Science.gov

Sample records for acid plant tail

  1. Evolution of plant colonization in acid and alkaline mine tailing ponds after amendments and microorganisms application

    NASA Astrophysics Data System (ADS)

    Acosta, Jose Alberto; Faz, Ángel; Kabas, Sebla; Zornoza, Raúl; Martínez-Martínez, Silvia

    2014-05-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on plant cover establishment, as a consequence of metal immobilization and the improvement of soil properties. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Identification of plant species and biodiversity was determined on each plot, after 2, 4, 6 and 8 months of amendment addition. The results showed that, in those plots without application of microorganism, 8 months after applications the number of species and individuals of each

  2. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species.

    PubMed

    Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M

    2012-01-17

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663

  3. Response of key soil parameters during compost-assisted phytostabilization in extremely acidic tailings: effect of plant species.

    PubMed

    Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M

    2012-01-17

    Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.

  4. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners.

    PubMed

    Zhang, Mengru; Gong, Ming; Yang, Yumei; Li, Xujuan; Wang, Haibo; Zou, Zhurong

    2015-04-01

    Cytosolic ascorbate peroxidase 1 (APX1) plays a crucial role in regulating the level of plant cellular reactive oxygen species and its thermolability is proposed to cause plant heat-susceptibility. Herein, several hyper-acidic fusion partners, such as the C-terminal peptide tails, were evaluated for their effects on the thermal stability and activity of APX1 from Jatropha curcas and Arabidopsis. The hyper-acidic fusion partners efficiently improved the thermostability and prevented thermal inactivation of APX1 in both plant species with an elevated heat tolerance of at least 2 °C. These hyper-acidified thermostable APX1 fusion variants are of considerable biotechnological potential and can provide a new route to enhance the heat tolerance of plant species especially of inherent thermo-sensitivity.

  5. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.

    PubMed

    Solís-Domínguez, Fernando A; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M

    2011-02-15

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  6. Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings.

    PubMed

    Solís-Domínguez, Fernando A; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M

    2011-02-15

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p<0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  7. Effect of Arbuscular Mycorrhizal Fungi on Plant Biomass and the Rhizosphere Microbial Community Structure of Mesquite Grown in Acidic Lead/Zinc Mine Tailings

    PubMed Central

    Solís-Domínguez, Fernando A.; Valentín-Vargas, Alexis; Chorover, Jon; Maier, Raina M.

    2011-01-01

    Mine tailings in arid and semi-arid environments are barren of vegetation and subject to eolian dispersion and water erosion. Revegetation is a cost-effective strategy to reduce erosion processes and has wide public acceptance. A major cost of revegetation is the addition of amendments, such as compost, to allow plant establishment. In this paper we explore whether arbuscular mycorrhizal fungi (AMF) can help support plant growth in tailings at a reduced compost concentration. A greenhouse experiment was performed to determine the effects of three AMF inocula on biomass, shoot accumulation of heavy metals, and changes in the rhizosphere microbial community structure of the native plant Prosopis juliflora (mesquite). Plants were grown in an acidic lead/zinc mine tailings amended with 10% (w/w) compost amendment, which is slightly sub-optimal for plant growth in these tailings. After two months, AMF-inoculated plants showed increased dry biomass and root length (p < 0.05) and effective AMF colonization compared to controls grown in uninoculated compost-amended tailings. Mesquite shoot tissue lead and zinc concentrations did not exceed domestic animal toxicity limits regardless of whether AMF inoculation was used. The rhizosphere microbial community structure was assessed using denaturing gradient gel electrophoresis (DGGE) profiles of the small subunit RNA gene for bacteria and fungi. Canonical correspondence analysis (CCA) of DGGE profiles showed that the rhizosphere fungal community structure at the end of the experiment was significantly different from the community structure in the tailings, compost, and AMF inocula prior to planting. Further, CCA showed that AMF inoculation significantly influenced the development of both the fungal and bacterial rhizosphere community structures after two months. The changes observed in the rhizosphere microbial community structure may be either a direct effect of the AMF inocula, caused by changes in plant physiology induced by

  8. Plant Growth-Promoting Bacteria for Phytostabilization of Mine Tailings

    SciTech Connect

    Grandlic, C.J.; Mendez, M.O.; Chorover, J.; Machado, B.; Maier, R.M.

    2009-05-19

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal content tailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  9. Assessment of Phytostabilization Success in Metalliferous Acid Mine Tailings

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Root, R. A.; Hammond, C.; Amistadi, M. K.; Maier, R. M.; Chorover, J.

    2014-12-01

    Legacy mine tailings are a significant source of metal(loid)s due to wind and water erosion, especially in the arid southwest, and exposure to fugative dusts presents a health risk to surrounding populations. Compost assisted phytostabilization has been implemented to reduce off site emissions at the Iron King Mine U.S. Superfund Site in central Arizona, concurrent with a greenhouse mesocosm study for detailed study of subsurface mechanisms. Quantification of plant available toxic metal(loid)s in the amended tailings was accessed with a targeted single extraction of diethylenetriaminepentaactic acid (DTPA). Greenhouse mesocosms (1m dia, 0.4 m deep), run in triplicate, mimicked field treatments with: i) tailings only control (TO), ii) tailings plus 15 wt% compost (TC), iii) TC + quailbush seeds (TCA), and iv) TC + buffalo grass seeds (TCB). Core samples collected at 3-month intervals for 1 year were dissected by depth (10 cm each) for analysis. DTPA results indicated that compost treated samples decreased plant availability of Al, As, Cd, Cu, Fe, and Pb but increased Mn and Zn compared with TO. TCB decreased plant available metal(loid)s at all depths, whereas TCA plant available Al, As, