have synthesized ZnCdSeS quantum dots (QDs)-gold nanoparticle (Au NPs) hybrids in aqueous solution via bi-functional linker mercaptoacetic acid (MPA). The absorption peaks of ZnCdSeS QDs and Au are both located at 520 nm. It is investigated that PL intensity of QD-Au hybrid can be affected by the amounts of Au and pH value of hybrid solution. The located surface plasmon resonance (LSPR) effect of QD-Au NPs has been demonstrated by increased fluorescence intensity. The phenomenon of fluorescence enhancement can be maximized under the optimized pH value of 8.5. LSPR-enhanced photoluminescence property of QD-Au hybrid will be beneficial for the potential applications in the area of biological imaging and detection. PMID:26471479

  19. Plasmon-modulated photoluminescence of individual gold nanostructures.

    PubMed

    Hu, Hailong; Duan, Huigao; Yang, Joel K W; Shen, Ze Xiang

    2012-11-27

    In this work, we performed a systematic study on the photoluminescence and scattering spectra of individual gold nanostructures that were lithographically defined. We identify the role of plasmons in photoluminescence as modulating the energy transfer between excited electrons and emitted photons. By comparing photoluminescence spectra with scattering spectra, we observed that the photoluminescence of individual gold nanostructures showed the same dependencies on shape, size, and plasmon coupling as the particle plasmon resonances. Our results provide conclusive evidence that the photoluminescence in gold nanostructures indeed occurs via radiative damping of plasmon resonances driven by excited electrons in the metal itself. Moreover, we provide new insight on the underlying mechanism based on our analysis of a reproducible blue shift of the photoluminescence peak (relative to the scattering peak) and observation of an incomplete depolarization of the photoluminescence. PMID:23072661

  20. Photoluminescence of Mn+ doped GaAs

    NASA Astrophysics Data System (ADS)

    Zhou, Huiying; Qu, Shengchun; Liao, Shuzhi; Zhang, Fasheng; Liu, Junpeng; Wang, Zhanguo

    2010-10-01

    Photoluminescence is one of the most useful techniques to obtain information about optoelectronic properties and defect structures of materials. In this work, the room-temperature and low temperature photoluminescence of Mn-doped GaAs were investigated, respectively. Mn-doped GaAs structure materials were prepared by Mn+ ion implantation at room temperature into GaAs. The implanted samples were subsequently annealed at various temperatures under N2 atmosphere to recrystallize the samples and remove implant damage. A strong peak was found for the sample annealed at 950 °C for 5 s. Transitions near 0.989 eV (1254 nm), 1.155 eV (1074 nm) and 1.329 eV (933 nm) were identified and formation of these emissions was analyzed for all prepared samples. This structure material could have myriad applications, including information storage, magnet-optical properties and energy level engineering.

  1. Massive enhancement of photoluminescence through nanofilm dewetting.

    PubMed

    Lee, Peiwei; Li, Wei-Cheng; Chen, Bin-Jih; Yang, Chih-Wei; Chang, Chun-Chih; Botiz, Ioan; Reiter, Günter; Lin, Tsang-Lang; Tang, Jau; Yang, Arnold Chang-Mou

    2013-08-27

    Due to the rather low efficiencies of conjugated polymers in solid films, their successful applications are scarce. However, recently several experiments indicated that a proper control of molecular conformations and stresses acting on the polymers may provide constructive ways to boost efficiency. Here, we report an amazingly large enhancement of photoluminescence as a consequence of strong shear forces acting on the polymer chains during nanofilm dewetting. Such sheared chains exhibited an emission probability many times higher than the nonsheared chains within a nondewetted film. This increase in emission probability was accompanied by the emergence of an additional blue-shifted emission peak, suggesting reductions in conjugation length induced by the dewetting-driven mass redistribution. Intriguingly, exciton quenching on narrow-band-gap substrates was also reduced, indicating suppression of vibronic interactions of excitons. Dewetting and related shearing processes resulting in enhanced photoluminescence efficiency are compatible with existing fabrication methods of polymer-based diodes and solar cells. PMID:23888931

  2. Optical probe

    DOEpatents

    Hencken, Kenneth; Flower, William L.

    1999-01-01

    A compact optical probe is disclosed particularly useful for analysis of emissions in industrial environments. The instant invention provides a geometry for optically-based measurements that allows all optical components (source, detector, rely optics, etc.) to be located in proximity to one another. The geometry of the probe disclosed herein provides a means for making optical measurements in environments where it is difficult and/or expensive to gain access to the vicinity of a flow stream to be measured. Significantly, the lens geometry of the optical probe allows the analysis location within a flow stream being monitored to be moved while maintaining optical alignment of all components even when the optical probe is focused on a plurality of different analysis points within the flow stream.

  3. Nanoparticle-based luminescent probes for intracellular sensing and imaging of pH.

    PubMed

    Schäferling, Michael

    2016-05-01

    Fluorescence imaging microscopy is an essential tool in biomedical research. Meanwhile, various fluorescent probes are available for the staining of cells, cell membranes, and organelles. Though, to monitor intracellular processes and dysfunctions, probes that respond to ubiquitous chemical parameters determining the cellular function such as pH, pO2 , and Ca(2+) are required. This review is focused on the progress in the design, fabrication, and application of photoluminescent nanoprobes for sensing and imaging of pH in living cells. The advantages of using nanoprobes carrying fluorescent pH indicators compared to single molecule probes are discussed as well as their limitations due to the mostly lysosomal uptake by cells. Particular attention is paid to ratiometric dual wavelength nanosensors that enable intrinsic referenced measurements. Referencing and proper calibration procedures are basic prerequisites to carry out reliable quantitative pH determinations in complex samples such as living cells. A variety of examples will be presented that highlight the diverseness of nanocarrier materials (polymers, micelles, silica, quantum dots, carbon dots, gold, photon upconversion nanocrystals, or bacteriophages), fluorescent pH indicators for the weak acidic range, and referenced sensing mechanisms, that have been applied intracellularly up to now. WIREs Nanomed Nanobiotechnol 2016, 8:378-413. doi: 10.1002/wnan.1366 For further resources related to this article, please visit the WIREs website. PMID:26395962

  4. Nanowires: Quantitative Probing of Cu(2+) Ions Naturally Present in Single Living Cells (Adv. Mater. 21/2016).

    PubMed

    Lee, Junho; Lee, Hwa-Rim; Pyo, Jaeyeon; Jung, Youngseob; Seo, Ji-Young; Ryu, Hye Guk; Kim, Kyong-Tai; Je, Jung Ho

    2016-06-01

    Quantitative probing of the Cu(2+) ions naturally present in single living cells is accomplished by a probe made from a quantum-dot-embedded-nanowire waveguide. After inserting the active nanowire-based waveguide probe into single living cells, J. H. Je and co-workers directly observe photoluminescence (PL) quenching of the embedded quantum dots by the Cu(2+) ions diffused into the probe as described on page 4071. This results in quantitative measurement of intracellular Cu(2+) ions. PMID:27246918

  5. Photoluminescent carbon dots synthesized by microwave treatment for selective image of cancer cells.

    PubMed

    Yang, Xudong; Yang, Xue; Li, Zhenyu; Li, Shouying; Han, Yexuan; Chen, Yang; Bu, Xinyuan; Su, Chunyan; Xu, Hong; Jiang, Yingnan; Lin, Quan

    2015-10-15

    In this work, a simple, low-cost and one-step microwave approach has been demonstrated for the synthesis of water-soluble carbon dots (C-dots). The average size of the resulting C-dots is about 4 nm. From the photoluminescence (PL) measurements, the C-dots exhibit excellent biocompatibility and intense PL with the high quantum yield (QY) at Ca. 25%. Significantly, the C-dots have excellent biocompatibility and the capacity to specifically target the cells overexpressing the folate receptor (FR). These exciting results indicate the as-prepared C-dots are promising biocompatible probe for cancer diagnosis and treatment. PMID:26074383

  6. Design, synthesis, and biological evaluation of 4-(5-dimethylamino-naphthalene-1-sulfon-amido)-3-(4-iodophenyl)butanoic acid as a novel molecular probe for apoptosis imaging

    SciTech Connect

    Zeng, Wenbin; Miao, Weimin; Le Puil, Michael; Shi, Guangqing; Biggerstaff, John; Kabalka, George W.; Townsend, David

    2010-07-30

    Research highlights: {yields} Annexin V is the gold standard probe for imaging apoptosis. {yields} Unfavorable profiles of Annexin V make it difficult to apply in the clinic. {yields} A novel small-molecular probe DNSBA was designed as an alternative to Annexin V. {yields} DNSBA specifically and selectively detect apoptotic cancer cells at all stages. {yields} DNSBA is a potential SPECT and PET agent when labeled with radioiodine. -- Abstract: Apoptosis (programmed cell death) plays a crucial role in the pathogenesis of many disorders, thus the detection of apoptotic cells can provide the physician with important information to further therapeutic strategies and would substantially advance patient care. A small molecule, 4-(5-dimethylamino-naphthalene-1-sulfonamido)-3-(4-iodo-phenyl)butanoic acid (DNSBA), was designed as a novel probe for imaging apoptosis and synthesized with good yield. The biological characterization demonstrated that DNSBA can be used to specifically and selectively detect apoptotic cancer cells at all stages. DNSBA is also designed as a potential SPECT and PET probe when labeled with radioiodine (I-123, -124, and -131).

  7. Scanning photocurrent and photoluminescence imaging of a frozen polymer p-n junction

    NASA Astrophysics Data System (ADS)

    Inayeh, Alex; Dorin, Bryce; Gao, Jun

    2012-12-01

    A polymer light-emitting electrochemical cell (LEC) is a solid-state polymer device operating on in situ electrochemical doping and the formation of a light-emitting polymer p-n junction. Electrochemical doping of the luminescence polymer quenches the photoluminescence. The chemical potential difference between the p- and n-doped regions creates a built-in potential/field in the junction region, which can be probed by measuring the optical beam induced current (OBIC). In this study, the OBIC and photoluminescence profiles of the LEC have been simultaneously measured by scanning a focused light beam across a large planar LEC that has been turned on and cooled to freeze the doping profile. The photoluminescence intensity undergoes a sharp transition between the p- and n-doped regions. The OBIC photocurrent is only observed in the transition region that is narrower than the width of the excitation beam, which is about 35 μm. The results depict a static planar polymer p-n junction with a built-in field pointing from n to p. The electrode interface and the neutral regions do not produce a measurable photocurrent.

  8. Hydrophilic Magnetofluorescent Nanobowls: Rapid Magnetic Response and Efficient Photoluminescence.

    PubMed

    Chen, Shun; Zhang, Junjun; Song, Shaokun; Feng, Rui; Ju, Yanyun; Xiong, Chuanxi; Dong, Lijie

    2016-01-19

    Multifunctional integration based on a single nanostructure is emerging as a promising paradigm to future functional materials. In this paper, novel magnetofluorescence nanobowls built with ferroferric mandrel and quantum dots exoderm is reported. Magnetic mandrels are stacked into nanobowls though hydrophobic primary Fe3O4 nanocrystals dragged into anion polyelectrolyte aqueous solution via forced solvent evaporation. Bright luminescence core/shell/shell CdSe/CdS/ZnS quantum dots (QDs) are modified with cationic hyperbranched polyethylenimine (PEI). Through electrostatic interactions, positively charged PEI-coated QDs are anchored on the surface of magnetic mandrel. Under this method, the luminescence of QDs is not quenched by magnetic partners in the resultant magnetoflurescence nanobowls. Such magnetoflurescence nanobowls exhibit high saturation magnetization, superparamagnetic characteristics at room temperature, superior water dispersibility, and excellent photoluminescence properties. The newly developed magnetoflurescence nanobowls open a new dimension in efforts toward multimodal imaging probes combining strong magnetization and efficient fluorescence in tandem for biosensors and clinical diagnostic imaging. PMID:26666287

  9. Microscopic view on the ultrafast photoluminescence from photoexcited graphene.

    PubMed

    Winzer, Torben; Ciesielski, Richard; Handloser, Matthias; Comin, Alberto; Hartschuh, Achim; Malic, Ermin

    2015-02-11

    We present a joint theory-experiment study on ultrafast photoluminescence from photoexcited graphene. On the basis of a microscopic theory, we reveal two distinct mechanisms behind the occurring photoluminescence: besides the well-known incoherent contribution driven by nonequilibrium carrier occupations, we found a coherent part that spectrally shifts with the excitation energy. In our experiments, we demonstrate for the first time the predicted appearance and spectral shift of the coherent photoluminescence. PMID:25616043

  10. Nonlinear photoluminescence of fullerene-doped optical glasses

    SciTech Connect

    Zeng, Heping; Sun, Zhenrong; Segawa, Yusaburo; Lin, Fucheng; Mao, Sen; Xu, Zhizhan

    2001-06-01

    Strong broadband white photoluminescence was observed in fullerene-doped phosphate and fluorophosphate optical glasses irradiated by an ultraviolet laser. Microphotoluminescence measurements demonstrated the existence of microislands in those amorphous glasses, where fullerene dopants provided high photosensitivity and optical nonlinearity. Nonlinear photoluminescence was observed under ultralow continuous-wave laser excitations. The photoluminescence peak wavelengths were demonstrated to depend nonlinearly on the laser excitation power. {copyright} 2001 American Institute of Physics.

  11. Protease-activated quantum dot probes

    NASA Astrophysics Data System (ADS)

    Chang, Emmanuel; Sun, Jiantang; Miller, Jordan S.; Yu, William W.; Colvin, Vicki L.; West, Jennifer L.; Drezek, Rebekah

    2006-04-01

    We demonstrate a novel quantum dot based probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This probe may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically-degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Peptide cleavage results in release of AuNPs and restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 hours of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker.

  12. Influence of cysteine doping on photoluminescence intensity from semiconducting single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Karachevtsev, V. A.

    2015-03-01

    Photoluminescence (PL) from semiconducting single-walled carbon nanotubes can be applied for detection of cysteine. It is shown that cysteine doping (from 10-8 to 10-3 M) into aqueous suspension of nanotubes with adsorbed DNA leads to increase of PL intensity. The PL intensity was enhanced by 27% at 10-3 M cysteine concentration in suspension. Most likely, the PL intensity increases due to the passivation of p-defects on the nanotube by the cysteine containing reactive thiol group. The effect of doping with other amino acids without this group (methionine, serine, aspartic acid, lysine, proline) on the PL intensity is essentially weaker.

  13. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    NASA Astrophysics Data System (ADS)

    Han, Yinfeng; Fu, Lianshe; Mafra, Luís; Shi, Fa-Nian

    2012-02-01

    Three mixed europium-yttrium organic frameworks: Eu2-xYx(Mel)(H2O)6 (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu3+ lifetime becomes longer in these MOFs than those of the Eu analog.

  14. Conductivity Probe

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Thermal and Electrical Conductivity Probe (TECP) for NASA's Phoenix Mars Lander took measurements in Martian soil and in the air.

    The needles on the end of the instrument were inserted into the Martian soil, allowing TECP to measure the propagation of both thermal and electrical energy. TECP also measured the humidity in the surrounding air.

    The needles on the probe are 15 millimeters (0.6 inch) long.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Terbium photoluminescence in yttrium aluminum garnet xerogels

    SciTech Connect

    Maliarevich, G. K.; Gaponenko, N. V. Mudryi, A. V.; Drozdov, Yu. N.; Stepikhova, M. V.; Stepanova, E. A.

    2009-02-15

    Based on a colloidal solution containing terbium, yttrium, and aluminum metal ions, a powder was synthesized and films of terbium-doped yttrium aluminum garnet Tb{sub 0.15}Y{sub 2.85}Al{sub 5}O{sub 12} were grown on single-crystal silicon and porous anodic alumina. Annealing of the sample in a temperature range from 200-1100 deg. C results in an increase in the photoluminescence intensity in the wavelength range from 480-640 nm, which is caused by Tb{sup 3+} ion intra-atomic transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub j} (j = 3, 4, 5, 6). Annealing at 900 deg. C and higher temperatures gives rise to low-intensity photoluminescence bands in the region of 667 and 681 nm, which correspond to transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 0}, {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 1}, and room-temperature Stark term splitting, which suggests the existence of a crystalline environment of Tb{sup 3+} ions. The FWHM of spectral lines in the region of 543 nm decreases from {approx}10 to {approx}(2-3) nm as the xerogel annealing temperature is increased from 700 to 900 deg. C and higher. Three bands with maxima at 280, 330, and 376 nm, which correspond to Tb{sup 3+} ion transitions {sup 7}F{sub 6}{sup {yields}}{sup 5}I{sub 8}, {sup 5}L{sub 6}, {sup 5}G{sub 6}, {sup 5}D{sub 3}, are observed in the photoluminescence excitation spectra of the studied structures for the emission wavelength at 543 nm. X-ray diffraction detected the formation of a crystalline phase for a terbium-doped yttrium aluminum garnet powder after annealing at 1100 deg. C.

  16. Photoluminescence study in diaminobenzene functionalized graphene oxide

    SciTech Connect

    Gupta, Abhisek E-mail: cnssks@iacs.res.in; Saha, Shyamal K. E-mail: cnssks@iacs.res.in

    2014-10-15

    Being an excellent electronic material graphene is a very poor candidate for optoelectronic applications. One of the major strategies to develop the optical property in GO is the functionalization of graphene oxide (GO). In the present work GO sheets are functionalized by o-phenylenediamine to achieve diaminobenzene functionalized GO composite (DAB-GO). Formation of DAB-GO composite is further characterized by FTIR, UV, Raman studies. Excellent photoluminescence is observed in DAB-GO composite via passivation of the surface reactive sites by ring-opening amination of epoxides of GO.

  17. Photoluminescence in anthracene and it's derivatives

    NASA Astrophysics Data System (ADS)

    Vyas, Arpita; Mirgane, Nitin A.; Moharil, S. V.; Muley, Aarti Iyer

    2016-05-01

    The anthracene and it's derivative 9-chloro acridine and Anthracene-9-ylmethylacetate have prepared in Poly vinyl alcohol(PVOH). Their photoluminescence properties have studied. The pure anthracene has an emission at 424 and 443nm. The intense peak is observed at 465nm and shoulder at 407nm. The derivatives of anthracene Anthracene-9-ylmethylacetate shows an emission around 440nm for the excitation at 393nm and 9-chloro acridine shows emission around 360nm for the excitation at 290nm. The major problem of this organic material is the stability. The composites prepared in the medium of PVOH are more stable.

  18. Photoluminescence from doped ZnS nanostructures

    NASA Astrophysics Data System (ADS)

    Karar, N.

    2007-05-01

    Photoluminescence (PL) properties of differently doped nanocrystalline ZnS encapsulated by ZnO (ZnS/ZnO) are reported. It is found that in all cases aluminium as an extra/additional dopant leads to PL enhancement. In comparison to reported blue emitting bulk ZnS:Ag, or green emitting bulk ZnS:Cu, our nanocrystalline samples show a different PL emission profile. This observation is attributed to nanogranule formation, different dopant levels and ZnO capping related energy level modifications.

  19. Effect of pressure on the photoluminescence of polynucleotide-stabilized cadmium sulfide nanocrystals

    SciTech Connect

    Li, X.; Coffer, J.L.

    1999-09-01

    This work describes the effects of pressure on the photoluminescence of Q-CdS (quantum-confined cadmium sulfide) nanoparticles stabilized by hexametaphosphate, calf thymus DNA, polyadenylic acid, polyuridylic acid, and polyadenylic-uridylic acid in the pressure range from atmospheric pressure to 4 kbar. A marked difference is observed between Q-CdS/polyadenylic acid and that of Q-CdS/polyuridylic acid in terms of pressure-induced changes in the luminescence; coating the surface of each type of Q-CdS with cadmium hydroxide results in a leveling effect whereby only a steady diminution of emission intensity is observed in each case. A model involving pressure-induced perturbation of anionic sulfide hole traps at the semiconductor nanocrystal surface is proposed to explain these observations.

  20. [The photoluminescence and absorption properties of Co/AAO nano-array composites].

