Science.gov

Sample records for acid pla composites

  1. Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

    NASA Technical Reports Server (NTRS)

    Kuentz, Lily; Salem, Anton; Singh, M.; Halbig, M. C.; Salem, J. A.

    2016-01-01

    Additive manufacturing of polymeric systems using 3D printing has become quite popular recently due to rapid growth and availability of low cost and open source 3D printers. Two widely used 3D printing filaments are based on polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) systems. PLA is much more environmentally friendly in comparison to ABS since it is made from renewable resources such as corn, sugarcane, and other starches as precursors. Recently, polylactic acid-based metal powder containing composite filaments have emerged which could be utilized for multifunctional applications. The composite filaments have higher density than pure PLA, and the majority of the materials volume is made up of polylactic acid. In order to utilize functionalities of composite filaments, printing behavior and properties of 3-D printed composites need to be characterized and compared with the pure PLA materials. In this study, pure PLA and composite specimens with different metallic reinforcements (Copper, Bronze, Tungsten, Iron, etc) were 3D printed at various layer heights and resulting microstructures and properties were characterized. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) behavior of filaments with different reinforcements were studied. The microscopy results show an increase in porosity between 3-D printed regular PLA and the metal composite PLA samples, which could produce weaker mechanical properties in the metal composite materials. Tensile strength and fracture toughness behavior of specimens as a function of print layer height will be presented.

  2. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    PubMed

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films.

  3. Thermal and mechanical properties of polylactic acid (PLA) and bagasse carboxymethyl cellulose (CMCB) composite by adding isosorbide diesters

    NASA Astrophysics Data System (ADS)

    Kamthai, Suthaphat; Magaraphan, Rathanawan

    2015-05-01

    An isosorbide diesters is one of isororbide types used as a plasticizer. The influence of this plasticizer on thermal and mechanical properties of polylactic acid and bagasse carboxymethyl cellulose (PLA/CMCB) composites was studied. PLA was blended with CMCB at 1%wt using various contents of isosorbide diesters (5, 10, 15 and 20%wt of PLA). The differential scanning calorimetric (DSC) and thermogravimetric (TGA) analyses indicated that the increment of isosorbide diesters concentration resulted in decreasing glass transition, melting and decomposition temperatures, as well as the reduction of storage modulus of PLA/CMCB composites. Moreover, the elongation of PLA/CMCB composites was significantly improved with increasing plasticizer content.

  4. Improve the Strength of PLA/HA Composite Through the Use of Surface Initiated Polymerization and Phosphonic Acid Coupling Agent

    PubMed Central

    Wang, Tongxin; Chow, Laurence C.; Frukhtbeyn, Stanislav A.; Ting, Andy Hai; Dong, Quanxiao; Yang, Mingshu; Mitchell, James W.

    2011-01-01

    Bioresorbable composite made from degradable polymers, e.g., polylactide (PLA), and bioactive calcium phosphates, e.g., hydroxyapatite (HA), are clinically desirable for bone fixation, repair and tissue engineering because they do not need to be removed by surgery after the bone heals. However, preparation of PLA/HA composite from non-modified HA usually results in mechanical strength reductions due to a weak interface between PLA and HA. In this study, a calcium-phosphate/phosphonate hybrid shell was developed to introduce a greater amount of reactive hydroxyl groups onto the HA particles. Then, PLA was successfully grafted on HA by surface-initiated polymerization through the non-ionic surface hydroxyl groups. Thermogravimetric analysis indiated that the amount of grafted PLA on HA can be up to 7 %, which is about 50 % greater than that from the literature. PLA grafted HA shows significantly different pH dependent ζ-potential and particle size profiles from those of uncoated HA. By combining the phosphonic acid coupling agent and surface initiated polymerization, PLA could directly link to HA through covalent bond so that the interfacial interaction in the PLA/HA composite can be significantly improved. The diametral tensile strength of PLA/HA composite prepared from PLA-grafted HA was found to be over twice that of the composite prepared from the non-modified HA. Moreover, the tensile strength of the improved composite was 23 % higher than that of PLA alone. By varying additional variables, this approach has the potential to produce bioresorbable composites with improved mechanical properties that are in the range of natural bones, and can have wide applications for bone fixation and repair in load-bearing areas. PMID:22399838

  5. PLA composites: From production to properties.

    PubMed

    Murariu, Marius; Dubois, Philippe

    2016-12-15

    Poly(lactic acid) or polylactide (PLA), a biodegradable polyester produced from renewable resources, is used for various applications (biomedical, packaging, textile fibers and technical items). Due to its inherent properties, PLA has a key-position in the market of biopolymers, being one of the most promising candidates for further developments. Unfortunately, PLA suffers from some shortcomings, whereas for the different applications specific end-use properties are required. Therefore, the addition of reinforcing fibers, micro- and/or nanofillers, and selected additives within PLA matrix is considered as a powerful method for obtaining specific end-use characteristics and major improvements of properties. This review highlights recent developments, current results and trends in the field of composites based on PLA. It presents the main advances in PLA properties and reports selected results in relation to the preparation and characterization of the most representative PLA composites. To illustrate the possibility to design the properties of composites, a section is devoted to the production and characterization of innovative PLA-based products filled with thermally-treated calcium sulfate, a by-product from the lactic acid production process. Moreover, are emphasized the last tendencies strongly evidenced in the case of PLA, i.e., the high interest to diversify its uses by moving from biomedical and packaging (biodegradation properties, "disposables") to technical applications ("durables").

  6. Cytocompatibility and Mechanical Properties of Short Phosphate Glass Fibre Reinforced Polylactic Acid (PLA) Composites: Effect of Coupling Agent Mediated Interface

    PubMed Central

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew; Walker, Gavin; Scotchford, Colin

    2012-01-01

    In this study three chemical agents Amino-propyl-triethoxy-silane (APS), sorbitol ended PLA oligomer (SPLA) and Hexamethylene diisocyanate (HDI) were identified to be used as coupling agents to react with the phosphate glass fibre (PGF) reinforcement and the polylactic acid (PLA) polymer matrix of the composite. Composites were prepared with short chopped strand fibres (l = 20 mm, ϕ = 20 µm) in a random arrangement within PLA matrix. Improved, initial composite flexural strength (~20 MPa) was observed for APS treated fibres, which was suggested to be due to enhanced bonding between the fibres and polymer matrix. Both APS and HDI treated fibres were suggested to be covalently linked with the PLA matrix. The hydrophobicity induced by these coupling agents (HDI, APS) helped to resist hydrolysis of the interface and thus retained their mechanical properties for an extended period of time as compared to non-treated control. Approximately 70% of initial strength and 65% of initial modulus was retained by HDI treated fibre composites in contrast to the control, where only ~50% of strength and modulus was retained after 28 days of immersion in PBS at 37 °C. All coupling agent treated and control composites demonstrated good cytocompatibility which was comparable to the tissue culture polystyrene (TCP) control, supporting the use of these materials as coupling agent’s within medical implant devices. PMID:24955744

  7. Feasibility study of prestressed natural fiber-reinforced polylactic acid (pla) composite materials

    NASA Astrophysics Data System (ADS)

    Hinchcliffe, Sean A.

    The feasibility of manufacturing prestressed natural-fiber reinforced biopolymer composites is demonstrated in this work. The objective of this study was to illustrate that the specific mechanical properties of biopolymers can be enhanced by leveraging a combination of additive manufacturing (3D printing) and post-tensioning of continuous natural fiber reinforcement. Tensile and flexural PLA specimens were 3D-printed with and without post-tensioning ducts. The mechanical properties of reinforcing fibers jute and flax were characterized prior to post-tensioning. The effect of matrix cross-sectional geometry and post-tensioning on the specific mechanical properties of PLA were investigated using mechanical testing. Numerical and analytical models were developed to predict the experimental results, which confirm that 3D-printed matrices improve the specific mechanical properties of PLA composites and are further improved via initial fiber prestressing. The results suggest that both additive manufacturing and fiber prestressing represent viable new methods for improving the mechanical performance of natural fiber-reinforced polymeric composites.

  8. In vitro degradation kinetics of pure PLA and Mg/PLA composite: Effects of immersion temperature and compression stress.

    PubMed

    Li, Xuan; Chu, Chenglin; Wei, Yalin; Qi, Chenxi; Bai, Jing; Guo, Chao; Xue, Feng; Lin, Pinghua; Chu, Paul K

    2017-01-15

    The effects of the immersion temperature and compression stress on the in vitro degradation behavior of pure poly-lactic acid (pure-PLA) and PLA-based composite unidirectionally reinforced with micro-arc oxidized magnesium alloy wires (Mg/PLA or MAO-MAWs/PLA) are investigated. The degradation kinetics of pure-PLA and the PLA matrix in MAO-MAWs/PLA exhibit an Arrhenius-type behavior. For the composite, the synergic degradation of MAO-MAWs maintains a steady pH and mitigates the degradation of PLA matrix during immersion. However, the external compression stress decreases the activation energy (Ea) and pre-exponential factor (k0) consequently increasing the degradation rate of PLA. Under a compression stress of 1MPa, Ea and k0 of pure PLA are 57.54kJ/mol and 9.74×10(7)day(-1), respectively, but 65.5kJ/mol and 9.81×10(8)day(-1) for the PLA matrix in the composite. Accelerated tests are conducted in rising immersion temperature in order to shorten the experimental time. Our analysis indicates there are well-defined relationships between the bending strength of the specimens and the PLA molecular weight during immersion, which are independent of the degradation temperature and external compression stress. Finally, a numerical model is established to elucidate the relationship of bending strength, the PLA molecular weight, activation energy, immersion time and temperature.

  9. Cell responses and hemocompatibility of g-HA/PLA composites.

    PubMed

    Li, Jia; Zheng, Wei; Zheng, Yufeng; Lou, Xia

    2011-04-01

    The objective of this study was to investigate the hemocompatibility and cell responses to some novel poly(L-lactide) (PLA) composites containing surface modified hydroxyapatite particles for potential applications as a bone substitute material. The surface of hydroxyapatite (HA) particles was first grafted with L-lactic acid oligomers to form grafted HA (g-HA) particles. The g-HA particles were further blended with PLA to prepare g-HA/PLA composites. Our previous study has shown significant improvement in tensile properties of these materials due to the enhanced interfacial adhesion between the polymer matrix and HA particles. To further investigate the potential applications of these composites in bone repair and other orthopedic surgeries, a series of in vitro and in vivo experiments were conducted to examine the cell responses and hemocompatibility of the materials. In vitro experiments showed that the g-HA/PLA composites were well tolerated by the L-929 cells. Hemolysis of the composites was lower than that of pure PLA. Subcutaneous implantation demonstrated that the g-HA/PLA composites were more favorable than the control materials for soft tissue responses. The results suggested that the g-HA/PLA composites are promising and safe materials with potential applications in tissue engineering.

  10. Structure and blood compatibility of highly oriented PLA/MWNTs composites produced by solid hot drawing.

    PubMed

    Li, Zhengqiu; Zhao, Xiaowen; Ye, Lin; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2014-03-01

    Highly oriented poly(lactic acid) (PLA)/multi-walled carbon nanotubes (MWNTs) composites were fabricated through solid hot drawing technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that proper MWNTs content and drawing orientation can improve the tensile strength and modulus of PLA dramatically. With the increase in draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak of PLA moved to high temperature, while the crystallinity increased, and the grain size decreased, indicating the stress-induced crystallization of PLA during drawing. MWNTs showed a nucleation effect on PLA, leading to the rise in the melting temperature, increase in crystallinity and reduction of spherulite size for the composites. Moreover, the intensity of (002) diffraction of MWNTs increased with draw ratio, indicating that MWNTs were preferentially aligned and oriented during drawing. Microstructure observation demonstrated that PLA matrix had an ordered fibrillar bundle structure, and MWNTs in the composite tended to align parallel to the drawing direction. In addition, the dispersion of MWNTs in PLA was also improved by orientation. Introduction of MWNTs and drawing orientation could significantly enhance the blood compatibility of PLA by prolonging kinetic clotting time, reducing hemolysis ratio and platelet activation.

  11. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation.

    PubMed

    Zhu, Xiaomin; Zhong, Tian; Huang, Ran; Wan, Ajun

    2015-01-01

    Porous poly(lactic acid) (PLA) tissue engineering scaffolds with a hydrophilic surface assembled by polyethylene glycol aggregations were prepared by the solvent casting/particulate leaching method from (PLA)-(PLA-b-PEG)-(PEG) blend solution, where the PLA-b-PEG block polymer serves as an amphiphilic glue between two phases. A thermal recrystallization process was inserted before leaching to induce a phase separation, which subsequently squeezes out PEG to form a hydrophilic shell. Characterizations of XRD and DSC indicated the composition and mixing states of materials. The water contact angle test qualitatively presented the excellent hydrophilicity compared to the pure PLA or PLA-PEG simple blend scaffold. The scanning electron microscope results confirmed the formation of porous structure of [Formula: see text] pore size, with an observable phase separation on the surface. The scaffold was degraded in PBS at [Formula: see text], and the degradation exhibits a three-stage behavior, which evidenced the amphiphilically glued phase separations.

  12. Antibacterial poly(lactic acid) (PLA) films grafting electrospun PLA/Ally isothioscyanate (AITC) fibers for food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Poly(lactic acid) (PLA) fibers of submicron sizes encapsulating allyl isothiocyanate (AITC) (PfA) were made and electrospun onto the surfaces of PLA films (PfA-g-film). SEM examination confirmed that the fibers were grafted to the PLA film after the (PfA-g-film) underwent air blowing and water washi...

  13. PLA/chitosan/keratin composites for biomedical applications.

    PubMed

    Tanase, Constantin Edi; Spiridon, Iuliana

    2014-07-01

    Novel composites based on PLA, chitosan and keratin was obtained via blend preparation. The goal of this contribution was to evaluate mechanical and in vitro behavior of the composites. The results point out composites with improved Young modulus and decreased tensile strength, significant increase in hardness (compared to PLA) and a good uptake of the surface properties. Biological assessments using human osteosarcoma cell line on these composites indicate a good viability/proliferation outcome. Hence preliminary results regarding mechanical behavior and in vitro osteoblast response suggest that these composites might have prospective application in medical field.

  14. Polylactic acid (PLA) controlled delivery carriers for biomedical applications.

    PubMed

    Tyler, Betty; Gullotti, David; Mangraviti, Antonella; Utsuki, Tadanobu; Brem, Henry

    2016-12-15

    Polylactic acid (PLA) and its copolymers have a long history of safety in humans and an extensive range of applications. PLA is biocompatible, biodegradable by hydrolysis and enzymatic activity, has a large range of mechanical and physical properties that can be engineered appropriately to suit multiple applications, and has low immunogenicity. Formulations containing PLA have also been Food and Drug Administration (FDA)-approved for multiple applications making PLA suitable for expedited clinical translatability. These biomaterials can be fashioned into sutures, scaffolds, cell carriers, drug delivery systems, and a myriad of fabrications. PLA has been the focus of a multitude of preclinical and clinical testing. Three-dimensional printing has expanded the possibilities of biomedical engineering and has enabled the fabrication of a myriad of platforms for an extensive variety of applications. PLA has been widely used as temporary extracellular matrices in tissue engineering. At the other end of the spectrum, PLA's application as drug-loaded nanoparticle drug carriers, such as liposomes, polymeric nanoparticles, dendrimers, and micelles, can encapsulate otherwise toxic hydrophobic anti-tumor drugs and evade systemic toxicities. The clinical translation of these technologies from preclinical experimental settings is an ever-evolving field with incremental advancements. In this review, some of the biomedical applications of PLA and its copolymers are highlighted and briefly summarized.

  15. Polymer blends of polylactic acid (PLA) and polybutylene succinate-adipate

    NASA Astrophysics Data System (ADS)

    Ma, Wenguang

    A series of blends consisting of polylactic acid (PLA) and aliphatic succinate polyester (BionolleRTM #3000) had been prepared and investigated. The results of mechanical property investigations showed that using 20 wt% Bionolle#3000 can significantly increase the toughness of PLA. BionolleRTM #3000 also reduces the physical aging rate of PLA so blends remain tough longer. Conversely, the stiffness of BionolleRTM #3000 can be significantly increased by blending in PLA. DMA and DSC results show that PLA/BionolleRTM 3000 blends are not thermodynamically miscible, but are compatible blends. Studies have also been performed to determine the amount and rate of aerobic biodegradation of PLA/aliphatic succinate polyester blends in biologically active composting, enzymatic, and soil environments. The changes in molecular weight, molecular structure and thermal properties in the composting environment were also studied by GPC, NMR and DSC analyses. The research results showed BionolleRTM #3000 had a high degradation rate, while PLA had a low degradation rate. PLA/BionolleRTM #3000 blends had moderate degradation rates that increased with BionolleRTM #3000 content. The melt flow behavior of PLA/BionolleRTM #3000 blends has been studied by capillary rheometry. The relationship of the blends' viscosity with their composition, shear stress, shear rate, and temperature has been investigated. Power law index and activation energy of PLA, BionolleRTM #3000 and their blends have been calculated. The experimental and theoretical data can let us understand the processability of PLA/BionolleRTM #3000 blends. A scanning electron microscope (SEM) was used to investigate the morphological structure of the PLA/BionolleRTM #3000 blends. Micrographs of the samples made from different methods (blown film, extrudate and compression molding sheet) were taken; their differences in morphology were compared. For comparison, the micrographs of blend PLA/BionolleRTM #6000 was also studied. The

  16. Effects of screw speed on the properties of plasticized PLA/POSS composites

    NASA Astrophysics Data System (ADS)

    Kodal, M.; Sirin, H.; Ozkoc, G.

    2014-05-01

    The effect of screw speed on the flow behavior, mechanical, thermal and morphological properties of the melt compounded plasticized poly(lactic acid) (PLA)/polyhedral oligomeric silsesquioxanes (POSS) composites were investigated. Two types of POSS-aminopropylisobutyl-POSS (A-POSS) as the reactive one and the octaisobutyl-POSS (O-POSS) as the non-reactive one, were used at 1-10 wt% filler loadings. Poly(ethylene glycol) (PEG-8000 g/moles) was utilized as a plasticizer. PEG amount was kept constant at 10 wt% with respect to PLA. To investigate the compounding conditions on the properties of the composites, two different screw speeds (100 and 200 rpm) were used. It was found that incorporation of POSS particles to the PLA decreased the melt viscosity of the composites due to the slip-agent behavior of POSS molecules. The mechanical test results showed that composites compounded at 100 rpm have higher yield strength and modulus values. Moreover, a significant improvement in Izod impact strength of plasticized PLA composites compounded at 100 rpm was obtained (regardless of POSS type). SEM analysis showed that POSS particles dispersed homogeneously in polymer matrix at all loadings regardless of screw speed. It was revealed from DSC that POSS particles acted as a nucleating agent for PLA/PEG independently from mixing conditions. Moreover, the percent crystallinity was found to be higher in the presence of POSS.

  17. Preparation of porous PLA/DBM composite biomaterials and experimental research of repair rabbit radius segmental bone defect.

    PubMed

    Zhang, Yumin; Wang, Jianru; Wang, Jue; Niu, Xiaojun; Liu, Jianchun; Gao, Lan; Zhai, Xiaoyan; Chu, Kaibo

    2015-12-01

    Bone substitutes are used in wide range of orthopaedic application. An ideal bone substitute should exhibit superior osteoinductive and osteoconductive properties. Neither bio-derived materials nor synthetic materials can meet the needs of an ideal bone substitute. Preparation of composite materials is a promising way to improve properties of biomaterial. In this study, the porous poly lactic acid (PLA)/demineralized bone matrix (DBM) composite biomaterials prepared by supercritical CO2 technique were implanted to repair rabbit radius segmental bone defect. By comparing with PLA and bone autograft, the X-ray result and histological analysis showed the repair effect of PLA/DBM porous composite materials is significantly better than that of the PLA group and the blank control group, and is similar to autologous bone. The PLA/DBM can promote the healing of bone defects and can be used as a kind of ideal alternative materials to repair bone defects.

  18. Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates.

    PubMed

    Felfel, Reda M; Ahmed, Ifty; Parsons, Andrew J; Haque, Papia; Walker, Gavin S; Rudd, Chris D

    2012-03-01

    In this study, bioresorbable phosphate-based glass (PBG) fibers were used to reinforce poly(lactic acid) (PLA). PLA/PBG random mat (RM) and unidirectional (UD) composites were prepared via laminate stacking and compression molding with fiber volume fractions between 14% and 18%, respectively. The percentage of water uptake and mass change for UD composites were higher than the RM composites and unreinforced PLA. The crystallinity of the unreinforced PLA and composites increased during the first few weeks and then a plateau was seen. XRD analysis detected a crystalline peak at 16.6° in the unreinforced PLA sample after 42 days of immersion in phosphate buffer solution (PBS) at 37°C. The initial flexural strength of RM and UD composites was ∼106 and ∼115 MPa, whilst the modulus was ∼6.7 and ∼9 GPa, respectively. After 95 days immersion in PBS at 37°C, the strength decreased to 48 and 52 MPa, respectively as a result of fiber-matrix interface degradation. There was no significant change in flexural modulus for the UD composites, whilst the RM composites saw a decrease of ∼45%. The molecular weight of PLA alone, RM, and UD composites decreased linearly with time during degradation due to chain scission of the matrix. Short fiber pull-out was seen from SEM micrographs for both RM and UD composites.

  19. Effect of platy and tubular nanoclays on behaviour of biodegradable PCL/PLA blend and related microfibrillar composites

    NASA Astrophysics Data System (ADS)

    Kelnar, Ivan; Kratochvíl, Jaroslav

    2016-05-01

    Blending of ductile poly(ɛ-caprolactone) (PCL) and rigid polylactic acid (PLA) is a promising way to tailor biodegradable materials with broad range of properties. But the mutual incompatibility of both polyesters leads to compromised behaviour only. Alternative to PCL/PLA blends is application of PLA in the form of short fibres, however, difficult dispergation of flexible fibres including their poor adhesion and limited processing is a significant restriction. More effective is in situ formation of polymeric fibre-reinforced materials using microfibrillar composites (MFC) concept based on melt- or cold-drawing of a polymer blend. Important advantage of MFC is efficient dispersion and bonding of in-situ formed reinforcing fibres This work deals with combination of structure-directing and reinforcing effects of montmorillonite (oMMT) and halloysite nanotubes (HNT) in the PCL/PLA 80/20 blend with in-situ formation of PLA fibrils in the PCL matrix. In the resulting microfibrillar composite, reinforcement by rigid PLA fibrils is combined with strengthening of both components by the nanofiller (NF). Moreover, PLA fibrils formation via melt-drawing is only possible after nanofiller addition due to favourable affecting of rheological parameters of the polymer components. The structure-properties relationship and complex effect of NF on microfibrillar composite performance, causing e.g., quite comparable parameters of both microfibrillar composites in spite of lower reinforcing effect of halloysite nanotubes on components, are discussed.

  20. Surface characterization and cell response of a PLA/CaP glass biodegradable composite material.

    PubMed

    Navarro, M; Engel, E; Planell, J A; Amaral, I; Barbosa, M; Ginebra, M P

    2008-05-01

    Bioabsorbable materials are of great interest for bone regeneration applications, since they are able to degrade gradually as new tissue is formed. In this work, a fully biodegradable composite material containing polylactic acid (PLA) and calcium phosphate (CaP) soluble glass particles has been characterized in terms of surface properties and cell response. Cell cultures were performed in direct contact with the materials and also with their extracts, and were evaluated using the MTT assay, alkaline phosphatase activity, and osteocalcin measurements. The CaP glass and PLA were used as reference materials. No significant differences were observed in cell proliferation with the extracts containing the degradation by-products of the three materials studied. A relation between the materials wettability and the material-cell interactions at the initial stages of contact was observed. The most hydrophilic material (CaP glass) presented the highest cell adhesion values as well as an earlier differentiation, followed by the PLA/glass material. The incorporation of glass particles into the PLA matrix increased surface roughness. SEM images showed that the heterogeneity of the composite material induced morphological changes in the cells cytoskeleton.

  1. Effect of surface modified hydroxyapatite on the tensile property improvement of HA/PLA composite

    NASA Astrophysics Data System (ADS)

    Li, J.; Lu, X. L.; Zheng, Y. F.

    2008-11-01

    In this study, we modified the surface of hydroxyapatite (HA) particle by ring-opening polymerization of lactide (LA). The modified HA particles were characterized by IR and TGA. It was shown that LA could be graft-polymerized onto the surface of HA. A series of composites based on modified HA/PLA were further prepared and characterized. It indicated that the modified HA particles were well dispersed in PLA matrix than unmodified HA particles and the adhesion between HA particle and PLA matrix was improved. The modified HA/PLA composites showed good mechanical properties than that of unmodified HA/PLA.

  2. Modification of cellulose nanocrystals with lactic acid for direct melt blending with PLA

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen; Re, Giada Lo; Liu, Bo; Dorgan, John; Habibi, Youssef; Raquez, Jean-Marie; Dubois, Philippe; Gross, Richard A.

    2015-05-01

    Polylactide (PLA) is a commercially produced bio-based thermoplastic with unique properties such as high strength, biocompatibility and biodegradability. However, the low heat deflection temperature (HDT) of PLA significantly impedes its industrial implementation for high-performance applications, requiring the design of PLA-based nanocomposites. Cellulose nanocrystals (CNCs) are derived from cellulose which is highly abundant in nature, non-toxic, biodegradable, and has a low density. CNCs possess many attractive features for use in nano-composites. The main problem of adding hydrophilic CNCs into hydrophobic matrixes is their lack of affinity, leading to phase separation and a decrease in mechanical properties. A one-step method based on both Fischer esterification and acid hydrolysis was used in this work to obtain functionalized and ready-to-use CNCs, with the aim to improve the filler dispersion into the polymeric matrix. The study assesses the reinforcing effect of CNCs on PLA-based materials. CNCs functionalized with acetate (AA-CNCs), lactic acid (LA-CNCs) and unfunctionalized CNCs were synthesized and blends of PLA and these CNCs were prepared by direct melt blending. The corresponding thermomechanical properties were investigated by DMTA. Blends with LA-CNCs possessed the highest storage modulus. Based on these results, blends with up to 20 % LA-CNCs were prepared by direct melt blending and an increase of up to 20°C in the HDT resulted. A decrease in oxygen permeability also resulted from increasing the nano-filler content. This increase in materials properties can potentially expand the applications of PLA based materials.

  3. Mechanical, thermal, and biodegradable properties of polylactic acid (PLA)/coir fibre biocomposites

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Ghataura, A.; Haroosh, H. J.

    2013-08-01

    Polylactic acid (PLA)/coir fibre biocomposites were fabricated using a compression moulding technique. The effects of fibre content (5-30 wt%) and fibre treatment on mechanical, thermal and biodegradable properties of biocomposites were holistically investigated via mechanical testing, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and soil burial method to understand the applicability of manufacturing eco-efficient and sustainable "green composites".

  4. Potential of a newly developed high-speed near-infrared (NIR) camera (Compovision) in polymer industrial analyses: monitoring crystallinity and crystal evolution of polylactic acid (PLA) and concentration of PLA in PLA/Poly-(R)-3-hydroxybutyrate (PHB) blends.

    PubMed

    Ishikawa, Daitaro; Nishii, Takashi; Mizuno, Fumiaki; Sato, Harumi; Kazarian, Sergei G; Ozaki, Yukihiro

    2013-12-01

    This study was carried out to evaluate a new high-speed hyperspectral near-infrared (NIR) camera named Compovision. Quantitative analyses of the crystallinity and crystal evolution of biodegradable polymer, polylactic acid (PLA), and its concentration in PLA/poly-(R)-3-hydroxybutyrate (PHB) blends were investigated using near-infrared (NIR) imaging. This NIR camera can measure two-dimensional NIR spectral data in the 1000-2350 nm region obtaining images with wide field of view of 150 × 250 mm(2) (approximately 100  000 pixels) at high speeds (in less than 5 s). PLA with differing crystallinities between 0 and 50% blended samples with PHB in ratios of 80/20, 60/40, 40/60, 20/80, and pure films of 100% PLA and PHB were prepared. Compovision was used to collect respective NIR spectra in the 1000-2350 nm region and investigate the crystallinity of PLA and its concentration in the blends. The partial least squares (PLS) regression models for the crystallinity of PLA were developed using absorbance, second derivative, and standard normal variate (SNV) spectra from the most informative region of the spectra, between 1600 and 2000 nm. The predicted results of PLS models achieved using the absorbance and second derivative spectra were fairly good with a root mean square error (RMSE) of less than 6.1% and a determination of coefficient (R(2)) of more than 0.88 for PLS factor 1. The results obtained using the SNV spectra yielded the best prediction with the smallest RMSE of 2.93% and the highest R(2) of 0.976. Moreover, PLS models developed for estimating the concentration of PLA in the blend polymers using SNV spectra gave good predicted results where the RMSE was 4.94% and R(2) was 0.98. The SNV-based models provided the best-predicted results, since it can reduce the effects of the spectral changes induced by the inhomogeneity and the thickness of the samples. Wide area crystal evolution of PLA on a plate where a temperature slope of 70-105 °C had occurred was also

  5. GS/DBM/PLA porous composite biomaterial for the treatment of infective femoral condyle defect in rats

    PubMed Central

    LIU, XIAOMING; YANG, LIN; LI, JING; ZHANG, YUMING; XU, WEIJUN; REN, YAN; LIU, BIWANG; YANG, BIAO; LI, BAOXING

    2016-01-01

    A bone defect resulting from open bone trauma may easily become infected; however, the administration of efficacious systemic antibiotics cannot be performed at safe levels. Previous studies have investigated anti-infective biomaterials that incorporate into bone and facilitate the direct application of high-concentration local antibiotics. In the present study, the effect of a novel porous composite with gentamicin sulfate (GS) in treating infected femoral condyle defects was investigated using a rat model. A novel porous composite biomaterial was prepared based on a supercritical carbon dioxide fluid technique that combined GS, demineralized bone matrix (DBM) and polylactic acid (PLA). A rat femoral condyle fracture model of infection was established. The GS/DBM/PLA composite biomaterial was implanted and its physicochemical characteristics, biocompatibility and ability to facilitate repair of infected bone defect were assessed. The GS/DBM/PLA composite biomaterial maintained the antibiotic activity of GS, with good anti-compression strength, porosity and biocompatibility. The results of the animal experiments indicated that the GS/DBM/PLA composite biomaterial exerted marked anti-infective effects and facilitated bone defect repair, while simultaneously controlling infection. Porous GS/DBM/PLA is therefore a promising composite biomaterial for use in bone tissue engineering. PMID:27284292

  6. Electrospun PLA: PCL composites embedded with unmodified and 3-aminopropyltriethoxysilane (ASP) modified halloysite nanotubes (HNT)

    NASA Astrophysics Data System (ADS)

    Haroosh, Hazim J.; Dong, Yu; Chaudhary, Deeptangshu S.; Ingram, Gordon D.; Yusa, Shin-ichi

    2013-02-01

    Electrospinning is a simple and versatile fiber synthesis technique in which a high-voltage electric field is applied to a stream of polymer melt or polymer solution, resulting in the formation of continuous micro/nanofibers. Halloysite nanotubes (HNT) have been found to achieve improved structural and mechanical properties when embedded into various polymer matrices. This research work focuses on blending poly( ɛ-caprolactone) (PCL) (9 and 15 wt%/v) and poly(lactic acid) (PLA) (fixed at 8 wt%/v) solutions with HNT at two different concentrations 1 and 2 wt%/v. Both unmodified HNT and HNT modified with 3-aminopropyltriethoxysilane (ASP) were utilized in this study. Fiber properties have been shown to be strongly related to the solution viscosity and electrical conductivity. The addition of HNT increased the solution viscosity, thus resulting in the production of uniform fibers. For both PCL concentrations, the average fiber diameter increased with the increasing of HNT concentration. The average fiber diameters with HNT-ASP were reduced considerably in comparison to those with unmodified HNT when using 15 wt%/v PCL. Slightly better dispersion was obtained for PLA: PCL composites embedded with HNT-ASP compared to unmodified HNT. Furthermore, the addition of HNT-ASP to the polymeric blends resulted in a moderate decrease in the degree of crystallinity, as well as slight reductions of glass transition temperature of PCL, the crystallization temperature and melting temperature of PLA within composite materials. The infrared spectra of composites confirmed the successful embedding of HNT-ASP into PLA: PCL nanofibers relative to unmodified HNT due to the premodification using ASP to reduce the agglomeration behavior. This study provides a new material system that could be potentially used in drug delivery, and may facilitate good control of the drug release process.

  7. Hydrophobic-modified nano-cellulose fiber/PLA biodegradable composites for lowering water vapor transmission rate (WVTR) of paper.

    PubMed

    Song, Zhaoping; Xiao, Huining; Zhao, Yi

    2014-10-13

    New biodegradable nanocomposites have been successfully prepared by incorporating modified nano-cellulose fibers (NCF) in a biodegradable polylactic acid (PLA) matrix in this work. The hydrophobic-modified NCF was obtained by grafting hydrophobic monomers on NCF to improve the compatibility between NCF and PLA during blending. The resulting NCF/PLA composites were then applied on paper surface via a cast-coating process in an attempt to reduce the water vapor transmission rate (WVTR) of paper. The WVTR tests, conducted under various testing conditions and with different coating weights, demonstrated that the modified NCF/PLA composites coating played a critical role in lowering WVTR of paper. The lowest WVTR value was 34 g/m(2)/d, which was obtained with an addition of 1% of modified NCF to PLA and the composites coating weight at 40 g/m(2) and substantially lower than the control value at 1315 g/m(2)/d. The paper coated with the modified biodegradable composite is promising as green-based packaging materials.

  8. Biocompatibility and characterization of polylactic acid/styrene-ethylene-butylene-styrene composites.

    PubMed

    Tsou, Chi-Hui; Kao, Bo-Jyue; Yang, Ming-Chien; Suen, Maw-Cherng; Lee, Yi-Hsuan; Chen, Jui-Chin; Yao, Wei-Hua; Lin, Shang-Ming; Tsou, Chih-Yuan; Huang, Shu-Hsien; De Guzman, Manuel; Hung, Wei-Song

    2015-01-01

    Polylactic acid (PLA)/styrene-ethylene-butylene-styrene (SEBS) composites were prepared by melt blending. Differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WXRD) were used to characterize PLA and PLA/SEBS composites in terms of their melting behavior and crystallization. Curves from thermal gravimetric analysis (TGA) illustrated that thermostability increased with SEBS content. Further morphological analysis of PLA/SEBS composites revealed that SEBS molecules were not miscible with PLA molecules in PLA/SEBS composites. The tensile testing for PLA and PLA/SEBS composites showed that the elongation at the break was enhanced, but tensile strength decreased with increasing SEBS content. L929 fibroblast cells were chosen to assess the cytocompatibility; the cell growth of PLA was found to decrease with increasing SEBS content. This study proposes possible reasons for these properties of PLA/SEBS composites.

  9. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering.

    PubMed

    Gui-Bo, Yin; You-Zhu, Zhang; Shu-Dong, Wang; De-Bing, Shi; Zhi-Hui, Dong; Wei-Guo, Fu

    2010-04-01

    In this article, a nanofibrous composite scaffold of poly L-lactic acid(PLA)/silk fibroin(SF)-gelatin was fabricated by multilayer electrospinning. To investigate the feasibility of PLA/SF-gelatin use as scaffolds, the porosity and mechanical properties were examined; in particular, the biocompatibilities were evaluated in vivo and in vitro by the means of cell adhesion and cytotoxicity testing, short-term subcutaneous implantation testing, and acute hemolysis testing according to the requirements of ISO 10993. The results showed the scaffold achieved the desirable levels of pliability (elastic up to 7.3% strain) and the appropriate breaking strength (2.22 MPa). The porosity of the SF-gelatin layer was 87% and the pore diameter was 142 nm. After 12 days of cultivation, SEM observation demonstrated the scaffold was nontoxic, biocompatible, and capable of supporting 3T3 mouse fibroblasts attachment, spreading, and growth. The hemolysis test proved the scaffolds with hemolytic rates from 3.1 to 4.5%. The subcutaneous implantation test indicated minor inflammatory reactions surrounding the scaffolds and biodegradation were initially observed in about 3 months. The desired porous structure, strong and pliable properties, combined with the ability of PLA/SF-gelatin scaffold to support cell growth in vitro, especially excellent biocompatibility in vivo, suggested potential application for tissue engineering scaffolds.

  10. Simulation of mechanical behavior and optimization of simulated injection molding process for PLA based antibacterial composite and nanocomposite bone screws using central composite design.

    PubMed

    Heidari, Behzad Shiroud; Oliaei, Erfan; Shayesteh, Hadi; Davachi, Seyed Mohammad; Hejazi, Iman; Seyfi, Javad; Bahrami, Mozhgan; Rashedi, Hamid

    2017-01-01

    In this study, injection molding of three poly lactic acid (PLA) based bone screws was simulated and optimized through minimizing the shrinkage and warpage of the bone screws. The optimization was carried out by investigating the process factors such as coolant temperature, mold temperature, melt temperature, packing time, injection time, and packing pressure. A response surface methodology (RSM), based on the central composite design (CCD), was used to determine the effects of the process factors on the PLA based bone screws. Upon applying the method of maximizing the desirability function, optimization of the factors gave the lowest warpage and shrinkage for nanocomposite PLA bone screw (PLA9). Moreover, PLA9 has the greatest desirability among the selected materials for bone screw injection molding. Meanwhile, a finite element analysis (FE analysis) was also performed to determine the force values and concentration points which cause yielding of the screws under certain conditions. The Von-Mises stress distribution showed that PLA9 screw is more resistant against the highest loads as compared to the other ones. Finally, according to the results of injection molding simulations, the design of experiments (DOE) and structural analysis, PLA9 screw is recommended as the best candidate for the production of biomedical materials among all the three types of screws.

  11. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding.

    PubMed

    Mi, Hao-Yang; Salick, Max R; Jing, Xin; Jacques, Brianna R; Crone, Wendy C; Peng, Xiang-Fang; Turng, Lih-Sheng

    2013-12-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold's microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications.

  12. Characterization of thermoplastic polyurethane/polylactic acid (TPU/PLA) tissue engineering scaffolds fabricated by microcellular injection molding

    PubMed Central

    Mi, Hao-Yang; Salick, Max R.; Jing, Xin; Jacques, Brianna R.; Crone, Wendy C.; Peng, Xiang-Fang; Turng, Lih-Sheng

    2015-01-01

    Polylactic acid (PLA) and thermoplastic polyurethane (TPU) are two kinds of biocompatible and biodegradable polymers that can be used in biomedical applications. PLA has rigid mechanical properties while TPU possesses flexible mechanical properties. Blended TPU/PLA tissue engineering scaffolds at different ratios for tunable properties were fabricated via twin screw extrusion and microcellular injection molding techniques for the first time. Multiple test methods were used to characterize these materials. Fourier transform infrared spectroscopy (FTIR) confirmed the existence of the two components in the blends; differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) confirmed the immiscibility between the TPU and PLA. Scanning electron microscopy (SEM) images verified that, at the composition ratios studied, PLA was dispersed as spheres or islands inside the TPU matrix and that this phase morphology further influenced the scaffold’s microstructure and surface roughness. The blends exhibited a large range of mechanical properties that covered several human tissue requirements. 3T3 fibroblast cell culture showed that the scaffolds supported cell proliferation and migration properly. Most importantly, this study demonstrated the feasibility of mass producing biocompatible PLA/TPU scaffolds with tunable microstructures, surface roughnesses, and mechanical properties that have the potential to be used as artificial scaffolds in multiple tissue engineering applications. PMID:24094186

  13. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites.

    PubMed

    Lim, Jung Seop; Park, Ku-il; Chung, Gun Soo; Kim, Jong Hoon

    2013-05-01

    In this study, composites of semicrystalline, biodegradable polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-HHx) were prepared by direct melt compounding. The physical and thermal properties of the composites were investigated as a function of the composition ratio. Differential scanning calorimetry analysis indicated that PLA and PHB-HHx formed immiscible composites over the observed range of composition. The crystallization of PLA was gradually suppressed by increasing proportions of PHB-HHx. Dynamic mechanical analysis results confirmed that the innate ductility of PHB-HHX and its inhibiting effect on PLA crystallization improved the stiffness of the composite compared to those of neat PLA. The infrared spectra of the immiscible PLA/PHB-HHx composites at two crystallization temperatures (30 °C, 130 °C) were obtained and presented. At 30 °C, PHB-HHx existed as crystalline domains in the PLA matrix, while, amorphous phase of molten PHB-HHx was diffused within the crystalline phase of PLA at 130 °C. The interaction between PHB-HHX and PLA could not be elucidated from the temperature data. Mechanical tests showed that the addition of PHB-HHx improves ductility of PLA/PHB-HHx composite. Morphological analysis revealed that small proportions of PHB-HHx exhibited less tendency to aggregate, which resulted in greater plastic deformation and improved toughness. From this study, PLA blended with small portions of PHB-HHx may further expand the use of bio-friendly resources in a variety of applications such as flexible films, food packaging and something like that.

  14. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied.

  15. Polymer Film-Based Screening and Isolation of Polylactic Acid (PLA)-Degrading Microorganisms.

    PubMed

    Kim, Mi Yeon; Kim, Changman; Moon, Jungheun; Heo, Jinhee; Jung, Sokhee P; Kim, Jung Rae

    2017-02-28

    Polylactic acid (PLA) has been highlighted as an alternative renewable polymer for the replacement of petroleum-based plastic materials, and is considered to be biodegradable. On the other hand, the biodegradation of PLA by terminal degraders, such as microorganisms, requires a lengthy period in the natural environment, and its mechanism is not completely understood. PLA biodegradation studies have been conducted using mainly undefined mixed cultures, but only a few bacterial strains have been isolated and examined. For further characterization of PLA biodegradation, in this study, the PLA-degrading bacteria from digester sludge were isolated and identified using a polymer film-based screening method. The enrichment of sludge on PLA granules was conducted with the serial transference of a subculture into fresh media for 40 days, and the attached biofilm was inoculated on a PLA film on an agar plate. 3D optical microscopy showed that the isolates physically degraded the PLA film due to bacterial degradation. 16S rRNA gene sequencing identified the microbial colonies to be Pseudomonas sp. MYK1 and Bacillus sp. MYK2. The two isolates exhibited significantly higher specific gas production rates from PLA biodegradation compared with that of the initial sludge inoculum.

  16. Toward an alternative compatibilizer for PLA/cellulose composites: grafting of xyloglucan with PLA.

    PubMed

    Marais, Andrew; Kochumalayil, Joby J; Nilsson, Camilla; Fogelström, Linda; Gamstedt, E Kristofer

    2012-08-01

    Poly(L-lactic acid) (PLLA) chains were grafted on xyloglucan substrates via ring-opening polymerization of the L-lactide monomer. Different parameters such as the nature of the substrate (native or modified xyloglucan) and the substrate/monomer ratios were varied in the synthesis to achieve different lengths of the grafted chains. A range of experimental techniques including infrared spectroscopy and nuclear magnetic resonance were used to characterize the final product. Thermal analysis showed that the glass transition temperature of xyloglucan was decreased from 252 °C to 216 °C following the grafting of PLLA. The grafting of less hydrophilic chains from xyloglucan also affected the interaction with water: the PLLA-grafted xyloglucan was insoluble in water and the moisture uptake could be decreased by about 30%. Xyloglucan adsorbs strongly to cellulose; therefore such a graft copolymer may improve the compatibility between cellulose fibers and PLLA. The PLLA-grafted xyloglucan may be useful as a novel compatibilizer in fiber-reinforced PLLA composites.

  17. Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers

    PubMed Central

    2013-01-01

    Background Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant. Results In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content. Conclusions The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low

  18. An investigation of crystallization and rheological behaviors of PLA/HDPE/Nano-CaCO3 composites by experimental design

    NASA Astrophysics Data System (ADS)

    de Oliveira, Amanda G.; Teixeira, Viviane G.; da Silva, Ana Lúcia N.; de Sousa, Ana Maria F.

    2015-05-01

    Nowadays, the development of products from renewable raw material has been an important subject of interest for a great number of researchers. Poly(lactic acid) is versatile polymer, synthesized from renewable resources, biodegradable and biocompatible and that has been considered as stronger candidate to replace fossil-based polymers in many application. However, the PLA still has some shortcomings to be solved, such as low thermal resistance, rate crystallization, impact resistance and gas barrier properties. Thus, adding nanofiller can be an interesting method to extend and to improve the PLA properties. The aim of this work is to evaluate the rheological and thermal properties of composites based on PLA/nano-CaCO3/HDPE by using a design of experiments (DOE)-2n Factorial, with three center points. Three factors were studied: HDPE/nano-CaCO3 masterbatch content, temperature and mixer speed. All PLA/Nano-CaCO3/HDPE experiments were characterized by differential scanning calorimetry (DSC), torque rheometry and melt flow index analysis (MFI). It was noticed that torque rheometry was affected by the addition of the HDPE/nano-CaCO3 masterbatch content and it was also observed a synergism among the factors. The nanofiller content, added in the masterbatch, also affected the flow behavior of composites produced.

  19. Effect of an acid filler on hydrolysis and biodegradation of poly-lactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Iozzino, Valentina; Speranza, Vito; Pantani, Roberto

    2015-12-01

    The use of biodegradable polymers is certainly an excellent strategy to solve many of the problems related to the disposal of the traditional polymers, whose accumulation in the environment is harmful and damaging. In order to optimize the use of biodegradable polymers, it is very important to understand and control the transformation processes, the structures and the morphologies resulting from the process conditions used to produce the articles and, not least, the biodegradation. The latter is strictly dependent on the just mentioned variables. The poly-lactic acid, PLA, is a biodegradable polymer. Many studies have been carried out on the degradation process of this polymer. In the course of this work we performed degradation tests on the PLA, with a specific D-isomer content, having amorphous structure, and in particular of biodegradation and hydrolysis. An acid chemical, fumaric acid, was added to PLA with the objective of controlling the rate of hydrolysis and of biodegradation. The hydrolysis process was followed, as function of time, by means of different techniques: pH variation, variation of weight of samples and variation of crystallinity degree and glass transition temperature using DSC analysis. The samples were also analyzed in terms of biodegradability by means of a homemade respirometer apparatus, in controlled composting conditions.

  20. Composite PLA scaffolds reinforced with PDO fibers for tissue engineering.

    PubMed

    Cont, Liana; Grant, David; Scotchford, Colin; Todea, Milica; Popa, Catalin

    2013-02-01

    Novel composite scaffolds were produced using long continuous bidirectional fibers embedded in an electrospun matrix, with the aim of using them in soft tissue engineering applications. The fibers are of polydioxanone and the matrix of polylactic acid. The novel manufacturing method consists of direct electrospinning performed on both sides of a collector that supports the already arranged fibers. The scaffolds were tested in vitro using 3T3 mouse fibroblasts as-obtained or functionalized with biotin or poly (dopamine). Functionalization did not significantly affect cells attachment, metabolic activity, or proliferation, but poly (dopamine) was proven to be effective in inducing hydrophilicity to the surface.

  1. Influence of Filler on the Mechanical Properties and Kinetic Crystallization Behavior of Polylactic Acid (PLA)

    NASA Astrophysics Data System (ADS)

    Mitsuta, Ryo; Inoue, Ryohei; Hara, Ryosuke; Sato, Sadao

    The kinetic crystallization behavior of PLA (polylactic acid) and PLA/MMT nanocomposites containing 3 wt% montmorillonite (MMT) was examined in order to develop a new technique for obtaining the relative crystallization degree of a material from the spherulite occupation area based on images obtained using a charge-coupled device (CCD) camera. In addition, the relative crystallization degree is discussed in terms of the Ozawa theory. The effect of MMT filler on the mechanical properties of PLA/MMT nanocomposites, the number of spherulites generated in the nanocomposites, and the linear growth rate of these spherulites were also examined experimentally. The relative crystallization curves obtained by CCD and by DSC measurement were found to be approximately the same. Moreover, it was found that the Ozawa theory could be applied not only to PLA but also to PLA/MMT nanocomposites. In these nanocomposites, the number of spherulites decreased and the linear growth rate slightly increased ; moreover, the rate of crystallization also increased. The tensile and flexural modulus of the PLA/MMT nanocomposites containing 3 wt% MMT were 5.2-14.3% greater than those of PLA, and annealing resulted in a further increase of about 4.0-20.7%. However, the Izod impact value decreased due to the increase in rigidity caused by annealing and the addition of filler.

  2. Investigation of the Effect of Mixing Methods and Chemical Treatments on the Conductivity of the CNT/PLA Based Composites

    NASA Astrophysics Data System (ADS)

    Talwar, Brijpal Singh

    The growing popularity of Poly lactic acid (PLA) is mainly due to its biocompatibility, good mechanical properties, and its synthesis from renewable resources. PLA can be compounded with electrically conductive fillers (e.g., carbon nanotubes (CNTs)) to form conductive polymer composites (CPCs). These fillers provide conductive functionality to the composite material by forming percolation paths. Featuring very low weight densities, CPCs have the potential to replace metals in the electronic industry, if they exhibit similar electrical conductivities to that of the metals. The current challenges being faced during the mixing of CNTs in the polymer matrix are: formation of aggregates due to strong van der Waals forces and breakage of CNTs during dispersion. In this study, we compare: (1) two fabrication methods to create CPCs (i.e., solution mixing by sonication and melt extrusion) (2) effect of various CNT functionalization techniques (i.e., acid and plasma treatments) on the conductivity of CPCs and (3) effect of using binding molecules like para-phenylenediamine, that act as bridges in between the CNTs in the CPCs and its effect on the conductivity of CPCs. Such conductive composite materials find widespread technological applications which either require, or could benefit from, the ability to pattern micro-sized features in two-dimensional (2D) and three-dimensional (3D) architectures. Direct-write fabrication technique is used to realise these printed patterns, using the CPC solution as ink. First, the composites comprising of 30% PLA by weight in Dichloromethane (DCM) and CNTs in different concentrations (up to 5wt. %) are fabricated using a two-step sonication method (i.e., dissolving PLA in DCM and then dispersing the CNTs in this polymer solution). Second, CPCs are fabricated using a twin screw micro extruder operating at 180°C. To verify the effects of functionalization of the CNTs on the conductivity of composites, the CNTs are functionalized by three

  3. Surface Modification of PBO Fibers for Composites by Coaxial Atmospheric Dielectric Barrier Discharge (PLA-PLA)

    NASA Astrophysics Data System (ADS)

    Hu, Qianqian; Xu, Jinzhou; Zhou, Zhenxing; Zhang, Jing

    2013-05-01

    In this work, the surface modification of poly (1, 4-phenylene-cis-benzobisoxazole) (PBO) fibers by O2/Ar coaxial atmospheric dielectric barrier discharge was investigated, as well as the interfacial adhesion properties of modified PBO fibers/epoxy composites. The results indicated that the contact angle decreased remarkably from 84.7° to 63.5° after 3 min O2/Ar plasma treatment. SEM and AFM images showed that the surface of the treated PBO fibers became rather rough. In addition, XPS results suggested that the polar functional group (O=C—O) was introduced on the surface of the treated PBO fiber. The interfacial adhesion test showed that the interfacial shear strength (IFSS) and the interlaminar shear strength (ILSS) increased significantly by 63.54% and 130%, respectively. Moreover, the excellent tensile property of the PBO fibres was well preserved.

  4. Biodegradable PLA (polylactic acid) hinged trays keep quality of fresh-cut and cooked spinach.

    PubMed

    Botondi, Rinaldo; Bartoloni, Serena; Baccelloni, Simone; Mencarelli, Fabio

    2015-09-01

    This work examines the effects of packaging using two different polymeric trays with hinged lids, polyethylene terephthalate (PET) and polylactic acid (PLA), on fresh-cut and cooked spinach (Spinacia oleracea). Samples were stored in a cold room for 16 days at 4 °C. Chemical (total pigments, total polyphenols, ascorbic acid, antioxidant activity), physical (water activity), technological (colour evaluation), sensorial (aroma, visual appearance and water accumulation) and microbial (total aerobic mesophilic and psychrotrophic counts) parameters were tested. Both polymeric trays maintained the overall quality of fresh spinach for 6 days but spinach stored in PLA trays maintained its flavour longer. A significant increase in total polyphenols, antiradical activity, total carotenoids as well as a decrease in ascorbic acid in fresh spinach was observed in the first 3 days of storage in both samples. Unfortunately, the PLA package accumulated condensed water. The total microbial load of fresh-cut spinach reached about 6.3-7.3 log CFU g(-1) within 8 days. Cooked spinach packed in PLA and PET polymeric hinged trays showed the same behaviour as fresh spinach in terms of quality and shelf life. In conclusion, PLA plastic hinged trays can be used for packaging fresh-cut and cooked cut spinach, but the problem of condensed water must be solved.

  5. Mechanical and moisture barrier properties of titanium dioxide nanoparticles and halloysite nanotubes reinforced polylactic acid (PLA)

    NASA Astrophysics Data System (ADS)

    Alberton, J.; Martelli, S. M.; Fakhouri, F. M.; Soldi, V.

    2014-08-01

    Polylactic acid (PLA) has been larger used in biomedical field due to its low toxicity and biodegradability. The aim of this study was to produce PLLA nanocomposites, by melt extrusion, containing Halloysite nanotubes (HNT) and/or titanium dioxide (TiO2) nanoparticles. Immediately after drying, PLLA was mechanically homogenized with the nanofillers and then melt blended using a single screw extruder (L/D = 30) at a speed of 110 rpm, with three heating zones in which the following temperatures were maintained: 150, 150 and 160°C (AX Plasticos model AX14 LD30). The film samples were obtained by compression molding in a press with a temperature profile of 235 ± 5°C for 2.5 min, after pressing, films were cooled up to room temperature. The mechanical tests were performed according to ASTM D882-09 and the water vapor permeability (WVP) was measured according to ASTM E-96, in triplicate. The tensile properties indicated that the modulus was improved with increased TiO2 content up to 1g/100g PLLA. The Young's modulus (YM) of the PLA was increased from 3047 MPa to 3222 MPa with the addition of 1g TiO2/100g PLLA. The tensile strength (TS) of films increases with the TiO2 content. In both cases, the YM and TS are achieved at the 1% content of TiO2 and is due to the reinforcing effect of nanoparticles. Pristine PLA showed a strain at break (SB) of 3.56%, while the SB of nanocomposites were significant lower, for instance the SB of composite containing 7.5 g HNT/100g PLLA was around 1.90 %. The WVP of samples was increased by increasing the nano filler content. It should be expected that an increase of nanofiller content would decrease the mass transfer of water molecules throughout the samples due to the increase in the way water molecules will have to cross to permeate the material. However, this was not observed. Therefore, this result can be explained considering the molecular structure of both fillers, which contain several hydroxyl groups in the surface, making the

  6. Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    NASA Astrophysics Data System (ADS)

    Munteanu, Bogdanel Silvestru; Aytac, Zeynep; Pricope, Gina M.; Uyar, Tamer; Vasile, Cornelia

    2014-10-01

    The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices.

  7. Study of the free volume fraction in polylactic acid (PLA) by thermal analysis

    NASA Astrophysics Data System (ADS)

    Abdallah, A.; Benrekaa, N.

    2015-10-01

    The poly (lactic acid) or polylactide (PLA) is a biodegradable polymer with high modulus, strength and thermoplastic properties. In this work, the evolution of various properties of PLA is studied, such as glass transition temperature, mechanical modules and elongation percentage with the aim of investigating the free volume fraction. To do so, two thermal techniques have been used: the dynamic mechanical analysis (DMA) and dilatometry. The results obtained by these techniques are combined to go back to the structural properties of the studied material.

  8. Effects of dry method esterification of starch on the degradation characteristics of starch/polylactic acid composites.

    PubMed

    Zuo, Ying Feng; Gu, Jiyou; Qiao, Zhibang; Tan, Haiyan; Cao, Jun; Zhang, Yanhua

    2015-01-01

    Maleic anhydride esterified corn starch was prepared by dry method. Esterified starch/polylactic acid (PLA) biodegradable composite was produced via melt extrusion method with blending maleic anhydride esterified corn starch and PLA. The influence of the dry method esterification of starch on the degradation characteristics of starch/PLA composites was investigated by the natural aging degradation which was soil burial method. Test results of mass loss rate showed that the first 30 days of degradation was mainly starch degradation, and the degradation rate of esterified starch/PLA (ES/PLA) was slower than that of native starch/PLA (NS/PLA). Therefore, the damage degree of ES/PLA on the surface and inside was smaller than that of NS/PLA, and the infrared absorption peak intensities of C-O, C=O and C-H were stronger than that of NS/PLA. With the increasing time of soil burial degradation, the damage degree of NS/PLA and ES/PLA on the exterior and interior were gradually increased, whereas the infrared absorption peak intensities of C-O, C=O and C-H were gradually decreased. The XRD diffraction peak intensity of PLA in composites showed an increased trend at first which was then followed by a decreased one along with the increasing time of soil burial degradation, indicating that the degradation of amorphous regions of PLA was earlier than its crystalline regions. When the soil burial time was the same, the diffraction peak intensity of PLA in ES/PLA was stronger than that of NS/PLA. If the degradation time was the same, T0, Ti and residual rate of thermal decomposition of NS/PLA were larger than those of ES/PLA. The tensile strength and bending strength of composites were decreased gradually with soil burial time increasing. Both the tensile strength and bending strength of ES/PLA were stronger than those of NS/PLA.

  9. Non-isothermal crystallization kinetics in melt-drawn PCL/PLA microfibrillar composites

    NASA Astrophysics Data System (ADS)

    Kratochvíl, Jaroslav; Kelnar, Ivan

    2016-05-01

    The non-isothermal crystallization kinetics of the system poly(ɛ-caprolactone)/poly(lactic acid)/clay C15 and related microfibrillar composites has been studied using a simple method based on mathematical treatment of the DSC cumulative crystallization curves in their inflection point. The method provides three kinetic parameters: temperature of start of crystallization, temperature of maximum crystallization rate, and numerical value of the maximum crystallization rate. In the range of cooling rates 5 - 20°C/min, the temperatures of crystallization start and of maximum crystallization rate are determined with standard deviation of 0.3 and 0.4°C, respectively. Average standard deviation of maximum crystallization rate is 1.0 K-1 corresponding to coefficient of variation 5.8 %. Repeatability is slightly better at lower cooling rates. The modified samples show intensive nucleation effect during the non-isothermal crystallization, as demonstrated by their values of temperatures of crystallization start and of maximum crystallization rate that are significantly higher than that of neat PCL. The highest maximum crystallization rate has been found for the blend PCL/PLA 80/20. The proposed method does not refer to any crystallization model and does not require exact determination of the starting point of crystallization. On the other hand, it does not provide any information about dimensionality of crystal growth. The method is particularly useful for characterizing a series of samples derived by modification of the neat polymer.

  10. Synthesis and characterization of L-lactide and polylactic acid (PLA) from L-lactic acid for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rahmayetty, Sukirno, Prasetya, Bambang; Gozan, Misri

    2017-02-01

    Lactide is the monomer for the polymer polylactic acid (PLA) from lactic acid through polycondensation and depolymerization process. The properties of PLA strongly depend on the quality of the lactide monomer from which it is synthesized. Optical purity of lactide produced in depolymerization process confirmed to be L-lactide. The highest yield of crude lactide was 38.5% at temperature 210 °C with average molecular weight (Mn) of oligomer was 2389. Ring opening polymerization of lactide using Candida rugosa lipase as biocatalyst to PLLA synthesis has been achieved to generate useful biomedical materials free from heavy metal.

  11. SKELETAL MUSCLE GROUP VIA PHOSPHOLIPASE A2 (iPLA2β): EXPRESSION AND ROLE IN FATTY ACID OXIDATION†

    PubMed Central

    Carper, Michael J.; Zhang, Sheng; Turk, John; Ramanadham, Sasanka

    2009-01-01

    Among the phospholipases A2 (PLA2s) are the Group VI Ca2+-independent PLA2s (iPLA2s) and expression of multiple transcripts of iPLA2 in skeletal muscle has been reported. In the present study, phospholipase activity and sequential ATP and calmodulin affinity column chromatography analyses reveal that skeletal muscle iPLA2 exhibits properties characteristic of the iPLA2β isoform. The phospholipase activity of iPLA2β has been demonstrated to participate in signal transduction, cell proliferation, and apoptosis. We also report here that skeletal muscle from iPLA2β-null mice, relative to wild type muscle, exhibits a reduced capacity to oxidize palmitate but not palmitoyl-CoA or acetyl-CoA in the absence of changes in fatty acid transporters CD36 and CPT1 or β-hydroxyacyl-CoA dehydrogenase activity. Recently, purified iPLA2β was demonstrated to manifest a thioesterase activity which catalyzes hydrolysis of fatty acyl-CoAs. The liberated CoA-SH facilitates fatty acid transport into the mitochondria. In this regard, we find that fractions eluted from the ATP column and containing iPLA2β phospholipase activity also contained acyl-CoA thioesterase activity that was inhibited by the bromoenol lactone (BEL) suicide inhibitor of iPLA2β. We further find that acyl-CoA thioesterase activity in skeletal muscle preparations from iPLA2β-null mice is significantly reduced, relative to WT activity. These findings suggest that the absence of acyl-CoA thioesterase activity of iPLA2β can lead to reduced fatty acyl-CoA generation and impair fatty acid oxidation in iPLA2β-null mice. Our findings therefore reveal a novel function of iPLA2β, related not to its phospholipase activity but to its thioesterase activity, which contributes to optimal fatty acid oxidation in skeletal muscle. PMID:18937505

  12. Fabrication and characterization of a foamed polylactic acid (PLA)/ thermoplastic polyurethane (TPU) shape memory polymer (SMP) blend for biomedical and clinical applications

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Kowalski, Jennifer; Naguib, Hani E.

    2014-03-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials that are able to respond to external stimulus such as heat by altering their shape. Bio-compatible SMPs have a number of advantages over static materials and are being studied extensively for biomedical and clinical applications (such as tissue stents and scaffolds). A previous study has demonstrated that the bio-compatible polymer blend of polylactic acid (PLA)/ thermoplastic polyurethane (TPU) (50/50 and 70/30) exhibit good shape memory properties. In this study, the mechanical and thermo-mechanical (shape memory) properties of TPU/PLA SMP blends were characterized; the compositions studied were 80/20, 65/35, and 50/50 TPU/PLA. In addition, porous TPU/PLA SMP blends were fabricated with a gas-foaming technique; and the morphology of the porous structure of these SMPs foams were characterized with scanning electron microscopy (SEM). The TPU/PLA bio-compatible SMP blend was fabricated with melt-blending and compression molding. The glass transition temperature (Tg) of the SMP blends was determined with a differential scanning calorimeter (DSC). The mechanical properties studied were the stress-strain behavior, tensile strength, and elastic modulus; and the thermomechanical (or shape memory) properties studied were the shape fixity rate (Rf), shape recovery rate (Rr), response time, and the effect of recovery temperature on Rr. The porous 80/20 PLA/TPU SMP blend was found to have the highest tensile strength, toughness and percentage extension, as well as the lowest density and uniform pore structure in the micron and submicron scale. The porous 80/20 TPU/PLA SMP blend may be further developed for specific biomedical and clinical applications where a combination of tensile strength, toughness, and low density are required.

  13. Preparation and characterization of dry method esterified starch/polylactic acid composite materials.

    PubMed

    Zuo, Yingfeng; Gu, Jiyou; Yang, Long; Qiao, Zhibang; Tan, Haiyan; Zhang, Yanhua

    2014-03-01

    Corn starch and maleic anhydride were synthesized from a maleic anhydride esterified starch by dry method. Fourier transform infrared spectroscopy (FTIR) was used for the qualitative analysis of the esterified starches. The reaction efficiency of dry method esterified starch reached 92.34%. The dry method esterified starch was blended with polylactic acid (PLA), and the mixture was melted and extruded to produce the esterified starch/polylactic acid (ES/PLA) composites. The degree of crystallinity of the ES/PLA was lower than that of the NS/PLA, indicating that the relative dependence between these two components of starch and polylactic acid was enhanced. Scanning electron microscopy (SEM) indicated that the dry method esterified starch increased the two-phase interface compatibility of the composites, thereby improving the tensile strength, bending strength, and elongation at break of the ES/PLA composite. The introduction of a hydrophobic ester bond and increase in interface compatibility led to an increase in ES/PLA water resistance. Melt index determination results showed that starch esterification modification had improved the melt flow properties of starch/PLA composite material. Strain scanning also showed that the compatibility of ES/PLA was increased. While frequency scanning showed that the storage modulus and complex viscosity of ES/PLA was less than that of NS/PLA.

  14. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.

    PubMed

    Masmoudi, Fatma; Bessadok, Atef; Dammak, Mohamed; Jaziri, Mohamed; Ammar, Emna

    2016-10-01

    The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

  15. Sugar beet pulp and poly(lactic acid) composites using methylene diphenyl diisocyanate as coupling agent

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composites from sugar beet pulp (SBP) and poly(lactic acid) (PLA) were extruded in the presence of polymeric methylene diphenyl diisocyanate (pMDI). SBP particles were evenly distributed within the PLA matrix phase as revealed by confocal fluorescence microscopic analysis. The resultant composites w...

  16. Starch/fiber/poly(lactic acid) foam and compressed foam composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composites of starch, fiber, and poly(lactic acid) (PLA) were made using a foam substrate formed by dehydrating starch or starch/fiber gels. PLA was infiltrated into the dry foam to provide better moisture resistance. Foam composites were compressed into plastics using force ranging from 4-76MPa. Te...