    PubMed

    Li, Shou-Yi; Wang, Cheng-Wei; Li, Yan; Wang, Jian; Ma, Bao-Hong

    2008-03-01

    Ordered Co/AAO nano-array structures were fabricated by alternating current (AC) electrodeposition method within the cylindrical pores of anodic aluminum oxide (AAO) template prepared in oxalic acid electrolyte. The photoluminescence (PL) emission and photoabsorption of AAO templates and Co/AAO nano-array structures were investigated respectively. The results show that a marked photoluminescence band of AAO membranes occurs in the wavelength range of 350-550 nm and their PL peak position is at 395 nm. And with the increase in the deposition amount of Co nanoparticles, the PL intensity of Co/AAO nano-array structures decreases gradually, and their peak positions of the PL are invariable (395 nm). Meanwhile the absorption edges of Co/AAO show a larger redshift, and the largest shift from the near ultraviolet to the infrared exceeds 380 nm. The above phenomena caused by Co nano-particles in Co/AAO composite were analyzed. PMID:18536402

  1. Photoluminescent Detection of Nitrite with Carbon Nanodots Prepared by Microwave-assisted Synthesis.

    PubMed

    Morita, Kotaro; Kobayashi, Akane; Nagatani, Hirohisa; Imura, Hisanori

    2015-01-01

    A photoluminescent detection method for nitrite with high selectivity and sensitivity using carbon nanodots (CNDs) is demonstrated. The selectivity of nitrite is accomplished by a highly specific diazotization reaction between nitrite and p-phenylenediamine (p-PDA). In the presence of nitrite, p-PDA easily reacts to form the diazonium cation in the acidic aqueous solution. By alkalization of the reaction mixture, diazonium cation of p-PDA was converted to an aryl radical to form aggregated CNDs, which causes the change in the photoluminescent intensity of CNDs. In the present method, nitrite can be selectively detected down to 1 μM over several anions, such as nitrate, perchlorate, sulfate, fluoride, chloride, and bromide at mM levels. PMID:26063009

  2. Pollution Probe.

    ERIC Educational Resources Information Center

    Chant, Donald A.

    This book is written as a statement of concern about pollution by members of Pollution Probe, a citizens' anti-pollution group in Canada. Its purpose is to create public awareness and pressure for the eventual solution to pollution problems. The need for effective government policies to control the population explosion, conserve natural resources,…

  3. Highly Photoluminescent Molybdenum Oxide Quantum Dots: One-Pot Synthesis and Application in 2,4,6-Trinitrotoluene Determination.

    PubMed

    Xiao, Sai Jin; Zhao, Xiao Jing; Hu, Ping Ping; Chu, Zhao Jun; Huang, Cheng Zhi; Zhang, Li

    2016-03-30

    As a well-studied transition-metal semiconductor material, MoOx has a wider band gap than molybdenum disulfide (MoS2), and its property varies dramatically for the existence of several different allotropes and suboxide phases of molybdenum oxides (MoOx, x < 3). In this manuscript, a one-pot method possessing the advantages of one pot, easily prepared, rapid, and environmentally friendly, has been developed for facile synthesis of highly photoluminescent MoOx quantum dots (MoOx QDs), in which commercial molybdenum disulfide (MoS2) powder and hydrogen peroxide (H2O2) are employed as the precursor and oxidant, respectively. The obtained MoOx QDs can be further utilized as an efficient photoluminescent probe, and a new turn-off sensor is developed for 2,4,6-trinitrotoluene (TNT) determination based on the fact that the photoluminescence of MoOx QDs can be quenched by the Meisenheimer complexes formed in the strong alkali solution through the inner filter effect (IFE). Under the optimal conditions, the decreased photoluminescence of MoOx QDs shows a good linear relationship to the concentration of TNT ranging from 0.5 to 240.0 μM, and the limit of detection was 0.12 μM (3σ/k). With the present turn-off sensor, TNT in river water samples can be rapidly and selectively detected without tedious sample pretreatment processes. PMID:26954663

  4. Self-assembly drives quantum dot photoluminescence.

    PubMed

    Plain, J; Sonnefraud, Y; Viste, P; Lérondel, G; Huant, S; Royer, P

    2009-03-01

    Engineering the spectral properties of quantum dots can be achieved by a control of the quantum dots organization on a substrate. Indeed, many applications of quantum dots as LEDs are based on the realization of a 3D architecture of quantum dots. In this contribution, we present a systematic study of the quantum dot organization obtained on different chemically modified substrates. By varying the chemical affinity between the quantum dots and the substrate, the quantum dot organization is strongly modified from the 2D monolayer to the 3D aggregates. Then the photoluminescence of the different obtained samples has been systematically studied and correlated with the quantum dot film organization. We clearly show that the interaction between the substrate and the quantum dot must be stronger than the quantum dot-quantum dot interaction to avoid 3D aggregation and that these organization strongly modified the photoluminescence of the film rather than intrinsic changes of the quantum dot induced by pure surface chemistry. PMID:18792763

  5. Enhanced photoluminescence of C 60 incorporated into interlayers of hydrotalcite

    NASA Astrophysics Data System (ADS)

    Ding, Weiping; Gu, Gang; Zhong, Wei; Zang, Wen-Cheng; Du, Youwei

    1996-11-01

    Strong photoluminescence of sodium-reduced C 60 incorporated into interlayers of hydrotalcite is observed. This phenomenon is correlated to the fact that the reduced C 60 is positioned between positively charged layers of the anion clay. The interaction between the layers and reduced C 60 alters the photophysical properties of C 60 and relaxes the electron transition inhibition, thus enhancing photoluminescence.

  6. The use of multiple probe molecules for the study of the acid-base properties of aluminium hydroxyfluoride having the hexagonal tungsten bronze structure: FTIR and [36Cl] radiotracer studies.

    PubMed

    Dambournet, Damien; Leclerc, Hervé; Vimont, Alexandre; Lavalley, Jean-Claude; Nickkho-Amiry, Mahmood; Daturi, Marco; Winfield, John M

    2009-03-01

    The combination of several probe molecules has enabled the construction of a detailed picture of the surface of aluminium hydroxyl fluoride, AlF(2.6)(OH)(0.4), which has the hexagonal tungsten bronze (HTB) structure. Using pyridine as a probe leads to features at 1628 cm(-1), ascribed to very strong Lewis acid sites, and at 1620-1623 cm(-1), which is the result of several different types of Lewis sites. This heterogeneity is indicated also from CO adsorption at 100 K; the presence of five different types of Lewis site is deduced and is suggested to arise from the hydroxylated environment. Brønsted acid sites of medium strength are indicated by adsorption of lutidine and CO. Adsorption of lutidine occurs at OH groups, which are exposed at the surface and CO reveals that these OH groups have a single environment that can be correlated with their specific location inside the bulk, assuming that the surface OH group may reflect the bulk OH periodicity. A correlation between the data obtained from CO and pyridine molecules has been established using co-adsorption experiments, which also highlight the inductive effect produced by pyridine. Adsorption of the strong Brønsted acid, anhydrous hydrogen chloride, detected by monitoring the beta(-) emission of [(36)Cl]-HCl at the surface, indicates that surface hydroxyl groups can behave also as a Brønsted base and that H(2)O-HCl interactions, either within the hexagonal channels or at the surface are possible. Finally, the formation of strongly bound H(36)Cl as a result of the room temperature dehydrochlorination of [(36)Cl]-labelled tert-butyl chloride provides additional evidence that HTB-AlF(2.6)(OH)(0.4) can behave as a Lewis acid. PMID:19224038

  7. Poly(vinylpyrrolidone) supported copper nanoclusters: glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices

    NASA Astrophysics Data System (ADS)

    Wang, Zhenguang; Susha, Andrei S.; Chen, Bingkun; Reckmeier, Claas; Tomanec, Ondrej; Zboril, Radek; Zhong, Haizheng; Rogach, Andrey L.

    2016-03-01

    Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.Poly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92. Electronic supplementary information (ESI) available: The optical spectra of control experiments for Cu NC synthesis, optimization of the reaction conditions, and spectra for LEDs chips and blue LEDs. See DOI: 10.1039/c6nr00806b

  8. Spatially resolved photoluminescence spectroscopy of quantum dots

    NASA Astrophysics Data System (ADS)

    Dybiec, Maciej

    Recent advancements in nanotechnology create a need for a better understanding of the underlying physical processes that lead to the different behavior of nanoscale structures in comparison to bulk materials. The influence of the surrounding environment on the physical and optical properties of nanoscale objects embedded inside them is of particular interest. This research is focused on the optical properties of semiconductor quantum dots which are zero-dimensional nanostructures. There are many investigation techniques for measuring the local parameters and structural characteristics of Quantum Dot structures. They include X-ray diffraction, Transmission Electron Microscopy, Wavelength Dispersive Spectroscopy, etc. However, none of these is suitable for the study of large areas of quantum dots matrices and substrates. The existence of spatial inhomogeneity in the quantum dots allows for a deeper and better understanding of underlying physical processes responsible in particular for the observed changes in photoluminescence (PL) characteristics. Spectroscopic PL mapping can reveal areas of improved laser performance of InAs - InGaAs quantum dots structures. Establishing physical mechanisms responsible for two different types of spatial PL inhomogeneity in InAs/InGaAs quantum dots structures for laser applications was the first objective of this research. Most of the bio-applications of semiconductor quantum dots utilize their superior optical properties over organic fluorophores. Therefore, optimization of QD labeling performance with biomolecule attachment was another focus of this research. Semiconductor quantum dots suspended in liquids were investigated, especially the influence of surrounding molecules that may be attached or bio-conjugated to the quantum dots for specific use in biological reactions on the photoluminescence spectrum. Provision of underlying physical mechanisms of optical property instability of CdSe/ZnS quantum dots used for biological

  9. Temperature-Dependent Photoluminescence of Graphene Oxide

    NASA Astrophysics Data System (ADS)

    Jadhav, S. T.; Rajoba, S. J.; Patil, S. A.; Han, S. H.; Jadhav, L. D.

    2016-01-01

    Graphene oxide thin films have been deposited by spray pyrolysis using graphene oxide powder prepared by modified Hummers method. These thin films were characterized by different physico-chemical techniques. The x-ray diffraction studies revealed the structural properties of GO (graphene oxide) while the Raman spectrum showed the presence of D and G and two-dimensional bands. The D/G intensity ratio for spray-deposited GO film is 1.10. The x-ray photoelectron spectroscopy showed 67% and 33% atomic percentages of carbon and oxygen, respectively. The ratio of O1s/C1s was found to be 0.49. The temperature-dependent photoluminescence of GO thin film and GO solution showed a blue emission.

  10. Simulation of J-aggregate microcavity photoluminescence

    NASA Astrophysics Data System (ADS)

    Michetti, Paolo; La Rocca, Giuseppe C.

    2008-05-01

    We have developed a model in order to account for the photoexcitation dynamics of J-aggregate films and strongly coupled J-aggregate microcavities. The J aggregates are described as a disordered Frenkel exciton system in which relaxation occurs due to the presence of a thermal bath of molecular vibrations. The correspondence between the photophysics in J-aggregate films and that in J-aggregate microcavities is obtained by introducing a model polariton wave function mixing cavity photon modes and J-aggregate super-radiant excitons. With the same description of the material properties, we have calculated both absorption and luminescence spectra for the J-aggregate film and the photoluminescence of strongly coupled organic microcavities. The model is able to account for the fast relaxation dynamics in organic microcavities following nonresonant pumping and explains the temperature dependence of the ratio between the upper polariton and the lower polariton luminescence.

  11. Scanning photoluminescent spectroscopy of bioconjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Chornokur, G.; Ostapenko, S.; Oleynik, E.; Phelan, C.; Korsunska, N.; Kryshtab, T.; Zhang, J.; Wolcott, A.; Sellers, T.

    2009-04-01

    We report on the application of the bio-conjugated quantum dots (QDs) for a "sandwich" enzyme-linked immunosorbent assay (ELISA) cancer testing technique. Quantum dot ELISA detection of the cancer PSA antigen at concentrations as low as 0.01 ng/ml which is ˜50 times lower than the classic "sandwich" ELISA was demonstrated. Scanning photoluminescence (PL) spectroscopy was performed on dried ELISA wells and the results compared with the same QD samples dried on a solid substrate. We confirmed a "blue" up to 37 nm PL spectral shift in a case of QDs conjugated to PSA antibodies. Increasing of the "blue" spectral shift was observed at lower PSA antigen concentrations. The results can be used to improve sensitivity of "sandwich" ELISA cancer antigen detection.

  12. From natural attapulgite to phosphor materials: Characterization, photoluminescence and structure

    SciTech Connect

    Wang, Wenjie; Gu, Zheng; Gao, Xiuping; Jiang, Huie; Liu, Weisheng

    2014-08-15

    Highlights: • Sr{sub 2.965}Al{sub 0.08}Si{sub 0.92}O{sub 5}:0.025Ce{sup 3+}, 0.01Eu{sup 2+} phosphor was synthesized from natural attapulgite. • Pure Sr{sub 3}SiO{sub 5} phase can be easily obtained. • It provides a new application field as phosphor for natural attapulgite. - Abstract: Sr{sub 2.965}Al{sub 0.08}Si{sub 0.92}O{sub 5}:0.025Ce{sup 3+}, 0.01Eu{sup 2+} (SrAlSiO:Ce{sup 3+}, Eu{sup 2+}) phosphor from natural attapulgite (ATP) was synthesized by solid-state reaction method. For the use of ATP as a source of Si and Al, pretreatment process including mechanical grinding and acid leaching were involved. X-ray diffraction patterns confirmed the formation of silicates in a wide temperature field, whereas Sr{sub 3}SiO{sub 5} within a single step. The ATP fibers were tuning into phosphor particles (about 1.5–3.0 μm) after calcination. Furthermore, photoluminescence spectra of the SrAlSiO:Ce{sup 3+}, Eu{sup 2+} phosphor was also in good agreement with the literature results, indicating a promising potential application as an effective candidate for warm-white LEDs materials.

  13. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers

    NASA Astrophysics Data System (ADS)

    Gongalsky, Maxim B.; Kharin, Alexander Yu; Osminkina, Liubov A.; Timoshenko, Victor Yu; Jeong, Jinyoung; Lee, Han; Chung, Bong Hyun

    2012-08-01

    A significant enhancement of the photoluminescence (PL) efficiency is observed for aqueous suspensions of porous silicon nanoparticles (PSiNPs) coated by bioresorbable polymers, i.e., polylactic-co-glycolic acid (PLGA) and polyvinyl alcohol (PVA). PSiNPs with average size about 100 nm prepared by mechanical grinding of electrochemically etched porous silicon were dispersed in water to prepare the stable suspension. The inner hydrophobic PLGA layer prevents the PSiNPs from the dissolution in water, while the outer PVA layer makes the PSiNPs hydrophilic. The PL quantum yield of PLGA/PVA-coated PSiNPs was found to increase by three times for 2 weeks of the storage in water. The observed effect is explained by taking into account both suppression of the dissolution of PSiNPs in water and a process of the passivation of nonradiative defects in PSiNPs. The obtained results are interesting in view of the potential applications of PSiNPs in bioimaging.

  14. Temperature-Dependent Exciton and Trap-Related Photoluminescence of CdTe Quantum Dots Embedded in a NaCl Matrix: Implication in Thermometry.

    PubMed

    Kalytchuk, Sergii; Zhovtiuk, Olga; Kershaw, Stephen V; Zbořil, Radek; Rogach, Andrey L

    2016-01-27

    Temperature-dependent optical studies of semiconductor quantum dots (QDs) are fundamentally important for a variety of sensing and imaging applications. The steady-state and time-resolved photoluminescence properties of CdTe QDs in the size range from 2.3 to 3.1 nm embedded into a protective matrix of NaCl are studied as a function of temperature from 80 to 360 K. The temperature coefficient is found to be strongly dependent on QD size, with the highest sensitivity obtained for the smallest size of QDs. The emission from solid-state CdTe QD-based powders is maintained with high color purity over a wide range of temperatures. Photoluminescence lifetime data suggest that temperature dependence of the intrinsic radiative lifetime in CdTe QDs is rather weak, and it is mostly the temperature-dependent nonradiative decay of CdTe QDs which is responsible for the thermal quenching of photoluminescence intensity. By virtue of the temperature-dependent photoluminescence behavior, high color purity, photostability, and high photoluminescence quantum yield (26%-37% in the solid state), CdTe QDs embedded in NaCl matrices are useful solid-state probes for thermal imaging and sensing over a wide range of temperatures within a number of detection schemes and outstanding sensitivity, such as luminescence thermochromic imaging, ratiometric luminescence, and luminescence lifetime thermal sensing. PMID:26618345

  15. Upconverted photoluminescence induced by radiative coupling between excitons

    NASA Astrophysics Data System (ADS)

    Matsuda, Takuya; Yokoshi, Nobuhiko; Ishihara, Hajime

    2016-04-01

    We propose an unconventional scheme of photoluminescence in a semiconductor thin film, where the nonlocal correlation between an excitonic wave and light wave prominently enhances the interaction between different excitonic states via radiation beyond the long-wavelength approximation (the so-called excitonic superradiance regime). On the basis of the developed method extending input-output theory, we elucidate atypical photoluminescence effects due to the strong wave-wave correlation. In particular, the upconverted photoluminescence based on the coherent quantum superposition of excitons is found to be highly efficient, i.e., it can be realized by weak pumping without auxiliary systems such as cavities or photonic antennas.

  16. Photoluminescence properties and exciton dynamics in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Yan, Tengfei; Qiao, Xiaofen; Liu, Xiaona; Tan, Pingheng; Zhang, Xinhui

    2014-09-01

    In this work, comprehensive temperature and excitation power dependent photoluminescence and time-resolved photoluminescence studies are carried out on monolayer WSe2 to reveal its properties of exciton emissions and related excitonic dynamics. Competitions between the localized and delocalized exciton emissions, as well as the exciton and trion emissions are observed, respectively. These competitions are suggested to be responsible for the abnormal temperature and excitation intensity dependent photoluminescence properties. The radiative lifetimes of both excitons and trions exhibit linear dependence on temperature within the temperature regime below 260 K, providing further evidence for two-dimensional nature of monolayer material.

  17. Three new Ag(I) coordination architectures based on mixed ligands: Syntheses, structures and photoluminescent properties

    SciTech Connect

    Li, Yamin; Xiao, Changyu; Li, Shu; Chen, Qi; Li, Beibei; Liao, Qian; Niu, Jingyang

    2013-04-15

    Three new silver (I) coordination complexes, [Ag{sub 2}(1,2-bdc)(phdat)]{sub n} (1), [Ag{sub 2}(NO{sub 2}-bdc)(phdat)]{sub n} (2), [Ag{sub 4}(nta){sub 3}(phdat)NO{sub 3}]{sub n} (3) (1,2-bdc=phthalic acid dianion, NO{sub 2}-bdc=5-nitro-1,3-benzenedicarboxylic acid dianion, nta=nicotinic acid anion, phdat=2,4-diamine-6-phenyl-1,3,5-triazine) have been hydrothermally synthesized by the reactions of silver nitrate and phdat with the homologous ligands 1,2-H{sub 2}bdc, NO{sub 2}-H{sub 2}bdc, and Hnta, respectively, and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses thermogravimetric analyses (TGA). The compound 1 exhibits a chiral 3D network with cbs/CrB self-dual topological net, which contains two kinds of single helical chains. For compound 2, the 3D network is comprised of two kinds of similar 2D sheets with the topological symbol of sql-type packed in AABBAA mode by Ag–N/O weakly contacts. And compound 3 has 2D double layer architecture, consisting of the 2D plane with hcb-type topological symbol connected by Ag–O weakly coordinations. The photoluminescent properties associated with the crystal structures of three compounds have also been measured. - Graphical abstract: Three new silver(I) coordination complexes 1–3 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses (TGA) and photoluminescent spectra. Highlights: ► The compound 1 exhibits a novel chiral 3D network with two kinds of single helical chains. ► 3D or 2D new Ag coordination complexes. ► The photoluminescent properties have been measured.

  18. A biomimetic tongue by photoluminescent metal-organic frameworks.

    PubMed

    Lee, Tu; Lin Lee, Hung; Hsun Tsai, Meng; Cheng, Shao-Liang; Lee, Sheng-Wei; Hu, Jung-Chih; Chen, Lien-Tai

    2013-05-15

    The taste sensing capabilities of a "biomimetic tongue" based on the photoluminescence (PL) responses of metal-organic frameworks (MOFs), [In(OH)(bdc)]n (bdc=1,4-benzenedicarboxylate), [Tb(btc)]n (MOF-76, btc=benzene-1,3,5-tricarboxylate), and [Ca3(btc)2(DMF)2(H2O)2]·3H2O are proven on aqueous solutions of five basic tastants: sucrose (sweet), caffeine (bitter), citric acid (sour), sodium chloride (salty) and monosodium glutamate (umami). For [In(OH)(bdc)]n, the tastant interacts stereochemically with poly(acrylic acid) (PAA) and alters its conformations. The frequency and magnitude of chelation between COO(-) pendant groups of PAA and In(3+) nodes of [In(OH)(bdc)]n framework influence the corresponding PL reponses. For MOF-76, the tastant interacts with incorporated water in MOF-76 through hydrogen bonding. The limitation of O-H bond stretching of water results in the enhancement of the PL intensity. For [Ca3(BTC)2(DMF)2(H2O)2]·3H2O, it is added as a third MOF component to increase the precision on taste discrimination. The significance of MOF-based "biomimetic tongue" includes: (1) PAA on [In(OH)(bdc)]n mimics the taste receptor cells (TRCs) for their structural flexibility, (2) the Weber-Fechner law of human sensing that sensation is proportional to the logarithm of the stimulus intensity is observed between the PL emission response of MOF-76 and the concentration of tastant, (3) the strength of taste is quantified by the τ scale and the PL emission intensity of MOF-76, which are dependent on the logarithmic tastant concentration, (4) the tastant is identified by the shape of the 3D principal component analysis contour map (i.e., pattern recognition method), and (5) the fabrication of [In(OH)(bdc)]n/PAA film by brushing is illustrated. PMID:23277340

  19. Protease-activated quantum dot probes.

    PubMed

    Chang, Emmanuel; Miller, Jordan S; Sun, Jiantang; Yu, William W; Colvin, Vicki L; Drezek, Rebekah; West, Jennifer L

    2005-09-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker. PMID:16039606

  20. High-speed growth and photoluminescence of porous anodic alumina films with controllable interpore distances over a large range

    NASA Astrophysics Data System (ADS)

    Li, Y. B.; Zheng, M. J.; Ma, L.