  17. Bioplastic composite foam prepared from poly(lactic acid) and natural wood flour

    NASA Astrophysics Data System (ADS)

    Suwannakas, Pokkes; Petrchwattana, Nawadon; Covavisaruch, Sirijutaratana

    2016-03-01

    The major drawbacks of Poly(lactic acid) (PLA) bioplastic are its cost and brittleness. This study aims to reduce the cost by foaming PLA reinforced with wood flour. A series of PLA/ natural fiber (WF) composite was prepared by using WF of selected conifers up to 5 wt%; each composite formulation was then foamed using 2 wt% of Azodicarbonamide (ADC) as chemical foaming agent. ADC effectively reduced the density of PLA and the PLA/WF composite foam by about 45% to 0.64 g/cm3 from 1.24 g/cm3 of neat PLA and 1.26 g/cm3 of PLA/WF composites when 2 wt% ADC was applied. Mechanical behaviors in terms of compressive and impact properties were investigated. With the presence of WF, the compressive stress increased with the WF content due to the good interfacial adhesion between the PLA matrix and the WF. This was verified by microscopic observation, leading to efficient stress transfer at the interface between PLA matrix and the WF. The presence of WF raised the specific compressive modulus and strength of PLA/WF composites to around 0.94 GPa.cm3/g and 2.65 MPa.cm3/g but foaming the PLA or the PLA/WF composites led to a dramatic reduction of the compressive modulus to 0.2-0.4 GPa.cm3/g, implying that the PLA and the PLA/WF foams had become softened. This was evidently observed in the significant reduction of hardness coupled with the vast drop of stress required to compressively deform the foams.

  18. Preparation of hierarchical structured nano-sized/porous poly(lactic acid) composite fibrous membranes for air filtration

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Pan, Zhijuan

    2015-11-01

    Hierarchical structured nano-sized/porous poly(lactic acid) (PLA-N/PLA-P) composite fibrous membranes with excellent air filtration performance were prepared via an electrospinning technique. Firstly, PLA-P fibers with different morphology were fabricated by varying the relative humidity, and the nanopores on fiber surface played a key role in improving the specific surface area and filtration performance of the resultant membranes. Secondly, hierarchical structure of PLA-N/PLA-P interlaced structured membranes and PLA-N/PLA-P double-layer structured membranes with different mass ratios for further enhanced air filtration performance were also successfully prepared by combining PLA-N fibers with PLA-P fibers. Filtration tests by measuring the penetration of sodium chloride (NaCl) aerosol particles with a 260 nm mass median diameter revealed that a moderate mass ratio of PLA-P fibers and PLA-N fibers contributed to improving the filtration performance of the hierarchical structured PLA-N/PLA-P composite membrane, and the double-layer structured PLA-N/PLA-P membrane possessed a higher filtration efficiency and quality factor than that of an interlaced structured PLA-N/PLA-P membrane with the same mass ratio. The as-prepared PLA-N/PLA-P double-layer structured membrane with a mass ratio of 1/5 showed a high filtration efficiency (99.999%) and a relatively low pressure drop (93.3 Pa) at the face velocity of 5.3 cm/s.

  19. Effect of Sterilization Methods on Electrospun Poly(lactic acid) (PLA) Fiber Alignment for Biomedical Applications.

    PubMed

    Valente, T A M; Silva, D M; Gomes, P S; Fernandes, M H; Santos, J D; Sencadas, V

    2016-02-10

    Medically approved sterility methods should be a major concern when developing a polymeric scaffold, mainly when commercialization is envisaged. In the present work, poly(lactic acid) (PLA) fiber membranes were processed by electrospinning with random and aligned fiber alignment and sterilized under UV, ethylene oxide (EO), and γ-radiation, the most common ones for clinical applications. It was observed that UV light and γ-radiation do not influence fiber morphology or alignment, while electrospun samples treated with EO lead to fiber orientation loss and morphology changing from cylindrical fibers to ribbon-like structures, accompanied to an increase of polymer crystallinity up to 28%. UV light and γ-radiation sterilization methods showed to be less harmful to polymer morphology, without significant changes in polymer thermal and mechanical properties, but a slight increase of polymer wettability was detected, especially for the samples treated with UV radiation. In vitro results indicate that both UV and γ-radiation treatments of PLA membranes allow the adhesion and proliferation of MG 63 osteoblastic cells in a close interaction with the fiber meshes and with a growth pattern highly sensitive to the underlying random or aligned fiber orientation. These results are suggestive of the potential of both γ-radiation sterilized PLA membranes for clinical applications in regenerative medicine, especially those where customized membrane morphology and fiber alignment is an important issue.

  20. Three-dimensional printing with polylactic acid (PLA) thermoplastic offers new opportunities for cryobiology.

    PubMed

    Tiersch, Terrence R; Monroe, William T

    2016-12-01

    Development of devices through design, prototyping, testing, and fabrication is especially necessary for enhancement of research and eventual application in cryobiology. The advent of 3-dimensional printing offers unique opportunities for this process, given that the materials involved are suitable for use in cryogenic temperatures. We report herein that 3-D printing with polylactic acid (PLA) thermoplastic is ideally suited for cryobiology device development. Devices that are designed and standardized in open-source fashion can be electronically distributed and created locally on increasingly affordable 3-D printers, and can accelerate cryobiology findings and improve reproducibility of results.

  1. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    PubMed Central

    2013-01-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide-d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment. PMID:24134303

  2. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite.

    PubMed

    Liao, S S; Cui, F Z; Zhang, W; Feng, Q L

    2004-05-15

    A bone scaffold material (nano-HA/ collagen/PLA composite) was developed by biomimetic synthesis. It shows some features of natural bone both in main composition and hierarchical microstructure. Nano-hydroxyapatite and collagen assembled into mineralized fibril. The three-dimensional porous scaffold materials mimic the microstructure of cancellous bone. Cell culture and animal model tests showed that the composite material is bioactive. The osteoblasts were separated from the neonatal rat calvaria. Osteoblasts adhered, spread, and proliferated throughout the pores of the scaffold material within a week. A 15-mm segmental defect model in the radius of the rabbit was used to evaluate the bone-remodeling ability of the composite. Combined with 0.5 mg rhBMP-2, the material block was implanted into the defect. The segmental defect was integrated 12 weeks after surgery, and the implanted composite was partially substituted by new bone tissue. This scaffold composite has promise for the clinical repair of large bony defects according to the principles of bone tissue engineering.

  3. An overview of the recent developments in polylactide (PLA) research.

    PubMed

    Madhavan Nampoothiri, K; Nair, Nimisha Rajendran; John, Rojan Pappy

    2010-11-01

    The concept of biodegradable plastics is of considerable interest with respect to solid waste accumulation. Greater efforts have been made in developing degradable biological materials without any environmental pollution to replace oil-based traditional plastics. Among numerous kinds of degradable polymers, polylactic acid sometimes called polylactide, an aliphatic polyester and biocompatible thermoplastic, is currently a most promising and popular material with the brightest development prospect and was considered as the 'green' eco friendly material. Biodegradable plastics like polyglycolic acid, polylactic acid, polycaprolactone, polyhydroxybutyrate, etc. are commercially available for controlled drug releases, implantable composites, bone fixation parts, packaging and paper coatings, sustained release systems for pesticides and fertilizers and compost bags etc. This review will provide information on current PLA market, brief account on recent developments in the synthesis of lactic acid (monomer of PLA) through biological route, PLA synthesis, unique material properties of PLA and modification of those by making copolymers and composites, PLA degradation and its wide spectrum applications.

  4. Investigation of Ultrasonics as a tool for energy efficient recycling of Lactic acid from postconsumer PLA products

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gowrishankar

    The growing use of "ecofriendly," biodegradable polymers have created a need for a suitable recycling technique because, unlike petroleum derived plastics, their properties deteriorate during conventional recycling. These new techniques must be cost efficient and yield material properties same as virgin polymer. This research investigates the effectiveness of high-power ultrasonics as an efficient technique to recover lactic acid from postconsumer polylactic acid (PLA) products. Polylactic acid is a commercially available bioplastic derived from corn starch and/or sugar cane that is biorenewable and compostable (biodegradable). The various ongoing researches to recover lactic acid from PLA employ a common platform of high temperature, high pressure (HTHP) to effect polymer hydrolysis. The energy intensiveness of these HTHP processes prompted this work to investigate ultrasonics as an low energy alternative process to cause PLA depolymerization. The energy consumption and the time required for depolymerization were utilized as the metrics to quantify and compare depolymerization enhanced by ultrasonics with hot-bath technique. The coupled effect of catalysts concentration and different solvents, along with ultrasonic were studied based on preliminary trial results. In addition, the correlation between the rates of de-polymerization was analyzed for ultrasonic amplitude, treatment time, and catalyst concentration and types. The results indicate that depolymerization of PLA was largely effected by heating caused by ultrasonic-induced cavitations. Other effects of ultrasonics, namely cavitations and acoustic streaming, were shown to have minimal effects in enhancing depolymerization. In fact, thermal energy predominately affected the reaction kinetics; the heat introduced by conventional method (i.e., electrical heaters) was more efficient than ultrasonic heating in terms of energy (for depolymerization) per unit mass of PLA and depolymerizing time. The degree of

  5. Poly(lactic acid) and Osage Orange Wood Fiber Composites for Agricultural Mulch Films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osage orange wood(OO)was combined with poly(lactic acid)(PLA)to form a polymer composite intended for use as an agricultural mulch film. The PLA-OO mechanical properties were comparable to existing mulch film products and had the advantage of being completely biodegradable through a single growing ...

  6. Proposition of an Accelerated Ageing Method for Natural Fibre/Polylactic Acid Composite

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2015-10-01

    Natural fibre composite based on polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources and biodegradable. Some samples of jute/PLA composite and PLA alone made 6 years ago and kept in tropical climate on a shelf shows too fast ageing degradation. In this work, an accelerated ageing method for natural fibres/PLA composite is proposed and tested. Experiment was carried out with jute and flax fibre/PLA composite. The method was compared with the standard ISO 1037-06a. The residual flexural strength after ageing test was compared with the one of common wood-based panels and of real aged samples prepared 6 years ago.

  7. Fabrication of nanofibrous scaffold using a PLA and hagfish thread keratin composite; its effect on cell adherence, growth, and osteoblast differentiation.

    PubMed

    Kim, Beom-Su; Park, Ko Eun; Park, Won Ho; Lee, Jun

    2013-08-01

    Electrospinning is a useful method for the production of nanofibrous scaffolds in the field of tissue engineering. Keratin has been used as a biomaterial for electrospinning and can be used in a variety of biomedical applications because it is a natural protein, giving it the ability to improve cell affinity of scaffolds. In this study, keratin was extracted from hagfish slime thread (H-keratin) and blended with polylactic acid (PLA) polymer solution to construct a nanofibrous scaffold. Wool keratin (W-keratin) was used as a control for the comparison of morphological, physical, and biological properties. The results of Fourier transform infrared spectroscopy showed the presence of both W-keratin and H-keratin in the electrospun PLA/keratin. Observations with a scanning electron microscope revealed that PLA, PLA/W-keratin, and PLA/H-keratin had similar average diameters (~800 nm). Cell attachment experiments showed that MG-63 cells adhered more rapidly and spread better onto PLA/H-keratin than onto the pure PLA or PLA/W-keratin. Cell proliferation assay, DNA content, live/dead, and alkaline phosphatase activity assays showed that PLA/H-keratin scaffolds could accelerate the viability, proliferation, and osteogenesis of MG-63 cells relative to pure PLA or PLA/W-keratin nanofibrous scaffolds. These findings suggest that H-keratin can improve cellular attraction and has great potential to be used as a biomaterial in bone tissue engineering.

  8. Biodegradable composites from sugar beet pulp and poly(lactic acid).

    PubMed

    Liu, LinShu; Fishman, Marshall L; Hicks, Kevin B; Liu, Cheng-Kung

    2005-11-16

    Sugar beet pulp and poly(lactic acid) (PLA) composites were prepared by compression-heating. The resultant thermoplastics had a lower density, but they had tensile strength similar to that of pure PLA specimens as well as the same geometric properties. Tensile properties depended on the initial water content of sugar beet pulp and the process by which composites were manufactured. In comparison with sugar beet pulp, the composite showed improved water resistance. This can be attributed to the hydrophobic character of PLA and pulp-matrix interactions. The composite thermoplastics showed suitable properties for potential use as lightweight construction materials.

  9. Effect of orientation on the morphology and mechanical properties of PLA/starch composite filaments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PLA/starch fibers were produced by twin screw extrusion of PLA with granular or gelatinized starch/glycerol followed by drawing through a set of winders with an intermediate oven. At 30% starch, fibers drawn 2-5x were highly flexible (elongation 20-100%) while undrawn filaments were brittle (elonga...

  10. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  11. Mechanical and thermal properties of polylactic acid composites reinforced with cellulose nanoparticles extracted from kenaf fibre

    NASA Astrophysics Data System (ADS)

    Ketabchi, Mohammad Reza; Khalid, Mohammad; Thevy Ratnam, Chantara; Walvekar, Rashmi

    2016-12-01

    Different approaches have been attempted to use biomass as filler for production of biodegradable polymer composites. In this study, cellulose nanoparticles (CNP) extracted from kenaf fibres were used to produce polylactic acid (PLA) based biodegradable nanocomposites. CNP concentration was varied from 1-5 wt. % and blended with PLA using Brabender twin-screw compounder. Effects of CNP loading on the mechanical, thermal and dynamic properties of PLA were investigated. Studies on the morphological properties and influence of CNP loading on the properties of CNP/PLA nanocomposite were also conducted. The results show an adequate compatibility between CNP and PLA matrix. Moreover, addition of 3 wt. % of CNP improved the PLA tensile strength by 25%.

  12. Effects of Biomass in Polyethylene or Polylactic Acid Composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that compounding Polyethylene (PE) or Polylactic acid (PLA) with a dairy-based bioplastic resulted in composites with good mechanical properties. In this study, mass ratios of a dairy-protein-based material (DBP) ranging from 0, 5, 10 and 20 wt% replaced equivalent masse...

  13. Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture.

    PubMed

    Ahmed, I; Jones, I A; Parsons, A J; Bernard, J; Farmer, J; Scotchford, C A; Walker, G S; Rudd, C D

    2011-08-01

    Internal fixation for bone fractures with rigid metallic plates, screws and pins is a proven operative technique. However, refracture's have been observed after rigid internal fixation with metal plates and plate fixation has been known to cause localised osteopenia under and near the plate. In the present study, resorbable composites comprising a PLA matrix reinforced with iron doped phosphate glass fibres were investigated. Non-woven random mat laminates of approximately 30% and 45% fibre volume fraction (V(f)) were produced, along with unidirectional and 0°-90° samples of approximately 20% V(f). The non-woven composite laminates achieved maximum values of 10 GPa modulus and 120 MPa strength. The 0-90º samples showed unexpectedly low strengths close to matrix value (~50 MPa) although with a modulus of 7 GPa. The UD specimens exhibited values of 130 MPa and 11.5 GPa for strength and modulus respectively. All the modulus values observed were close to that expected from the rule of mixtures. Samples immersed in deionised water at 37°C revealed rapid mechanical property loss, more so for the UD and 0-90º samples. It was suggested that continuous fibres wicked the degradation media into the composite plates which sped up the deterioration of the fibre-matrix interface. The effect was less pronounced in the non-woven random mat laminates due to the discontinuous arrangement of fibres within the composite, making it less prone to wicking. Random mat composites revealed a higher mass loss than the UD and 0°-90° specimens, it was suggested this was due to the higher fibre volume fractions of these composites and SEM studies revealed voidage around the fibres by day 3. Studies of pH of the degradation media showed similar profiles for all the composites investigated. An initial decrease in pH was attributed to the release of phosphate ions into solution followed by a gradual return back to neutral.

  14. Drastic Attenuation of Pseudomonas aeruginosa Pathogenicity in a Holoxenic Mouse Experimental Model Induced by Subinhibitory Concentrations of Phenyllactic acid (PLA)

    PubMed Central

    Chifiriuc, Mariana–Carmen; Veronica, Lazar; Dracea, Olguta; Ditu, Lia-Mara; Smarandache, Diana; Bucur, Marcela; Larion, Cristina; Cernat, Ramona; Sasarman, Elena

    2007-01-01

    The discovery of communication systems regulating bacterial virulence has afforded a novel opportunity to control infectious bacteria without interfering with growth. In this paper we describe the effect of subinhibitory concentrations of phenyllactic acid (PLA) on the pathogenicity of Pseudomonas aeruginosa in mice. The animals were inoculated by oral (p.o.), intranasal (i.n.), intravenous (i.v.) and intraperitoneal (i.p.) routes with P. aeruginoasa wild and PLA-treated cultures. The mice were followed up during 16 days after infection and the body weight, mortality and morbidity rate were measured every day. The microbial charge was studied by viable cell counts in lungs, spleen, intestinal mucosa and blood. The mice batches infected with wild P. aeruginosa bacterial cultures exhibited high mortality rates (100 % after i.v. and i.p. route) and very high cell counts in blood, lungs, intestine and spleen. In contrast, the animal batches infected with PLA treated bacterial cultures exhibited good survival rates (0 % mortality) and the viable cell counts in the internal organs revealed with one exception the complete abolition of the invasive capacity of the tested strains. In this study, using a mouse infection model we show that D-3-phenyllactic acid (PLA) can act as a potent antagonist of Pseudomonas (P.) aeruginosa pathogenicity, without interfering with the bacterial growth, as demonstrated by the improvement of the survival rates as well as the clearance of bacterial strains from the body.

  15. Production of PLA-Starch Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Composites of polylactic acid (PLA) with starch have been prepared previously in an effort to reduce cost as well as to modify other properties such as biodegradation rate. However, strength and elongation both decrease on addition of starch due to poor adhesion and stress concentration at the inte...

  16. Morphology and properties of hybrid composites based on polypropylene/polylactic acid blend and bamboo fiber.

    PubMed

    Ying-Chen, Zhang; Hong-Yan, Wu; Yi-Ping, Qiu

    2010-10-01

    The design of new composites based on a polypropylene (PP)/polylactic acid (PLA) matrix and filler bamboo fiber (BF) leads to changes in process ability, morphology, and rheological properties of the raw thermoplastic. We have designed more environmentally friendly composites blended with PLA, filled with bamboo fiber. To refine dispersion of PLA and improve composite toughness, MAH-g-PP was included in the filler-matrix interface to enhance interface strength for PP, PLA and BF. The incorporation of MAH-g-PP into composites brought about beneficial changes in morphology and rheological, related with improved dispersion of PLA and increased bamboo fiber-matrix interactions. The SEM results showed the particle size of the dispersed PLA and BF phase significantly reduced with adding a litter MAH-g-PP. The XRD and DSC results showed that spread and phases in the composites preserved crystallization. The good rheological, morphological and thermal properties obtained when the ratio of PP/PLA/BF/MAH-g-PP was 48.75/13/35/3.25.

  17. Etude des melanges co-continus d'acide polylactique et d'amidon thermoplastique (PLA/TPS)

    NASA Astrophysics Data System (ADS)

    Chavez Garcia, Maria Graciela

    Les melanges co-continus sont des melanges polymeriques ou chaque composant se trouve dans une phase continue. Pour cette raison, les caracteristiques de chacun des composants se combinent et il en resulte un materiau avec une morphologie et des proprietes particulieres. L'acide polylactique (PLA) et l'amidon thermoplastique (TPS) sont des biopolymeres qui proviennent de ressources renouvelables et qui sont biodegradables. Dans ce projet, differents melanges de PLA et TPS a une haute concentration de TPS ont ete prepares dans une extrudeuse bi-vis afin de generer des structures co-continues. Grace a la technique de lixiviation selective, le TPS est enleve pour creer une structure poreuse de PLA qui a pu etre analysee au moyen de la microtomographie R-X et de la microscopie electronique a balayage MEB. L'analyse des images 2D et 3D confirme la presence de la structure co-continue dans les melanges dont la concentration en TPS. se situe entre 66% et 80%. L'effet de deux plastifiants, le glycerol seul et le melange de glycerol et de sorbitol, dans la formulation de TPS est etudie dans ce travail. De plus, nous avons evalue l'effet du PLA greffe a l'anhydride maleique (PLAg) en tant que compatibilisant. On a trouve que la phase de TPS obtenue avec le glycerol est plus grande. L'effet de recuit sur la taille de phases est aussi analyse. Grace aux memes techniques d'analyse, on a etudie l'effet du procede de moulage par injection sur la morphologie. On a constate que les pieces injectees presentent une microstructure heterogene et differente entre la surface et le centre de la piece. Pres de la surface, une peau plus riche en PLA est presente et les phases de TPS y sont allongees sous forme de lamelles. Plus au centre de la piece, une morphologie plus cellulaire est observee pour chaque phase continue. L'effet des formulations sur les proprietes mecaniques a aussi ete etudie. Les pieces injectees dont la concentration de TPS est plus grande presentent une moindre

  18. Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells.

    PubMed

    Fang, Rui; Zhang, Enwei; Xu, Ling; Wei, Shicheng

    2010-11-01

    Polycaprolactone (PCL), poly (lactic acid) (PLA) and hydroxyapatite (HA) are frequently used as materials for tissue engineering. In this study, PCL/PLA/HA nanofiber mats with different weight ratio were prepared using electrospinning. Their structure and morphology were studied by FTIR and FESEM. FTIR results demonstrated that the HA particles were successfully incorporated into the PCL/PLA nanofibers. The FESEM images showed that the surface of fibers became coarser with the introduction of HA nanoparticles into PCL/PLA system. Furthermore, the addition of HA led to the decreasing of fiber diameter. The average diameters of PCL/PLA/HA nanofiber were in the range of 300-600 nm, while that of PCL/PLA was 776 +/- 15.4 nm. The effect of nanofiber composition on the osteoblast-like MC3T3-E1 cell adhesion and proliferation were investigated as the preliminary biological evaluation of the scaffold. The MC3T3-E1 cell could be attached actively on all the scaffolds. The MTT assay revealed that PCL/PLA/HA scaffold shows significantly higher cell proliferation than PCL/PLA scaffolds. After 15 days of culture, mineral particles on the surface of the cells was appeared on PCL/PLA/HA nanofibers while normal cell spreading morphology on PCL/PLA nanofibers. These results manifested that electrospun PCL/PLA/HA scaffolds could enhance bone regeneration, showing their marvelous prospect as scaffolds for bone tissue engineering.

  19. Structural and Functional Studies of a Bothropic Myotoxin Complexed to Rosmarinic Acid: New Insights into Lys49-PLA2 Inhibition

    PubMed Central

    dos Santos, Juliana I.; Cardoso, Fábio F.; Soares, Andreimar M.; dal Pai Silva, Maeli; Gallacci, Márcia; Fontes, Marcos R. M.

    2011-01-01

    Snakebite envenoming is an important public health problem in many tropical and subtropical countries, and is considered a neglected tropical disease by the World Health Organization. Most severe cases are inflicted by species of the families Elapidae and Viperidae, and lead to a number of systemic and local effects in the victim. One of the main problems regarding viperidic accidents is prominent local tissue damage whose pathogenesis is complex and involves the combined actions of a variety of venom components. Phospholipases A2 (PLA2s) are the most abundant muscle-damaging components of these venoms. Herein, we report functional and structural studies of PrTX-I, a Lys49-PLA2 from Bothops pirajai snake venom, and the influence of rosmarinic acid (RA) upon this toxin's activities. RA is a known active component of some plant extracts and has been reported as presenting anti-myotoxic properties related to bothopic envenomation. The myotoxic activity of Lys49-PLA2s is well established in the literature and although no in vivo neurotoxicity has been observed among these toxins, in vitro neuromuscular blockade has been reported for some of these proteins. Our in vitro studies show that RA drastically reduces both the muscle damage and the neuromuscular blockade exerted by PrTX-I on mice neuromuscular preparations (by ∼80% and ∼90%, respectively). These results support the hypothesis that the two effects are closely related and lead us to suggest that they are consequences of the muscle membrane-destabilizing activity of the Lys49-PLA2. Although the C-terminal region of these proteins has been reported to comprise the myotoxic site, we demonstrate by X-ray crystallographic studies that RA interacts with PrTX-I in a different region. Consequently, a new mode of Lys49-PLA2 inhibition is proposed. Comparison of our results with others in the literature suggests possible new ways to inhibit bothropic snake venom myotoxins and improve serum therapy. PMID:22205953

  20. Properties of polylactic acid composites reinforced with oil palm biomass microcrystalline cellulose.

    PubMed

    Haafiz, M K Mohamad; Hassan, Azman; Zakaria, Zainoha; Inuwa, I M; Islam, M S; Jawaid, M

    2013-10-15

    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.

  1. Growth and osteogenic differentiation of adipose stem cells on PLA/bioactive glass and PLA/beta-TCP scaffolds.

    PubMed

    Haimi, Suvi; Suuriniemi, Niina; Haaparanta, Anne-Marie; Ellä, Ville; Lindroos, Bettina; Huhtala, Heini; Räty, Sari; Kuokkanen, Hannu; Sándor, George K; Kellomäki, Minna; Miettinen, Susanna; Suuronen, Riitta

    2009-07-01

    The aim of this study was to compare the effects of novel three-dimensional composite scaffolds consisting of a bioactive phase (bioactive glass or beta-tricalcium phosphate [beta-TCP] 10 and 20 wt%) incorporated within a polylactic acid (PLA) matrix on viability, distribution, proliferation, and osteogenic differentiation of human adipose stem cells (ASCs). The viability and distribution of ASCs on the bioactive composite scaffolds was evaluated using Live/Dead fluorescence staining, environmental scanning electron microscopy, and scanning electron microscopy. There were no differences between the two concentrations of bioactive glass and beta-TCP in PLA scaffolds on proliferation and osteogenic differentiation of ASCs. After 2 weeks of culture, DNA content and alkaline phosphatase (ALP) activity of ASCs cultured on PLA/beta-TCP composite scaffolds were higher relative to other scaffold types. Interestingly, the cell number was significantly lower, but the relative ALP/DNA ratio of ASCs was significantly higher in PLA/bioactive glass scaffolds than in other three scaffold types. These results indicate that the PLA/beta-TCP composite scaffolds significantly enhance ASC proliferation and total ALP activity compared to other scaffold types. This supports the potential future use of PLA/beta-TCP composites as effective scaffolds for tissue engineering and as bone replacement materials.

  2. Poly(lactic acid) and Osage Orange Wood Fiber Composites for Agricultural Mulch Films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Osage orange wood was combined with poly(lactic acid) to form a polymer composite intendedfor use as an agricultural mulch film. The mechanical properties were comparable to existing products and had the advantage of being completely biodegradable through a single growing season. PLA-OO composites...

  3. Continuous microcellular foaming of polylactic acid/natural fiber composites

    NASA Astrophysics Data System (ADS)

    Diaz-Acosta, Carlos A.

    Poly(lactic acid) (PLA), a biodegradable thermoplastic derived from renewable resources, stands out as a substitute to petroleum-based plastics. In spite of its excellent properties, commercial applications are limited because PLA is more expensive and more brittle than traditional petroleum-based resins. PLA can be blended with cellulosic fibers to reduce material cost. However, the lowered cost comes at the expense of flexibility and impact strength, which can be enhanced through the production of microcellular structures in the composite. Microcellular foaming uses inert gases (e.g., carbon dioxide) as physical blowing agents to make cellular structures with bubble sizes of less than 10 microm and cell-population densities (number of bubbles per unit volume) greater than 109 cells/cm³. These unique characteristics result in a significant increase in toughness and elongation at break (ductility) compared with unfoamed parts because the presence of small bubbles can blunt the crack-tips increasing the energy needed to propagate the crack. Microcellular foams have been produced through a two step batch process. First, large amounts of gas are dissolved in the solid plastic under high pressure (sorption process) to form a single-phase solution. Second, a thermodynamic instability (sudden drop in solubility) triggers cell nucleation and growth as the gas diffuses out of the plastic. Batch production of microcellular PLA has addressed some of the drawbacks of PLA. Unfortunately, the batch foaming process is not likely to be implemented in the industrial production of foams because it is not cost-effective. This study investigated the continuous microcellular foaming process of PLA and PLA/wood-fiber composites. The effects of the processing temperature and material compositions on the melt viscosity, pressure drop rate, and cell-population density were examined in order to understand the nucleation mechanisms in neat and filled PLA foams. The results indicated that

  4. Assessment of mechanical behavior of PLA composites reinforced with Mg micro-particles through depth-sensing indentations analysis.

    PubMed

    Cifuentes, S C; Frutos, E; Benavente, R; Lorenzo, V; González-Carrasco, J L

    2017-01-01

    This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine.

  5. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  6. Novel genipin-collagen immobilization of polylactic acid (PLA) fibers for use as tissue engineering scaffolds.

    PubMed

    Tambe, Nisarg; Di, Jin; Zhang, Ze; Bernacki, Susan; El-Shafei, Ahmed; King, Martin W

    2015-08-01

    The material surface plays an important role in the case of biomaterials used as tissue engineering scaffolds. On exposure to a biological environment, extra cellular matrix (ECM) proteins are adsorbed non-specifically onto the surface and cells interact indirectly with the surface through the adsorbed proteins. Most synthetic polymeric biomaterials lack the desirable surface properties for cells as well as have poor cellular adhesion due to their hydrophobic nature. The main objective of this study was to harness surface functionalization technologies to fabricate scaffolds that would be biocompatible and support the adhesion and proliferation of fibroblast cells. The collagen was immobilized on the surface of functionalized PLA via a novel natural cross-linking molecule genipin which resulted in improved cell proliferation of human dermal fibroblasts as compared to the PLA surface coated with collagen without genipin. It is believed that genipin helps reduce steric problems between the functional groups and large protein molecules, and enables immobilized peptide to move more freely in a biological environment.

  7. Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/Polylactic Acid Scaffolds

    DTIC Science & Technology

    2011-07-16

    Migration of Co-cultured Endothelial Cells and Osteoblasts in Composite Hydroxyapatite/ Polylactic Acid Scaffolds AMITA R. SHAH,1,2,3 SARITA R. SHAH,2...bone. A scaffold design consisting of a hydroxy apatite (HA) ring surrounding a polylactic acid (PLA) core simulates the structure of bone and provides...and osteoblasts in composite hydroxyapatite/ polylactic acid scaffolds. 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR

  8. Effect of natural fiber types and sodium silicate coated on natural fiber mat/PLA composites: Tensile properties and rate of fire propagation

    NASA Astrophysics Data System (ADS)

    Thongpin, C.; Srimuk, J.; hipkam, N.; Wachirapong, P.

    2015-07-01

    In this study, 3 types of natural fibres, i.e. jute, sisal and abaca, were plain weaved to fibre mat. Before weaving, the fibres were treated with 5% NaOH to remove hemi cellulose and lignin. The weaving was performed by hand using square wooden block fit with nails for weaving using one and two types of natural fibres as weft and warp fibre to produce natural fibre mat. The fibre mat was also impregnated in sodium silicate solution extracted from rich husk ash. The pH of the solution was adjusted to pH 7 using H2SO4 before impregnation. After predetermined time, sodium silicate was gelled and deposited on the mat. The fabric mat and sodium silicate coated mat were then impregnated with PLA solution to produce prepreg. Dried pepreg was laminated with PLA sheet using compressing moulding machine to obtain natural fibre mat/PLA composite. The composite containing abaca aligned in longitudinal direction with respect to tension force enhanced Young's modulus more than 300%. Fibre mat composites with abaca aligned in longitudinal direction also showed tensile strength enhancement nearly 400% higher than neat PLA. After coating with sodium silicate, the tensile modulus of the composites was found slightly increased. The silicate coating was disadvantage on tensile strength of the composite due to the effect of sodium hydroxide solution that was used as solvent for silicate extraction from rice husk ash. However, sodium silicate could retard rate of fire propagation about 50%compare to neat PLA and about 10% reduction compared to fibre mat composites without sodium silicate coated fibre mat.

  9. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    PubMed

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  10. Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, platelet-activating factor acetylhydrolase (PAF-AH) in leukocytes and body composition in healthy adults

    PubMed Central

    Detopoulou, Paraskevi; Nomikos, Tzortzis; Fragopoulou, Elizabeth; Panagiotakos, Demosthenis B; Pitsavos, Christos; Stefanadis, Christodoulos; Antonopoulou, Smaragdi

    2009-01-01

    Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) also known as serum platelet activating factor acetylhydrolase (PAF-AH) activity constitutes a novel risk marker for cardiovascular disease. Leukocytes constitute one main cellular source of circulating Lp-PLA2. The aim of the present study was to evaluate the association of both serum and leukocyte PAF-AH activities with fat distribution and lean tissue. One hundred healthy volunteers without cardiovascular disease history participated in this study (n = 52 men, 44 ± 13 years and n = 48 women, 43 ± 13 years). Body composition was assessed with dual-energy X-ray absorptiometry, while anthropometrical indices were also measured. The activity of Lp-PLA2 and levels of lipid and glycemic parameters were determined in fasting samples. Results Mean Lp-PLA2 activity was 24.8 ± 4.5 and 19.6 ± 5.0 nmol/min/mL in men and women, respectively (P < 0.001). Mean activity of PAF-AH in leukocyte homogenates was 386 ± 127 pmol/min/mg and 292 ± 92 pmol/min/mg in men and women, correspondingly (P < 0.001). In multiple regression models upper and total adiposity measures were positively associated with Lp-PLA2 activity in men after adjusting for LDL-cholesterol, age, smoking, hs-CRP and physical activity, whereas no associations were found with PAF-AH leukocyte homogenates activity. Hierarchical analysis revealed that the variables with the highest explanatory ability of Lp-PLA2 activity in men, were DXA deriving L1–L4 region of interest and arms fat (increase in R2 = 0.136, P = 0.005 and increase in R2 = 0.118, P = 0.009, respectively), followed by trunk fat and total fat. In women, no association of body composition variables with Lp-PLA2 nor PAF-AH leukocyte homogenates activity was found. Conclusion Lp-PLA2 activity is differentiated across levels of adiposity and topology of adipose tissue, whereas no association was found regarding PAF-AH leukocyte homogenates activity. Our findings suggest that Lp-PLA2 may

  11. The influence of coupling agents on mechanical property retention and long-term cytocompatibility of phosphate glass fibre reinforced PLA composites.

    PubMed

    Hasan, M S; Ahmed, I; Parsons, A J; Walker, G S; Scotchford, C A

    2013-12-01

    Completely resorbable composites are an attractive alternative for metallic bone-fracture fixation devices. However, failure of their interfacial integrity within aqueous environments, which can lead to a rapid loss of overall mechanical properties, has been reported in the literature. In this study coupling agents were investigated for phosphate glass fibre reinforced poly(lactic acid) composites. Three coupling agents with varying wettability were employed to improve initial mechanical properties and their retention in vitro via improvement of the interfacial bond between polymer matrix and fibres. Coupling agents were grafted onto the glass fibres by dip-coating in coupling agent solution at optimised concentrations. Three-aminopropyltriethoxy silane and sorbitol ended PLA oligomer treatments improved the initial flexural properties (27% strength with APS and 17% modulus via SPLA treatment) of the composites and 3-aminopropyltriethoxy silane and hexamethylene diisocyanate (HDI) treatments also decreased the loss of flexural strength and modulus during degradation. HDI treated samples retained 57.2% and 64.7% of their initial strength and modulus, respectively compared to control where only 34% of initial strength and 52% of initial modulus was retained after 28 days of degradation in PBS solution. Initial improvements in flexural properties were associated with improved shear bond strength at the interface due to covalent bonding between the glass fibres and polymer matrix provided by the coupling agents. Delay in mechanical property loss with degradation was suggested to be due to the hydrophobicity at the interface, which could have hindered the interfacial integrity loss and consequently loss of mechanical integrity of the composites. All coupling agent treated and control composites were tested for cytocompatibility using a primary human osteoblast cell line. A comparable response to the control, in terms of cell adhesion, proliferation and differentiation

  12. A novel calcium-independent cellular PLA2 acts in insect immunity and larval growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (PLA2) catalyzes the position-specific hydrolysis of fatty acids linked to the sn-2 position of phospholipids (PLs). PLA2s make up a very large superfamily, with more than known 15 groups, classified into secretory PLA2 (sPLA2), Ca2+-dependent cellular PLA2 (sPLA2), and Ca2+-indepen...

  13. EVALUATION OF POLY(LACTIC ACID) AND AGRICULTURAL COPRODUCTS AS GREEN COMPOSITE MATERIALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green composite materials of poly(lactic acid)(PLA) and agricultural coproducts such as sugar beet pulp(SBP), cuphea, lesquerella, and milkweed were compounded using a twin-screw extruder, molded by injection molding and evaluated for structural and mechanical properties using acoustic emission and ...

  14. Antimicrobial activity of nisin incorporated in pectin and polylactic acid composite films against Listeria monocytogenes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Extruded composite films from 20% pectin and 80% polylactic acids (PLA) were developed and nisin was loaded into films by a diffusion post extrusion. Inhibitory activities of the films against Listeria monocytogenes were evaluated in brain heart infusion (BHI) broth, liquid egg white and orange juic...

  15. Cloning and Sequence Analysis of cDNAs Encoding Two Acidic PLA(2) from venom of Ophiophagus hannah(King Cobra), Guangxi Species.

    PubMed

    Wang, Qiu-Yan; Shu, Yu-Yan; Zhuang, Mao-Xing; Lin, Zheng-Jiong

    2001-01-01

    Total RNA was extracted from venom glands of Ophiophagus hannah, Guangxi species. The cDNAs encoding PLA(2) were amplified by RT-PCR and cloned into the PUCm-T vector. The positive clones encoding two acidic PLA(2) (APLA(2)-1 and APLA(2)-2) were selected and bidirectionally sequenced. Their complete amino acid sequences were deduced and found to be identical to the known amino acid sequences. Their isoelectric points calculated by computer agreed with the values determined with their protein. Homology analysis indicated that the mature peptide of APLA(2)-1 had high homology with PLA(2) from venoms of Ophiophagus hannah, Fujian and Taiwan species, but APLA(2)-2 had lower homology. The most striking difference between APLA(2)-2 and other PLA(2) from Ophiophagus hannah venoms is the missing of a extra "pancreatic loop" at residues 62--66 in APLA(2)-2, and it may be related to their species evolution and biological activity.

  16. All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic-acid)

    PubMed Central

    Kim, Youngjun; Suhr, Jonghwan; Seo, Hee-Won; Sun, Hanna; Kim, Sanghoon; Park, In-Kyung; Kim, Soo-Hyun; Lee, Youngkwan; Kim, Kwang-Jin; Nam, Jae-Do

    2017-01-01

    Utilization of carbon-neutral biomass became increasingly important due to a desperate need for carbon reduction in the issue of global warming in light of replacing petroleum-based materials. We used lignin, which was an abundant, low cost, and non-food based biomass, for the development of all biomass-based films and composites through reactive compatibilization with poly (lactic-acid) (PLA). Using a facile and practical route, the hydrophilic hydroxyl groups of lignin were acetylated to impose the compatibility with PLA. The solubility parameter of the pristine lignin at 26.3 (J/cm3)0.5 was altered to 20.9 (J/cm3)0.5 by acetylation allowing the good compatibility with PLA at 20.2 (J/cm3)0.5. The improved compatibility of lignin and PLA provided substantially decreased lignin domain size in composites (12.7 μm), which subsequently gave transparent and UV-protection films (visual transmittance at 76% and UV protection factor over 40). The tensile strength and elongation of the developed composite films were increased by 22% and 76%, respectively, and the biobased carbon content was confirmed as 96 ± 3%. The developed PLA/lignin composites provided 100% all-biomass contents and balanced optical and mechanical properties that could broaden its eco-friendly applications in various industries.

  17. All Biomass and UV Protective Composite Composed of Compatibilized Lignin and Poly (Lactic-acid)

    NASA Astrophysics Data System (ADS)

    Kim, Youngjun; Suhr, Jonghwan; Seo, Hee-Won; Sun, Hanna; Kim, Sanghoon; Park, In-Kyung; Kim, Soo-Hyun; Lee, Youngkwan; Kim, Kwang-Jin; Nam, Jae-Do

    2017-03-01

    Utilization of carbon-neutral biomass became increasingly important due to a desperate need for carbon reduction in the issue of global warming in light of replacing petroleum-based materials. We used lignin, which was an abundant, low cost, and non-food based biomass, for the development of all biomass-based films and composites through reactive compatibilization with poly (lactic-acid) (PLA). Using a facile and practical route, the hydrophilic hydroxyl groups of lignin were acetylated to impose the compatibility with PLA. The solubility parameter of the pristine lignin at 26.3 (J/cm3)0.5 was altered to 20.9 (J/cm3)0.5 by acetylation allowing the good compatibility with PLA at 20.2 (J/cm3)0.5. The improved compatibility of lignin and PLA provided substantially decreased lignin domain size in composites (12.7 μm), which subsequently gave transparent and UV-protection films (visual transmittance at 76% and UV protection factor over 40). The tensile strength and elongation of the developed composite films were increased by 22% and 76%, respectively, and the biobased carbon content was confirmed as 96 ± 3%. The developed PLA/lignin composites provided 100% all-biomass contents and balanced optical and mechanical properties that could broaden its eco-friendly applications in various industries.

  18. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold.

    PubMed

    Gundy, Sarah; Manning, Grainne; O'Connell, Enda; Ellä, Ville; Harwoko, Marvi Sri; Rochev, Yuri; Smith, Terry; Barron, Valerie

    2008-11-01

    Previous studies have demonstrated the potential of fibrin as a cell carrier for cardiovascular tissue engineering applications. Unfortunately, fibrin exhibits poor mechanical properties. One method of addressing this issue is to incorporate a textile in fibrin to provide structural support. However, it is first necessary to develop a deeper understanding of the effect of the textile on cell response. In this study, the cytotoxicity of a polylactic acid (PLA) warp-knit textile was assessed with human coronary artery smooth muscle cells (HCASMC). Subsequently, quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was employed to examine the gene expression of HCASMC embedded in fibrin with and without the textile. Five genes were examined over a 3-week period: smooth muscle alpha-actin (SMalphaA), myosin heavy chain 11 smooth muscle (SM1/SM2), calponin, myosin heavy chain 10 non-muscle (SMemb) and collagen. Additionally, a microarray analysis was performed to examine a wider range of genes. The knitting process did not adversely affect the cell response; there was no dramatic change in cell number or metabolic rate compared to the negative control. After 3 weeks, there was no significant difference in gene expression, except for a slight decrease of 10% in SMemb in the fibrin with textile. After 3 weeks, there were no obvious cytotoxic effects observed as a result of the knitting process and the gene expression profile did not appear to be altered in the presence of the mesh in the fibrin gel.

  19. Lipase-catalyzed enantioselective synthesis of (R,R)-lactide from alkyl lactate to produce PDLA (poly D-lactic acid) and stereocomplex PLA (poly lactic acid).

    PubMed

    Jeon, Byoung Wook; Lee, Jumin; Kim, Hyun Sook; Cho, Dae Haeng; Lee, Hyuk; Chang, Rakwoo; Kim, Yong Hwan

    2013-10-20

    R-lactide, a pivotal monomer for the production of poly (D-lactic acid) (PDLA) or stereocomplex poly (lactic acid) (PLA) was synthesized from alkyl (R)-lactate through a lipase-catalyzed reaction without racemization. From among several types of lipase, only lipase B from Candida antarctica (Novozym 435; CAL-B) was effective in the reaction that synthesized (R,R)-lactide. Enantiopure (R,R)-lactide, which consisted of over 99% enantiomeric excess, was synthesized from methyl (R)-lactate through CAL-B catalysis. Removal of the methanol by-product was critical to obtain a high level of lactide conversion. The (R,R)-lactide yield was 56% in a reaction containing 100 mg of Novozym 435, 10 mM methyl (R)-lactate and 1500 mg of molecular sieve 5A in methyl tert-butyl ether (MTBE). The important monomer (R,R)-lactide that is required for the production of the widely recognized bio-plastic PDLA and the PLA stereocomplex can be obtained using this novel synthetic method.

  20. Fabrication of novel PLA/CDHA bionanocomposite fibers for tissue engineering applications via electrospinning.

    PubMed

    Zhou, Huan; Touny, Ahmed H; Bhaduri, Sarit B

    2011-05-01

    The main theme here is to fabricate PLA (poly lactic-acid)/CDHA (carbonated calcium deficient hydroxyapatite) bionanocomposites, where both the constituents are biocompatible and biodegradable with one dimension in nanometer scale. Such materials are important in tissue engineering applications. The bionanocomposite fibers were fabricated via electrospinning. There are two important signatures of this paper. First, CDHA, rather than HA, is added to PLA as the second phase. As opposed to HA, CDHA mimics the bone mineral composition better and is biodegradable. Therefore, PLA/CDHA fibers should have better biodegradability while maintaining a physiological pH during degradation. To the best of our knowledge, this is the first attempt of electrospinning of such a composite. Second, the CDHA nanoparticles were synthesized using the benign low temperature biomimetic technique, the only route available for the retention of carbonate ions in the HA lattice. The structural properties, degradation behavior, bioactivity, cell adhesion, and growth capability of as-fabricated PLA/CDHA bionanocomposites were investigated. The results show that the incorporation of CDHA decreased PLA fiber diameters, accelerated PLA degradation, buffered pH decrease caused by PLA degradation, improved the bioactivity and biocompatibility of the scaffold. These results prove that PLA/CDHA bionanocomposites have the potential in tissue regeneration applications.

  1. Property tuning of poly(lactic acid)/cellulose bio-composites through blending with modified ethylene-vinyl acetate copolymer.

    PubMed

    Pracella, Mariano; Haque, Md Minhaz-Ul; Paci, Massimo; Alvarez, Vera

    2016-02-10

    The effect of addition of an ethylene-vinyl acetate copolymer modified with glycidyl methacrylate (EVA-GMA) on the structure and properties of poly(lactic acid) (PLA) composites with cellulose micro fibres (CF) was investigated. Binary (PLA/CF) and ternary (PLA/EVA-GMA/CF) composites obtained by melt mixing in Brabender mixer were analysed by SEM, POM, WAXS, DSC, TGA and tensile tests. The miscibility and morphology of PLA/EVA-GMA blends were first examined as a function of composition: a large rise of PLA spherulite growth rate in the blends was discovered with increasing the EVA-GMA content (0-30 wt%) in the isothermal crystallization both from the melt and the solid state. PLA/EVA-GMA/CF ternary composites displayed improved adhesion and dispersion of fibres into the matrix as compared to PLA/CF system. Marked changes of thermodynamic and tensile parameters, as elastic modulus, strength and elongation at break were observed for the composites, depending on blend composition, polymer miscibility and fibre-matrix chemical interactions at the interface.

  2. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm × 12 mm × 8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  3. Growth, structural, spectral, mechanical, thermal and dielectric characterization of phosphoric acid admixtured L-alanine (PLA) single crystals.

    PubMed

    Rose, A S J Lucia; Selvarajan, P; Perumal, S

    2011-10-15

    Phosphoric acid admixtured L-alanine (PLA) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 18 mm×12 mm×8 mm have been obtained in 28 days. The grown crystals were colorless and transparent. The solubility of the grown samples has been found out at various temperatures. The lattice parameters of the grown crystals were determined by X-ray diffraction technique. The reflection planes of the sample were confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. Fourier transform infrared (FTIR) studies were used to confirm the presence of various functional groups in the crystals. UV-visible transmittance spectrum was recorded to study the optical transparency of grown crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique and a study of its second harmonic generation efficiency in comparison with potassium dihydrogen phosphate (KDP) has been made. The mechanical strength of the crystal was estimated by Vickers hardness test. The grown crystals were subjected to thermo gravimetric and differential thermal analysis (TG/DTA). The dielectric behavior of the sample was also studied.

  4. Electrospun membranes of poly(lactic acid) (PLA) used as scaffold in drug delivery of extract of Sedum dendroideum.

    PubMed

    Santos, Larissa G; Oliveira, Daniel C; Santos, Michele S L; Neves, Lia Mara G; de Gaspi, Fernanda O G; Mendonça, Fernanda A S; Esquisatto, Marcelo A M; Santos, Gláucia M T; d'Avila, M A; Mei, Lucia H Innocentini

    2013-07-01

    Biomaterials nanofibrous electrospun with biodegradable polymers have the advantage of the similarity to natural extracellular matrices, showing promising as scaffolds for application in tissue engineering. Sedum dendroideum is a phytotherapic drug that stands out for its healing properties and anti-inflammatory. This study presents the efficacy of PLA electrospun membranes used as support S. dendroideum extract releasing on excisional skin lesions of Wistar rats. The PLA porous membranes, which are nonwoven fibrous mats, were obtained by electrospinning using a conventional apparatus with a flat collector. The animals were randomly divided into nine groups: control (C), animals treated with electrospun membranes of PLA (M), animals treated with extract of S. dendroideum dissolved in saline (F), animals treated with membranes of PLA with 10% S. dendroideum (MF10), animals treated with membranes of PLA with 25% S. dendroideum (MF25). Tissue samples were taken after 2, 6 and 10 days after surgery and were subjected to structural analysis and morphology. The experimental observations showed the application of the phytotherapic incorporated in the membrane promoted a significant response regarding the number of inflammatory cells, percentage of mature collagen fibers and epithelium birrefringent in thickness excisional skin lesions in Wistar rats. It was also demonstrated that the application of the PLA membranes without the extract promoted similar responses tissues.

  5. Stabilization of PS/PLA cocontinuous blends by interfacial graphene

    NASA Astrophysics Data System (ADS)

    Bai, Lian; He, Siyao; Fruehwirth, John; Stein, Andreas; Cheng, Xiang; Macosko, Christopher

    Reduced graphene oxide (r-GO) is known to be effective in increasing the conductivity of cocontinuous polymer blends with a lower electrical percolation threshold. However, little is known regarding the localization and dynamics of r-GO along with morphology change during annealing. In this study, we develop a facile method to stabilize the polystyrene (PS)/polylactic acid (PLA) cocontinuous blends with r-GO jammed at interface. In this method, the non-functionalized GO is premixed with PLA via solvent method, and then reduced in-situ at 210oC to obtain a PLA/r-GO polymer composite. This composite is further mixed with PS via batch melt compounding. We observe the migration of r-GO from the PLA phase to the interface during annealing. The interfacial r-GO suppresses the coarsening of cocontinuous morphology and increases the conductivity of the filled polymer blend. Moreover, we systematically investigate the relationship between r-GO localization, rheological and conductivity change during annealing of r-GO filled PLA/PS blends. University of Minnesota Industrial Partnership for Research in Interfacial and Materials Engineering (IPRIME).

  6. Circulating n-3 fatty acids and trans-fatty acids, PLA2G2A gene variation and sudden cardiac arrest.

    PubMed

    Lemaitre, Rozenn N; Bartz, Traci M; King, Irena B; Brody, Jennifer A; McKnight, Barbara; Sotoodehnia, Nona; Rea, Thomas D; Johnson, Catherine O; Mozaffarian, Dariush; Hesselson, Stephanie; Kwok, Pui-Yan; Siscovick, David S

    2016-01-01

    Whether genetic factors influence the associations of fatty acids with the risk of sudden cardiac arrest (SCA) is largely unknown. To investigate possible gene-fatty acid interactions on SCA risk, we used a case-only approach and measured fatty acids in erythrocyte samples from 1869 SCA cases in a population-based repository with genetic data. We selected 191 SNP in ENCODE-identified regulatory regions of fifty-five candidate genes in fatty acid metabolic pathways. Using linear regression and additive genetic models, we investigated the association of the selected SNP with erythrocyte levels of fatty acids, including DHA, EPA and trans-fatty acids among the SCA cases. The assumption of no association in non-cases was supported by analysis of publicly available datasets containing over 8000 samples. None of the SNP-fatty acid associations tested among the cases reached statistical significance after correction for multiple comparisons. One SNP, rs4654990 near PLA2G2A, with an allele frequency of 0·33, was nominally associated with lower levels of DHA and EPA and higher levels of trans-fatty acids. The strongest association was with DHA levels (exponentiated coefficient for one unit (1 % of total fatty acids), 0·90, 95 % CI 0·85, 0·97; P = 0·003), indicating that for subjects with a coded allele, the OR of SCA associated with one unit higher DHA is about 90 % what it is for subjects with one fewer coded allele. These findings suggest that the associations of circulating n-3 and trans-fatty acids with SCA risk may be more pronounced in carriers of the rs4654990 G allele.

  7. Monolithic calcium phosphate/poly(lactic acid) composite versus calcium phosphate-coated poly(lactic acid) for support of osteogenic differentiation of human mesenchymal stromal cells.

    PubMed

    Tahmasebi Birgani, Zeinab; van Blitterswijk, Clemens A; Habibovic, Pamela

    2016-03-01

    Calcium phosphates (CaPs), extensively used synthetic bone graft substitutes, are often combined with other materials with the aim to overcome issues related to poor mechanical properties of most CaP ceramics. Thin ceramic coatings on metallic implants and polymer-ceramic composites are examples of such hybrid materials. Both the properties of the CaP used and the method of incorporation into a hybrid structure are determinant for the bioactivity of the final construct. In the present study, a monolithic composite comprising nano-sized CaP and poly(lactic acid) (PLA) and a CaP-coated PLA were comparatively investigated for their ability to support proliferation and osteogenic differentiation of bone marrow-derived human mesenchymal stromal cells (hMSCs). Both, the PLA/CaP composite, produced using physical mixing and extrusion and CaP-coated PLA, resulting from a biomimetic coating process at near-physiological conditions, supported proliferation of hMSCs with highest rates at PLA/CaP composite. Enzymatic alkaline phosphatase activity as well as the mRNA expression of bone morphogenetic protein-2, osteopontin and osteocalcin were higher on the composite and coated polymer as compared to the PLA control, while no significant differences were observed between the two methods of combining CaP and PLA. The results of this study confirmed the importance of CaP in osteogenic differentiation while the exact properties and the method of incorporation into the hybrid material played a less prominent role.

  8. Preparation and characterization of acorn starch/poly(lactic acid) composites modified with functionalized vegetable oil derivates.

    PubMed

    Li, Shouhai; Xia, Jianling; Xu, Yuzhi; Yang, Xuejuan; Mao, Wei; Huang, Kun

    2016-05-20

    Composites of acorn starch (AS) and poly(1actic acid) (PLA) modified with dimer fatty acid (DFA) or dimer fatty acid polyamide (DFAPA) were produced by a hot-melt extrusion method. The effects of DFA and DFAPA contents on the mechanical, hydrophobic, thermal properties and melt fluidity of the composites were studied under an invariable AS-to-PLA mass ratio of 40/60. SEM and DMA research results show that the compatibility of AS/PLA composites are determined by the dosage of DFA or DFAPA. The hydrophobicity and melt fluidity of composites are improved with the addition of DFA and DFAPA. The glass transition temperatures of the composites are all reduced remarkably by additives DFA and DFAPA. However, DFA and DFAPA exert different effects on the mechanical properties of AS/PLA composites. In the DFAPA-modified system, the tensile and flexural strength first increase and then decrease with the increase of DFAPA dosage; the mechanical strength is maximized when the dosage of DFAPA is 2 wt% of total weight. In the DFA-modified system, the tensile and flexural strength decrease with the increase of DFA dosage.

  9. Nucleic acid detection compositions

    DOEpatents

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  10. Fabrication and characterization of long-persistent luminescence/polymer (Ca2MgSi2O7:Eu2+, Dy3+/PLA) composite fibers by electrospinning

    NASA Astrophysics Data System (ADS)

    Ye, Feng; Dong, Shengjie; Tian, Zhe; Yao, Sijia; Zhou, Zhufa; Wang, Shumei

    2015-07-01

    Long-persistent luminescence /polymer (Ca2MgSi2O7:Eu2+, Dy3+/PLA) composite fibers have been fabricated via electrospinning method. The as-prepared one-dimensional fiber has been characterized by fluorescence microscope and distinct photographs have been obtained. The results show that the Ca2MgSi2O7:Eu2+, Dy3+ particles (12 wt%, size 200 nm) are uniformly dispersed in the PLA fibers (diameter 2.5 μm). It was found that the composite fibers have an emission band from 430 nm to 650 nm that peaks at 537 nm and 452 nm. Similarly, its phosphorescent emission spectra have similar features of luminescence (emission band from 430 nm to 650 nm that peaks at 537 nm and 452 nm). The decay curves of the composite fibers present a similar attenuate tendency with Ca2MgSi2O7:Eu2+, Dy3+ pure particles, but with lower intensity. The composite fiber has applications possibility in textile, display, optical detectors, indicator in the dark without electric energy which they never had before.

  11. Plasticized poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends incorporated with catechin intended for active food-packaging applications.

    PubMed

    Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria

    2014-10-15

    Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.

  12. Preparation of flexible PLA/PEG-POSS nanocomposites by melt blending and radiation crosslinking

    NASA Astrophysics Data System (ADS)

    Jung, Chang-Hee; Hwang, In-Tae; Jung, Chan-Hee; Choi, Jae-Hak

    2014-09-01

    In this study, poly(lactic acid) (PLA)/poly(ethylene glycol)-functionalized polyhedral oligomeric silsesquioxane (PEG-POSS) nanocomposites with or without triallyl isocyanurate (TAIC) were investigated by melt blending and electron beam irradiation to enhance the flexibility of PLA. Based on the results of the crosslinking degree measurements, the PLA/PEG-POSS nanocomposites were crosslinked by electron beam irradiation in the presence of triallyl isocyanurate (TAIC) and their crosslinking degree reached up to 80% based on the absorbed dose and their compositions. From the results of the FE-SEM and EDX Si-mapping, the crosslinked PLA/PEG-POSS nanocomposites were homogenous without a micro-phase separation or radiation-induced morphological change. Based on the results of the tensile test, the PLA/PEG-POSS nanocomposites containing 15 wt% PEG-POSS exhibited the highest flexibility, and their tensile strength showed a maximum value of 44.5 MPa after electron beam irradiation at an absorbed dose of 100 kGy in the presence of TAIC, which is comparable to non-biodegradable polypropylene. The results of the dynamic mechanical analysis revealed that the crosslinked PLA/PEG-POSS nanocomposites exhibited a higher thermal resistance above their melting temperature in comparison to that of the neat PLA, although their glass transition temperature was lower than that of the neat PLA. The enzymatic biodegradation test revealed that the PLA/PEG-POSS nanocomposites were biodegradable even though their biodegradability was deteriorated in comparison to that of the neat PLA.

  13. Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites.

    PubMed

    Mohammadi, Maziar Shah; Ahmed, Ifty; Muja, Naser; Rudd, Christopher D; Bureau, Martin N; Nazhat, Showan N

    2011-12-01

    Incorporation of soluble bioactive glass fibres into biodegradable polymers is an interesting approach for bone repair and regeneration. However, the glass composition and its surface properties significantly affect the nature of the fibre-matrix interface and composite properties. Herein, the effect of Si and Fe on the surface properties of calcium containing phosphate based glasses (PGs) in the system (50P(2)O(5)-40CaO-(10-x)SiO(2)-xFe(2)O(3), where x = 0, 5 and 10 mol.%) were investigated. Contact angle measurements revealed a higher surface energy, and surface polarity as well as increased hydrophilicity for Si doped PG which may account for the presence of surface hydroxyl groups. Two PG formulations, 50P(2)O(5)-40CaO-10Fe(2)O(3) (Fe10) and 50P(2)O(5)-40CaO-5Fe(2)O(3)-5SiO(2) (Fe5Si5), were melt drawn into fibres and randomly incorporated into poly(lactic acid) (PLA) produced by melt processing. The ageing in deionised water (DW), mechanical property changes in phosphate buffered saline (PBS) and cytocompatibility properties of these composites were investigated. In contrast to Fe10 and as a consequence of the higher surface energy and polarity of Fe5Si5, its incorporation into PLA led to increased inorganic/organic interaction indicated by a reduction in the carbonyl group of the matrix. PLA chain scission was confirmed by a greater reduction in its molecular weight in PLA-Fe5Si5 composites. In DW, the dissolution rate of PLA-Fe5Si5 was significantly higher than that of PLA-Fe10. Dissolution of the glass fibres resulted in the formation of channels within the matrix. Initial flexural strength was significantly increased through PGF incorporation. After PBS ageing, the reduction in mechanical properties was greater for PLA-Fe5Si5 compared to PLA-Fe10. MC3T3-E1 preosteoblasts seeded onto PG discs, PLA and PLA-PGF composites were evaluated for up to 7 days indicating that the materials were generally cytocompatible. In addition, cell alignment along the PGF

  14. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.

    PubMed

    Li, X; Chu, C L; Liu, L; Liu, X K; Bai, J; Guo, C; Xue, F; Lin, P H; Chu, Paul K

    2015-05-01

    Biodegradable poly-lactic acid (PLA)--based composites reinforced unidirectionally with high-strength magnesium alloy wires (MAWs) are fabricated by a heat-compressing process and the mechanical properties and degradation behavior are studied experimentally and theoretically. The composites possess improved strengthening and toughening properties. The bending strength and impact strength of the composites with 40 vol% MAWs are 190 MPa and 150 kJ/m(2), respectively, although PLA has a low viscosity and an average molecular weight of 60,000 g/mol. The mechanical properties of the composites can be further improved by internal structure modification and interface strengthening and a numerical model incorporating the equivalent section method (ESM) is proposed for the bending strength. Micro arc oxidization (MAO) of the MAWs is an effective interfacial strengthening method. The composites exhibit high strength retention during degradation and the PLA in the composite shows a smaller degradation rate than pure PLA. The novel biodegradable composites have large potential in bone fracture fixation under load-bearing conditions.

  15. Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA) based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles.

    PubMed

    Tamboli, Viral; Mishra, Gyan P; Mitra, Ashim K

    2013-05-01

    The purpose of this investigation was to design novel pentablock copolymers (polylatide-polycaprolactone-polyethylene glycol- polycaprolactone-polylatide) (PLA-PCL-PEG-PCL-PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly (L-lactide) (PLLA) or poly (D, L-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA-PCL-PEG-PCL-PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL-PEG-PCL) copolymer. Moreover, pentablock copolymer based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer based nanoparticles can be utilized to achieve continuous near zero-order delivery of corticosteroids from nanoparticles without any burst effect.

  16. Novel pentablock copolymer (PLA-PCL-PEG-PCL-PLA) based nanoparticles for controlled drug delivery: Effect of copolymer compositions on the crystallinity of copolymers and in vitro drug release profile from nanoparticles

    PubMed Central

    Tamboli, Viral; Mishra, Gyan P.; Mitra, Ashim K.

    2012-01-01

    The purpose of this investigation was to design novel pentablock copolymers (polylatide-polycaprolactone-polyethylene glycol- polycaprolactone-polylatide) (PLA-PCL-PEG-PCL-PLA) to prepare nanoparticle formulations which provide continuous delivery of steroids over a longer duration with minimal burst effect. Another purpose was to evaluate the effect of poly (L-lactide) (PLLA) or poly (D, L-lactide) (PDLLA) incorporation on crystallinity of pentablock copolymers and in vitro release profile of triamcinolone acetonide (selected as model drug) from nanoparticles. PLA-PCL-PEG-PCL-PLA copolymers with different block ratio of PCL/PLA segment were synthesized. Release of triamcinolone acetonide from nanoparticles was significantly affected by crystallinity of the copolymers. Burst release of triamcinolone acetonide from nanoparticles was significantly minimized with incorporation of proper ratio of PDLLA in the existing triblock (PCL-PEG-PCL) copolymer. Moreover, pentablock copolymer based nanoparticles exhibited continuous release of triamcinolone acetonide. Pentablock copolymer based nanoparticles can be utilized to achieve continuous near zero-order delivery of corticosteroids from nanoparticles without any burst effect. PMID:23626400

  17. Effect of reactive agent and transesterification catalyst on properties of PLA/PBAT blends

    NASA Astrophysics Data System (ADS)

    Pitivut, S.; Suttiruengwong, S.; Seadan, M.

    2015-07-01

    This research aimed to study the properties of poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blends with two different reactive systems: free radical reaction through peroxide (Perkadox) and transesterification catalyst (tetrabutyl titanate; TBT). Two blends composed of PLA as a matrix phase with the composition of 80 and 70 percent by weight. PLA/PBAT blends with Perkadox were prepared in twin screw extruder, whereas PLA/PBAT blends with TBT were prepared in an internal mixer. The morphology of the blends was investigated by scanning electron microscope (SEM). Tensile and impact testingsof the blends were reported. In case of the blends with Perkadox, SEM micrographs revealed that the size of particles was substantially reduced when adding more Perkadox. Young's modulus and the tensile strength of all blend ratios were insignificantly changed, whereas the elongation at break was decreased when compared to non-reactive blends due to the possible crosslinking reaction as observed from melt flow index (MFI) values. When adding Perkadox, the impact strength of PLA/PBAT (80/20) remained almost unchanged. However, the impact strength of PLA/PBAT (70/30) was enhanced, increasing to 110% for 0.05 phr Perkadox. In case of the blends with TBT, SEM micrographs showed the decrease in the particle size of PBAT phase when adding TBT. Young's modulus and the tensile strength of all blend ratios were not different, but the elongation at break was improved when adding TBT owing to the transesterification reaction. For PLA/PBAT (80/20), the elongation at break was increased by 39%, whereas the elongation at break was increased by 15% for PLA/PLA (70/30). The impact strength of all blend ratios unaffected.