    2007-08-01

    Highly ordered porous anodic alumina (PAA) films are fabricated with high efficiency by stable high-field anodization in oxalic acid/ethanol/water electrolytes at 100-180V and sulfuric acid/oxalic acid/ethanol/water electrolytes at 30-80V, giving interpore distances in the range of 225-450nm and 70-140nm, respectively. The photoluminescence of PAA films prepared by high-field anodization shows remarkable redshift of the peak position and decrease of the intensity compared to that of PAA films formed by conventional low-field anodization.

  1. Synthesis and Photoluminescent Properties of Eu²⁺-Doped BaSiF₆ Nanoparticles.

    PubMed

    Zhao, Xin; Hua, Ruinian; Zhang, Wei; Zhao, Jun; Tang, Dongxin; Sun, Zhengang

    2016-01-01

    By adjusting the molar ratio of oleic acid (OA), oleylamine (OM), and 1-octadecene (OD) ligands in reaction solution, Eu²⁺-doped BaSiF₆ nanoparticles were synthesized using a thermal decomposition synthesis route. Eu²⁺ ions have been successfully doped into BaSiF₆ host lattice and strong 4f-4f line emission of the Eu²⁺ in BaSiF₆ matrix is observed. Meanwhile, the photoluminescent (PL) properties of BaSiF₆:Eu²⁺ nanoparticles doping Eu²⁺ ions at different concentrations were also studied. PMID:27398531

  2. Ligand binding site of tear lipocalin: contribution of a trigonal cluster of charged residues probed by 8-anilino-1-naphthalenesulfonic acid.

    PubMed

    Gasymov, Oktay K; Abduragimov, Adil R; Glasgow, Ben J

    2008-02-01

    Human tear lipocalin (TL) exhibits diverse functions, most of which are linked to ligand binding. To map the binding site of TL for some amphiphilic ligands, we capitalized on the hydrophobic and hydrophilic properties of 8-anilino-1-naphthalenesulfonic acid (ANS). In single Trp mutants, resonance energy transfer from Trp to ANS indicates that the naphthalene group of ANS is proximate to Leu105 in the cavity. Binding energies of TL to ANS and its analogues reveal contributions from electrostatic interactions. The sulfonate group of ANS interacts strongly with the nonconserved intracavitary residue Lys114 and less with neighboring residues His84 and Glu34. This trigonal cluster of residues may play a role in the ligand recognition site for some negatively charged ligands. Because many drugs possess sulfonate groups, the trigonal cluster-sulfonate interaction can also be exploited as a lipocalin-based drug delivery mechanism. The binding of lauric acid and its analogues shows that fatty acids assume heterogeneous orientations in the cavity of TL. Predominantly, the hydrocarbon tail is buried in the cavity of TL and the carboxyl group is oriented toward the mouth. However, TL can also interact, albeit relatively weakly, with fatty acids oriented in the opposite direction. As the major lipid binding protein of tears, the ability to accommodate fatty acids in two opposing orientations may have functional implications for TL. At the aqueous-lipid interface, fatty acids whose carboxyl groups are positioned toward the aqueous phase are available for interaction with TL that could augment stability of the tear film. PMID:18179255

  3. Molecular beacons: Probes that fluoresce upon hybridization

    SciTech Connect

    Tyagi, S.; Kramer, F.R.

    1996-03-01

    We have developed novel nucleic acid probes that recognize and report the presence of specific nucleic acids in homogeneous solutions. These probes undergo a spontaneous fluorogenic conformational change when they hybridize to their targets. Only perfectly complementary targets elicit this response, as hybridization does not occur when the target contains a mismatched nucleotide or a deletion. The probes are particularly suited for monitoring the synthesis of specific nucleic acids in real time. When used in nucleic acid amplification assays, gene detection is homogeneous and sensitive, and can be carried out in a sealed tube. When introduced into living cells, these probes should enable the origin, movement, and fate of specific mRNAs to be traced. 23 refs., 6 figs.

  4. Synthesis and Photoluminescence Properties of Li2SrSiO4 Activated with Dy3+ and Sm3+

    NASA Astrophysics Data System (ADS)

    Erdoğmuş, E.

    2015-01-01

    Li2SrSiO4:M (M: Dy3+ and Sm3+) phosphors were synthesized by the conventional solid state reaction. The synthesized materials were characterized by powder XRD. The emission and excitation spectra of these phosphors were measured at room temperature with a spectrofluorometer. The first phosphor, Li2SrSiO4:Dy3+, emits at 479, 573, and 666 nm upon 351 nm excitation. The second phosphor, Li2SrSiO4:Sm3+, emits at 561-571, 594, 647-655, and 703-713 nm upon 399 nm excitation. Also, the dependence of the photoluminescence properties of both phosphors on boric acid concentration was investigated. The results showed that boric acid was effective in improving the photoluminescence intensity of both phosphors.

  5. Quantitative Probing of Cu(2+) Ions Naturally Present in Single Living Cells.

    PubMed

    Lee, Junho; Lee, Hwa-Rim; Pyo, Jaeyeon; Jung, Youngseob; Seo, Ji-Young; Ryu, Hye Guk; Kim, Kyong-Tai; Je, Jung Ho

    2016-06-01

    Quantitative probing of Cu(2+) ions naturally present in single living cells is realized by developing a quantum-dot-embedded nanowire-waveguide probe. The intracellular Cu(2+) ion concentration is quantified by direct monitoring of photoluminescence quenching during the insertion of the nanowire in a living neuron. The measured intracellular Cu(2+) ion concentration is 3.34 ± 1.04 × 10(-6) m (mean ± s.e.m.) in single hippocampal neurons. PMID:27027298

  6. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes

    SciTech Connect

    Hartmann, Nicolai F.; Yalcin, Sibel Ebru; Adamska, Lyudmyla; Haroz, Erik H.; Ma, Xuedan; Tretiak, Sergei; Htoon, Han; Doorn, Stephen K.

    2015-11-11

    Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E11 exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. We introduce a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E11 emission allows confirmation of dopants as trapping sites for localization of E11 excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Furthermore, theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs.

  7. Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes

    DOE PAGESBeta

    Hartmann, Nicolai F.; Yalcin, Sibel Ebru; Adamska, Lyudmyla; Haroz, Erik H.; Ma, Xuedan; Tretiak, Sergei; Htoon, Han; Doorn, Stephen K.

    2015-11-11

    Covalent dopants in semiconducting single wall carbon nanotubes (SWCNTs) are becoming important as routes for introducing new photoluminescent emitting states with potential for enhanced quantum yields, new functionality, and as species capable of near-IR room-temperature single photon emission. The origin and behavior of the dopant-induced emission is thus important to understand as a key requirement for successful room-T photonics and optoelectronics applications. Here, we use direct correlated two-color photoluminescence imaging to probe how the interplay between the SWCNT bright E11 exciton and solitary dopant sites yields the dopant-induced emission for three different dopant species: oxygen, 4-methoxybenzene, and 4-bromobenzene. We introducemore » a route to control dopant functionalization to a low level as a means for introducing spatially well-separated solitary dopant sites. Resolution of emission from solitary dopant sites and correlation to their impact on E11 emission allows confirmation of dopants as trapping sites for localization of E11 excitons following their diffusive transport to the dopant site. Imaging of the dopant emission also reveals photoluminescence intermittency (blinking), with blinking dynamics being dependent on the specific dopant. Density functional theory calculations were performed to evaluate the stability of dopants and delineate the possible mechanisms of blinking. Furthermore, theoretical modeling suggests that the trapping of free charges in the potential well created by permanent dipoles introduced by dopant atoms/groups is likely responsible for the blinking, with the strongest effects being predicted and observed for oxygen-doped SWCNTs.« less

  8. Electrospray ionization mass spectrometric investigations of [alpha]-dicarbonyl compounds--Probing intermediates formed in the course of the nonenzymatic browning reaction of l-ascorbic acid

    NASA Astrophysics Data System (ADS)

    Schulz, Anke; Trage, Claudia; Schwarz, Helmut; Kroh, Lothar W.

    2007-05-01

    A new method is presented which allows the simultaneous detection of various [alpha]-dicarbonyl compounds generated in the course of the nonenzymatic browning reaction initiated by thermal treatment of l-ascorbic acid, namely: glyoxal, methylglyoxal, diacetyl, 3-deoxy-l-pentosone, and l-threosoneE 3-Deoxy-l-threosone was successfully identified as a new C4-[alpha]-dicarbonyl structure for the first time in the degradation of Vitamin C by application of this non-chromatographic mass spectrometric approach. Moreover, a more detailed elucidation of the mechanistic scenario with respect to the oxidative and nonoxidative pathways is presented by using dehydro-l-ascorbic acid and 2,3-diketo-l-gulonic acid instead of l-ascorbic acid as a starting material. Furthermore, the postulated pathways are corroborated with the aid of 13C-isotopic labeling studies. The investigations were extended to baby food, and the successful detection of [alpha]-dicarbonyl compounds characteristic for Vitamin C degradation proved the matrix tolerance of the introduced method.

  9. Amino Acid-Based Stabilization of Oxide Nanocrystals in Polar Media: From Insight in Ligand Exchange to Solution ¹H NMR Probing of Short-Chained Adsorbates.

    PubMed

    De Roo, Jonathan; Coucke, Sofie; Rijckaert, Hannes; De Keukeleere, Katrien; Sinnaeve, Davy; Hens, Zeger; Martins, José C; Van Driessche, Isabel

    2016-03-01

    Ligand exchange is a crucial step between nanocrystal synthesis and nanocrystal application. Although colloidal stability and ligand exchange in nonpolar media are readily established, the exchange of native, hydrophobic ligands with polar ligands is less systematic. In this paper, we present a versatile ligand exchange strategy for the phase transfer of carboxylic acid capped HfO2 and ZrO2 nanocrystals to various polar solvents, based on small amino acids as the incoming ligand. To gain insight in the fundamental mechanism of the exchange, we study this system with a combination of FTIR, zeta potential measurements, and solution (1)H NMR techniques. The detection of surface-associated, small ligands with solution NMR proves challenging in this respect. Tightly bound amino acids are undetectable, but their existence can be proven through displacement with other ligands in titration experiments. Alternatively, we find that methyl moieties belonging to bound species can circumvent these limitations because of their more favorable relaxation properties as a result of internal mobility. As such, our results are not limited to amino acids but to any short-chained ligand and will therefore facilitate the rigorous investigation and understanding of various ligand exchange processes. PMID:26854070

  10. THE APPLICATION OF PEPTIDE NUCLEIC ACID PROBES FOR RAPID DETECTION AND ENUMERATION OF EUBACTERIA, STAPHYLOCOCCUS AUREUS AND PSEUDOMONAS AERUGINOSA IN RECREATIONAL BEACHES OF S. FLORIDA. (R828830)

    EPA Science Inventory

    A novel chemiluminescent in situ hybridization technique using peptide nucleic acids (PNA) was adapted for the detection of bacteria in beach sand and recreational waters in South Florida. The simultaneous detection and enumeration of eubacteria and the novel indicators, S...

  11. Tailoring room temperature photoluminescence of antireflective silicon nanofacets

    SciTech Connect

    Basu, Tanmoy; Kumar, M.; Ghatak, J.; Som, T.; Kanjilal, A.; Sahoo, P. K.

    2014-09-21

    In this paper, a fluence-dependent antireflection performance is presented from ion-beam fabricated nanofaceted-Si surfaces. It is also demonstrated that these nanofacets are capable of producing room temperature ultra-violet and blue photoluminescence which can be attributed to inter-band transitions of the localized excitonic states of different Si-O bonds at the Si/SiO{sub x} interface. Time-resolved photoluminescence measurements further confirm defect-induced radiative emission from the surface of silicon nanofacets. It is observed that the spectral characteristics remain unchanged, except an enhancement in the photoluminescence intensity with increasing ion-fluence. The increase in photoluminescence intensity by orders of magnitude stronger than that of a planar Si substrate is due to higher absorption of incident photons by nanofaceted structures.

  12. Surface plasmon enhanced photoluminescence from copper nanoparticles: Influence of temperature

    SciTech Connect

    Yeshchenko, Oleg A. Bondarchuk, Illya S.; Losytskyy, Mykhaylo Yu.

    2014-08-07

    Anomalous temperature dependence of surface plasmon enhanced photoluminescence from copper nanoparticles embedded in a silica host matrix has been observed. The quantum yield of photoluminescence increases as the temperature increases. The key role of such an effect is the interplay between the surface plasmon resonance and the interband transitions in the copper nanoparticles occurring at change of the temperature. Namely, the increase of temperature leads to the red shift of the resonance. The shift leads to increase of the spectral overlap of the resonance with photoluminescence band of copper as well as to the decrease of plasmon damping caused by interband transitions. Such mechanisms lead to the increase of surface plasmon enhancement factor and, consequently, to increase of the quantum yield of the photoluminescence.

  13. Use of H2S to Probe the Active Sites in FeNC Catalysts for the Oxygen Reduction Reaction (ORR) in Acidic Media

    SciTech Connect

    Singh, Deepika; Mamtani, Kuldeep; Bruening, Christopher R.; Miller, Jeffrey T.; Ozkan, Umit S.

    2014-10-01

    H2S has been used as a probe molecule both in an “in situ” poisoning experiment and in intermediate-temperature heat-treatment steps during and after the preparation of FeNC catalysts in an attempt to analyze its effect on their ORR activity. The heat treatments were employed either on the ball-milled precursor of FeNC or after the Ar-NH3 high temperature heat treatments. ORR activity of the H2S-treated catalysts was seen to be significantly lower than the sulfur-free catalysts, whether the sulfur exposure was during a half-cell testing, or as an intermediate-temperature exposure to H2S. The incorporation of sulfur species and interaction of Fe with sulfur were confirmed by characterization using XPS, EXAFS, TPO, and TPD. This study provides crucial evidence regarding differences in active sites in FeNC versus nitrogen-containing carbon nanostructured (CNx) catalysts.

  14. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    NASA Astrophysics Data System (ADS)

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  15. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: evidence of cyclodextrins cavity dependent complex stoichiometry.

    PubMed

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-15

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions. PMID:21996591

  16. Photoluminescence of polycrystalline ZnO under different annealing conditions

    NASA Astrophysics Data System (ADS)

    Hur, Tae-Bong; Jeen, Gwang Soo; Hwang, Yoon-Hwae; Kim, Hyung-Kook

    2003-11-01

    We investigated polycrystalline zinc oxide (ZnO) with different annealing conditions in air by x-ray photoelectron spectroscopy and photoluminescence. We found that the concentration of antisite oxide (OZn) increases when ZnO ceramics were in an O-rich condition. As the concentration of antisite oxide (OZn) increased, the photoluminescence intensity of the green band emission increased. The crossover temperature of the free and bound excitons was roughly estimated as 100 K.

  17. Photoluminescence Spectra of thin Zno films grown by ALD technology

    NASA Astrophysics Data System (ADS)

    Akopyan, I. Kh.; Davydov, V. Yu.; Labzovskaya, M. E.; Lisachenko, A. A.; Mogunov, Ya. A.; Nazarov, D. V.; Novikov, B. V.; Romanychev, A. I.; Serov, A. Yu.; Smirnov, A. N.; Titov, V. V.; Filosofov, N. G.

    2015-09-01

    The photoluminescence of ZnO films grown by atomic layer deposition (ALD) on silicon substrates has been investigated. A new broad photoluminescence band has been revealed in the exciton region of the spectrum. The properties of the band in the spectra of the films with different crystallographic orientations of substrates have been studied in a wide temperature range at different excitation levels. A model describing the origin of the new band has been proposed.

  18. Plasmonic enhancement of photoluminescence from aluminium nitride

    NASA Astrophysics Data System (ADS)

    Flynn, Chris; Stewart, Matthew

    2016-03-01

    Aluminium nitride (AlN) films were grown on c-plane sapphire wafers by molecular beam epitaxy (MBE) under aluminium-rich conditions. The excess aluminium (Al) accumulated on the surface of the films as micro-scale droplets 1-10 μm in size, and as Al nanoparticles with diameters in the range 10-110 nm. Photoluminescence (PL) measurements were performed on the AlN samples using a 193 nm Excimer laser as the excitation source. Prior to PL measurements the wafers were cleaved in half. One half of each wafer was submitted to a 10 min treatment in H3PO4 heated to 70 °C to remove the excess Al from the film surface. The remaining half was left in the as-deposited condition. The mean intensities of the near-band-edge PL peaks of the as-deposited samples were 2.0-3.4 times higher compared to the samples subjected to the H3PO4 Al-removal treatment. This observation motivated calculations to determine the optimal Al surface nanosphere size for plasmonic enhancement of PL from AlN. The PL enhancement was found to peak for an Al nanosphere radius of 15 nm, which is within the range of the experimentally-observed Al nanoparticle sizes.

  19. Photoluminescent detection of dissolved underwater trace explosives.

    PubMed

    Langston, Tye

    2010-01-01

    A portable, rapid, and economical method for in situ trace explosive detection in aqueous solutions was demonstrated using photoluminescence. Using europium/ thenoyltrifluoroacetone as the reagent, dissolved nitroglycerin was fluorescently tagged and detected in seawater solutions without sample preparation, drying, or preconcentration. The chemical method was developed in a laboratory setting and demonstrated in a flow-through configuration using lightweight, inexpensive, commercial components by directly injecting the reagents into a continually flowing seawater stream using a small amount of organic solvent (approximately 8% of the total solution). Europium's vulnerability to vibrational fluorescence quenching by water provided the mode of detection. Without nitroglycerin in the seawater solution, the reagent's fluorescence was quenched, but when dissolved nitroglycerin was present, it displaced the water molecules from the europium/thenoyltrifluoroacetone compound and restored fluorescence. This effort focused on developing a seawater sensor, but performance comparisons were made to freshwater. The method was found to perform better in freshwater and it was shown that certain seawater constituents (such as calcium) have an adverse impact. However, the concentrations of these constituents are not expected to vary significantly from the natural seawater used herein. PMID:20364240

  20. Using quantum dot photoluminescence for load detection

    NASA Astrophysics Data System (ADS)

    Moebius, M.; Martin, J.; Hartwig, M.; Baumann, R. R.; Otto, T.; Gessner, T.

    2016-08-01

    We propose a novel concept for an integrable and flexible sensor capable to visualize mechanical impacts on lightweight structures by quenching the photoluminescence (PL) of CdSe quantum dots. Considering the requirements such as visibility, storage time and high optical contrast of PL quenching with low power consumption, we have investigated a symmetrical and an asymmetrical layer stack consisting of semiconductor organic N,N,N',N'-Tetrakis(3-methylphenyl)-3,3'-dimethylbenzidine (HMTPD) and CdSe quantum dots with elongated CdS shell. Time-resolved series of PL spectra from layer stacks with applied voltages of different polarity and simultaneous observation of power consumption have shown that a variety of mechanisms such as photo-induced charge separation and charge injection, cause PL quenching. However, mechanisms such as screening of external field as well as Auger-assisted charge ejection is working contrary to that. Investigations regarding the influence of illumination revealed that the positive biased asymmetrical layer stack is the preferred sensor configuration, due to a charge carrier injection at voltages of 10 V without the need of coincident illumination.

  1. Photoluminescence and doping mechanism of theranostic Eu3+/Fe3+ dual-doped hydroxyapatite nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Min-Hua; Yoshioka, Tomohiko; Ikoma, Toshiyuki; Hanagata, Nobutaka; Lin, Feng-Huei; Tanaka, Junzo

    2014-10-01

    Theranostic nanoparticles currently have been regarded as an emerging concept of ‘personalized medicine’ with diagnostic and therapeutic dual-functions. Eu3+ doped hydroxyapatite (HAp) has been regarded as a promising fluorescent probe for in vivo imaging applications. Additionally, substitution of Ca2+ with Fe3+ in HAp crystal may endow the capability of producing heat upon exposure to a magnetic field. Here we report a preliminary study of doping mechanism and photoluminescence of Eu3+ and Fe3+ doped HAp nanoparticles (Eu/Fe:HAp). HAp with varied concentration of Eu3+ and Fe3+ doping are presented as Eu(10 mol%):HAp, Eu(7 mol%)-Fe(3 mol%):HAp, Eu(5 mol%)-Fe(5 mol%):HAp, Eu(3 mol%)-Fe(7 mol%):HAp, and Fe(10 mol%):HAp in the study. The results showed that the HAp particles, in nano-size with rod-like morphology, were successfully doped with Eu3+ and Fe3+, and the particles can be well suspended in cell culture medium. Photoluminescence analysis revealed that particles have prominent emissions at 536 nm, 590 nm, 615 nm, 650 nm and 695 nm upon excitation at a wavelength of 397 nm. Moreover, these Eu/Fe:HAp nanoparticles belonged to B-type carbonated HAp, which has been considered an effective biodegradable and biocompatible drug/gene carrier in biological applications.

  2. A DFT study of the acid-base properties of anatase TiO2 and tetragonal ZrO2 by adsorption of CO and CO2 probe molecules

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-Yi Tiffany; Tosoni, Sergio; Pacchioni, Gianfranco

    2016-10-01

    We have performed a comparative study of the acid-base characteristics of the surfaces of anatase TiO2 and tetragonal ZrO2. To this end we performed DFT + U calculations on CO and CO2 probe molecules adsorbed both on terraces and steps of the two oxides. For titania, CO adsorption results in a moderate adsorption energy (about - 0.3 eV) and in a positive shift of the Csbnd O stretching frequency (about + 40 cm- 1), typical of Lewis acid sites, with no clear difference in the acidity between terraces or steps. For zirconia we found a similar CO binding energy as for titania, and a CO vibrational shift that depends on the location of the Zr cation: negligible on terraces, similar to TiO2 on steps. We conclude that the acidic properties are similar in the two oxide surfaces. Things are different for CO2 adsorption. On titania the interaction is weak and surface carbonates compete with physisorbed CO2, indicating a weak basic character. On the contrary, on zirconia three types of stable carbonates have been identified. Their vibrational frequencies are consistent with IR measurements reported in the literature. The most stable species forms on steps of the t-ZrO2 surface and consists of a CO32 - unit which lies flat on the surface with the O atoms pointing towards three Zr ions. The species forms spontaneously by extraction of a lattice oxygen by an incoming CO2 molecule. The different reactivity points towards a much more pronounced basic character of zirconia compared to titania, at least if measured by CO2 adsorption.

  3. Mechanism of the Novel Prenylated Flavin-Containing Enzyme Ferulic Acid Decarboxylase Probed by Isotope Effects and Linear Free-Energy Relationships.

    PubMed

    Ferguson, Kyle L; Arunrattanamook, Nattapol; Marsh, E Neil G

    2016-05-24

    Ferulic acid decarboxylase from Saccharomyces cerevisiae catalyzes the decarboxylation of phenylacrylic acid to form styrene using a newly described prenylated flavin mononucleotide cofactor. A mechanism has been proposed, involving an unprecedented 1,3-dipolar cyclo-addition of the prenylated flavin with the α═β bond of the substrate that serves to activate the substrate toward decarboxylation. We measured a combination of secondary deuterium kinetic isotope effects (KIEs) at the α- and β-positions of phenylacrylic acid together with solvent deuterium KIEs. The solvent KIE is 3.3 on Vmax/KM but is close to unity on Vmax, indicating that proton transfer to the product occurs before the rate-determining step. The secondary KIEs are normal at both the α- and β-positions but vary in magnitude depending on whether the reaction is performed in H2O or D2O. In D2O, the enzyme catalyzed the exchange of deuterium into styrene; this reaction was dependent on the presence of bicarbonate. This observation implies that CO2 release must occur after protonation of the product. Further information was obtained from a linear free-energy analysis of the reaction through the use of a range of para- and meta-substituted phenylacrylic acids. Log(kcat/KM) for the reaction correlated well with the Hammett σ(-) parameter with ρ = -0.39 ± 0.03; r(2) = 0.93. The negative ρ value and secondary isotope effects are consistent with the rate-determining step being the formation of styrene from the prenylated flavin-product adduct through a cyclo-elimination reaction. PMID:27119435

  4. A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging.

    PubMed

    Liu, Zonglun; Gao, Kuo; Wang, Beng; Yan, Hui; Xing, Panfei; Zhong, Chongmin; Xu, Yongqian; Li, Hongjuan; Chen, Jianxin; Wang, Wei; Sun, Shiguo

    2016-01-01

    A dinuclear ruthenium(II) complex Ruazo was designed and synthesized, in which oxidative cyclization of the azo and o-amino group was employed for the detection of hypochlorous acid (HClO) in aqueous solution. The non-emissive Ruazo formed highly luminescent triazole-ruthenium(II) complex in presence of HClO and successfully imaged HClO in living cell and living mouse. PMID:27356618

  5. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain.

    PubMed

    Wang, Changning; Eessalu, Thomas E; Barth, Vanessa N; Mitch, Charles H; Wagner, Florence F; Hong, Yijia; Neelamegam, Ramesh; Schroeder, Frederick A; Holson, Edward B; Haggarty, Stephen J; Hooker, Jacob M

    2013-01-01

    Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the

  6. Design, synthesis, and evaluation of hydroxamic acid-based molecular probes for in vivo imaging of histone deacetylase (HDAC) in brain

    PubMed Central

    Wang, Changning; Eessalu, Thomas E; Barth, Vanessa N; Mitch, Charles H; Wagner, Florence F; Hong, Yijia; Neelamegam, Ramesh; Schroeder, Frederick A; Holson, Edward B; Haggarty, Stephen J; Hooker, Jacob M

    2014-01-01

    Hydroxamic acid-based histone deacetylase inhibitors (HDACis) are a class of molecules with therapeutic potential currently reflected in the use of suberoylanilide hydroxamic acid (SAHA; Vorinostat) to treat cutaneous T-cell lymphomas (CTCL). HDACis may have utility beyond cancer therapy, as preclinical studies have ascribed HDAC inhibition as beneficial in areas such as heart disease, diabetes, depression, neurodegeneration, and other disorders of the central nervous system (CNS). However, little is known about the pharmacokinetics (PK) of hydroxamates, particularly with respect to CNS-penetration, distribution, and retention. To explore the rodent and non-human primate (NHP) brain permeability of hydroxamic acid-based HDAC inhibitors using positron emission tomography (PET), we modified the structures of belinostat (PXD101) and panobinostat (LBH-589) to incorporate carbon-11. We also labeled PCI 34051 through carbon isotope substitution. After characterizing the in vitro affinity and efficacy of these compounds across nine recombinant HDAC isoforms spanning Class I and Class II family members, we determined the brain uptake of each inhibitor. Each labeled compound has low uptake in brain tissue when administered intravenously to rodents and NHPs. In rodent studies, we observed that brain accumulation of the radiotracers were unaffected by the pre-administration of unlabeled inhibitors. Knowing that CNS-penetration may be desirable for both imaging applications and therapy, we explored whether a liquid chromatography, tandem mass spectrometry (LC-MS-MS) method to predict brain penetrance would be an appropriate method to pre-screen compounds (hydroxamic acid-based HDACi) prior to PET radiolabeling. LC-MS-MS data were indeed useful in identifying additional lead molecules to explore as PET imaging agents to visualize HDAC enzymes in vivo. However, HDACi brain penetrance predicted by LC-MS-MS did not strongly correlate with PET imaging results. This underscores the

  7. A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liu, Zonglun; Gao, Kuo; Wang, Beng; Yan, Hui; Xing, Panfei; Zhong, Chongmin; Xu, Yongqian; Li, Hongjuan; Chen, Jianxin; Wang, Wei; Sun, Shiguo

    2016-06-01

    A dinuclear ruthenium(II) complex Ruazo was designed and synthesized, in which oxidative cyclization of the azo and o-amino group was employed for the detection of hypochlorous acid (HClO) in aqueous solution. The non-emissive Ruazo formed highly luminescent triazole-ruthenium(II) complex in presence of HClO and successfully imaged HClO in living cell and living mouse.

  8. A dinuclear ruthenium(II) complex as turn-on luminescent probe for hypochlorous acid and its application for in vivo imaging

    PubMed Central

    Liu, Zonglun; Gao, Kuo; Wang, Beng; Yan, Hui; Xing, Panfei; Zhong, Chongmin; Xu, Yongqian; Li, Hongjuan; Chen, Jianxin; Wang, Wei; Sun, Shiguo

    2016-01-01

    A dinuclear ruthenium(II) complex Ruazo was designed and synthesized, in which oxidative cyclization of the azo and o-amino group was employed for the detection of hypochlorous acid (HClO) in aqueous solution. The non-emissive Ruazo formed highly luminescent triazole-ruthenium(II) complex in presence of HClO and successfully imaged HClO in living cell and living mouse. PMID:27356618

  9. Non-covalent probes for the investigation of structure and dynamics of protein-nucleic acid assemblies: the case of NC-mediated dimerization of genomic RNA in HIV-1

    PubMed Central

    Turner, Kevin B.; Kohlway, Andrew S.; Hagan, Nathan A.; Fabris, Daniele

    2009-01-01

    The nature of specific RNA-RNA and protein-RNA interactions involved in the process of genome dimerization and isomerization in HIV-1, which is mediated in vitro by the stemloop 1 (SL1) of the packaging signal and by the nucleocapsid (NC) domain of the viral Gag polyprotein, was investigated by using archetypical nucleic acid ligands as non-covalent probes. Small-molecule ligands make contact with their target substrates through complex combinations of H-bonds, salt bridges, and hydrophobic interactions. Therefore, their binding patterns assessed by electrospray ionization (ESI) mass spectrometry can provide valuable insights into the factors determining specific recognition between species involved in biopolymer assemblies. In the case of SL1, dimerization and isomerization create unique structural features capable of sustaining stable interactions with classic nucleic acid ligands. The binding modes exhibited by intercalators and minor groove binders were adversely affected by the significant distortion of the duplex formed by palindrome annealing in the kissing-loop (KL) dimer, whereas the modes observed for the corresponding extended duplex (ED) confirmed a more regular helical structure. Consistent with the ability to establish electrostatic interactions with highly negative pockets typical of helix anomalies, polycationic aminoglycosides bound to the stem-bulge motif conserved in all SL1 conformers, to the unpaired nucleotides located at the hinge between kissing hairpins in KL, and to the exposed bases flanking the palindrome duplex in ED. The patterns afforded by intercalators and minor groove binders did not display detectable variations when the corresponding NC-SL1 complexes were submitted to probing. In contrast, aminoglycosides displayed the ability to compete with the protein for overlapping sites, producing opposite effects on the isomerization process. Indeed, displacing NC from the stem-bulges of the KL dimer induced inhibition of stem melting and

  10. Convenient synthesis of stable silver quantum dots with enhanced photoluminescence emission by laser fragmentation

    NASA Astrophysics Data System (ADS)

    Shuang, Li; Ming, Chen

    2016-04-01

    A new strategy for the facile synthesis of very stable and mono-dispersed silver (Ag) quantum dots (QDs) is developed by laser fragmentation of bulk Ag in water using polysorbate 80 as a dispersing and stabilizing agent. The surfactant plays an important role in the formation of size-controlled Ag nano-structures. The Ag QDs have excellent photo-stability of ∼500 h and enhanced photoluminescence (PL) at 510 nm. This has significant implications for selective and ultrasensitive PL probes. Based on laser fragmentation in the biocompatible surfactant solution, our results have opened up a novel paradigm to obtain stable metal QDs directly from bulk targets. This is a breakthrough in the toxicity problems that arise from standard chemical fabrication. Project supported by the National Natural Science Foundation of China (Grant Nos. 11575102, 11105085, 11275116, and 11375108) and the Fundamental Research Funds of Shandong University, China (Grant No. 2015JC007).

  11. Measuring long-range carrier diffusion across multiple grains in polycrystalline semiconductors by photoluminescence imaging

    PubMed Central

    Alberi, K.; Fluegel, B.; Moutinho, H.; Dhere, R. G.; Li, J. V.; Mascarenhas, A.

    2013-01-01

    Thin-film polycrystalline semiconductors are currently at the forefront of inexpensive large-area solar cell and integrated circuit technologies because of their reduced processing and substrate selection constraints. Understanding the extent to which structural and electronic defects influence carrier transport in these materials is critical to controlling the optoelectronic properties, yet many measurement techniques are only capable of indirectly probing their effects. Here we apply a novel photoluminescence imaging technique to directly observe the low temperature diffusion of photocarriers through and across defect states in polycrystalline CdTe thin films. Our measurements show that an inhomogeneous distribution of localized defect states mediates long-range hole transport across multiple grain boundaries to locations exceeding 10 μm from the point of photogeneration. These results provide new insight into the key role deep trap states have in low temperature carrier transport in polycrystalline CdTe by revealing their propensity to act as networks for hopping conduction. PMID:24158163

  12. Photoluminescence intensity enhancement in SWNT aqueous suspensions due to reducing agent doping: Influence of adsorbed biopolymer

    NASA Astrophysics Data System (ADS)

    Kurnosov, N. V.; Leontiev, V. S.; Linnik, A. S.; Lytvyn, O. S.; Karachevtsev, V. A.

    2014-06-01

    The influence of biopolymer wrapped around nanotube on the enhancement of the semiconducting single-walled carbon nanotube (SWNT) photoluminescence (PL) in aqueous suspension which increases due to the reducing agent dithiothreitol (DTT) doping effect was revealed. The greatest enhancement of PL was observed for SWNTs covered with double- or single stranded DNA (above 170%) and DTT weak influence was revealed for SWNTs:polyC suspension (∼45%). The magnitude of the PL enhancement depends also on nanotube chirality and sample aging. The behavior of PL from SWNTs covered with various polymers is explained by the different biopolymers ordering on the nanotube surface. The ordered polymer conformation on the nanotube weakens the reducing agent doping effect. The method of reducing agent doping of nanotube:biopolymer aqueous suspension can serve as a sensitive luminescent probe of the biopolymer ordering on the carbon nanotube and can be used to increase the sensitivity of luminescent biosensors.

  13. Deep ultraviolet photoluminescence of Tm-doped AlGaN alloys

    SciTech Connect

    Nepal, N.; Zavada, J. M.; Lee, D. S.; Steckl, A. J.; Sedhain, A.; Lin, J. Y.; Jiang, H. X.

    2009-03-16

    The ultraviolet (UV) photoluminescence (PL) properties of Tm-doped Al{sub x}Ga{sub 1-x}N (0.39{<=}x{<=}1) alloys grown by solid-source molecular beam epitaxy were probed using above-bandgap excitation from a laser source at 197 nm. The PL spectra show dominant UV emissions at 298 and 358 nm only for samples with x=1 and 0.81. Temperature dependence of the PL intensities of these emission lines reveals exciton binding energies of 150 and 57 meV, respectively. The quenching of these UV emissions appears related to the thermal activation of the excitons bound to rare-earth structured isovalent (RESI) charge traps, which transfer excitonic energy to Tm{sup 3+} ions resulting in the UV emissions. A model of the RESI trap levels in AlGaN alloys is presented.

  14. Photoaffinity analogues of methotrexate as folate antagonist binding probes. 1. Photoaffinity labeling of murine L1210 dihydrofolate reductase and amino acid sequence of the binding region

    SciTech Connect

    Price, E.M.; Smith, P.L.; Klein, T.E.; Freisheim, J.H.

    1987-07-28

    N/sup ..cap alpha../-(4-Amino-4-deoxy-10-methylpteroyl)-N/sup epsilon/-(4-azido-5-(/sup 125/I)iodosalicylyl)-L-lysine, a photoaffinity analogue of methotrexate, is only 2-fold less potent than methotrexate in the inhibition of murine L1210 dihydrofolate reductase. Irradiation of the enzyme in the presence of an equimolar concentration of the /sup 125/I-labeled analogue ultimately leads to an 8% incorporation of the photoprobe. A 100-fold molar excess of methotrexate essentially blocks this incorporation. Cyanogen bromide digestion of the labeled enzyme, followed by high-pressure liquid chromatography purification of the generated peptides, indicates that greater than 85% of the total radioactivity is incorporated into a single cyanogen bromide peptide. Sequence analysis revealed this peptide to be residues 53-111, with a majority of the radioactivity centered around residues 63-65 (Lys-Asn-Arg). These data demonstrate that the photoaffinity analogue specifically binds to dihydrofolate reductase and covalently modifies the enzyme following irradiation and is therefore a photolabeling agent useful for probing the inhibitor binding domain of the enzyme.

  15. Chemical Functionalisation and Photoluminescence of Graphene Quantum Dots.

    PubMed

    Sekiya, Ryo; Uemura, Yuichiro; Naito, Hiroyoshi; Naka, Kensuke; Haino, Takeharu

    2016-06-01

    Chemical modification of graphene quantum dots (GQDs) can influence their physical and chemical properties; hence, the investigation of the effect of organic functional groups on GQDs is of importance for developing GQD-organic hybrid materials. Three peripherally functionalised GQDs having a third-generation dendritic wedge (GQD-2), long alkyl chains (GQD-3) and a polyhedral oligomeric silsesquioxane group (GQD-4) were prepared by the Cu(I) -catalysed Huisgen cycloaddition reaction of GQD-1 with organic azides. Cyclic voltammetry indicated that reduction occurred on the surfaces of GQD-1-4 and on the five-membered imide rings at the periphery, and this suggested that the functional groups distort the periphery by steric interactions between neighbouring functional groups. The HOMO-LUMO bandgaps of GQD-1-4 were estimated to be approximately 2 eV, and their low-lying LUMO levels (<-3.9 eV) were lower than that of phenyl-C61 -butyric acid methyl ester, an n-type organic semiconductor. The solubility of GQD-1-4 in organic solvents depends on the functional groups present. The functional groups likely cover the surfaces and periphery of the GQDs, and thus increase their affinity for solvent and avoid precipitation. Similar to GQD-2, both GQD-3 and GQD-4 emitted white light upon excitation at 360 nm. Size-exclusion chromatography demonstrated that white-light emission originates from the coexistence of differently sized GQDs that have different photoluminescence emission wavelengths. PMID:27115715

  16. Identification of essential residues for the catalytic function of 85-kDa cytosolic phospholipase A2. Probing the role of histidine, aspartic acid, cysteine, and arginine.

    PubMed

    Pickard, R T; Chiou, X G; Strifler, B A; DeFelippis, M R; Hyslop, P A; Tebbe, A L; Yee, Y K; Reynolds, L J; Dennis, E A; Kramer, R M; Sharp, J D

    1996-08-01

    Cytosolic phospholipase A2 (cPLA2) hydrolyzes the sn-2-acyl ester bond of phospholipids and shows a preference for arachidonic acid-containing substrates. We found previously that Ser-228 is essential for enzyme activity and is likely to function as a nucleophile in the catalytic center of the enzyme (Sharp, J. D., White, D. L., Chiou, X. G., Goodson, T., Gamboa, G. C., McClure, D., Burgett, S., Hoskins, J., Skatrud, P. L., Sportsman, J. R., Becker, G. W., Kang, L. H., Roberts, E. F., and Kramer, R. M.(1991) J. Biol. Chem. 266, 14850-14853). cPLA2 contains a catalytic aspartic acid motif common to the subtilisin family of serine proteases. Substitution within this motif of Ala for Asp-549 completely inactivated the enzyme, and substitutions with either glutamic acid or asparagine reduced activity 2000- and 300-fold, respectively. Additionally, using mutants with cysteine replaced by alanine, we found that Cys-331 is responsible for the enzyme's sensitivity to N-ethylmaleimide. Surprisingly, substituting alanine for any of the 19 histidines did not produce inactive enzyme, demonstrating that a classical serine-histidine-aspartate mechanism does not operate in this hydrolase. We found that substituting alanine or histidine for Arg-200 did produce inactive enzyme, while substituting lysine reduced activity 200-fold. Results obtained with the lysine mutant (R200K) and a coumarin ester substrate suggest no specific interaction between Arg-200 and the phosphoryl group of the phospholipid substrate. Arg-200, Ser-228, and Asp-549 are conserved in cPLA2 from six species and also in four nonmammalian phospholipase B enzymes. Our results, supported by circular dichroism, provide evidence that Asp-549 and Arg-200 are critical to the enzyme's function and suggest that the cPLA2 catalytic center is novel. PMID:8702602

  17. What Is a pH Probe Study?

    MedlinePlus

    What is a pH Probe Study ? What is pH a probe study? M easuring the pH in the esophagus helps determine whether or not acid is coming up from the stomach. A pH probe study is usually done in patients where ...

  18. Preparation and photoluminescence properties of porous silicon

    NASA Astrophysics Data System (ADS)

    Chen, Zhiwei; Xu, Zhimou

    2009-08-01

    There are many preparation methods of porous silicon(PS), such as electrochemical etching(ECE), photochemical etching, chemical etching and so on. ECE, also known as anodic etching, is more common among these methods. A lot of holes are given priority to be etched on the surface of silicon. The top and vertical aspects of the holes are easily etched while horizontal aspects wall of the holes are quiet different, and then tree-like or sponge-like porous structure is formed. In this paper, we obtained porous structure on the surface of silicon using lithography and dry etching method. The diameter of the hole was 2μm or 6μm. The etching depth of the samples was about 70nm, 140nm and 260nm. Photoluminescence (PL) phenomenon was observed by using light of 270nm, 280nm, 330nm, 455nm and 460nm wavelength to excite the samples. The results showed that PL intensity was the best when excitation wavelength was 270nm or 280nm, compared with 330nm, 455nm and 460nm. From PL analysis of all samples, It exists three emission peaks about at 372nm, 425nm and 473nm. When the diameter of the PS was the same, it was found that PS with etching depth at 140nm was more efficient. It means that PL intensity of the was better than other samples when the etching depth was 140nm. Likewise, samples of which the diameter was 2μm has much better PL than that of the other samples.