  18. Fabrication of novel calcium phosphate/poly(lactic acid) fiber composites.

    PubMed

    Kothapalli, Chandrasekhar R; Shaw, Montgomery T; Olson, James R; Wei, Mei

    2008-01-01

    Composites using high-modulus polylactic acid (PLA) fibers coated with calcium phosphate (CaP) were prepared using a cyclic precipitation technique. Scanning electron microscopy revealed that small nuclei of CaP formed after the first soaking cycle, while large quantities of CaP particles were observed after the sixth cycle. The amount of CaP deposited on the PLA yarn increased with deposition time in Ca(2+) and PO(4) (3-) solutions and number of cycles, and decreased with stirring rate during washing cycles. It was observed that around 35 wt % of CaP was deposited on the yarn surface after six cycles of cyclic-soaking. Based on the results, a heterogeneous nucleation and growth mechanism was proposed for the CaP deposition on the surface of hydrolyzed polyester. Composites comprising the coated fibers in a poly(caprolactone) matrix exhibited flexural moduli within the range of that of the cortical bone.

  19. Extra-hepatic metabolism of 7-ketocholesterol occurs by esterification to fatty acids via cPLA2α and SOAT1 followed by selective efflux to HDL.

    PubMed

    Lee, Jung Wha; Huang, Jiahn-Dar; Rodriguez, Ignacio R

    2015-05-01

    Accumulation of 7-ketocholesterol (7KCh) in tissues has been previously associated with various chronic aging diseases. Orally ingested 7KCh is readily metabolized by the liver and does not pose a toxicity threat. However, 7KCh formed in situ, usually associated with lipoprotein deposits, can adversely affect surrounding tissues by causing inflammation and cytotoxicity. In this study we have investigated various mechanisms for extra-hepatic metabolism of 7KCh (e.g. hydroxylation, sulfation) and found only esterification to fatty acids. The esterification of 7KCh to fatty acids involves the combined action of cytosolic phospholipase A2 alpha (cPLA2α) and sterol O-acyltransferase (SOAT1). Inhibition of either one of these enzymes ablates 7KCh-fatty acid ester (7KFAE) formation. The 7KFAEs are not toxic and do not induce inflammatory responses. However, they can be unstable and re-release 7KCh. The higher the degree of unsaturation, the more unstable the 7KFAE (e.g. 18:0>18:1>18:2>18:3≫20:4). Biochemical inhibition and siRNA knockdown of SOAT1 and cPLA2α ablated the 7KFAE synthesis in cultured ARPE19 cells, but had little effect on the 7KCh-induced inflammatory response. Overexpression of SOAT1 reduced the 7KCh-induced inflammatory response and provided some protection from cell death. This effect is likely due to the increased conversion of 7KCh to 7KFAEs, which reduced the intracellular 7KCh levels. Addition of HDL selectively increased the efflux of 7KFAEs and enhanced the effect of SOAT1 overexpression. Our data suggests an additional function for HDL in aiding extra-hepatic tissues to eliminate 7KCh by returning 7KFAEs to the liver for bile acid formation.

  20. PLA micro- and nano-particles.

    PubMed

    Lee, Byung Kook; Yun, Yeonhee; Park, Kinam

    2016-12-15

    Poly(d,l-lactic acid) (PLA) has been widely used for various biomedical applications for its biodegradable, biocompatible, and nontoxic properties. Various methods, such as emulsion, salting out, and precipitation, have been used to make better PLA micro- and nano-particle formulations. They are widely used as controlled drug delivery systems of therapeutic molecules, including proteins, genes, vaccines, and anticancer drugs. Even though PLA-based particles have challenges to overcome, such as low drug loading capacity, low encapsulation efficiency, and terminal sterilization, continuous innovations in particulate formulations will lead to development of clinically useful formulations.

  1. Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites.

    PubMed

    Yu, Jiugao; Wang, Ning; Ma, Xiaofei

    2008-03-01

    By using acetyl tributyl citrate (ATBC) as the plasticizer of poly(lactic acid) (PLA) and carbon black (CB) as conductive filler, electrically conductive polymer composites (CPC) with different CB and ATBC contents were prepared. FTIR revealed that the interaction existed between PLA/ATBC matrix and CB filler and ATBC could improve this interaction. The rheology showed that ATBC could obviously decrease the shear viscosity and improve the fluidity of the composites but just the reverse for CB. With the increasing of CB contents, the enforcement effect, storage modulus, and glass-transition temperature increased but the elongation at break decreased. PLA/ATBC/CB composites exhibited the low electrical percolation thresholds of 0.516, 1.20, 2.46, and 2.74 vol % CB at 30, 20, 10, and 0 wt % ATBC. The conductivity of the composite containing 3.98 vol % CB and 30 wt % ATBC reached 1.60 S/cm. Scanning electron microscopy revealed that the addition of ATBC facilitated the dispersion of the CB in the PLA matrix. Water vapor permeability (WVP) showed that, at the same CB contents, the more ATBC contents there were, the less the values of WVP were.

  2. Mechanical Property Characterization of Plasticized Sugar Beet Pulp and Poly(lactic acid) Green Composites using Acoustic Emission and Confocal Microscopy.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorbitol and glycerol were used to plasticize sugar beet pulp-poly (lactic acid) green composites. The plasticizer was incorporated into sugar beet pulp (SBP)at 0, 10, 20, 30 and 40% w/w at low temperature and shear and then compounded with PLA using twin-screw extrusion and injection molding. The...

  3. Well acidizing compositions and method

    SciTech Connect

    Gardener, T.R.; Dill, W.R.; Ford, W.G.F.; King, K.L.

    1991-07-23

    This patent describes a concentrate which forms an acid internal microemulsion well treatment composition when added to an acid treatment fluid. It comprises in the range of from about 20% to about 98% by weight of a hydrocarbon carrier fluid; in the range of from about 1% to about 50% by weight of an alkyl alcohol having in the range of from about 4 to 18 carbon atoms; and in the range of from about 1% to about 50% by weight of an emulsifying agent comprising at least one compound selected from the group consisting of amine salts having ester or amide linkages and propoxylated alcohols, each of the components being different compounds or different mixtures of compounds.

  4. Preparation and characterization of electrospun alginate/PLA nanofibers as tissue engineering material by emulsion eletrospinning.

    PubMed

    Xu, Weihong; Shen, Renzhe; Yan, Yurong; Gao, Jie

    2017-01-01

    Scaffolds made by biomaterials offer favorite environment for cell grow and show a wide potential application in tissue engineering. Novel biocompatibility materials polylatic acid (PLA) nanofiber membranes with favorable biocompatibility and good mechanical strength could serve as an innovative tissue engineering scaffold. Sodium alginate (SA) could be used in biomedical areas because of its anti-bacterial property, hydrophilicity and biocompatibility. In this article, we chose PLA as continuous phase and SA as dispersion phase to prepare a W/O emulsion and then electrospun it to get a SA/PLA composite nanofiber membranes. The CLSM images illustrated that the existence of SA was located on the surface of composite fibers and the FTIR results confirmed the result. A calcium ion replacement step was used as an after-treatment for SA/PLA nanofiber membranes in order to anchor the alginic ion in a form of gelated calcium alginate (CA). The single fiber tensile test shows a good mechanical property of CA/PLA nanofiber membranes, and the nanofiber membranes are beneficial for cell proliferation and differentiation owing to MTT array as well as Alizarin red S (ARS) staining test.

  5. Coating of poly(p-xylylene) by PLA-PEO-PLA triblock copolymers with excellent polymer-polymer adhesion for stent applications.

    PubMed

    Hanefeld, Phillip; Westedt, Ullrich; Wombacher, Ralf; Kissel, Thomas; Schaper, Andreas; Wendorff, Joachim H; Greiner, Andreas

    2006-07-01

    Poly(p-xylylene) (PPX) was deposited by chemical vapor deposition (CVD) on stainless steel substrates. These PPX films were coated by solution casting of poly(lactide)-poly(ethylene oxide)-poly(lactide) triblock copolymers (PLA-PEO-PLA) loaded with 14C-labeled paclitaxel. Adhesion of PLA-PEO-PLA on PPX substrate coatings was measured using the blister test method. Excellent adhesion of the block copolymers on PPX substrates was found. Stress behavior and film integrity of PLA-PEO-PLA was compared to pure PLA on unexpanded and expanded stent bodies and was found to be superior for the block copolymers. The release of paclitaxel from the biodegradable coatings was studied under physiological conditions using the scintillation counter method. Burst release of paclitaxel was observed from PLA-PEO-PLA layers regardless of composition, but an increase in paclitaxel loading was observed with increasing content of PEO.

  6. A comparative in vitro evaluation of self-assembled PTX-PLA and PTX-MPEG-PLA nanoparticles

    NASA Astrophysics Data System (ADS)

    Cui, Fei; Li, Yang; Zhou, Shuifan; Jia, Mengmeng; Yang, Xiangrui; Yu, Fei; Ye, Shefang; Hou, Zhenqing; Xie, Liya

    2013-06-01

    We present a dialysis technique to direct the self-assembly of paclitaxel (PTX)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly( d, l-lactide) (MPEG-PLA) and PLA, respectively. The composition, morphology, particle size and zeta potential, drug loading content, and drug encapsulation efficiency of both PTX-PLA NPs and PTX-MPEG-PLA NPs were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and high-performance liquid chromatography. The passive targeting effect and in vitro cell viability of the PTX-MPEG-PLA NPs on HeLa cells were demonstrated by comparative cellular uptake and MTT assay of the PTX-PLA NPs. The results showed that the PTX-MPEG-PLA NPs and PTX-PLA NPs presented a hydrodynamic particle size of 179.5 and 441.9 nm, with a polydispersity index of 0.172 and 0.189, a zeta potential of -24.3 and -42.0 mV, drug encapsulation efficiency of 18.3% and 20.0%, and drug-loaded content of 1.83% and 2.00%, respectively. The PTX-MPEG-PLA NPs presented faster release rate with minor initial burst compared to the PTX-PLA NPs. The PTX-MPEG-PLA NPs presented superior cell cytotoxicity and excellent cellular uptake compared to the PTX-PLA NPs. These results suggested that the PTX-MPEG-PLA NPs presented more desirable characteristics for sustained drug delivery compared to PTX-PLA NPs.

  7. Water Absorption of Jute/Polylactic Acid Composite Intended for an Interior Application and Comparison with Wood-Based Panels

    NASA Astrophysics Data System (ADS)

    Zandvliet, C.; Bandyopadhyay, N. R.; Ray, D.

    2014-04-01

    Jute/polylactic acid (PLA) composite is of special interest because it is entirely from renewable resources with high mechanical properties. Thus, it could be a more eco-friendly alternative to the conventional wood-based panels made of formaldehyde resin which is asserted to be carcinogenic. Yet the water affinity of the natural fibres and susceptibility of polylactic acid towards hydrolysis raise a question about the water resistance of such composites in service condition. In this work, the water absorption behaviour of jute/PLA composites, jute/maleated polypropylene was investigated with regard to interior applications following the standard test method in accordance to ISO 16983:2003 `Wood-based panels—determination of swelling in thickness after immersion in water' and compared to standard of wood-based panels. Untreated and treated jute/PLA composites exhibited a superior water resistance property compared to particleboard, MDF and hardboard and they are by far, below the minimum requirement of the ISO standard 16983.

  8. Fatty acid composition of selected prosthecate bacteria.

    PubMed

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.

  9. The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites.

    PubMed

    Razak, Nur Inani Abdul; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Rayung, Marwah; Saad, Wan Zuhainis

    2014-03-07

    Bleaching treatment of kenaf fiber was performed in alkaline medium containing hydrogen peroxide solution maintained at pH 11 and 80 °C for 60 min. The bleached kenaf fiber was analyzed using Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) analysis. The bleached kenaf fiber was then compounded with poly-(lactic acid) (PLA) via a melt blending method. The mechanical (tensile, flexural and impact) performance of the product was tested. The fiber treatment improved the mechanical properties of PLA/bleached kenaf fiber composites. Scanning electron micrograph (SEM) morphological analysis showed improvement of the interfacial adhesion between the fiber surface and polymer matrix.

  10. Effect of filler loading of nickel zinc ferrite on the tensile properties of PLA nanocomposites

    NASA Astrophysics Data System (ADS)

    Shahdan, Dalila; Ahmad, Sahrim Hj

    2013-05-01

    The mechanical strength of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90:10. The MPNC were prepared at constant mixing temperature at 180°C, mixing time of 15 min. and mixing speed of 100 rpm. In order to achieve a good dispersion of NiZn ferrite in the matrix, firstly an ultrasonic treatment had been employed to mix the LNR and NiZn ferrite for 1 hour. The MPNC of PLA/LNR/NiZn ferrite then were prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1-5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases the tensile strength also increases until an optimum value of filler loading was reached. The Young's modulus, tensile strength and elongation at break have also increased. The study proves that NiZn ferrite is excellent reinforcement filler in PLA matrix. Scanning electron micrograph (SEM) and energy dispersive X-ray spectroscopy (EDX) were meant to show the homogeneity dispersion of nanoparticles within the matrix and to confirm the elemental composition of NiZn ferrites-PLA/LNR nanocomposites respectively.

  11. Augmentation of a Microbial Consortium for Enhanced Polylactide (PLA) Degradation.

    PubMed

    Nair, Nimisha R; Sekhar, Vini C; Nampoothiri, K Madhavan

    2016-03-01

    Bioplastics are eco-friendly and derived from renewable biomass sources. Innovation in recycling methods will tackle some of the critical issues facing the acceptance of bioplastics. Polylactic acid (PLA) is the commonly used and well-studied bioplastic that is presumed to be biodegradable. Considering their demand and use in near future, exploration for microbes capable of bioplastic degradation has high potential. Four PLA degrading strains were isolated and identified as Penicillium chrysogenum, Cladosporium sphaerospermum, Serratia marcescens and Rhodotorula mucilaginosa. A consortium of above strains degraded 44 % (w/w) PLA in 30 days time in laboratory conditions. Subsequently, the microbial consortium employed effectively for PLA composting.

  12. Biological nitrate removal using wheat straw and PLA as substrate.

    PubMed

    Fan, Zhenxing; Hu, Jun; Wang, Jianlong

    2012-01-01

    Biological nitrate removal using wheat straw and polylactic acid (PLA) as both carbon source and biofilm support was investigated. The results showed that biofilm could develop on the surface of wheat straw within 15 d, the denitrification rate was 0.067 mg-N/(g-wheat straw x h) and nitrate removal efficiency was about 100%. For PLA, the time required for biofilm development was 40 d, the denitrification rate was 0.0026 mg-N/(g-PLA x h) and nitrate removal efficiency could also reach 100%. Temperature had a substantial influence on the denitrification performance of both wheat straw and PLA. The FTIR analysis and SEM observation confirmed that wheat straw and PLA were used for denitrification, and explained some reasons for the differences between the two substrates. The wheat straw was superior to PLA when used as carbon source for nitrate removal, in terms of the denitrification rate.

  13. Compositions for acid treating subterranean formations

    SciTech Connect

    Clark, E. Jr.; Swanson, B.L.

    1991-03-05

    This patent describes a high viscosity acid composition. It comprises: an aqueous acid solution; one or more acrylamide polymers dissolved in the acid solution in an amount sufficient to increase the viscosity of the acid solution; a liquid hydrocarbon dispersed in the acid solution; and one or more nonionic surface active agents having at least one reactive hydroxyl group per molecule present in the composition in an amount sufficient to interact with the acrylamide polymer or polymers in the presence of the liquid hydrocarbon whereby the viscosity of the acid solution is further increased and stabilized.

  14. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).

    PubMed

    Li, Linjing; Liu, Xiangyu; Niu, Yuqing; Ye, Jianfu; Huang, Shuiwen; Liu, Chao; Xu, Kaitian

    2016-04-05

    Alternating block polyurethanes (abbreviated as PULA-alt-PEG) and random block polyurethanes (abbreviated as PULA-ran-PEG) based on biodegradable poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were prepared. Results showed that alternating block polyurethane gives higher crystal degree, higher mechanical properties, more patterned and rougher surface than the random counterpart, due to the regular and controlled structure. Water absorptions of the polyurethanes were in the range of 620 to 780%. Cytocompatibility of the amphiphilic block polyurethanes (PU) (water static angle 41.4°-61.8°) was assessed by CCK-8 assay using human embryonic kidney (HEK293) cells. Wound healing evaluation of the PU foam scaffolds was carried out by full-thickness SD rat model experiment, with medical gauze as control. It was found that the skin of rat in PU groups was fully covered with new epithelium without any significant adverse reactions and PU dressings give much rapid and better healing than medical gauze. Histological examination revealed that PU dressings suppress the infiltration of inflammatory cells and accelerate fibroblast proliferation. It was also demonstrated that PULA-alt-PEG exhibits obvious better healing effect than PULA-ran-PEG does. This study has demonstrated that without further modification, plain alternating block polyurethane scaffold would help wound recovery efficiently. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  15. Preparation and characterization of composites based on poly(lactic acid) and CaCO{sub 3} nanofiller

    SciTech Connect

    Moreno, Janaína Fernandes; Silva, Ana Lúcia N. da E-mail: ananazareth@ima.ufrj.br; Sousa, Ana Maria F. de

    2015-05-22

    In recent years, extensive studies have been conducted on the study of the poly(lactic acid) (PLA) properties, because of its being a typical biobased and biodegradable polymer, with good mechanical properties. However, its toughness and gas barrier properties are not satisfactory and can be improved by the addition of nanofillers, such as calcium carbonate (n-CaCO{sub 3}). The present work PLA composites with nano-sized precipitated calcium carbonate (n-NPCC) were prepared by melt extrusion. Thermal, mechanical and flow properties of the composites were evaluated by using a factorial design.The results showed that the addition of the nanofiller in the PLA matrix didn’t improve thethermal and mechanical properties of the matrix significantly. This behavior is probably due to the presence of the stearic acid that is coating on the n-NPCC particles, resulting in a weak polymer-particle interaction. Beyond this, it was also observed a decrease in MFI of the composites when nanofiller was added and at a higher screw speed.

  16. Preparation and characterization of composites based on poly(lactic acid) and CaCO3 nanofiller

    NASA Astrophysics Data System (ADS)

    Moreno, Janaína Fernandes; da Silva, Ana Lúcia N.; da Silva, Antonio Henrique Monteiro da Fonseca T.; de Sousa, Ana Maria F.

    2015-05-01

    In recent years, extensive studies have been conducted on the study of the poly(lactic acid) (PLA) properties, because of its being a typical biobased and biodegradable polymer, with good mechanical properties. However, its toughness and gas barrier properties are not satisfactory and can be improved by the addition of nanofillers, such as calcium carbonate (n-CaCO3). The present work PLA composites with nano-sized precipitated calcium carbonate (n-NPCC) were prepared by melt extrusion. Thermal, mechanical and flow properties of the composites were evaluated by using a factorial design.The results showed that the addition of the nanofiller in the PLA matrix didn't improve thethermal and mechanical properties of the matrix significantly. This behavior is probably due to the presence of the stearic acid that is coating on the n-NPCC particles, resulting in a weak polymer-particle interaction. Beyond this, it was also observed a decrease in MFI of the composites when nanofiller was added and at a higher screw speed.

  17. Investigation of in-situ poly(lactic acid)/soy protein concentrate composites: Composite preparation, properties and foam application development

    NASA Astrophysics Data System (ADS)

    Liu, Bo

    2011-12-01

    In this study, soy protein (SP), the residue of oil crushing, was used for preparation of value-added thermoplastics. Novel poly(lactic acid) (PLA)/soy protein concentrate (SPC) blends were investigated and foaming of the resulting blends was developed. PLA/SPC blends were prepared by twin-screw extrusion and test specimens by injection molding. Unlike the practice elsewhere SP was used as a filler in mixing with other polymers, SPC was processed as a plastic component in blending process in this work. Processing SPC as plastic component, water played an important role in terms of the deformability and the morphology of SP thus the properties of the blends. Plasticization of SP, compatibilization of the blends and structure-property relationship of the PLA/SPC blends were studied. In the literature water and glycerol were often used together in preparing SP plastics or plastic blends, but this study found that this traditional combination did not provide the best results in terms of morphology and mechanical properties. Water is only recommended in plasticizing SP in the blends. This study showed water as a plasticizer was a domain factor on control of morphology and properties of PLA/SPC blends. The due to the evaporation of water after extrusion, SP domain lost its deformability thus resulted in in-situ composites. Interconnected SPC phase structure was achieved by control water content in the pre-formulated SPC and SPC content in the blends. A novel dual compatibilization method was developed to improve the properties of PLA/SPC blends. Poly(2-ethyl-2-oxazoline) was used to improve the dispersion of SPC in the blending stage, and polymeric methylene diphenyl diisocyanate was used to improve the interfacial adhesion between SPC and PLA in the subsequent processing. The result showed excellent mechanical properties and improved thermal properties of PLA/SPC blends. Using processing aids is an effective way to decrease processing temperature and thermal degradation

  18. Mechanical and degradation properties of biodegradable Mg strengthened poly-lactic acid composite through plastic injection molding.

    PubMed

    Butt, Muhammad Shoaib; Bai, Jing; Wan, Xiaofeng; Chu, Chenglin; Xue, Feng; Ding, Hongyan; Zhou, Guanghong

    2017-01-01

    Full biodegradable magnesium alloy (AZ31) strengthened poly-lactic acid (PLA) composite rods for potential application for bone fracture fixation were prepared by plastic injection process in this work. Their surface/interfacial morphologies, mechanical properties and vitro degradation were studied. In comparison with untreated Mg rod, porous MgO ceramic coating on Mg surface formed by Anodizing (AO) and micro-arc-oxidation (MAO)treatment can significantly improve the interfacial binding between outer PLA cladding and inner Mg rod due to the micro-anchoring action, leading to better mechanical properties and degradation performance of the composite rods.With prolonging immersion time in simulated body fluid (SBF) solution until 8weeks, the MgO porous coating were corroded gradually, along with the disappearance of original pores and the formation of a relatively smooth surface. This resulted in a rapidly reduction in mechanical properties for corresponding composite rods owing to the weakening of interfacial binding capacity. The present results indicated that this new PLA-clad Mg composite rods show good potential biomedical applications for implants and instruments of orthopedic inner fixation.

  19. Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering

    PubMed Central

    Haddad, Tanit; Noel, Samantha; Liberelle, Benoît; El Ayoubi, Rouwayda; Ajji, Abdellah

    2016-01-01

    ABSTRACT In an effort to design biomaterials that may promote repair of the central nervous system, 3-dimensional scaffolds made of electrospun poly lactic acid nanofibers with interconnected pores were fabricated. These scaffolds were functionalized with polyallylamine to introduce amine groups by wet chemistry. Experimental conditions of the amination protocol were thoroughly studied and selected to introduce a high amount of amine group while preserving the mechanical and structural properties of the scaffold. Subsequent covalent grafting of epidermal growth factor was then performed to further tailor these aminated structures. The scaffolds were then tested for their ability to support Neural Stem-Like Cells (NSLCs) culture. Of interest, NSLCs were able to proliferate on these EGF-grafted substrates and remained viable up to 14 d even in the absence of soluble growth factors in the medium. PMID:27740881

  20. Effects of Polypropylene Carbonate/Poly(D,L-lactic) Acid/Tricalcium Phosphate Elastic Composites on Improving Osteoblast Maturation.

    PubMed

    Fang, Hsu-Wei; Kao, Wei-Yu; Lin, Pei-I; Chang, Guang-Wei; Hung, Ya-Jung; Chen, Ruei-Ming

    2015-08-01

    Bone tissue engineering utilizing biomaterials to improve osteoblast growth has provided de novo consideration for therapy of bone diseases. Polypropylene carbonate (PPC) is a polymer with a low glass transition temperature but high elasticity. In this study, we developed a new PPC-derived composite by mixing poly-lactic acid (PLA) and tricalcium phosphate (TCP), called PPC/PLA/TCP elastic (PPTE) scaffolds. We also evaluated the beneficial effects of PPTE composites on osteoblast growth and maturation and the possible mechanisms. Compared to PPC polymers, PPTE composites had similar pore sizes and porosities but possessed better hydrophilic surface structures. Biological evaluations further revealed that PPTE composites attracted adhesion of mouse osteoblasts, and these bone cells extended along the porous scaffolds to produce accurate fibroblast-like morphologies. In parallel, seeding mouse osteoblasts onto PPTE composites time-dependently increased cell growth. Sequentially, PPTE composites augmented DNA replication and cell proliferation. Consequently, PPTE composites significantly improved osteoblast mineralization. As to the mechanism, treatment with PPTE composites induced osteopontin (OPN) mRNA and protein expression and alkaline phosphatase activity. Taken together, this study showed that PPTE composites with porous and hydrophilic surfaces can stimulate osteoblast adhesion, proliferation, and maturation through an OPN-dependent mechanism. Therefore, the de novo PPTE scaffolds may have biomaterial potential for bone regeneration.

  1. The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites.

    PubMed

    Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei

    2014-08-22

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant.

  2. The Effect of Fiber Bleaching Treatment on the Properties of Poly(lactic acid)/Oil Palm Empty Fruit Bunch Fiber Composites

    PubMed Central

    Rayung, Marwah; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Saad, Wan Zuhainis; Razak, Nur Inani Abdul; Chieng, Buong Woei

    2014-01-01

    In this work, biodegradable composites from poly(lactic acid) (PLA) and oil palm empty fruit bunch (OPEFB) fiber were prepared by melt blending method. Prior to mixing, the fiber was modified through bleaching treatment using hydrogen peroxide. Bleached fiber composite showed an improvement in mechanical properties as compared to untreated fiber composite due to the enhanced fiber/matrix interfacial adhesion. Interestingly, fiber bleaching treatment also improved the physical appearance of the composite. The study was extended by blending the composites with commercially available masterbatch colorant. PMID:25153628

  3. Composition for nucleic acid sequencing

    DOEpatents

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  4. Behaviors of keratinocytes and fibroblasts on films of PLA50-PEO-PLA50 triblock copolymers with various PLA segment lengths.

    PubMed

    Garric, Xavier; Garreau, Henri; Vert, Michel; Molès, Jean-Pierre

    2008-04-01

    The growth of human primary keratinocytes and fibroblasts on PLA-PEO-PLA copolymer films was investigated as an intermediate stage of a strategy aimed at making implantable dermo-epidermal substitutes. Four PLA-PEO-PLA triblock copolymers with the same PEO block and different DL-lactic acid/ethylene oxide molar ratios (LA/EO) (0.8, 1.4, 1.8 and 2), were synthesized and characterized by 1H-nuclear magnetic resonance and infrared spectroscopy. The films made of these copolymers were more hydrophilic than PLA50 and than tissue culture polystyrene controls according to contact angles with water. Proliferation and adhesion of human skin cells were evaluated by MTT assay and by scanning electron microscopy. The presence of PEO in the triblock copolymers influenced cell adhesion and proliferation of fibroblasts, whereas keratinocyte adhesion and proliferation were not affected. These features emphasize the interest of PLA-PEO-PLA triblock copolymers to serve as better compounds than the racemic PLA previously investigated to make supports for human skin primary cells and scaffolds for skin engineering.

  5. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model.

    PubMed

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery.

  6. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model

    PubMed Central

    Zhang, Haifeng; Mao, Xiyuan; Du, Zijing; Jiang, Wenbo; Han, Xiuguo; Zhao, Danyang; Han, Dong; Li, Qingfeng

    2016-01-01

    Abstract We have explored the applicability of printed scaffold by comparing osteogenic ability and biodegradation property of three resorbable biomaterials. A polylactic acid/hydroxyapatite (PLA/HA) composite with a pore size of 500 μm and 60% porosity was fabricated by three-dimensional printing. Three-dimensional printed PLA/HA, β-tricalcium phosphate (β-TCP) and partially demineralized bone matrix (DBM) seeded with bone marrow stromal cells (BMSCs) were evaluated by cell adhesion, proliferation, alkaline phosphatase activity and osteogenic gene expression of osteopontin (OPN) and collagen type I (COL-1). Moreover, the biocompatibility, bone repairing capacity and degradation in three different bone substitute materials were estimated using a critical-size rat calvarial defect model in vivo. The defects were evaluated by micro-computed tomography and histological analysis at four and eight weeks after surgery, respectively. The results showed that each of the studied scaffolds had its own specific merits and drawbacks. Three-dimensional printed PLA/HA scaffolds possessed good biocompatibility and stimulated BMSC cell proliferation and differentiation to osteogenic cells. The outcomes in vivo revealed that 3D printed PLA/HA scaffolds had good osteogenic capability and biodegradation activity with no difference in inflammation reaction. Therefore, 3D printed PLA/HA scaffolds have potential applications in bone tissue engineering and may be used as graft substitutes in reconstructive surgery. PMID:27877865

  7. Polylactide-based renewable composites from natural products residues by encapsulated film bag: characterization and biodegradability.

    PubMed

    Wu, Chin-San

    2012-09-01

    In the present study, the biodegradability, morphology, and mechanical properties of composite materials consisting of acrylic acid-grafted polylactide (PLA-g-AA) and natural products residues (corn starch, CS) were evaluated. Composites containing acrylic acid-grafted PLA (PLA-g-AA/CS) exhibited noticeably superior mechanical properties due to their greater compatibility with CS compared with PLA/CS. The feasibility of using PLA-g-AA/CS as a film bag material to facilitate the controlled release of an encapsulated phosphate-solubilizing bacterium (PSB) Burkholderia cepacia as a fertilizer use promoter was then evaluated. For purposes of comparison and accurate characterization, a PLA film bag was also assessed. The results showed that the bacterium completely degraded both the PLA and the PLA-g-AA/CS composite film bags, resulting in cell release. The PLA-g-AA/CS (20 wt%) film bags were more biodegradable than those made of PLA, and displayed a higher loss of molecular weight and intrinsic viscosity, indicating a strong connection between these characteristics and biodegradability.

  8. Amino acid composition of some Mexican foods.

    PubMed

    Morales de León, Josefina; Camacho, M Elena; Bourges, Héctor

    2005-06-01

    Knowledge of the amino acid composition of foods is essential to calculate their chemical score, which is used to predict protein quality of foods and diets. Though amino acid composition of many foods is reasonably well established, better knowledge is needed on native foods consumed in different regions and countries. This paper presents the amino acid composition of different presentations of raw and processed foods produced and consumed in Mexico. The amino acid composition was determined using Beckman amino acid analyzers (models 116 and 6300). Tryptophan was determined using the Spies and Chambers method. Of the different foods analyzed, some comments are made on native or basic foods in Mexico: Spirulin, where lysine is the limiting amino acid, with a chemical score of 67%, is a good source of tryptophan (1.16g/16 gN); amaranth contains high levels of sulphur amino acids (4.09 to 5.34 g/16gN), with a protein content of 15 g/100g; and pulque, a Pre-Hispanic beverage that contains high levels of tryptophan (2.58 g/16 gN) and sulphur amino acids (2.72 g/16 gN). Finally, insects are good sources of sulphur amino acids and lysine.

  9. Effect of compatibilization on the properties of in situ microfibrillar composites based on polylactic acid and polypropylene

    NASA Astrophysics Data System (ADS)

    Oliviero, Maria; Buonocore, Giovanna G.; Verdolotti, Letizia; Lavorgna, Marino

    2015-12-01

    The aim of this work was to explore the feasibility of using polypropylene (PP) as an reinforcing material for polylactide acid (PLA) based on the concept of in situ microfibrillar composites (iMFCs). Microfibers of PP were successfully generated by melt mixing, slit die extrusion and cold stretching. However, due to their immiscibility feature, the interfacial interaction between PP microfibers and PLA matrix is poor. In order to reduce the interfacial tension of the blend, PP-grafted with maleic anhydride was used as an interfacial compatibilizer. The effect of filler content on morphological appearance, mechanical and water vapor barrier properties were investigated. Results show the effect of the compatibilizer to stabilize the morphology developed during compounding and to enhance adhesion between the phases thus improving the properties of the obtained iMFCs.

  10. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid).

    PubMed

    Manavitehrani, Iman; Fathi, Ali; Wang, Yiwei; Maitz, Peter K; Dehghani, Fariba

    2015-10-14

    The acidic nature of the degradation products of polyesters often leads to unpredictable clinical complications, such as necrosis of host tissues and massive immune cell invasions. In this study, poly(propylene carbonate) (PPC) and starch composite is introduced with superior characteristics as an alternative to polyester-based polymers. The degradation products of PPC-starch composites are mainly carbon dioxide and water; hence, the associated risks to the acidic degradation of polyesters are minimized. Moreover, the compression strength of PPC-starch composites can be tuned over the range of 0.2±0.03 MPa to 33.9±1.51 MPa by changing the starch contents of composites to address different clinical needs. More importantly, the addition of 50 wt % starch enhances the thermal processing capacity of the composites by elevating their decomposition temperature from 245 to 276 °C. Therefore, thermal processing methods, such as extrusion and hot melt compression methods can be used to generate different shapes and structures from PPC-starch composites. We also demonstrated the cytocompatibility and biocompatibility of these composites by conducting in vitro and in vivo tests. For instance, the numbers of osteoblast cells were increased 2.5 fold after 7 days post culture. In addition, PPC composites in subcutaneous mice model resulted in mild inflammatory responses (e.g., the formation of fibrotic tissue) that were diminished from two to 4 weeks postimplantation. The long-term in vivo biodegradation of PPC composites are compared with poly(lactic acid) (PLA). The histochemical analysis revealed that after 8 weeks, the biodegradation of PLA leads to massive immune cell infusion and inflammation at the site, whereas the PPC composites are well-tolerated in vivo. All these results underline the favorable properties of PPC-starch composites as a benign biodegradable biomaterial for fabrication of biomedical implants.

  11. Effect of wheatgrass on membrane fatty acid composition during hepatotoxicity induced by alcohol and heated PUFA.

    PubMed

    Durairaj, Varalakshmi; Shakya, Garima; Pajaniradje, Sankar; Rajagopalan, Rukkumani

    2014-06-01

    Alcoholism is a broad term used for problems related to alcohol, medically considered as disease, specifically an addictive illness, abuse, and dependence. It is the major cause of liver disease in western countries. Alcoholic liver disease encompasses the hepatic alterations leading to fatty liver, hepatitis, and fibrosis or cirrhosis. Fried food items prepared with repeatedly heated polyunsaturated fatty acid (PUFA) exacerbate the disturbances induced by alcohol. The use of herbs to treat diseases is almost universal. Wheatgrass (WG) is used as a supplemental nutrition because of its unique curative properties. As it has antioxidant property, it prevents cancer, diabetes, and acts as liver cleanser. The present study was undertaken to evaluate the efficacy of WG on preserving membrane integrity in liver damage induced by alcohol and heated PUFA (ΔPUFA).The rats were divided into four groups. The animals in group 1 served as normal (standard diet), group 2 served as hepatotoxic (alcohol + ΔPUFA), group 3 served as treated (alcohol + ΔPUFA + WG), and group 4 served as WG control. The compositions of membrane fatty acid, total phospholipids, phospholipase A, C (PLA and PLC) were analyzed in liver to evaluate the effects of WG. Changes in fatty acid composition, decrease in phospholipids levels, and increase in PLA, PLC were observed in the diseased group. Restoration effect was seen in WG-treated rats. Histopathological observations were in correlation with the biochemical parameters. From the results obtained, we conclude that WG effectively protects the liver against alcohol and ΔPUFA-induced changes in fatty acid composition and preserves membrane integrity.

  12. Recent advances in PEG-PLA block copolymer nanoparticles.

    PubMed

    Xiao, Ren Zhong; Zeng, Zhao Wu; Zhou, Guang Lin; Wang, Jun Jie; Li, Fan Zhu; Wang, An Ming

    2010-11-26

    Due to their small particle size and large and modifiable surface, nanoparticles have unique advantages compared with other drug carriers. As a research focus in recent years, polyethylene glycol-polylactic acid (PEG-PLA) block copolymer and its end-group derivative nanoparticles can enhance the drug loading of hydrophobic drugs, reduce the burst effect, avoid being engulfed by phagocytes, increase the circulation time of drugs in blood, and improve bioavailability. Additionally, due to their smaller particle size and modified surface, these nanoparticles can accumulate in inflammation or target locations to enhance drug efficacy and reduce toxicity. Recent advances in PEG-PLA block copolymer nanoparticles, including the synthesis of PEG-PLA and the preparation of PEG-PLA nanoparticles, were introduced in this study, in particular the drug release and modifiable characteristics of PEG-PLA nanoparticles and their application in pharmaceutical preparations.

  13. Corrosion resistance of Zn-Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31

    NASA Astrophysics Data System (ADS)

    Zeng, Rong-Chang; Li, Xiao-Ting; Liu, Zhen-Guo; Zhang, Fen; Li, Shuo-Qi; Cui, Hong-Zhi

    2015-12-01

    A Zn-Al layered double hydroxide (ZnAl-LDH) coating consisted of uniform hexagonal nano-plates was firstly synthesized by co-precipitation and hydrothermal treatment on the AZ31 alloy, and then a poly(lactic acid) (PLA) coating was sealed on the top layer of the ZnAl-LDH coating using vacuum freeze-drying. The characteristics of the ZnAl-LDH/PLA composite coatings were investigated by means of XRD, SEM, FTIR and EDS. The corrosion resistance of the coatings was assessed by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the ZnAl-LDH coating contained a compact inner layer and a porous outer layer, and the PLA coating with a strong adhesion to the porous outer layer can prolong the service life of the ZnAl-LDH coating. The excellent corrosion resistance of this composite coating can be attributable to its barrier function, ion-exchange and self-healing ability.

  14. Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation.

    PubMed

    Fan, Min; Liao, Jinfeng; Guo, Gang; Ding, Qiuxia; Yang, Yi; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 micro m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vive study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation.

  15. Zinc Metalloproteinase ProA Directly Activates Legionella pneumophila PlaC Glycerophospholipid:cholesterol Acyltransferase*

    PubMed Central

    Lang, Christina; Rastew, Elena; Hermes, Björn; Siegbrecht, Enrico; Ahrends, Robert; Banerji, Sangeeta; Flieger, Antje

    2012-01-01

    Enzymes secreted by Legionella pneumophila, such as phospholipases A (PLAs) and glycerophospholipid:cholesterol acyltransferases (GCATs), may target host cell lipids and therefore contribute to the establishment of Legionnaires disease. L. pneumophila possesses three proteins, PlaA, PlaC, and PlaD, belonging to the GDSL family of lipases/acyltransferases. We have shown previously that PlaC is the major GCAT secreted by L. pneumophila and that the zinc metalloproteinase ProA is essential for GCAT activity. Here we characterized the mode of PlaC GCAT activation and determined that ProA directly processes PlaC. We further found that not only cholesterol but also ergosterol present in protozoa was palmitoylated by PlaC. Such ester formations were not induced by either PlaA or PlaD. PlaD was shown here to possess lysophospholipase A activity, and interestingly, all three GDSL enzymes transferred short chain fatty acids to sterols. The three single putative catalytic amino acids (Ser-37, Asp-398, and His-401) proved essential for all PlaC-associated PLA, lysophospholipase A, and GCAT activities. A further four cysteine residues are important for the PLA/GCAT activities as well as their oxidized state, and we therefore conclude that PlaC likely forms at least one disulfide loop. Analysis of cleavage site and loop deletion mutants suggested that for GCAT activation deletion of several amino acids within the loop is necessary rather than cleavage at a single site. Our data therefore suggest a novel enzyme inhibition/activation mechanism where a disulfide loop inhibits PlaC GCAT activity until the protein is exported to the external space where it is ProA-activated. PMID:22582391

  16. sPLA2 IB induces human podocyte apoptosis via the M-type phospholipase A2 receptor.

    PubMed

    Pan, Yangbin; Wan, Jianxin; Liu, Yipeng; Yang, Qian; Liang, Wei; Singhal, Pravin C; Saleem, Moin A; Ding, Guohua

    2014-10-22

    The M-type phospholipase A2 receptor (PLA2R) is expressed in podocytes in human glomeruli. Group IB secretory phospholipase A2 (sPLA2 IB), which is one of the ligands of the PLA2R, is more highly expressed in chronic renal failure patients than in controls. However, the roles of the PLA2R and sPLA2 IB in the pathogenesis of glomerular diseases are unknown. In the present study, we found that more podocyte apoptosis occurs in the kidneys of patients with higher PLA2R and serum sPLA2 IB levels. In vitro, we demonstrated that human podocyte cells expressed the PLA2R in the cell membrane. After binding with the PLA2R, sPLA2 IB induced podocyte apoptosis in a time- and concentration-dependent manner. sPLA2 IB-induced podocyte PLA2R upregulation was not only associated with increased ERK1/2 and cPLA2α phosphorylation but also displayed enhanced apoptosis. In contrast, PLA2R-silenced human podocytes displayed attenuated apoptosis. sPLA2 IB enhanced podocyte arachidonic acid (AA) content in a dose-dependent manner. These data indicate that sPLA2 IB has the potential to induce human podocyte apoptosis via binding to the PLA2R. The sPLA2 IB-PLA2R interaction stimulated podocyte apoptosis through activating ERK1/2 and cPLA2α and through increasing the podocyte AA content.

  17. Starch composites with aconitic acid.

    PubMed

    Gilfillan, William Neil; Doherty, William O S

    2016-05-05

    The aim of this project is to examine the effectiveness of using aconitic acid (AcA), a tricarboxylic acid which contains a carbon/carbon double bond (CC), to enhance the properties of starch-based films. Starch/glycerol cast films were prepared with 0, 2, 5, 10 and 15wt% AcA (starch wt% basis) and the properties analysed. It was shown that AcA acted as both a cross-linking agent and also a strong plasticising agent. The 5wt% AcA derived starch films were the most effectively cross-linked having the lowest solubility (28wt%) and decreased swelling coefficient (35vol.%) by approximately 3 times and 2.4 times respectively compared to the control film submerged in water (23°C). There was also a significant increase in the film elongation at break by approximately 35 times (compared to the control) with the addition of 15wt% AcA, emphasising the plasticising effect of AcA. However, generally there was a reduced tensile strength, softening of the film, and reduced thermal stability with increased amounts of AcA.

  18. Fatty acid composition of California grown almonds.

    PubMed

    Sathe, S K; Seeram, N P; Kshirsagar, H H; Heber, D; Lapsley, K A

    2008-11-01

    Eight almond (Prunus dulcis L.) cultivars from 12 different California counties, collected during crop years 2004 to 2005 and 2005 to 2006, were extracted with petroleum ether. The extracts were subjected to GC-MS analyses to determine fatty acid composition of soluble lipids. Results indicated palmitic (C16:0), oleic (C18:1), linoleic (C18:2), and alpha-linolenic (C18:3) acid, respectively, accounted for 5.07% to 6.78%, 57.54% to 73.94%, 19.32% to 35.18%, and 0.04% to 0.10%; of the total lipids. Oleic and linoleic acid were inversely correlated (r=-0.99, P= 0.05) and together accounted for 91.16% to 94.29% of the total soluble lipids. Statistically, fatty acid composition was significantly affected by cultivar and county.

  19. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend.

  20. Investigating the Properties and Hydrolysis Ability of Poly-Lactic Acid/Chitosan Nanocomposites Using Polycaprolactone.

    PubMed

    Trang, Nguyen Thi Thu; Chinhl, Nguyen Thuy; Thanh, Dinh Thi Mai; Hang, To Thi Xuan; Giang, Nguyen Vu; Hoang, Thai; Quan, Pham Minh; Giang, Le Duc; Thai, Nguyen Viet; Lawrence, Geoffrey

    2015-12-01

    Poly-lactic acid (PLA) has been widely applied in the medical field (in biomedicines such as medical capsules, surgical sutures and suture wounds) owing to its high biodegradability, good biocompatibility and ability to be dissolved in common solvents. Chitosan (CS) is an abundant polysaccharide and a cationic polyelectrolyte present in nature. In this study, the combination of PLA and CS has been used to form PLA/CS nanocomposites having the advantages of both the original components. To enhance the dispersibility and compatibility between PLA and CS in the PLA/CS nanocomposites, polycaprolactone (PCL) is added as a compatibilizer. The Fourier Transform Infrared spectroscopies prove the existence of the interactions of PCL with PLA and CS. A more regular dispersion of CS of 200-400 nm particle size, is observed in the PLA matrix of the PLA/CS nanocomposites containing PCL, through the Field Emission Scanning Electron Microscopy images. The appearance of one glass transition temperature (T(g)) value of PLA/CS/PCL nanocomposites occuring between the T(g) values of PLA and CS in DSC diagrams confirms the improvement in the compatibility between PLA and CS, due to the presence of PCL. The TGA result shows that PCL plays an important role in enhancing the thermal stability of PLA/CS/PCL nanocomposites. The hydrolysis of PLA/CS/PCL nanocomposites in alkaline and phosphate buffer solutions was investigated. The obtained results show that the PLA/CS/PCL nanocomposites have slower hydrolysis ability than the PLA/CS composites.

  1. Effects of Modifier Type on Properties of in Situ Organo-Montmorillonite Modified Wood Flour/Poly(lactic acid) Composites.

    PubMed

    Liu, Ru; Chen, Yu; Cao, Jinzhen

    2016-01-13

    Wood flour (WF) was modified with sodium-montmorillonite (Na-MMT) and two types of surfactant modifiers, namely, didecyl dimethylammonium chloride (DDAC) and sodium dodecyl sulfonate (SDS) though a two-step process inside WF. The thus-modified WFs were characterized, and the effects of MMT type on physical, mechanical, and thermal properties of their composites with poly(lactic acid) (PLA) were investigated. The results showed: (1) either DDAC or SDS could modified Na-MMT into OMMT, and then uniformly distributed in WF cell walls; (2) OMMT improved the physical properties, most mechanical properties, and thermal properties of the composites except for the impact strength; and (3) compared with SDS, DDAC seemed to perform better in properties of composites. However, DDAC showed some negative effect on the early stage of composite thermal decomposition.

  2. Development of polylactide (PLA) and PLA nanocomposite foams in injection molding for automotive applications

    NASA Astrophysics Data System (ADS)

    Najafi Chaloupli, Naqi

    foaming behavior of PLA. To this end, LCB-PLAs were prepared in the presence of a multifunctional chain extender (CE) using two different processing strategies. In the first strategy, the dried PLA was directly mixed in the molten state with various quantities of CE (the formation of LCB structure). To further examine the impact of CE and molecular topology, a LCB-PLA was also prepared using a second approach, strategy S2. In this approach, a highly branched PLA was first prepared and then mixed with the neat PLA at a weight ratio of 50:50 (the introduction of LCB structure). The steady and transient rheological properties of the linear and LCB-PLAs revealed that the LCB-PLAs exhibited an increased viscosity, shear sensitivity and longer relaxation time in comparison with the linear PLA. The presence of the LCB structure, moreover, led to a strong strain-hardening behavior in uniaxial elongational flow whereas no strain hardening was observed for the linear PLA. The batch foaming of the samples was conducted using CO2 at different foaming temperatures ranging from 130 to 155 °C. The impact of molecular structure and foaming temperature on the void fraction, cell density, and cell size were examined. It was found that the increased melt strength and elasticity, resulting from branching, strongly affected the cell uniformity, cell density and void fraction. Among the investigated compositions, LCB-PLA prepared by strategy S2 provided smaller cell size and higher cell density than the other compositions. In most polymer processing operations such as extrusion and injection molding the polymeric chains are subjected to complex flow fields (elongation, shear, and mixed flows). Shearing the molten polymer during processing plays an essential role on crystallization and, thus, on the final properties of the product. The impact of the LCB structure and shear on the isothermal shear-induced crystallization kinetics, and the crystal morphology of PLA were studied in the second

  3. Thermal degradation kinetics of sucrose palmitate reinforced poly(lactic acid) biocomposites.

    PubMed

    Valapa, Ravibabu; Pugazhenthi, Gopal; Katiyar, Vimal

    2014-04-01

    The current work is focused on investigating the influence of novel bio-filler, "sucrose palmitate (SP)" on the thermal degradation behavior of poly(lactic acid) (PLA) biocomposites in order to render its suitability for food packaging application. Thermal degradation behavior of the PLA biocomposites was investigated by thermo-gravimetric analysis (TGA) using dynamic heating regime. The differential TG analysis revealed that there is no change in the Tmax value (357 °C) for PLA and its composites up to 5 wt% of bio-filler loading. This reveals that the sucrose palmitate acts as a protective barrier by decelerating the thermal degradation rate of PLA. In the case of 10 wt% of the filler incorporated in the PLA matrix, Tmax rapidly shifted to lower temperature (324 °C). This downturn in Tmax at higher loading of the filler is due to the increase in acidic sites and enhancement in the rate of degradation is observed. Differential scanning calorimetry (DSC) analysis revealed unimodal melting peak indicating the α-crystalline form of PLA. Based on the thermal degradation profile of sucrose palmitate, possible mechanism for degradation of PLA composites is proposed. The activation energies (Ea) of thermal degradation of PLA and PLA composites were evaluated by Flynn-Wall-Ozawa and Kissinger methods.

  4. Differential hydrolysis of erythrocyte and mitochondrial membrane phospholipids by two phospholipase A2 isoenzymes (NK-PLA2-I and NK-PLA2-II) from the venom of the Indian monocled cobra Naja kaouthia.

    PubMed

    Doley, Robin; King, Glenn F; Mukherjee, Ashis K

    2004-05-01

    We previously demonstrated that venom from the Indian monocled cobra Naja kaouthia is a rich source of phospholipase A2 enzymes, and we purified and characterized a major PLA2 isoenzyme (NK-PLA2-I) from N. kaouthia venom. In the present study, we report the purification and biochemical characterization of a second PLA2 isoenzyme (NK-PLA2-II) from the same venom. A comparison of the membrane phospholipid hydrolysis patterns by these two PLA2s has revealed that they cause significantly more damage to mitochondrial membranes (NK-PLA2-I > NK-PLA2-II) as compared to erythrocyte membranes due to more efficient binding of the enzymes to mitochondrial membranes. Fatty acid release patterns by these PLA2s from the membrane phospholipid PC-pools indicate that NK-PLA2-I does not discriminate between saturated and unsaturated fatty acids whereas NK-PLA2-II shows a preference for unsaturated fatty acids during the initial phase of attack. The current investigation provides new insight into the molecular arrangement of NK-PLA2-sensitive domains in erythrocyte and mitochondrial membranes and highlights the contribution of polar, but uncharged, amino acids such as serine and cysteine in NK-PLA2 induced membrane damage.

  5. Thermal Properties of Extruded Injection-Molded Poly (lactic acid) and Milkweed Composites: Degradation Kinectics and Enthalpic Relaxation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to determine the degree of compatibility between Poly (lactic Acid) (PLA) and different biomaterials, PLA was compounded with milkweed fiber, a new crop oil seed. After oil extraction, the remaining cake retained approximately 10% residual oil and 47% protein. The pressed seed cake (10% mo...

  6. Degradation of Poly(L-Lactic Acid) and Bio-Composites by Alkaline Medium under Various Temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ribbons of poly(lactic acid) (PLA) and PLA containing 10 or 25 % Osage orange (OO) biocomposites of various sized heartwood particles were exposed to non-composting soil conditions either outdoors or in a greenhouse. No appreciable degradation was evident even after 208 day treatments. An artifici...

  7. sPLA2 and the epidermal barrier

    PubMed Central

    Ilic, Dusko; Bollinger, James M.; Gelb, Michael; Mauro, Theodora M.

    2015-01-01

    The mammalian epidermis provides both an interface and a protective barrier between the organism and its environment. Lipid, processed into water-impermeable bilayers between the outermost layers of the epidermal cells, forms the major barrier that prevents water from exiting the organism, and also prevents toxins and infectious agents from entering. The secretory phospholipase 2 (sPLA2) enzymes control important processes in skin and other organs, including inflammation and differentiation. sPLA2 activity contributes to epidermal barrier formation and homeostasis by generating free fatty acids, which are required both for formation of lamellar membranes and also for acidification of the stratum corneum (SC). sPLA2 is especially important in controlling SC acidification and establishment of an optimum epidermal barrier during the first postnatal week. Several sPLA2 isoforms are present in the epidermis. We find that two of these isoforms, sPLA2 IIA and sPLA2 IIF, localize to the upper stratum granulosum and increase in response to experimental barrier perturbation. sPLA2F−/− mice also demonstrate a more neutral SC pH than do their normal littermates, and their initial recovery from barrier perturbation is delayed. These findings confirm that sPLA2 enzymes perform important roles in epidermal development, and suggest that the sPLA2IIF isoform may be central to SC acidification and barrier function. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. PMID:24269828

  8. The Adipocyte-Inducible Secreted Phospholipases PLA2G5 and PLA2G2E Play Distinct Roles in Obesity

    PubMed Central

    Sato, Hiroyasu; Taketomi, Yoshitaka; Ushida, Ayako; Isogai, Yuki; Kojima, Takumi; Hirabayashi, Tetsuya; Miki, Yoshimi; Yamamoto, Kei; Nishito, Yasumasa; Kobayashi, Tetsuyuki; Ikeda, Kazutaka; Taguchi, Ryo; Hara, Shuntaro; Ida, Satoshi; Miyamoto, Yuji; Watanabe, Masayuki; Baba, Hideo; Miyata, Keishi; Oike, Yuichi; Gelb, Michael H.; Murakami, Makoto

    2014-01-01

    Summary Metabolic disorders including obesity and insulin resistance have their basis in dysregulated lipid metabolism and low-grade inflammation. In a microarray search of unique lipase-related genes whose expressions are associated with obesity, we found that two secreted phospholipase A2s (sPLA2s), PLA2G5 and PLA2G2E, were robustly induced in adipocytes of obese mice. Analyses of Pla2g5−/− and Pla2g2e−/− mice revealed distinct and previously unrecognized roles of these sPLA2s in diet-induced obesity. PLA2G5 hydrolyzed phosphatidylcholine in fat-overladen low-density lipoprotein to release unsaturated fatty acids, which prevented palmitate-induced M1 macrophage polarization. As such, PLA2G5 tipped the immune balance toward an M2 state, thereby counteracting adipose tissue inflammation, insulin resistance, hyperlipidemia and obesiy. PLA2G2E altered minor lipoprotein phospholipids, phosphatidylserine and phosphatidylethanolamine, and moderately facilitated lipid accumulation in adipose tissue and liver. Collectively, the identification of “metabolic sPLA2s” adds this gene family to a growing list of lipolytic enzymes that act as metabolic coordinators. PMID:24910243

  9. Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites part I. Processing and morphology.

    PubMed

    Bitinis, Natacha; Verdejo, Raquel; Bras, Julien; Fortunati, Elena; Kenny, Jose Maria; Torre, Luigi; López-Manchado, Miguel Angel

    2013-07-25

    PLA/NR/cellulose nanowhisker composites were prepared using three types of cellulose nanocrystals (CNC), i.e. unmodified CNC obtained from acid hydrolysis of microcrystalline cellulose and two surface modified CNC. The two modification reactions, consisting on the grafting of long alkyl chains and of PLA chains onto the cellulose nanocrystals were carried out in order to facilitate the incorporation of the nanocrystals in the PLA/NR blend. A novel processing method was optimized combining solvent casting and extrusion in order to obtain a homogeneous dispersion of the nanofillers in the blend. The CNC modifications determined their location in the PLA/NR blend and influenced its morphology.

  10. Synthesis of PP-g-MA as compatibilizer for PP/PLA biocomposites: Thermal, mechanical and biodegradability properties

    NASA Astrophysics Data System (ADS)

    Ghozali, Muhammad; Rohmah, Elfi Nur

    2017-01-01

    A synthesis of polypropylene-graft-maleic anhydride (PP-g-MA) with benzoyl peroxide (BPO) as an initiator has been conducted in a stainless-steel reactor at 120°C for 1 hours. The composition of maleic anhydride (MA) was varied between 10-40 phr, whereas BPO was between 0.5-2.0 phr. The grafting degree (GD) was determined by calculating the MA monomer grafted into polypropylene (PP). Fourier Transform Infrared (FTIR) analysis was performed to study the functional group in the copolymer PP-g-MA. The result shows that the highest GD of 11.85% was obtained when the use of MA and BPO are 40 phr and 1 phr, respectively. PP/PLA biocomposites have been manufactured by adding polypropylene (PP), polylactic acid (PLA) and PP-g-MA as compatibilizer into rheomix at a temperature of 200-210°C with a stirring speed of 25 rpm for 7-10 minutes. PP/PLA biocomposites were varied at a ratio of 0/100, 20/80, 40/60, 60/40, 80/20 and 100/0. Fourier Transform Infrared (FTIR), Ultimate Testing Machine (UTM), Thermogravimetric Analysis (TGA) and biodegradation analysis were performed to determine the functional groups, thermal stability, tensile strength and the biodegradability level of PP/PLA biocomposites, respectively. Thermal and mechanical analysis results indicate that the addition of PLA into PP/PLA biocomposites can reduce the thermal stability and mechanical properties, however the biodegradability is increased.

  11. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; Rayón, E; López, J; Kenny, J M

    2014-07-17

    Cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose by acid hydrolysis were added into poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends to improve the final properties of the multifunctional systems. CNC were also modified with a surfactant (CNCs) to increase the interfacial adhesion in the systems maintaining the thermal stability. Firstly, masterbatch pellets were obtained for each formulation to improve the dispersion of the cellulose structures in the PLA-PHB and then nanocomposite films were processed. The thermal stability as well as the morphological and structural properties of nanocomposites was investigated. While PHB increased the PLA crystallinity due to its nucleation effect, well dispersed CNC and CNCs not only increased the crystallinity but also improved the processability, the thermal stability and the interaction between both polymers especially in the case of the modified CNCs based PLA-PHB formulation. Likewise, CNCs were better dispersed in PLA-CNCs and PLA-PHB-CNCs, than CNC.

  12. A Systems Genetics Approach Identifies Gene Regulatory Networks Associated with Fatty Acid Composition in Brassica rapa Seed1

    PubMed Central

    Xiao, Dong; Bucher, Johan; Jin, Mina; Boyle, Kerry; Fobert, Pierre; Maliepaard, Chris

    2016-01-01

    Fatty acids in seeds affect seed germination and seedling vigor, and fatty acid composition determines the quality of seed oil. In this study, quantitative trait locus (QTL) mapping of fatty acid and transcript abundance was integrated with gene network analysis to unravel the genetic regulation of seed fatty acid composition in a Brassica rapa doubled haploid population from a cross between a yellow sarson oil type and a black-seeded pak choi. The distribution of major QTLs for fatty acids showed a relationship with the fatty acid types: linkage group A03 for monounsaturated fatty acids, A04 for saturated fatty acids, and A05 for polyunsaturated fatty acids. Using a genetical genomics approach, expression quantitative trait locus (eQTL) hotspots were found at major fatty acid QTLs on linkage groups A03, A04, A05, and A09. An eQTL-guided gene coexpression network of lipid metabolism-related genes showed major hubs at the genes BrPLA2-ALPHA, BrWD-40, a number of seed storage protein genes, and the transcription factor BrMD-2, suggesting essential roles for these genes in lipid metabolism. Three subnetworks were extracted for the economically important and most abundant fatty acids erucic, oleic, linoleic, and linolenic acids. Network analysis, combined with comparison of the genome positions of cis- or trans-eQTLs with fatty acid QTLs, allowed the identification of candidate genes for genetic regulation of these fatty acids. The generated insights in the genetic architecture of fatty acid composition and the underlying complex gene regulatory networks in B. rapa seeds are discussed. PMID:26518343

  13. Crystallization kinetics of poly-(lactic acid) with and without talc: Optical microscopy and calorimetric analysis

    NASA Astrophysics Data System (ADS)

    Refaa, Z.; Boutaous, M.; Rousset, F.; Fulchiron, R.; Zinet, M.; Xin, S.; Bourgin, P.

    2014-05-01

    Poly-(lactic acid) or PLA is a biodegradable polymer synthesized from renewable resources. Recently, the discovery of new polymerization routes has allowed increasing the produced volumes. As a consequence, PLA is becoming of great interest for reducing the dependence on petroleum-based plastics. Because of its interesting mechanical properties, PLA is seen as a potential substitute for some usual polymers. However, its relatively slow crystallization kinetics can be a disadvantage with regard to industrial applications. The crystallization kinetics of PLA can be enhanced by adding nucleating agents, which also influences on crystalline morphology and rheological behavior. In the present work, the isothermal quiescent crystallization kinetics of both neat PLA and PLA/talc composite (5 wt% talc) are investigated. The effects of talc on the overall crystallization kinetics and on the crystalline morphology are analyzed using both optical microscopy measurements and thermal analysis by differential scanning calorimetry.

  14. Blending Novatein¯ thermoplastic protein with PLA for carbon dioxide assisted batch foaming

    NASA Astrophysics Data System (ADS)

    Walallavita, Anuradha; Verbeek, Casparus J. R.; Lay, Mark

    2016-03-01

    The convenience of polymeric foams has led to their widespread utilisation in everyday life. However, disposal of synthetic petroleum-derived foams has had a detrimental effect on the environment which needs to be addressed. This study uses a clean and sustainable approach to investigate the foaming capability of a blend of two biodegradable polymers, polylactic acid (PLA) and Novatein® Thermoplastic Protein (NTP). PLA, derived from corn starch, can successfully be foamed using a batch technique developed by the Biopolymer Network Ltd. NTP is a patented formulation of bloodmeal and chemical additives which can be extruded and injection moulded similar to other thermoplastics. However, foaming NTP is a new area of study and its interaction with blowing agents in the batch process is entirely unknown. Subcritical and supercritical carbon dioxide have been examined individually in two uniquely designed pressure vessels to foam various compositions of NTP-PLA blends. Foamed material were characterised in terms of expansion ratio, cell size, and cellular morphology in order to study how the composition of NTP-PLA affects foaming with carbon dioxide. It was found that blends with 5 wt. % NTP foamed using subcritical CO2 expanded up to 11 times due to heterogeneous nucleation. Morphology analysis using scanning electron microscopy showed that foams blown with supercritical CO2 had a finer cell structure with consistent cell size, whereas, foams blown with subcritical CO2 ranged in cell size and showed cell wall rupture. Ultimately, this research would contribute to the production of a biodegradable foam material to be used in packaging applications, thereby adding to the application potential of NTP.

  15. Effect of nano anhydrous magnesium carbonateon fire-retardant performance of polylactic acid/bamboo fibers composites.

    PubMed

    Li, Xingong; Wu, Yiqiang; Zheng, Xia

    2011-12-01

    Polylactic acid/bamboo fibers (PLA/BF) composites, which are extremely flammable, must be carried out fire-retardant processing. However, traditional organic flame retardants release certain amount of pollutant to the environment, and inorganic flame retardants require more addition, which influenced the mechanical properties of composites. Therefore, nano inorganic flame retardants, which have some characteristics of small size, uniform shape and high specific surface area, can bring good flame-retardant effect with relatively few addition. Meanwhile, it can enhance the interaction of composites interface, and disperse more evenly in polylactic acid matrix. Furthermore, it has light influence on the physical mechanical properties. In this study, nano anhydrous magnesium carbonate (NAMC) is used as flame retardant, Cone Calorimeter and Dynamic Thermal Mechanical Analyzer are adopted for studying the fire-retardant properties and the dynamic thermodynamic parameters of the polylactic acid/bamboo fiber composites, respectively. Results show that nano anhydrous magnesium carbonate flame retardant have good fire-retardant performance for the polylactic acid/bamboo fiber composites, considering practicality and economy, its ideal addition is 5%.

  16. Fabrication of microfibrous and nano-/microfibrous scaffolds: melt and hybrid electrospinning and surface modification of poly(L-lactic acid) with plasticizer.

    PubMed

    Yoon, Young Il; Park, Ko Eun; Lee, Seung Jin; Park, Won Ho

    2013-01-01

    Biodegradable poly(L-lactic acid) (PLA) fibrous scaffolds were prepared by electrospinning from a PLA melt containing poly(ethylene glycol) (PEG) as a plasticizer to obtain thinner fibers. The effects of PEG on the melt electrospinning of PLA were examined in terms of the melt viscosity and fiber diameter. Among the parameters, the content of PEG had a more significant effect on the average fiber diameter and its distribution than those of the spinning temperature. Furthermore, nano-/microfibrous silk fibroin (SF)/PLA and PLA/PLA composite scaffolds were fabricated by hybrid electrospinning, which involved a combination of solution electrospinning and melt electrospinning. The SF/PLA (20/80) scaffolds consisted of a randomly oriented structure of PLA microfibers (average fiber diameter = 8.9 µm) and SF nanofibers (average fiber diameter = 820 nm). The PLA nano-/microfiber (20/80) scaffolds were found to have similar pore parameters to the PLA microfiber scaffolds. The PLA scaffolds were treated with plasma in the presence of either oxygen or ammonia gas to modify the surface of the fibers. This approach of controlling the surface properties and diameter of fibers could be useful in the design and tailoring of novel scaffolds for tissue engineering.

  17. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    PubMed

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  18. Investigation on thermoformability of PLA by rheological and hot tensile tests

    NASA Astrophysics Data System (ADS)

    Garofalo, Emilia; Iannaccone, Giovanni; Scarfato, Paola; Di Maio, Luciano; Incarnato, Loredana

    2012-07-01

    In this work the correlation between the thermoformability of different grades of polylactide acid (PLA 4032D, PLA 4042D and PLA 2003D) and their mechanical, thermal, and rheological properties was explored. In particular, hot tensile tests, at different stretching temperatures and crosshead speeds, were performed in order to identify an optimum windows of temperature and strain rate for improved thermoforming performance. The properties measured from the creep experiments were correlated with the propensity of PLA sheet to sag, while the unrecovered strains by the creep recovery tests were associated to mold replication attitude of the materials investigated.