  19. Effect of Silica Nanoparticles on the Photoluminescence Properties of BCNO Phosphor

    NASA Astrophysics Data System (ADS)

    Nuryadin, Bebeh W.; Faryuni, Irfana Diah; Iskandar, Ferry; Abdullah, Mikrajuddin; Khairurrijal, Khairurrijal

    2011-12-01

    Effect of additional silica nanoparticles on the photoluminescence (PL) performance of boron carbon oxy-nitride (BCNO) phosphor was investigated. As a precursor, boric acid and urea were used as boron and nitrogen sources, respectively. The carbon sources was polyethylene glycol (PEG) with average molecule weight 20000 g/mol.. Precursor solutions were prepared by mixing these raw materials in pure water, followed by stirring to achieve homogeneous solutions. In this precursor, silica nanoparticles were added at various mass ratio from 0 to 7 %wt in the solution. The precursors were then heated at 750 °C for 60 min in a ceramic crucible under atmospheric pressure. The photoluminescence (PL) spectrum that characterized by spectrophotometer showed a single, distinct, and broad emission band varied from blue to near red color, depend on the PEG, boric acid and urea ratio in the precursor. The addition of silica nanoparticles caused the increasing of PL intensity as well as the shifting of peak wavelength of PL spectrum. The peak shifting of PL was affected by the concentration of silica nanoparticles that added into the precursor. We believe that the BCNO-silica composite phosphor becomes a promising material for the phosphor conversion-based white light-emitting diodes.

  20. 5'-Azido-[3,6-3H2]-1-napthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: identification of a 23-kDa protein from maize coleoptile plasma membranes.

    PubMed Central

    Zettl, R; Feldwisch, J; Boland, W; Schell, J; Palme, K

    1992-01-01

    1-Naphthylphthalamic acid (NPA) is a specific inhibitor of polar auxin transport that blocks carrier-mediated auxin efflux from plant cells. To allow identification of the NPA receptor thought to be part of the auxin efflux carrier, we have synthesized a tritiated, photolabile NPA analogue, 5'-azido-[3,6-3H2]NPA ([3H2]N3NPA). This analogue was used to identify NPA-binding proteins in fractions highly enriched for plasma membrane vesicles isolated from maize coleoptiles (Zea mays L.). Competition studies showed that binding of [3H2]N3NPA to maize plasma membrane vesicles was blocked by nonradioactive NPA but not by benzoic acid. After incubation of plasma membrane vesicles with [3H2]N3NPA and exposure to UV light, we observed specific photoaffinity labeling of a protein with an apparent molecular mass of 23 kDa. Pretreatment of the plasma membrane vesicles with indole-3-acetic acid or with the auxin-transport inhibitors NPA and 2,3,5-triiodobenzoic acid strongly reduced specific labeling of this protein. This 23-kDa protein was also labeled by addition of 5-azido-[7-3H]indole-3-acetic acid to plasma membranes prior to exposure to UV light. The 23-kDa protein was solubilized from plasma membranes by 1% Triton X-100. The possibility that this 23-kDa polypeptide is part of the auxin efflux carrier system is discussed. Images PMID:11607252

  1. Ethylene Diamine Tetraacetic Acid Etched Quantum Dots as a "Turn-On" Fluorescence Probe for Detection of Trace Zinc in Food.

    PubMed

    Liu, Wei; Wei, Fangdi; Xu, Guanhong; Wu, Yanzi; Hu, Chunting; Song, Quan; Yang, Jing; Hu, Qin

    2016-06-01

    In the present paper, a simple and rapid "turn-on" fluorescence sensor for Zn2+ based on ethylene diamine tetraacetic acid (EDTA) etched CdTe quantum dots (QDs) was developed. First, the initial bright fluorescence of mercaptopropionic acid (MPA) capped CdTe QDs was effectively quenched by EDTA, and then the presence of Zn2+ could "turn on" the weak fluorescence of QDs quenched by EDTA due to the formation of ZnS passivation shell. The increase of fluorescence intensity of EDTA etched QDs was found to be linear with the concentration of Zn2+ added. Under the optimum conditions, the calibration curve of this method showed good linearity in the concentration range of 9.1-1 09.1 μM of Zn2+ with the correlation coefficient R2 = 0.998. The limit of detection (3σ/K) was 2 μM. The developed QDs-based sensor was successfully applied to detect trace zinc in zinc fortified table salts and energy drinks with satisfactory results. PMID:27427745

  2. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor

    NASA Astrophysics Data System (ADS)

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-01

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F- has been successfully developed. The paper sensor showed high sensitivity for aqueous F-, and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes.The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F- on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F- can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F- in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism

  3. Photoluminescence quantum yield of PbS nanocrystals in colloidal suspensions

    SciTech Connect

    Greben, M.; Fucikova, A.; Valenta, J.

    2015-04-14

    The absolute photoluminescence (PL) quantum yield (QY) of oleic acid-capped colloidal PbS quantum dots (QDs) in toluene is thoroughly investigated as function of QD size, concentration, excitation photon energy, and conditions of storage. We observed anomalous decrease of QY with decreasing concentration for highly diluted suspensions. The ligand desorption and QD-oxidation are demonstrated to be responsible for this phenomenon. Excess of oleic acid in suspensions makes the QY values concentration-independent over the entire reabsorption-free range. The PL emission is shown to be dominated by surface-related recombinations with some contribution from QD-core transitions. We demonstrate that QD colloidal suspension stability improves with increasing the concentration and size of PbS QDs.

  4. Photoluminescence properties of anodic alumina for application in optical sensors using SERS

    NASA Astrophysics Data System (ADS)

    Gasenkova, I. V.; Mukhurov, N. I.; Zhvavyi, S. P.

    2011-05-01

    The results of optical properties study of porous aluminum oxide films, fabricated by anodizing in a water solution of a sulfuric acid and modified by thermal annealing on air at temperature T>=800°C are reported. On the basis of the comparative analysis of the received data it is shown that a photoluminescence in near UV and visible regions for aluminum oxide anodized in a sulfuric acid solution originates from the divacancies of oxygen (F2, F+2 and F2+2 centers) and sulfates - ions do not render essential influence on luminescent properties AOA in researched spectral area. For samples annealed at T = 1300 °C, intensive narrow strips determined *see abstract on paper* by the radiative transitions (2E --> 4A2) in ions of Mn4+ (678 nm) and Cr3+ (694 nm), replacing ions of Al3+ in octahedral positions of α-Al2O3

  5. 5 prime -Azido-(3,6- sup 3 H sub 2 )-1-naphthylphthalamic acid, a photoactivatable probe for naphthylphthalamic acid receptor proteins from higher plants: Identification of a 23-kDa protein from maize coleoptile plasma membranes

    SciTech Connect

    Zettl, R.; Feldwisch, J.; Schell, J.; Palme, K. ); Boland, W. )

    1992-01-15

    1-Naphthylphthalamic acid (NPA) is a specific inhibitor of polar auxin transport that blocks carrier mediated auxin efflux from plant cells. To allow identification of the NPA receptor thought to be part of the auxin efflux carrier, the authors have synthesized a tritiated, photolabile NPA analogue, 5{prime}-azido-(3,6-{sup 3}H{sub 2})NPA (({sup 3}H{sub 2})N{sub 3}NPA). This analogue was used to identify NPA-binding proteins in fractions highly enriched for plasma membrane vesicles isolated from maize coleoptiles (Zea mays L.). Competition studies showed that binding of ({sup 3}H{sub 2})N{sub 3}NPA to maize plasma membrane vesicles was blocked by nonradioactive NPA but not by benzoic acid. After incubation of plasma membrane vesicles with ({sup 3}H{sub 2})N{sub 3}NPA and exposure to UV light, they observed specific photoaffinity labeling of a protein with an apparent molecular mass of 23 kDa. Pretreatment of the plasma membrane vesicles with indole-3-acetic acid or with the auxin-transport inhibitors NPA and 2,3,5-triiodobenzoic acid strongly reduced specific labeling of this protein. This 23-kDa protein was also labeled by addition of 5-azido-(7-{sup 3}H)indole-3-acetic acid to plasma membranes prior to exposure to UV light. The 23-kDa protein was solubilized from plasma membranes by 1% Triton X-100. The possibility that this 23-kDa polypeptide is part of the auxin efflux carrier system is discussed.

  6. Photoluminescence spectroscopy of YVO{sub 4}:Eu{sup 3+} nanoparticles with aromatic linker molecules: A precursor to biomedical functionalization

    SciTech Connect

    Senty, T. R.; Yalamanchi, M.; Cushing, S. K.; Seehra, M. S.; Bristow, A. D.; Zhang, Y.; Shi, X.

    2014-04-28

    Photoluminescence spectra of YVO{sub 4}:Eu{sup 3+} nanoparticles are presented, with and without the attachment of organic molecules that are proposed for linking to biomolecules. YVO{sub 4}:Eu{sup 3+} nanoparticles with 5% dopant concentration were synthesized via wet chemical synthesis. X-ray diffraction and transmission electron microscopy show the expected wakefieldite structure of tetragonal particles with an average size of 17 nm. Fourier-transform infrared spectroscopy determines that metal-carboxylate coordination is successful in replacing native metal-hydroxyl bonds with three organic linkers, namely, benzoic acid, 3-nitro 4-chloro-benzoic acid, and 3,4-dihydroxybenzoic acid, in separate treatments. UV-excitation photoluminescence spectra show that the position and intensity of the dominant {sup 5}D{sub 0} – {sup 7}F{sub 2} electric-dipole transition at 619 nm are unaffected by the benzoic acid and 3-nitro 4-chloro-benzoic acid treatments. Attachment of 3,4-dihydroxybenzoic acid produces an order-of-magnitude quenching in the photoluminescence, due to the presence of high-frequency vibrational modes in the linker. Ratios of the dominant electric- and magnetic-dipole transitions confirm infrared measurements, which indicate that the bulk crystal of the nanoparticle is unchanged by all three treatments.

  7. Carbon dots-based fluorescent probe for "off-on" sensing of Hg(II) and I⁻.

    PubMed

    He, Jiangling; Zhang, Haoran; Zou, Jinliang; Liu, Yingliang; Zhuang, Jianle; Xiao, Yong; Lei, Bingfu

    2016-05-15

    Herein, we report a simple, one-step reflux method for synthesis of photoluminescent carbon dots (CDs) using citric acid as the carbon source and diethylenetriamine (DETA) as the surface passivation reagent along with a high quantum yield (82.40%), the fluorescence intensity of the CDs was found to be effectively quenched by Hg(II) ions. Upon addition of I(-) to the CDs/Hg(II) complex dispersion, the fluorescence intensity of the CDs was significantly recovered. Furthermore, we developed an "off-on" fluorescence assay for the detection of I(-) using CDs/Hg(II) as a fluorescence probe. This probe enables the selective detection of Hg(II) with a linear range of 0-80 μM and a limit of detection is 0.201 µM and a limit of detection about I(-) is 0.234 µM with a linear range of 0-70 μM. Most importantly, the sensors can be successfully applied to the determination of Hg(II) and I(-) in real lake water and urine of cattles, the "off-on" sensor demonstrates high selectivity, repeatability, stability, which offer this CDs-based "off-on" fluorescent sensor a promising platform for environmental and biological sensing applications. PMID:26748370

  8. Origin of the Avalanche-Like Photoluminescence from Metallic Nanowires

    PubMed Central

    Ma, Zongwei; Yu, Ying; Shen, Shaoxin; Dai, Hongwei; Yao, Linhua; Han, Yibo; Wang, Xia; Han, Jun-Bo; Li, Liang

    2016-01-01

    Surface plasmonic systems provide extremely efficient ways to modulate light-matter interaction in photon emission, light harvesting, energy conversion and transferring, etc. Various surface plasmon enhanced luminescent behaviors have been observed and investigated in these systems. But the origin of an avalanche-like photoluminescence, which was firstly reported in 2007 from Au and subsequently from Ag nanowire arrays/monomers, is still not clear. Here we show, based on systematic investigations including the excitation power/time related photoluminescent measurements as well as calculations, that this avalanche-like photoluminescence is in fact a result of surface plasmon assisted thermal radiation. Nearly all of the related observations could be perfectly interpreted with this concept. Our finding is crucial for understanding the surface plasmon mediated thermal and photoemission behaviors in plasmonic structures, which is of great importance in designing functional plasmonic devices. PMID:26728439

  9. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination.

    PubMed

    Bhosale, J S; Moore, J E; Wang, X; Bermel, P; Lundstrom, M S

    2016-01-01

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell. PMID:26827306

  10. Steady-state photoluminescent excitation characterization of semiconductor carrier recombination

    NASA Astrophysics Data System (ADS)

    Bhosale, J. S.; Moore, J. E.; Wang, X.; Bermel, P.; Lundstrom, M. S.

    2016-01-01

    Photoluminescence excitation spectroscopy is a contactless characterization technique that can provide valuable information about the surface and bulk recombination parameters of a semiconductor device, distinct from other sorts of photoluminescent measurements. For this technique, a temperature-tuned light emitting diode (LED) has several advantages over other light sources. The large radiation density offered by LEDs from near-infrared to ultraviolet region at a low cost enables efficient and fast photoluminescence measurements. A simple and inexpensive LED-based setup facilitates measurement of surface recombination velocity and bulk Shockley-Read-Hall lifetime, which are key parameters to assess device performance. Under the right conditions, this technique can also provide a contactless way to measure the external quantum efficiency of a solar cell.

  11. Origin of the Avalanche-Like Photoluminescence from Metallic Nanowires

    NASA Astrophysics Data System (ADS)

    Ma, Zongwei; Yu, Ying; Shen, Shaoxin; Dai, Hongwei; Yao, Linhua; Han, Yibo; Wang, Xia; Han, Jun-Bo; Li, Liang

    2016-01-01

    Surface plasmonic systems provide extremely efficient ways to modulate light-matter interaction in photon emission, light harvesting, energy conversion and transferring, etc. Various surface plasmon enhanced luminescent behaviors have been observed and investigated in these systems. But the origin of an avalanche-like photoluminescence, which was firstly reported in 2007 from Au and subsequently from Ag nanowire arrays/monomers, is still not clear. Here we show, based on systematic investigations including the excitation power/time related photoluminescent measurements as well as calculations, that this avalanche-like photoluminescence is in fact a result of surface plasmon assisted thermal radiation. Nearly all of the related observations could be perfectly interpreted with this concept. Our finding is crucial for understanding the surface plasmon mediated thermal and photoemission behaviors in plasmonic structures, which is of great importance in designing functional plasmonic devices.

  12. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs.

    PubMed

    Zhang, Feng; Feng, Xiaoting; Zhang, Yi; Yan, Lingpeng; Yang, Yongzhen; Liu, Xuguang

    2016-04-28

    Photoluminescent organosilane-functionalized carbon quantum dots (CQDs), 3.0-3.5 nm in diameter, were synthesized via a facile hydrothermal method using citric acid monohydrate as a precursor and N-(3-(trimethoxysilyl) propyl) ethylenediamine as a coordinating and passivation agent. The optical properties of the as-obtained CQDs were investigated in detail. The CQD aqueous solution emits bright blue-white light under ultraviolet (UV) illumination with a quantum yield of 57.3% and high red-green-blue (RGB) spectral composition of 60.1%, and in particular the CQDs exhibit excitation-independent photoluminescence. The CQDs have a narrow size distribution around 3.1 nm and good film-forming ability through simple heat-treatment. By virtue of these excellent optical characteristics and good film-forming ability, a white light-emitting device (LED) was fabricated by combining a UV-LED chip with a single CQD phosphor film, which exhibited cool white light with a CIE coordinate of (0.31, 0.36), a color rendering index of 84 and a correlated color temperature of 6282 K. In addition, the white LED exhibits good optical stability under various working currents and for different working time intervals. Moreover, the interaction between the carbogenic core and surface groups was discussed using the DMol(3) program based on density functional theory. This research suggests the great potential of CQDs for solid-state lighting systems and reveals the effect of the surface state on the photoluminescent mechanism of CQDs. PMID:27049931

  13. Photoluminescent carbon quantum dots as a directly film-forming phosphor towards white LEDs

    NASA Astrophysics Data System (ADS)

    Zhang, Feng; Feng, Xiaoting; Zhang, Yi; Yan, Lingpeng; Yang, Yongzhen; Liu, Xuguang

    2016-04-01

    Photoluminescent organosilane-functionalized carbon quantum dots (CQDs), 3.0-3.5 nm in diameter, were synthesized via a facile hydrothermal method using citric acid monohydrate as a precursor and N-(3-(trimethoxysilyl) propyl) ethylenediamine as a coordinating and passivation agent. The optical properties of the as-obtained CQDs were investigated in detail. The CQD aqueous solution emits bright blue-white light under ultraviolet (UV) illumination with a quantum yield of 57.3% and high red-green-blue (RGB) spectral composition of 60.1%, and in particular the CQDs exhibit excitation-independent photoluminescence. The CQDs have a narrow size distribution around 3.1 nm and good film-forming ability through simple heat-treatment. By virtue of these excellent optical characteristics and good film-forming ability, a white light-emitting device (LED) was fabricated by combining a UV-LED chip with a single CQD phosphor film, which exhibited cool white light with a CIE coordinate of (0.31, 0.36), a color rendering index of 84 and a correlated color temperature of 6282 K. In addition, the white LED exhibits good optical stability under various working currents and for different working time intervals. Moreover, the interaction between the carbogenic core and surface groups was discussed using the DMol3 program based on density functional theory. This research suggests the great potential of CQDs for solid-state lighting systems and reveals the effect of the surface state on the photoluminescent mechanism of CQDs.

  14. Polyethylenimine-capped silver nanoclusters as a fluorescence probe for highly sensitive detection of folic acid through a two-step electron-transfer process.

    PubMed

    Zhang, Jian Rong; Wang, Zhong Ling; Qu, Fei; Luo, Hong Qun; Li, Nian Bing

    2014-07-16

    A highly sensitive folic acid (FA) detection method based on the fluorescence quenching of polyethylenimine-capped silver nanoclusters (PEI-AgNCs) was put forward. In the sensing system, FA and PEI-AgNCs were brought into close proximity to each other by electrostatic interaction, and a two-step electron-transfer process, in which the electron was transferred from FA to AgNCs through PEI molecule, led to fluorescence quenching. The fluorescence quenching efficiency of PEI-AgNCs was linearly related to the concentration of FA over the range from 0.1 nM to 2.75 μM. Good linear correlation (R(2) = 0.9981) and a detection limit of 0.032 nM were obtained under optimum conditions. Moreover, the proposed method was used for the determination of FA in real samples with satisfactory results, and those coexistent substances could not cause any significant decrease in the fluorescence intensity of AgNCs. Therefore, the proposed research system is of practical significance and application prospects. PMID:24972143

  15. Triacontanol and jasmonic acid differentially modulate the lipid organization as evidenced by the fluorescent probe behavior and 31P nuclear magnetic resonance shifts in model membranes.

    PubMed

    Sivakumar Swamy, G; Swamy, Sivakumar G; Ramanarayan, K; Inamdar, Laxmi S; Inamdar, Sanjeev R

    2009-04-01

    Fluorescence resonance energy transfer (FRET), time-resolved fluorescence and anisotropy decays were determined in large unilamellar vesicles (LUVs) of egg phosphatidylcholine with the FRET pair N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dipalmitoyl-sn-glycero-3-phospho-ethanolamine as donor and lissamine rhodamine B 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine as acceptor, using 2-ps pulses from a Ti:sapphire laser on LUVs with incorporated plant growth regulators: triacontanol (TRIA) and jasmonic acid (JA). FRET efficiency, energy transfer rate, rotation correlation time, microviscosity, and diffusion coefficient of lateral diffusion of lipids were calculated from these results. It was observed that TRIA and JA differentially modulated all parameters studied. The effect of JA in such modulations was always partially reversed by TRIA. Also, the generalized polarization of laurdan fluorescence indicated that JA enhances the degree of hydration in lipid bilayers to a larger extent than does TRIA. Solid-state (31)P magic-angle spinning nuclear magnetic resonance spectra of LUVs showed two chemical shifts, at 0.009 and -11.988 ppm, at low temperatures (20 degrees C), while at increasing temperatures (20-60 degrees C) only one (at -11.988 ppm) was prominent and the other (0.009 ppm) gradually became obscure. However, LUVs with TRIA exhibited only one of the shifts at 0.353 ppm even at lower temperatures and JA did not affect the chemical shifts. PMID:19418089

  16. Hydrodynamic ultrasonic probe

    DOEpatents

    Day, Robert A.; Conti, Armond E.

    1980-01-01

    An improved probe for in-service ultrasonic inspection of long lengths of a workpiece, such as small diameter tubing from the interior. The improved probe utilizes a conventional transducer or transducers configured to inspect the tubing for flaws and/or wall thickness variations. The probe utilizes a hydraulic technique, in place of the conventional mechanical guides or bushings, which allows the probe to move rectilinearly or rotationally while preventing cocking thereof in the tube and provides damping vibration of the probe. The probe thus has lower friction and higher inspection speed than presently known probes.

  17. Probing the roles of Ca(2+) and Mg(2+) in humic acids-induced ultrafiltration membrane fouling using an integrated approach.

    PubMed

    Wang, Long-Fei; He, Dong-Qin; Chen, Wei; Yu, Han-Qing

    2015-09-15

    Membrane fouling induced by natural organic matter (NOM) negatively affects the performance of ultrafiltration (UF) technology in producing drinking water. Divalent cation is found to be an important factor that affects the NOM-induced membrane fouling process. In this work, attenuated total reflection-Fourier transformation infrared spectroscopy (ATR-FTIR) coupled with quartz crystal microbalance (QCM), assisted by isothermal titration calorimetry (ITC), is used to explore the contribution of Mg(2+) and Ca(2+), the two abundant divalent cations in natural water, to the UF membrane fouling caused by humic acid (HA) at a molecular level. The results show that Ca(2+) exhibited superior performance in accelerating fouling compared to Mg(2+). The hydrophobic polyethersulfone (PES) membrane exhibited greater complexation with HA in the presence of Mg(2+) and Ca(2+), compared to the hydrophilic cellulose membrane, as evidenced by the more intense polysaccharide C-O, aromatic C=C and carboxylic C=O bands in the FTIR spectra. The QCM and ITC measurements provide quantitative evidence to support that Ca(2+) was more effective than Mg(2+) in binding with HA and accumulating foulants on the membrane surfaces. The higher charge neutralization capacity and more favorable binding ability of Ca(2+) were found to be responsible for its greater contribution to the NOM-induced membrane fouling than Mg(2+). This work offers a new insight into the mechanism of cation-mediated NOM-induced membrane fouling process, and demonstrates that such an integrated ATR-FTIR/QCM/ITC approach could be a useful tool to explore other complicated interaction processes in natural and engineered environments. PMID:26094086

  18. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein-Protein Interactions.

    PubMed

    Gutierrez, Craig B; Yu, Clinton; Novitsky, Eric J; Huszagh, Alexander S; Rychnovsky, Scott D; Huang, Lan

    2016-08-16

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein-protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MS(n)). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MS(n). Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  19. Developing an Acidic Residue Reactive and Sulfoxide-Containing MS-Cleavable Homobifunctional Cross-Linker for Probing Protein–Protein Interactions

    PubMed Central

    2016-01-01

    Cross-linking mass spectrometry (XL-MS) has become a powerful strategy for defining protein–protein interactions and elucidating architectures of large protein complexes. However, one of the inherent challenges in MS analysis of cross-linked peptides is their unambiguous identification. To facilitate this process, we have previously developed a series of amine-reactive sulfoxide-containing MS-cleavable cross-linkers. These MS-cleavable reagents have allowed us to establish a common robust XL-MS workflow that enables fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MSn). Although amine-reactive reagents targeting lysine residues have been successful, it remains difficult to characterize protein interaction interfaces with little or no lysine residues. To expand the coverage of protein interaction regions, we present here the development of a new acidic residue-targeting sulfoxide-containing MS-cleavable homobifunctional cross-linker, dihydrazide sulfoxide (DHSO). We demonstrate that DHSO cross-linked peptides display the same predictable and characteristic fragmentation pattern during collision induced dissociation as amine-reactive sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MSn. Additionally, we show that DHSO can provide complementary data to amine-reactive reagents. Collectively, this work not only enlarges the range of the application of XL-MS approaches but also further demonstrates the robustness and applicability of sulfoxide-based MS-cleavability in conjunction with various cross-linking chemistries. PMID:27417384

  20. Production rate estimation of mycosporine-like amino acids in two Arctic melt ponds by stable isotope probing with NAH(13) CO3.

    PubMed

    Ha, Sun-Yong; Min, Jun-Oh; Joo, Hyun Min; Chung, Kyung Ho; Shin, Kyung-Hoon; Yang, EunJin; Kang, Sung-Ho

    2014-10-01

    The net carbon uptake rate and net production rate of mycosporine-like amino acids (MAAs) were measured in phytoplankton from 2 different melt ponds (MPs; closed and open type pond) in the western Arctic Ocean using a (13) C stable isotope tracer technique. The Research Vessel Araon visited ice-covered western-central basins situated at 82°N and 173°E in the summer of 2012, when Arctic sea ice declined to a record minimum. The average net carbon uptake rate of the phytoplankton in polycarbonate (PC) bottles in the closed MP was 3.24 mg C · m(-3) · h(-1) (SD = ±1.12 mg C · m(-3) · h(-1) ), while that in the open MP was 1.3 mg C · m(-3) · h(-1) (SD = ±0.05 mg C · m(-3) · h(-1) ). The net production rate of total MAAs in incubated PC bottles was highest (1.44 (SD = ±0.24) ng C · L(-1) · h(-1) ) in the open MP and lowest (0.05 (SD = ±0.003) ng C · L(-1) · h(-1) ) in the closed MP. The net production rate of shinorine and palythine in incubated PC bottles at the open MP presented significantly high values 0.76 (SD = ±0.12) ng C · L(-1) · h(-1) and 0.53 (SD = ±0.06) ng C · L(-1) · h(-1) . Our results showed that high net production rate of MAAs in the open MP was enhanced by a combination of osmotic and UVR stress and that in situ net production rates of individual MAA can be determined using (13) C tracer in MPs in Arctic sea ice. PMID:26988644

  1. Low-temperature photoluminescence studies of mercuric-iodide photodetectors

    NASA Astrophysics Data System (ADS)

    James, R. B.; Bao, X. J.; Schlesinger, T. E.; Markakis, J. M.; Cheng, A. Y.; Ortale, C.

    1989-09-01

    Mercuric-iodide (HgI2 ) photodetectors with sputtered indium-tin-oxide (ITO) entrance electrodes were studied using low-temperature photoluminescence spectroscopy. The photoluminescence spectrum obtained on each photodetector was found to differ for points beneath the ITO contact and points adjacent to it, indicating that the contact fabrication process introduces new carrier traps and radiative recombination centers within the ITO-HgI2 interfacial region. In particular, a new broad band was observed in the spectra taken from points beneath the ITO electrode. Photocurrent-versus-position measurements showed that the intensity of this broad band was enhanced in regions having relatively poor photoresponse.

  2. Photoluminescence of nanocrystalline titanium dioxide films loaded with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Preclíková, Jana; Galář, Pavel; Trojánek, František; Rezek, Bohuslav; Němcová, Yvonne; Malý, Petr

    2011-04-01

    We report on a systematic study of the photoluminescence properties of nanocrystalline titanium dioxide films loaded with silver nanoparticles under various ambient conditions: in the temperature interval of 10 to 300 K, under different values of ambient air pressure (5 to 105 Pa), and under visible light irradiation that causes the photochromic transformation of the film. Our results enable us to follow the electron transfer from titanium dioxide into silver nanoparticles and to observe the oxidation of silver nanoparticles during the photochromic transformation. We propose a microscopic model explaining the behavior of extinction and photoluminescence of the Ag-TiO2 film under different values of ambient air pressure.

  3. Optical enhancement of photoluminescence with colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Abraham, Gabrielle; French, David A.; Bajwa, Pooja; Heyes, Colin D.; Herzog, Joseph B.

    2015-08-01

    This work investigates colloidal, semiconductor Cadmium Selenide (CdSe) QDs with optical spectroscopy measurements. A custom-built microscope has been used for photoluminescence spectroscopy and has collected images, videos, and spectra of samples to study the effects of substrates, sample density, uniformity, and QD aging with time. This set up will be used to detect single to a few molecules, shown by fluorescent intermittency, or QD blinking. Differences in the spectrum will be noted as related to the age of samples, the density of the quantum dots, and the concentration of samples. Further experiments include the potential plasmonic enhancement of QD photoluminescence by gold nanoparticles or nanostructures.

  4. Photoluminescence limiting of colloidal PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Ullrich, B.; Xi, H.; Wang, J. S.

    2016-02-01

    The exposure of colloidal 2 nm PbS quantum dots to growing continuous wave laser excitation at 532 nm increases the photoluminescence intensity with the square root of the optical stimulus. The results herein in conjunction with previous findings [B. Ullrich and H. Xi, Opt. Lett. 38, 4698 (2013)] advocate the square root trend to be the general limiting function for photo-carrier transport and emission of optically excited nano-sized materials. We further show that the excitation of one electron-hole pair per quantum dot defines the saturation threshold for photoluminescence intensity and dynamic band filling.

  5. Coherent absorption and enhanced photoluminescence in thin layers of nanorods

    NASA Astrophysics Data System (ADS)

    Pirruccio, G.; Lozano, G.; Zhang, Y.; Rodriguez, S. R. K.; Gomes, R.; Hens, Z.; Rivas, Jaime Gómez

    2012-04-01

    We demonstrate a large light absorptance (80%) in a nanometric layer of quantum dots in rods (QRs) with a thickness of 23 nm. This behavior is explained in terms of the coherent absorption by interference of the light incident at a certain angle onto the very thin QR layer. We exploit this coherent light absorption to enhance the photoluminescent emission from the QRs. Up to a seven- and fivefold enhancement of the photoluminescence is observed for p- and s-polarized incident light, respectively.

  6. Excitation correlation photoluminescence in the presence of Shockley-Read-Hall recombination

    SciTech Connect

    Borgwardt, M.; Sippel, P.; Eichberger, R.; Semtsiv, M. P.; Masselink, W. T.; Schwarzburg, K.

    2015-06-07

    Excitation correlation photoluminescence (ECPL) measurements are often analyzed in the approximation of a cross correlation of charge carrier populations generated by the two delayed pulses. In semiconductors, this approach is valid for a linear non-radiative recombination path, but not for a non-linear recombination rate as in the general Shockley-Read-Hall recombination scenario. Here, the evolution of the ECPL signal was studied for deep trap recombination following Shockley-Read-Hall statistics. Analytic solutions can be obtained for a fast minority trapping regime and steady state recombination. For the steady state case, our results show that the quadratic radiative term plays only a minor role, and that the shape of the measured signal is mostly determined by the non-linearity of the recombination itself. We find that measurements with unbalanced intense pump and probe pulses can directly provide information about the dominant non-radiative recombination mechanism. The signal traces follow the charge carrier concentrations, despite the complex origins of the signal, thus showing that ECPL can be applied to study charge carrier dynamics in semiconductors without requiring elaborate calculations. The model is compared with measurements on a reference sample with alternating layers of InGaAs/InAlAs that were additionally cross-checked with time resolved optical pump terahertz probe measurements and found to be in excellent agreement.

  7. Transformation of 17β-estradiol in humic acid solution by ε-MnO2 nanorods as probed by high-resolution mass spectrometry combined with (13)C labeling.

    PubMed

    Sun, Kai; Liang, Shangtao; Kang, Fuxing; Gao, Yanzheng; Huang, Qingguo

    2016-07-01

    Steroidal estrogens (SEs), widespread in aquatic systems, have a potential to disrupt the endocrine system of wildlife species and humans. In our experiments, the performance of ε-MnO2 nanorods in transforming 17β-estradiol (E2) was investigated, and the effect of humic acid (HA) on the reaction behaviors was systematically characterized. Reconfiguration of humic molecules was also investigated by high-performance size exclusion chromatography (HPSEC). Results indicated that ε-MnO2 nanomaterials ensured efficient removal of E2 from the aqueous solution. The presence of HA hindered the transformation of E2, while enhanced the cross-coupling between E2 and humic molecules. In particular, we used a mixture of un-labeled E2 and (13)C3-labeled E2 at a 1: 1 set ratio (w/w) to probe the reaction products via high-resolution mass spectrometry (HRMS). The combination of HRMS and (13)C3-labeling revealed the intermediate products including estrone (E1), and hydroxylated, quinone-like, and ring-opened species, as well as E2 dimer and trimer. More importantly, possible cross-coupling products between E2 and HA were also identified. A reaction mechanism including two-electron oxidation and single-electron oxidation was proposed. The applied analytical approach using HRMS along with (13)C3-labeling for reaction-product identification is crucial to understanding the role of HA in the transformation of SEs. PMID:27086077

  8. Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor.

    PubMed

    Chen, Xiaochun; Yu, Shaoming; Yang, Liang; Wang, Jianping; Jiang, Changlong

    2016-07-14

    The instant and on-site detection of trace aqueous fluoride ions is still a challenge for environmental monitoring and protection. This work demonstrates a new analytical method and its utility of a paper sensor for visual detection of F(-) on the basis of the fluorescence resonance energy transfer (FRET) between photoluminescent graphene oxide (GO) and silver nanoparticles (AgNPs) through the formation of cyclic esters between phenylborinic acid and diol. The fluorescence of GO was quenched by the AgNPs, and trace F(-) can recover the fluorescence of the quenched photoluminescent GO. The increase in fluorescence intensity is proportional to the concentration of F(-) in the range of 0.05-0.55 nM, along with a limit of detection (LOD) as low as 9.07 pM. Following the sensing mechanism, a paper-based sensor for the visual detection of aqueous F(-) has been successfully developed. The paper sensor showed high sensitivity for aqueous F(-), and the LOD could reach as low as 0.1 μM as observed by the naked eye. The very simple and effective strategy reported here could be extended to the visual detection of a wide range of analytes in the environment by the construction of highly efficient FRET nanoprobes. PMID:27376510

  9. Biomimetic Taste Receptors with Chiral Recognition by Photoluminescent Metal-Organic Frameworks Chelated with Polyaniline Helices.

    PubMed

    Lee, Tu; Lin, Tsung Yan; Lee, Hung Lin; Chang, Yun Hsuan; Tsai, Yee Chen

    2016-01-22

    The adsorption of phenylaniline (Phe) enantiomers on (+)-polyaniline (PAN)-chelated [In(OH)(bdc)]n microcrystals was carefully designed and studied by using the Job titration, circular dichroism, X-ray photoelectron spectroscopy, and photoluminescence to mimic heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors in selective, but not specific, ligand binding with chiral recognition and signal transduction. Six essential working principles across different length scales are unraveled: 1) a chiral (+)-PAN (host), 2) specific sites for Phe-(+)/PAN (guest-host) binding, 3) a conformational change of (+)-PAN after binding with Phe enantiomers, 4) different degrees of packing for (+)-PAN, 5) interactions between (+)-PAN and the underlying signal-generating framework (i.e., [In(OH)(bdc)]n microcrystals), and 6) a systematic photoluminescent signal combination by using principal-component analysis from the other three polymer-chelated metal-organic frameworkds (MOFs), such as poly(acrylic acid) (PAA), sodium alginate (SA), and polyvinylpyrrolidone (PVP) to enhance the selectivity and discrimination capabilities. PMID:26670931

  10. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    SciTech Connect

    Han Yinfeng; Fu Lianshe; Mafra, Luis; Shi, Fa-Nian

    2012-02-15

    Three mixed europium-yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. - Graphical abstract: Three mixed europium and yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. Highlights: Black-Right-Pointing-Pointer Three (4, 8)-flu topological mixed Eu and Y MOFs were synthesized under mild conditions. Black-Right-Pointing-Pointer Metal ratios were refined by the single crystal data consistent with the EDS analysis. Black-Right-Pointing-Pointer Mixed Eu and Y MOFs show longer lifetime and higher quantum efficiency than the Eu analog. Black-Right-Pointing-Pointer Adding inert lanthanide into luminescent MOFs enlarges the field of luminescent MOFs.

  11. ‘Green’-synthesized near-infrared PbS quantum dots with silica-PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging

    NASA Astrophysics Data System (ADS)

    Wang, D.; Qian, J.; Cai, F.; He, S.; Han, S.; Mu, Y.

    2012-06-01

    In this paper, PbS semiconductor quantum dots (QDs) with near-infrared (NIR) photoluminescence were synthesized in oleic acid and paraffin liquid mixture by using an easily handled and ‘green’ approach. Surface functionalization of the QDs was accomplished with a silica and polyethylene glycol (PEG) phospholipid dual-layer coating and the excellent chemical stability of the nanoparticles is demonstrated. We then successfully applied the ultrastable PbS QDs to in vivo sentinel lymph node (SLN) mapping of mice. Histological analyses were also carried out to ensure that the intravenously injected nanoparticles did not produce any toxicity to the organism of mice. These experimental results suggested that our ultrastable NIR PbS QDs can serve as biocompatible and efficient probes for in vivo optical bioimaging and has great potentials for disease diagnosis and clinical therapies in the future.

  12. Intrinsic Photoluminescence Emission from Subdomained Graphene Quantum Dots.

    PubMed

    Yoon, Hyewon; Chang, Yun Hee; Song, Sung Ho; Lee, Eui-Sup; Jin, Sung Hwan; Park, Chanae; Lee, Jinsup; Kim, Bo Hyun; Kang, Hee Jae; Kim, Yong-Hyun; Jeon, Seokwoo

    2016-07-01

    The photoluminescence (PL) origin of bright blue emission arising from intrinsic states in graphene quantum dots (GQDs) is investigated. The bright PL of intercalatively acquired GQDs is attributed to favorably formed subdomains composed of four to seven carbon hexagons. Random and harsh oxidation which hinders the energetically favorable formation of subdomains causes weak and redshifted PL. PMID:27153519

  13. Dynamics of four-photon photoluminescence in gold nanoantennas.

    PubMed

    Biagioni, Paolo; Brida, Daniele; Huang, Jer-Shing; Kern, Johannes; Duò, Lamberto; Hecht, Bert; Finazzi, Marco; Cerullo, Giulio

    2012-06-13

    Two-pulse correlation is employed to investigate the temporal dynamics of both two-photon photoluminescence (2PPL) and four-photon photoluminescence (4PPL) in resonant and nonresonant nanoantennas excited at a wavelength of 800 nm. Both 2PPL and 4PPL data are consistent with the same two-step model already established for 2PPL, implying that the first excitation step in 4PPL is a three-photon sp → sp direct interband transition. Considering energy and parity conservation, we also explain why 4PPL behavior is favored over, for example, three- and five-photon photoluminescence in the power range below the damage threshold of our antennas. Since sizable 4PPL requires larger peak intensities of the local field, we are able to select either 2PPL or 4PPL in the same gold nanoantennas by choosing a suitable laser pulse duration. We thus provide a first consistent model for the understanding of multiphoton photoluminescence generation in gold nanoantennas, opening new perspectives for applications ranging from the characterization of plasmonic resonances to biomedical imaging. PMID:22551099

  14. Photoluminescence of spray pyrolysis deposited ZnO nanorods

    PubMed Central

    2011-01-01

    Photoluminescence of highly structured ZnO layers comprising well-shaped hexagonal rods is presented. The ZnO rods (length 500-1,000 nm, diameter 100-300 nm) were grown in air onto a preheated soda-lime glass (SGL) or ITO/SGL substrate by low-cost chemical spray pyrolysis method using zinc chloride precursor solutions and growth temperatures in the range of 450-550°C. We report the effect of the variation in deposition parameters (substrate type, growth temperature, spray rate, solvent type) on the photoluminescence properties of the spray-deposited ZnO nanorods. A dominant near band edge (NBE) emission is observed at 300 K and at 10 K. High-resolution photoluminescence measurements at 10 K reveal fine structure of the NBE band with the dominant peaks related to the bound exciton transitions. It is found that all studied technological parameters affect the excitonic photoluminescence in ZnO nanorods. PACS: 78.55.Et, 81.15.Rs, 61.46.Km PMID:21711895

  15. Photoluminescence of Zn-implanted GaN

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Hutchby, J. A.

    1974-01-01

    The photoluminescence spectrum of Zn-implanted GaN peaks at 2.87 eV at room temperature. The emission efficiency decreases linearly with the logarithm of the Zn concentration in the range from 1 x 10 to the 18th to 20 x 10 to the 18th Zn/cu cm.

  16. The photoluminescence mechanism of ultra-small gold clusters.

    PubMed

    Wu, Liangliang; Fang, Weihai; Chen, Xuebo

    2016-07-14

    The understanding of the photoluminescence mechanism of ultra-small gold clusters has seriously lagged behind a wealth of experimental syntheses and optical characterization. Multi-configurational quantum chemical calculations disclose that the optical properties of these clusters are predominantly regulated by the number of diamagnetic electrons and the topological features formed by aurophilic interactions. PMID:27306561

  17. Probing local coordination and oxidation state of uranium in ThO2: U nanostructured

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Pathak, N.; Kadam, R. M.