  19. Homocomposites of Polylactide (PLA) with Induced Interfacial Stereocomplex Crystallites

    PubMed Central

    2015-01-01

    The demand for “green” degradable composite materials increases with growing environmental awareness. The key challenge is achieving the preferred physical properties and maintaining their eco-attributes in terms of the degradability of the matrix and the filler. Herein, we have designed a series of “green” homocomposites materials based purely on polylactide (PLA) polymers with different structures. Film-extruded homocomposites were prepared by melt-blending PLA matrixes (which had different degrees of crystallinity) with PLLA and PLA stereocomplex (SC) particles. The PLLA and SC particles were spherical and with 300–500 nm size. Interfacial crystalline structures in the form of stereocomplexes were obtained for certain particulate-homocomposite formulations. These SC crystallites were found at the particle/matrix interface when adding PLLA particles to a PLA matrix with d-lactide units, as confirmed by XRD and DSC data analyses. For all homocomposites, the PLLA and SC particles acted as nucleating agents and enhanced the crystallization of the PLA matrixes. The SC particles were more rigid and had a higher Young’s modulus compared with the PLLA particles. The mechanical properties of the homocomposites varied with particle size, rigidity, and the interfacial adhesion between the particles and the matrix. An improved tensile strength in the homocomposites was achieved from the interfacial stereocomplex formation. Hereafter, homocomposites with tunable crystalline arrangements and subsequently physical properties, are promising alternatives in strive for eco-composites and by this, creating materials that are completely degradable and sustainable. PMID:26523245

  20. Reinforcement of a porous collagen scaffold with surface-activated PLA fibers.

    PubMed

    Liu, Xi; Huang, Changbin; Feng, Yujie; Liang, Jie; Fan, Yujiang; Gu, Zhongwei; Zhang, Xingdong

    2010-01-01

    A hybrid porous collagen scaffold mechanically reinforced with surface-activated poly(lactic acid) (PLA) fiber was prepared. PLA fibers, 20 mum in diameter and 1 mm in length, were aminolyzed with hexanediamine to introduce free amino groups on the surfaces. After the amino groups were transferred to aldehyde groups by treatment with glutaraldehyde, different amounts (1.5, 3, 5 and 8 mg) of surface-activated PLA fibers were homogeneously mixed with 2 ml type-I collagen solution (pH 2.8, 0.6 wt%). This mixture solution was then freeze-dried and cross-linked to obtain collagen sponges with surface-activated PLA fiber. Scanning electron microscopy observation indicated that the collagen sponges had a highly interconnected porous structure with an average pore size of 170 mum, irrespective of PLA fiber incorporation. The dispersion of surface-activated PLA fibers was homogeneous in collagen sponge, in contrast to unactivated PLA fibers. The compression modulus test results showed that, compared with unactivated PLA fibers, the surface-activated PLA fibers enhanced the resistance of collagen sponge to compression more significantly. Cytotoxicity assay by MTT test showed no cytotoxicity of these collagen sponges. L929 mouse fibroblast cell-culture studies in vitro revealed that the number of L929 cells attached to the collagen sponge with surface-activated PLA fibers, both 6 h and 24 h after seeding, was higher than that in pure collagen sponge and sponge with unactivated PLA fibers. In addition, a better distribution of cells infiltrated in collagen sponge with surface-activated PLA fibers was observed by histological staining. These results indicated that the collagen sponge reinforced with surface-activated PLA fibers is a promising biocompatible scaffold for tissue engineering.

  1. Manipulation of Galactolipid Fatty Acid Composition with Substituted Pyridazinones

    PubMed Central

    John, Judith B. St.

    1976-01-01

    The fatty acid composition of the major lipids of the chloroplast membranes, the mono- and digalactosyl diglycerides, can be definably altered with various substituted pyridazinones. Galactolipid fatty acid composition of wheat (Triticum aestivum L.) can be altered so that there is a decrease in linolenic acid accompanied by an increase in linoleic acid without a shift in the relative proportion of saturated to unsaturated fatty acids; the fatty acid composition can be shifted toward a higher proportion of saturated fatty acids; or the fatty acid composition of the monogalactosyl diglycerides can be altered in preference to the digalactosyl diglycerides. Also, the light-mediated parallel accumulation of chlorophyll and linolenic acid can be separated with a substituted pyridazinone. The substituted pyridazinones may be useful tools in clarifying the role the galactolipids and their component fatty acids play in the structure and function of chloroplast membranes in higher plants. PMID:16659420

  2. Effects of Inorganic Fillers on the Thermal and Mechanical Properties of Poly(lactic acid)

    PubMed Central

    Liu, Xingxun; Wang, Tongxin; Chow, Laurence C.; Yang, Mingshu; Mitchell, James W.

    2015-01-01

    Addition of filler to polylactic acid (PLA) may affect its crystallization behavior and mechanical properties. The effects of talc and hydroxyapatite (HA) on the thermal and mechanical properties of two types of PLA (one amorphous and one semicrystalline) have been investigated. The composites were prepared by melt blending followed by injection molding. The molecular weight, morphology, mechanical properties, and thermal properties have been characterized by gel permeation chromatography (GPC), scanning electron microscope (SEM), instron tensile tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). It was found that the melting blending led to homogeneous distribution of the inorganic filler within the PLA matrix but decreased the molecular weight of PLA. Regarding the filler, addition of talc increased the crystallinity of PLA, but HA decreased the crystallinity of PLA. The tensile strength of the composites depended on the crystallinity of PLA and the interfacial properties between PLA and the filler, but both talc and HA filler increased the toughness of PLA. PMID:25717339

  3. Amino acid composition predicts prion activity.

    PubMed

    Afsar Minhas, Fayyaz Ul Amir; Ross, Eric D; Ben-Hur, Asa

    2017-04-10

    Many prion-forming proteins contain glutamine/asparagine (Q/N) rich domains, and there are conflicting opinions as to the role of primary sequence in their conversion to the prion form: is this phenomenon driven primarily by amino acid composition, or, as a recent computational analysis suggested, dependent on the presence of short sequence elements with high amyloid-forming potential. The argument for the importance of short sequence elements hinged on the relatively-high accuracy obtained using a method that utilizes a collection of length-six sequence elements with known amyloid-forming potential. We weigh in on this question and demonstrate that when those sequence elements are permuted, even higher accuracy is obtained; we also propose a novel multiple-instance machine learning method that uses sequence composition alone, and achieves better accuracy than all existing prion prediction approaches. While we expect there to be elements of primary sequence that affect the process, our experiments suggest that sequence composition alone is sufficient for predicting protein sequences that are likely to form prions. A web-server for the proposed method is available at http://faculty.pieas.edu.pk/fayyaz/prank.html, and the code for reproducing our experiments is available at http://doi.org/10.5281/zenodo.167136.

  4. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2016-04-20

    Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix.

  5. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs.

  6. Thermal properties of epoxy composites filled with boric acid

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Amelkovich, Yu A.; Melnikova, T. V.

    2015-04-01

    The thermal properties of epoxy composites filled with boric acid fine powder at different percentage were studied. Epoxy composites were prepared using epoxy resin ED-20, boric acid as flame-retardant filler, hexamethylenediamine as a curing agent. The prepared samples and starting materials were examined using methods of thermal analysis, scanning electron microscopy and infrared spectroscopy. It was found that the incorporation of boric acid fine powder enhances the thermal stability of epoxy composites.

  7. Low-velocity impact behavior of woven jute/poly(lactic acid) composites

    NASA Astrophysics Data System (ADS)

    Russo, Pietro; Simeoli, Giorgio; Papa, Ilaria; Acierno, Domenico; Lopresto, Valentina; Langella, Antonio

    2016-05-01

    Biocomposite laminates based on poly(lactic acid) (PLA) and woven jute fabric were obtained by film stacking and compression molding techniques. Sample laminates were systematically characterized by impact tests with a falling dart at impact energies equal to 5, 10 and 20 J. Tests showed that, investigated PLA/jute fabric plates suffer only barely visible damages at the first two levels of impact energy while they result to be perforated at 20 J as highlighted by photographic images taken on low and back side of impacted surfaces.

  8. Photothermal and morphological characterization of PLA/PCL polymer blends

    NASA Astrophysics Data System (ADS)

    Correa-Pacheco, Z. N.; Jiménez-Pérez, J. L.; Sabino, M. A.; Cruz-Orea, A.; Loaiza, M.

    2015-09-01

    Nowadays, some synthetic polymers have been replaced by biodegradable polymers in order to avoid environmental contamination. Among these biodegradables polymers, aliphatic polyesters such as polylactic acid (PLA) and polycaprolactone (PCL) have been widely used. In the present study, solvent-casting films of PLA, PCL and polymer blends with and without compatibilizer (PLA grafted with maleic anhydride) were prepared. The thermal diffusivity ( α) of each sample was obtained by using the open photoacoustic cell technique. Morphology and thermal properties were determined by using scanning electron microscopy, transmission electron microscopy and differential scanning calorimetry (DSC), respectively. The blends showed lower thermal diffusivity compared to pure polymers. However, when the compatibilizer was used, the highest value of thermal diffusivity was obtained. Also, cold crystallization with the highest value of enthalpy of fusion was observed for the compatibilized sample, which was revealed by DSC. To our knowledge, this is the first time that the thermal diffusivity of these biodegradable polymer blends is reported.

  9. A New Bioactive Polylactide-based Composite with High Mechanical Strength

    PubMed Central

    Dong, Quanxiao; Chow, Laurence C.; Wang, Tongxin; Frukhtbeyn, Stanislav A.; Wang, Feng; Yang, Mingshu; Mitchell, James W.

    2014-01-01

    A new bioresorbable polylactide/calcium phosphate composite with improved mechanical strengths and a more basic filler, tetracalcium phosphate (TTCP), was prepared by melt compounding. N-(2-aminoethyl)-3-aminoproplytrimethoxysilane (AEAPS) and pyromellitic dianhydride (PMDA) were used to improve the interfacial adhesion between TTCP and polylactide (PLA). While AEAPS improved the dispersion of TTCP in the matrix, PMDA might react with the terminal hydroxyl group of PLA and the amino group on the surface of AEAPS modified TTCP, which could further enhance the interfacial strength. The tensile strength was improved to 68.4 MPa for the PLA/TTCP-AEAPS composite from 51.5 MPa for the PLA/TTCP composite (20 wt% of TTCP). Dynamic mechanical analysis suggested that there was a 51 % improvement in storage modulus compared to that of PLA alone, when PMDA (0.2 wt% of PMDA) was incorporated into the PLA/TTCP-AEAPS composite (5 wt% of TTCP). Using this new bioresorbable PLA composite incorporated with a more basic filler for biomedical application, the inflammation and allergic effect resulted from the degraded acidic product are expected to be reduced. PMID:25419050

  10. Poly(lactic acid)/chitosan hybrid nanoparticles for controlled release of anticancer drug.

    PubMed

    Wang, Wenlong; Chen, Shu; Zhang, Liang; Wu, Xi; Wang, Jiexin; Chen, Jian-Feng; Le, Yuan

    2015-01-01

    Poly(lactic acid) (PLA) is a kind of non-toxic biological materials with excellent absorbability, biocompatibility and biodegradability, which can be used for drug release, tissue engineering and surgical treatment applications. In this study, we prepared chitosan modified PLA nanoparticles as carriers for encapsulation of docetaxel by anti-solvent precipitation method. The morphology, particle size, zeta potential and composition of the PLA/chitosan were characterized by SEM, DLS, FTIR and XPS. As-prepared PLA/chitosan particles exhibited average size of 250 nm and showed very narrow distribution with polydispersity index of 0.098. Their large surface charge-ability was confirmed by zeta potential value of 53.9 mV. Docetaxel was released from PLA/chitosan nanoparticles with 40% initial burst release in 5 h and 70% cumulative release within 24 h, while from PLA nanoparticles 65% of docetaxel was released in 5h. In vitro drug release study demonstrated that PLA/chitosan nanoparticles prolonged drug release and decreased the burst release over the unmodified PLA nanoparticles. These results illustrated high potential of chitosan modified PLA nanoparticles for usage as anticancer drug carriers.

  11. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells.

    PubMed

    Kutikov, Artem B; Song, Jie

    2013-09-01

    Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as poly(lactic acid) (PLA) are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity and biological performance of the composite. To overcome this challenge, we combined a hydrophilic polyethylene glycol (PEG) block with poly(d,l-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25wt.% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain>200% vs. <40% for HA-PLA), superhydrophilic (∼0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenic gene expression upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications.

  12. Secreted phospholipase A2 inhibitor modulates fatty acid composition and reduces obesity-induced inflammation in Beagle dogs.

    PubMed

    Xu, J; Bourgeois, H; Vandermeulen, E; Vlaeminck, B; Meyer, E; Demeyere, K; Hesta, M

    2015-05-01

    Secreted phospholipase A2 inhibitor (sPLA2i) has been reported to have an anti-inflammatory function by blocking the production of inflammatory mediators. Obesity is characterized by low-grade inflammation and oxidative stress. The aim of this study was to investigate the effects of dietary supplementation of sPLA2i on inflammation, oxidative stress and serum fatty acid profile in dogs. Seven obese and seven lean Beagle dogs were used in a 28-day double blind cross-over design. Dogs were fed a control diet without supplemental sPLA2i or an sPLA2i supplemented diet. The sPLA2i diet decreased plasma fibrinogen levels and increased the protein:fibrinogen ratio in obese dogs to levels similar to those of lean dogs fed the same diet. Obese dogs had a higher plasma concentration of the lipophilic vitamin A with potential antioxidative capacity and a lower ratio of retinol binding protein 4:vitamin A compared to lean dogs, independent of the diets. A higher proportion of myristic acid (C14:0) and a lower proportion of linoleic acid (C18:2n-6) were observed in the dogs fed with the sPLA2i diet compared to dogs fed with the control diet. Furthermore, a higher ratio of n-6 to n-3, a lower proportion of n-3 polyunsaturated fatty acids and lower omega-3 index were observed in obese compared to lean dogs. The results indicate that obese dogs are characterized by a more 'proinflammatory' serum fatty acid profile and that diet inclusion of sPLA2i may reduce inflammation and alter fatty acid profile.

  13. PLA/CS/Nifedipine Nanocomposite Films: Properties and the In Vitro Release of Nifedipine

    NASA Astrophysics Data System (ADS)

    Trang, Nguyen Thi Thu; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Thanh, Dinh Thi Mai; Lam, Tran Dai; Hoang, Thai

    2016-07-01

    The polylactic acid (PLA)/chitosan (CS) films containing a drug, nifedipine (NIF), in the presence of polyethylene oxide (PEO) as a compatibilizer were prepared by the solution method. This method has not been used to form films containing four components (PLA, CS, NIF, PEO) up to now. The CS, PEO, and NIF contents are 25 wt.%, 6-8 wt.%, and 10-50 wt.% in comparison with PLA weight, respectively. Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM) were used to characterize the interactions, properties, and morphology of the PLA/CS/PEO/NIF films. The FTIR, TGA, and DSC results show that NIF carried by PLA/CS/PEO films and PLA, CS, NIF had better interaction and were more compatible when using PEO. The surface morphology of PLA/CS/PEO/NIF films was similar to that of PLA/CS/PEO films. Moreover, this was the first time drug loading and NIF release content from PLA/CS/PEO films were determined by the ultraviolet-visible (UV-Vis) spectroscopy method. The drug loading of PLA/CS/PEO/NIF films was from 80.99% to 93.61%. The in vitro NIF release studies were carried out in pH 2, 6.8, and 7.4 solutions corresponding to the pH of stomach, colon, and duodenum regions in the human body, respectively. The NIF release content in different pH solutions is in the order: pH 2 > pH 6.8 > pH 7.4 and increases when there is increasing NIF loading. The PLA/CS/PEO films are potential materials to apply for long-circulating systems for NIF delivery.

  14. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials.

  15. Biocompatibility of poly(lactic acid) with incorporated graphene-based materials.

    PubMed

    Pinto, Artur M; Moreira, Susana; Gonçalves, Inês C; Gama, Francisco M; Mendes, Adélio M; Magalhães, Fernão D

    2013-04-01

    The incorporation of graphene-based materials has been shown to improve mechanical properties of poly(lactic acid) (PLA). In this work, PLA films and composite PLA films incorporating two graphene-based materials - graphene oxide (GO) and graphene nanoplatelets (GNP) - were prepared and characterized regarding not only biocompatibility, but also surface topography, chemistry and wettability. The presence of both fillers changed the films surface topography, increasing the roughness, and modified the wettability - the polar component of surface free energy increased 59% with GO and decreased 56% with GNP. Mouse embryo fibroblasts incubated with both fillers exceeded the IC(50) in both cases with a concentration of 10 μg mL(-1). No variations in cell proliferation at the surface of the composite films were observed, except for those containing GO after 24 h incubation, which presented higher cell proliferation than pristine PLA films. Platelet adhesion to PLA and PLA/GNP films was lower in the presence of plasma proteins than when no proteins were present. Furthermore, incorporation of GNP into PLA reduced platelet activation in the presence of plasma proteins. The results indicated that low concentrations of GO and GNP may be incorporated safely in PLA to improve aspects relevant for biomedical applications, such as mechanical properties.

  16. Relative Amino Acid Composition Signatures of Organisms and Environments

    PubMed Central

    Moura, Alexandra; Savageau, Michael A.; Alves, Rui

    2013-01-01

    Background Identifying organism-environment interactions at the molecular level is crucial to understanding how organisms adapt to and change the chemical and molecular landscape of their habitats. In this work we investigated whether relative amino acid compositions could be used as a molecular signature of an environment and whether such a signature could also be observed at the level of the cellular amino acid composition of the microorganisms that inhabit that environment. Methodologies/Principal Findings To address these questions we collected and analyzed environmental amino acid determinations from the literature, and estimated from complete genomic sequences the global relative amino acid abundances of organisms that are cognate to the different types of environment. Environmental relative amino acid abundances clustered into broad groups (ocean waters, host-associated environments, grass land environments, sandy soils and sediments, and forest soils), indicating the presence of amino acid signatures specific for each environment. These signatures correlate to those found in organisms. Nevertheless, relative amino acid abundance of organisms was more influenced by GC content than habitat or phylogeny. Conclusions Our results suggest that relative amino acid composition can be used as a signature of an environment. In addition, we observed that the relative amino acid composition of organisms is not highly determined by environment, reinforcing previous studies that find GC content to be the major factor correlating to amino acid composition in living organisms. PMID:24204807

  17. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction

    PubMed Central

    Castillo-Quan, Jorge Iván; Bartolome, Fernando; Angelova, Plamena R.; Li, Li; Pope, Simon; Cochemé, Helena M.; Khan, Shabana; Asghari, Shabnam; Bhatia, Kailash P.; Hardy, John; Abramov, Andrey Y.; Partridge, Linda

    2015-01-01

    The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane

  18. Fatty Acid Compositions of Six Wild Edible Mushroom Species

    PubMed Central

    Günç Ergönül, Pelin; Akata, Ilgaz; Kalyoncu, Fatih; Ergönül, Bülent

    2013-01-01

    The fatty acids of six wild edible mushroom species (Boletus reticulatus, Flammulina velutipes var. velutipes, Lactarius salmonicolor, Pleurotus ostreatus, Polyporus squamosus, and Russula anthracina) collected from different regions from Anatolia were determined. The fatty acids were identified and quantified by gas chromatography and studied using fruit bodies. Fatty acid composition varied among species. The dominant fatty acid in fruit bodies of all mushrooms was cis-linoleic acid (18 : 2). Percentage of cis-linoleic acid in species varied from 22.39% to 65.29%. The other major fatty acids were, respectively, cis-oleic, palmitic, and stearic acids. Fatty acids analysis of the mushrooms showed that the unsaturated fatty acids were at higher concentrations than saturated fatty acids. PMID:23844377

  19. Osteogenesis of human adipose-derived stem cells on poly(dopamine)-coated electrospun poly(lactic acid) fiber mats.

    PubMed

    Lin, Chi-Chang; Fu, Shu-Juan

    2016-01-01

    Electrospinning is a versatile technique to generate large quantities of micro- or nano-fibers from a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized electrospun nano-fibers and use a mussel-inspired surface coating to regulate adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared poly(lactic acid) (PLA) fibers coated with polydopamine (PDA). The morphology, chemical composition, and surface properties of PDA/PLA were characterized by SEM and XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. Increased focal adhesion kinase (FAK) and collagen I levels and enhanced cell attachment and cell cycle progression were observed upon an increase in PDA content. In addition, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on a pure PLA mat. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenesis differentiation. Our results demonstrate that the bio-inspired coating synthetic degradable PLA polymer can be used as a simple technique to render the surfaces of synthetic biodegradable fibers, thus enabling them to direct the specific responses of hADSCs.

  20. Effect of gamma ray on poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable food packaging films

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Mohammad; Dadbin, Susan; Frounchi, Masoud

    2014-03-01

    Poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] blends as new transparent film packaging materials were prepared at various blend compositions and different vinyl alcohol contents. The blends and pure PLA were irradiated by gamma rays to investigate the extent of changes in the packaging material during gamma ray sterilization process. The miscibility of the blends was dependent on the blend composition and vinyl alcohol content; gamma irradiation had little effect on the extent of miscibility. The glass transition temperature of pure PLA and PLA/P(VAc-co-VA) miscible blends reduced after irradiation. On the other hand in PLA/P(VAc-co-VA) immiscible blends, while the glass transition temperature of the PLA phase decreased; that of the copolymer phase slightly increased. The reduction in the glass transition was about 10 percent for samples irradiated with 50 kGy indicating dominance of chain scission of PLA molecules at high irradiation dose. The latter was verified by drop in mechanical properties of pure PLA after exposing to gamma irradiation at 50 kGy. Blending of PLA with the copolymer P(VAc-co-VA) compensated greatly the adverse effects of irradiation on PLA. The oxygen-barrier property of the blend was superior to the neat PLA and remained almost intact with irradiation. The un-irradiated and irradiated blends had excellent transparency. Gamma ray doses used for sterilization purposes are usually less than 20 kGy. It was shown that gamma irradiation at 20 kGy had no or little adverse effects on PLA/P(VAc-co-VA) blends mechanical and gas barrier properties.

  1. Amino acid composition of proteins reduces deleterious impact of mutations

    PubMed Central

    Hormoz, Sahand

    2013-01-01

    The evolutionary origin of amino acid occurrence frequencies in proteins (composition) is not yet fully understood. We suggest that protein composition works alongside the genetic code to minimize impact of mutations on protein structure. First, we propose a novel method for estimating thermodynamic stability of proteins whose sequence is constrained to a fixed composition. Second, we quantify the average deleterious impact of substituting one amino acid with another. Natural proteome compositions are special in at least two ways: 1) Natural compositions do not generate more stable proteins than the average random composition, however, they result in proteins that are less susceptible to damage from mutations. 2) Natural proteome compositions that result in more stable proteins (i.e. those of thermophiles) are also tuned to have a higher tolerance for mutations. This is consistent with the observation that environmental factors selecting for more stable proteins also enhance the deleterious impact of mutations. PMID:24108121

  2. P9a(Cdt-PLA2) from Crotalus durissus terrificus as good immunogen to be employed in the production of crotalic anti-PLA2 IgG.

    PubMed

    Fusco, Luciano S; Rodríguez, Juan Pablo; Torres-Huaco, Frank; Huancahuire-Vega, Salomón; Teibler, Pamela; Acosta, Ofelia; Marangoni, Sergio; Ponce-Soto, Luis Alberto; Leiva, Laura C

    2015-10-01

    Four proteins with phospholipase A2 (PLA2) activity, designated P9a(Cdt-PLA2), P9b(Cdt-PLA2), P10a(Cdt-PLA2) and P10b(Cdt-PLA2) were purified from the venom of Crotalus durissus terrificus by two chromatographic steps: a gel filtration and reversed phase HPLC. The profile obtained clearly shows that three of them have a similar abundance. The molecular mass, 14193.8340Da for P9a(Cdt-PLA2), 14134.9102Da for P9b(Cdt-PLA2), 14242.6289Da for P10a(Cdt-PLA2) and 14183.8730Da for P10b(Cdt-PLA2), were initially evaluated by SDS-PAGE and confirmed by ESI-Q-TOF spectrometry, and all of them displayed a monomeric conformation. Also, partial amino acid sequence of each protein was obtained and their alignments with other crotalic PLA2 revealed a high degree of identity among them. Additionally, we studied some pharmacological activities like neurotoxicity, myotoxicity and lethality, which prompted us to pick two of them, P9a(Cdt-PLA2) and P10a(Cdt-PLA2) that resulted to be less toxic that the others, and further characterize them to be used as immunogen. We next injected these last proteins in mice to produce antitoxins against them and ELISA and dot blots reveled that both toxins do not show immunogenic differences, unlike those other pharmacologic activities tested. Furthermore, the antibodies produced cross-reacted with all the isoforms purified demonstrating the feasibility of using only one of them and ensuring the cross-reaction of all. The results obtained show that P9a(Cdt-PLA2) isoform has the lowest toxicity and also a good purification performance; thus this protein may be a promising candidate to be employed in the production of crotalic antitoxins.

  3. Surface roughness of composite resins subjected to hydrochloric acid.

    PubMed

    Roque, Ana Carolina Cabral; Bohner, Lauren Oliveira Lima; de Godoi, Ana Paula Terossi; Colucci, Vivian; Corona, Silmara Aparecida Milori; Catirse, Alma Blásida Concepción Elizaur Benitez

    2015-01-01

    The purpose of this study was to determine the influence of hydrochloric acid on surface roughness of composite resins subjected to brushing. Sixty samples measuring 2 mm thick x 6 mm diameter were prepared and used as experimental units. The study presented a 3x2 factorial design, in which the factors were composite resin (n=20), at 3 levels: microhybrid composite (Z100), nanofilled composite (FiltekTM Supreme), nanohybrid composite (Ice), and acid challenge (n=10) at 2 levels: absence and presence. Acid challenge was performed by immersion of specimens in hydrochloric acid (pH 1.2) for 1 min, 4 times per day for 7 days. The specimens not subjected to acid challenge were stored in 15 mL of artificial saliva at 37 oC. Afterwards, all specimens were submitted to abrasive challenge by a brushing cycle performed with a 200 g weight at a speed of 356 rpm, totaling 17.8 cycles. Surface roughness measurements (Ra) were performed and analyzed by ANOVA and Tukey test (p≤0.05). Surface roughness values were higher in the presence (1.07±0.24) as compared with the absence of hydrochloric acid (0.72±0.04). Surface roughness values were higher for microhybrid (1.01±0.27) compared with nanofilled (0.68 ±0.09) and nanohybrid (0.48±0.15) composites when the specimens were not subjects to acid challenge. In the presence of hydrochloric acid, microhybrid (1.26±0.28) and nanofilled (1.18±0,30) composites presents higher surface roughness values compared with nanohybrid (0.77±0.15). The hydrochloric acid affected the surface roughness of composite resin subjected to brushing.

  4. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    NASA Astrophysics Data System (ADS)

    Afrifah, Kojo Agyapong

    This study examined the mechanisms of toughening the brittle bio-based poly(lactic acid) (PLA) with a biodegradable rubbery impact modifier to develop biodegradable and cost effective PLA/wood-flour composites with improved impact strength, toughness, high ductility, and flexibility. Semicrystalline and amorphous PLA grades were impact modified by melt blending with an ethylene-acrylate copolymer (EAC) impact modifier. EAC content was varied to study the effectiveness and efficiency of the impact modifier in toughening the semicrystalline and amorphous grades of the PLA. Impact strength was used to assess the effectiveness and efficiency of the EAC in toughening the blends, whereas the toughening mechanisms were determined with the phase morphologies and the miscibilities of the blends. Subsequent tensile property analyses were performed on the most efficiently toughened PLA grade. Composites were made from PLA, wood flour of various particle sizes, and EAC. Using two-level factorial design the interaction between wood flour content, wood flour particle size, and EAC content and its effect on the mechanical properties of the PLA/wood-flour composites was statistically studied. Numerical optimization was also performed to statistically model and optimize material compositions to attain mechanical properties for the PLA/wood-flour composites equivalent to at least those of unfilled PLA. The J-integral method of fracture mechanics was applied to assess the crack initiation (Jin) and complete fracture (J f) energies of the composites to account for imperfections in the composites and generate data useful for engineering designs. Morphologies of the fractured surfaces of the composites were analyzed to elucidate the failure and toughening mechanisms of the composites. The EAC impact modifier effectively improved the impact strength of the PLA/EAC blends, regardless of the PLA type. However, the EAC was more efficient in the semicrystalline grades of PLA compared to the

  5. Synthesis and characterization of mPEG-PLA prodrug micelles.

    PubMed

    Hans, Meredith; Shimoni, Karin; Danino, Dganit; Siegel, Steven J; Lowman, Anthony

    2005-01-01

    Polymeric prodrugs of mPEG-PLA-haloperidol (methoxypoly(ethylene glycol)-b-poly(lactic acid)) can self-assemble into nanoscale micelle-like structures in aqueous solutions. mPEG-PLA-haloperidol was prepared and characterized using 1H and 13C NMR. The conjugation efficiency was found to be 64.8 +/- 21%. Micelles that form spontaneously upon solubilization of the mPEG-PLA and the polymeric prodrugs in water were characterized using a variety of techniques. The mPEG-PLA and prodrug micelles were found to have diameters of 28.73 +/- 1.45 and 49.67 +/- 4.29 nm, respectively, using dynamic light scattering (DLS). The micelle size and polydispersity were also evaluated with cryogenic transmission electron microscopy (cryo-TEM) and were consistent with the DLS results. Cryo-TEM and proton NMR confirmed that the micelles were spherical in shape. DLS was also used to determine the aggregation numbers of the micelles. The aggregation numbers ranged from 351 to 603. The change in aggregation number was dependent on the total drug incorporation into the micelle core. Critical micelle concentrations were determined for the various micelle/drug formulations and found to range from 3 to 14 microg/mL. Finally, drug was incorporated into the micelle core using the conjugate, free drug with a saturated aqueous phase during production, or a combination of both techniques. Drug incorporation could be increased from 3% to 20% (w/w) using the different formulations.

  6. Kinetics and mechanism of the biodegradation of PLA/clay nanocomposites during thermophilic phase of composting process.

    PubMed

    Stloukal, Petr; Pekařová, Silvie; Kalendova, Alena; Mattausch, Hannelore; Laske, Stephan; Holzer, Clemens; Chitu, Livia; Bodner, Sabine; Maier, Guenther; Slouf, Miroslav; Koutny, Marek

    2015-08-01

    The degradation mechanism and kinetics of polylactic acid (PLA) nanocomposite films, containing various commercially available native or organo-modified montmorillonites (MMT) prepared by melt blending, were studied under composting conditions in thermophilic phase of process and during abiotic hydrolysis and compared to the pure polymer. Described first order kinetic models were applied on the data from individual experiments by using non-linear regression procedures to calculate parameters characterizing aerobic composting and abiotic hydrolysis, such as carbon mineralization, hydrolysis rate constants and the length of lag phase. The study showed that the addition of nanoclay enhanced the biodegradation of PLA nanocomposites under composting conditions, when compared with pure PLA, particularly by shortening the lag phase at the beginning of the process. Whereas the lag phase of pure PLA was observed within 27days, the onset of CO2 evolution for PLA with native MMT was detected after just 20days, and from 13 to 16days for PLA with organo-modified MMT. Similarly, the hydrolysis rate constants determined tended to be higher for PLA with organo-modified MMT, particularly for the sample PLA-10A with fastest degradation, in comparison with pure PLA. The acceleration of chain scission in PLA with nanoclays was confirmed by determining the resultant rate constants for the hydrolytical chain scission. The critical molecular weight for the hydrolysis of PLA was observed to be higher than the critical molecular weight for onset of PLA mineralization, suggesting that PLA chains must be further shortened so as to be assimilated by microorganisms. In conclusion, MMT fillers do not represent an obstacle to acceptance of the investigated materials in composting facilities.

  7. Mechanical Behavior of Electrospun Palmfruit Bunch Reinforced Polylactide Composite Fibers

    NASA Astrophysics Data System (ADS)

    Adeosun, S. O.; Akpan, E. I.; Gbenebor, O. P.; Peter, A. A.; Olaleye, Samuel Adebayo

    2016-01-01

    In this study, the mechanical characteristics of electrospun palm fruit bunch reinforced poly lactic acid (PLA) nanofiber composites using treated and untreated filler was examined. Poly lactic acid-palm fruit bunch-dichloromethane blends were electrospun by varying the concentration of the palm fruit bunch between 0 wt.% and 8 wt.%. A constant voltage of 26 kV was applied, the tip-to-collector distance was maintained at 27.5 cm and PLA-palm fruit bunch-dichloromethane (DCM) concentration of 12.5% (w/v) was used. The results revealed that the presence of untreated palm fruit bunch fillers in the electrospun PLA matrix significantly reduces the average diameters of the fibers, causing the formation of beads. As a result there are reductions in tensile strengths of the fibers. The presence of treated palm fruit bunch fillers in the electrospun PLA matrix increases the average diameters of the fibers with improvements in the mechanical properties. The optimal mechanical responses were obtained at 3 wt.% of the treated palm fruit bunch fillers in the PLA matrix. However, increase in the palm fruit fillers (treated and untreated) in the PLA matrix promoted the formation of beads in the nanofiber composites.

  8. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone).

    PubMed

    Ju, Dandan; Han, Lijing; Guo, Ziqi; Bian, Junjia; Li, Fan; Chen, Shan; Dong, Lisong

    2015-05-01

    Biodegradable polymer composites based on poly(ɛ-caprolactone) (PCL) and poly(lactic acid) (PLA) fibers with diameters of 18, 26, 180 μm were prepared by melt compounding. The PLA fiber content in the composites was constant at 20% by weight. The effects of fibers with different diameters on the physical properties and enzymatic degradation of PCL were investigated. The morphological analysis indicated good interfacial adhesion between PCL and PLA fiber, which was beneficial to improve the physical properties of PCL. With increasing PLA fiber diameter, the complex viscosity and modulus of PCL were significantly increased, especially at low frequencies, indicating that the hindered effect of the fiber on the mobility of the PCL molecular chains was more obvious when PLA fiber diameter was thicker. However, as for the mechanical properties, the reinforcement was more obvious to PCL with the smaller PLA fiber diameter. This was because increasing efficient load transfer may be appeared due to the larger surface area and better interface bonding force of the fiber with thinner diameters. The enzymatic degradation of PCL was accelerated with the addition of large PLA fiber diameter of 26 and 180 μm, and hardly changed with the small PLA fiber diameter of 18 μm.

  9. Biochemical Characterization and Pharmacological Properties of New Basic PLA2 BrTX-I Isolated from Bothrops roedingeri (Roedinger's Lancehead) Mertens, 1942, Snake Venom

    PubMed Central

    Gomes Heleno, Mauricio Aurelio; Baldasso, Paulo Aparecido; Ponce-Soto, Luis Alberto; Marangoni, Sérgio

    2013-01-01

    BrTX-I, a PLA2, was purified from Bothrops roedingeri venom after only one chromatographic step using reverse-phase HPLC on μ-Bondapak C-18 column. A molecular mass of 14358.69 Da was determined by MALDI-TOF mass spectrometry. Amino acid analysis showed a high content of hydrophobic and basic amino acids as well as 14 half-cysteine residues. The total amino acid sequence was obtained using SwissProt database and showed high amino acid sequence identity with other PLA2 from snake venom. The amino acid composition showed that BrTX-I has a high content of Lys, Tyr, Gly, Pro, and 14 half-Cys residues, typical of a basic PLA2. BrTX-I presented PLA2 activity and showed a minimum sigmoidal behavior, reaching its maximal activity at pH 8.0, 35–45°C, and required Ca2+. In vitro, the whole venom and BrTX-I caused a neuromuscular blockade in biventer cervicis preparations in a similar way to other Bothrops species. BrTX-I induced myonecrosis and oedema-forming activity analyzed through injection of the purified BrTX-I in mice. Since BrTX-I exerts a strong proinflammatory effect, the enzymatic phospholipid hydrolysis might be relevant for these phenomena; incrementing levels of IL-1, IL-6, and TNFα were observed at 15 min, 30 min, one, two, and six hours postinjection, respectively. PMID:23509747

  10. Heterologous expression, and biochemical and cellular characterization of CaPLA1 encoding a hot pepper phospholipase A1 homolog.

    PubMed

    Seo, Young Sam; Kim, Eun Yu; Mang, Hyung Gon; Kim, Woo Taek

    2008-03-01

    Phospholipid signaling has been recently implicated in diverse cellular processes in higher plants. We identified a cDNA encoding the phospholipase A1 homolog (CaPLA1) from 5-day-old early roots of hot pepper. The deduced amino acid sequence showed that the lipase-specific catalytic triad is well conserved in CaPLA1. In vitro lipase assays and site-directed mutagenesis revealed that CaPLA1 possesses PLA1 activity, which catalyzes the hydrolysis of phospholipids at the sn-1 position. CaPLA1 was selectively expressed in young roots, at days 4-5 after germination, and rapidly declined thereafter, suggesting that the expression of CaPLA1 is subject to control by a development-specific mechanism in roots. Because transgenic work was extremely difficult in hot peppers, in this study we overexpressed CaPLA1 in Arabidopsis so as to provide cellular information on the function of this gene. CaPLA1 overexpressors had significantly longer roots, leaves and petioles, and grew more rapidly than the wild-type plants, leading to an early bolting phenotype with prolonged inflorescence. Microscopic analysis showed that the vegetative tissues of 35S:CaPLA1 plants contained an increased number of small-sized cells, which resulted in highly populated cell layers. In addition, mRNAs for cell cycle-controlled proteins and fatty acid catabolizing enzymes were coordinately upregulated in CaPLA1-overexpressing plants. These results suggest that CaPLA1 is functionally relevant in heterologous Arabidopsis cells, and hence might participate in a subset of positive control mechanisms of cell and tissue growth in transgenic lines. We discuss possible biochemical and cellular functions of CaPLA1 in relation to the phospholipid signaling pathway in hot pepper and transgenic Arabidopsis plants.

  11. Thermal properties of poly (lactic acid)/milkweed composites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, most polymer composites utilize petroleum-based materials that are non-degradable and difficult to recycle or incur substantial cost for disposal. Green composites can be used in nondurable limited applications. In order to determine the degree of compatibility between Poly (lactic Acid...

  12. Processing-structure-properties relationships in PLA nanocomposite films

    NASA Astrophysics Data System (ADS)

    Di Maio, L.; Scarfato, P.; Garofalo, E.; Galdi, M. R.; D'Arienzo, L.; Incarnato, L.

    2014-05-01

    This work deals on the possibility to improve performances of PLA-based nanocomposite films, for packaging applications, through conveniently tuning materials and processing conditions in melt compounding technology. In particular, two types of polylactic acid and different types of filler selected from montmorillonites and bentonites families were used to prepare the hybrid systems by using a twin-screw extruder. The effect of biaxial drawing on morphology and properties of the nanocomposites, produced by film blowing, was investigated.

  13. Fatty acid composition of Tilia spp. seed oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As part of a study of the seed oil fatty acid composition of Malvaceae plants, seeds of seven Tilia species (limes or linden trees) were evaluated for their fatty acid profiles. Seeds were obtained from the Germplasm Research Information Network and from various commercial sources. After extractio...

  14. Compositions and method for controlling precipitation when acidizing sour wells

    SciTech Connect

    Dill, W.R.; Walker, M.L.

    1989-12-19

    This patent describes an acidizing composition for treating a sour well. It comprises: a base acid solution having an initial ph below 1.9; an iron sequestering agent to combine with iron present in the solution comprising at least one compound selected from the group consisting of aminopolycarboxylic acids, hydroxycarboxylic acids, cyclic polyethers and derivatives of the acids and ethers present in an amount of from about 0.25 to about 5 percent by weight of the acid solution; and a sulfide modifier to combine with sulfides present in the solution comprising at least one member selected from the group consisting of an aldehyde, acetal, hemiacetal and any other compound capable of forming an aldehyde in solution, present in an amount of from about 1 to about 4 percent by weight of the acid solution, whereby precipitation of ferric hydroxide, ferrous sulfide and elemental sulfur is inhibited as acid spending occurs.

  15. Magnetic nanoparticles-loaded PLA/PEG microspheres as drug carriers.

    PubMed

    Frounchi, Masoud; Shamshiri, Soodeh

    2015-05-01

    Surface-modified magnetite (Fe3 O4 ) nanoparticles with an average size of 22 nm were prepared. The nanoparticles had a saturation magnetization of 50.7 emu g(-1) . Then magnetite and drug-loaded microspheres of poly (lactic acid)/poly (ethylene glycol) were prepared at various compositions. The microspheres were spherical in shape and had smooth surface. The diameter size of the microspheres ranged between about 0.2 and 4 μm. Doxorubicin hydrochloride for cancer treatment was the drug that loaded into the microspheres. The prepared microspheres were characterized by FTIR, XRD, VSM, SEM and drug-release measurements. It was found that the drug cumulative release percentage was proportional to (time) (n) where 0.61 < n < 0.75 depending on PEG and Fe3 O4 contents. The drug release was controlled through a combination of diffusion and PLA hydrolysis and obeyed a non-fickian mechanism. The drug release was facilitated by presence of poly (ethylene glycol) as PLA plasticizer and was higher under applied external magnetic field. The obtained magnetic microspheres could be used as drug carriers for targeted drug delivery purposes.

  16. Fatty acid composition of two Tunisian pine seed oils.

    PubMed

    Nasri, Nizar; Khaldi, Abdelhamid; Hammami, Mohamed; Triki, Saida

    2005-01-01

    Oils were extracted from fully ripen Pinus pinea L. and Pinus halepensis Mill seeds and fatty acid composition has been established by capillary gas chromatography. Seeds are rich in lipids, 34.63-48.12% on a dry weight basis. Qualitatively, fatty acid composition of both species is identical. For P. halepensis linoleic acid is the major fatty acid (56.06% of total fatty acids) followed by oleic (24.03%) and palmitic (5.23%) acids. For P. pinea, the same fatty acids are found with the proportions 47.28%, 36.56%, and 6.67%, respectively. Extracted fatty acids from both species are mainly unsaturated, respectively, 89.87% and 88.01%. Pinus halepensis cis-5 olefinic acids are more abundant (7.84% compared to 2.24%). Results will be important as a good indication of the potential nutraceutical value of Pinus seeds as new sources of fruit oils rich in polyunsaturated fatty acids and cis-5 olefinic acids.

  17. Synthesis of protein-coated biocompatible methotrexate-loaded PLA-PEG-PLA nanoparticles for breast cancer treatment

    PubMed Central

    Massadeh, Salam; Alaamery, Manal; Al-Qatanani, Shatha; Alarifi, Saqer; Bawazeer, Shahad; Alyafee, Yusra

    2016-01-01

    Background PLA-PEG-PLA triblock polymer nanoparticles are promising tools for targeted dug delivery. The main aim in designing polymeric nanoparticles for drug delivery is achieving a controlled and targeted release of a specific drug at the therapeutically optimal rate and choosing a suitable preparation method to encapsulate the drug efficiently, which depends mainly on the nature of the drug (hydrophilic or hydrophobic). In this study, methotrexate (MTX)-loaded nanoparticles were prepared by the double emulsion method. Method Biodegradable polymer polyethylene glycol-polylactide acid tri-block was used with poly(vinyl alcohol) as emulsifier. The resulting methotrexate polymer nanoparticles were coated with bovine serum albumin in order to improve their biocompatibility. This study focused on particle size distribution, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release at various concentrations of PVA (0.5%, 1%, 2%, and 3%). Results Reduced particle size of methotrexate-loaded nanoparticles was obtained using lower PVA concentrations. Enhanced encapsulation efficiency and loading capacity was obtained using 1% PVA. FT-IR characterization was conducted for the void polymer nanoparticles and for drug-loaded nanoparticles with methotrexate, and the protein-coated nanoparticles in solid state showed the structure of the plain PEG-PLA and the drug-loaded nanoparticles with methotrexate. The methotrexate-loaded PLA-PEG-PLA nanoparticles have been studied in vitro; the drug release, drug loading, and yield are reported. Conclusion The drug release profile was monitored over a period of 168 hours, and was free of burst effect before the protein coating. The results obtained from this work are promising; this work can be taken further to develop MTX based therapies.

  18. Nucleic acids, compositions and uses thereof

    DOEpatents

    Preston, III, James F.; Chow, Virginia [Gainesville, FL; Nong, Guang [Gainesville, FL; Rice, John D [Gainesville, FL; John, Franz J [Baltimore, MD

    2012-02-21

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  19. Nucleic acid compositions and the encoding proteins

    DOEpatents

    Preston, III, James F.; Chow, Virginia; Nong, Guang; Rice, John D.; St. John, Franz J.

    2014-09-02

    The subject invention provides at least one nucleic acid sequence encoding an aldouronate-utilization regulon isolated from Paenibacillus sp. strain JDR-2, a bacterium which efficiently utilizes xylan and metabolizes aldouronates (methylglucuronoxylosaccharides). The subject invention also provides a means for providing a coordinately regulated process in which xylan depolymerization and product assimilation are coupled in Paenibacillus sp. strain JDR-2 to provide a favorable system for the conversion of lignocellulosic biomass to biobased products. Additionally, the nucleic acid sequences encoding the aldouronate-utilization regulon can be used to transform other bacteria to form organisms capable of producing a desired product (e.g., ethanol, 1-butanol, acetoin, 2,3-butanediol, 1,3-propanediol, succinate, lactate, acetate, malate or alanine) from lignocellulosic biomass.

  20. Fatty acid composition of selected macrophytes.

    PubMed

    Patarra, R F; Leite, J; Pereira, R; Baptista, J; Neto, A I

    2013-04-01

    The content of total lipids and the fatty acid (FA) profile were determined for eight macroalgae (Cystoseira abies-marina, Fucus spiralis, Chaetomorpha pachynema, Codium elisabethae, Porphyra sp., Osmundea pinnatifida, Pterocladiella capillacea and Sphaeroccoccus coronopifolius). Total lipids were extracted using a solvent mixture of methanol/chloroform (2/1, v/v) and further derivatised to FA methyl esters (FAME). The analyses of FAME samples were performed by gas chromatography coupled to a flame ionisation detector. The total lipid content ranged from 0.06 to 3.54 g (per 100 g). The most abundant saturated FA were palmitic (C16:0) and myristic (C14:0), while oleic (C18:1 n-9) was the dominant monounsaturated acid. All seaweeds contained linoleic FA (C18:2 n-6). The α-linolenic (C18:3 n-3) and eicosapentaenoic (20:5 n-3) acids were present only in Porphyra sp. (3.34% ± 0.13) and C. pachynema (0.47% ± 0.12), respectively. The n-6/n-3 and h/H ratios were low, suggesting a high nutritional value of the algae studied.

  1. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

    PubMed

    Senatov, F S; Niaza, K V; Zadorozhnyy, M Yu; Maksimkin, A V; Kaloshkin, S D; Estrin, Y Z

    2016-04-01

    In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME.

  2. iPLA2• Knockout Mouse, a Genetic Model for Progressive Human Motor Disorders, Develops Age-Related Neuropathology

    PubMed Central

    Blanchard, Helene; Taha, Ameer Y.; Cheon, Yewon; Kim, Hyung-Wook; Turk, John; Rapoport, Stanley I.

    2015-01-01

    Calcium-independent phospholipase A2 group VIa (iPLA2β) preferentially releases docosahexaenoic acid (DHA) from the sn-2 position of phospholipids. Mutations of its gene, PLA2G6, are found in patients with several progressive motor disorders, including Parkinson disease. At 4 months, PLA2G6 knockout mice (iPLA2β−/−) show minimal neuropathology but altered brain DHA metabolism. By 1 year, they develop motor disturbances, cerebellar neuronal loss, and striatal α-synuclein accumulation. We hypothesized that older iPLA2β−/− mice also would exhibit inflammatory and other neuropathological changes. Real-time polymerase chain reaction and Western blotting were performed on whole brain homogenate from 15 to 20-month old male iPLA2β−/− or wild-type (WT) mice. These older iPLA2β−/− mice compared with WT showed molecular evidence of microglial (CD-11b, iNOS) and astrocytic (glial fibrillary acidic protein) activation, disturbed expression of enzymes involved in arachidonic acid metabolism, loss of neuroprotective brain derived neurotrophic factor, and accumulation of cytokine TNF-α messenger ribonucleic acid, consistent with neuroinflammatory pathology. There was no evidence of synaptic loss, of reduced expression of dopamine active reuptake transporter, or of accumulation of the Parkinson disease markers Parkin or Pink1. iPLA2γ expression was unchanged. iPLA2β deficient mice show evidence of neuroinflammation and associated neuropathology with motor dysfunction in later life. These pathological biomarkers could be used to assess efficacy of dietary intervention, antioxidants or other therapies on disease progression in this mouse model of progressive human motor diseases associated with a PLA2G6 mutation. PMID:24919816

  3. Variation in amino acid and lipid composition of latent fingerprints.

    PubMed

    Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G

    2010-06-15

    The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints.

  4. Development of polylactic acid-based materials through reactive modification

    NASA Astrophysics Data System (ADS)

    Fowlks, Alison Camille

    2009-12-01

    Polylactic acid (PLA)-based systems have shown to be of great potential for the development of materials requiring biobased content, biodegradation, and sufficient properties. The efforts in this study are directed toward addressing the current research need to overcome some of the inherent drawbacks of PLA. To meet this need, reactive extrusion was employed to develop new materials based on PLA by grafting, compounding, and polymer blending. In the first part of this work, maleic anhydride (MA) was grafted onto PLA by reactive extrusion. Two structurally different peroxides were used to initiate grafting and results were reported on the basis of grafting, molecular weight, and thermal behavior. An inverse relationship between degree of grafting and molecular weight was established. It was also found that, regardless of peroxide type, there is an optimum peroxid-to-MA ratio of 0.5:2 that promotes maximum grafting, beyond which degradation reactions become predominant. Overall, it was found that the maleated copolymer (MAPLA) could be used as an interfacial modifier in PLA-based composites. Therefore, MAPLA was incorporated into PLA-talc composites in varying concentrations. The influence of the MAPLA addition on the mechanical and thermal behavior was investigated. When added in an optimum concentration, MAPLA improved the tensile strength and crystallization of the composite. Furthermore, microscopic observation confirmed the compatibilization effect of MAPLA in PLA-talc composites. Vinyltrimethoxysilane was free-radically grafted onto the backbone of PLA and subsequently moisture crosslinked. The effects of monomer, initiator, and catalyst concentration on the degree of crosslinking and the mechanical and thermal properties were investigated. The presence of a small amount of catalyst showed to be a major contributor to the crosslinking formation in the time frame investigated, shown by an increase in gel content and decrease in crystallinity. Furthermore

  5. Poly(lactic acid)/TiO₂ nanocomposites as alternative biocidal and antifungal materials.

    PubMed

    Fonseca, Carmen; Ochoa, Almudena; Ulloa, Maria Teresa; Alvarez, Eduardo; Canales, Daniel; Zapata, Paula A

    2015-12-01

    Poly(lactic acid) (PLA) composites with titanium oxide (TiO2) ~10-nm nanoparticles were produced by the melting process and their main properties were evaluated. The nanoparticles are homogeneously dispersed in the matrix with a low degree of agglomeration, as seen by transmission electron microscopy (TEM). The crystallinity temperature increased ~12% when 5 wt.% of TiO2 was added, showing that the nanoparticles acted as nucleating agents this trend was confirmed by optical images. The elastic modulus increased ~54% compared to neat PLA at 5 wt.% of nanoparticles. Despite these improvements, PLA/TiO2 nanocomposites showed lower shear viscosity than neat PLA, possibly reflecting degradation of the polymer due to the particles. Regarding biocidal properties, after 2h of contact the PLA/TiO2 composites with 8 wt.% TiO2 showed a reduction of Escherichia coli colonies of ~82% under no UVA irradiation compared to pure PLA. This biocidal characteristic can be increased under UVA irradiation, with nanocomposites containing 8 wt.% TiO2 killing 94% of the bacteria. The PLA/TiO2 nanocomposites with 8 wt.% were also 99.99% effective against Aspergillus fumigatus under the UVA irradiation.

  6. Evaluation of cotton byproducts as fillers for poly(lactic acid) and low density polyethylene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymeric composites based on cotton burr and cottonseed bull have been prepared by melt blending and extrusion. For poly(lactic acid) (PLA) and low-density polyethylene (LDPE), addition of the fillers only slightly changed the composite’s thermal properties and significantly decreased the composite...

  7. Deoxyribonucleic acid base compositions of dermatophytes.

    PubMed

    Davison, F D; Mackenzie, D W; Owen, R J

    1980-06-01

    DNA was extracted and purified from 55 dermatophyte isolates representing 34 species of Trichophyton, Microsporum and Epidermophyton. The base compositions of the chromosomal DNA were determined by CsCl density gradient centrifugation and were found to be in the narrow range of 48.7 to 50.3 mol % G + C. A satellite DNA component assumed to be of mitochondrial origin was present in most strains, with a G + C content ranging from 14.7 to 30.8 mol % G + C. Heterogeneity in microscopic and colonial characteristics was not reflected in differences in the mean G + C content of the chromosomal DNAs. Strains varied in the G + C contents of satelite DNA, but these did not correlate with traditional species concepts.

  8. [Degradable performance and bio-mineralization function of PLA-PEG-PLA/PLA tissue engineering scaffold in vitro and in vivo].

    PubMed

    Ge, Jianhua; Wang, Yingjun; Min, Shaoxiong

    2010-10-01

    The degradable performance and bio-mineralization function of PLA-PEG-PLA/PLA tissue engineering scaffolds in vitro and in vivo were systematically studied. The X-ray diffraction and Fourier transform infrared spectra showed that there was the deposition of bone-like carbonate hydroxyapatite on the surface of scaffolds. We found that the weight of scaffolds did not always decrease with the prolongation of time in vitro. At the same time, we found that after the PLA-PEG-PLA/PLA tissue engineering scaffolds were embedded in skulls of rhesus monkeys, the new bone area reached 75% at the 12th week. Histological observation showed that the new bones were rebuilt and knitted bones were formed at the 12th week. These findings meant that the PLA-PEG-PLA/PLA tissue engineering scaffolds were potential in clinical use.

  9. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2006-07-04

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  10. Methods and compositions for efficient nucleic acid sequencing

    DOEpatents

    Drmanac, Radoje

    2002-01-01

    Disclosed are novel methods and compositions for rapid and highly efficient nucleic acid sequencing based upon hybridization with two sets of small oligonucleotide probes of known sequences. Extremely large nucleic acid molecules, including chromosomes and non-amplified RNA, may be sequenced without prior cloning or subcloning steps. The methods of the invention also solve various current problems associated with sequencing technology such as, for example, high noise to signal ratios and difficult discrimination, attaching many nucleic acid fragments to a surface, preparing many, longer or more complex probes and labelling more species.

  11. Assessing Technology Innovation in the PLA

    DTIC Science & Technology

    2015-03-01

    TECHNOLOGY INNOVATION IN THE PLA by Gary L. Pembleton March 2015 Thesis Co-Advisors: Wade Huntley Michael Glosny THIS PAGE INTENTIONALLY LEFT...SUBTITLE 5. FUNDING NUMBERS ASSESSING TECHNOLOGY INNOVATION IN THE PLA 6. AUTHOR(S) Gaty L. Pembleton 7. PERFORMING ORGANIZATION NA:iVIE(S) AND ADDRESS(ES...standard for identifying innovation, and applies this standard to the PLAN and PLAAF. Historically, technological innovat ion is either overlooked or

  12. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation

    PubMed Central

    Rachmawati, Heni; Yanda, Yulia L.; Rahma, Annisa; Mase, Nobuyuki

    2016-01-01

    Curcumin is a polyphenolic compound derived from Curcuma domestica (Zingiberaceae) that possesses diverse pharmacological effects including anti-inflammatory, antioxidant, antimicrobial, and anticarcinogenic activities. Although phase I clinical trials have shown curcumin as a safe drug even at high doses (12 g/day) in humans, poor bioavaibility largely limits its pharmacological activity. Nanoencapsulation in biodegradable polymers is a promising alternative to improve curcumin bioavaibility. In this study, curcumin was encapsulated in biodegradable polymer poly-(lactic acid) (PLA) nanoparticles via the emulsification-solvent evaporation method. Optimization of selected parameters of this method including the type of solvent, surfactant concentration, drug loading, sonication time, and centrifugation speed, were performed to obtain polymeric nano-carriers with optimum characteristics. Dichloromethane was used as the solvent and vitamin E polyethylene glycol succinate (TPGS) was used as the surfactant. Four minutes of sonication time and centrifugation at 10500 rpm were able to produce spherical nanoparticles with average size below 300 nm. The highest encapsulation efficiency was found on PLA nanoparticles containing 5% of curcumin at 89.42 ± 1.04%. The particle size, polydispersity index, zeta potential of 5% curcumin-PLA nanoparticles were 387.50 ± 58.60 nm, 0.289 ± 0.047, and −1.12 mV, respectively. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) studies showed partial interaction between the drug and polymer. PMID:27110509

  13. Subgrouping of Pseudomonas cepacia by cellular fatty acid composition.

    PubMed Central

    Mukwaya, G M; Welch, D F

    1989-01-01

    The cellular fatty acid compositions were determined for 42 strains of Pseudomonas cepacia from five cystic fibrosis centers in North America. All isolates contained significant (20%) amounts of hexadecanoic (C16:0), and cis-9 hexadecenoic (C16:1 cis9) acids and an isomer of octadecenoic acid (C18:1). None had hydroxy acids containing fewer than 14 carbon atoms. The quantitative data from the fatty acid analysis were highly reproducible and provided a basis for numerical analysis. Five subgroups comprising all the strains were obtained by cluster analysis and further characterized by principal-component analysis. With minor exceptions, the predominant subgroup identified in each center was different from that identified in other centers and accounted for one-half of the isolates within each center. Cellular fatty acid composition is a useful adjunct to biochemical characterization for the identification of P. cepacia isolated from cystic fibrosis patients. Numerical analysis of the fatty acid data can separate P. cepacia into subgroups, which may provide useful epidemiologic information or a basis for further analysis by more complex techniques such as DNA probe analysis. PMID:2687315

  14. Corrosion of graphite composites in phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  15. Polymorphisms in PLA2G6 and PLA2G4C genes for calcium-independent phospholipase A2 do not contribute to attenuated niacin skin flush response in schizophrenia patients.

    PubMed

    Nadalin, S; Radović, I; Buretić-Tomljanović, A

    2015-09-01

    We hypothesized that attenuated niacin skin flushing in schizophrenia patients might be associated with polymorphic variants in PLA2G6 and PLA2G4C genes (rs4375 and rs1549637 variations) which encode calcium-independent phospholipase A2 beta (iPLA2β) and cytosolic phospholipase A2 gamma (cPLA2γ) enzymes. The iPLA2β and cPLA2γ may play an important role in niacin-mediated signaling; in addition to their major role - mediating phospholipids remodeling, which alters membrane receptors and signal transduction, they regulate the reservoir of arachidonic acid for prostaglandins synthesis. Skin response to topical niacin of 0.1M, 0.01M, 0.001M and 0.0001M concentrations in 75 schizophrenia patients was rated using the method of volumetric niacin response (VNR). Neither PLA2G6 nor PLA2G4C gene polymorphisms were significantly associated with VNR values. Furthermore, polymorphisms׳ synergy on niacin skin flushing was also not detected.

  16. Antimicrobial activity of allyl isothiocyanate used to coat biodegradable composite films as affected by storage and handling conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of storage and handling conditions on the antimicrobial activity of biodegradable composite films (polylactic acid and sugar beet pulp) coated with allyl isothiocyanate (AIT). Polylactic acid (PLA) and chitosan were incorporated with AIT and coated on one side of the film. T...

  17. Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat

    PubMed Central

    Puig-Oliveras, Anna; Revilla, Manuel; Castelló, Anna; Fernández, Ana I.; Folch, Josep M.; Ballester, Maria

    2016-01-01

    The aim of this work is to better understand the genetic mechanisms determining two complex traits affecting porcine meat quality: intramuscular fat (IMF) content and its fatty acid (FA) composition. With this purpose, expression Genome-Wide Association Study (eGWAS) of 45 lipid-related genes associated with meat quality traits in swine muscle (Longissimus dorsi) of 114 Iberian × Landrace backcross animals was performed. The eGWAS identified 241 SNPs associated with 11 genes: ACSM5, CROT, FABP3, FOS, HIF1AN, IGF2, MGLL, NCOA1, PIK3R1, PLA2G12A and PPARA. Three expression Quantitative Trait Loci (eQTLs) for IGF2, ACSM5 and MGLL were identified, showing cis-acting effects, whereas 16 eQTLs had trans regulatory effects. A polymorphism in the ACSM5 promoter region associated with its expression was identified. In addition, strong candidate genes regulating ACSM5, FOS, PPARA, PIK3R1, PLA2G12A and HIF1AN gene expression were also seen. Notably, the analysis highlighted the NR3C1 transcription factor as a strong candidate gene involved in the regulation of the 45 genes analysed. Finally, the IGF2, MGLL, MC2R, ARHGAP6, and NR3C1 genes were identified as potential regulators co-localizing within QTLs for fatness and growth traits in the IBMAP population. The results obtained increase our knowledge in the functional regulatory mechanisms involved in these complex traits. PMID:27666082

  18. Safety evaluation of a bioglass-polylactic acid composite scaffold seeded with progenitor cells in a rat skull critical-size bone defect.

    PubMed

    Eldesoqi, Karam; Henrich, Dirk; El-Kady, Abeer M; Arbid, Mahmoud S; Abd El-Hady, Bothaina M; Marzi, Ingo; Seebach, Caroline

    2014-01-01

    Treating large bone defects represents a major challenge in traumatic and orthopedic surgery. Bone tissue engineering provides a promising therapeutic option to improve the local bone healing response. In the present study tissue biocompatibility, systemic toxicity and tumorigenicity of a newly developed composite material consisting of polylactic acid (PLA) and 20% or 40% bioglass (BG20 and BG40), respectively, were analyzed. These materials were seeded with mesenchymal stem cells (MSC) and endothelial progenitor cells (EPC) and tested in a rat calvarial critical size defect model for 3 months and compared to a scaffold consisting only of PLA. Serum was analyzed for organ damage markers such as GOT and creatinine. Leukocyte count, temperature and free radical indicators were measured to determine the degree of systemic inflammation. Possible tumor occurrence was assessed macroscopically and histologically in slides of liver, kidney and spleen. Furthermore, the concentrations of serum malondialdehyde (MDA) and sodium oxide dismutase (SOD) were assessed as indicators of tumor progression. Qualitative tissue response towards the implants and new bone mass formation was histologically investigated. BG20 and BG40, with or without progenitor cells, did not cause organ damage, long-term systemic inflammatory reactions or tumor formation. BG20 and BG40 supported bone formation, which was further enhanced in the presence of EPCs and MSCs. This investigation reflects good biocompatibility of the biomaterials BG20 and BG40 and provides evidence that additionally seeding EPCs and MSCs onto the scaffold does not induce tumor formation.

  19. Improving the engineering properties of PLA for 3D printing and beyond

    NASA Astrophysics Data System (ADS)

    Rocha Gutierrez, Carmen Raquel

    Additive manufacturing (AM), now more commonly known as 3D printing, has been classified as efficient, fast, and practical in the prototyping sector of product development. In the work presented here, we will use one of the AM techniques known as Material extrusion 3D printing (ME3DP), which has all the advantages of AM. However, one of the biggest challenges facing ME3DP technologies is the limitation of the range of materials used by this technique. Acrylonitrile butadiene styrene (ABS) and poly-lactic acid (PLA) are currently the most common thermoplastics materials used in ME3DP because of their ability to melt and be reprocessed. PLA is a biodegradable polymer derived from renewable sources such as corn, and sugarcane. The expanded use of this polymer over traditional petroleum-based plastics (ABS) will decrease the demand on petrochemicals, and also lead to less non-biodegradable polymeric waste. While PLA offers an eco-friendly solution for polymeric 3D printing, the mechanical performance is limited by PLA's inherent characteristics (such as moisture absorbance) that may degrade the plastic during processing. PLA novel systems were used through this research maintaining the compatibility with material extrusion 3D printers. The purpose of this investigation is to alter the physical properties of PLA with sustainable additives in order to improve the end use products from this material.

  20. Method of preparing and using and composition for acidizing subterranean formations

    SciTech Connect

    Dill, W.R.

    1984-08-21

    A composition and method of acidizing or fracturing a subterranean formation comprises contacting the formation with a composition comprising an acid, urea, and a selected gelling agent. The urea is present in an amount sufficient to extend the viscous stability of the gelled acid composition in comparison to the acid and gelling agent alone.

  1. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  2. Neutralisation of the pharmacological activities of Bothrops alternatus venom by anti-PLA2 IgGs.

    PubMed

    Garcia Denegri, María E; Maruñak, Silvana; Todaro, Juan S; Ponce-Soto, Luis A; Acosta, Ofelia; Leiva, Laura

    2014-08-01

    Basic phospholipases A2 (PLA2) are toxic and induce a wide spectrum of pharmacological effects, although the acidic enzyme types are not lethal or cause low lethality. Therefore, it is challenging to elucidate the mechanism of action of acidic phospholipases. This study used the acidic non-toxic Ba SpII RP4 PLA2 from Bothrops alternatus as an antigen to develop anti-PLA2 IgG antibodies in rabbits and used in vivo assays to examine the changes in crude venom when pre-incubated with these antibodies. Using Ouchterlony and western blot analyses on B. alternatus venom, we examined the specificity and sensitivity of phospholipase A2 recognition by the specific antibodies (anti-PLA2 IgG). Neutralisation assays using a non-toxic PLA2 antigen revealed unexpected results. The (indirect) haemolytic activity of whole venom was completely inhibited, and all catalytically active phospholipases A2 were blocked. Myotoxicity and lethality were reduced when the crude venom was pre-incubated with anti-PLA2 immunoglobulins. CK levels in the skeletal muscle were significantly reduced at 6 h, and the muscular damage was more significant at this time-point compared to 3 and 12 h. When four times the LD50 was used (224 μg), half the animals treated with the venom-anti PLA2 IgG mixture survived after 48 h. All assays performed with the specific antibodies revealed that Ba SpII RP4 PLA2 had a synergistic effect on whole-venom toxicity. IgG antibodies against the venom of the Argentinean species B. alternatus represent a valuable tool for elucidation of the roles of acidic PLA2 that appear to have purely digestive roles and for further studies on immunotherapy and snake envenoming in affected areas in Argentina and Brazil.