    2015-12-01

    Uranium doped thorium oxide nanoparticle (UDT) was synthesized using citric acid assisted combustion method. The concentration of uranium was varied from 0.5 to 5.0 mol % to investigate the effect of doping concentration on its optical properties. The synthesised UDT powder were characterized systematically using X-ray diffraction (XRD), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) respectively for phase purity, morphology and crystallinity. Pertaining to nuclear industry, UDT is an important material and investigating the local structure of uranium in UDT is interesting as well as challenging because of complexity involved in synthesis of such ceramic powder. We have used time resolved photoluminescence spectroscopy (TRPLS) to probe the local coordination and oxidation state of uranium in UDT. Based on PL emission spectroscopy it was confirmed that uranium stabilizes as UO22+ ion in UDT. Lifetime spectroscopy shows that uranyl ion is not homogenously distributed in UDT lattice; rather it has two different chemical environments. Effect of concentration on PL behaviour shows that, concentration quenching takes place beyond 2.0 mol %; and based on critical distance calculation multipolar interaction was found to be responsible for such non-radiative quenching. As far as application in luminescence industry is concerned PL measurement shows that UDT gives intense green emission under UV excitation.

  18. Sensitive fluorescence response of ZnSe(S) quantum dots: an efficient fluorescence probe

    NASA Astrophysics Data System (ADS)

    Saikia, K.; Deb, P.; Kalita, E.

    2013-06-01

    An efficient fluorescence probe based on ZnSe(S) alloyed quantum dots (QDs) has been reported here. The alloyed QDs were prepared through an aqueous route, where 3-mercaptopropionic acid (MPA) was employed as the effective precursor for both the sulfur source and stabilizer in the development of the alloyed system. Five-fold quantum yield (QY) enhancement was obtained for the ZnSe(S) QDs compared to the ZnSe QDs, formed in the initial stage of the refluxing process. The ultimate alloyed systems retained their high biocompatibility characteristics similar to the conventional ZnSe QDs. The photoluminescence of the ZnSe(S) QDs showed pH dependence, which was also evidenced in mammalian lymphocyte cells suspended in biological buffer over a wide pH range of 4.00-12.00. These characteristics make our prepared ZnSe(S) an efficient system for development of cell tracking, monitoring and sensing intracellular nanoprobes and devices.

  19. Facile synthesis and photoluminescence of near-infrared-emitting CdTe(x)Se(1-x) and CdTe(x)Se(1-x)/Cd(y)Zn(-1-y)S quantum dots.

    PubMed

    Zhang, Ruili; Wang, Jianrong; Yang, Ping

    2014-03-01

    High-quality colloidal photoluminescent (PL) CdTe(x)Se(1-x) quantum dots (QDs) with gradient distribution of components, consisting of Te-rich inner cores and Se-rich outer shells, were synthesized via a facile organic method using stearic acid as a capping agent. The transmission electron microscopy observation and X-ray diffraction analysis indicated that the CdTe(x)Se(1-x) QDs revealed a "dot" shaped morphology and exhibited a zinc-blende structure which located between those of bulk CdTe and CdSe (with the lattice parameters between those of bulk CdTe and CdSe). The ternary CdTe(x)Se(1-x) QDs were emitting in the red to near-infrared (NIR) range. In order to enhance the PL properties and reduce the sensitivity to oxidation of CdTe-based QDs, the CdTe(x)Se(1-x) QDs were coated with Cd(y)Zn(1-y)S multishells by using different growth kinetics of CdS and ZnS. The coated QDs exhibited a controlled red shift of PL compared with the initial CdTe(x)Se(1-x) cores and revealed much improved PL intensity. Because of thier tunable emission from red to NIR, these composite QDs open new possibilities in band gap engineering and in developing NIR fluorescent probes for biological imaging and detection. PMID:24745260

  20. Laser excited novel near-infrared photoluminescence bands in fast neutron-irradiated MgO·nAl2O3

    NASA Astrophysics Data System (ADS)

    Rahman, Abu Zayed Mohammad Saliqur; Haseeb, A. S. M. A.; Xu, Qiu; Evslin, Jarah; Cinausero, Marco

    2016-08-01

    New near-infrared photoluminescence bands were observed in neutron-irradiated spinel single crystal upon excitation by a 532 nm laser. The surface morphology of the unirradiated and fast neutron-irradiated samples was investigated using atomic force microscopy and scanning probe microscopy. Fast neutron-irradiated samples show a strong emission peak at 1685 nm along with weak bands at 1065 and 2365 nm. The temperature dependence of the photoluminescence intensity was also measured. At lower temperatures, the dominant peak at 1685 nm shifts toward lower energy whereas the other peaks remain fixed. Activation energies of luminescence quenching were estimated to be 5.7 and 54.6 meV for the lower and higher temperature regions respectively.

  1. Photoluminescence of Sequential Infiltration Synthesized ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Ocola, Leonidas; Gosztola, David; Yanguas-Gil, Angel; Connolly, Aine

    We have investigated a variation of atomic layer deposition (ALD), called sequential infiltration synthesis (SiS), as an alternate method to incorporate ZnO and other oxides inside polymethylmethacrylate (PMMA) and other polymers. Energy dispersive spectroscopy (EDS) results show that we synthesize ZnO up to 300 nm inside a PMMA film. Photoluminescence data on a PMMA film shows that we achieve a factor of 400X increase in photoluminescence (PL) intensity when comparing a blank Si sample and a 270 nm thick PMMA film, where both were treated with the same 12 alternating cycles of H2O and diethyl zinc (DEZ). PMMA is a well-known ebeam resist. We can expose and develop patterns useful for photonics or sensing applications first, and then convert them afterwards into a hybrid polymer-oxide material. We show that patterning does indeed affect the photoluminescence signature of native ZnO. We demonstrate we can track the growth of the ZnO inside the PMMA polymer using both photoluminescence and Raman spectroscopy and determine the point in the process where ZnO is first photoluminescent and also at which point ZnO first exhibits long range order in the polymer. This work was supported by the Department of Energy under Contract No. DE-AC02-06CH11357. Use of the Center for Nanoscale Materials was supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

  2. Photoluminescence as a tool for characterizing point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Reshchikov, Michael

    2012-02-01

    Photoluminescence is one of the most powerful tools used to study optically-active point defects in semiconductors, especially in wide-bandgap materials. Gallium nitride (GaN) and zinc oxide (ZnO) have attracted considerable attention in the last two decades due to their prospects in optoelectronics applications, including blue and ultraviolet light-emitting devices. However, in spite of many years of extensive studies and a great number of publications on photoluminescence from GaN and ZnO, only a few defect-related luminescence bands are reliably identified. Among them are the Zn-related blue band in GaN, Cu-related green band and Li-related orange band in ZnO. Numerous suggestions for the identification of other luminescence bands, such as the yellow band in GaN, or green and yellow bands in ZnO, do not stand up under scrutiny. In these conditions, it is important to classify the defect-related luminescence bands and find their unique characteristics. In this presentation, we will review the origin of the major luminescence bands in GaN and ZnO. Through simulations of the temperature and excitation intensity dependences of photoluminescence and by employing phenomenological models we are able to obtain important characteristics of point defects such as carrier capture cross-sections for defects, concentrations of defects, and their charge states. These models are also used to find the absolute internal quantum efficiency of photoluminescence and obtain information about nonradiative defects. Results from photoluminescence measurements will be compared with results of the first-principle calculations, as well as with the experimental data obtained by other techniques such as positron annihilation spectroscopy, deep-level transient spectroscopy, and secondary ion mass spectrometry.

  3. A family of uranyl-aromatic dicarboxylate (pht-, ipa-, tpa-) framework hybrid materials: photoluminescence, surface photovoltage and dye adsorption.

    PubMed

    Gao, Xue; Wang, Che; Shi, Zhong-Feng; Song, Jian; Bai, Feng-Ying; Wang, Ji-Xiao; Xing, Yong-Heng

    2015-07-01

    Four uranyl complexes [(UO2)(pht)H2O]·H2O (pht = phthalic acid) (1), (UO2)2(Hipa)4(H2O)2 (Hipa = isophthalic acid) (2), (UO2)(tpa)(DMF)2 (tpa = terephthalic acid) (3) and (UO2)(box)2 (box = benzoic acid) (4) were synthesized by the reaction of UO2(CH3COO)2·2H2O as the metal source and phthalic acid, isophthalic acid, terephthalic acid or benzoic acid as the ligand. They were characterized by elemental analyses, IR, UV-Vis, XRD, single crystal X-ray diffraction analysis and thermal gravimetric analysis. The structural analysis reveals that complex 1 exhibits a one-dimensional chain structure constructed by the building unit [(UO2)2(pht)4(H2O)2] and further extends the chain into a 2D supramolecular architecture by hydrogen bonding interactions. Complex 2 is a discrete [(UO2)2(Hipa)4(H2O)2] structure, and by the hydrogen bonding interaction, forms a 3D supramolecular structure. In complexes 3 and 4, adjacent uranyl polyhedra form a 1D chain through bridging terephthalic acid and benzoic acid, respectively. In order to extend their functional properties, their photoluminescence, surface photovoltage and dye adsorption properties have been studied. PMID:26038888

  4. High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios.

    PubMed

    Wang, Junqing; Zhang, Pengfei; Huang, Chao; Liu, Gang; Leung, Ken Cham-Fai; Wáng, Yì Xiáng J

    2015-07-28

    Photoluminescent carbon dots (CDs) have received ever-increasing attention in the application of optical bioimaging because of their low toxicity, tunable fluorescent properties, and ultracompact size. We report for the first time on enhanced photoluminescence (PL) performance influenced by structure effects among the various types of nitrogen doped (N-doped) PL CDs. These CDs were facilely synthesized from condensation carbonization of linear polyethylenic amine (PEA) analogues and citric acid (CA) of different ratios. Detailed structural and property studies demonstrated that either the structures or the molar ratio of PEAs altered the PL properties of the CDs. The content of conjugated π-domains with C═N in the carbon backbone was correlated with their PL Quantum Yield (QY) (up to 69%). The hybridization between the surface/molecule state and the carbon backbone synergistically affected the chemical/physical properties. Also, long-chain polyethylenic amine (PEA) molecule-doped CDs exhibit increasing photostability, but at the expense of PL efficiency, proving that the PL emission of high QY CDs arise not only from the sp(2)/sp(3) carbon core and surface passivation of CDs, but also from the molecular fluorophores integrated in the CDs. In vitro and in vivo bioimaging of these N-doped CDs showed strong photoluminescence signals. Good biocompatibility demonstrates their potential feasibility for bioimaging applications. In addition, the overall size profile of the as-prepared CDs is comparable to the average size of capillary pores in normal living tissues (∼5 nm). Our study provides valuable insights into the effects of the PEA doping ratios on photoluminescence efficiency, biocompatibility, cellular uptake, and optical bioimaging of CDs. PMID:26135003

  5. Towards enhanced ligand-centred photoluminescence in inorganic-organic frameworks for solid state lighting.

    PubMed

    Furman, Joshua D; Melot, Brent C; Teat, Simon J; Mikhailovsky, Alexander A; Cheetham, Anthony K

    2011-05-01

    Three novel inorganic-organic framework compounds containing the organic chromophore ligand 9-fluorenone-2,7-dicarboxylic acid (abbreviated H(2)FDC) and barium (BaFDC), cadmium (CdFDC) and manganese (MnFDC), respectively, have been synthesized and evaluated for their use as phosphor materials for solid state lighting and other applications. The results are compared with two earlier reported structures containing the same ligand with calcium (CaFDC) and strontium (SrFDC). The barium- and cadmium-containing compounds both show blue excited, yellow photoluminescence, while the manganese structure does not. The trends in luminescent efficiency for the Ba, Cd, Ca, and Sr derivatives are discussed in relation to crystallographic, optical, and low-temperature specific heat considerations. PMID:21109862

  6. Towards enhanced ligand-centred photoluminescence in inorganic-organic frameworks for solid state lighting

    SciTech Connect

    Furman, Joshua D; Melot, Brent C; Teat, Simon J; Mikhailovsky, Alexander A; Cheetham, Anthony K

    2011-11-17

    Three novel inorganic-organic framework compounds containing the organic chromophore ligand 9-fluorenone-2,7-dicarboxylic acid (abbreviated H2FDC) and barium (BaFDC), cadmium (CdFDC) and manganese (MnFDC), respectively, have been synthesized and evaluated for their use as phosphor materials for solid state lighting and other applications. The results are compared with two earlier reported structures containing the same ligand with calcium (CaFDC) and strontium (SrFDC). The barium- and cadmium-containing compounds both show blue excited, yellow photoluminescence, while the manganese structure does not. The trends in luminescent efficiency for the Ba, Cd, Ca, and Sr derivatives are discussed in relation to crystallographic, optical, and low-temperature specific heat considerations.

  7. Use of a fiber optic probe for organic species determination

    DOEpatents

    Ekechukwu, Amy A.

    1996-01-01

    A fiber optic probe for remotely detecting the presence and concentration organic species in aqueous solutions. The probe includes a cylindrical housing with an organic species indicator, preferably diaminonaphthyl sulfonic acid adsorbed in a silica gel (DANS-modified gel), contained in the probe's distal end. The probe admits aqueous solutions to the probe interior for mixing within the DANS-modified gel. An optical fiber transmits light through the DANS-modified gel while the indicator reacts with organic species present in the solution, thereby shifting the location of the fluorescent peak. The altered light is reflected to a receiving fiber that carries the light to a spectrophotometer or other analysis device.

  8. Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes

    PubMed Central

    Shieh, Peyton; Siegrist, M. Sloan; Cullen, Andrew J.; Bertozzi, Carolyn R.

    2014-01-01

    Fluorescent probes designed for activation by bioorthogonal chemistry have enabled the visualization of biomolecules in living systems. Such activatable probes with near-infrared (NIR) emission would be ideal for in vivo imaging but have proven difficult to engineer. We present the development of NIR fluorogenic azide probes based on the Si-rhodamine scaffold that undergo a fluorescence enhancement of up to 48-fold upon reaction with terminal or strained alkynes. We used the probes for mammalian cell surface imaging and, in conjunction with a new class of cyclooctyne d-amino acids, for visualization of bacterial peptidoglycan without the need to wash away unreacted probe. PMID:24706769

  9. Galileo Probe Battery System

    NASA Technical Reports Server (NTRS)

    Dagarin, B. P.; Taenaka, R. K.; Stofel, E. J.

    1997-01-01

    The conclusions of the Galileo probe battery system are: the battery performance met mission requirements with margin; extensive ground-based and flight tests of batteries prior to probe separation from orbiter provided good prediction of actual entry performance at Jupiter; and the Li-SO2 battery was an important choice for the probe's main power.

  10. Heat pipe cooled probe

    NASA Technical Reports Server (NTRS)

    Camarda, C. J. (Inventor); Couch, L. M.

    1984-01-01

    The basic heat pipe principle is employed to provide a self-contained passively cooled probe that may be placed into a high temperature environment. The probe consists of an evaporator region of a heat pipe and a sensing instrument. Heat is absorbed as the working fluid evaporates in the probe. The vapor is transported to the vapor space of the condenser region. Heat is dissipated from the condenser region and fins causing condensation of the working fluid, which returns to the probe by gravity and the capillary action of the wick. Working fluid, wick and condenser configurations and structure materials can be selected to maintain the probe within an acceptable temperature range.

  11. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, Shimon; Chemla, Daniel S.; Ogletree, D. Frank; Botkin, David

    1995-01-01

    An ultrafast scanning probe microscopy method for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample.

  12. Traversing probe system

    DOEpatents

    Mashburn, Douglas N.; Stevens, Richard H.; Woodall, Harold C.

    1977-01-01

    This invention comprises a rotatable annular probe-positioner which carries at least one radially disposed sensing probe, such as a Pitot tube having a right-angled tip. The positioner can be coaxially and rotatably mounted within a compressor casing or the like and then actuated to orient the sensing probe as required to make measurements at selected stations in the annulus between the positioner and compressor casing. The positioner can be actuated to (a) selectively move the probe along its own axis, (b) adjust the yaw angle of the right-angled probe tip, and (c) revolve the probe about the axis common to the positioner and casing. A cam plate engages a cam-follower portion of the probe and normally rotates with the positioner. The positioner includes a first-motor-driven ring gear which effects slidable movement of the probe by rotating the positioner at a time when an external pneumatic cylinder is actuated to engage the cam plate and hold it stationary. When the pneumatic cylinder is not actuated, this ring gear can be driven to revolve the positioner and thus the probe to a desired circumferential location about the above-mentioned common axis. A second motor-driven ring gear included in the positioner can be driven to rotate the probe about its axis, thus adjusting the yaw angle of the probe tip. The positioner can be used in highly corrosive atmosphere, such as gaseous uranium hexafluoride.

  13. Ultrafast scanning probe microscopy

    DOEpatents

    Weiss, S.; Chemla, D.S.; Ogletree, D.F.; Botkin, D.

    1995-05-16

    An ultrafast scanning probe microscopy method is described for achieving subpicosecond-temporal resolution and submicron-spatial resolution of an observation sample. In one embodiment of the present claimed invention, a single short optical pulse is generated and is split into first and second pulses. One of the pulses is delayed using variable time delay means. The first pulse is then directed at an observation sample located proximate to the probe of a scanning probe microscope. The scanning probe microscope produces probe-sample signals indicative of the response of the probe to characteristics of the sample. The second pulse is used to modulate the probe of the scanning probe microscope. The time delay between the first and second pulses is then varied. The probe-sample response signal is recorded at each of the various time delays created between the first and second pulses. The probe-sample response signal is then plotted as a function of time delay to produce a cross-correlation of the probe sample response. In so doing, the present invention provides simultaneous subpicosecond-temporal resolution and submicron-spatial resolution of the sample. 6 Figs.

  14. Electrical resistivity probes

    DOEpatents

    Lee, Ki Ha; Becker, Alex; Faybishenko, Boris A.; Solbau, Ray D.

    2003-10-21

    A miniaturized electrical resistivity (ER) probe based on a known current-voltage (I-V) electrode structure, the Wenner array, is designed for local (point) measurement. A pair of voltage measuring electrodes are positioned between a pair of current carrying electrodes. The electrodes are typically about 1 cm long, separated by 1 cm, so the probe is only about 1 inch long. The electrodes are mounted to a rigid tube with electrical wires in the tube and a sand bag may be placed around the electrodes to protect the electrodes. The probes can be positioned in a borehole or on the surface. The electrodes make contact with the surrounding medium. In a dual mode system, individual probes of a plurality of spaced probes can be used to measure local resistance, i.e. point measurements, but the system can select different probes to make interval measurements between probes and between boreholes.

  15. Correlations between mercuric iodide photoluminescence spectra and nuclear detector performance

    NASA Astrophysics Data System (ADS)

    Bao, X. J.; Schlesinger, T. E.; James, R. B.; Harvey, S. J.; Cheng, A. Y.; Gerrish, V.; Ortale, C.

    1992-06-01

    Low temperature photoluminescence spectroscopy was performed on a variety of HgI 2 samples and also on graded HgI 2 nuclear detectors. Correlations were found between features in the photoluminescence spectra and a crystal's ability to produce high-quality detectors. The intensity of a broad emission band centered at 6200 Å (designated as band 3) is weaker in crystals that yield high-quality detectors. Therefore, the defects responsible for this emission band are undesirable in the fabrication of HgI 2 nuclear detectors. The measurements also revealed that stronger emission in the exciton region (designated as band 1) is associated with crystals which produce high-quality detectors, indicating that a high degree of structural perfection is important for HgI 2 detector applications. These correlations, together with earlier results from studies of processing-induced defects, lead to suggestions regarding improvement of the manufacturing yield of high-quality HgI 2 detectors.

  16. Photoluminescence Imaging Characterization of Thin-Film InP

    SciTech Connect

    Johnston, Steve; Allende Motz, Alyssa; Moore, James; Zheng, Maxwell; Javey, Ali; Bermel, Peter

    2015-06-14

    Indium phosphide grown using a novel vapor-liquid-solid method is a promising low-cost material for III-V single-junction photovoltaics. In this work, we characterize the properties of these materials using photoluminescence (PL) imaging, time-resolved photoluminescence (TRPL), and microwave-reflection photoconductive decay (u-PCD). PL image data clearly shows the emergence of a self-similar dendritic growth network from nucleation sites, while zoomed-in images show grain structure and grain boundaries. Single photon TRPL data shows initial surface-dominated recombination, while two-photon excitation TRPL shows a lifetime of 10 ns. Bulk carrier lifetime may be as long as 35 ns as measured by u-PCD, which can be less sensitive to surface recombination.

  17. Photoluminescence quenching in films of conjugated polymers by electrochemical doping

    NASA Astrophysics Data System (ADS)

    van Reenen, S.; Vitorino, M. V.; Meskers, S. C. J.; Janssen, R. A. J.; Kemerink, M.