  3. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories

    PubMed Central

    2016-01-01

    The analysis of amino acids in meteorites dates back over 50 years; however, it is only in recent years that research has expanded beyond investigations of a narrow set of meteorite groups (exemplified by the Murchison meteorite) into meteorites of other types and classes. These new studies have shown a wide diversity in the abundance and distribution of amino acids across carbonaceous chondrite groups, highlighting the role of parent body processes and composition in the creation, preservation, or alteration of amino acids. Although most chiral amino acids are racemic in meteorites, the enantiomeric distribution of some amino acids, particularly of the nonprotein amino acid isovaline, has also been shown to vary both within certain meteorites and across carbonaceous meteorite groups. Large l-enantiomeric excesses of some extraterrestrial protein amino acids (up to ∼60%) have also been observed in rare cases and point to nonbiological enantiomeric enrichment processes prior to the emergence of life. In this Outlook, we review these recent meteoritic analyses, focusing on variations in abundance, structural distributions, and enantiomeric distributions of amino acids and discussing possible explanations for these observations and the potential for future work. PMID:27413780

  4. Fatty acid composition of fat depots in wintering Canada geese

    USGS Publications Warehouse

    Austin, J.E.

    1993-01-01

    I determined the fatty acid composition of subcutaneous, abdominal, visceral, and leg saddle depots in adult female Canada Geese (Branta canadensis) wintering in north-central Missouri during October 1984-March 1985. Mean levels of C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, and C18:3 generally were highest in the subcutaneous and abdominal depots. The ratio of saturated to unsaturated fats was highest in the leg saddle depot and lowest in the abdominal depot. I also assessed the differences among sexes, seasons, and years in fatty acid composition of abdominal fat depots in adult geese collected during October-March, 1985-1987. Adult females had consistently higher levels of C14:0 in abdominal depots than males. Fatty acid composition of the abdominal depot differed among years but not by season. In the abdominal depot, C14:0, C16:0, C16:1, and C18:1 were higher in 1986-1987 compared with the previous two years, whereas C18:3 was highest in 1984-1985. Differences among years reflected changes in winter diet. Fatty acids of wintering geese were similar to those previously found in breeding Canada Geese.

  5. Polylactic acid with improved heat deflection temperatures and self-healing properties for durable goods applications.

    PubMed

    Wertz, J T; Mauldin, T C; Boday, D J

    2014-11-12

    A method to recover fracture toughness after failure and increase thermal properties of polylactic acid (PLA) for use within durable goods applications is presented. Microcapsules were incorporated into PLA to form a composite material in which the microcapsules served the dual purpose of (1) releasing self-healing additives to fracture regions and (2) serving as nucleating agents to improve the PLA composite's thermal tolerance. Self-healing was achieved though embedment of dicyclopentadiene-filled microcapsules and Grubbs' first generation ruthenium metathesis catalyst, the former being autonomically released into damage volumes and undergoing polymerization in the presence of the catalyst. This approach led to up to 84% recovery of the polymer composite's initial fracture toughness. Additionally, PLA's degree of crystallinity and heat deflection temperature were improved by ∼ 11% and ∼ 21 °C, respectively, relative to nonfilled virgin PLA, owing to microcapsule-induced nucleation. The self-healing system developed here overcomes many property limitations of PLA that can potentially lead to its incorporation into various durable goods.

  6. Identification of important abiotic and biotic factors in the biodegradation of poly(l-lactic acid).

    PubMed

    Husárová, Lucie; Pekařová, Silvie; Stloukal, Petr; Kucharzcyk, Pavel; Verney, Vincent; Commereuc, Sophie; Ramone, Audrey; Koutny, Marek

    2014-11-01

    The biodegradation of four poly(l-lactic acid) (PLA) samples with molecular weights (MW) ranging from approximately 34 to 160kgmol(-1) was investigated under composting conditions. The biodegradation rate decreased, and initial retardation was discernible in parallel with the increasing MW of the polymer. Furthermore, the specific surface area of the polymer sample was identified as the important factor accelerating biodegradation. Microbial community compositions and dynamics during the biodegradation of different PLA were monitored by temperature gradient gel electrophoresis, and were found to be virtually identical for all PLA materials and independent of MW. A specific PLA degrading bacteria was isolated and tentatively designated Thermopolyspora flexuosa FTPLA. The addition of a limited amount of low MW PLA did not accelerate the biodegradation of high MW PLA, suggesting that the process is not limited to the number of specific degraders and/or the induction of specific enzymes. In parallel, abiotic hydrolysis was investigated for the same set of samples and their courses found to be quasi-identical with the biodegradation of all four PLA samples investigated. This suggests that the abiotic hydrolysis represented a rate limiting step in the biodegradation process and the organisms present were not able to accelerate depolymerization significantly by the action of their enzymes.

  7. Poly(lactic acid) filled with cassava starch-g-soybean oil maleate.

    PubMed

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best.

  8. Poly(Lactic Acid) Filled with Cassava Starch-g-Soybean Oil Maleate

    PubMed Central

    Kiangkitiwan, Nopparut; Srikulkit, Kawee

    2013-01-01

    Poly(lactic acid), PLA, is a biodegradable polymer, but its applications are limited by its high cost and relatively poorer properties when compared to petroleum-based plastics. The addition of starch powder into PLA is one of the most promising efforts because starch is an abundant and cheap biopolymer. However, the challenge is the major problem associated with poor interfacial adhesion between the hydrophilic starch granules and the hydrophobic PLA, leading to poorer mechanical properties. In this paper, soybean oil maleate (SOMA) was synthesized by grafting soybean oil with various weight percents of maleic anhydride (MA) using dicumyl peroxide (DCP) as an initiator. Then, SOMA was employed for the surface modifying of cassava starch powder, resulting in SOMA-g-STARCH. The obtained SOMA-g-STARCH was mixed with PLA in various weight ratios using twin-screw extruder, resulting in PLA/SOMA-g-STARCH. Finally, the obtained PLA/SOMA-g-STARCH composites were prepared by a compression molding machines. The compatibility, thermal properties, morphology properties, and mechanical properties were characterized and evaluated. The results showed that the compatibility, surface appearance, and mechanical properties at 90 : 10 and 80 : 20 ratios of PLA/SOMA-g-STARCH were the best. PMID:24307883

  9. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering.

    PubMed

    Hoveizi, Elham; Nabiuni, Mohammad; Parivar, Kazem; Rajabi-Zeleti, Sareh; Tavakol, Shima

    2014-01-01

    Repair or replacement of damaged tissues using tissue engineering technology is considered to be a fine solution for enhanced treatment of different diseases such as skin diseases. Although the nanofibers made of synthetic degradable polymers, such as polylactic acid (PLA), have been widely used in the medical field, they do not favour cellular adhesion and proliferation. To enhance cell adherence on scaffold and improve biocompatibility, the surface of PLA scaffold was modified by gelatin in our experiments. For electrospinning, PLA and gelatin were dissolved in hexafluoroisopropanol (HFIP) solvent at varying compositions (PLA:gelatin at 3:7 and 7:3). The properties of the blending nanofiber scaffold were investigated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Modified PLA/gelatin 7/3 scaffold is more suitable for fibroblasts attachment and viability than the PLA or gelatin nanofiber alone. Thus fibroblast cultured on PLA/gelatin scaffold could be an alternative way to improve skin wound healing.

  10. Chemical and isotopic compositions in acid residues from various meteorites

    NASA Technical Reports Server (NTRS)

    Kano, N.; Yamakoshi, K.; Matsuzaki, H.; Nogami, K.

    1993-01-01

    We are planning to carry out systematic isotopic investigations of Ru, Mg, etc., in primordial samples. The investigations will be pursued in the context of a study of the pre-history of the solar system. It is hoped that the study will yield direct evidence for processes of nucleosynthesis in the pre-solar stage and detection of extinct radioactive nuclides. In this paper, we present the results of chemical compositions of acid residues obtained from three types of meteorites: Canyon Diablo (IA), Allende (CV3), and Nuevo Mercuro (H5); and the preliminary results of Ru isotopic compositions.

  11. Fat deposition, fatty acid composition and meat quality: A review.

    PubMed

    Wood, J D; Enser, M; Fisher, A V; Nute, G R; Sheard, P R; Richardson, R I; Hughes, S I; Whittington, F M

    2008-04-01

    This paper reviews the factors affecting the fatty acid composition of adipose tissue and muscle in pigs, sheep and cattle and shows that a major factor is the total amount of fat. The effects of fatty acid composition on meat quality are also reviewed. Pigs have high levels of polyunsaturated fatty acids (PUFA), including the long chain (C20-22) PUFA in adipose tissue and muscle. The full range of PUFA are also found in sheep adipose tissue and muscle whereas cattle 'conserve' long chain PUFA in muscle phospholipid. Linoleic acid (18:2n-6) is a major ingredient of feeds for all species. Its incorporation into adipose tissue and muscle in relation to the amount in the diet is greater than for other fatty acids. It is deposited in muscle phospholipid at a high level where it and its long chain products eg aracidonic acid (20:4n-6) compete well for insertion into phospholipid molecules. Its proportion in pig adipose tissue declines as fat deposition proceeds and is an index of fatness. The same inverse relationships are not seen in ruminant adipose tissue but in all species the proportion of 18:2n-6 declines in muscle as fat deposition increases. The main reason is that phospholipid, where 18:2n-6 is located, declines as a proportion of muscle lipid and the proportion of neutral lipid, with its higher content of saturated and monounsaturated fatty acids, increases. Oleic acid (18:1cis-9), formed from stearic acid (18:0) by the enzyme stearoyl Co-A desaturase, is a major component of neutral lipid and in ruminants the same enzyme forms conjugated linoleic acid (CLA), an important nutrient in human nutrition. Like 18:2n-6, α-linolenic acid (18:3n-3) is an essential fatty acid and is important to ruminants since it is the major fatty acid in grass. However it does not compete well for insertion into phospholipid compared with 18:2n-6 and its incorporation into adipose tissue and muscle is less efficient. Greater biohydrogenation of 18:3n-3 and a long rumen transit time

  12. Cultural characteristics and fatty acid composition of Corynebacterium acnes.

    PubMed

    Moss, C W; Dowell, V R; Lewis, V J; Schekter, M A

    1967-11-01

    A detailed study of the cultural characteristics and cellular fatty acid composition of 27 isolates of Corynebacterium acnes was performed to establish the properties by which this organism may be identified and characterized. The fatty acids were extracted directly from whole cells and examined as methyl esters by gas-liquid chromatography. Each strain possessed a similar fatty acid profile which was characterized by a large percentage of C15 branched-chain acid. Uniformity in certain biochemical reactions and cultural characteristics was also observed. All strains were catalase-positive, nonmotile, and urease-negative, reduced nitrate, liquefied gelatin, failed to hydrolyze esculin and starch, and gave a positive methyl red test. Glucose, fructose, and glycerol were fermented, but not lactose, salicin, sucrose, maltose, xylose, or arabinose. Production of hydrogen sulfide and indole, fermentation of mannitol, and hemolytic activity were variable characteristics. Two species of the genus Propionibacterium were also tested and found to be similar to C. acnes both in cultural characteristics and fatty acid composition. The results strengthen previous suggestions that C. acnes should be classified in the genus Propionibacterium.

  13. Poly(lactic acid)-Based in Situ Microfibrillar Composites with Enhanced Crystallization Kinetics, Mechanical Properties, Rheological Behavior, and Foaming Ability.

    PubMed

    Kakroodi, Adel Ramezani; Kazemi, Yasamin; Ding, WeiDan; Ameli, Aboutaleb; Park, Chul B

    2015-12-14

    Melt blending is one of the most promising techniques for eliminating poly(lactic acid)'s (PLA) numerous drawbacks. However, success in a typical melt blending process is usually achieved through the inclusion of high concentrations of a second polymeric phase which can compromise PLA's green nature. In a pioneering study, we introduce the production of in situ microfibrillar PLA/polyamide-6 (PA6) blends as a cost-effective and efficient technique for improving PLA's properties while minimizing the required PA6 content. Predominantly biobased products, with only 3 wt % of in situ generated PA6 microfibrils (diameter ≈200 nm), were shown to have dramatically improved crystallization kinetics, mechanical properties, melt elasticity and strength, and foaming-ability compared with PLA. Crucially, the microfibrillar blends were produced using an environmentally friendly and cost-effective process. Both of these qualities are essential in guarantying the viability of the proposed technique for overcoming the obstacles associated with the vast commercialization of PLA.

  14. Inhibition of phospholipase A2 (PLA2) activity by nifedipine and nisoldipine is independent of their calcium-channel-blocking activity

    SciTech Connect

    Chang, J.; Blazek, E.; Carlson, R.P.

    1987-09-01

    The effects of several calcium antagonists on phospholipase A2 (PLA2) activity were examined. Nifedipine and nisoldipine inhibited a cell-free preparation of PLA2 in a dose-dependent manner with maximal inhibition of 71-77% observed at 100 microM. More potent or equipotent dihydropyridine calcium antagonists such as nitrendipine and felodipine did not inhibit PLA2 activity. In addition, nondihydropyridine calcium antagonists such as diltiazem, verapamil, and cinnarazine failed to reduce PLA2 activity markedly. Nifedipine and nisoldipine also reduced PLA2 activity in intact mouse peritoneal macrophages where PLA2 activity was monitored by free (/sup 14/C)arachidonic acid release from (/sup 14/C)arachidonic acid-prelabeled cells. When levels of PGE2 and LTC4 were measured by radioimmunoassay, it was found that the synthesis of these two metabolites was concomitantly inhibited by nifedipine and nisoldipine. In vivo, nifedipine and nisoldipine inhibited tetradecanoylphorbol acetate (TPA) induced ear edema. UV irradiation of nifedipine and nisoldipine (which destroys the slow calcium-channel-blocking activity of these compounds) did not result in a loss of PLA2 inhibitory activity. In fact, in both instances the UV-irradiated forms of nifedipine and nisoldipine were slightly more potent PLA2 inhibitors than the parent compound alone. We therefore conclude that the ability of nifedipine and nisoldipine to inhibit PLA2 was direct and unrelated to their actions on slow calcium channels.

  15. Neonatal jaundice and fatty acid composition of the maternal diet.

    PubMed

    Uhari, M; Alkku, A; Nikkari, T; Timonen, E

    1985-11-01

    The role of serum fatty acid composition in neonatal jaundice was studied by comparing the incidence of jaundice among 332 newborn infants receiving breast milk from mothers on a diet with either a low (0.1, n = 145) or a high (1.5, n = 187) polyunsaturated to saturated fatty acid (P/S) ratio. The diet was started immediately after delivery. The composition of fatty acids in the breast milk and sera of the mothers and in the sera of the newborns was evaluated from a random sample of 15 mother-newborn pairs on the control diet (low P/S ratio) and 19 pairs on the experimental diet. Five days after delivery the relative amounts of fatty acids, especially that of linoleate, in the sera of the mothers differed significantly depending on the diet. Differences were also observed in breast milk samples taken three, four or five days after delivery and in the sera of the newborns sampled at the age of four or five days. Nine of the 145 newborn infants (6.2%) in the control group had to be treated with light therapy compared with 12 out of 187 (6.4%) of the newborn infants in the experimental group (high P/S ratio). Serum bilirubin concentrations were 142.5 mumol/l (SD 65.8) and 140.7 mumol/l (SD 73.5) in the experimental and control groups, respectively, at the age of five days. It appears that the changes in the composition of serum fatty acids reached in this study had no effect on the neonatal jaundice.

  16. Postnatal changes in fatty acids composition of brown adipose tissue

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Ogawa, K.; Kuroshima, A.

    1992-03-01

    It has been demonstrated that thermogenic activity of brown adipose tissue (BAT) is higher during the early postnatal period, decreasing towards a low adult level. The present study examined postnatal changes in the lipid composition of BAT. BAT from pre-weaning rats at 4 and 14 days old showed the following differences in lipid composition compared to that from adults of 12 weeks old. (i) Relative weight of interscapular BAT to body weight was markedly greater. (ii) BAT-triglyceride (TG) level was lower, while BAT-phospholipid (PL)level was higher. (iii) In TG fatty acids (FA) polyunsaturated fatty acids (PU; mol %), arachidonate index (AI), unsaturation index (UI) and PU/saturated FA (SA) were higher; rare FA such as eicosadienoate, bishomo- γ-linolenic acid and lignoceric acid in mol % were also higher. (iv) In PL-FA monounsaturated FA (MU) in mol % was lower; PU mol %, AI and UI were higher. These features in BAT of pre-weaning rats resembled those in the cold-acclimated adults, suggesting a close relationship of the PL-FA profile to high activity of BAT.

  17. Thermophysical properties of starch and whey protein composite prepared in presence of organic acid and esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previously, we prepared starch and protein composite by reactive mixing in presence of various organic acids and found that use of these acid esters resulted in composites with good mechanical properties. In this study, concentration (% w/w) of acid citrates in the starch-protein composites were var...

  18. Reduction of VOC emission from natural flours filled biodegradable bio-composites for automobile interior.

    PubMed

    Kim, Ki-Wook; Lee, Byoung-Ho; Kim, Sumin; Kim, Hyun-Joong; Yun, Ju-Ho; Yoo, Seung-Eul; Sohn, Jong Ryeul

    2011-03-15

    Various experiments, such as the thermal extract (TE) method, field and emission cell (FLEC) method and 20 L small chamber, were performed to examine the total volatile organic compound (TVOC) emissions from bio-composites. The TVOC of neat poly(lactic acid) (PLA) was ranged from 0.26 mg/m(2)h to 4.11 mg/m(2)h with increasing temperature. For both PLA bio-composites with pineapple flour and destarched cassava flour, the temperature increased from 0.30 mg/m(2)h to 3.72 mg/m(2)h and from 0.19 mg/m(2)h to 8.74 mg/m(2)h, respectively. The TVOC emission factors of all samples increased gradually with increasing temperature. Above 70°C, both PLA-P and PLA-C composites had higher TVOC emission factors than neat PLA due to the rapid emission of natural volatile organic compounds (VOCs), such as furfural (2-furancarboxyaldehyde). PLA composites containing 30 wt% flour had high 1,4-dioxane reduction ability, >50%. The TVOC of poly(butylene succinate) (PBS) was emitted rapidly from 50 °C to 90 °C due to succinic acid from the pyrolysis of PBS. The TVOC emission factors of PLA bio-composite and PBS bio-composites were reduced using the bake-out method (temperature at 70 °C and baking time 5h). The initial TVOC emission factors of the PLA and PBS bio-composites with pineapple flour and destarched cassava flour were reduced by the baking treatment using FLEC. The TVOC factors from PLA and PBS decreased until 5 days and were commonly maintained a relatively constant value after 5 days using 20L small chamber. The decrease in TVOC emission showed a similar trend to that of the TE and FLEC method. This method confirmed the beneficial effect of the baking treatment effect for polypropylene and linear density polyethylene (LDPE).

  19. Functionalization of Biodegradable PLA Nonwoven Fabric as Superoleophilic and Superhydrophobic Material for Efficient Oil Absorption and Oil/Water Separation.

    PubMed

    Gu, Jincui; Xiao, Peng; Chen, Peng; Zhang, Lei; Wang, Hanlin; Dai, Liwei; Song, Liping; Huang, Youju; Zhang, Jiawei; Chen, Tao

    2017-02-22

    Although the construction of superwettability materials for oil/water separation has been developed rapidly, the postprocess of the used separation materials themselves is still a thorny problem due to their nondegradation in the natural environment. In this work, we reported the functionalization of polylactic acid (PLA) nonwoven fabric as superoleophilic and superhydrophobic material for efficient treatment of oily wastewater with eco-friendly post-treatment due to the well-known biodegradable nature of PLA matrix.

  20. Development and characterisation of HPMC films containing PLA nanoparticles loaded with green tea extract for food packaging applications.

    PubMed

    Wrona, Magdalena; Cran, Marlene J; Nerín, Cristina; Bigger, Stephen W

    2017-01-20

    A novel active film material based on hydroxypropyl-methylcellulose (HPMC) containing poly(lactic acid) (PLA) nanoparticles (NPs) loaded with antioxidant (AO) green tea extract (GTE) was successfully developed. The PLA NPs were fabricated using an emulsification-solvent evaporation technique and the sizes were varied to enable a controlled release of the AO from the HPMC matrix. A statistical experimental design was used to optimise the synthesis of the NPs in order to obtain different sizes of nanoparticles and the loading of these into the HPMC matrix was also varied. The physico-chemical properties of the composite films were investigated and the release of the AO was confirmed by migration studies in 50% v/v ethanol/water food simulant. The AO capacity of the GTE released from the active films was studied using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical method and the results suggest that the material could potentially be used for extending the shelf-life of food products with high fat content.

  1. Biodegradable composites from polyester and sugar beet pulp with antimicrobial coating for food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Totally biodegradable, double-layered antimicrobial composite Sheets were introduced for food packaging. The substrate layers of the sheets were prepared from poly (lactic acid) (PLA) and sugar beet pulp (SBP) or poly (butylene adipate-co-terephthalate (PBAT) and SBP by a twin-screw extruder. The ac...

  2. Crystallization and preliminary X-ray diffraction studies of BmooPLA2-I, a platelet-aggregation inhibitor and hypotensive phospholipase A2 from Bothrops moojeni venom

    PubMed Central

    Salvador, Guilherme H. M.; Marchi-Salvador, Daniela P.; Silveira, Lucas B.; Soares, Andreimar M.; Fontes, Marcos R. M.

    2011-01-01

    Phospholipases A2 (PLA2s) are enzymes that cause the liberation of fatty acids and lysophospholipids by the hydrolysis of membrane phospholipids. In addition to their catalytic action, a wide variety of pharmacological activities have been described for snake-venom PLA2s. BmooPLA2-I is an acidic, nontoxic and catalytic PLA2 isolated from Bothrops moojeni snake venom which exhibits an inhibitory effect on platelet aggregation, an immediate decrease in blood pressure, inducing oedema at a low concentration, and an effective bactericidal effect. BmooPLA2-I has been crystallized and X-ray diffraction data have been collected to 1.6 Å resolution using a synchrotron-radiation source. The crystals belonged to space group C2221, with unit-cell parameters a = 39.7, b = 53.2, c = 89.2 Å. The molecular-replacement solution of BmooPLA2-I indicated a monomeric conformation, which is in agreement with nondenaturing electrophoresis and dynamic light-scattering experiments. A comparative study of this enzyme with the acidic PLA2 from B. jararacussu (BthA-I) and other toxic and nontoxic PLA2s may provide important insights into the functional aspects of this class of proteins. PMID:21821890

  3. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.

    PubMed

    Serra, Tiziano; Ortiz-Hernandez, Monica; Engel, Elisabeth; Planell, Josep A; Navarro, Melba

    2014-05-01

    Achieving high quality 3D-printed structures requires establishing the right printing conditions. Finding processing conditions that satisfy both the fabrication process and the final required scaffold properties is crucial. This work stresses the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-direct-printed scaffolds for tissue engineering applications. For this, PLA/PEG blends with 5, 10 and 20% (w/w) of PEG and PLA/PEG/bioactive CaP glass composites were processed in the form of 3D rapid prototyping scaffolds. Surface analysis and differential scanning calorimetry revealed a rearrangement of polymer chains and a topography, wettability and elastic modulus increase of the studied surfaces as PEG was incorporated. Moreover, addition of 10 and 20% PEG led to non-uniform 3D structures with lower mechanical properties. In vitro degradation studies showed that the inclusion of PEG significantly accelerated the degradation rate of the material. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds.

  4. PLA 2010 Conference: Plenty for the Price

    ERIC Educational Resources Information Center

    Miller, Rebecca

    2010-01-01

    This article outlines Public Library Association (PLA) 2010 annual conference to be held in Oregon Convention Center, Portland on March 23-27. The days quickly fill up with the picks of over 100 programs as well as valuable "talk tables" and special events. The well-organized schedule, divided into eight broad tracks (e.g., technology,…

  5. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.

    PubMed

    Abdal-Hay, Abdalla; Hussein, Kamal Hany; Casettari, Luca; Khalil, Khalil Abdelrazek; Hamdy, Abdel Salam

    2016-03-01

    Poly(lactic acid) (PLA) nanofiber scaffold has received increasing interest as a promising material for potential application in the field of regenerative medicine. However, the low hydrophilicity and poor ductility restrict its practical application. Integration of hydrophilic elastic polymer onto the surface of the nanofiber scaffold may help to overcome the drawbacks of PLA material. Herein, we successfully optimized the parameters for in situ deposition of poly(vinyl alcohol), (PVA) onto post-electrospun PLA nanofibers using a simple hydrothermal approach. Our results showed that the average fiber diameter of coated nanofiber mat is about 1265±222 nm, which is remarkably higher than its pristine counterpart (650±180 nm). The hydrophilicity of PLA nanofiber scaffold coated with a PVA thin layer improved dramatically (36.11±1.5°) compared to that of pristine PLA (119.7±1.5°) scaffold. The mechanical testing showed that the PLA nanofiber scaffold could be converted from rigid to ductile with enhanced tensile strength, due to maximizing the hydrogen bond interaction during the heat treatment and in the presence of PVA. Cytocompatibility performance of the pristine and coated PLA fibers with PVA was observed through an in vitro experiment based on cell attachment and the MTT assay by EA.hy926 human endothelial cells. The cytocompatibility results showed that human cells induced more favorable attachment and proliferation behavior on hydrophilic PLA composite scaffold than that of pristine PLA. Hence, PVA coating resulted in an increase in initial human cell attachment and proliferation. We believe that the novel PVA-coated PLA nanofiber scaffold developed in this study, could be a promising high performance biomaterial in regeneration medicine.

  6. Amino Acid Composition of Breast Milk from Urban Chinese Mothers

    PubMed Central

    Garcia-Rodenas, Clara L.; Affolter, Michael; Vinyes-Pares, Gerard; De Castro, Carlos A.; Karagounis, Leonidas G.; Zhang, Yumei; Wang, Peiyu; Thakkar, Sagar K.

    2016-01-01

    Human breast milk (BM) amino acid (AA) composition may be impacted by lactation stage or factors related to geographical location. The present cross-sectional study is aimed at assessing the temporal changes of BMAA over lactation stages in a large cohort of urban mothers in China. Four hundred fifty BM samples, collected in three Chinese cities covering eight months of lactation were analyzed for free (FAA) and total (TAA) AA by o-phthalaldehyde/ fluorenylmethylchloroformate (OPA/FMOC) derivatization. Concentrations and changes over lactation were aligned with previous reports. Both the sum and the individual TAA values significantly decreased during the first periods of lactation and then generally leveled off. Leucine and methionine were respectively the most and the least abundant indispensable amino acids across all the lactation stages, whereas glutamic acid + glutamine (Glx) was the most and cystine the least abundant dispensable AA. The contribution of FAA to TAA levels was less than 2%, except for free Glx, which was the most abundant FAA. In conclusion, the AA composition of the milk from our cohort of urban Chinese mothers was comparable to previous studies conducted in other parts of the world, suggesting that this is an evolutionary conserved trait largely independent of geographical, ethnic, or dietary factors. PMID:27690094

  7. Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A blend of poly(lactic acid) (PLA) (75% by weight) and poly(3-hydroxybutyrate) (PHB) (25% by weight) with a polyester plasticizer (Lapol 108) at two different concentrations (5 and 7% by weight per 100 parts of the blends) were investigated by TGA, DSC, XRD, SEM, mechanical testing and biodegradatio...

  8. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin.

    PubMed

    Liang, Hongying; Friedman, Joel M; Nacharaju, Parimala

    2017-03-01

    Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.

  9. PlaMoM: a comprehensive database compiles plant mobile macromolecules

    PubMed Central

    Guan, Daogang; Yan, Bin; Thieme, Christoph; Hua, Jingmin; Zhu, Hailong; Boheler, Kenneth R.; Zhao, Zhongying; Kragler, Friedrich; Xia, Yiji; Zhang, Shoudong

    2017-01-01

    In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families. However, most of the identified mobile macromolecules are not annotated in current versions of species-specific databases and are only available as non-searchable datasheets. To facilitate study of the mobile signaling macromolecules, we compiled the PlaMoM (Plant Mobile Macromolecules) database, a resource that provides convenient and interactive search tools allowing users to retrieve, to analyze and also to predict mobile RNAs/proteins. Each entry in the PlaMoM contains detailed information such as nucleotide/amino acid sequences, ortholog partners, related experiments, gene functions and literature. For the model plant Arabidopsis thaliana, protein–protein interactions of mobile transcripts are presented as interactive molecular networks. Furthermore, PlaMoM provides a built-in tool to identify potential RNA mobility signals such as tRNA-like structures. The current version of PlaMoM compiles a total of 17 991 mobile macromolecules from 14 plant species/ecotypes from published data and literature. PlaMoM is available at http://www.systembioinfo.org/plamom/. PMID:27924044

  10. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, S.L.; Lee, E.K.L.; Friesen, D.T.; Kelly, D.J.

    1988-04-12

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorus and sulfur, and having a boiling point of at least 100 C and a solubility parameter of from about 7.5 to about 13.5 (cal/cm[sup 3]-atm)[sup 1/2]. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes. 3 figs.

  11. Acid gas scrubbing by composite solvent-swollen membranes

    DOEpatents

    Matson, Stephen L.; Lee, Eric K. L.; Friesen, Dwayne T.; Kelly, Donald J.

    1988-01-01

    A composite immobilized liquid membrane suitable for acid gas scrubbing is disclosed. The membrane is a solvent-swollen polymer and a microporous polymeric support, the solvent being selected from a class of highly polar solvents containing at least one atom selected from nitrogen, oxygen, phosphorous and sulfur, and having a boiling point of at least 100.degree. C. and a solubility parameter of from about 7.5 to about 13.5 (cal/cm.sup.3 -atm).sup.1/2. Such solvents are homogeneously distributed through the solvent-swollen polymer from 20% to 95% by weight. Also disclosed are methods of acid gas scrubbing of high- and low-Btu gas effluents with such solvent-swollen membranes.

  12. Evaluation of fatty acid and amino acid compositions in okra (Abelmoschus esculentus) grown in different geographical locations.

    PubMed

    Sami, Rokayya; Lianzhou, Jiang; Yang, Li; Ma, Ying; Jing, Jing

    2013-01-01

    Okra has different uses as a food and a remedy in traditional medicine. Since it produces many seeds, distribution of the plant is also quite easy. Although seed oil yield is low (4.7%), since the linoleic acid composition of the seed oil is quiet high (67.5%), it can still be used as a source of (UNSAT) unsaturated fatty acids. In this study, samples of okra grown in four different locations were analyzed to measure fatty acid and amino acid compositions. The content of the lipid extraction ranged from 4.34% to 4.52% on a dry weight basis. Quantitatively, the main okra fatty acids were palmitic acid (29.18-43.26%), linoleic acid (32.22-43.07%), linolenic acid (6.79-12.34%), stearic acid (6.36-7.73%), oleic acid (4.31-6.98%), arachidic acid (ND-3.48%), margaric acid (1.44-2.16%), pentadecylic acid (0.63-0.92%), and myristic acid (0.21-0.49%). Aspartic acid, proline, and glutamic acids were the main amino acids in okra pods, while cysteine and tyrosine were the minor amino acids. Statistical methods revealed how the fatty acid and amino acid contents in okra may be affected by the sampling location.

  13. PLA-grafting of collagen chains leading to a biomaterial with mechanical performances useful in tendon regeneration.

    PubMed

    Bellini, Davide; Cencetti, Claudia; Sacchetta, Anna Cristina; Battista, Angela Maria; Martinelli, Andrea; Mazzucco, Laura; Scotto D'Abusco, Anna; Matricardi, Pietro

    2016-12-01

    With the aim to obtain a scaffold with improved mechanical properties with respect to collagen for tendon augmentation and regeneration, a novel collagen-based material was prepared via heterogeneous phase derivatization of type I collagen sponges using polylactic acid. Compared to the untreated collagen, the functionalized sponge (Coll-PLA) was characterized by higher tensile properties and lower swelling capability; the degradation rate of Coll-PLA, in the presence of collagenase, was lower than that of the untreated collagen sponge. These results are related to an increased hydrophobic character of the collagen matrix due to the presence of PLA chains. In vitro tests, performed with human primary fibroblasts, showed that cell adhesion and proliferation rate on Coll-PLA were comparable to those obtained with the non-functionalized collagen. These findings suggest that the new biomaterial could be suitable as scaffold in tendon augmentation and regeneration.

  14. Changes in fatty acid composition of Chlorella vulgaris by hypochlorous acid.

    PubMed

    Park, Ji-Yeon; Choi, Sun-A; Jeong, Min-Ji; Nam, Bora; Oh, You-Kwan; Lee, Jin-Suk

    2014-06-01

    Hypochlorous acid treatment of a microalga, Chlorella vulgaris, was investigated to improve the quality of microalgal lipid and to obtain high biodiesel-conversion yield. Because chlorophyll deactivates the catalyst for biodiesel conversion, its removal in the lipid-extraction step enhances biodiesel productivity. When microalgae contacted the hypochlorous acid, chlorophyll was removed, and resultant changes in fatty acid composition of microalgal lipid were observed. The lipid-extraction yield after activated clay treatment was 32.7 mg lipid/g cell; after NaClO treatment at 0.8% available chlorine concentration, it was 95.2 mg lipid/g cell; and after NaCl electrolysis treatment at the 1 g/L cell concentration, it was 102.4 mg lipid/g cell. While the contents of all of the unsaturated fatty acids except oleic acid, in the microalgal lipid, decreased as the result of NaClO treatment, the contents of all of the unsaturated fatty acids including oleic acid decreased as the result of NaCl electrolysis treatment.

  15. Stabilization of Resveratrol in Blood Circulation by Conjugation to mPEG and mPEG-PLA Polymers: Investigation of Conjugate Linker and Polymer Composition on Stability, Metabolism, Antioxidant Activity and Pharmacokinetic Profile

    PubMed Central

    Siddalingappa, Basavaraj; Benson, Heather A. E.; Brown, David H.; Batty, Kevin T.; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol. PMID:25799413

  16. Stabilization of resveratrol in blood circulation by conjugation to mPEG and mPEG-PLA polymers: investigation of conjugate linker and polymer composition on stability, metabolism, antioxidant activity and pharmacokinetic profile.

    PubMed

    Siddalingappa, Basavaraj; Benson, Heather A E; Brown, David H; Batty, Kevin T; Chen, Yan

    2015-01-01

    Resveratrol is naturally occurring phytochemical with diverse biological activities such as chemoprevention, anti-inflammatory, anti-cancer, anti-oxidant. But undergoes rapid metabolism in the body (half life 0.13h). Hence Polymer conjugation utilizing different chemical linkers and polymer compositions was investigated for enhanced pharmacokinetic profile of resveratrol. Ester conjugates such as α-methoxy-ω-carboxylic acid poly(ethylene glycol) succinylamide resveratrol (MeO-PEGN-Succ-RSV) (2 and 20 kDa); MeO-PEG succinyl ester resveratrol (MeO-PEGO-Succ-RSV) (2 kDa); α-methoxy poly(ethylene glycol)-co-polylactide succinyl ester resveratrol (MeO-PEG-PLAO-Succ-RSV) (2 and 6.6kDa) were prepared by carbodiimide coupling reactions. Resveratrol-PEG ethers (2 and 5 kDa) were synthesized by alkali-mediated etherification. All polymer conjugates were fully characterized in vitro and the pharmacokinetic profile of selected conjugates was characterized in rats. Buffer and plasma stability of conjugates was dependent on polymer hydrophobicity, aggregation behavior and PEG corona, with MeO-PEG-PLAO-Succ-RSV (2 kDa) showing a 3h half-life in rat plasma in vitro. Polymer conjugates irrespective of linker chemistry protected resveratrol against metabolism in vitro. MeO-PEG-PLAO-Succ-RSV (2 kDa), Resveratrol-PEG ether (2 and 5 kDa) displayed improved pharmacokinetic profiles with significantly higher plasma area under curve (AUC), slower clearance and smaller volume of distribution, compared to resveratrol.

  17. Physical and sensory properties of dairy products from cows with various milk fatty acid compositions.

    PubMed

    Chen, She; Bobe, Gerd; Zimmerman, Shelly; Hammond, Earl G; Luhman, Cindie M; Boylston, Terri D; Freeman, Albert E; Beitz, Donald C

    2004-06-02

    Dairy products from milk of cows fed diets rich in polyunsaturated fatty acids have a more health-promoting fatty acid composition and are softer but often have oxidized flavors. Dairy products made from cow's milk that has more- or less-unsaturated fatty acid compositions were tested for differences in texture and flavor from those made from bulk-tank milk. The milk was manufactured into butter, vanilla ice cream, yogurt, Provolone cheese, and Cheddar cheese. The products were analyzed for fatty acid composition, physical properties, and flavor. Milk of cows with a more monounsaturated fatty acid composition yielded products with a more monounsaturated fatty acid composition that were softer and had a satisfactory flavor. Thus, selection of cows for milk fatty acid composition can be used to produce dairy products that are probably more healthful and have a softer texture.

  18. A PLA1-2 Punch Regulates the Golgi Complex

    PubMed Central

    Bechler, Marie E.; de Figueiredo, Paul; Brown, William J.

    2011-01-01

    The mammalian Golgi complex, trans Golgi network (TGN) and ER-Golgi-Intermediate Compartment (ERGIC) are comprised of membrane cisternae, coated vesicles and membrane tubules, all of which contribute to membrane trafficking and maintenance of their unique architectures. Recently, a new cast of players was discovered to regulate the Golgi and ERGIC: four unrelated cytoplasmic phospholipase A (PLA) enzymes, cPLA2α (GIVA cPLA2), PAFAH Ib (GVIII PLA2), iPLA2-β (GVIA-2 iPLA2), and iPLA1γ. These ubiquitously expressed enzymes regulate membrane trafficking from specific Golgi subcompartments, although there is evidence for some functional redundancy between PAFAH Ib and cPLA2α. Three of these enzymes, PAFAH Ib, cPLA2α, and iPLA2-β, exert effects on Golgi structure and function by inducing the formation of membrane tubules. Here, we review our current understanding of how PLA enzymes regulate Golgi and ERGIC morphology and function. PMID:22130221

  19. Fatty acid composition of seeds of some species of Nepeta L.

    PubMed

    Kiliç, Turgut; Dirmenci, Tuncay; Gören, Ahmet C

    2007-05-01

    The fatty acid compositions of Nepeta viscida, N. cilicica, N. crinita, N. nuda ssp. glandulifera and N. aristata were analyzed by GC/MS. The main free fatty acids were found as linolenic acid (49.8-58.5%), linoleic acid (10.9-23.5%), oleic acid (11.5-19.2%), palmitic acid (5.2-6.8%) and stearic acid (2.0-3.7%) and, total fatty acid compositions of species were analyzed and results were found as 36.2-49.8%, 17.1-25.8%, 15.4-25.8%, 6.4-7.8%, and 2.7-4.1%, respectively.

  20. Drought and heat stress effects on soybean fatty acid composition and oil stability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies have shown that oil concentration and fatty acid profile (composition) change with genotype, environment (mainly heat and drought), and geographical location. The changes in fatty acid composition under these conditions affect fatty acid stability, creating a challenge to oil proces...

  1. PLA Reforms and Chinas Nuclear Forces

    DTIC Science & Technology

    2016-10-01

    will affect the force structure , adminis- tration, and command and control mechanisms of the People’s Liberation Army (PLA). The reforms have the...Army (PLAA) headquarters and the Strategic Support Force. Establishment of a separate headquarters will move the PLAA to a bureaucratic structure and...commands and the re- structured Central Military Commission (CMC), however, are staffed by PLAA officers, so the effectiveness of this change remains to

  2. Polyunsaturated fatty acids and conjugated linoleic acid isomers in breast milk are associated with plasma non-esterified and erythrocyte membrane fatty acid composition in lactating women.

    PubMed

    Torres, Alexandre G; Ney, Jacqueline G; Meneses, Flávia; Trugo, Nádia M F

    2006-03-01

    Maternal adipose tissue is a major contributor to breast milk long-chain fatty acids, probably through the pool of plasma NEFA. The fatty acid composition of the erythrocyte membrane (EM) is a biochemical index of the intake of fatty acids not synthesized endogenously and of PUFA and long-chain PUFA fatty acid status. The present study investigated the associations between breast milk fatty acid composition and the composition of plasma NEFA and of EM fatty acids with special reference to PUFA, long-chain PUFA and conjugated linoleic acid (CLA). The detailed fatty acid composition of mature breast milk was also reported. Thirty-three healthy, lactating Brazilian women donated milk samples; of these, twenty-four also donated blood samples in an observational cross-sectional study. Breast milk fatty acid composition presented several associations with NEFA and EM composition, which explained most (> or =50 %) of the variability of selected milk PUFA, long-chain PUFA and CLA. Milk CLA was associated with fatty acids that are markers of dairy fat intake in the diet, NEFA and EM. In general, breast milk n-3 fatty acids and CLA, but not n-6 fatty acids, were associated with EM composition, whereas both the n-6 and n-3 fatty acids and CLA in milk were associated with NEFA composition, possibly owing to its role as a direct source of fatty acids for breast milk. These findings emphasize the contribution of the NEFA pool derived from the adipose tissue to the long-chain fatty acid composition of breast milk.

  3. Effect of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite nanocomposite

    SciTech Connect

    Shahdan, Dalila; Ahmad, Sahrim Hj.; Flaifel, Moayad Husein

    2013-11-27

    The influence of sonication treatment time on the morphological and mechanical properties of LNR/PLA composite impregnated with different filler loadings of NiZn ferrite nanoparticles was investigated. The nanocomposite was prepared using melt blending method with assistance of ultrasonic treatment of 0, 1 and 2 hrs. Structural characterization of the nanocomposites was examined using scanning electron microscopy (SEM) with their elemental composition being confirmed by energy dispersive X-ray spectroscopy (EDX). The tensile properties of LNR/PLA composite treated with different ultrasonication times have improved with increasing magnetic nanofiller signature in the nanocomposite. Further, the optimum sonication time of 1 hr was found to produce nanocomposite with maximum tensile properties.

  4. Effects of solvents and alcohols on the polar lipid composition of Clostridium butyricum under conditions of controlled lipid chain composition

    SciTech Connect

    MacDonald, D.L.; Goldfine, H. )

    1991-12-01

    Clostridium butyricum has been grown in media devoid of biotin, to which long-chain fatty acids have been added to promote growth. The authors have shown previously that, under these conditions, exogenous fatty acids are extensively incorporated into the cellular phospholipids. Cells grown with elaidic acid, trans-9-18:1, have normal ratios of the glycerol acetal of plasmenylethanolamine (GaPlaE) to phosphatidylethanolamine (PE) plus plasmenylethanolamine (PlaE) compared with cells grown with biotin. When ethanol, cyclohexane, or n-octanol was added to elaidate-containing media, the ratio of GAPlaE to Pe plus PlaE was significantly increased. Addition of dodecane and n-butanol did not affect this ratio. When cells were grown with oleic acid in the absence of biotin, the GAPlaE to PE plus PlaE ratio was increased 5.4-fold compared with elaidate-grown cells. In oleate-supplemented media, the addition of solvents or n-alcohols produced no further increase in this ratio. They conclude that these changes in lipid composition represent cellular responses to perturbation of the equilibria between the lamellar and nonlamellar liquid crystalline phases in the cell membrane.

  5. Metal salts of alkyl catechol dithiophosphoric acids and oil compositions containing the salts

    SciTech Connect

    Yamaguchi, E.S.; Liston, T.V.

    1988-03-08

    Metal salts of alkyl catechol esters of dithiophosphoric acid suitable as additives in oil compositions are disclosed in this patent. Oil compositions containing the salts of such esters show improved extreme pressure/anti-wear and anit-oxidant properties.

  6. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds.

    PubMed

    Morelli, Sabrina; Salerno, Simona; Holopainen, Jani; Ritala, Mikko; De Bartolo, Loredana

    2015-06-20

    The design of bone substitutes involves the creation of a microenvironment supporting molecular cross-talk between cells and scaffolds during tissue formation and remodelling. Bone remodelling process includes the cooperation of bone-building cells and bone-resorbing cells. In this paper we developed polylactic acid (PLA) and composite PLA-nanohydroxyapatite (nHA) scaffolds with 20 and 50wt.% of nHA by electrospinning technique to be used in bone tissue engineering. The developed scaffolds have different fiber diameter, porosity with interconnected pores and mechanical properties. Taking cues from the bone environment features we investigated the differentiation of human mesenchymal stem cells (hMSCs) from bone marrow in osteoblasts and the osteoclastogenesis in the developed scaffolds in homotypic and in co-culture up to 46 days. PLA and composite PLA-nHA scaffolds induced osteogenic and osteoclastogenic differentiation. Both osteoblasts and osteoclasts displayed high expression of specific markers (osteopontin, osteocalcin, RANK, RANKL) and functions such as secretion of ALP, cathepsin K and TRAP activity on composite scaffolds especially on PLA-nHA containing 20wt.% of nHA. The heterotypic interactions between osteoblasts and osteoclasts co-cultured in the developed scaffolds triggered their functional differentiation and activation.

  7. Chemical characteristics, fatty acid composition and conjugated linoleic acid (CLA) content of traditional Greek yogurts.

    PubMed

    Serafeimidou, Amalia; Zlatanos, Spiros; Laskaridis, Kostas; Sagredos, Angelos

    2012-10-15

    Many studies with conjugated linoleic acid (CLA) indicate that it has a protective effect against mammary cancer. Because dairy products are the most important dietary sources of CLA, we have investigated the CLA concentrations and additionally the fatty acid profiles and chemical composition of several commercial, traditional, Greek yogurts from different geographical origin. The fat content of yogurts was in the order of goatacids (SFA) were found in low-fat yogurts, of monounsaturated fatty acids (MUFA) in sheep milk yogurts and of polyunsaturated fatty acid (PUFA) in low-fat cow milk yogurts.

  8. Fatty acid concentration, proximate composition, and mineral composition in fishbone flour of Nile Tilapia.

    PubMed

    Petenuci, Maria Eugênia; Stevanato, Flávia Braidoti; Visentainer, Jeane Eliete Laguila; Matsushita, Makoto; Garcia, Edivaldo Egea; de Souza, Nilson Evelázio; Visentainer, Jesui Vergilio

    2008-03-01

    Nile tilapia (Oreochormis niloticus) fishbone is a fish part with unknown composition. After elaboration of flour fishbone of tilapia it was analysede. The results in 100 g of flour were: moisture (14.2%), protein (40.8%), total lipids (25.3%), and ash (18.3%), and mineral (in 100 g) was 2715.9 mg (calcium), 1.3 mg (iron), and 1132.7 mg (phosphorus). A total of 22 fatty acids were detected in fishbone flour total lipids (TL), being the major ones in (g) of total lipids: 16:0 (208.5 mg); 18:1n-9 (344.3 mg); and 18:2n-6 (109.6 mg). The concentration of linolenic acid--LNA (18:3n-3); eicopentaenoic acid--EPA (20:5n-3), and docosahexaenoic acid--DHA (22:6n-3) were (29.9 mg), (3.3 mg), and (12.9 mg), respectively. The content to saturated (SFA) were (296.2 mg), monounsaturated (MUFA) 415.0 mg, and polyunsaturated (PUFA) 175.6 mg. The ratio PUFA:MUFA:SFA was 1:2.4:1.7, and the ratio omega-6/omega-3 fatty acids were 2.8. The last is within the recommended values. The results show low concentrations of omega-3 fatty acids in flour. The value caloric and calcium, iron, phosphorus, and protein content the fishbone flour of tilapia may results a valuable alternative food in the human diet.

  9. Influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of acidic, neutral and basic polysaccharides.

    PubMed

    Wang, Qing-Chi; Zhao, Xia; Pu, Jiang-Hua; Luan, Xiao-Hong

    2016-06-05

    Monosaccharide composition analysis is important for structural characterization of polysaccharides. To investigate the influences of acidic reaction and hydrolytic conditions on monosaccharide composition analysis of polysaccharides, we chose alginate, starch, chitosan and chondroitin sulfate as representative of acidic, neutral, basic and complex polysaccharides to compare the release degree of monosaccharides under different hydrolytic conditions. The hydrolysis stability of 10 monosaccharide standards was also explored. Results showed that the basic sugars were hard to release but stable, the acidic sugars (uronic acids) were easy to release but unstable, and the release and stability of neutral sugars were in between acidic and basic sugars. In addition, the hydrolysis process was applied to monosaccharide composition analysis of Hippocampus trimaculatus polysaccharide and the appropriate hydrolytic condition was accorded with that of the above four polysaccharides. Thus, different hydrolytic conditions should be used for the monosaccharide composition analysis of polysaccharides based on their structural characteristics.

  10. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites.

  11. Effect of Gallic acid on mechanical and water barrier properties of zein-oleic acid composite films.

    PubMed

    Masamba, Kingsley; Li, Yue; Hategekimana, Joseph; Liu, Fei; Ma, Jianguo; Zhong, Fang

    2016-05-01

    In this study, the effect of gallic acid on mechanical and water barrier properties of zein-oleic acid 0-4 % composite films was investigated. Molecular weight distribution analysis was carried out to confirm gallic acid induced cross linking through change in molecular weight in fraction containing zein proteins. Results revealed that gallic acid treatment increased tensile strength from 17.9 MPa to 26.0 MPa, decreased water vapour permeability from 0.60 (g mm m(-2) h(-1) kPa(-1)) to 0.41 (g mm m(-2) h(-1) kPa(-1)), increased solubility from 6.3 % to 10.2 % and marginally increased elongation at break from 3.7 % to 4.2 % in zein films only. However, gallic acid treatment in zein-oleic composite films did not significantly influence mechanical and water barrier properties and in most instances irrespective of oleic acid concentration, the properties were negatively affected. Results from scanning electron microscopy showed that both gallic acid treated and untreated zein films and composite films containing 3 % oleic acid had a compact and homogeneous structure while those containing 4 % oleic acid had inhomogeneous structure. The findings have demonstrated that gallic acid treatment can significantly improve mechanical and water barrier properties especially in zein films only as opposed to when used in composite films using zein and oleic acid.

  12. Fatty acid composition of goat diets vs intramuscular fat.

    PubMed

    Rhee, K S; Waldron, D F; Ziprin, Y A; Rhee, K C

    2000-04-01

    Twenty Boer x Spanish goats, at the age range of 90-118 days, were assigned to two dietary treatments, with 10 animals fed a grain ration (G) and the other 10 grazed in rangeland. The grain ration contained sorghum grain (67.5%), cottonseed hulls, dehydrated alfalfa meal, cottonseed meal, soybean meal, molasses, and mineral and vitamin supplements. Animals were slaughtered at the age range of 206-234 days. Intramuscular fat (IF) and the diet specimens - representative samples of G and the parts of range plants (RPs) that goats were expected to have consumed - were analyzed for fatty acid composition. The percentage of 16:0 was higher in RPs than in G, but not different between IF from range goats and that from grain-fed goats. Total unsaturated fatty acid (UFA) percentage was higher in G than in RPs. The major UFAs were 18:2 and 18:3 in RPs, and 18:1 and 18:2 in G. In IF, 18:1 constituted more than two-thirds of UFAs, regardless of diet type.

  13. Fatty Acid and Proximate Composition of Bee Bread

    PubMed Central

    Kaplan, Muammer; Karaoglu, Öznur; Eroglu, Nazife

    2016-01-01

    Summary Palynological spectrum, proximate and fatty acid (FA) composition of eight bee bread samples of different botanical origins were examined and significant variations were observed. The samples were all identified as monofloral, namely Castanea sativa (94.4%), Trifolium spp. (85.6%), Gossypium hirsutum (66.2%), Citrus spp. (61.4%) and Helianthus annuus (45.4%). Each had moisture content between 11.4 and 15.9%, ash between 1.9 and 2.54%, fat between 5.9 and 11.5%, and protein between 14.8 and 24.3%. A total of 37 FAs were determined with most abundant being (9Z,12Z,15Z)-octadeca-9,12,15-trienoic, (9Z,12Z)- -octadeca-9,12-dienoic, hexadecanoic, (Z)-octadec-9-enoic, (Z)-icos-11-enoic and octadecanoic acids. Among all, cotton bee bread contained the highest level of ω-3 FAs, i.e. 41.3%. Unsaturated to saturated FA ratio ranged between 1.38 and 2.39, indicating that the bee bread can be a good source of unsaturated FAs. PMID:28115909

  14. BmPLA2 containing conserved domain WD40 affects the metabolic functions of fat body tissue in silkworm, Bombyx mori.

    PubMed

    Orville Singh, Chabungbam; Xin, Hu-Hu; Chen, Rui-Ting; Wang, Mei-Xian; Liang, Shuang; Lu, Yan; Cai, Zi-Zheng; Miao, Yun-Gen

    2016-02-01

    PLA2 enzyme hydrolyzes arachidonic acid, and other polyunsaturated fatty acids, from the sn-2 position to release free arachidonic acid and a lysophospholipid. Previous studies reported that the PLA2 in invertebrate organisms participates in lipid signaling molecules like arachidonic acid release in immune-associated tissues like hemocytes and fat bodies. In the present study, we cloned the BmPLA2 gene from fat body tissue of silkworm Bombyx mori, which has a total sequence of 1.031 kb with a 31.90 kDa protein. In silico results of BmPLA2 indicated that the protein has a putative WD40 conserved domain and its phylogeny tree clustered with Danaus plexippus species. We investigated the transcriptional expression in development stages and tissues. The highest expression of BmPLA2 was screened in fat body among the studied tissues of third day fifth instar larva, with a high expression on third day fifth instar larva followed by a depression of expression in the wandering stage of the fifth instar larva. The expression of BmPLA2 in female pupa was higher than that of male pupa. Our RNAi-mediated gene silencing results showed highest reduction of BmPLA2 expression in post-24 h followed by post-48 and post-72 h. The BmPLA2-RNAi larvae and pupa could be characterized by pharate adult lethality and underdevelopment. The phenotypic characters of fat body cells in RNAi-induced larva implied that BmPLA2 affects the metabolic functions of fat body tissue in silkworm Bombyx mori.

  15. Unusual fatty acid compositions of the hyperthermophilic archaeon Pyrococcus furiosus and the bacterium Thermotoga maritima.

    PubMed Central

    Carballeira, N M; Reyes, M; Sostre, A; Huang, H; Verhagen, M F; Adams, M W

    1997-01-01

    The fatty acid compositions of the hyperthermophilic microorganisms Thermotoga maritima and Pyrococcus furiosus were studied and compared. A total of 37 different fatty acids were identified in T. maritima, including the novel 13,14-dimethyloctacosanedioic acid. In contrast, a total of 18 different fatty acids were characterized, as minor components, in P. furiosus, and these included saturated, monounsaturated, and dicarboxylic acids. This is the first report of fatty acids from an archaeon. PMID:9098079

  16. Improving fatty acid composition in peanuts (Arachis hypogaea) by SNP genotyping and traditional breeding.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid composition is an important seed quality trait in cultivated peanuts (Arachis hypogaea L.). Monounsaturated fats, such as oleic acid (C18:1), an omega-9 fatty acid, has been shown to have beneficial effects on human health. In addition, peanuts bred to produce high levels of oleic acid ...

  17. Recycling of Poly (Lactic Acid)/Silk based Bionanocomposites Films and its Influence on Thermal Stability, Crystallization Kinetics, Solution and Melt Rheology.

    PubMed

    Tesfaye, Melakuu; Patwa, Rahul; Gupta, Arvind; Kashyap, Manash Jyoti; Katiyar, Vimal

    2017-03-17

    In this study, the effect of silk nanocrystals (SNCs) on the thermal and rheological properties of poly (lactic acid) (PLA) under repetitive extrusion process is investigated. The presence of SNCs facilitates the crystallization process and delaying the thermal degradation of PLA matrix. This leads to the reduction in cold crystallization peak temperature with lower crystallization half-time and higher growth rate. The substantial improvement in nucleation density observed through Polarized Optical Microscope (POM) proves the nucleating effect of SNC in all processing cycles. Moreover, the rheological investigation (complex viscosity, storage and loss modules values) revealed the stabilizing effect of SNC and the drastic degradation of neat PLA (NPLA) in third and fourth cycle is observed to be fortified by the presence of SNC. Cole-Cole plot and cross over frequencies have been correlated with the molar mass distribution of PLA and PLA-Silk composite during processing, which is further supported by the intrinsic viscosity measurement and acid value analysis. This investigation suggests that the melt viscosity and thermal properties of PLA can be stabilized by addition of silk nanocrystals.

  18. PLA branching with anhydrides and tri-functional aziridine

    NASA Astrophysics Data System (ADS)

    Gu, Liangliang; Xu, Yuewen; Naredla, Rajasekhar; Hoye, Thomas; Macosko, Christopher

    Branched PLA was prepared by melt blending with tri-functional aziridine (T-Az) and pyromellitic dianhydride (PMDA). 1HNMR, gel permeation chromatography (GPC) and rheology were used to characterize the topological structures of branched PLA. Fast reaction between PLA carboxyl end group and T-Az resulted in 3-arm stars and increased the molecular weight. However, the 3-arm stars did not show strain hardening behavior under extensional flow. After modifying PLA hydroxyl end group with PMDA, PLA can react with T-Az on both chain ends and form long chain branched structure, which showed strain hardening in extension. It was found that that only 10% of the PLA hydroxyl end groups reacted with PMDA. This work is supported by Center for Sustainable Polymers.

  19. Carbohydrate, Organic Acid, and Amino Acid Composition of Bacteroids and Cytosol from Soybean Nodules 1

    PubMed Central

    Streeter, John G.

    1987-01-01

    Metabolites in Bradyrhizobium japonicum bacteroids and in Glycine max (L.) Merr. cytosol from root nodules were analyzed using an isolation technique which makes it possible to estimate and correct for changes in concentration which may occur during bacteroid isolation. Bacteroid and cytosol extracts were fractionated on ion-exchange columns and were analyzed for carbohydrate composition using gas-liquid chromatography and for organic acid and amino acid composition using high performance liquid chromatography. Analysis of organic acids in plant tissues as the phenacyl derivatives is reported for the first time and this approach revealed the presence of several unknown organic acids in nodules. The time required for separation of bacteroids and cytosol was varied, and significant change in concentration of individual compounds during the separation of the two fractions was estimated by calculating the regression of concentration on time. When a statistically significant slope was found, the true concentration was estimated by extrapolating the regression line to time zero. Of 78 concentration estimates made, there was a statistically significant (5% level) change in concentration during sample preparation for only five metabolites: glucose, sucrose, and succinate in the cytosol and d-pinitol and serine in bacteroids. On a mass basis, the major compounds in bacteroids were (descending order of concentration): myo-inositol, d-chiro-inositol, α,α-trehalose, sucrose, aspartate, glutamate, d-pinitol, arginine, malonate, and glucose. On a proportional basis (concentration in bacteroid as percent of concentration in bacteroid + cytosol fractions), the major compounds were: α-aminoadipate (94), trehalose (66), lysine (58), and arginine (46). The results indicate that metabolite concentrations in bacteroids can be reliably determined. PMID:16665774

  20. Essential fatty acid intake and serum fatty acid composition among adolescent girls in central Mozambique.

    PubMed

    Freese, Riitta; Korkalo, Liisa; Vessby, Bengt; Tengblad, Siv; Vaara, Elina M; Hauta-alus, Helena; Selvester, Kerry; Mutanen, Marja

    2015-04-14

    Many African diets are low in fat but are currently changing because of nutrition transition. We studied fat and fatty acid (FA) intake and the essential fatty acid (EFA) status of adolescent girls (aged 14-19 years, n 262) in Zambezia Province, central Mozambique. A cross-sectional study was carried out in a city as well as in the towns and rural villages of a coastal and an inland district. Dietary intake and FA sources were studied in a 24 h dietary recall. FA compositions of cholesteryl esters and phospholipids of non-fasting serum samples were analysed by GLC. Fat intake was low (13-18 % of energy) in all areas. Coconut and palm oil were the main sources of fat, and soyabean oil and maize were the main sources of PUFA. Compared to Food and Agriculture Organization/WHO 2010 recommendations, intake of linoleic acid (LA, 18 : 2n-6) was inadequate in the coastal district, and intakes of n-3 PUFA were inadequate in all areas. FA compositions of serum lipids differed between areas. The proportions of LA tended to be highest in the city and lowest in the rural areas. The phospholipid mead (20 : 3n-9):arachidonic acid (20 : 4n-6) ratio did not indicate EFA insufficiency. LA proportions in phospholipids were low, but those of long-chain n-6 and n-3 PUFA were high in comparison with Western adolescents. To conclude, fat sources, FA intake and EFA status differed between adolescent girls living in different types of communities. Fat intake was low, but EFA insufficiency was not indicated.

  1. A new approach for the immobilization of poly(acrylic) acid as a chemically reactive cross-linker on the surface of poly(lactic) acid-based biomaterials.

    PubMed

    Stankevich, Ksenia S; Danilenko, Nadezhda V; Gadirov, Ruslan M; Goreninskii, Semen I; Tverdokhlebov, Sergei I; Filimonov, Victor D

    2017-02-01

    A new approach for the immobilization of poly(acrylic) acid (PAA) as a chemically reactive cross-linker on the surface of poly(lactic) acid-based (PLA) biomaterials is described. The proposed technique includes non-covalent attachment of a PAA layer to the surface of PLA-based biomaterial via biomaterial surface treatment with solvent/non-solvent mixture followed by the entrapment of PAA from its solution. Surface morphology and wettability of the obtained PLA-PAA composite materials were investigated by AFM and the sitting drop method respectively. The amount of the carboxyl groups on the composites surface was determined by using the fluorescent compounds (2-(5-aminobenzo[d]oxazol-2-yl)phenol (ABO) and its acyl derivative N-(2-(2-hydroxyphenyl)benzo[d]oxazol-5-yl)acetamide (AcABO)). It was shown that it is possible to obtain PLA-PAA composites with various surface relief and tunable wettability (57°, 62° and 66°). The capacity of the created PAA layer could be varied from 1.5nmol/cm(2) to 0.1μmol/cm(2) depending on the modification conditions. Additionally, using bovine serum albumin (BSA) it was demonstrated that such composites could be modified with proteins with high binding density (around 0.18nmol/cm(2)). Obtained fluoro-labeled PLA-PAA materials, as well as PLA-PAA composites themselves, are valuable since they can be used for biodegradable polymer implants tracking in living systems and as drug delivery systems.

  2. Trans fatty acids and fatty acid composition of mature breast milk in turkish women and their association with maternal diet's.

    PubMed

    Samur, Gülhan; Topcu, Ali; Turan, Semra

    2009-05-01

    The aim of this study was to determine the fatty acid composition and trans fatty acid and fatty acid contents of breast milk in Turkish women and to find the effect of breastfeeding mothers' diet on trans fatty acid and fatty acid composition. Mature milk samples obtained from 50 Turkish nursing women were analyzed. Total milk lipids extracts were transmethylated and analyzed by using gas liquid chromatography to determine fatty acids contents. A questionnaire was applied to observe eating habits and 3 days dietary records from mothers were obtained. Daily dietary intake of total energy and nutrients were estimated by using nutrient database. The mean total trans fatty acids contents was 2.13 +/- 1.03%. The major sources of trans fatty acids in mothers' diets were margarines-butter (37.0%), bakery products and confectionery (29.6%). Mothers who had high level of trans isomers in their milk consumed significantly higher amounts of these products. Saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty acids of human milk constituted 40.7 +/- 4.7%, 26.9 +/- 4.2% and 30.8 +/- 0.6% of the total fatty acids, respectively. The levels of fatty acids in human milk may reflect the current diet of the mother as well as the diet consumed early in pregnancy. Margarines, bakery products and confectionery are a major source of trans fatty acids in maternal diet in Turkey.

  3. In situ formation and gelation mechanism of thermoresponsive stereocomplexed hydrogels upon mixing diblock and triblock poly(lactic acid)/poly(ethylene glycol) copolymers.

    PubMed

    Mao, Hailiang; Pan, Pengju; Shan, Guorong; Bao, Yongzhong

    2015-05-28

    A novel in situ formed gel system with potential biodegradability and biocompatibility is developed by mixing the diblock and triblock poly(lactic acid)/poly(ethylene glycol) (PLA/PEG) copolymers with opposite configurations of PLA blocks. In situ gelation of such system is extremely fast, which happens within 10 s after mixing. In situ gelation, gel-to-sol transition, crystalline structure, microstructures, and mechanical properties of PLA-PEG/PLA-PEG-PLA enantiomerically mixed gels are significantly influenced by the mixing ratio, degree of polymerization for PEG block in triblock (DPPEG,tri) and diblock copolymers (DPPEG,di). It is found that in situ gelation of PLA-PEG/PLA-PEG-PLA enantiomeric mixture just happen at relatively smaller PLA-PEG/PLA-PEG-PLA mass ratio and larger DPPEG,tri. Hydrodynamic diameters of PLA-PEG and PLA-PEG-PLA copolymers in dilute solution increase remarkably upon mixing, indicating the formation of bridging networks. Stereocomplexed crystallites are formed for the PLA hydrophobic domains in PLA-PEG/PLA-PEG-PLA enantiomeric mixtures. As indicated by synchrotron-radiation SAXS analysis, the enantiomeric mixture changes from a compactly to loosely aggregated structure and the intermicellar distance enhances with increasing DPPEG,tri, DPPEG,di, or PLA-PEG-PLA fraction. Gelation mechanism of PLA-PEG/PLA-PEG-PLA enantiomeric mixture is proposed, in which part of PLA-PEG-PLA chains act as the connecting bridges between star and flower-like micelles and the stereocomplexed crystallites in micelle cores act as physically cross-linked points.

  4. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites.

    PubMed

    Fortunati, E; Peltzer, M; Armentano, I; Torre, L; Jiménez, A; Kenny, J M

    2012-10-01

    The aim of this paper is to report the impact of the addition of cellulose nanocrystals on the barrier properties and on the migration behaviour of poly(lactic acid), PLA, based nano-biocomposites prepared by the solvent casting method. Their microstructure, crystallinity, barrier and overall migration properties were investigated. Pristine (CNC) and surfactant-modified cellulose nanocrystals (s-CNC) were used, and the effect of the cellulose modification and content in the nano-biocomposites was investigated. The presence of surfactant on the nanocrystal surface favours the dispersion of CNC in the PLA matrix. Electron microscopy analysis shows the good dispersion of s-CNC in the nanoscale with well-defined single crystals indicating that the surfactant allowed a better interaction between the cellulose structures and the PLA matrix. Reductions of 34% in water permeability were obtained for the cast films containing 1 wt.% of s-CNC while good oxygen barrier properties were detected for nano-biocomposites with both 1 wt.% and 5 wt.% of modified and un-modified cellulose nanocrystals, underlining the improvement provided by cellulose on the PLA films. Moreover, the migration level of the studied nano-biocomposites was below the overall migration limits required by the current normative for food packaging materials in both non-polar and polar simulants.

  5. Comportement en fatigue et influence de la temperature sur les proprietes en traction du PLA

    NASA Astrophysics Data System (ADS)

    Menard, Claire

    Current environmental issues reduce the use of materials obtained from fossil resources. The usual plastics therefore tend to be replaced by more green polymers such as polylactic acid (PLA), a bio-based and biodegradable polymer. Knowledge on the properties of this material is essential, especially in terms of fatigue strength and influence of temperature on tensile stiffness and strength. In this study, the PLA samples are submitted to monotonic tensile tests, according to ASTM D638-10, at various temperatures between room temperature (23°C) and the glass transition temperature of the material (55-60°C). The results show a decrease of 30% of the modulus of elasticity and 60% of the tensile strength between these two temperatures. This decrease is mainly due to a significant drop in the mechanical properties beyond 50°C. In addition, tensile fatigue tests were conducted at loads rate between 40 and 80% of tensile strength, at room temperature in order to plot the Wohler curve of PLA. The ruptured specimens were finally observed with a scanning electron microscope (SEM) to analyze the failure mechanisms in fatigue of PLA.

  6. Electrospun fibers of PLA/P3HT blends for device and sensor applications

    NASA Astrophysics Data System (ADS)

    Serrano, William; Pinto, Nicholas

    2013-03-01

    The thermoplastic aliphatic polyester, poly (lactic acid) (PLA) is a biodegradable polymer that is sometimes used in implant screws for bone repair. Our focus was to fabricate fibers of this polymer and its blends with p-doped poly (3-hexylthiophene)-(P3HT) in order to extend its use to devices and/or sensors. PLA/P3HT fibers were prepared in air at room temperature using the electrospinning technique that is cheap, fast and reliable. Scanning Electron Microscope images of the fibers reveal that the presence of P3HT does not affect the fabrication of PLA fibers at low or high polymer concentrations in chloroform, retaining the same morphological structure of pure PLA fibers. The fiber diameters were in the range 1-10 microns. A slight increase in fiber formation results with the addition of P3HT, most likely due to a reduction of the solution surface tension. Results of the electrical characterization of this material will be presented. DoD and NSF

  7. Correlation between crystallization behaviour and interfacial interactions in plasticized PLA/POSS nanocomposites

    NASA Astrophysics Data System (ADS)

    Kodal, Mehmet; Şirin, Hümeyra; Özkoç, Güralp

    2016-03-01

    In this study, the correlation between crystallization behavior and surface chemistry of polyhedral oligomeric silsesquioxanes (POSS) for plasticized poly(lactic acid) (PLA)/POSS nanocomposites was investigated. Four different kinds of POSS particles having different chemical structures were used. Poly(ethylene glycol) (PEG, 8000 g/mol) was utilized as the plasticiser. The nanocomposites were melt-compounded in an Xplore Instruments 15 cc twin screw microcompounder at 180°C barrel temperature and 100 rpm screw speed. Non-isothermal crystallization behaviour of PLA/PEG/POSS nanocomposites were evaluated from common kinetic models such as Avrami and Avrami-Ozawa and Kissinger by using the thermal data obtained from differantial scanning calorimetry (DSC). A polarized optical microscope (POM) equipped with a hot-stage was used to examine the morphology during the crystal growth. In order to investigate the interfacial interactions between POSS particles and plasticized PLA, thermodynamic work of adhesion approach was adopted using the experimentally determined surface energies. A strong correlation was obtained between interfacial chemistry and the nucleation rate in plasticized PLA/POSS nanocomposites. It was found that the polar interactions were the dominating factor which determines the nucleation activity of the POSS particles.

  8. Bp-13 PLA2: Purification and Neuromuscular Activity of a New Asp49 Toxin Isolated from Bothrops pauloensis Snake Venom

    PubMed Central

    Sucasaca-Monzón, Georgina; Randazzo-Moura, Priscila; Rocha, Thalita; Vilca-Quispe, Augusto; Ponce-Soto, Luis Alberto; Marangoni, Sérgio; da Cruz-Höfling, Maria Alice; Rodrigues-Simioni, Léa

    2015-01-01

    A new PLA2 (Bp-13) was purified from Bothrops pauloensis snake venom after a single chromatographic step of RP-HPLC on μ-Bondapak C-18. Amino acid analysis showed a high content of hydrophobic and basic amino acids and 14 half-cysteine residues. The N-terminal sequence showed a high degree of homology with basic Asp49 PLA2 myotoxins from other Bothrops venoms. Bp-13 showed allosteric enzymatic behavior and maximal activity at pH 8.1, 36°–45°C. Full Bp-13 PLA2 activity required Ca2+; its PLA2 activity was inhibited by Mg2+, Mn2+, Sr2+, and Cd2+ in the presence and absence of 1 mM Ca2+. In the mouse phrenic nerve-diaphragm (PND) preparation, the time for 50% paralysis was concentration-dependent (P < 0.05). Both the replacement of Ca2+ by Sr2+ and temperature lowering (24°C) inhibited the Bp-13 PLA2-induced twitch-tension blockade. Bp-13 PLA2 inhibited the contractile response to direct electrical stimulation in curarized mouse PND preparation corroborating its contracture effect. In biventer cervicis preparations, Bp-13 induced irreversible twitch-tension blockade and the KCl evoked contracture was partially, but significantly, inhibited (P > 0.05). The main effect of this new Asp49 PLA2 of Bothrops pauloensis venom is on muscle fiber sarcolemma, with avian preparation being less responsive than rodent preparation. The study enhances biochemical and pharmacological characterization of B. pauloensis venom. PMID:25789175

  9. Chitosan/PLA nanoparticles as a novel carrier for the delivery of anthraquinone: synthesis, characterization and in vitro cytotoxicity evaluation.

    PubMed

    Jeevitha, D; Amarnath, Kanchana

    2013-01-01

    Designing novel materials for biomedical applications generally require the use of biodegradable materials. This study aims to engineer a biodegradable [chitosan (CS) and poly (lactic acid) (PLA)] as AQ carrier with nanometer dimensions and to evaluate the anticancer potency of the prepared CS/PLA-AQ NPs in human carcinoma (HepG2) cells. CS-PLA complex, which are well dispersed and stable in aqueous solution, was prepared by the precipitation of lactic acid in chitosan solution by dropping method and characterized by SEM, TEM, DLS and FTIR. The results thus displayed that the prepared nanoparticles carried a positive charge and showed the size in the range from 100 to 200 nm. The in vitro (AQ) release study showed that these nanoparticles provided a continuous release of the entrapped AQ for 10 days, and the release behavior was influenced by the pH value of the medium thereby making feasible to develop CS-PLA for enhanced and sustained release of AQ. MTT assay revealed higher cytotoxic efficacy of CS/PLA-AQ NPs than Free AQ in HepG2 cells. Further, the mitochondrial membrane damage indicated by loss of mitochondrial membrane potential and necrotic cell death could be attributed to the increased reactive oxygen species production. Our results also suggest that upon CS/PLA-AQ NPs exposure the cell viability decreased due to apoptosis, as demonstrated by the formation of apoptotic bodies, sub-G1 hypodiploid cells, and DNA fragmentation. Henceforth, CS/PLA-AQ NPs demonstrated a strong antitumor activity in vitro by reducing cell viability, inducing cell necrosis, decreasing the negative surface charge and mitochondrial membrane potential, and fragmenting DNA.

  10. Photo-initiated grafting of gelatin/N-maleic acyl-chitosan to enhance endothelial cell adhesion, proliferation and function on PLA surface.

    PubMed

    Zhu, Aiping; Zhao, Feng; Ma, Teng

    2009-07-01

    Vascular graft surface properties significantly affect adhesion, growth and function of endothelial cells (ECs). The bulk degradation property of poly(lactic acid) (PLA) makes it possible for it to be replaced by cellular materials and PLA is desirable as a scaffold material for vascular grafts. However, PLA has an unfavorable surface property for EC adhesion and proliferation due to the lack of a selective cell adhesion motif. Photo-initiated surface-grafting polymerization is a promising method for immobilizing certain biomacromolecules on material surfaces without compromising bulk properties. N-Maleic acyl-chitosan (NMCS) is a novel biocompatible amphiphilic derivative of chitosan with double bonds and can be initiated by ultraviolet light. In this study, gelatin was complexed with NMCS via hydrophobic interaction, and gel/NMCS complex thus formed was then grafted on the PLA surface to improve EC biocompatibility. X-ray photoelectron and Fourier transform infrared spectroscopy, and water contact angle measurement confirmed immobilization of the gel/NMCS complex on PLA surface. Moreover, the gel/NMCS modified PLA enhanced human umbilical vein endothelial cell (HUVEC) spreading and flattening, and promoted the expression of more structured CD31 and vWF compared to unmodified PLA film. Compared to the unmodified PLA surface, the HUVECs on the modified PLA surface had elevated uptake of acetylated low-density lipoprotein, and maintained the ability to modulate metabolic activity upon exposure to shear stress at 5dyncm(-2) by up-regulating nitric oxide and prostacyclin production. Cell retention was 1.6 times higher on the gel/NMCS-PLA surface, demonstrating its improved potential for hemocompatibility. These results indicate that photo-initiated surface-grafting of the biomimetic gel/NMCS complex is an effective method to modify material surfaces as vascular grafts.

  11. 3D-printed scaffolds based on PLA/HA nanocomposites for trabecular bone reconstruction

    NASA Astrophysics Data System (ADS)

    Niaza, K. V.; Senatov, F. S.; Kaloshkin, S. D.; Maksimkin, A. V.; Chukov, D. I.

    2016-08-01

    In the present work porous PLA scaffolds filled with micro- and nano- HA were studied. Both composites with micro- and nano-HA were obtained by extrusion in the same conditions. Scaffolds were obtained by 3D-printing by fused filament fabrication method. Structure of porous scaffolds was pre-modeled by computer software. Compression and three - point flexural tests were used to study mechanical properties of the scaffolds.

  12. Distribution and enantiomeric composition of amino acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Engel, M. H.; Nagy, B.

    1982-01-01

    Studies of the amino acid contents and enantiomeric compositions of a single stone from the Murchison meteorite are reported. Water-extracted and 6M HCl-extracted samples from the meteorite interior of meteorite fragments were analyzed by gas chromatography and combined gas chromatography-chemical ionization mass spectrometry. Examination of the D/L ratios of glutamic acid, aspartic acid, proline, leucine and alanine reveals those amino acids extractable by water to be partially racemized, whereas the acid-extracted amino acids were less racemized. The amino acid composition of the stone is similar to those previously reported, including the absence of serine, threonine, tyrosine phenylalanine and methionine and the presence of unusual amino acids including such as isovaline, alpha-aminoisobutyric acid and pseudoleucine. It is concluded that the most likely mechanism accounting for the occurrence of nonracemic amino acid mixtures in the Murchison meteorite is by extraterrestrial stereoselective synthesis or decomposition reactions.

  13. Obesogenic diets enriched in oleic acid vs saturated fatty acids differentially modify polyunsaturated fatty acid composition in liver and visceral adipose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence indicates that the fatty acid composition of obesogenic diets impacts physiologic outcomes. Much attention is focused on the biologic effects of consuming monounsaturated fatty acids (MUFA) vs saturated fatty acids (SFA). We investigated the extent to which an obesogenic diet high ...

  14. Enhanced Osteoblast Functions on Nanophase Titania in Poly-lactic-co-glycolic Acid (PLGA) Composites

    DTIC Science & Technology

    2005-01-01

    Poly - lactic -co-glycolic Acid (PLGA) Composites Huinan Liu’, Elliott B. Slamovich’ and Thomas J. Webster’ 2 1School of Materials Engineering, 501...collagen matrix. For this purpose, poly - lactic -co- glycolic acid (PLGA) was dissolved in chloroform and nanometer grain size titania was dispersed by...gelatin, fibrin or collagen [4-6]), synthetic bioresorbable polymers (e.g., polylactic acid , polyglycolic acid and poly - lactic -co-glycolic acid [7-9

  15. Modulation, functionality, and cytocompatibility of three-dimensional printing materials made from chitosan-based polysaccharide composites.

    PubMed

    Wu, Chin-San

    2016-12-01

    The mechanical properties, cytocompatibility, and fabrication of three-dimensional (3D) printing strips of composite materials containing polylactide (PLA) and chitosan (CS) were evaluated. Maleic anhydride-grafted polylactide (PLA-g-MA) and CS were used to enhance the desired characteristics of these composites. The PLA-g-MA/CS materials exhibited better mechanical properties than the PLA/CS composites; this effect was attributed to a greater compatibility between the grafted polyester and CS. The water resistance of the PLA-g-MA/CS composites was greater than that of the PLA/CS composites; cytocompatibility evaluation with human foreskin fibroblasts (FBs) indicated that both materials were nontoxic. Moreover, CS enhanced the antibacterial activity properties of PLA-g-MA and PLA/CS composites.

  16. Ontogenetic trends in aspartic acid racemization and amino acid composition within modern and fossil shells of the bivalve Arctica

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.; Weidman, Christopher R.

    2001-06-01

    Ontogenetic trends (umbo to growth edge of shell) in aspartic acid (Asp) racemization and amino acid composition and their evolution over time are examined in serial samples of annual growth bands from a time-series of three live-collected and two fossil (ca. 500 and 1000 y BP) shells of the long-lived bivalve Arctica islandica. The rate of Asp racemization is shown to be higher in the umbonal portion of the shells (laid down when the clams are young) but constant from a biological age of 10 to 20 y to more than 100 y. Corresponding changes are also seen in amino acid composition and concentration: with increasing biological age of the clam: total amino acid concentration increases substantially, the acidic amino acids Asp, glutamic acid, and alanine decrease in relative concentration (mole-percent) and more basic amino acids including tyrosine, phenylalanine, and lysine increase in relative concentration. These ontogenetic trends are generally retained in the fossil shells. These trends may reflect changing protein composition related to changes in growth rate. Clams grow considerably faster in their youth than when they are older, as indicated by changes in the annual growth increments. Production of more acidic proteins, which play a role in crystal growth, may be favored during the phase of faster growth, whereas more structural proteins, perhaps enhancing structural strength of the shell, may be favored during later growth. These ontogenetic differences in protein composition affect the observed rates of racemization of the protein pool. Some weak diagenetic trends in amino acid composition and abundance may be represented in the time series of shells. These results emphasize the importance of standardization of the location from which samples are taken from shells for dating by amino acid racemization analysis.

  17. Surface Resistance of Jute Fibre/Polylactic Acid Biocomposite to Wet Heat

    NASA Astrophysics Data System (ADS)

    Zandvliet, Clio; Bandyopadhyay, N. R.; Ray, Dipa

    2016-04-01

    Jute fibre/polylactic acid (PLA) composite is of special interest because both resin and reinforcement come from renewable resources. Thus, it could be a more eco-friendly alternative to glass fibre composite [1] and to conventional wood-based panels made with phenol-formaldehyde resin which present many drawbacks for the workers and the environment [2]. Yet the water affinity of the natural fibres, the susceptibility of PLA towards hydrolysis and the low glass transition of the PLA raise a question about the surface resistance of such composites to wet heat in service condition for a furniture application [3]. In this work, the surface resistance of PLA/jute composite alone and with two different varnishes are investigated in regard to an interior application following the standard test method in accordance to BS EN 18721:2009: "Furniture: assessment of surface resistance to wet heat". It is compared to two common wood based panels, plywood and hardboard. After test, the composite material surface is found to be more affected than plywood and hardboard, but it becomes resistant to wet heat when a layer of biosourced varnish or petrol-based polyurethane varnish are applied on the surface.

  18. Butter composition and texture from cows with different milk fatty acid compositions fed fish oil or roasted soybeans.

    PubMed

    Bobe, G; Zimmerman, S; Hammond, E G; Freeman, A E; Porter, P A; Luhman, C M; Beitz, D C

    2007-06-01

    Changing the milk fatty acid composition can improve the nutritional and physical properties of dairy products and their acceptability to consumers. A more healthful milk fatty acid composition can be achieved by altering the cow's diet, for example, by feeding supplemental fish oil (FO) or roasted soybeans (RSB), or by selecting cows with a more unsaturated milk fatty acid composition. We examined whether feeding supplemental FO or RSB to cows that had a more unsaturated milk fatty acid composition acted additively to produce butter with improved fatty acid composition and texture. Using a 3 x 3 Latin square design with 2 replications, we fed diets to multiparous Holstein cows (60 to 200 DIM) chosen for producing either more or less unsaturated milk fatty acid composition (n = 6 for each group) for three 3-wk periods. The control diet contained 3.7% crude fat and the 2 experimental diets contained, on a dry matter basis, 0.8% of additional lipids in the form of 0.9% of FO or 5% of RSB. The milk, collected in the third week of feeding, was used to make butter, which was analyzed for its fatty acid composition and physical properties. Dry matter intake, milk yield, and milk composition were not significantly affected by cow diet or by cow selection. Cows that produced a more unsaturated and healthful milk fat prior to the feeding study, according to a "health-promoting index" [HPI = (sum of % of unsaturated fatty acids)/ (%12:0 + 4 x %14:0 + %16:0)], maintained a higher HPI in their butter during the feeding study than did cows with a low HPI. Milk from cows fed supplemental FO or RSB yielded more unsaturated butters with a higher HPI. This butter also was softer when the cows were fed RSB. Feeding RSB to cows chosen for their high milk HPI yielded the most unsaturated butter with the highest HPI and softest texture. Thus, selecting cows with a more health-promoting milk fatty acid composition and feeding supplemental RSB can be used in combination to produce butter

  19. Amino acid composition of human milk is not unique.

    PubMed

    Davis, T A; Nguyen, H V; Garcia-Bravo, R; Fiorotto, M L; Jackson, E M; Lewis, D S; Lee, D R; Reeds, P J

    1994-07-01

    To determine whether the amino acid pattern of human milk is unique, we compared the amino acid pattern of human milk with the amino acid patterns of the milks of great apes (chimpanzee and gorilla), lower primates (baboon and rhesus monkey) and nonprimates (cow, goat, sheep, llama, pig, horse, elephant, cat and rat). Amino acid pattern was defined as the relative proportion of each amino acid (protein-bound plus free) (in mg) to the total amino acids (in g). Total amino acid concentration was lower in primate milk than in nonprimate milk. There were commonalities in the overall amino acid pattern of the milks of all species sampled; the most abundant amino acids were glutamate (plus glutamine, 20%), proline (10%) and leucine (10%). Essential amino acids were 40%, branched-chain amino acids 20%, and sulfur amino acids 4% of the total amino acids. The amino acid pattern of human milk was more similar to those of great apes than to those of lower primates. For example, cystine was higher and methionine was lower in primate milks than in nonprimate milks, and in great ape and human milks than in lower primate milks. Because the milk amino acid patterns of the human and elephant, both slow-growing species, were dissimilar, the amino acid pattern of human milk seems unrelated to growth rate.

  20. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, C.A.; Mackay, H.A.

    1985-07-18

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  1. Hydrofluoric acid-resistant composite window and method for its fabrication

    DOEpatents

    Ostenak, Carl A.; Mackay, Harold A.

    1987-01-01

    A hydrofluoric acid-resistant composite window and method for its fabrication are disclosed. The composite window comprises a window having first and second sides. The first side is oriented towards an environment containing hydrofluoric acid. An adhesive is applied to the first side. A layer of transparent hydrofluoric acid-resistant material, such as Mylar, is applied to the adhesive and completely covers the first side. The adhesive is then cured.

  2. Mice deficient in Group VIB phospholipase A2 (iPLA2γ) exhibit relative resistance to obesity and metabolic abnormalities induced by a Western diet

    PubMed Central

    Song, Haowei; Wohltmann, Mary; Bao, Shunzhong; Ladenson, Jack H.; Semenkovich, Clay F.

    2010-01-01

    Phospholipases A2 (PLA2) play important roles in metabolic processes, and the Group VI PLA2 family is comprised of intracellular enzymes that do not require Ca2+ for catalysis. Mice deficient in Group VIA PLA2 (iPLA2β) develop more severe glucose intolerance than wild-type (WT) mice in response to dietary stress. Group VIB PLA2 (iPLA2γ) is a related enzyme distributed in membranous organelles, including mitochondria, and iPLA2γ knockout (KO) mice exhibit altered mitochondrial morphology and function. We have compared metabolic responses of iPLA2γ-KO and WT mice fed a Western diet (WD) with a high fat content. We find that KO mice are resistant to WD-induced increases in body weight and adiposity and in blood levels of cholesterol, glucose, and insulin, even though WT and KO mice exhibit similar food consumption and dietary fat digestion and absorption. KO mice are also relatively resistant to WD-induced insulin resistance, glucose intolerance, and altered patterns of fat vs. carbohydrate fuel utilization. KO skeletal muscle exhibits impaired mitochondrial β-oxidation of fatty acids, as reflected by accumulation of larger amounts of long-chain acylcarnitine (LCAC) species in KO muscle and liver compared with WT in response to WD feeding. This is associated with increased urinary excretion of LCAC and much reduced deposition of triacylglycerols in liver by WD-fed KO compared with WT mice. The iPLA2γ-deficient genotype thus results in a phenotype characterized by impaired mitochondrial oxidation of fatty acids and relative resistance to the metabolic abnormalities induced by WD. PMID:20179248

  3. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    PubMed

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD.

  4. Amino Acids Composition of Teucrium Nutlet Proteins and their Systematic Significance

    PubMed Central

    JUAN, R.; PASTOR, J.; MILLÁN, F.; ALAIZ, M.; VIOQUE, J.

    2004-01-01

    • Background and Aims Plant species are considered as a good source of dietary proteins, although the nutritional quality of proteins depends on their amino acid composition. In this work the protein content and amino acid composition of nutlets of 21 Teucrium taxa (Lamiaceae) from Spain were analysed and their nutritional quality was compared with the minimum values established by the Food and Agriculture Organization of the United Nations (FAO). In addition, the amino acid composition was evaluated as a chemical character to clarify the taxonomic complexity in this genus. • Methods Amino acid content of nutlets was determined after derivatization with diethyl ethoxymethylenemalonate by high-performance liquid chromatography. Previously, nutlets samples were hydrolysed and incubated in an oven at 110 °C for 24 h. • Key Results The protein content was variable, ranging from 6·4 % in T. dunense to 43·8 % in T. algarbiense. According to the FAO values all taxa contain satisfactory amounts of leucine, threonine and valine and are deficient in lysine. The similarity analysis of Teucrium taxa using amino acid composition data did not clearly reflect the infrageneric classification of this genus. • Conclusions Annual species, such as T. spinosum, T. aristatum and T. resupinatum showed a better balanced amino acid composition. The dendrogram partly matched with the karyological complexity of Teucrium. No correlation between amino acid composition and habitat has been observed, showing that Teucrium nutlet amino acid composition may not be strongly influenced by the environment. PMID:15329333

  5. Biocompatibility and bone-repairing effects: comparison between porous poly-lactic-co-glycolic acid and nano-hydroxyapatite/poly(lactic acid) scaffolds.

    PubMed

    Zong, Chen; Qian, Xiaodan; Tang, Zihua; Hu, Qinghong; Chen, Jiarong; Gao, Changyou; Tang, Ruikang; Tong, Xiangmin; Wang, Jinfu

    2014-06-01

    Copolymer composite scaffolds and bioceramic/polymer composite scaffolds are two representative forms of composite scaffolds used for bone tissue engineering. Studies to compare biocompatibility and bone-repairing effects between these two scaffolds are significant for selecting or improving the scaffold for clinical application. We prepared two porous scaffolds comprising poly-lactic-acid/poly-glycolic-acid (PLGA) and poly-lactic-acid/nano-hydroxyapatite (nHAP/PLA) respectively, and examined their biocompatibility with human bone marrow-derived mesenchymal stem cells (hMSCs) through evaluating adhesion, proliferation and osteogenic differentiation potentials of hMSCs in the scaffold. Then, the PLGA scaffold with hMSCs (PM construct) and the nHAP/PLA scaffold with hMSCs (HPM construct) were transplanted into the rat calvarial defect areas to compare their effects on the bone reconstruction. The results showed that the nHAP/PLA scaffold was in favor of adhesion, matrix deposition and osteogenic differentiation of hMSCs. For in vivo transplantation, both HPM and PM constructs led to mineralization and osteogenesis in the defect area of rat. However, the area grafted with PM construct showed a better formation of mature bone than that with HPM construct. In addition, the evaluation of in vitro and in vivo degradation indicated that the degradation rate of nHAP/PLA scaffold was much lower than that of PLGA scaffold. It is inferred that the lower degradation of nHAP/PLA scaffold should result in its inferior bone reconstruction in rat calvaria. Therefore, the preparation of an ideal composite scaffold for bone tissue engineering should be taken into account of the balance between its biocompatibility, degradation rate, osteoconductivity and mechanical property.

  6. Fatty acids composition of Spanish black (Morus nigra L.) and white (Morus alba L.) mulberries.

    PubMed

    Sánchez-Salcedo, Eva M; Sendra, Esther; Carbonell-Barrachina, Ángel A; Martínez, Juan José; Hernández, Francisca

    2016-01-01

    This research has determined qualitatively and quantitatively the fatty acids composition of white (Morus alba) and black (Morus nigra) fruits grown in Spain, in 2013 and 2014. Four clones of each species were studied. Fourteen fatty acids were identified and quantified in mulberry fruits. The most abundant fatty acids were linoleic (C18:2), palmitic (C16:0), oleic (C18:1), and stearic (C18:0) acids in both species. The main fatty acid in all clones was linoleic (C18:2), that ranged from 69.66% (MN2) to 78.02% (MA1) of the total fatty acid content; consequently Spanish mulberry fruits were found to be rich in linoleic acid, which is an essential fatty acid. The fatty acid composition of mulberries highlights the nutritional and health benefits of their consumption.

  7. GLC analysis of Indian rapeseed-mustard to study the variability of fatty acid composition.

    PubMed

    Kaushik, N; Agnihotri, A

    2000-12-01

    Rapeseed-mustard is one of the most economically important oilseed crops in India. Speciality oils having high amounts of a specific fatty acid are of immense importance for both nutritional and industrial purposes. Oil high in oleic acid has demand in commercial food-service applications due to a long shelf-life and cholesterol-reducing properties. Both linoleic and linolenic acids are essential fatty acids; however, less than 3% linolenic acid is preferred for oil stability. High erucic acid content is beneficial for the polymer industry, whereas low erucic acid is recommended for food purposes. Therefore, it is important to undertake systematic characterization of the available gene pool for its variable fatty acid profile to be utilized for specific purposes. In the present study the Indian rapeseed-mustard germplasm and some newly developed low-erucic-acid strains were analysed by GLC to study the fatty acid composition in these lines. The GLC analysis revealed that the rapeseed-mustard varieties being commonly grown in India are characterized by high erucic acid content (30-51%) in the oil with low levels of oleic acid (13-23%). However, from among the recently developed low-erucic-acid strains, several lines were identified with comparatively high oleic acid (60-70%), moderate to high linoleic acid (13-40%) and low linolenic acid (< 10%) contents. Work is in progress at TERI (New Delhi, India) to utilize these lines for development of strains with particular fatty acid compositions for specific purposes.

  8. Fatty acids from seeds of Pinus pinea L.: composition and population profiling.

    PubMed

    Nasri, Nizar; Khaldi, Abdelhamid; Fady, Bruno; Triki, Saida

    2005-07-01

    Pinus pinea L. is widely disseminated all over the Mediterranean Basin. Qualitatively, P. pinea fatty acid seed composition is identical and typical of the genus Pinus. This composition is made of unsaturated oil with several unusual polymethylene-interrupted unsaturated fatty acids. Linoleic acid is the major fatty acid followed by oleic, palmitic and stearic acids. Quantitatively, for all Mediterranean populations, total amounts of fatty acids seem to be fairly constant and independent from their origin. When applying principal component analysis, it seems that there is not a distinct geographical variability. Tunisian populations appear to be integral part of the Mediterranean populations without any particular structuring. Taking into account this research and the data reported in the literature, we can confirm that P. pinea expresses no significant variability. This low genetic diversity revealed by fatty acid composition can be explained by anthropogenetic diffusion of genetically homogeneous reproductive material as early as the first explorations.

  9. Fatty Acid Composition of Unicellular Strains of Blue-Green Algae1

    PubMed Central

    Kenyon, C. N.

    1972-01-01

    The fatty acids of 34 strains of unicellular blue-green algae provisionally assigned to the genera Synechococcus, Aphanocapsa, Gloeocapsa, Microcystis, and Chlorogloea by Stanier et al. have been chemically characterized. The strains analyzed can be divided into a series of compositional groups based upon the highest degree of unsaturation of the major cellular fatty acids. Twenty strains fall into the group characterized by one trienoic fatty acid isomer (α-linolenic acid), and seven strains fall into a group characterized by another trienoic acid isomer (γ-linolenic acid). These groups in many cases correlate well with groupings based upon other phenotypic characters of the strains, e.g., deoxyribonucleic acid base composition. The assignment of a strain to a compositional group is not altered when the strain is grown under a variety of different culture conditions. All strains contain glycolipids with the properties of mono- and digalactosyldiglycerides. PMID:4621688

  10. Gender Differences in Rat Erythrocyte and Brain Docosahexaenoic Acid Composition: Role of Ovarian Hormones and Dietary Omega-3 Fatty Acid Composition

    PubMed Central

    McNamara, Robert K.; Able, Jessica; Jandacek, Ronald; Rider, Therese; Tso, Patrick

    2009-01-01

    The two-fold higher prevalence rate of major depression in females may involve vulnerability to omega-3 fatty acid deficiency secondary to a dysregulation in ovarian hormones. However, the role of ovarian hormones in the regulation of brain omega-3 fatty acid composition has not been directly evaluated. Here we determined erythrocyte and regional brain docosahexaenoic acid (DHA, 22:6n-3) composition in intact male and female rats, and in chronically ovariectomized (OVX) rats with or without cyclic estradiol treatment (2 μg/4 d). All groups were maintained on diets with or without the DHA precursor alpha-linolenic acid (ALA, 18:3n-3). We report that both male (−21%) and OVX (−19%) rats on ALA+ diet exhibited significantly lower erythrocyte DHA composition relative to female controls. Females on ALA+ diet exhibited lower DHA composition in the prefrontal cortex (PFC) relative males (−5%). OVX rats on ALA+ diet exhibited significantly lower DHA composition in the hippocampus (−6%), but not in the PFC, hypothalamus, or midbrain. Lower erythrocyte and hippocampus DHA composition in OVX rats was not prevented by estrogen replacement. All groups maintained on ALA− diet exhibited significantly lower erythrocyte and regional brain DHA composition relative to groups on ALA+ diet, and these reductions were greater in males but not in OVX rats. These preclinical data corroborate clinical evidence for gender differences in peripheral DHA composition (female>male), demonstrate gender differences in PFC DHA composition (male>female), and support a link between ovarian hormones and erythrocyte and region-specific brain DHA composition. PMID:19046819

  11. Resolution and quantification of isomeric fatty acids by silver ion HPLC: fatty acid composition of aniseed oil (Pimpinella anisum, Apiaceae).

    PubMed

    Denev, Roumen V; Kuzmanova, Ivalina S; Momchilova, Svetlana M; Nikolova-Damyanova, Boryana M

    2011-01-01

    A silver ion HPLC procedure is described that is suitable to determine the fatty acid composition of plant seed oils. After conversion of fatty acids to p-methoxyphenacyl derivatives, it was possible to achieve baseline resolution of all fatty acid components with 0 to 3 double bonds, including the positionally isomeric 18:1 fatty acids oleic acid (cis 9-18:1), petroselinic acid (cis 6-18:1), and cis-vaccenic acid (cis 11-18:1), in aniseed oil (Pimpinella anisum, Apiaceae) by a single gradient run on a single cation exchange column laboratory converted to the silver ion form. The UV detector response (280 nm) was linearly related to the fatty acid concentration in the range 0.01 to 3.5 mg/mL.

  12. Fatty acid composition including cis-9, trans-11 CLA of cooked ground lamb

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Little information is available on effect of cooking on beneficial fatty acids such as conjugated linoleic acid (CLA) and n-3 polyunsaturated fatty acids (PUFA). The objective of this study was to examine impact of cooking on the FA composition of ground lamb of two different muscles. Samples were p...

  13. The fatty acid, amino acid, and mineral composition of Egyptian goose meat as affected by season, gender, and portion.

    PubMed

    Geldenhuys, Greta; Hoffman, Louwrens C; Muller, Nina

    2015-05-01

    With the current absence of scientific information on the nutritive aspects it is essential to investigate the fatty acid, mineral, and amino acid composition of Egyptian geese as well as the factors of influence. The forage vs. grain based diets of Egyptian geese during certain periods of the yr leads to variation in the content of the key fatty acids such as oleic acid, linoleic acid, and α-linolenic acid. The differences in these fatty acids results in variation between the n-6/n-3 ratios of the seasons; the portions from winter (July) are within the recommendations (ratio <5) and those from summer (November) not. This study indicates that Egyptian goose meat does not only vary in nutritional composition but season may also have a substantial effect on the flavor profile and ultimate uniformity of the meat. The season and portion effects were, however, interlinked but the general tendency shows that the portions, especially the breast and thigh do differ concerning the major fatty acids. No substantial differences were found in the mineral composition of the breast portion on account of season and gender; however there were some variation in certain amino acids such as lysine and arginine due to season/diet. This research provides essential information that should be considered not only regarding the everyday consumption of Egyptian goose meat but the potential utilization and ultimate consistency of this meat product.

  14. Fatty acid composition of the red blood cell membrane in relation to menopausal status.

    PubMed

    Tworek; Muti; Micheli; Krogh; Riboli; Berrino

    2000-10-01

    PURPOSE: Menopausal status effects female anatomical functioning at a variety of system-wide and cellular levels, including cellular membrane composition. This study analyzed a nested case-control ORDET data set of 433 pre and post-menopausal breast cancer controls to examine the effects of menopausal status on the fatty acid composition of the red blood cell membrane.METHODS: ORDET is a prospective cohort study conducted in Italy to investigate the etiologic role of hormones and diet in breast cancer development. The fatty acid composition was measured and analyzed by gas chromotography, comparing retention time with standard measurement. Twenty-two individual fatty acids were measured, recorded, and categorized into four fatty acid groups: saturated, monounsaturated, polyunsaturated n-6 (PUFA n-6), and polyunsaturated (PUFA n-3) fatty acids.RESULTS: Post-menopausal women had consistently lower mean values for all four fatty acid categories and all individual fatty acids. Statistically significant mean differences, by menopausal status, were observed for three of the four fatty acid categories: saturated fatty acids (p = 0.006), PUFA n-6 acids (p = 0.001), and PUFA n-3 acids (p = 0.000). The biggest statistically significant differences in mean values among individual fatty acids for each category were observed for Palmitic acid (p = 0.009), Oleic acid (p = 0.040), Linoleic acid (p = 0.000), and Docosahexaenoic acid (p = 0.000). Individual fatty acids were also less highly correlated among post-menopausal women.CONCLUSIONS: There was an observed relationship between menopausal status and the fatty acid composition of the red blood cell membrane that warrants further study. This relationship may contribute to the physiological and psychological changes that occur during and after menopause, and may have far-reaching implications for women's health.

  15. Preparation of Polymeric Prodrug Paclitaxel-Poly(lactic acid)-b-Polyisobutylene and Its Application in Coatings of a Drug Eluting Stent.

    PubMed

    Ren, Kai; Zhang, Mingzu; He, Jinlin; Wu, Yixian; Ni, Peihong

    2015-06-03

    To develop a novel biodegradable and quite adhesive coating material for fabricating a paclitaxel (PTX)-containing eluting stent, herein, we report two kinds of drug eluting stent (DES) materials. One of them is a prodrug, PTX end-capped poly(lactic acid)-b-polyisobutylene (PTX-PLA-b-PIB) diblock copolymer, which possesses favorable biodegradability and biocompatibility. The other is a mixture of PIB-b-PLA diblock copolymer and PTX. PIB-b-PLA was synthesized via the ring-opening polymerization (ROP) using hydroxyl-terminated polyisobutylene (PIB-OH) as the initiator, while the PTX-PLA-b-PIB prodrug was prepared through a combination of ROP and Cu(I)-catalyzed azide-alkyne cycloaddition "click" reaction. The chemical structures and compositions as well as the molecular weights and molecular weight distributions of these copolymers have been fully characterized by (1)H nuclear magnetic resonance, Fourier transform infrared, and gel permeation chromatography measurements. The thermal degradation behavior and glass transition temperature (Tg) of the copolymers were studied by thermogravimetric analysis and differential scanning calorimetry, respectively. The solutions of PTX-PLA-b-PIB and the PIB-b-PLA/PTX mixture were separately coated onto the bare metal stents to form the PTX-containing DES. Subsequently, the surface structures and morphologies of the bare stent and DES were studied by atomic force microscopy and scanning electron microscopy, respectively. The in vitro release of PTX from these stents was conducted in a buffer medium (PBS 7.4) at 37 °C. The results showed that the coating formed by a blend of PTX-PLA-b-PIB, PIB-b-PLA, and PTX yielded a release that was better sustained than those of the individual PTX-PLA-b-PIB prodrug or PIB-b-PLA/PTX mixture. MTT assays demonstrated that the stent coated with PTX-PLA-b-PIB displayed a cytotoxicity lower than that of the PIB-b-PLA/PTX mixed layer, and the biocompatibility of coatings can be effectively improved by

  16. Serum Paraoxonase 1 Activity Is Associated with Fatty Acid Composition of High Density Lipoprotein

    PubMed Central

    Boshtam, Maryam; Pourfarzam, Morteza; Ani, Mohsen; Naderi, Gholam Ali; Basati, Gholam; Mansourian, Marjan; Dinani, Narges Jafari; Asgary, Seddigheh; Abdi, Soheila

    2013-01-01

    Introduction. Cardioprotective effect of high density lipoprotein (HDL) is, in part, dependent on its related enzyme, paraoxonase 1 (PON1). Fatty acid composition of HDL could affect its size and structure. On the other hand, PON1 activity is directly related to the structure of HDL. This study was designed to investigate the association between serum PON1 activity and fatty acid composition of HDL in healthy men. Methods. One hundred and forty healthy men participated in this research. HDL was separated by sequential ultracentrifugation, and its fatty acid composition was analyzed by gas chromatography. PON1 activity was measured spectrophotometrically using paraxon as substrate. Results. Serum PON1 activity was directly correlated with the amount of stearic acid and dihomo-gamma-linolenic acid (DGLA). PON1/HDL-C was directly correlated with the amount of miristic acid, stearic acid, and DGLA and was inversely correlated with total amount of ω6 fatty acids of HDL. Conclusion. The fatty acid composition of HDL could affect the activity of its associated enzyme, PON1. As dietary fats are the major determinants of serum lipids and lipoprotein composition, consuming some special dietary fatty acids may improve the activity of PON1 and thereby have beneficial effects on health. PMID:24167374

  17. Bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge.

    PubMed

    Kakimoto, Toshiaki; Kanemoto, Hideyuki; Fukushima, Kenjiro; Ohno, Koichi; Tsujimoto, Hajime

    2017-02-01

    OBJECTIVE To examine bile acid composition of gallbladder contents in dogs with gallbladder mucocele and biliary sludge. ANIMALS 18 dogs with gallbladder mucocele (GBM group), 8 dogs with immobile biliary sludge (i-BS group), 17 dogs with mobile biliary sludge (m-BS group), and 14 healthy dogs (control group). PROCEDURES Samples of gallbladder contents were obtained by use of percutaneous ultrasound-guided cholecystocentesis or during cholecystectomy or necropsy. Concentrations of 15 bile acids were determined by use of highperformance liquid chromatography, and a bile acid compositional ratio was calculated for each group. RESULTS Concentrations of most bile acids in the GBM group were significantly lower than those in the control and m-BS groups. Compositional ratio of taurodeoxycholic acid, which is 1 of 3 major bile acids in dogs, was significantly lower in the GBM and i-BS groups, compared with ratios for the control and m-BS groups. The compositional ratio of taurocholic acid was significantly higher and that of taurochenodeoxycholic acid significantly lower in the i-BS group than in the control group. CONCLUSIONS AND CLINICAL RELEVANCE In this study, concentrations and fractions of bile acids in gallbladder contents were significantly different in dogs with gallbladder mucocele or immobile biliary sludge, compared with results for healthy control dogs. Studies are needed to determine whether changes in bile acid composition are primary or secondary events of gallbladder abnormalities.

  18. Molecular modeling of the inhibition of enzyme PLA2 from snake venom by dipyrone and 1-phenyl-3-methyl-5-pyrazolone

    NASA Astrophysics Data System (ADS)

    Silva, S. L. Da; Comar, M., Jr.; Oliveira, K. M. T.; Chaar, J. S.; Bezerra, E. R. M.; Calgarotto, A. K.; Baldasso, P. A.; Veber, C. L.; Villar, J. A. F. P.; Oliveira, A. R. M.; Marangoni, S.

    Phospholipases A2 (PLA2) are enzymes that trigger the degradation cascade of the arachidonic acid, leading to the formation of pro-inflammatory eicosanoids. The selective inhibition of PLA2s is crucial in the search for a more efficient anti-inflammatory drug with fewer side effects than the drugs currently used. Hence, we studied the influences caused by two pyrazolonic inhibitors: dipyrone (DIP) and 1-phenyl-3-methyl-5-pyrazolone (PMP) on the kinetic behavior of PLA2 from Crotalus adamanteus venom. Molecular modeling results, by DFT and MM approaches, showed that DIP is strongly associated to the active site of PLA2 through three hydrogen bonds, whereas PMP is associated to the enzyme just through hydrophobic interactions. In addition, only PMP presents an intramolecular hydrogen bond that make difficult the formation of more efficient interactions with PLA2. These results help in the understanding of the experimental observations. Experimentally, the results showed that PLA2 from C. adamanteus present a typical Michaelian behavior. In addition, the calculated kinetic parameters showed that, in the presence of DIP or PMP, the maximum enzymatic velocity (VMAX) value was kept constant, whereas the Michaelis constant (KM) values increased and the inhibition constant (KI) decreased, indicating competitive inhibition. These results show that the phenyl-pyrazolonic structures might help in the development and design of new drugs able to selectively inhibit PLA2.

  19. Composition of amino acids in feed ingredients for animal diets.

    PubMed

    Li, Xilong; Rezaei, Reza; Li, Peng; Wu, Guoyao

    2011-04-01

    Dietary amino acids (AA) are crucial for animal growth, development, reproduction, lactation, and health. However, there is a scarcity of information regarding complete composition of "nutritionally nonessential AA" (NEAA; those AA which can be synthesized by animals) in diets. To provide a much-needed database, we quantified NEAA (including glutamate, glutamine, aspartate, and asparagine) in feed ingredients for comparison with "nutritionally essential AA" (EAA; those AA whose carbon skeletons cannot be formed by animals). Except for gelatin and feather meal, animal and plant ingredients contained high percentages of glutamate plus glutamine, branched-chain AA, and aspartate plus asparagine, which were 10-32, 15-25, and 8-14% of total protein, respectively. In particular, leucine and glutamine were most abundant in blood meal and casein (13% of total protein), respectively. Notably, gelatin, feather meal, fish meal, meat and bone meal, and poultry byproduct had high percentages of glycine, proline plus hydroxyproline, and arginine, which were 10-35, 9.6-35, and 7.2-7.9% of total protein, respectively. Among plant products, arginine was most abundant in peanut meal and cottonseed meal (14-16% of total protein), whereas corn and sorghum had low percentages of cysteine, lysine, methionine, and tryptophan (0.9-3% of total protein). Overall, feed ingredients of animal origin (except for gelatin) are excellent sources of NEAA and EAA for livestock, avian, and aquatic species, whereas gelatin provides highest amounts of arginine, glycine, and proline plus hydroxyproline. Because casein, corn, soybean, peanut, fish, and gelatin are consumed by children and adults, our findings also have important implications for human nutrition.

  20. Cellular fatty acid composition of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus.

    PubMed Central

    Braunthal, S D; Holt, S C; Tanner, A C; Socransky, S S

    1980-01-01

    Strains of Actinobacillus actinomycetemcomitans isolated from deep pockets of patients with juvenile periodontitis were analyzed for their content of cellular fatty acids. Oral Haemophilus strains, morphologically and biochemically similar to Haemophilus aphrophilus, were also examined for their content of cellular fatty acids. The extractable lipids of the actinobacilli represented approximately 10% of the cell dry weight, with the bound lipids representing 2 to 5%. The major fatty acids consisted of myristic (C14:0) and palmitic (C16:0) acids and a C16:1 acid, possibly palmitoleic acid, accounting for 21, 35, and 31% of the total extractable fatty acids, respectively. Haemophilus strains had a similar cellular fatty acid content. PMID:7430333

  1. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  2. Identification and characterization of novel poly(DL-lactic acid) depolymerases from metagenome.

    PubMed

    Mayumi, Daisuke; Akutsu-Shigeno, Yukie; Uchiyama, Hiroo; Nomura, Nobuhiko; Nakajima-Kambe, Toshiaki

    2008-07-01

    Many poly(lactic acid) (PLA)-degrading microorganisms have been isolated from the natural environment by culture-based methods, but there is no study about unculturable PLA-degrading microorganisms. In this study, we constructed a metagenomic library consisting of the DNA extracted from PLA disks buried in compost. We identified three PLA-degrading genes encoding lipase or hydrolase. The purified enzymes degraded not only PLA, but also various aliphatic polyesters, tributyrin, and p-nitrophenyl esters. From their substrate specificities, the PLA depolymerases were classified into an esterase rather than a lipase. Among the PLA depolymerases, PlaM4 exhibited thermophilic properties; that is, it showed the highest activity at 70 degrees C and was stable even after incubation for 1 h at 50 degrees C. PlaM4 had absorption and degradation activities for solid PLA at 60 degrees C, which indicates that the enzyme can effectively degrade PLA in a high-temperature environment. On the other hand, the enzyme classification based on amino acid sequences showed that the other PLA depolymerases, PlaM7 and PlaM9, were not classified into known lipases or esterases. This is the first report on the identification and characterization of PLA depolymerase from a metagenome.

  3. Fatty acid composition of seed oils from sixAdansonia species with particular reference to cyclopropane and cyclopropene acids.

    PubMed

    Ralaimanarivo, A; Gaydou, E M; Bianchini, J P

    1982-01-01

    The oil content of sixAdansonia species (Bombacaceae family) of Madagascar (Adansonia grandidieri, A. za, A. digitata, A. fony, A. madagascariensis andA. suarenzensis) and Africa (A. digitata) ranges from 8 to 46%. All the oils give a positive response to the Halphen test. Malvalic, sterculic and dihydrosterculic acids were detected using gas liquid chromatography-mass spectrometry (GLC-MS). Epoxy or hydroxy fatty acids were not found in these oils. Fatty acid composition was determined by GLC using glass capillary columns coated with BDS and Carbowax 20 M. Results obtained for cyclopropenic fatty acids (CPEFA) were compared to those given by glass capillary GLC after derivatization with silver nitrate in methanol, by hydrogen bromide titration and by proton magnetic resonance (PMR). Good agreement was observed for the results given by the various methods. Malvalic acid content ranges from 3 to 28%, sterculic acid from 1 to 8% and dihydrosterculic acid from 1.5 to 5.1%. Odd-numbered fatty acids (Pentadecanoic and hepatadecanoic) were also observed in minute amounts (0.1-1.1%). Among the normal fatty acids, we observed mainly palmitic (21-46%), oleic (15-40%) and linoleic (12-32%). The relationship between fatty acid composition andAdansonia species is discussed.

  4. Activation of mitochondrial calcium-independent phospholipase A2γ (iPLA2γ) by divalent cations mediating arachidonate release and production of downstream eicosanoids.

    PubMed

    Moon, Sung Ho; Jenkins, Christopher M; Liu, Xinping; Guan, Shaoping; Mancuso, David J; Gross, Richard W

    2012-04-27

    Calcium-independent phospholipase A(2)γ (iPLA(2)γ) (PNPLA8) is the predominant phospholipase activity in mammalian mitochondria. However, the chemical mechanisms that regulate its activity are unknown. Here, we utilize iPLA(2)γ gain of function and loss of function genetic models to demonstrate the robust activation of iPLA(2)γ in murine myocardial mitochondria by Ca(2+) or Mg(2+) ions. Calcium ion stimulated the production of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) from 1-palmitoyl-2-[(14)C]arachidonoyl-sn-glycero-3-phosphocholine during incubations with wild-type heart mitochondrial homogenates. Furthermore, incubation of mitochondrial homogenates from transgenic myocardium expressing iPLA(2)γ resulted in 13- and 25-fold increases in the initial rate of radiolabeled 2-AA-LPC and arachidonic acid (AA) production, respectively, in the presence of calcium ion. Mass spectrometric analysis of the products of calcium-activated hydrolysis of endogenous mitochondrial phospholipids in transgenic iPLA(2)γ mitochondria revealed the robust production of AA, 2-AA-LPC, and 2-docosahexaenoyl-LPC that was over 10-fold greater than wild-type mitochondria. The mechanism-based inhibitor (R)-(E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one (BEL) (iPLA(2)γ selective), but not its enantiomer, (S)-BEL (iPLA(2)β selective) or pyrrolidine (cytosolic PLA(2)α selective), markedly attenuated Ca(2+)-dependent fatty acid release and polyunsaturated LPC production. Moreover, Ca(2+)-induced iPLA(2)γ activation was accompanied by the production of downstream eicosanoid metabolites that were nearly completely ablated by (R)-BEL or by genetic ablation of iPLA(2)γ. Intriguingly, Ca(2+)-induced iPLA(2)γ activation was completely inhibited by long-chain acyl-CoA (IC(50) ∼20 μm) as well as by a nonhydrolyzable acyl-CoA thioether analog. Collectively, these results demonstrate that mitochondrial iPLA(2)γ is activated by divalent cations and inhibited by acyl

  5. A comparative study of the fatty acid composition of prochloron lipids

    NASA Technical Reports Server (NTRS)

    Kenrick, J. R.; Deane, E. M.; Bishop, D. G.

    1983-01-01

    The chemical analysis of lipids of Prochloron isolated from several hosts is discussed. The object was to determine whether differences in lipid composition could be used to characterize organisms from different sources. Major lipid components are given. An analysis of fatty acid composition of individual lipids slowed a distinctive disstribution of fatty acids. While present results do not justify the use of fatty acid content in the taxonomy of Prochlon, the variations found in the lipids of cells from the same host harvested from different areas, or at different times in the same area, suggest that a study of the effects of temperature and light intensity on lipid composition would be rewarding.

  6. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  7. Compositions and method for controlling precipitation when acidizing sour wells

    SciTech Connect

    Dill, W.R.; Walker, M.L.

    1990-08-21

    This patent describes a method of treating a sour well penetrating a subterranean formation. It comprises: introducing into the well a treating fluid comprising an acid solution having a pH below 1.9, an iron sequestering agent comprising at least one compound selected from the group consisting of aminopolycarboxylic acids, hydroxycarboxylic acids, cyclic polyethers and derivatives of the acids and ethers, present in an amount of from about 0.25 to about 5 percent by weight of the acid solution, and a sulfide modifier comprising at least one compound selected from the group consisting of an aldehyde, acetal, hemiacetal and any other compound capable of forming aldehydes in the acid solution, present in an amount of from about 0.25 to about 5 percent of the acid solution; and treating the subterranean formation with the treating fluid.

  8. UCN enhances TGF-beta-mediated mitoinhibition of VSMCs via counteracting TGF-beta-induced cPLA2 expression and activation.

    PubMed

    Zhu, Chao; Cao, Changchun; Wang, Xiaofei; Yuan, Jie; Jin, Lai; Li, Shengnan

    2016-11-01

    Urocortins (UCNs) and transforming growth factor-beta (TGF-beta) have been demonstrated to participate in various cardiovascular diseases, many of which involve vascular smooth muscle cells (VSMCs) proliferation. Cytosolic phospholipase A2 (cPLA2)-mediated arachidonic acid (AA) release is an important cause of VSMCs proliferation. The work was to investigate the regulation of VSMCs proliferation by UCN/TGF-beta and whether cPLA2 was a link between their signaling pathways. VSMCs proliferation was measured by colorimetric assay and immunofluorescence microscopy. Using cell flow cytometry, the changes in the cell cycle phases were investigated. Lentiviral Vector Particle was performed to overexpress cPLA2 gene. Both UCN and TGF-beta inhibited VSMCs proliferation and an additive effect was observed when the cells were treated with UCN plus TGF-beta. TGF-beta increased the percentage of cells in G1-phase while UCN increased the cell percentage in G2-phase with a concomitant decrease in S-phase. Furthermore, cPLA2 expression was increased by TGF-beta but decreased by UCN and UCN attenuated TGF-beta-induced cPLA2 expression. In primary VSMCs, TGF-beta induced cPLA2 phosphorylation, and this effect was also attenuated by UCN. Similar to UCN, the cPLA2 inhibitor, pyrrophenone (PYR), also played a role in enhancing TGF-beta-mediated mitoinhibition. Inversely, overexpression of cPLA2 eliminated the effect of UCN on the mitoinhibition. The pretreatment with UCN counteracted TGF-beta-mediated cPLA2 expression and activation, thereby contributing to TGF-beta-mediated mitoinhibition of VSMCs.

  9. Overcoming the Fundamental Challenges in Improving the Impact Strength and Crystallinity of PLA Biocomposites: Influence of Nucleating Agent and Mold Temperature.

    PubMed

    Nagarajan, Vidhya; Zhang, Kunyu; Misra, Manjusri; Mohanty, Amar K

    2015-06-03

    Poly(lactic acid) (PLA), one of the widely studied renewable resource based biopolymers, has yet to gain a strong commercial standpoint because of certain property limitations. This work is a successful attempt in achieving PLA biocomposites that showed concurrent improvements in impact strength and heat deflection temperature (HDT). Biocomposites were fabricated from a super toughened ternary blend of PLA, poly(ether-b-amide) elastomeric copolymer and ethylene-methyl acrylate-glycidyl methacrylate and miscanthus fibers. The effects of varying the processing parameters and addition of various nucleating agents were investigated. Crystallinity was controlled by optimizing the mold temperature and cycle time of the injection process. With the addition of 1 wt % aromatic sulfonate derivative (Lak-301) as a nucleating agent at a mold temperature of 110 °C, PLA biocomposites exhibited dramatic reduction in crystallization half time to 1.3 min with crystallinity content of 42%. Mechanical and thermal properties assessment for these biocomposites revealed a 4-fold increase in impact strength compared to neat PLA. The HDT of PLA biocomposites increased to 85 °C from 55 °C compared to neat PLA. Crystallization behavior was studied in detail using differential scanning calorimetry and was supported with observations from wide-angle X-ray diffraction profiles and polarized optical microscopy. The presence of a nucleating agent did not alter the crystal structure of PLA; however, a significant difference in spherulite size, crystallization rate and content was observed. Fracture surface morphology and distribution of nucleating agent in the PLA biocomposites were investigated through scanning electron microscopy.

  10. Multilayer scaffold of electrospun PLA-PCL-collagen nanofibers as a dural substitute.

    PubMed

    Wang, Yu-fei; Guo, Hong-feng; Ying, Da-jun

    2013-11-01

    Dural closure after the neurosurgery can prevent postoperative complications. Although many types of dural substitute have been developed, most of them lack functional and structural characteristics compared with the natural dura mater. In this study, we used electrospinning method to fabricate a multilayer scaffold to promote dural repair. The inner layer of the scaffold that faces the brain tissue is composed of poly-lactic acid (PLA) to reduce tissue adhesion. The middle layer of the scaffold is composed of poly-ɛ-caprolactone and PLA, which provides a watertight seal. The outer layer of the scaffold contains a large amount of collagen to promote cell attachment and proliferation. The results from in vitro study and an animal model have shown that this multilayer fibrous scaffold has sufficient mechanic strength and biochemical properties to enhance dural repair. Therefore, fabrication of scaffold with multiple functional and structural layers may provide a novel approach for tissue engineering.

  11. Effect of Growth on Fatty Acid Composition of Total Intramuscular Lipid and Phospholipids in Ira Rabbits.

    PubMed

    Xue, Shan; He, Zhifei; Lu, Jingzhi; Tao, Xiaoqi; Zheng, Li; Xie, Yuejie; Xiao, Xia; Peng, Rong; Li, Hongjun

    2015-01-01

    The changes in fatty acid composition of total intramuscular lipid and phospholipids were investigated in the longissimus dorsi, left-hind leg muscle, and abdominal muscle of male Ira rabbits. Changes were monitored at 35, 45, 60, 75, and 90 d. Analysis using gas chromatography identified 21 types of fatty acids. Results showed that the intramuscular lipid increased and the intramuscular phospholipids (total intramuscular lipid %) decreased in all muscles with increasing age (p<0.05). An abundant amount of unsaturated fatty acids, especially polyunsaturated fatty acids, was distributed in male Ira rabbits at different ages and muscles. Palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2), and arachidonic acid (C20:4) were the major fatty acids, which account to the dynamic changes of the n-6/n-3 value in Ira rabbit meat.

  12. Identification and characterization of phospholipase A/sub 2/ (PLA/sub 2/) in bovine pulmonary endothelial cells (BPEC)

    SciTech Connect

    Martin, T.W.; Wysolmerski, R.B.; Lagunoff, D.

    1986-03-01

    Phosphatidylcholine labeled in the sn-2 position with /sup 3/H-oleic acid was used to measure PLA/sub 2/ in cell sonicates (CS) prepared from confluent cultures of BPEC. Substrate at 10-200 ..mu..M was incubated with 5-30 ..mu..g of CS protein in HEPES buffer at 37/sup 0/C. A plot of /sup 3/H-oleic acid release vs time was linear and proportional to the amount of CS protein. Lineweaver-Burk plots of the data were linear with V/sub max/ = 22.2 nmole/mg protein/hr and K/sub d/ = 121 ..mu..M. Under these conditions, phospholipase C activity was 20-fold lower, and phospholipase A/sub 1/ activity was not detectable. PLA/sub 2/ activity was pH-dependent with optima at 4.5 and 7.5. Ca/sup + +/ was not required for activity, and addition of up to 10 mM Ca/sup + +/ to CS in EDTA increased activity by only 10-20%. After centrifugation of CS at 100,000 g for 90 min, 62% of the PLA/sub 2/ activity was recovered in the particular fraction. Triton X-100 (0.006-0.4%) inhibited PLA/sub 2/ up to 90%, whereas 2 mM deoxycholate produced nearly 3-fold activation. Of several agents tested, bromophenacylbromide (BPB) was the most effective inhibitor. Treatment of CS with BPB at 37/sup 0/C for 30 min produced up to 9% inhibition (K/sub i/ = 5 ..mu..M). Phenylmethanesulfonyl fluoride at 200 ..mu..m produced 41% inhibition. Quinacrine at 1 mM inhibited PLA/sub 2/ by 18%. These data define characteristics of BPEC PLA/sub 2/ that should prove useful in studies of the role of this enzyme in specific cellular functions.

  13. Single phase dynamic CMOS PLA using charge sharing technique

    NASA Astrophysics Data System (ADS)

    Dhong, Y. B.; Tsang, C. P.

    A single phase dynamic CMOS NOR-NOR programmable logic array (PLA) using triggered decoders and charge sharing techniques for high speed and low power is presented. By using the triggered decoder technique, the ground switches are eliminated, thereby, making this new design much faster and lower power dissipation than conventional PLA's. By using the charge-sharing technique in a dynamic CMOS NOR structure, a cascading AND gate can be implemented. The proposed PLA's are presented with a delay-time of 15.95 and 18.05 nsec, respectively, which compare with a conventional single phase PLA with 35.5 nsec delay-time. For a typical example of PLA like the Signetics 82S100 with 16 inputs, 48 input minterms (m) and 8 output minterms (n), the 2-SOP PLA using the triggered 2-bit decoder is 2.23 times faster and has 2.1 times less power dissipation than the conventional PLA. These results are simulated using maximum drain current of 600 micro-A, gate length of 2.0 micron, V sub DD of 5 V, the capacitance of an input miniterm of 1600 fF, and the capacitance of an output minterm of 1500 fF.

  14. Single phase dynamic CMOS PLA using charge sharing technique

    NASA Technical Reports Server (NTRS)

    Dhong, Y. B.; Tsang, C. P.

    1991-01-01

    A single phase dynamic CMOS NOR-NOR programmable logic array (PLA) using triggered decoders and charge sharing techniques for high speed and low power is presented. By using the triggered decoder technique, the ground switches are eliminated, thereby, making this new design much faster and lower power dissipation than conventional PLA's. By using the charge-sharing technique in a dynamic CMOS NOR structure, a cascading AND gate can be implemented. The proposed PLA's are presented with a delay-time of 15.95 and 18.05 nsec, respectively, which compare with a conventional single phase PLA with 35.5 nsec delay-time. For a typical example of PLA like the Signetics 82S100 with 16 inputs, 48 input minterms (m) and 8 output minterms (n), the 2-SOP PLA using the triggered 2-bit decoder is 2.23 times faster and has 2.1 times less power dissipation than the conventional PLA. These results are simulated using maximum drain current of 600 micro-A, gate length of 2.0 micron, V sub DD of 5 V, the capacitance of an input miniterm of 1600 fF, and the capacitance of an output minterm of 1500 fF.

  15. Erythrocyte Membrane Fatty Acid Composition in Premenopausal Patients with Iron Deficiency Anemia.

    PubMed

    Aktas, Mehmet; Elmastas, Mahfuz; Ozcicek, Fatih; Yilmaz, Necmettin

    2016-01-01

    Iron deficiency anemia (IDA) is one of the most common nutritional disorders in the world. In the present study, we evaluated erythrocyte membrane fatty acid composition in premenopausal patients with IDA. Blood samples of 102 premenopausal women and 88 healthy control subjects were collected. After the erythrocytes were separated from the blood samples, the membrane lipids were carefully extracted, and the various membrane fatty acids were measured by gas chromatography (GC). Statistical analyses were performed with the SPSS software program. We used blood ferritin concentration <15 ng/mL as cut-off for the diagnosis of IDA. The five most abundant individual fatty acids obtained were palmitic acid (16:0), oleic acid (18:1, n-9c), linoleic acid (18:2, n-6c), stearic acid (18:0), and erucic acid (C22:1, n-9c). These compounds constituted about 87% of the total membrane fatty acids in patients with IDA, and 79% of the total membrane fatty acids in the control group. Compared with control subjects, case patients had higher percentages of palmitic acid (29.9% case versus 25.3% control), oleic acid (16.8% case versus 15.1% control), and stearic acid (13.5% case versus 10.5% control), and lower percentages of erucic acid (11.5% case versus 13.6% control) and linoleic acid (15.2% case versus 15.4% control) in their erythrocyte membranes. In conclusion, the total-erythrocyte-membrane saturated fatty acid (SFA) composition in premenopausal women with IDA was found to be higher than that in the control group; however, the total-erythrocyte-membrane unsaturated fatty acid (UFA) composition in premenopausal women with IDA was found to be lower than that in the control group. The differences in these values were statistically significant.