    2014-05-01

    An important loss mechanism in organic electroluminescent devices is exciton quenching by polarons. Gradual electrochemical doping of various conjugated polymer films enabled the determination of the doping density dependence of photoluminescence quenching. Electrochemical doping was achieved by contacting the film with a solid electrochemical gate and an injecting contact. A sharp reduction in photoluminescence was observed for doping densities between 1018 and 1019 cm-3. The doping density dependence is quantitatively modeled by exciton diffusion in a homogeneous density of polarons followed by either Förster resonance energy transfer or charge transfer. Both mechanisms need to be considered to describe polaron-induced exciton quenching. Thus, to reduce exciton-polaron quenching in organic optoelectronic devices, both mechanisms must be prevented by reducing the exciton diffusion, the spectral overlap, the doping density, or a combination thereof.

  18. Photoluminescence and optical transmission of diffusion-pump oils.

    NASA Technical Reports Server (NTRS)

    Kroes, R. L.

    1973-01-01

    The photoluminescence and optical transmission of the four widely used diffusion-pump oils, DC-705, DC-704, Convalex-10, and Convoil-20, were measured. Each of the oils was found to be transparent throughout the visible region, showed some absorption in the near-UV region, and became very opaque below approximately 300 nm. Both Convalex-10 and Convoil-20 turned yellow after exposure to UV light. No such change was noted in DC-705 or DC-704. Photoluminescence was produced in each of the four oils when irradiated with UV light. Both DC-705 and DC-704 had a nearly identical luminescence spectra that peaked at 350 nm. The spectra of Convalex-10 and Convoil-20 were fairly complex, with several peaks in the visible region.

  19. Spatially resolved micro-photoluminescence imaging of porphyrin single crystals

    NASA Astrophysics Data System (ADS)

    Marin, Dawn M.; Castaneda, Jose; Kaushal, Meesha; Kaouk, Ghallia; Jones, Daniel S.; Walter, Michael G.

    2016-08-01

    We describe the collection of both time-resolved and steady-state micro-photoluminescence data from solution-grown single crystals of 5,15-bis(4-carbomethoxyphenyl)porphyrin (BCM2PP). Linking molecular orientation and structure with excited-state dynamics is crucial for engineering efficient organic solar cells, light-emitting diodes, and related molecular electronics. Photoluminescence features of single porphyrin crystals were imaged using a laser scanning confocal microscope equipped with time-correlated single photon counting (TCSPC). We show enhanced exciton lifetimes (τs1 = 2.6 ns) and stronger steady-state emission in crystalline BCM2PP samples relative to semicrystalline thin films (τs1 = 1.8 ns).

  20. Intensity dependent photoluminescence studies on zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Tzolov, Marian; Epps, Andrew; Driscoll, Eric; Barcikowski, Zachary

    2012-02-01

    The ZnO nanowires were grown by the chemical vapor transport method using a thin gold film as a catalyst. Their light emission in the visible and near UV spectral range was studied using excitation sources with large variation of the pump intensity, e.g. Xenon lamp, UV LEDs, nitrogen laser. The photoluminescence spectrum consists typically of the exciton emission band and a defect related band in the green spectral range. We have observed drastic change in the photoluminescence spectrum at high pump intensities with drastically decreased intensity of the defect related band. The results have been interpreted within a model accounting for the surface effects and associated band banding at the surface. Cathodoluminescence measurements of ZnO nanowires and bulk films were performed, which support the proposed model.

  1. Modulation of mixed-phase titania photoluminescence by oxygen adsorption

    SciTech Connect

    Pallotti, D.; Orabona, E.; Amoruso, S.; Maddalena, P.; Lettieri, S.

    2014-07-21

    We investigate the effect of oxygen (O{sub 2}) adsorption on photoluminescence properties of mixed-phase titania nanoparticle films deposited by femtosecond pulsed laser deposition, aiming to assess preliminary conclusions about the feasibility of opto-chemical sensing based on titania. We evidence that O{sub 2} produces opposite responses in rutile and anatase photoluminescence efficiency, highlighting interesting potentialities for future double-parametric optical sensing based on titania. The results evidence an important role of lattice oxygen atoms, suggesting that the standard Schottky barrier mechanism driving the response toward gas species in most used metal-oxide sensors (e.g., tin dioxide) is not the only active mechanism in titania.

  2. Preparation and photoluminescence study of mesoporous indium hydroxide nanorods

    SciTech Connect

    Li, Changyu; Lian, Suoyuan; Liu, Yang; Liu, Shouxin; Kang, Zhenhui

    2010-02-15

    Mesoporous indium hydroxide nanorods were successfully synthesized by a mild one-step one-pot method. The obtained samples were characterized by X-ray diffraction, transmission electron microscopy with selected area electron diffraction, N{sub 2} adsorption, ultraviolet-visible absorption and photoluminescence, respectively. Transmission electron microscopy showed that there were some pores in the samples, which were mainly composed of rod-like shapes with length of 300 nm and diameter of 90 nm. N{sub 2} adsorption/desorption measurements confirmed that the prepared powder was mesoporous with average pore diameter of 3.1 nm. The ultraviolet-visible absorption spectroscopy analysis indicated that the band gap energy of the samples was 5.15 eV. Photoluminescence spectrum showed that there were two strong emissions under ultraviolet light irradiation. The growth mechanism of indium hydroxide nanorods and the role of cetyltrimethyl ammonium bromide were also discussed.

  3. Mechanoresponsive change in photoluminescent color of rod-like liquid-crystalline compounds and control of molecular orientation on photoaligned layer

    NASA Astrophysics Data System (ADS)

    Kondo, Mizuho; Miura, Seiya; Okumoto, Kentaro; Hashimoto, Mayuko; Fukae, Ryohei; Kawatsuki, Nobuhiro

    2014-10-01

    In this paper, we reported novel liquid-crystalline luminophore that switches its photoluminescent color by mechanically grinding. Mechanochromic luminescence (MCL) is expected for mechanical sensor, cellular imaging, detection of microenvironmental changes, and optical memory. In this work, we focused on liquid-crystalline MCL compounds on alignment layer. Controlling the molecular alignment of MCL compounds with photoalignment layer have potential to succeed in functional MCL film such as polarized micropatterned MCL and directional detection of mechanical stimuli. Herein, we prepared asymmetric rodlike MCL compounds containing cyano- and pyridyl molecular terminal and explored their photoluminescence behavior under mechanical stimulus. The cyano terminated compound showed a nematic phase and tuned its photoluminescent color from green to yellow upon grinding, while the pyridyl-terminated compounds that show no mesophase changed its photoluminescent color from blue to green and reverted to its initial color by heating above its melting point. The cyano-terminated MCL was aligned along the orientation direction of photoalignment layer and pyridyl-terminated MCL exhibited uniaxial alignment when it coated on photoaligned film containing carboxylic acid.

  4. Methods for making nucleotide probes for sequencing and synthesis

    DOEpatents

    Church, George M; Zhang, Kun; Chou, Joseph

    2014-07-08

    Compositions and methods for making a plurality of probes for analyzing a plurality of nucleic acid samples are provided. Compositions and methods for analyzing a plurality of nucleic acid samples to obtain sequence information in each nucleic acid sample are also provided.

  5. Enhanced Photoluminescence Properties of Carbon Dots by Doping with Europium.

    PubMed

    Chen, Yuan; Xu, Jiafu; Liu, Bitao; Li, Jiyun; Fang, Xiaomei; Xiong, Liqiong; Peng, Lingling; Han, Tao; Tu, Mingjing

    2016-04-01

    Europium (Eu) doped carbon dots (CDs) were synthesized via a rapid and simple microwave medi- ated method using polyethylene glycol (PEG) as a precursor, and characterized in detail. The results were that these as-prepared CDs showed a uniform and small particle size, and exhibit good pho- tostability and high photoluminescence quantum yields. Additionally, it also found that the doped Eu would change the fluorescence properties, which indicates potential applications in the field of biolabeling. PMID:27451699

  6. Guided Photoluminescence from Integrated Carbon-Nanotube-Based Optical Waveguides.

    PubMed

    Bodiou, Loïc; Gu, Qingyuan; Guézo, Maud; Delcourt, Enguerran; Batté, Thomas; Lemaitre, Jonathan; Lorrain, Nathalie; Guendouz, Mohammed; Folliot, Hervé; Charrier, Joël; Mistry, Kevin S; Blackburn, Jeffrey L; Doualan, Jean-Louis; Braud, Alain; Camy, Patrice

    2015-10-28

    Thin films and ridge waveguides based on large-diameter semiconducting single-wall carbon nanotubes (s-SWCNTs) dispersed in a polyfluorene derivative are fabricated and optically characterized. Ridge waveguides are designed with appropriate dimensions for single-mode propagation at 1550 nm. Using multimode ridge waveguides, guided s-SWCNT photoluminescence is demonstrated for the first time in the near-infrared telecommunications window. PMID:26350035

  7. Photoluminescence of ion-implanted GaN

    NASA Technical Reports Server (NTRS)

    Pankove, J. I.; Hutchby, J. A.

    1976-01-01

    Thirty-five elements were implanted in GaN. Their photoluminescence spectra were measured and compared to those of an unimplanted control sample. Most impurities emit a peak at about 2.15 eV. Mg, Zn, Cd, Ca, As, Hg, and Ag have more characteristic emissions. Zn provides the most efficient recombination center. A set of midgap states is generated during the damage-annealing treatment.

  8. Nonlinear broadband photoluminescence of graphene induced by femtosecond laser irradiation

    SciTech Connect

    Liu, Wei-Tao; Wu, S.W.; Schuck, P.J.; Salmeron, Miquel; Shen, Y.R.; Wang, F.

    2010-07-01

    Upon femtosecond laser irradiation, a bright, broadband photoluminescence is observed from graphene at frequencies well above the excitation frequency. Analyses show that it arises from radiative recombination of a broad distribution of nonequilibrium electrons and holes, generated by rapid scattering between photoexcited carriers within tens of femtoseconds after the optical excitation. Its highly unusual characteristics come from the unique electronic and structural properties of graphene.

  9. Photoluminescence from narrow InAs-AlSb quantum wells

    NASA Technical Reports Server (NTRS)

    Brar, Berinder; Kroemer, Herbert; Ibbetson, James; English, John H.

    1993-01-01

    We report on photoluminescence spectra from narrow InAs-AlSb quantum wells. Strong, clearly resolved peaks for well widths from 2 to 8 monolayers were observed. Transmission electron micrographs show direct evidence for the structural quality of the quantum well structures. The transition energies of the narrowest wells suggest a strong influence of the AlSb X-barrier on the electronic states in the conduction band.

  10. Charge-transfer-state photoluminescence in asymmetric coupled quantum wells

    NASA Astrophysics Data System (ADS)

    Norris, T. B.; Vodjdani, N.; Vinter, B.; Weisbuch, C.; Mourou, G. A.

    1989-07-01

    We have performed continuous and time-resolved photoluminescence experiments on novel double-quantum-well structures in Schottky diodes. We have directly observed the buildup of a charge-transfer (CT) state in which the electrons and holes are in separate wells because of the fact that they tunnel in opposite directions. We have studied the effect of an electric field on the CT state formation, and have observed a strong, linear Stark shift of the CT luminescence.

  11. Photoluminescence of silicon after deposition of polycrystalline diamond films

    SciTech Connect

    Aminev, D. F.; Bagaev, V. S.; Galkina, T. I.; Klokov, A. Yu. Krivobok, V. S.; Ralchenko, V. G.; Savel'ev, A. V.

    2009-09-15

    Low-temperature (5K) photoluminescence of silicon substrates in the range 0.8-1.2 eV is studied before and after deposition of polycrystalline diamond films. The diamond films were deposited in the microwave plasma onto high-purity dislocation-free silicon (with the resitivity {rho} {approx} 3 k{Omega} cm) subjected to mechanical polishing or more delicate chemical and mechanical polishing. The deposition temperature was 750-850 deg. C. In the photoluminescence spectra of the samples with the substrates polished chemically and mechanically, two lines, D{sub 1} and D{sub 2}, corresponding to the dislocation-related emission are recorded. Generation of dislocations in the substrates is caused by efficient adhesion of the diamond film and, as a result, by internal stresses that relax with the formation of dislocations. The experimental spectra are practically identical to the photoluminescence spectra observed in silicon ({rho} {approx} 100 {Omega} cm) with the density of dislocations {approx}10{sup 4} cm{sup -2}.

  12. Photoluminescence properties of S2 molecule trapped in Melanophlogite

    NASA Astrophysics Data System (ADS)

    Messina, Fabrizio; Todaro, Michela; Buscarino, Gianpiero; Vaccaro, Lavinia; Cannas, Marco; Gelardi, Franco M.

    2016-03-01

    We studied the photoluminescence properties of a sample of SiO2-clathrate Melanophlogite, a crystalline microporous material which is found in nature as a rare mineral. Upon β irradiation, the material displays an intense light emission under near-UV illumination. We studied in detail this optical activity by steady-state and time-resolved photoluminescence measurements as a function of temperature. The spectroscopic properties we find can be ascribed to a population of quasi-free molecules trapped within each of the two different types of cage available in the structure of this clathrate, although the spectroscopic properties of the guest molecules are affected by their interactions with the host matrix. Based on the available data, we attribute the observed photoluminescence to trapped S2 molecules, emitting from their excited 3Σ u - or 3Π u electronic states, depending on the cage they are trapped in and on temperature. Our results have an impact on the fundamental understanding of host-guest interactions characteristic of microporous systems such as clathrates. Indeed, the data highlight that even a relatively weak coupling between quasi-free S2 molecules and the two types of cages provided by the Melanophlogite host has a surprisingly complex influence on the optical properties of the guest.

  13. Strong and stable photoluminescence from sputtered silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Wang, H.; Ong, P. P.

    2000-08-01

    Silicon nanoparticles have been prepared by means of direct dc sputtering of the silicon material onto the liquid nitrogen-cooled surface of the stainless-steel trap. By periodically harvesting the deposits followed by ultrasonic agitation in 2-propanol it was possible to produce nanometre-size silicon crystals of less than 10 nm in diameter, and in which the silicon particle surfaces were barely oxidized. XPS measurements of the samples so prepared revealed that the oxidization states of their surface layers were changed in different significant ways when the as-prepared sample was annealed in air or in a vacuum. However, all these chemical changes have very little effect on the photoluminescence level of the samples. Its intensity remains strong and stable in the region of 300-550 nm, both before and after annealing either in the atmosphere or in an ultra-high vacuum at up to 500 °C and for up to 6 h. Moreover, the photoluminescence intensity stays constant even after the samples were aged in the atmosphere at room temperature (300 K) for 22 days. The photoluminescence stability of our silicon nanoparticles, regardless of changes in their surface chemical structure, enhances their conduciveness for commercial applications.

  14. Quantitative modeling of the role of surface traps in CdSe/CdS/ZnS nanocrystal photoluminescence decay dynamics.

    PubMed

    Jones, Marcus; Lo, Shun S; Scholes, Gregory D

    2009-03-01

    Charge carrier trapping is an important phenomenon in nanocrystal (NC) decay dynamics because it reduces photoluminescence (PL) quantum efficiencies and obscures efforts to understand the interaction of NC excitons with their surroundings. Particularly crucial to our understanding of excitation dynamics in, e.g., multiNC assemblies, would be a way of differentiating between processes involving trap states and those that do not. Direct optical measurement of NC trap state processes is not usually possible because they have negligible transition dipole moments; however, they are known to indirectly affect exciton photoluminescence. Here, we develop a framework, based on Marcus electron transfer theory, to determine NC trap state dynamics from time-resolved NC exciton PL measurements. Our results demonstrate the sensitivity of PL to interfacial dynamics, indicating that the technique can be used as an indirect but effective probe of trap distribution changes. We anticipate that this study represents a step toward understanding how excitons in nanocrystals interact with their surroundings: a quality that must be optimized for their efficient application in photovoltaics, photodetectors, or chemical sensors. PMID:19218443

  15. Raman and photoluminescence properties of type II GaSb/GaAs quantum dots on (001) Ge substrate

    NASA Astrophysics Data System (ADS)

    Zon; Poempool, Thanavorn; Kiravittaya, Suwit; Nuntawong, Noppadon; Sopitpan, Suwat; Thainoi, Supachok; Kanjanachuchai, Songphol; Ratanathammaphan, Somchai; Panyakeow, Somsak

    2016-07-01

    We investigate structural Raman and photoluminescence properties of type II GaSb/GaAs quantum dots (QDs) grown on (001) Ge substrate by molecular beam epitaxy. Array of self-assembled GaSb QDs having an areal density of ˜1.66 × 1010 dots/cm2 is obtained by a growth at relatively low substrate temperature (450 °C) on a GaAs surface segmented into anti-phase domains (APDs). Most of QDs form in one APD area. However, a few QDs can be observed at the APD boundaries. Raman spectroscopy is used to probe the strain in GaAs layer. Slight redshift of both LO and TO GaAs peaks are observed when GaSb QDs are buried into GaAs matrix. Optical properties of capped QDs are characterized by photoluminescence measurement at low temperatures (20 K and 30 K). Emission peaks of GaSb/GaAs QDs are found in the range of 1.0-1.3 eV at both temperatures. Slight redshift is observed when the laser excitation power is increased at 20 K while blueshift of QD peak is observed at 30 K. We attribute this abnormal behavior to the contribution of overlapped GaSb wetting layer peak in the PL emission as well as the feature of type II band structure. [Figure not available: see fulltext.

  16. Small-Molecule Turn-On Fluorescent Probes for RDX.

    PubMed

    Mosca, Lorenzo; Karimi Behzad, Sara; Anzenbacher, Pavel

    2015-07-01

    New fluorescent probes have been tested for their ability to detect nitramine (RDX) and nitroaromatic (TNT) explosives. The probes display turn-on behavior upon exposure to RDX, while their fluorescence is dramatically reduced by the presence of TNT and other nitroaromatic compounds. The probes are applicable in qualitative assays that can distinguish between RDX and TNT as well as acidity and formaldehyde vapors. PMID:26074208

  17. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-01

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance.

  18. Reusable fluorescent sensor for captopril based on energy transfer from photoluminescent graphene oxide self-assembly multilayers to silver nanoparticles.

    PubMed

    Sun, Xiangying; Liu, Bin; Li, Shuchun; Li, Fang

    2016-05-15

    In this work we designed a self-assembly multilayers, in which photoluminescent graphene oxide was employed as a fluorescence probe. This multilayers film can effectively recognize captopril by resonance energy transfer from graphite oxide to silver nanoparticles. A new interfacial sensing method for captopril with high signal to noise ratio was established, by means of that multilayers was quenched by silver nanoparticles and subsequently recovered by adding captopril. The linear relation between intensity and captopril concentration was good, and the detection limit was found to be 0.1578 μM. Also, this novel detection platform demonstrated intriguing reusable properties, and the sensor could be repeated more than ten times without obviously losing its sensing performance. PMID:26945122

  19. Functional probes for scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Hasegawa, Yukio; Akiyama, Kotone; Hamada, Masayuki; Eguchi, Toyoaki; An, Toshu; Fujikawa, Yasunori; Sakurai, Toshio

    2008-03-01

    Inspite of importance of the probe in scanning probe microscopy (SPM), little attention was paid for the SPM probes for most of the measurements of SPM. We developed sharp metal-tip cantilevers with a typical curvature radius better than 5nm using focused ion beam (FIB) suitable for Kelvin probe force microscopy (KFM)^1. We obtained atomically resolved KFM images with an energy resolution less than 3meV with the probe^2. We also developed a glass-coated tungsten tip for synchrotron radiation-scanning tunneling microscopy with the FIB method^3 and obtained elementally resolved images in a resolution less than 20nm^4. We are now developing a precise atomic force microscope (AFM) lithography^5 with the FIB-milled tip attached to a quartz tuning fork controlled by noncontact AFM. We will present recent results of our AFM lithography, such as an Au line with a width of 20˜30 nm and characters drawn with Au nano dots on a Si surface. 1 K. Akiyama et al., RSI 76, 033705 (2005) 2 T. Eguchi, K. Akiyama et al., PRL 93, 266102 (2004) 3 K. Akiyama et al., RSI 76, 083711 (2005) 4 T. Eguchi, K. Akiyama et al., APL 89, 243119 (2006) 5 K. Akiyama et al., JP 61, 22 (2007).

  20. Periodontal probing: a review.

    PubMed

    Al Shayeb, Kwthar Nassar A; Turner, Wendy; Gillam, David G

    2014-08-01

    Periodontal probes are the main instruments that are used to assess the status of the periodontium, either for screening purposes or to evaluate periodontal changes throughout the treatment process. With increased knowledge and understanding of periodontal disease, the probes have evolved from a unidimensional manual shape into a more sophisticated computerised instrument. This is due to the need to increase the accuracy and reproducibility of readings and to improve efficiency (time, effort, money). Each probe has characteristic features that makes it unique and, in some cases, specific and limited to use. The aim of this paper is to present a brief introduction to periodontal disease and the methodology of measuring it, followed by probing limitations. The paper will also discuss the methodology of reducing probing error, examiner calibration and probing reproducibility. PMID:25198634