  16. Fatty acid composition of Euphausia superba, Thysanoessa macrura and Euphausia crystallorophias collected from Prydz Bay, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Li, Chaolun; Wang, Yanqing

    2016-04-01

    The information of trophic relationship is important for studying the Southern Ocean ecosystems. In this study, three dominant krill species, Euphausia superba, Thysanoessa macrura and Euphausia crystallorophias, were collected from Prydz Bay, Antarctica, during austral summer of 2009/2010. The composition of fatty acids in these species was studied. E. superba and T. macrura showed a similar fatty acid composition which was dominated by C14:0, C16:0, EPA (eicosapentenoic acid) and DHA (decosahexenoic acid) while E. crystallorophias showed higher contents of C18:1(n-9), C18:1(n-7), DHA and EPA than the former two. Higher fatty acid ratios of C18:1(n-9)/18:1(n-7), PUFA (polyunsaturated fatty acid)/SFA (saturated fatty acid), and 18PUFA/16PUFA indicated that E. crystallorophias should be classified as a typical omnivore with a higher trophic position compared with E. superba and T. macrura.

  17. Oil content and fatty acid composition of eggs cooked in drying oven, microwave and pan.

    PubMed

    Juhaimi, Fahad Al; Uslu, Nurhan; Özcan, Mehmet Musa

    2017-01-01

    In this study, the effect of heating on the oil yield and fatty acid composition of eggs cooked in drying oven, microwave oven, pan and boiled were determined, and compared. The highest oil content (15.22%) was observed for egg cooked in drying oven, while the lowest oil (5.195%) in egg cooked in pan. The cooking in microwave oven caused a decrease in oleic acid content (46.201%) and an increase in the amount of palmitic acid content (26.862%). In addition, the maximum oleic acid (65.837%) and minimum palmitic acid (14.015%) contents were observed in egg oil cooked in pan. Results showed that fatty acids were significantly affected by cooking method. This study confirms that the cooking processing influences the fatty acid composition of egg oils.

  18. Possible involvement of aiPLA2 in the phosphatidylserine-containing liposomes induced production of PGE2 and PGD2 in microglia.

    PubMed

    Takayama, Fumiko; Wu, Zhou; Ma, Hong Mei; Okada, Ryo; Hayashi, Yoshinori; Nakanishi, Hiroshi

    2013-09-15

    Liposomes containing phosphatidylserine (PSL) produce PGE2 after being phagocytosed by microglia, but the precise underlying mechanism behind it still remains unclear. Here, we showed that liposomes consisting of phosphatidylserine and lysophosphatidylcholine, a lipolysis product of phosphatidylcholine by PLA2, were phagocytosed by microglia, but failed to induce secretion of PGE2. Furthermore, PSL-induced PGE2 secretion was significantly inhibited by MJ33, an aiPLA2 inhibitor, but not by AACOCF3, a cPLA2 inhibitor. PSL also produced PGD2 and 15d-PGJ2 in microglia. We thus hypothesize that free arachidonic acid is supplied through aiPLA2-mediated lipolysis of phagocytosed phosphatidylcholine, leading to the production of PGH2 and its downstream metabolites.

  19. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery.

    PubMed

    Cho, Hyunah; Gao, Jieming; Kwon, Glen S

    2016-10-28

    Poly(ethylene glycol)-block-poly(D,L-lactic acid) (PEG-b-PLA) micelles and poly(D,L-lactic-co-glycolic acid)-block-polyethylene glycol)-block-poly(D,L-lactic-co-glycolic acid) (PLGA-b-PEG-b-PLGA) sol-gels have been extensively researched for systemic and localized drug delivery applications, respectively, and they have both progressed into humans for paclitaxel, an important yet poorly water-soluble chemotherapeutic agent. In this review article, preclinical and clinical research on PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels that has focused on paclitaxel will be updated, and recent research on other poorly water-soluble anticancer agents and delivery of drug combinations (i.e. multi-drug delivery) that seeks synergistic anticancer efficacy will be summarized. PEG-b-PLA micelles are a first-generation platform for the systemic multi-delivery of poorly water soluble anticancer agents. PLGA-b-PEG-b-PLGA sol-gels are a first-generation platform for the localized multi-drug delivery of water-soluble and/or poorly water-soluble anticancer agents. In summary, PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels may safely enable pre-clinical evaluation and clinical translation of poorly water-soluble anticancer agents, especially for promising, rapidly emerging anticancer combinations.

  20. Design of PEG-grafted-PLA nanoparticles as oral permeability enhancer for P-gp substrate drug model Famotidine.

    PubMed

    Mokhtar, Mohamed; Gosselin, Patrick M; Lacasse, François; Hildgen, Patrice

    2017-02-02

    Bioavailability of oral drugs can be limited by an intestinal excretion process mediated by P-glycoprotein (P-gp). Polyethylene glycol (PEG) is a known P-gp inhibitor. Dispersion of Famotidine (a P-gp substrate) within PEGylated nanoparticles (NPs) was used to improve its oral bioavailability. In this work, we evaluated the potential impact of NPs prepared from a grafted copolymer of polylactic acid and PEG on P-gp function by studying in vitro permeability of Famotidine across Caco-2 cells. Copolymers of PEG grafted on polylactic acid a (PLA) backbone (PLA-g-PEG) were synthesized with 1 mol% and 5 mol% PEG vs. lactic acid monomer using PEG 750 and 2000 Da. The polymers were used to prepare Famotidine-loaded NPs and tested in vitro on Caco-2 cells. Significant decrease in basolateral-to-apical transport of Famotidine was observed when Famotidine was encapsulated in NPs prepared from PLA-g-PEG5%. NPs prepared from PLA-g-PEG5% are promising to improve oral bioavailability of P-gp substrates.

  1. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    PubMed

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  2. Fatty acid composition as a tool for screening alternative feedstocks for production of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fatty acid (FA) composition was used as a screening tool for the selection of feedstocks high in monounsaturated content for evaluation as biodiesel. The feedstocks were ailanthus (Ailanthus altissima), anise (Pimpinella anisum), arugula (Eruca vesicaria), camelina (Camelina sativa), coriander (Cori...

  3. Determination of fatty acid composition and quality characteristics of oils from palm fruits using solvent extraction

    NASA Astrophysics Data System (ADS)

    Kasmin, Hasimah; Lazim, Azwan Mat; Awang, Roila

    2015-09-01

    Palm oil contains about 45% of saturated palmitic acid and 39% of mono-unsaturated oleic acid. Investigations made in the past to trace the fatty acid composition in palm revealed that ripeness of fresh fruit bunch (FFB) affect oil composition. However, there is no evidence that processing operations affect oil composition, although different stage of processing does affect the quality of oil extracted. An improved method for sterilizing the oil palm fruits by dry heating, followed by oil extraction has been studied. This method eliminates the use of water, thus, increasing the extraction of lipid soluble. The objective of this study is to determine the possibility production of palm oil with different fatty acid composition (FAC) as well as the changes in quality from conventional milling. The unripe and ripe FFB were collected, sterilized and extracted using different method of solvent extraction. Preliminary data have shown that variation in FAC will also alter the physical and chemical properties of the oil extracted.

  4. Robustness of two-step acid hydrolysis procedure for composition analysis of poplar.

    PubMed

    Bhagia, Samarthya; Nunez, Angelica; Wyman, Charles E; Kumar, Rajeev

    2016-09-01

    The NREL standard procedure for lignocellulosic biomass composition has two steps: primary hydrolysis in 72% wt sulfuric acid at 30°C for 1h followed by secondary hydrolysis of the slurry in 4wt% acid at 121°C for 1h. Although pointed out in the NREL procedure, the impact of particle size on composition has never been shown. In addition, the effects of primary hydrolysis time and separation of solids prior to secondary hydrolysis on composition have never been shown. Using poplar, it was found that particle sizes less than 0.250mm significantly lowered the glucan content and increased the Klason lignin but did not affect xylan, acetate, or acid soluble lignin contents. Composition was unaffected for primary hydrolysis time between 30 and 90min. Moreover, separating solids prior to secondary hydrolysis had negligible effect on composition suggesting that lignin and polysaccharides are completely separated in the primary hydrolysis stage.

  5. Associations between plasma branched-chain amino acids, β-aminoisobutyric acid and body composition.

    PubMed

    Rietman, Annemarie; Stanley, Takara L; Clish, Clary; Mootha, Vamsi; Mensink, Marco; Grinspoon, Steven K; Makimura, Hideo

    2016-01-01

    Plasma branched-chain amino acids (BCAA) are elevated in obesity and associated with increased cardiometabolic risk. β-Aminoisobutyric acid (B-AIBA), a recently identified small molecule metabolite, is associated with decreased cardiometabolic risk. Therefore, we investigated the association of BCAA and B-AIBA with each other and with detailed body composition parameters, including abdominal visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). A cross-sectional study was carried out with lean (n 15) and obese (n 33) men and women. Detailed metabolic evaluations, including measures of body composition, insulin sensitivity and plasma metabolomics were completed. Plasma BCAA were higher (1·6 (se 0·08) (×10(7)) v. 1·3 (se 0·06) (×10(7)) arbitrary units; P = 0·005) in obese v. lean subjects. BCAA were positively associated with VAT (R 0·49; P = 0·0006) and trended to an association with SAT (R 0·29; P = 0·052). The association between BCAA and VAT, but not SAT, remained significant after controlling for age, sex and race on multivariate modelling (P < 0·05). BCAA were also associated with parameters of insulin sensitivity (Matsuda index: R -0·50, P = 0·0004; glucose AUC: R 0·53, P < 0·001). BCAA were not associated with B-AIBA (R -0·04; P = 0·79). B-AIBA was negatively associated with SAT (R -0·37; P = 0·01) but only trended to an association with VAT (R 0·27; P = 0·07). However, neither relationship remained significant after multivariate modelling (P > 0·05). Plasma B-AIBA was associated with parameters of insulin sensitivity (Matsuda index R 0·36, P = 0·01; glucose AUC: R -0·30, P = 0·04). Plasma BCAA levels were positively correlated with VAT and markers of insulin resistance. The results suggest a possible complex role of adipose tissue in BCAA homeostasis and insulin resistance.

  6. Managing Conflict: Examining Recent PLA Writings on Escalation Control

    DTIC Science & Technology

    2016-02-01

    PLA texts write about the need to “turn crisis into opportunity,” i.e., to seek advantage while resolving a crisis.  Some PLA writings advocate...using kinetic strikes as a form of pre-war deterrence.  Some PLA texts argue that it may be necessary to conduct pre-emptive strikes early in a...advocates going on the offensive early in a war, has serious escalatory implications.  Several texts argue that in a state of pre-war “armed

  7. Chronic administration of ursodeoxycholic and tauroursodeoxycholic acid changes microsomal membrane lipid content and fatty acid compositions in rats.

    PubMed

    Bellentani, S; Chao, Y C; Ferretti, I; Panini, R; Tiribelli, C

    1996-03-27

    We studied the effect of oral supplementation with ursodeoxycholate (UDCA) or tauroursodeoxycholate (TUDCA) on the lipid content and fatty acid composition of rat hepatic microsomes. UDCA and TUDCA significantly increased the total amount of lipids with the exception of cholesteryl-esters. UDCA significantly increased the triglycerides and phosphatidylethanolamine (PE) microsomal content, and decreased the cholesterol/phospholipids and the phosphatidylcholine (PC)/PE ratio. Both treatments increased the percentage oleic acid and of polyunsaturated fatty acids (PUFA) in each class of lipids. UDCA and TUDCA had a different action on PUFA microsomal molar percentage of phospholipids: UDCA increased the relative percentage of PUFA in the PE fraction, while TUDCA increased the relative percentage of PUFA in the PC fraction. These changes in the hepatic lipid content and composition might in part explain both cytoprotective action of these hydrophillic bile acids and their effect on membrane fluidity.

  8. Fatty acid compositions of triglycerides and free fatty acids in sebum depend on amount of triglycerides, and do not differ in presence or absence of acne vulgaris.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Numata, Shigeki; Matsusue, Miyuki; Mashima, Yasuo; Miyawaki, Masaaki; Yamada, Shunji; Yagami, Akiko; Nakata, Satoru; Matsunaga, Kayoko

    2014-12-01

    To clarify the influence of the fatty acid composition of sebum in acne vulgaris, we investigated the amounts and fatty acid compositions of triglycerides (TG) and free fatty acids (FFA), and the amounts of cutaneous superficial Propionibacterium acnes in acne patients and healthy subjects. The foreheads of 18 female patients, 10 male patients, 10 healthy females and 10 healthy males were studied in a Japanese population. There were significant differences in the amounts of sebum, TG and cutaneous superficial P. acnes, as well as the fatty acid compositions of TG and FFA between acne patients and healthy subjects in females. Their fatty acid compositions were correlated with the amount of TG with or without acne. It was clarified that the fatty acid compositions of TG and FFA depended on the amount of TG, and there were no differences in the fatty acid composition in the presence and absence of acne.

  9. Changes in fatty acid and hydrocarbon composition of zooplankton assemblages related to environmental conditions

    SciTech Connect

    Lambert, R.M.

    1989-01-01

    Changes in zooplankton fatty acid and hydrocarbon patterns are described in relation to changes in environmental conditions and species composition. The regulation of zooplankton abundance by sea nettle-ctenophore interaction was examined in a small Rhode Island coastal pond. Sea nettles were nettles were able to eliminate ctenophores from the pond and subsequently zooplankton abundance increased. During one increase in zooplankton abundance, it was found that polyunsaturated fatty acids decreased while monounsaturated fatty acids increased. It was concluded that this shift in biochemical pattern was due to food limitation. In addition, zooplankton fatty acids were used in multivariate discriminant analysis to classify whether zooplankton were from coastal or estuarine environments. Zooplankton from coastal environments were characterized by higher monounsaturate fatty acids. Zooplankton hydrocarbon composition was affected by species composition and by pollution inputs. The presence of Calanus finmarchicus was detected by increased levels of pristane.

  10. [FATTY ACID COMPOSITION ALTEROMONAS-LIKE BACTERIA ISOLATED FROM THE BLACK SEA WATER].

    PubMed

    Klochko, V V; Avdeeva, L V

    2015-01-01

    Alteromonas macleodii strains isolated from the Black sea water were similar in their fatty acids composition with the type strain of this species. Analysis of lipid composition of 10 A. macleodii strains isolated from the deep and surface water layers in different World ocean regions including the Black sea water has shown that the deep and surface isolates of this species formed two groups different in their fatty acids profiles. The Black sea isolates of Pseudoalteromonas haloplanktis, P. citrea, P. flavipulchra conformed to these species type strains in their fatty acids composition. On the basis of the fatty acids spectra similarity of three Pseudoalteromonas species strains with Plipolytica described in 2010 has been established. Presence of three isomers C16:1ψ7, C 16:1ψ9 and C16:1ψ6--components of hexadecenic acid in the Black sea isolates of Shewanella baltica has been shown.

  11. Evaluating and predicting the oxidative stability of vegetable oils with different fatty acid compositions.

    PubMed

    Li, Hongyan; Fan, Ya-wei; Li, Jing; Tang, Liang; Hu, Jiang-ning; Deng, Ze-yuan

    2013-04-01

    The aim of this research was to evaluate the oxidative stabilities and qualities of different vegetable oils (almond, blend 1-8, camellia, corn, palm, peanut, rapeseed, sesame, soybean, sunflower, and zanthoxylum oil) based on peroxide value (PV), vitamin E content, free fatty acid, and fatty acid composition. The vegetable oils with different initial fatty acid compositions were studied under accelerated oxidation condition. It showed that PV and n-3 polyunsaturated fatty acid (PUFA) changed significantly during 21 d accelerated oxidation storage. Based on the changes of PV and fatty acid composition during the oxidation process, mathematical models were hypothesized and the models were simulated by Matlab to generate the proposed equations. These equations were established on the basis of the different PUFA contents as 10% to 28%, 28% to 46%, and 46% to 64%, respectively. The simulated models were proven to be validated and valuable for assessing the degree of oxidation and predicting the shelf life of vegetable oils.

  12. Fatty acid composition of brown adipose tissue in genetically heat-tolerant FOK rats

    NASA Astrophysics Data System (ADS)

    Ohno, T.; Furuyama, F.; Kuroshima, A.

    The phospholipid fatty acid composition of brown adipose tissue (BAT) was examined in inbred heat-tolerant FOK rats and compared with that in conventional Wistar rats not previously exposed to heat. The FOK rats showed higher unsaturation states, as indicated by higher levels of polyunsaturated fatty acids and a higher unsaturation index and polyunsaturated fatty acids/saturated fatty acids ratio. This higher level of unsaturation was characterized by the higher amount of polyunsaturated fatty acids such as linoleic acid, arachidonic acid and docosahexaenoic acid. It may be concluded that the increased docosahexaenoic acid level in BAT phospholipids brings about the hyperplasia of BAT, causing an enhancement of its in vivo thermogernic activity as well as the systemic non-shivering thermogenesis observed in heat-tolerant FOK rats.

  13. Maximized PUFA measurements improve insight in changes in fatty acid composition in response to temperature.

    PubMed

    van Dooremalen, Coby; Pel, Roel; Ellers, Jacintha

    2009-10-01

    A general mechanism underlying the response of ectotherms to environmental changes often involves changes in fatty acid composition. Theory predicts that a decrease in temperature causes an increase in unsaturation of fatty acids, with an important role for long-chain poly-unsaturated fatty acids (PUFAs). However, PUFAs are particularly unstable and susceptible to peroxidation, hence subtle differences in fatty acid composition can be challenging to detect. We determined the fatty acid composition in springtail (Collembola) in response to two temperatures (5 degrees C and 25 degrees C). First, we tested different sample preparation methods to maximize PUFAs. Treatments consisted of different solvents for primary lipid extraction, mixing with antioxidant, flushing with inert gas, and using different temperature exposures during saponification. Especially slow saponification at low temperature (90 min at 70 degrees C) in combination with replacement of headspace air with nitrogen during saponification and methylation maximized PUFAs for GC analysis. Applying these methods to measure thermal responses in fatty acid composition, the data showed that the (maximized) proportion of C(20) PUFAs increased at low acclimation temperature. However, C(18) PUFAs increased at high acclimation temperature, which is contrary to expectations. Our study illustrates that PUFA levels in lipids may often be underestimated and this may hamper a correct interpretation of differential responses of fatty acid composition.

  14. Effect of γ irradiation on the fatty acid composition of soybean and soybean oil.

    PubMed

    Minami, Ikuko; Nakamura, Yoshimasa; Todoriki, Setsuko; Murata, Yoshiyuki

    2012-01-01

    Food irradiation is a form of food processing to extend the shelf life and reduce spoilage of food. We examined the effects of γ radiation on the fatty acid composition, lipid peroxidation level, and antioxidative activity of soybean and soybean oil which both contain a large amount of unsaturated fatty acids. Irradiation at 10 to 80 kGy under aerobic conditions did not markedly change the fatty acid composition of soybean. While 10-kGy irradiation did not markedly affect the fatty acid composition of soybean oil under either aerobic or anaerobic conditions, 40-kGy irradiation considerably altered the fatty acid composition of soybean oil under aerobic conditions, but not under anaerobic conditions. Moreover, 40-kGy irradiation produced a significant amount of trans fatty acids under aerobic conditions, but not under anaerobic conditions. Irradiating soybean oil induced lipid peroxidation and reduced the radical scavenging activity under aerobic conditions, but had no effect under anaerobic conditions. These results indicate that the fatty acid composition of soybean was not markedly affected by radiation at 10 kGy, and that anaerobic conditions reduced the degradation of soybean oil that occurred with high doses of γ radiation.

  15. THERMAL PROPERTIES OF EXTRUDED-INJECTION MOLDED POLY (LACTIC ACID) AND MILKWEED COMPOSITES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, most polymer composites utilize petroleum-based materials that are non-degradable and difficult to recycle or incur substantial cost for disposal. Green composites can be used in nondurable limited applications. In order to determine the degree of compatibility between Poly (Lactic Acid...

  16. Graphene-carbon nanotube composite aerogel for selective detection of uric acid

    NASA Astrophysics Data System (ADS)

    Zhang, Feifei; Tang, Jie; Wang, Zonghua; Qin, Lu-Chang

    2013-12-01

    Graphene and single-walled carbon nanotube (SWNT) composite aerogel has been prepared by hydrothermal synthesis. The restacking of graphene is effectively reduced by SWNTs inserted in between graphene layers in order to make available more active sites and reactive surface area. Electrochemical experiments show that the graphene-SWNT composite electrode has superior catalytic performance in selective detection of uric acid (UA).

  17. The Amino Acid Composition of the Sutter's Mill Carbonaceous Chondrite

    NASA Technical Reports Server (NTRS)

    Glavin, D. P.; Burton, A. S.; Elsila, J. E.; Dworkin, J. P.; Yin, Q. Z.; Cooper, G.; Jenniskens, P.

    2012-01-01

    In contrast to the Murchison meteorite which had a complex distribution of amino acids with a total C2 to Cs amino acid abundance of approx.14,000 parts-per-billion (ppb) [2], the Sutters Mill meteorite was found to be highly depleted in amino acids. Much lower abundances (approx.30 to 180 ppb) of glycine, beta-alanine, L-alanine and L-serine were detected in SM2 above procedural blank levels indicating that this meteorite sample experienced only minimal terrestrial amino acid contamination after its fall to Earth. Carbon isotope measurements will be necessary to establish the origin of glycine and beta-alanine in SM2. Other non-protein amino acids that are rare on Earth, yet commonly found in other CM meteorites such as aaminoisobutyric acid (alpha-AIB) and isovaline, were not identified in SM2. However, traces of beta-AIB (approx.1 ppb) were detected in SM2 and could be" extraterrestrial in origin. The low abundances of amino acids in the Sutter's Mill meteorite is consistent with mineralogical evidence that at least some parts of the Sutter's Mill meteorite parent body experienced extensive aqueous and/or thermal alteration.

  18. Milk fat globules: fatty acid composition, size and in vivo regulation of fat liquidity.

    PubMed

    Timmen, H; Patton, S

    1988-07-01

    Populations of large and small milk fat globules were isolated and analyzed to determine differences in fatty acid composition. Globule samples were obtained by centrifugation from milks of a herd and of individual animals produced under both pasture and barn feeding. Triacylglycerols of total globule lipids were prepared by thin layer chromatography and analyzed for fatty acid composition by gas chromatography. Using content of the acids in large globules as 100%, small globules contained fewer short-chain acids, -5.9%, less stearic acid, -22.7%, and more oleic acids, +4.6%, mean values for five trials. These differences are consistent with alternative use of short-chain acids or oleic acid converted from stearic acid to maintain liquidity at body temperature of milk fat globules and their precursors, intracellular lipid droplets. Stearyl-CoA desaturase (EC 1.14.99.5), which maintains fluidity of cellular endoplasmic reticulum membrane, is suggested to play a key role in regulating globule fat liquidity. Possible origins of differences between individual globules in fatty acid composition of their triacylglycerols are discussed.

  19. Poly(ε-caprolactone)/triclosan loaded polylactic acid nanoparticles composite: A long-term antibacterial bionanocomposite with sustained release.

    PubMed

    Kaffashi, Babak; Davoodi, Saeed; Oliaei, Erfan

    2016-07-11

    In this study, the antibacterial bionanocomposites of poly(ε-caprolactone) (PCL) with different concentrations of triclosan (TC) loaded polylactic acid (PLA) nanoparticles (30wt% triclosan) (LATC30) were fabricated via a melt mixing process in order to lower the burst release of PCL and to extend the antibacterial activity during its performance. Due to the PLA's higher glass transition temperature (Tg) and less flexibility compared with PCL; the PLA nanoparticles efficiently trapped the TC particles, reduced the burst release of TC from the bionanocomposites; and extended the antibacterial property of the samples up to two years. The melt mixing temperature was adjusted to a temperature lower than the melting point of LATC30 nanoparticles; therefore, these nanoparticles were dispersed in the PCL matrix without any chemical reaction and/or drug extraction. The sustained release behavior of TC from PCL remained unchanged since no significant changes occurred in the samples' crystallinity compared with that in the neat PCL. The elastic moduli of samples were enhanced once LATC30 is included. This is necessary since the elastic modulus is decreased with water absorption. The rheological behaviors of samples showed appropriate properties for melt electro-spinning. A stable process was established as the relaxation time of the bionanocomposites was increased. The hydrophilic properties of samples were increased with increasing LATC30. The proliferation rate of the fibroblast (L929) cells was enhanced as the content of nanoparticles was increased. A system similar to this could be implemented to prepare long-term antibacterial and drug delivery systems based on PCL and various low molecular weight drugs. The prepared bionanocomposites are considered as candidates for the soft connective tissue engineering and long-term drug delivery.

  20. Different insight into amphiphilic PEG-PLA copolymers: influence of macromolecular architecture on the micelle formation and cellular uptake.

    PubMed

    Garofalo, Cinzia; Capuano, Giovanna; Sottile, Rosa; Tallerico, Rossana; Adami, Renata; Reverchon, Ernesto; Carbone, Ennio; Izzo, Lorella; Pappalardo, Daniela

    2014-01-13

    One constrain in the use of micellar carriers as drug delivery systems (DDSs) is their low stability in aqueous solution. In this study "tree-shaped" copolymers of general formula mPEG-(PLA)n (n = 1, 2 or 4; mPEG = poly(ethylene glycol) monomethylether 2K or 5K Da; PLA = atactic or isotactic poly(lactide)) were synthesized to evaluate the architecture and chemical composition effect on the micelles formation and stability. Copolymers with mPEG/PLA ratio of about 1:1 wt/wt were obtained using a "core-first" synthetic route. Dynamic Light Scattering (DLS), Field Emission Scanning Electron Microscopy (FESEM), and Zeta Potential measurements showed that mPEG2K-(PD,LLA)2 copolymer, characterized by mPEG chain of 2000 Da and two blocks of atactic PLA, was able to form monodisperse and stable micelles. To analyze the interaction among micelles and tumor cells, FITC conjugated mPEG-(PLA)n were synthesized. The derived micelles were tested on two, histological different, tumor cell lines: HEK293t and HeLa cells. Fluorescence Activated Cells Sorter (FACS) analysis showed that the FITC conjugated mPEG2K-(PD,LLA)2 copolymer stain tumor cells with high efficiency. Our data demonstrate that both PEG size and PLA structure control the biological interaction between the micelles and biological systems. Moreover, using confocal microscopy analysis, the staining of tumor cells obtained after incubation with mPEG2K-(PD,LLA)2 was shown to be localized inside the tumor cells. Indeed, the mPEG2K-(PD,LLA)2 paclitaxel-loaded micelles mediate a potent antitumor cytotoxicity effect.

  1. Draft Genome Sequence of Cyanobacterium sp. Strain IPPAS B-1200 with a Unique Fatty Acid Composition

    PubMed Central

    Starikov, Alexander Y.; Usserbaeva, Aizhan A.; Sinetova, Maria A.; Sarsekeyeva, Fariza K.; Zayadan, Bolatkhan K.; Ustinova, Vera V.; Kupriyanova, Elena V.; Los, Dmitry A.

    2016-01-01

    Here, we report the draft genome of Cyanobacterium sp. IPPAS strain B-1200, isolated from Lake Balkhash, Kazakhstan, and characterized by the unique fatty acid composition of its membrane lipids, which are enriched with myristic and myristoleic acids. The approximate genome size is 3.4 Mb, and the predicted number of coding sequences is 3,119. PMID:27856596

  2. Sensitive Amino Acid Composition and Chirality Analysis with the Mars Organic Analyzer (MOA)

    NASA Technical Reports Server (NTRS)

    Skelley, Alison M.; Scherer, James R.; Aubrey, Andrew D.; Grover, William H.; Ivester, Robin H. C.; Ehrenfreund, Pascale; Grunthaner, Frank J.; Bada, Jeffrey L.; Mathies, Richard A.

    2005-01-01

    Detection of life on Mars requires definition of a suitable biomarker and development of sensitive yet compact instrumentation capable of performing in situ analyses. Our studies are focused on amino acid analysis because amino acids are more resistant to decomposition than other biomolecules, and because amino acid chirality is a well-defined biomarker. Amino acid composition and chirality analysis has been previously demonstrated in the lab using microfabricated capillary electrophoresis (CE) chips. To analyze amino acids in the field, we have developed the Mars Organic Analyzer (MOA), a portable analysis system that consists of a compact instrument and a novel multi-layer CE microchip.

  3. Coping with the Dragon: Essays on PLA Transformation and the U.S. Military

    DTIC Science & Technology

    2007-12-01

    Command Automation System,’” Liberation Army Daily, 25 May 1999. 53 Yu Yongjun , “Jiefangjun Bao Urges PLA to Implement Orders ‘Creatively,’ Avoid...criteria discussed above. 57 Yu Yongjun . PLA Reform • 55 Old PLA Proposed New PLA Jointness and

  4. Analysis of fatty acid composition of sea cucumber Apostichopus japonicus using multivariate statistics

    NASA Astrophysics Data System (ADS)

    Xu, Qinzeng; Gao, Fei; Xu, Qiang; Yang, Hongsheng

    2014-11-01

    Fatty acids (FAs) provide energy and also can be used to trace trophic relationships among organisms. Sea cucumber Apostichopus japonicus goes into a state of aestivation during warm summer months. We examined fatty acid profiles in aestivated and non-aestivated A. japonicus using multivariate analyses (PERMANOVA, MDS, ANOSIM, and SIMPER). The results indicate that the fatty acid profiles of aestivated and non-aestivated sea cucumbers differed significantly. The FAs that were produced by bacteria and brown kelp contributed the most to the differences in the fatty acid composition of aestivated and nonaestivated sea cucumbers. Aestivated sea cucumbers may synthesize FAs from heterotrophic bacteria during early aestivation, and long chain FAs such as eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) that produced from intestinal degradation, are digested during deep aestivation. Specific changes in the fatty acid composition of A. japonicus during aestivation needs more detailed study in the future.

  5. [Amino acid composition and biologic value of the proteins of several sorts of buckwheat].

    PubMed

    Sarkisova, N E; Kirilenko, S K

    1976-01-01

    The amino acids composition of summary proteins in unground buckwheat of four common and promising varieties grown in the Ukraine was investigated by using ion-exchange chromatography with an automatic analyzor Hd-1200 E. Between individual varieties of buckweheat no essential differences in the amino acids content were in evidence. The total proteins of the buckwheat grit contain high quantities of lysine, treonine, leucine, glutamic acid and arginine. The amino acids score was instrumental in determining the biological value and in eliciting amino acids limiting this value in different grits. These data may be made use of in the practice of public catering for estimating formulae of meals prepared with grits differently combined with other products securing an improved amino acids composition of ready-to-eat meals.

  6. Essential and long-chain polyunsaturated fatty acid status and fatty acid composition of breast milk of lactating adolescents.

    PubMed

    Meneses, Flávia; Torres, Alexandre G; Trugo, Nádia M F

    2008-11-01

    The aims of the present study were to evaluate essential fatty acids (EFA) and long-chain PUFA (LCPUFA) status in lactating adolescents and its association with breast milk composition. Healthy nursing adolescents from Rio de Janeiro, Brazil (n 30; 14-19 years; 30-120 d postpartum), exclusively or predominantly breast-feeding, participated in this study. Breast milk and blood samples were collected after overnight fasting. Fatty acid composition of breast milk, erythrocyte membrane (EM) and plasma NEFA were determined by GC. Indices of fatty acid status (mean melting point (MMP); EFA status index; DHA status indices, 22 : 5n-6:22 : 4n-6 and 22 : 6n-3:22 : 5n-6 ratios) were calculated from EM fatty acid composition. Dietary intake of n-3 fatty acids was low when compared with current recommendations for lactating women. MMP was associated with indices of DHA status, some individual fatty acids in EM and years post-menarche and weeks postpartum, suggesting the use of erythrocyte MMP as a possible comprehensive biochemical marker of LCPUFA status in this physiological condition. The DHA status of lactating adolescents and their milk DHA concentrations were similar to the values of Brazilian lactating adults, but lower compared with the values of lactating adults from other countries. Therefore, these lactating adolescents were apparently not disadvantaged, as compared with the Brazilian adults, when EM and breast milk fatty acid composition were considered. In general, PUFA in milk from adolescents presented few associations with their concentrations in plasma NEFA and with maternal status. However, milk DHA was associated with maternal LCPUFA and DHA states.

  7. Direct Piezoelectricity of Soft Composite Electrospun Fibers

    NASA Astrophysics Data System (ADS)

    Varga, Michael; Morvan, Jason; Diorio, Nick; Buyuktanir, Ebru; Harden, John; West, John; Jakli, Antal

    2013-03-01

    Recently soft fiber mats electrospun from solutions of Barium Titanate (BT) ferroelectric ceramics particles and poly lactic acid (PLA) were found to have large (d33 1nm/V) converse piezoelectric signals offering a myriad of applications ranging from active implants to smart textiles. Here we report direct piezoelectric measurements (electric signals due to mechanical stress) of the BT/PLA composite fiber mats at various BT concentrations. A testing apparatus was designed and constructed solely for these measurements involving AC stresses provided by a speaker in 10Hz-10kHz frequency range. The piezoelectric constant d33 ~1nC/N was found to be in agreement with the prior converse piezoelectric measurements. The largest signals were obtained with 6% BT/PLA composites, probably because the BT particles at higher concentrations could not be dispersed homogeneously. Importantly the direct piezoelectric signal is large enough to power a small LCD by simply pressing a 0.2mm thick 2 cm2 area mat by a finger. We expect to use these mats in active Braille cells and in liquid crystal writing tablets.

  8. Enantiomeric PLA-PEG block copolymers and their stereocomplex micelles used as rifampin delivery

    NASA Astrophysics Data System (ADS)

    Chen, Li; Xie, Zhigang; Hu, Junli; Chen, Xuesi; Jing, Xiabin

    2007-10-01

    A novelty approach to self-assembling stereocomplex micelles by enantiomeric PLA-PEG block copolymers as a drug delivery carrier was described. The particles were encapsulated by enantiomeric PLA-PEG stereocomplex to form nanoscale micelles different from the microspheres or the single micelles by PLLA or PDLA in the reported literatures. First, the block copolymers of enantiomeric poly( l-lactide)-poly(ethylene-glycol) (PLLA-PEG) and poly( D-lactide)-poly(ethylene-glycol) (PDLA-PEG) were synthesized by the ring-opening polymerization of l-lactide and d-lactide in the presence of monomethoxy PEG, respectively. Second, the stereocomplex block copolymer micelles were obtained by the self-assembly of the equimolar mixtures of enantiomeric PLA-PEG copolymers in water. These micelles possessed partially the crystallized hydrophobic cores with the critical micelle concentrations (cmc) in the range of 0.8-4.8 mg/l and the mean hydrodynamic diameters ranging from 40 to 120 nm. The micelle sizes and cmc values obviously depended on the hydrophobic block PLA content in the copolymer. Compared with the single PLLA-PEG or PDLA-PEG micelles, the cmc values of the stereocomplex micelles became lower and the sizes of the stereocomplex micelles formed smaller. And lastly, the stereocomplex micelles encapsulated with rifampin were tested for the controlled release application. The rifampin loading capacity and encapsulation efficiency by the stereocomplex micelles were higher than those by the single polymer micelles, respectively. The drug release time in vitro was depending on the composites of the block copolymers and also could be controlled by the polymer molecular weight and the morphology of the polymer micelles.

  9. High-capacity composite adsorbents for nucleic acids.

    PubMed

    Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof

    2011-08-05

    Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well.

  10. Biological and biochemical characterization of two new PLA2 isoforms Cdc-9 and Cdc-10 from Crotalus durissus cumanensis snake venom.

    PubMed

    Romero-Vargas, Frey Francisco; Ponce-Soto, Luis Alberto; Martins-de-Souza, Daniel; Marangoni, Sergio

    2010-01-01

    This work reports the purification, biological characterization and amino acid sequence of two new basic PLA(2) isoforms, Cdc-9 and Cdc-10, purified from the Crotalus durissus cumanensis venom by one step analytical chromatography reverse phase HPLC. The molecular masses of the PLA(2) were 14,175+/-2.7 Da for Cdc-9 and 14,228+/-3.5 Da for Cdc-10 both deduced by primary structure and confirmed by MALDI-TOF. The isoforms presented an amino acid sequence of 122 amino acid residues, being Cdc-9: SLVQFNKMIK FETRKSGLPF YAAYGCYCGW GGQRPKDATD RCCFVHDCCY GKVAKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLS TYKNEYMFYP DSRCREPPEY TC with pI value of 8.25 and Cdc-10: SLLQFNKMIK FETRKSGVPF YAAYGCYCGW GGRRPKDPTD RCCFVHDCCY GKLTKCNTKW DIYSYSLKSG YITCGKGTWC KEQICECDRV AAECLRRSLN TYKNEYMFYP DSRCRGPPEY TC with a pI value of 8.46, showing highly conserved Ca(2+)-binding and catalytic sites. The PLA(2) activity decreased when the isoforms Cdc-9 and Cdc-10 were incubated with 4-bromophenacyl bromide (p-BPB), anhydrous acetic acid and p-nitrobenzene sulfonyl fluoride (NBSF) when compared with the activity of both native isoforms. In mice, the PLA(2) isoforms Cdc-9 and Cdc-10 induced myonecrosis and edema. Myotoxic and edema activities were reduced after treatment of the isoforms with p-BPB; acetylation of the lysine residues and the treatment of PLA(2) with NBSF have also induced edema reduction. However, p-BPB strongly diminishes the local and systemic myotoxic effects.

  11. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    PubMed

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-07-03

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo.

  12. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    PubMed Central

    Rosenzweig, Derek H.; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo. PMID:26151846

  13. The effect of the stretching of PLA extruded films on their crystallinity and gas barrier properties

    NASA Astrophysics Data System (ADS)

    Guinault, A.; Menary, G. H.; Courgneau, C.; Griffith, D.; Ducruet, V.; Miri, V.; Sollogoub, C.

    2011-05-01

    Driven by environmental concerns, new polymers based on renewable resources are arriving on the market to replace conventional polymers, obtained from petroleum, for different applications like food packaging. One of the most prominent polymers among these materials is poly(lactic acid) (PLA), a biodegradable, thermoplastic, aliphatic polyester derived from renewable resources, such as corn starch (in the USA) or sugarcanes (in the rest of the world). However this polymer presents different disadvantages and especially low gas barrier properties [1]. Thermal crystallization can be used to increase its gas barrier properties but long times are necessary [2] and are not compatible with an industrial process. Another way to increase the gas barrier properties consists in stretching the film in order to increase its crystallinity and so its diffusion coefficient. We have prepared stretched PLA films with different stretch ratio and we have studied the effect of the stretching parameters on the gas barrier properties of PLA films. Finally we compared this process with the isothermal crystallization process by taking into account the crystallinity degree and the crystalline morphology.

  14. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds.

    PubMed

    Marei, Narguess H; El-Sherbiny, Ibrahim M; Lotfy, Ahmed; El-Badawy, Ahmed; El-Badri, Nagwa

    2016-12-01

    Electrospinning of polymers is the most commonly used technique for nanofiber fabrication. polylactic acid (PLA) and polycaprolactone (PCL) have been shown to be ideal for nanofiber preparation in various biomedical applications, due to characteristics such as biodegradablity and their ability to promote the cell growth, similar to native tissues. The aim of this study was to develop biocompatible and biodegradable PLA and PCL-based nanofibrous scaffolds for enhancing stem cell growth and proliferation. The scaffolds were prepared by electrospinning, and their physicochemical properties were studied using Fourier Transform Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The surface morphology of the developed scaffolds was determined using scanning electron microscopy (SEM). Mesenchymal stem cells (MSCs), derived from both adipose tissue and bone marrow, were seeded onto the prepared nanofibrous scaffolds. The effect of scaffold type, and structural characteristics on survival and proliferation of MSCs were evaluated. Our results show that after full physicochemical characterization of PCL and PLA nanofibrous scaffolds both were safe and non-toxic to the evaluated cells and both scaffolds supported cell attachment and proliferation of bone marrow and adipose tissue-derived MSCs.

  15. Axially aligned 3D nanofibrous grafts of PLA-PCL for small diameter cardiovascular applications.

    PubMed

    Sankaran, Krishna Kumar; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2014-01-01

    Axially aligned nanofibrous matrices were evaluated as small diameter cardiovascular grafts. Grafts were prepared using the poly(L-lactic acid) (PLA) and poly(ε-caprolactone) (PCL) physical blends in the ratios of 75:25 and 25:75 with the dimension of (40 × 0.2 × 4) millimeter by electrospinning using dynamic collector (1500 RPM). Hydrophobicity and tensile stress were significantly higher in PLA-PCL (75:25), whereas tensile strain and fiber density were significantly higher in PLA-PCL (25:75). Properties such as anastomatic strength porosity, average pore size, degradation with retained fiber orientation, and thromboresistivity were comparable between blends. Human umbilical vascular endothelial cells (HUVEC) adhesion on the scaffolds was observed within 24 h. Cell viability and proliferation were rationally influenced by the aligned nanofibers. Gene expression reveals the grafts thromboresistivity, elasticity, and aided neovascularization. Thus, these scaffolds could be an ideal candidate for small diameter blood vessel engineering.

  16. Unprecedented access to strong and ductile poly(lactic acid) by introducing In Situ Nanofibrillar Poly(butylene succinate) for green packaging.

    PubMed

    Xie, Lan; Xu, Huan; Niu, Ben; Ji, Xu; Chen, Jun; Li, Zhong-Ming; Hsiao, Benjamin S; Zhong, Gan-Ji

    2014-11-10

    The notion of toughening poly(lactic acid) (PLA) by adding flexible biopolymers has generated enormous interest but has yielded few desirable advances, mainly blocked by the sacrifice of strength and stiffness due to uncontrollable phase morphology and poor interfacial interactions. Here the phase control methodology, that is, intense extrusion compounding followed by "slit die extrusion-hot stretching-quenching" technique, was proposed to construct well-aligned, stiff poly(butylene succinate) (PBS) nanofibrils in the PLA matrix for the first time. We show that generating nanosized discrete droplets of PBS phase during extrusion compounding is key to enable the development of in situ nanofibrillar PBS assisted by the shearing/stretching field. The size of PBS nanofibrils strongly dependent on the PBS content, showing an increased average diameter from 83 to 116 and 236 nm for the composites containing 10, 20, and 40 wt % nanofibrils, respectively. More importantly, hybrid shish-kebab superstructure anchoring ordered PLA kebabs were induced by the PBS nanofibrils serving as the central shish, conferring the creation of tenacious interfacial crystalline ligaments. The exceptional combination of strength, modulus, and ductility for the composites loaded 40 wt % PBS nanofibrils were demonstrated, outperforming pure PLA with the increments of 31, 51, and 72% in strength, modulus, and elongation at break (56.4 MPa, 1702 MPa, and 92.4%), respectively. The high strength, modulus, and ductility are unprecedented for PLA and are in great potential need for packaging applications.

  17. Nanostructured poly (lactic acid) electrospun fiber with high loadings of TiO2 nanoparticles: Insights into bactericidal activity and cell viability.

    PubMed

    Toniatto, T V; Rodrigues, B V M; Marsi, T C O; Ricci, R; Marciano, F R; Webster, T J; Lobo, A O

    2017-02-01

    Researchers have been looking for modifying surfaces of polymeric biomaterials approved by FDA to obtain nanofeatures and bactericidal properties. If modified, it would be very interesting because the antibiotic administration could be reduced and, therefore, the bacterial resistance. Here, we report the electrospinning of poly (lactic acid) (PLA) with high loadings of titanium dioxide nanoparticles (TiO2, 1-5wt%) and their bactericidal properties. TiO2 nanoparticles have been recognized for a long time for their antibacterial, low cost and self-cleaning properties. However, their ability to reduce bacteria functions when used in polymers has not been well studied to date. In this context, we aimed here to generate nanostructured PLA electrospun fiber-TiO2 nanoparticle composites for further evaluation of their bactericidal activity and cell viability. TEM and SEM micrographs revealed the successful electrospinning of PLA/TiO2 and the generation of polymer-TiO2 nanostructures. When increasing the TiO2 concentration, we observed a proportional increase in the nanoparticle density along the fiber and surface. The nanostructured PLA/TiO2 nanofibers showed no mammalian cell toxicity and, most importantly, possessed bactericidal activity with higher TiO2 loads. Such results suggest that the present PLA electrospun fiber-TiO2 nanoparticle composites should be further studied for a wide range of biomedical applications.

  18. Carbon composite micro- and nano-tubes-based electrodes for detection of nucleic acids

    PubMed Central

    2011-01-01

    The first aim of this study was to fabricate vertically aligned multiwalled carbon nanotubes (MWCNTs). MWCNTs were successfully prepared by using plasma enhanced chemical vapour deposition. Further, three carbon composite electrodes with different content of carbon particles with various shapes and sizes were prepared and tested on measuring of nucleic acids. The dependences of adenine peak height on the concentration of nucleic acid sample were measured. Carbon composite electrode prepared from a mixture of glassy and spherical carbon powder and MWCNTs had the highest sensitivity to nucleic acids. Other interesting result is the fact that we were able to distinguish signals for all bases using this electrode. PMID:21711910

  19. Compositions containing amino acids, phosphate and manganese and their uses

    DOEpatents

    Daly, Michael J.; Gaidamakova, Elena K.

    2016-01-12

    The invention provides methods of producing vaccines directed against microorganisms, with the methods comprising culturing, harvesting and/or suspending the microorganism in the presence of a radiation-protective composition and irradiating the bacteria or viruses with a dose of radiation sufficient to render the microorganism replication-deficient and/or non-infective. The radiation-protective compositions used in the methods of the present invention comprise at least one nucleoside, at least one antioxidant and at least one small peptide. The invention also provides methods of rendering bacteria in culture resistant to ionizing radiation (IR), with these methods comprising culturing the bacteria in the presence of a radiation-protective composition.

  20. Fatty acid composition and extreme temperature tolerance following exposure to fluctuating temperatures in a soil arthropod.

    PubMed

    van Dooremalen, Coby; Suring, Wouter; Ellers, Jacintha

    2011-09-01

    Ectotherms commonly adjust their lipid composition to ambient temperature to counteract detrimental thermal effects on lipid fluidity. However, the extent of lipid remodeling and the associated fitness consequences under continuous temperature fluctuations are not well-described. The objective of this study was to investigate the effect of repeated temperature fluctuations on fatty acid composition and thermal tolerance. We exposed the springtail Orchesella cincta to two constant temperatures of 5 and 20°C, and a continuously fluctuating treatment between 5 and 20°C every 2 days. Fatty acid composition differed significantly between constant low and high temperatures. As expected, animals were most cold tolerant in the low temperature treatment, while heat tolerance was highest under high temperature. Under fluctuating temperatures, fatty acid composition changed with temperature initially, but later in the experiment fatty acid composition stabilized and closely resembled that found under constant warm temperatures. Consistent with this, heat tolerance in the fluctuating temperature treatment was comparable to the constant warm treatment. Cold tolerance in the fluctuating temperature treatment was intermediate compared to animals acclimated to constant cold or warmth, despite the fact that fatty acid composition was adjusted to warm conditions. This unexpected finding suggests that in animals acclimated to fluctuating temperatures an additional underlying mechanism is involved in the cold shock response. Other aspects of homeoviscous adaptation may protect animals during extreme cold. This paper forms a next step to fully understand the functioning of ectotherms in more thermally variable environments.

  1. Composition of antioxidants and amino acids in Stevia leaf infusions.

    PubMed

    Periche, Angela; Koutsidis, Georgios; Escriche, Isabel

    2014-03-01

    Stevia, a non-caloric natural sweetener with beneficial properties and considerable antioxidants and amino acids, is increasingly consumed as an infusion. This work evaluates the influence of the conditions (temperature: 50, 70 or 90 °C and time: 1, 5, 20 or 40 min) applied to obtain Stevia infusions, on antioxidants (total phenols, flavonoids and antioxidant activity) and amino acids. The total concentration of the eleven amino acids found was 11.70 mg/g in dried leaves and from 6.84 to 9.11 mg/g per gram of Stevia in infusions. However, infusions showed higher levels of certain amino acids (alanine, asparagine, leucine and proline), and greater values of the three antioxidant parameters in comparison with dry leaves. Temperature had more influence (minimum values at 50 °C and maximum at 90 °C) than time in the case of antioxidants. At 90 °C there were no important increases in the extraction of antioxidant compounds after 5 min; each gram of Stevia had 117 mg trolox (total antioxidant activity), 90 mg gallic acid (total phenols) and 56 mg catechin equivalents (flavonoids). Varying the temperature and time conditions no notable differences were observed in the concentrations of the majority of amino acids. However, the infusion treatment at 90 °C for 5 min was the best, as it gave the highest yield of 8 of the 11 amino acids. Therefore, with respect to the compounds analyzed in this study, the best way to obtain Stevia leaf infusions is the same as the domestic process, almost boiling water for a short time.

  2. Fatty Acid Composition of Escherichia coli as a Possible Controlling Factor of the Minimal Growth Temperature

    PubMed Central

    Shaw, Maxwell K.; Ingraham, John L.

    1965-01-01

    Shaw, Maxwell K. (University of California, Davis), and John L. Ingraham. Fatty acid composition of Escherichia coli as a possible controlling factor of the minimal growth temperature. J. Bacteriol. 90:141–146. 1965.—If Escherichia coli ML30 is shifted from 37 to 10 C during exponential growth in glucose minimal medium, a 4.5-hr lag results. During this lag, the proportion of unsaturated fatty acids increases in the cellular lipids. However, the adjustment of the fatty acid composition does not appear to be prerequisite to growth at 10 C. If shifts are made to 10 C into minimal medium containing glucose after starvation for glucose at 37 C for 0.5 and 16 hr, the lag periods at 10 C are 4.5 and 6 hr, respectively. Withholding glucose during the lag periods does not affect the duration of the lag periods, but no change in fatty acid composition occurs if glucose is not present. Supplementing the medium with glucose after the lag period permits immediate growth at 10 C; however, the fatty acid composition is still typical of cells grown at 37 C. It is concluded that the fatty acid composition of cells does not determine the minimal temperature of growth. PMID:16562009

  3. Texture of butter from cows with different milk fatty acid compositions.

    PubMed

    Bobe, G; Hammond, E G; Freeman, A E; Lindberg, G L; Beitz, D C

    2003-10-01

    Milk fatty acid composition and textural properties of butter are known to be affected by the cows' diets. We examined the phenotypic variation in milk fatty acid composition among cows fed the same diet to see if the variation was sufficient to produce butter with different textural properties. Ten cows were selected that tested higher (n = 5) or lower (n = 5) in their proportion of milk unsaturated fatty acids. Milk samples were collected a week after testing, and butter was prepared from the individual samples. Milk and butter samples were again analyzed for fatty acid composition. Butter at 5 degrees C was evaluated by a sensory panel for spreadability and by a texture analyzer at both 5 and 23 degrees C for hardness and adhesiveness. Milk and butter samples from cows with a more unsaturated milk fatty acid composition had a lower atherogenic index, and the butter samples were more spreadable, softer, and less adhesive. Thus, phenotypic variation in milk fatty acid composition among cows fed the same diet is sufficient to produce butter with different textural properties.

  4. Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes.

    PubMed

    Zapata-Martínez, J; Medina, M F; Gramajo-Bühler, M C; Sánchez-Toranzo, G

    2016-08-01

    Rhinella arenarum oocytes can be artificially activated, a process known as parthenogenesis, by a sesquiterpenic lactone of the guaianolide group, dehydroleucodine (DhL). Transient increases in the concentration of cytosolic Ca2+ are essential to trigger egg activation events. In this sense, the 1-4-5 inositol triphosphate receptors (IP3R) seem to be involved in the Ca2+ transient release induced by DhL in this species. We analyzed the involvement of phosphoinositide metabolism, especially the participation of phospholipase A2 (PLA2) and phospholipase C (PLC) in DhL-induced activation. Different doses of quinacrine, aristolochic acid (ATA) (PLA2 inhibitors) or neomycin, an antibiotic that binds to PIP2, thus preventing its hydrolysis, were used in mature Rhinella arenarum oocytes. In order to assay the participation of PI-PLC and PC- PLC we used U73122, a competitive inhibitor of PI-PLC dependent events and D609, an inhibitor of PC-PLC. We found that PLA2 inhibits quinacrine more effectively than ATA. This difference could be explained by the fact that quinacrine is not a specific inhibitor for PLA2 while ATA is specific for this enzyme. With respect to the participation of PLC, a higher decrease in oocyte activation was detected when cells were exposed to neomycin. Inhibition of PC-PLC with D609 and IP-PLC with U73122 indicated that the last PLC has a significant participation in the effect of DhL-induced activation. Results would indicate that DhL induces activation of in vitro matured oocytes of Rhinella arenarum by activation of IP-PLC, which in turn may induce IP3 formation which produces Ca2+ release.

  5. Prognostic value of PLA2R autoimmunity detected by measurement of anti-PLA2R antibodies combined with detection of PLA2R antigen in membranous nephropathy: A single-centre study over 14 years

    PubMed Central

    Mihout, Fabrice; Cachanado, Marine; Brocheriou, Isabelle

    2017-01-01

    Introduction Clinical course of membranous nephropathy (MN) is difficult to predict. Measurement of circulating anti-PLA2R autoantibodies (PLA2R-Ab) and detection in immune deposits of PLA2R antigen (PLA2R-Ag) are major advances in disease understanding. We evaluated the clinical significance of these biomarkers. Methods In this 14-year retrospective study, we collected data from 108 MN patients and assessed the relationship between clinical course, PLA2R-Ab and PLA2R-Ag. We also assessed THSD7A status. Results Eighty-five patients suffered from primary MN (PMN) and 23 patients from a secondary form. The median follow-up was 30.4 months [interquartile range, 17.7;56.7]. Among the 77 patients with PMN and available serum and/or biopsy, 69 (89.6%) had PLA2R-related disease as shown by anti-PLA2R-Ab and/or PLA2R-Ag, while 8 patients (8/77, 10.4%) were negative for both. There was no significant difference between these two groups in age at diagnosis and outcome assessed by proteinuria, serum albumin level and eGFR. Two of the 8 negative patients were positive for THSD7A. In patients with PLA2R related PMN, younger age, lower proteinuria, higher eGFR, and lower PLA2R-Ab level at baseline and after 6 months were associated with remission of proteinuria. Initial PLA2R-Ab titer ≤ 97.6 RU/mL and complete depletion of PLA2R-Ab within 6-months were significantly associated with spontaneous remission at the end of follow-up. In rituximab treated patients, lower PLA2R-Ab titer at initiation of treatment, and absence of PLA2R-Ab and higher serum albumin level at 3 months were significantly associated with remission. Noticeably, 81.8% of the patients who achieved remission completely cleared PLA2R-Ab. Depletion of PLA2R-Ab and increase of serum albumin level preceded the decrease of proteinuria. Conclusion Assessment of PLA2R autoimmunity is essential for patient management. Combination of PLA2R-Ab and PLA2R-Ag increases diagnosis sensitivity. PLA2R-Ab titer is a biomarker of

  6. Plasma and neutrophil fatty acid composition in advanced cancer patients and response to fish oil supplementation.

    PubMed

    Pratt, V C; Watanabe, S; Bruera, E; Mackey, J; Clandinin, M T; Baracos, V E; Field, C J

    2002-12-02

    Metabolic demand and altered supply of essential nutrients is poorly characterised in patients with advanced cancer. A possible imbalance or deficiency of essential fatty acids is suggested by reported beneficial effects of fish oil supplementation. To assess fatty acid status (composition of plasma and neutrophil phospholipids) in advanced cancer patients before and after 14 days of supplementation (12+/-1 g day(-1)) with fish (eicosapentaenoic acid, and docosahexaenoic acid) or placebo (olive) oil. Blood was drawn from cancer patients experiencing weight loss of >5% body weight (n=23). Fatty acid composition of plasma phospholipids and the major phospholipid classes of isolated neutrophils were determined using gas liquid chromatography. At baseline, patients with advanced cancer exhibited low levels (<30% of normal values) of plasma phospholipids and constituent fatty acids and elevated 20 : 4 n-6 content in neutrophil phospholipids. High n-6/n-3 fatty acid ratios in neutrophil and plasma phospholipids were inversely related to body mass index. Fish oil supplementation raised eicosapentaenoic acid and docosahexaenoic acid content in plasma but not neutrophil phospholipids. 20 : 4 n-6 content was reduced in neutrophil PI following supplementation with fish oil. Change in body weight during the supplementation period related directly to increases in eicosapentaenoic acid in plasma. Advanced cancer patients have alterations in lipid metabolism potentially due to nutritional status and/or chemotherapy. Potential obstacles in fatty acid utilisation must be addressed in future trials aiming to improve outcomes using nutritional intervention with fish oils.

  7. Amino acid composition of cadmium-binding protein induced in a marine diatom

    SciTech Connect

    Maita, Y.; Kawaguchi, S. )

    1989-09-01

    Organisms living in environments polluted with heavy metals develop tolerance against these contaminants. The tolerance has been attributed to the ability to synthesize metal binding substances. These recent findings imply metal binding complexes from animals and plants, although having very similar functional properties, may have entirely different amino acid compositions. Researchers reported that cadystin from fission yeast, Schizosaccharomyces pombe was composed of only glutamic acid, cysteine, and glycine. A year later, a heavy metal binding substance was isolated from Rauwolfia serpetina which contains only Glu, Cys, and Gly. Heavy metal binding complexes isolated from the water hyacinth and morning glory Datura innoxia also showed an amino acid composition similar to cadystin or phytochelatin. In this study, the cadmium binding protein induced in the marine diatom, Phaeodactylum tricornutum, was isolated and purified and its amino acid composition determined.

  8. Lactic acid fermentation by cells immobilised on various porous cellulosic materials and their alginate/poly-lactic acid composites.

    PubMed

    Kumar, Mrinal Nishant; Gialleli, Angelika-Ioanna; Masson, Jean Bernard; Kandylis, Panagiotis; Bekatorou, Argyro; Koutinas, Athanasios A; Kanellaki, Maria

    2014-08-01

    Porous delignified cellulose (or tubular cellulose, abbr. TC) from Indian Mango (Mangifera indica) and Sal (Shorea robusta) wood and Rice husk, and TC/Ca-alginate/polylactic acid composites, were used as Lactobacillus bulgaricus immobilisation carriers leading to improvements in lactic acid fermentation of cheese whey and synthetic lactose media, compared to free cells. Specifically, shorter fermentation rates, higher lactic acid yields (g/g sugar utilised) and productivities (g/Ld), and higher amounts of volatile by-products were achieved, while no significant differences were observed on the performance of the different immobilised biocatalysts. The proposed biocatalysts are of food grade purity, cheap and easy to prepare, and they are attractive for bioprocess development based on immobilised cells. Such composite biocatalysts may be used for the co-immobilisation of different microorganisms or enzymes (in separate layers of the biocatalyst), to efficiently conduct different types of fermentations in the same bioreactor, avoiding inhibition problems of chemical or biological (competition) nature.

  9. Genotype, production system and sex effects on fatty acid composition of meat from goat kids.

    PubMed

    Özcan, Mustafa; Demirel, Gulcan; Yakan, Akın; Ekiz, Bülent; Tölü, Cemil; Savaş, Türker

    2015-02-01

    Two trials were performed to assess the meat fatty acid profile of goat kids from different genotypes, production systems and sex. In the first trial, genotype effect was determined in 24 suckling male kids from Turkish Saanen, Maltese and Gokceada breeds. In the second trial, male and female Gokceada Goat kids were used to compare the effect of extensive and semi-intensive production systems on fatty acid composition of meat. Significant genotype effect was observed in the percentages of myristic acid (C14:0), palmitic acid (C16:0), oleic acid (C18:1 n-9), linolenic acid (C18:3 n-3), arachidonic acid (C20:4 n-6) and docosahexaenoic acid (C22:6 n-3), despite no differences on the ratios of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) and n-6/n-3 (P > 0.05). The effect of production system had also significant effects on fatty acids, but sex only influenced significantly stearic acid (C18:0), C18:1 n-9 and C18:3 n-3 fatty acids and total PUFA level and PUFA/SFA ratio. This study confirms that dairy breeds are prone to produce higher levels of unsaturated fatty acids in their muscle. Meanwhile, meat from Gokceada goat kids, which is one of the indigenous breeds in Turkey, had similar PUFA/SFA and n-6/n-3 ratios to Turkish Saanen and Maltase.

  10. Potential of a PLA-PEO-PLA-based scaffold for skin tissue engineering: in vitro evaluation.

    PubMed

    Garric, Xavier; Guillaume, Olivier; Dabboue, Hinda; Vert, Michel; Molès, Jean-Pierre

    2012-01-01

    This study aimed to investigate the in vitro behaviour of porous degradable scaffolds of the PLA-PEO-PLA-type designed prior to in vivo evaluation for skin tissue engineering. Two tri-block co-polymers were synthesized from PEO and DL-lactide and their degradation was studied under conditions that mimic a cutaneous wound environment. 3-D porous scaffolds with interconnected pores were fabricated using the salt leaching method and characterized by ESEM and Hg porosimetry. The degrading action of gamma sterilization was studied on the co-polymers. The less degraded one was selected to make porous scaffolds on which human dermal fibroblasts and human epidermal keratinocytes were cultured. The capacity of such scaffolds to act as a dermal equivalent was also considered. Colonization by human dermal fibroblasts was shown after hematoxylin staining and the production of major proteins normally found in the extracellular matrix was assessed by Western blotting of protein extracts. Finally, a skin substitute was generated by seeding human keratinocytes on the dermal equivalent and a new epidermis was characterized by using immuno-histological staining. Results show that gamma sterilization and that degradation under conditions that mimic skin wound healing were acceptable. The fact that fibroblasts produce extracellular matrix and that keratinocytes generated an epidermal barrier argues in favour of the interest of this type of porous scaffold for skin reconstruction.

  11. Assessment of oil content and fatty acid composition variability in two economically important Hibiscus species.

    PubMed

    Wang, Ming Li; Morris, Brad; Tonnis, Brandon; Davis, Jerry; Pederson, Gary A

    2012-07-04

    The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.

  12. In vitro biostability evaluation of polyurethane composites in acidic, basic, oxidative, and neutral solutions.

    PubMed

    Lyu, Suping; Schley, James; Loy, Brian; Luo, Lian; Hobot, Chris; Sparer, Randall; Untereker, Darrel; Krzeszak, Jason

    2008-05-01

    New and improved properties can often be achieved by compounding two or more different but compatible materials. But, can failure possibility also be increased by such a compounding strategy? In this article, we compared the in vitro biostability of composites with that of the pure polymer. We tested three model composites in oxidative, acidic, basic, and neutral solutions. We found that oxidation degradation was much more profound in the composites than in the corresponding pure polymer. This degradation seemed to be an intrinsic property of composite materials. We also observed the well documented interfacial debonding between filler and matrix and its effects on the mechanical reinforcement of the hydrated composites. The improvements in acid and base resistance were also observed.

  13. Enhanced in vitro cell activity on silicon-doped vaterite/poly(lactic acid) composites.

    PubMed

    Obata, Akiko; Tokuda, Shingo; Kasuga, Toshihiro

    2009-01-01

    A biodegradable composite with silicon-species releasability was prepared using poly(l-lactic acid) (PLLA) and silicon-doped vaterite (SiV) particles. SiV with particle diameters of approximately 1 mum was prepared using aminopropyltriethoxysilane (APTES) as the silicon species by a carbonation process and then mixed with PLLA in methylene chloride according to a SiV to PLLA weight ratio of 1:2, resulting in the preparation of composite slurry. A composite film was prepared by dipping a cover glass in the slurry. The composite films were incubated in a culture medium for 7 days and the silicon concentration of the medium was measured to estimate the species releasability of the composites. A trace amount of silicon species was continuously released from the composites for 7 days, the amount depending on the content of APTES in SiV. On the composite releasing silicon species, mouse osteoblast-like cells (MC3T3-E1 cells) were significantly stimulated to proliferate and differentiate in comparison with those on a composite containing no silicon species. The proliferation of the cells on the composites releasing larger amounts of silicon species (0.51mgl(-1)day(-1)) was higher than that on the composites releasing smaller amount of the species (0.21mgl(-1)day(-1)). The silicon species in the composites were effective in enhancing the cellular functions. The composites were expected to be useful as a scaffold material for bone tissue engineering.

  14. Electrophoretic deposition of hyaluronic acid and composite films for biomedical applications

    NASA Astrophysics Data System (ADS)

    Ma, R.; Li, Y.; Zhitomirsky, I.

    2010-06-01

    Hyaluronic acid (HYH) is a natural biopolymer, which has tremendous potential for various biomedical applications. Electrophoretic deposition (EPD) methods have been developed for the fabrication of HYH films and composites. New methods for the immobilization of drugs and proteins have been utilized for the fabrication of organic composites. Electrophoretic deposition enabled the fabrication of organic-inorganic composites containing bioceramics and bioglass in the HYH matrix. It was shown that the deposition yield, microstructure, and composition of the films can be controlled. Potential applications of EPD for the surface modification of biomedical implants and fabrication of biosensors are highlighted.

  15. Synthesis and swelling behavior of Protein-g-poly Methacrylic acid/kaolin superabsorbent hydrogel composites

    NASA Astrophysics Data System (ADS)

    Sadeghi, Mohammad

    2008-08-01

    A novel superabsorbent hydrogel composite based on Collagen have been prepared via graft copolymerization of Methacrylic acid (MAA) in the presence of kaolin powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The composite structure was confirmed using FTIR spectroscopy. A new absorption band at 1728 cm-1 in the composite spectrum confirmed kaolin-organic polymer linkage. The effect of kaolin amount and MBA concentration showed that with increasing of these parameters, the water absorbency of the superabsorbent composite was decreased. The swelling measurements of the hydrogels were conducted in aqueous salt solutions.

  16. FATTY ACID COMPOSITION AND TOCOPHEROL CONTENT OF PUMPKIN SEED OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pumpkin seed oil (PSO) has high tocopherol content (TC) and unsaturated fatty acids (UFA) making it well-suited for improving human nutrition. PSO has been implicated in preventing prostate growth, retarding hypertension, mitigating hypercholesterolemia and arthritis, improved bladder compliance, a...

  17. Amino acid composition and amino acid-metabolic network in supragingival plaque.

    PubMed

    Washio, Jumpei; Ogawa, Tamaki; Suzuki, Keisuke; Tsukiboshi, Yosuke; Watanabe, Motohiro; Takahashi, Nobuhiro

    2016-01-01

    Dental plaque metabolizes both carbohydrates and amino acids. The former can be degraded to acids mainly, while the latter can be degraded to various metabolites, including ammonia, acids and amines, and associated with acid-neutralization, oral malodor and tissue inflammation. However, amino acid metabolism in dental plaque is still unclear. This study aimed to elucidate what kinds of amino acids are available as metabolic substrates and how the amino acids are metabolized in supragingival plaque, by a metabolome analysis. Amino acids and the related metabolites in supragingival plaque were extracted and quantified comprehensively by CE-TOFMS. Plaque samples were also incubated with amino acids, and the amounts of ammonia and amino acid-related metabolites were measured. The concentration of glutamate was the highest in supragingival plaque, while the ammonia-production was the highest from glutamine. The obtained metabolome profile revealed that amino acids are degraded through various metabolic pathways, including deamination, decarboxylation and transamination and that these metabolic systems may link each other, as well as with carbohydrate metabolic pathways in dental plaque ecosystem. Moreover, glutamine and glutamate might be the main source of ammonia production, as well as arginine, and contribute to pH-homeostasis and counteraction to acid-induced demineralization in supragingival plaque.

  18. Snorkeling preferences foster an amino acid composition bias in transmembrane helices.

    PubMed

    Chamberlain, Aaron K; Lee, Yohan; Kim, Sanguk; Bowie, James U

    2004-05-28

    By analyzing transmembrane (TM) helices in known structures, we find that some polar amino acids are more frequent at the N terminus than at the C terminus. We propose the asymmetry occurs because most polar amino acids are better able to snorkel their polar atoms away from the membrane core at the N terminus than at the C terminus. Two findings lead us to this proposition: (1) side-chain conformations are influenced strongly by the N or C-terminal position of the amino acid in the bilayer, and (2) the favored snorkeling direction of an amino acid correlates well with its N to C-terminal composition bias. Our results suggest that TM helix predictions should incorporate an N to C-terminal composition bias, that rotamer preferences of TM side-chains are position-dependent, and that the ability to snorkel influences the evolutionary selection of amino acids for the helix N and C termini.

  19. Composition of fatty acids triacylglycerols and unsaponifiable matter in Calophyllum calaba L. oil from Guadeloupe.

    PubMed

    Crane, Sylvie; Aurore, Guylène; Joseph, Henry; Mouloungui, Zéphirin; Bourgeois, Paul

    2005-08-01

    The composition of the kernel oils of two Calophyllum species (Calophyllum calaba L. and Calophyllum inophyllum L.) was investigated. The physico-chemical properties and fatty acid composition of the kernel oils were examined. In two species, oleic acid C18:1 (39.1-50%) is the dominating fatty acid followed by linoleic acid C18:2 (21.7-31.1%) as the second major fatty acid. Stearic C18:0 (13.4-14.3%) and palmitic C16:0 (11-13.7%) acids are the major saturates. The oils contains an appreciable amount of unsaturated fatty acids (70.8-73.10%). Most of the fatty acids are present as triacylglycerol (76.7-84%), twenty one triacylglycerols are detected with predominantly unsaturated triacylglycerols. The total unsaponifiable content, its general composition and the identity of the components of the sterol and tocopherol fractions are presented. In both species, analysis of the unsaponifiable fractions revealed the preponderance of phytosterols, mainly stigmasterol (35.8-45.1%) and beta-sitosterol (41.1-43.1%). Among the eight tocopherols and tocotrienols present in two species, variations exist; alpha-tocopherol (183 mg/kg) is the main tocopherol in Calophyllum calaba L. and Delta-tocotrienol (236 mg/kg) is the dominant tocotrienol in Calophyllum inophyllum L.

  20. The effect of chitosan on the flammability and thermal stability of polylactic acid/ammonium polyphosphate biocomposites.

    PubMed

    Chen, Chen; Gu, Xiaoyu; Jin, Xiaodong; Sun, Jun; Zhang, Sheng

    2017-02-10

    This work reports our recent efforts on introducing chitosan (CS) in association with ammonium polyphosphate (APP) into polylactic acid (PLA) by melt blending to improve the flame retardancy of the biocomposites. The flammability of the composites was characterized by limiting oxygen index (LOI), UL-94 vertical burning test and cone calorimetry test (CONE). The results showed that the PLA sample containing 2% CS and 5% APP achieved the maximal LOI value of 33.1, passed the UL-94 V-0 rating, and decreased the peak heat release rate to 425.6kW/m(2). The morphology characterization of char residue by scanning electron microscope indicated a dense, homogeneous and continuous residue char could be formed by the presence of APP and CS in PLA. Fourier transform infrared spectroscopy and thermal gravity analysis suggested that CS could act as a novel carbon agent owning to its high content of carbon atoms and multi-hydroxyl groups, and the interaction between CS and APP could provide synergistic effects in improving the flame retardancy of PLA biocomposites. X-ray diffraction and differential scanning calorimetry results demonstrated that the presence of APP and CS could promote the crystallization of PLA.

  1. Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection.

    PubMed

    Weingarden, Alexa R; Chen, Chi; Bobr, Aleh; Yao, Dan; Lu, Yuwei; Nelson, Valerie M; Sadowsky, Michael J; Khoruts, Alexander

    2014-02-15

    Fecal microbiota transplantation (FMT) has emerged as a highly effective therapy for refractory, recurrent Clostridium difficile infection (CDI), which develops following antibiotic treatments. Intestinal microbiota play a critical role in the metabolism of bile acids in the colon, which in turn have major effects on the lifecycle of C. difficile bacteria. We hypothesized that fecal bile acid composition is altered in patients with recurrent CDI and that FMT results in its normalization. General metabolomics and targeted bile acid analyses were performed on fecal extracts from patients with recurrent CDI treated with FMT and their donors. In addition, 16S rRNA gene sequencing was used to determine the bacterial composition of pre- and post-FMT fecal samples. Taxonomic bacterial composition of fecal samples from FMT recipients showed rapid change and became similar to the donor after the procedure. Pre-FMT fecal samples contained high concentrations of primary bile acids and bile salts, while secondary bile acids were nearly undetectable. In contrast, post-FMT fecal samples contained mostly secondary bile acids, as did non-CDI donor samples. Therefore, our analysis showed that FMT resulted in normalization of fecal bacterial community structure and metabolic composition. Importantly, metabolism of bile salts and primary bile acids to secondary bile acids is disrupted in patients with recurrent CDI, and FMT corrects this abnormality. Since individual bile salts and bile acids have pro-germinant and inhibitory activities, the changes suggest that correction of bile acid metabolism is likely a major mechanism by which FMT results in a cure and prevents recurrence of CDI.

  2. Evaluation of self-assembled HCPT-loaded PEG- b-PLA nanoparticles by comparing with HCPT-loaded PLA nanoparticles

    NASA Astrophysics Data System (ADS)

    Yang, Xiangrui; Wu, Shichao; Wang, Yange; Li, Yang; Chang, Di; Luo, Yin; Ye, Shefang; Hou, Zhenqing

    2014-12-01

    We present a dialysis technique to prepare the 10-hydroxycamptothecin (HCPT)-loaded nanoparticles (NPs) using methoxypolyethylene glycol-poly( d, l-lactide) (PEG- b-PLA) and PLA, respectively. Both HCPT-loaded PEG- b-PLA NPs and HCPT-loaded PLA NPs were characterized by differential scanning calorimetry (DSC), dynamic light scattering (DLS), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). The results showed that the HCPT-loaded PEG- b-PLA NPs and HCPT-loaded PLA NPs presented a hydrodynamic particle size of 120.1 and 226.8 nm, with a polydispersity index of 0.057 and 0.207, a zeta potential of -31.2 and -45.7 mV, drug encapsulation efficiency of 44.52% and 44.94%, and drug-loaded content of 7.42% and 7.49%, respectively. The HCPT-loaded PEG- b-PLA NPs presented faster drug release rate compared to the HCPT-loaded PLA NPs. The HCPT-loaded PEG- b-PLA NPs presented higher cytotoxicity than the HCPT-loaded PLA NPs. These results suggested that the HCPT-loaded PEG- b-PLA NPs presented better characteristics for drug delivery compared to HCPT-loaded PLA NPs.

  3. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: Implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Cao, Fang; Lee, Meehye

    2016-04-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls, and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C values of particle phase glyoxal and methylglyoxal are significantly larger than those previously reported for isoprene and other precursors. The values are consistently less negative in oxalic acid (C2, average -14.1‰), glyoxylic acid (-13.8‰), pyruvic acid (-19.4‰), glyoxal (-13.5‰), and methylglyoxal (-18.6‰) compared to other organic species (e.g., palmitic acid, -26.3‰), which can be explained by the kinetic isotope effects during atmospheric oxidation of pre-aged precursors (e.g., isoprene) and the subsequent gas-particle partitioning after the evaporation of clouds or wet aerosols. The δ13C values of C2 is positively correlated with C2 to organic carbon ratio, indicating that photochemical production of C2 is more pronounced than its degradation during long-range atmospheric transport. The isotopic results also suggest that aqueous phase oxidation of glyoxal and methylglyoxal is a major formation process of oxalic acid via the intermediates such as glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photochemically aged in the western North Pacific rim.

  4. Mechanical and thermal characterisation of poly (l-lactide) composites reinforced with hemp fibres

    NASA Astrophysics Data System (ADS)

    Shakoor, A.; Muhammad, R.; Thomas, N. L.; Silberschmidt, V. V.

    2013-07-01

    Polylactic acid (PLA) is the most promising in the bio-derived polymer's family. But its use can be constrained by its poor mechanical properties, poor thermal stability and processing difficulties. The objective of this research is to investigate and improve mechanical and dynamic thermal properties of PLA by developing PLA composites reinforced with natural fibres (hemp). Composites were prepared by melt blending of PLA with hemp fibres. Their properties were investigated using mechanical and dynamic thermal analysis. The elastic modulus increased significantly - from 4.1 ± 0.74 to 9.32 ± 0.86 (GPA) - when the weight fraction of hemp increased from 0 to 30(wt %). The storage modulus obtained by dynamic mechanical analysis increased from 2.20 to 4.58 (GPA) for the same change in the volume fraction of hemp. FE simulation of tensile testing and DMA were carried out to investigate the effect of strain rate and temperature on the observed properties respectively. The model was developed in the commercially available code MSC Marc mentate. The model validated all experimental results.

  5. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  6. Evaluation of polylactic acid nanoparticles safety using Drosophila model.

    PubMed

    Legaz, Sophie; Exposito, Jean-Yves; Lethias, Claire; Viginier, Barbara; Terzian, Christophe; Verrier, Bernard

    2016-10-01

    Cytotoxicity of nanoparticles and their sub-lethal effect on cell behavior and cell fate are a high topic of studies in the nanomaterial field. With an explosion of nanoparticle types (size, shape, polarity, stiffness, composition, etc.), Drosophila has become an attractive animal model for high throughput analysis of these nanocarriers in the drug delivery field with applications in cancer therapy, or simply to generate a fast and complete cytotoxic study of a peculiar nanoparticle. In respect to that, we have conducted an in cellulo study of poly(lactic acid) (PLA) nanoparticle cytotoxicity, and determined that near lethal nanoparticle doses, oxidative stress as well as P53 and ATP pathways may lead to cell cycle arrest at G1, and ultimately to cell death. Neither viability nor the development of Drosophila larvae are affected by the ingestion of PLA nanoparticles at sub-lethal concentrations. Drosophila will be a useful model to study PLA and PLA-modified nanoparticle toxicity, and nanoparticle fate after ingestion.

  7. Characterization of Fatty Acid Composition in Bone Marrow Fluid From Postmenopausal Women: Modification After Hip Fracture.

    PubMed

    Miranda, Melissa; Pino, Ana María; Fuenzalida, Karen; Rosen, Clifford J; Seitz, Germán; Rodríguez, J Pablo

    2016-10-01

    Bone marrow adipose tissue (BMAT) is associated with low bone mass, although the functional consequences for skeletal maintenance of increased BMAT are currently unclear. BMAT might have a role in systemic energy metabolism, and could be an energy source as well as an endocrine organ for neighboring bone cells, releasing cytokines, adipokines and free fatty acids into the bone marrow microenvironment. The aim of the present report was to compare the fatty acid composition in the bone marrow supernatant fluid (BMSF) and blood plasma of postmenopausal women women (65-80 years old). BMSF was obtained after spinning the aspirated bone marrow samples; donors were classified as control, osteopenic or osteoporotic after dual-energy X-ray absorptiometry. Total lipids from human bone marrow fluid and plasma were extracted, converted to the corresponding methyl esters, and finally analyzed by a gas chromatographer coupled with a mass spectrometer. Results showed that fatty acid composition in BMSF was dynamic and distinct from blood plasma, implying significance in the locally produced lipids. The fatty acid composition in the BMSF was enriched in saturated fatty acid and decreased in unsaturated fatty acids as compared to blood plasma, but this relationship switched in women who suffered a hip fracture. On the other hand, there was no relationship between BMSF and bone mineral density. In conclusion, lipid composition of BMSF is distinct from the circulatory compartment, most likely reflecting the energy needs of the marrow compartment. J. Cell. Biochem. 117: 2370-2376, 2016. © 2016 Wiley Periodicals, Inc.

  8. Fatty acid, amino acid, and mineral composition of four common vetch seeds on Qinghai-Tibetan plateau.

    PubMed

    Mao, Zhuxin; Fu, Hua; Nan, Zhibiao; Wan, Changgui

    2015-03-15

    The chemical composition of four common vetch (Vicia sativa L.) seeds was investigated to determine their nutrition value. The result shows that the seeds are low in lipid (1.55-2.74% of dry weight), and high in the unsaturated fatty acid (74.51-77.36% of total fatty acid). The ratio of essential amino acid to non-essential amino acid (0.62-0.69) is even higher than the amount (0.38) recommended by World Health Organization. Besides, the seeds are also found rich in Mg, Mn and Cu, but with a low ratio of Ca to P (0.24-0.73), which may increase the risk of the mineral element toxicity. The results indicate that the four common vetch seeds could be taken as an alternative food source, but the possible toxic effect should be taken into consideration.

  9. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    NASA Astrophysics Data System (ADS)

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria.

  10. Cd(II) Sorption on Montmorillonite-Humic acid-Bacteria Composites

    PubMed Central

    Du, Huihui; Chen, Wenli; Cai, Peng; Rong, Xingmin; Dai, Ke; Peacock, Caroline L.; Huang, Qiaoyun

    2016-01-01

    Soil components (e.g., clays, bacteria and humic substances) are known to produce mineral-organic composites in natural systems. Herein, batch sorption isotherms, isothermal titration calorimetry (ITC), and Cd K-edge EXAFS spectroscopy were applied to investigate the binding characteristics of Cd on montmorillonite(Mont)-humic acid(HA)-bacteria composites. Additive sorption and non-additive Cd(II) sorption behaviour is observed for the binary Mont-bacteria and ternary Mont-HA-bacteria composite, respectively. Specifically, in the ternary composite, the coexistence of HA and bacteria inhibits Cd adsorption, suggesting a “blocking effect” between humic acid and bacterial cells. Large positive entropies (68.1 ~ 114.4 J/mol/K), and linear combination fitting of the EXAFS spectra for Cd adsorbed onto Mont-bacteria and Mont-HA-bacteria composites, demonstrate that Cd is mostly bound to bacterial surface functional groups by forming inner-sphere complexes. All our results together support the assertion that there is a degree of site masking in the ternary clay mineral-humic acid-bacteria composite. Because of this, in the ternary composite, Cd preferentially binds to the higher affinity components-i.e., the bacteria. PMID:26792640

  11. Prebiotic syntheses of vitamin coenzymes: II. Pantoic acid, pantothenic acid, and the composition of coenzyme A

    NASA Technical Reports Server (NTRS)

    Miller, S. L.; Schlesinger, G.

    1993-01-01

    Pantoic acid can by synthesized in good prebiotic yield from isobutyraldehyde or alpha-ketoisovaleric acid + H2CO + HCN. Isobutyraldehyde is the Strecker precursor to valine and alpha-ketoisovaleric acid is the valine transamination product. Mg2+ and Ca2+ as well as several transition metals are catalysts for the alpha-ketoisovaleric acid reaction. Pantothenic acid is produced from pantoyl lactone (easily formed from pantoic acid) and the relatively high concentrations of beta-alanine that would be formed on drying prebiotic amino acid mixtures. There is no selectivity for this reaction over glycine, alanine, or gamma-amino butyric acid. The components of coenzyme A are discussed in terms of ease of prebiotic formation and stability and are shown to be plausible choices, but many other compounds are possible. The gamma-OH of pantoic acid needs to be capped to prevent decomposition of pantothenic acid. These results suggest that coenzyme A function was important in the earliest metabolic pathways and that the coenzyme A precursor contained most of the components of the present coenzyme.

  12. Genome-wide association study for carcass traits, fatty acid composition, chemical composition, sugar, and the effects of related candidate genes in Japanese Black cattle.

    PubMed

    Sasago, Nanae; Abe, Tsuyoshi; Sakuma, Hironori; Kojima, Takatoshi; Uemoto, Yoshinobu

    2017-01-01

    We performed a genome-wide association study (GWAS) and candidate gene analysis to: (i) evaluate the effectiveness of the GWAS in our small population by performing GWAS for carcass weight (CW) and fatty acid composition; (ii) detect novel candidate regions affecting non-CW carcass traits, chemical composition and sugar; and (iii) evaluate the association of the candidate genes previously detected in CW and fatty acid composition with other economically important traits. A total of 574 Japanese Black cattle and 40 657 Single nucleotide polymorphisms were used. In addition, candidate gene analyses were performed to evaluate the association of three CW-related genes and two fatty acid-related genes with carcass traits, fatty acid composition, chemical composition and sugar. The significant regions with the candidate genes were detected for CW and fatty acid composition, and these results showed that a significant region would be detectable despite the small sample size. The novel candidate regions were detected on BTA23 for crude protein and on BTA19 for fructose. CW-related genes associated with the rib-eye area and fatty acid composition were identified, and fatty acid-related genes had no relationship with other traits. Moreover, the favorable allele of CW-related genes had an unfavorable effect on fatty acid composition.

  13. Egg fatty acid composition from lake trout fed two Lake Michigan prey fish species.

    USGS Publications Warehouse

    Honeyfield, D.C.; Fitzsimons, J.D.; Tillitt, D.E.; Brown, S.B.

    2009-01-01

    We previously demonstrated that there were significant differences in the egg thiamine content in lake trout Salvelinus namaycush fed two Lake Michigan prey fish (alewife Alosa pseudoharengus and bloater Coregonus hoyi). Lake trout fed alewives produced eggs low in thiamine, but it was unknown whether the consumption of alewives affected other nutritionally important components. In this study we investigated the fatty acid composition of lake trout eggs when females were fed diets that resulted in different egg thiamine concentrations. For 2 years, adult lake trout were fed diets consisting of four combinations of captured alewives and bloaters (100% alewives; 65% alewives, 35% bloaters; 35% alewives, 65% bloaters; and 100% bloaters). The alewife fatty acid profile had higher concentrations of arachidonic acid and total omega-6 fatty acids than the bloater profile. The concentrations of four fatty acids (cis-13, 16-docosadienoic, eicosapentaenoic, docosapentaenoic, and docosahexaenoic acids) were higher in bloaters than in alewives. Although six fatty acid components were higher in lake trout eggs in 2001 than in 2000 and eight fatty acids were lower, diet had no effect on any fatty acid concentration measured in lake trout eggs in this study. Based on these results, it appears that egg fatty acid concentrations differ between years but that the egg fatty acid profile does not reflect the alewife-bloater mix in the diet of adults. The essential fatty acid content of lake trout eggs from females fed alewives and bloaters appears to be physiologically regulated and adequate to meet the requirements of developing embryos.

  14. Poly(lactic acid) degradable plastics, coatings, and binders

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-05-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids` being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  15. Poly(lactic acid) degradable plastics, coatings, and binders

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.; Mudde, J.P.

    1992-01-01

    Biochemical processes to derive value from the management of high carbohydrate food wastes, such as potato starch, corn starch, and cheese whey permeate, have typically been limited to the production of either ethanol or methane. Argonne National Laboratory (ANL) believes that lactic acid presents an attractive option for an alternate fermentation end product, especially in light of lactic acids' being a viable candidate for conversion to environmentally safe poly(lactic acid) (PLA) degradable plastics, coatings, and binders. Technology is being developed at ANL to permit a more cost effective route to modified high molecular weight PLA. Preliminary data on the degradation behavior of these modified PLAs shows the retention to the inherent hydrolytic degradability of the PLA modified, however, by introduced compositional variables. A limited study was done on the hydrolytic stability of soluble oligomers of poly(L-lactic acid). Over a 34 day hold period, water-methanol solutions of Pl-LA oligomers in the 2-10 DP range retained some 75% of their original molecular weight.

  16. Amino acid composition determined using multiple hydrolysis times for three goat milk formulations.

    PubMed

    Rutherfurd, Shane M; Moughan, Paul J; Lowry, Dianne; Prosser, Colin G

    2008-01-01

    The amino acid composition of goat milk formulations with varying protein and carbohydrate concentrations were determined. Proteins in goat milk infant formula, goat milk growing-up formula and goat whole milk powder were hydrolysed using multiple hydrolysis time intervals. A least-squares non-linear regression model was used to predict the free and protein bound amino acid concentrations. The amino acid composition of goat infant formula was compared with human milk reference values. There was good agreement between the multiple hydrolysis and single 24-h hydrolysis methods for approximately one-half of the amino acids. Tryptophan, aspartic acid, threonine, tyrosine, isoleucine, valine, serine and alanine contents were underestimated by 10.6, 5.6, 5.6, 4.7, 4.4, 3.7, 3.7 and 3.6%, respectively, by the single 24-h hydrolysis. The study provides accurate reference data on the amino acid composition of goat milk powders. Goat milk infant formula has amino acids in amounts similar to human milk reference values, when expressed on a per-energy basis.

  17. Phenolic acid induced growth of gold nanoshells precursor composites and their application in antioxidant capacity assay.

    PubMed

    Ma, Xiaoyuan; Qian, Weiping

    2010-11-15

    In the present work, the gold nanoshells (GNSs) precursor composites were preadsorbed onto the surface of ITO substrates. With the treatment of modified electrodes immersed in the gold nanoparticles (GNPs) growth solution containing different phenolic acids, the GNSs precursor composites were enlarged to varying degrees. Phenolic acids with one or more phenolic hydroxyl groups served as reductants for the growth of GNPs. The enlargement conditions varied with the different reducing capacity of phenolic acids, exhibiting specific morphologies differ from the complete GNSs. Consequently, the UV-vis-NIR spectra and cyclic voltammetry curves for the phenolic acid-treated ITO electrode were gradually changed. Results showed that the higher reducing capacity for phenolic acid to reduce AuCl(4)(-) to Au(0) resulted in the intensified localized surface plasmon resonance features and reduced cathodic currents. The spectral wavelength peaks red shifted hundreds of nanometers across the visible region. Moreover, the antioxidant capacity of phenolic acids correlates well with their reducing activity, both of which reflect their tendency to donate electrons. Thus, the optical and electrochemical results could be used to evaluate the antioxidant capacity of phenolic acids by utilizing GNSs precursor composites as nanoprobes. The method is simple, rapid and could be used in visual analysis to a certain extent.

  18. Amino acid composition, score and in vitro protein digestibility of foods commonly consumed in northwest Mexico.

    PubMed

    Caire-Juvera, Graciela; Vázquez-Ortiz, Francisco A; Grijalva-Haro, Maria I

    2013-01-01

    A better knowledge of the amino acid composition of foods commonly consumed in different regions is essential to calculate their scores and, therefore, to predict their protein quality. This paper presents the amino acid composition, amino acid score and in vitro protein digestibility of fifteen foods that are commonly consumed in Northwest Mexico. The foods were prepared by the traditional methods and were analyzed by reverse-phase HPLC. The chemical score for each food was determined using the recommendations for children of 1-2 years of age, and the digestibility was evaluated using a multienzyme technique. Lysine was the limiting amino acid in cereal-based products (scores 15 to 54), and methionine and cysteine were limiting in legume products (scores 41 to 47), boiled beef (score = 75) and hamburger (score = 82). The method of preparation had an effect on the content of certain amino acids, some of them increased and others decreased their content. Meat products and regional cheese provided a high amino acid score (scores 67 to 91) and digestibility (80.7 to 87.8%). Bologna, a processed meat product, had a lower digestibility (75.4%). Data on the amino acid composition of foods commonly consumed in Mexico can be used to provide valuable information on food analysis and protein quality, and to contribute to nutrition and health research and health programs.

  19. Photoproducts of carminic acid formed by a composite from Manihot dulcis waste.

    PubMed

    Antonio-Cisneros, Cynthia M; Dávila-Jiménez, Martín M; Elizalde-González, María P; García-Díaz, Esmeralda

    2015-04-15

    Carbon-TiO2 composites were obtained from carbonised Manihot dulcis waste and TiO2 using glycerol as an additive and thermally treating the composites at 800 °C. Furthermore, carbon was obtained from manihot to study the adsorption, desorption and photocatalysis of carminic acid on these materials. Carminic acid, a natural dye extracted from cochineal insects, is a pollutant produced by the food industry and handicrafts. Its photocatalysis was observed under different atmospheres, and kinetic curves were measured by both UV-Vis and HPLC for comparison, yielding interesting differences. The composite was capable of decomposing approximately 50% of the carminic acid under various conditions. The reaction was monitored by UV-Vis spectroscopy and LC-ESI-(Qq)-TOF-MS-DAD, enabling the identification of some intermediate species. The deleterious compound anthracene-9,10-dione was detected both in N2 and air atmospheres.

  20. Influence of a peracetic acid-based immersion on indirect composite resin.

    PubMed

    Samuel, Susana Maria Werner; Fracaro, Gisele Baggio; Collares, Fabrício Mezzomo; Leitune, Vicente Castelo Branco; Campregher, Ulisses Bastos

    2011-06-01

    The aim of this study was to evaluate the influence of immersion in a 0.2% peracetic acid-based disinfectant on the three-point flexural strength, water sorption and water solubility of an indirect composite resin. Specimens were produced according to ISO 4049:2000 specifications and were divided in two groups: Control group, with no disinfection and Disinfected group, with three 10 min immersions in the peracetic acid intercalated with 10 min immersions in sterile distilled water. All evaluations were conducted in compliance with ISO specifications. Three-point flexural strength, water sorption and solubility of indirect composite resin before and after immersion showed no statistical significant differences (p > 0.05) and met ISO standard requirements. Immersion in peracetic acid solution showed no influence in indirect composite resin tested properties.

  1. Anti-Phospholipase A2 Receptor (PLA2R) Antibody and Glomerular PLA2R Expression in Japanese Patients with Membranous Nephropathy

    PubMed Central

    Tachibana, Shohei; Iseri, Ken; Saito, Tomohiro; Yamamoto, Yasutaka; Suzuki, Taihei; Wada, Yukihiro; Matsumoto, Kei; Shibata, Takanori

    2016-01-01

    The phospholipase A2 receptor (PLA2R) is the major target antigen (Ag) in idiopathic membranous nephropathy (IMN). Recently, several types of immunoassay systems for anti-PLA2R antibody (Ab) have been developed. However, the correlation of serum anti-PLA2R Abs and glomerular expression of PLA2R Ag, and their association with clinicopathological characteristics have yet to be proven in Japanese patients. We examined serum anti-PLA2R Abs by both ELISA and cell-based indirect immunofluorescence assay (CIIFA), and glomerular PLA2R expression by immunofluorescence (IF) in 59 biopsy-proven MN patients including IMN (n = 38) and secondary MN (SMN) (n = 21). In this study, anti-PLA2R Abs were present in 50% of IMN patients, but was absent in SMN patients. The concordance rate between ELISA and CIIFA was 100%. Serum IgG levels were significantly lower in anti-PLA2R Ab-positive patients. Serum albumin levels correlated inversely with serum anti-PLA2R Ab titers. The prevalence and intensity of glomerular staining for IgG4 by IF were significantly higher in anti-PLA2R Ab-positive patients than in -negative patients. Glomerular PLA2 Ag expression evaluated by IF was positive in 52.6% of IMN patients, but was absent in SMN patients. The concordance rate between the prevalence of glomerular PLA2R Ag expression and anti-PLA2R Ab was 84.2%. The prevalence of anti-PLA2R Abs measured by ELISA/CIIFA was equivalent to previous Japanese studies evaluated using Western blotting. These analyses showed an excellent specificity for the diagnosis of IMN, and anti-PLA2R positivity was associated with some clinicopathological features, especially glomerular IgG4-dominant deposition. PMID:27355365

  2. Antibacterial activity of phenyllactic acid against Listeria monocytogenes and Escherichia coli by dual mechanisms.

    PubMed

    Ning, Yawei; Yan, Aihong; Yang, Kun; Wang, Zhixin; Li, Xingfeng; Jia, Yingmin

    2017-08-01

    Phenyllactic acid (PLA), a phenolic acid phytochemical, is considered to be a promising candidate for use as a chemical preservative due to its broad antimicrobial activity. The antibacterial target of PLA has rarely been reported, thus investigations were performed to elucidate the antibacterial mechanism of PLA against Listeria monocytogenes and Escherichia coli. Flow cytometry analysis stained with propidium iodide (PI) demonstrated that PLA could damage the membrane integrity of L. monocytogenes, while it could not disrupt that of E. coli. The uptake of 1-N-phenylnaphthylamine (NPN) indicated that PLA interrupted the outer membrane permeability of E. coli. Scanning electron microscopy (SEM) observation visualized the damage caused by PLA as morphological changes in L. monocytogenes and E. coli. Fluorescence assays demonstrated that PLA could interact with bacterial genomic DNA in the manner of intercalation. This finding suggested dual antibacterial targets of PLA, namely membrane and genomic DNA.

  3. Poly(lactic acid)-Mass production, processing, industrial applications, and end of life.

    PubMed

    Castro-Aguirre, E; Iñiguez-Franco, F; Samsudin, H; Fang, X; Auras, R

    2016-12-15

    Global awareness of material sustainability has increased the demand for bio-based polymers like poly(lactic acid) (PLA), which are seen as a desirable alternative to fossil-based polymers because they have less environmental impact. PLA is an aliphatic polyester, primarily produced by industrial polycondensation of lactic acid and/or ring-opening polymerization of lactide. Melt processing is the main technique used for mass production of PLA products for the medical, textile, plasticulture, and packaging industries. To fulfill additional desirable product properties and extend product use, PLA has been blended with other resins or compounded with different fillers such as fibers, and micro- and nanoparticles. This paper presents a review of the current status of PLA mass production, processing techniques and current applications, and also covers the methods to tailor PLA properties, the main PLA degradation reactions, PLA products' end-of-life scenarios and the environmental footprint of this unique polymer.

  4. Stable carbon isotopic compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and fatty acids: implications for atmospheric processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Kawamura, K.; Cao, F.; Lee, M.

    2015-12-01

    Stable carbon isotopic compositions (δ13C) were measured for 23 individual organic species including 9 dicarboxylic acids, 7 oxocarboxylic acids, 1 tricarboxylic acid, 2 α-dicarbonyls and 4 fatty acids in the aerosols from Gosan background site in East Asia. δ13C of particle-phase glyoxal and methylglyoxal are significantly higher than those previously reported for isoprene and other precursors, associated with isotope fractionation during atmospheric oxidation. 13C is consistently more enriched for oxalic acid (C2), glyoxylic acid, pyruvic acid, glyoxal and methylglyoxal compared to other organic compounds identified, which can be explained by the kinetic isotope effects during aqueous-phase processing and the subsequent gas-particle partitioning after clouds or wet aerosols evaporation δ13C of C2 is positively correlated with C2 and organic carbon ratio, indicating that a photochemical production of C2 is more pronounced than its degradation process during long-range transport. The 13C results also suggest that aqueous-phase oxidation of glyoxal and methylglyoxal is major formation process of oxalic acid production via the major intermediates glyoxylic acid and pyruvic acid. This study provides evidence that organic aerosols are intensively photo-chemically aged in this region.

  5. The influence of dietary essential fatty acids on uterine C20 and C22 fatty acid composition.

    PubMed

    Howie, A; Leaver, H A; Wilson, N H; Yap, P L; Aitken, I D

    1992-06-01

    The effect of dietary fatty acids on uterine fatty acid composition was studied in rats fed control diet or semi-synthetic diet supplemented with 1.5 microliter/g/day evening primrose oil (EPO) or fish oil (FO). Diet-related changes in uterine lipid were detected within 21 days. Changes of 2- to 20-fold were detected in the uterine n-6 and n-3 essential fatty acids (EFA) and in certain saturated and monounsaturated fatty acids. The FO diet was associated with higher uterine C20 and C22 n-3, and the EPO diet, with higher uterine n-6 fatty acid. High uterine C18:2 n-6 was detected in neutral lipid (NL) of rats fed high concentrations of this fatty acid, but there was little evidence of selective incorporation or retention of C18:2 n-6 by uterine NL. The incorporation of EFA into uterine phospholipids (PL) was greater than NL EFA incorporation, and uterine PL n-3/n-6 ratios showed greater diet dependence. Tissue/diet fatty acid ratios in NL and PL also indicated preferential incorporation/synthesis of C16:1 n-9, and C16:0, and there was greater incorporation of C12:0 and C14:0 into uteri of rats fed EPO and FO. Replacement of 50-60% of arachidonate with n-3 EFA in uterine PL may inhibit n-6 EFA metabolism necessary for uterine function at parturition.

  6. Composites of manganese oxide with carbon materials as catalysts for the ozonation of oxalic acid.

    PubMed

    Orge, C A; Órfão, J J M; Pereira, M F R

    2012-04-30

    Manganese oxide and manganese oxide-carbon composites were prepared and tested as catalysts for the removal of oxalic acid by ozonation. Their performances were compared with the parent carbon material (activated carbon or carbon xerogel) used to prepare the composites. Oxalic acid degradation by carbon materials is slower than that attained with manganese oxide or manganese oxide-carbon composites. A complete degradation after 90 and 45 min of reaction was obtained for carbon materials and for the catalysts containing manganese, respectively. The ozonation in the presence of the prepared composites are supposed to occur mainly by surface reactions, following a direct oxidation mechanism by molecular ozone and/or surface oxygenated radicals.

  7. Controlled Thermoresponsive Hydrogels by Stereocomplexed PLA-PEG-PLA Prepared via Hybrid Micelles of Pre-Mixed Copolymers with Different PEG Lengths

    SciTech Connect

    Abebe, Daniel G.; Fujiwara, Tomoko

    2012-09-05

    The stereocomplexed hydrogels derived from the micelle mixture of two enantiomeric triblock copolymers, PLLA-PEG-PLLA and PDLA-PEG-PDLA, reported in 2001 exhibited sol-to-gel transition at approximately body temperature upon heating. However, the showed poor storage modulus (ca. 1000 Pa) determined their insufficiency as injectable implant biomaterials for many applications. In this study, the mechanical property of these hydrogels was significantly improved by the modifications of molecular weights and micelle structure. Co-micelles composed of block copolymers with two sizes of PEG block length were shown to possess unique and dissimilar properties from the micelles composed of single-sized block copolymers. The stereomixture of PLA-PEG-PLA comicelles showed a controllable sol-to-gel transition at a wide temperature range of 4 and 80 C. The sol-gel phase diagram displays a linear relationship of temperature versus copolymer composition; hence, a transition at body temperature can be readily achieved by adjusting the mixed copolymer ratio. The resulting thermoresponsive hydrogels exhibit a storage modulus notably higher (ca. 6000 Pa) than that of previously reported hydrogels. As a physical network solely governed by self-reorganization of micelles, followed by stereocomplexation, this unique system offers practical, safe, and simple implantable biomaterials.

  8. The effect of diet on the fatty acid compositions of serum, brain, brain mitochondria and myelin in the rat

    PubMed Central

    Rathbone, L.

    1965-01-01

    1. Three groups of female rats (8–12 weeks old) were maintained respectively on a linoleic acid-rich diet, a linoleic acid-poor predominantly saturated-fatty acid diet and a normal diet. Changes in the fatty acid compositions of serum, brain, brain mitochondria-rich fraction and myelin were observed. 2. Of the serum fatty acids, linoleic acid showed the greatest change in the percentage of the total acids in response to diet; the change in the proportion of oleic acid was considerable. The percentages of arachidonic acid in serum fatty acids in the groups on the linoleic acid-rich and linoleic acid-poor diets were similar, but higher than those in the normal group. 3. Changes in the proportions of linoleic acid, arachidonic acid and docosahexaenoic acid occurred in brain fatty acids that to some extent paralleled those occurring in the serum. Changes in the proportions of most other acids in the serum fatty acids were not accompanied by corresponding changes in the brain fatty acids. 4. The percentage fatty acid compositions of a mitochondria-rich fraction and myelin are given, and changes in the relative proportions of linoleic acid, arachidonic acid and possibly some docosapolyenoic acids were demonstrated to occur as a result of diet. 5. The results are discussed in relation to the possible aetiology of multiple sclerosis. PMID:5881652

  9. Pinolenic Acid in Structured Triacylglycerols Exhibits Superior Intestinal Lymphatic Absorption As Compared to Pinolenic Acid in Natural Pine Nut Oil.

    PubMed

    Chung, Min-Yu; Woo, Hyunjoon; Kim, Juyeon; Kong, Daecheol; Choi, Hee-Don; Choi, In-Wook; Kim, In-Hwan; Noh, Sang K; Kim, Byung Hee

    2017-03-01

    The positional distribution pattern of fatty acids (FAs) in the triacylglycerols (TAGs) affects intestinal absorption of these FAs. The aim of this study was to compare lymphatic absorption of pinolenic acid (PLA) present in structured pinolenic TAG (SPT) where PLA was evenly distributed on the glycerol backbone, with absorption of pine nut oil (PNO) where PLA was predominantly positioned at the sn-3 position. SPT was prepared via the nonspecific lipase-catalyzed esterification of glycerol with free FA obtained from PNO. Lymphatic absorption of PLA from PNO and from SPT was compared in a rat model of lymphatic cannulation. Significantly (P < 0.05) greater amounts of PLA were detected in lymph collected for 8 h from an emulsion containing SPT (28.5 ± 0.7% dose) than from an emulsion containing PNO (26.2 ± 0.6% dose), thereby indicating that PLA present in SPT has a greater capacity for lymphatic absorption than PLA from PNO.

  10. Biodegradable polylactic acid polymer with nisin for use in antimicrobial food packaging

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodegradable polylactic acid (PLA) polymer was evaluated for its application as a material for antimicrobial food packaging. PLA films were incorporated with nisin to provide slow release of the encapsulated antimicrobial for control of foodborne pathogens. Antimicrobial activity of PLA/nisin films...

  11. Method and compositions for reducing corrosion in the removal of acidic gases from gaseous mixtures

    SciTech Connect

    DuPart, M.S.; Cringle, D.C.; Oakes, B.D.

    1984-05-01

    A corrosion inhibited composition containing a gas conditioning solution such as an alkanol amine with water or with organic solvents and with small amounts of soluble thiocyanate compounds, soluble trivalent bismuth compounds with or without soluble divalent nickel or cobalt compounds. The compositions are useful to separate acid gases such as carbon dioxide from hydrocarbon feed streams in gas conditioning apparatus with minimum amounts of corrosion of the ferrous surfaces.

  12. Influence of Fatty Acid Precursors, Including Food Preservatives, on the Growth and Fatty Acid Composition of Listeria monocytogenes at 37 and 10°C ▿

    PubMed Central

    Julotok, Mudcharee; Singh, Atul K.; Gatto, Craig; Wilkinson, Brian J.

    2010-01-01

    Listeria monocytogenes is a food-borne pathogen that grows at refrigeration temperatures and increases its content of anteiso-C15:0 fatty acid, which is believed to be a homeoviscous adaptation to ensure membrane fluidity, at these temperatures. As a possible novel approach for control of the growth of the organism, the influences of various fatty acid precursors, including branched-chain amino acids and branched- and straight-chain carboxylic acids, some of which are also well-established food preservatives, on the growth and fatty acid composition of the organism at 37°C and 10°C were studied in order to investigate whether the organism could be made to synthesize fatty acids that would result in impaired growth at low temperatures. The results indicate that the fatty acid composition of L. monocytogenes could be modulated by the feeding of branched-chain amino acid, C4, C5, and C6 branched-chain carboxylic acid, and C3 and C4 straight-chain carboxylic acid fatty acid precursors, but the growth-inhibitory effects of several preservatives were independent of effects on fatty acid composition, which were minor in the case of preservatives metabolized via acetyl coenzyme A. The ability of a precursor to modify fatty acid composition was probably a reflection of the substrate specificities of the first enzyme, FabH, in the condensation of primers of fatty acid biosynthesis with malonyl acyl carrier protein. PMID:20048057

  13. Influencing fatty acid composition of yeasts by lanthanides.

    PubMed

    Kolouchova, Irena; Sigler, Karel; Zimola, Michal; Rezanka, Tomas; Matatkova, Olga; Masak, Jan

    2016-08-01

    The growth of microorganisms is affected by cultivation conditions, concentration of carbon and nitrogen sources and the presence of trace elements. One of the new possibilities of influencing the production of cell mass or lipids is the use of lanthanides. Lanthanides are biologically non-essential elements with wide applications in technology and industry and their concentration as environmental contaminants is therefore increasing. Although non-essential, lanthanides have been proposed (and even used) to produce beneficial effects in plants but their mechanisms of action are unclear. Recently, it was suggested that they may replace essential elements or operate as potent blockers of Ca(2+) channels. We tested the effect of low concentrations of lanthanides on traditional biotechnologically useful yeast species (Kluyveromyces polysporus, Saccharomyces cerevisiae, Torulospora delbrueckii), and species capable of high accumulation of lipids (Rhodotorula glutinis, Trichosporon cutaneum, Candida sp., Yarrowia lipolytica). Low concentrations of lanthanum and monazite were conducive to an increase in cell mass and lipids and also higher production of palmitoleic acid, commonly used in cosmetics and medicine, and ω6-linoleic acid which is a precursor of thromboxanes, prostaglandins and leucotrienes.

  14. The folding type of a protein is relevant to the amino acid composition.

    PubMed

    Nakashima, H; Nishikawa, K; Ooi, T

    1986-01-01

    The folding types of 135 proteins, the three-dimensional structures of which are known, were analyzed in terms of the amino acid composition. The amino acid composition of a protein was expressed as a point in a multidimensional space spanned with 20 axes, on which the corresponding contents of 20 amino acids in the protein were represented. The distribution pattern of proteins in this composition space was examined in relation to five folding types, alpha, beta, alpha/beta, alpha + beta, and irregular type. The results show that amino acid compositions of the alpha, beta, and alpha/beta types are located in different regions in the composition space, thus allowing distinct separation of proteins depending on the folding types. The points representing proteins of the alpha + beta and irregular types, however, are widely scattered in the space, and the existing regions overlap with those of the other folding types. A simple method of utilizing the "distance" in the space was found to be convenient for classification of proteins into the five folding types. The assignment of the folding type with this method gave an accuracy of 70% in the coincidence with the experimental data.

  15. Determination of fatty acid composition of γ-irradiated hazelnuts, walnuts, almonds, and pistachios

    NASA Astrophysics Data System (ADS)

    Gecgel, Umit; Gumus, Tuncay; Tasan, Murat; Daglioglu, Orhan; Arici, Muhammet

    2011-04-01

    Hazelnut, walnut, almonds, and pistachio nuts were treated with 1, 3, 5, and 7 kGy of gamma irradiation, respectively. Oil content, free fatty acid, peroxide value, and fatty acid composition of the nuts were investigated immediately after irradiation. The data obtained from the experiments indicated that gamma irradiation did not cause any significant change in the oil content of nuts. In contrast, free fatty acid and peroxide value of the nuts increased proportionally to the dose (p<0.05). Among the fatty acids determined, the concentration of total saturated fatty acids increased while total monounsaturated and total polyunsaturated fatty acids decreased with the irradiation dose (p<0.05 and <0.01).

  16. Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin.

    PubMed

    Münchow, Eliseu A; Ferreira, Ana Cláudia A; Machado, Raissa M M; Ramos, Tatiana S; Rodrigues-Junior, Sinval A; Zanchi, Cesar H

    2014-01-01

    Composite resins may undergo wear by the action of chemical substances (e.g., saliva, alcohol, bacterial acids) of the oral environment, which may affect the material's structure and surface properties. This study evaluated the effect of acidic substances on the surface properties of a micro-hybrid composite resin (Filtek Z-250). Eighty specimens were prepared, and baseline hardness and surface roughness (KMN0 and Ra0, respectively) were measured. The specimens were subjected to sorption (SO) and solubility (SL) tests according to ISO 4049:2009, but using different storage solutions: deionized water; 75/25 vol% ethanol/water solution; lactic acid; propionic acid; and acetic acid. The acids were used in two concentrations: PA and 0.02 N. pH was measured for all solutions and final hardness (KMN1) and surface roughness (Ra1) were measured. Data were analyzed with paired t-tests and one-way ANOVA and Tukey's test (a=5%). All solutions decreased hardness and increased the Ra values, except for the specimens stored in water and 0.02 N lactic acid, which maintained the hardness. All solutions produced similar SO and SL phenomena, except for the 0.02 N lactic acid, which caused lower solubility than the other solutions. Ethanol showed the highest pH (6.6) and the 0.02 N lactic acid the lowest one (2.5). The solutions affected negatively the surface properties of the composite resin; in addition, an acidic pH did not seem to be a significant factor that intensifies the surface degradation phenomena.

  17. Evolution of proteomes: fundamental signatures and global trends in amino acid compositions

    PubMed Central

    Tekaia, Fredj; Yeramian, Edouard

    2006-01-01

    Background The evolutionary characterization of species and lifestyles at global levels is nowadays a subject of considerable interest, particularly with the availability of many complete genomes. Are there specific properties associated with lifestyles and phylogenies? What are the underlying evolutionary trends? One of the simplest analyses to address such questions concerns characterization of proteomes at the amino acids composition level. Results In this work, amino acid compositions of a large set of 208 proteomes, with significant number of representatives from the three phylogenetic domains and different lifestyles are analyzed, resorting to an appropriate multidimensional method: Correspondence analysis. The analysis reveals striking discrimination between eukaryotes, prokaryotic mesophiles and hyperthemophiles-themophiles, following amino acid usage. In sharp contrast, no similar discrimination is observed for psychrophiles. The observed distributional properties are compared with various inferred chronologies for the recruitment of amino acids into the genetic code. Such comparisons reveal correlations between the observed segregations of species following amino acid usage, and the separation of amino acids following early or late recruitment. Conclusion A simple description of proteomes according to amino acid compositions reveals striking signatures, with sharp segregations or on the contrary non-discriminations following phylogenies and lifestyles. The distribution of species, following amino acid usage, exhibits a discrimination between [high GC]-[high optimal growth temperatures] and [low GC]-[moderate temperatures] characteristics. This discrimination appears to coincide closely with the separation of amino acids following their inferred early or late recruitment into the genetic code. Taken together the various results provide a consistent picture for the evolution of proteomes, in terms of amino acid usage. PMID:17147802

  18. Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease

    SciTech Connect

    Lake, April D.; Novak, Petr; Shipkova, Petia; Aranibar, Nelly; Robertson, Donald; Reily, Michael D.; Lu, Zhenqiang; Lehman-McKeeman, Lois D.; Cherrington, Nathan J.

    2013-04-15

    Bile acids (BAs) have many physiological roles and exhibit both toxic and protective influences within the liver. Alterations in the BA profile may be the result of disease induced liver injury. Nonalcoholic fatty liver disease (NAFLD) is a prevalent form of chronic liver disease characterized by the pathophysiological progression from simple steatosis to nonalcoholic steatohepatitis (NASH). The hypothesis of this study is that the ‘classical’ (neutral) and ‘alternative’ (acidic) BA synthesis pathways are altered together with hepatic BA composition during progression of human NAFLD. This study employed the use of transcriptomic and metabolomic assays to study the hepatic toxicologic BA profile in progressive human NAFLD. Individual human liver samples diagnosed as normal, steatosis, and NASH were utilized in the assays. The transcriptomic analysis of 70 BA genes revealed an enrichment of downregulated BA metabolism and transcription factor/receptor genes in livers diagnosed as NASH. Increased mRNA expression of BAAT and CYP7B1 was observed in contrast to decreased CYP8B1 expression in NASH samples. The BA metabolomic profile of NASH livers exhibited an increase in taurine together with elevated levels of conjugated BA species, taurocholic acid (TCA) and taurodeoxycholic acid (TDCA). Conversely, cholic acid (CA) and glycodeoxycholic acid (GDCA) were decreased in NASH liver. These findings reveal a potential shift toward the alternative pathway of BA synthesis during NASH, mediated by increased mRNA and protein expression of CYP7B1. Overall, the transcriptomic changes of BA synthesis pathway enzymes together with altered hepatic BA composition signify an attempt by the liver to reduce hepatotoxicity during disease progression to NASH. - Highlights: ► Altered hepatic bile acid composition is observed in progressive NAFLD. ► Bile acid synthesis enzymes are transcriptionally altered in NASH livers. ► Increased levels of taurine and conjugated bile acids

  19. Stable carbon isotopic compositions of organic acids in total suspended particles and dusts from Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Ma, Shexia; Peng, Ping'an; Song, Jianzhong; Zhao, Jinping; He, Lulu; Sheng, Guoying; Fu, Jiamo

    2010-10-01

    Stable carbon isotopic compositions of individual organic acids were determined in total suspended particles and dusts from Guangzhou. The δ 13C values of high molecular weight n-alkanoic acids (C 20-C 28) varied from -34.1‰ to -32.4‰ and tended to be heavier in summer and lighter in winter. These δ 13C values indicate that high molecular weight n-alkanoic acids were derived mainly from emission by C 3 plants. Reduced biological synthesis of high molecular weight n-alkanoic acids in winter may be the reason for the light carbon isotopic composition. The δ 13C values of low molecular weight n-alkanoic acids (C 10-C 18) changed from -31.7‰ to -30.3‰ and exhibited a reverse seasonal trend, i.e., heavier in winter and lighter in summer. Slightly heavier δ 13C values of low molecular weight n-alkanoic acids than those of high molecular weight n-alkanoic acids suggested that they may be emitted from blended sources, e.g., anthropogenic sources and vegetation waxes. Lighter δ 13C values in summer may be attributed to relatively low anthropogenic sources and high botanic sources in summer. Dicarboxylic acids and aromatic acids have been proposed as secondary products from photochemical degradation. The average δ 13C values of dicarboxylic acids and aromatic acids were heavier, and ranged from -25.2‰ to -22.9‰ and from -30.0‰ to -27.6‰, respectively. Both dicarboxylic acids and aromatic acids displayed the same temporal variations in the δ 13C values, i.e., negative δ 13C in the summer samples and positive in the winter samples, which may be controlled by photochemical reactions; they are generally severe in winter in Guangzhou under the monsoon weather system. The heaviest δ 13C values were observed in dicarboxylic acids, indicating that dicarboxylic acids were formed by fast and more complete oxidation reactions. These results indicate that the stable carbon isotopic composition of organic acids may provide important information about sources and

  20. Amino acid composition, including key derivatives of eccrine sweat: potential biomarkers of certain atopic skin conditions.

    PubMed

    Mark, Harker; Harding, Clive R

    2013-04-01

    The free amino acid (AA) composition of eccrine sweat is different from other biological fluids, for reasons which are not properly understood. We undertook the detailed analysis of the AA composition of freshly isolated pure human eccrine sweat, including some of the key derivatives of AA metabolism, to better understand the key biological mechanisms governing its composition. Eccrine sweat was collected from the axillae of 12 healthy subjects immediately upon formation. Free AA analysis was performed using an automatic AA analyser after ninhydrin derivatization. Pyrrolidine-5-carboxylic acid (PCA) and urocanic acid (UCA) levels were determined using GC/MS. The free AA composition of sweat was dominated by the presence of serine accounting for just over one-fifth of the total free AA composition. Glycine was the next most abundant followed by PCA, alanine, citrulline and threonine, respectively. The data obtained indicate that the AA content of sweat bears a remarkable similarity to the AA composition of the epidermal protein profilaggrin. This protein is the key source of free AAs and their derivatives that form a major part of the natural moisturizing factor (NMF) within the stratum corneum (SC) and plays a major role in maintaining the barrier integrity of human skin. As perturbations in the production of NMF can lead to abnormal barrier function and can arise as a consequence of filaggrin genotype, we propose the quantification of AAs in sweat may serve as a non-invasive diagnostic biomarker for certain atopic skin conditions, that is, atopic dermatitis (AD).

  1. Effects of simulated acid rain on soil fauna community composition and their ecological niches.

    PubMed

    Wei, Hui; Liu, Wen; Zhang, Jiaen; Qin, Zhong

    2017-01-01

    Acid rain is one of the severest environmental issues globally. Relative to other global changes (e.g., warming, elevated atmospheric [CO2], and nitrogen deposition), however, acid rain has received less attention than its due. Soil fauna play important roles in multiple ecological processes, but how soil fauna community responds to acid rain remains less studied. This microcosm experiment was conducted using latosol with simulated acid rain (SAR) manipulations to observe potential changes in soil fauna community under acid rain stress. Four pH levels, i.e., pH 2.5, 3.5, 4.5, and 5.5, and a neutral control of pH 7.0 were set according to the current pH condition and acidification trend of precipitation in southern China. As expected, we observed that the SAR treatments induced changes in soil fauna community composition and their ecological niches in the tested soil; the treatment effects tended to increase as acidity increased. This could be attributable to the environmental stresses (such as acidity, porosity and oxygen supply) induced by the SAR treatments. In addition to direct acidity effect, we propose that potential changes in permeability and movability of water and oxygen in soils induced by acid rain could also give rise to the observed shifts in soil fauna community composition. These are most likely indirect pathways of acid rain to affect belowground community. Moreover, we found that nematodes, the dominating soil fauna group in this study, moved downwards to mitigate the stress of acid rain. This is probably detrimental to soil fauna in the long term, due to the relatively severer soil conditions in the deep than surface soil layer. Our results suggest that acid rain could change soil fauna community and the vertical distribution of soil fauna groups, consequently changing the underground ecosystem functions such as organic matter decomposition and greenhouse gas emissions.

  2. Tables of critical values for examining compositional non-randomness in proteins and nucleic acids

    NASA Technical Reports Server (NTRS)

    Laird, M.; Holmquist, R.

    1975-01-01

    A binomially distributed statistic is defined to show whether or not the proportion of a particular amino acid in a protein deviates from random expectation. An analogous statistic is derived for nucleotides in nucleic acids. These new statistics are simply related to the classical chi-squared test. They explicitly account for the compositional fluctuations imposed by the finite length of proteins, and they are more accurate than previous tables.

  3. Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition

    PubMed Central

    Mahanty, Arabinda; Sankar, T. V.; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md.; Debnath, Dipesh; Vijayagopal, P.; Sridhar, N.; Akhtar, M. S.; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Das, Debajeet; Das, Pushpita; Vijayan, K. K.; Laxmanan, P. T.; Sharma, A. P.

    2014-01-01

    Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs. PMID:25379285

  4. Amino Acid compositions of 27 food fishes and their importance in clinical nutrition.

    PubMed

    Mohanty, Bimal; Mahanty, Arabinda; Ganguly, Satabdi; Sankar, T V; Chakraborty, Kajal; Rangasamy, Anandan; Paul, Baidyanath; Sarma, Debajit; Mathew, Suseela; Asha, Kurukkan Kunnath; Behera, Bijay; Aftabuddin, Md; Debnath, Dipesh; Vijayagopal, P; Sridhar, N; Akhtar, M S; Sahi, Neetu; Mitra, Tandrima; Banerjee, Sudeshna; Paria, Prasenjit; Das, Debajeet; Das, Pushpita; Vijayan, K K; Laxmanan, P T; Sharma, A P

    2014-01-01

    Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs.

  5. Fatty acid composition of umbilical arteries and veins: possible implications for the fetal EFA-status.

    PubMed

    Hornstra, G; van Houwelingen, A C; Simonis, M; Gerrard, J M

    1989-06-01

    Fatty acid compositions were determined of phospholipids, isolated from umbilical arteries and veins, obtained from Dutch neonates after vaginal delivery, terminating normal pregnancy. The fatty acid profiles of the cord vessels were characterized by the absence of eicosapentaenoic (timnodonic) acid, a low (2-3%) content of linoleic acid and reasonable amounts of arachidonic acid (10-15%) and docosahexaenoic (cervonic) acid (3-5%). Significant amounts of Mead acid (1-4%) and its direct elongation product (0.5-2%) were also observed. In each cord, the efferent blood vessels contained significantly more Mead acid and other fatty acids of the oleic acid (n-9) family and less fatty acids of the linoleic (n-6) and linolenic (n-3) families than the afferent blood vessel. This indicates that the essential fatty acid (EFA) status of 'downstream' neonatal tissue may be marginal. No signs of EFA-deficiency were observed in endothelial and smooth muscle cells in culture, or in blood vessels from adults. In all cords 22:5(n-6) was significantly higher in the artery compared to the vein, whereas for all other (n-6) fatty acids this difference was negative. Since the synthesis of 22:5(n-6) is known to be stimulated when the required amount of cervonic acid, 22:6(n-3), is too low, our observations also suggest that the cervonic acid status of the neonates investigated was not optimal. Further studies are in progress to relate these findings to maternal EFA status and complications of pregnancy.

  6. Effect of the fatty acid composition of acclimated oenological Lactobacillus plantarum on the resistance to ethanol.

    PubMed

    Bravo-Ferrada, B M; Gómez-Zavaglia, A; Semorile, L; Tymczyszyn, E E

    2015-02-01

    The aim of this work was to evaluate the changes due to acclimation to ethanol on the fatty acid composition of three oenological Lactobacillus plantarum strains and their effect on the resistance to ethanol and malic acid consumption (MAC). Lactobacillus plantarum UNQLp 133, UNQLp 65.3 and UNQLp 155 were acclimated in the presence of 6 or 10% v/v ethanol, for 48 h at 28°C. Lipids were extracted to obtain fatty acid methyl esters and analysed by gas chromatography interfaced with mass spectroscopy. The influence of change in fatty acid composition on the viability and MAC in synthetic wine was analysed by determining the Pearson correlation coefficient. Acclimated strains showed a significant change in the fatty composition with regard to the nonacclimated strains. Adaptation to ethanol led to a decrease in the unsaturated/saturated ratio, mainly resulting from an increase in the contribution of short-length fatty acid C12:0 and a decrease of C18:1. The content of C12:0 was related to a higher viability after inoculation of synthetic wine. The MAC increased at higher contents in saturated fatty acid, but its efficiency was strain dependent.

  7. Concentration of Nitric Acid Strongly Influences Chemical Composition of Graphite Oxide.

    PubMed

    Jankovsky, Ondrej; Novacek, Michal; Luxa, Jan; Sedmidubsky, David; Bohacova, Marie; Pumera, Martin; Sofer, Zdenek

    2017-02-28

    Graphite oxide is the most widely used precursor for the synthesis of graphene by top-down methods. We demonstrate a significant influence of nitric acid concentration on the structure and composition of the graphite oxide prepared by graphite oxidation. In general, two main chlorate based oxidation methods are currently used for graphite oxide synthesis, Staudenmaier method dealing with 98 wt.% nitric acid and Hofmann method dealing with 68 wt.% nitric acid. However a gradual change of nitric acid concentration allowed for the continuous change of the graphite oxide composition. The prepared samples were thoroughly characterized by microscopic techniques as well as various spectroscopic and analytical methods. Lowering of nitric acid concentration led to an increase of oxidation degree and in particular to a concentration of epoxy and hydroxyl groups. This knowledge is not only useful for the large scale synthesis of graphite oxide with tunable size and chemical composition, but the use of nitric acid in lower concentration can also significantly reduce the overall cost of the synthesis.

  8. Life-history evolution at the molecular level: adaptive amino acid composition of avian vitellogenins

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Avian genomes typically encode three distinct vitellogenin (VTG) egg yolk proteins (VTG1, VTG2 and VTG3), which arose by gene duplication prior to the most recent common ancestor of birds. Analysis of VTG sequences from 34 avian species in a phylogenetic framework supported the hypothesis that VTG amino acid composition has co-evolved with embryo incubation time. Embryo incubation time was positively correlated with the proportions of dietary essential amino acids (EAAs) in VTG1 and VTG2, and with the proportion of sulfur-containing amino acids in VTG3. These patterns were seen even when only semi-altricial and/or altricial species were considered, suggesting that the duration of embryo incubation is a major selective factor on the amino acid composition of VTGs, rather than developmental mode alone. The results are consistent with the hypothesis that the level of EAAs provided to the egg represents an adaptation to the loss of amino acids through breakdown over the course of incubation and imply that life-history phenotypes and VTG amino acid composition have co-evolved throughout the evolutionary history of birds. PMID:26224713

  9. From Nanofibrillar to Nanolaminar Poly(butylene succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(lactic acid) Films.

    PubMed

    Xie, Lan; Xu, Huan; Chen, Jing-Bin; Zhang, Zi-Jing; Hsiao, Benjamin S; Zhong, Gan-Ji; Chen, Jun; Li, Zhong-Ming

    2015-04-22

    The traditional approach toward barrier property enhancement of poly(lactic acid) (PLA) is the incorporation of sheet-like fillers such as nanoclay and graphene, unfortunately leading to the sacrificed biocompatibility and degradability. Here we unveil the first application of a confined flaking technique to establish the degradable nanolaminar poly(butylene succinate) (PBS) in PLA films based on PLA/PBS in situ nanofibrillar composites. The combination of high pressure (10 MPa) and appropriate temperature (160 °C) during the flaking process desirably enabled sufficient deformation of PBS nanofibrils and retention of ordered PLA channels. Particularly, interlinked and individual nanosheets were created in composite films containing 10 and 20 wt % PBS, respectively, both of which presented desirable alignment and large width/thickness ratio (nanoscale thickness with a width of 428±13.1 and 76.9±8.2 μm, respectively). With the creation of compact polymer "nano-barrier walls", a dramatic decrease of 86% and 67% in the oxygen permeability coefficient was observed for the film incorporated with well-organized 20 wt % PBS nanosheets compared to pure PLA and pure PBS (1.4 and 0.6×10(-14) cm3·cm·cm(-2)·s(-1)·Pa(-1)), respectively. Unexpectedly, prominent increases of 21% and 28% were achieved in the tensile strength and modulus of composite films loaded 20 wt % PBS nanosheets compared to pure PLA films, although PBS intrinsically presents poor strength and stiffness. The unusual combination of barrier and mechanical performances established in the fully degradable system represent specific properties required in packaging beverages, food and medicine.

  10. Relationship between membrane fatty acid composition and heat resistance of acid and cold stressed Salmonella senftenberg CECT 4384.

    PubMed

    Alvarez-Ordóñez, Avelino; Fernández, Ana; López, Mercedes; Bernardo, Ana

    2009-05-01

    This study evaluates the adaptative response to heat (63 degrees C) and the modifications in membrane fatty acid composition of Salmonella senftenberg after its growth in an acidified medium and after its exposure to combinations of acid and cold stresses. Cells were grown in Brain Heart Infusion (BHI) buffered at pH 7.0 and acidified up to pH 4.5 (fresh cultures) and kept at refrigeration temperature (4 degrees C) for 7 days (refrigerated cultures). The results indicate that previous adaptation to a low pH increased the bacterial heat resistance, but combinations of sublethal stresses reduced S. senftenberg heat tolerance, specially when the growth medium pH was decreased. Acid-adapted cells showed D(63)-values ranging from 3.10 to 6.27 min, while non-acid-adapted cells showed D(63)-values of 1.07 min. As pH decreased, over the pH range studied (7.4-4.5), D(63)-values of the resulting cells increased. However, refrigerated acid-adapted cells showed lower D(63)-values, which ranged from 0.95 to 0.49 min. A linear relationship between the thermotolerance of S. senftenberg cells and the previous growth medium pH was found in both fresh and refrigerated cultures, which allowed us to predict changes in heat resistance of S. senftenberg that occur at any pH value within the range used in the present study in which most foodstuffs are included. Both acidification of the growth medium and refrigeration storage of cells induced modifications in membrane fatty acid composition, which were clearly linked to their heat resistance. Acid-adapted cells, regardless of the pH value of the growth medium, showed the lowest UFA/SFA ratio and a CFA content 1.5-2-fold higher than that observed for non-acid-adapted cells. On the other hand, the UFA/SFA ratio found for S. senftenberg cells exposed to a cold stress was 1.2-1.8-fold higher than that observed for non-refrigerated cultures. This increase in the UFA/SFA ratio was specially high for acid-adapted cells. The highest

  11. Genetic effects on fatty acid composition of carcass fat of Japanese Black Wagyu steers.

    PubMed

    Oka, A; Iwaki, F; Dohgo, T; Ohtagaki, S; Noda, M; Shiozaki, T; Endoh, O; Ozaki, M

    2002-04-01

    Two hundred ninety-three Japanese Black Wagyu steers derived from 34 sires were used to investigate genetic effects on the fatty acid composition of carcass fat. All steers were fed identical diets for 365 d and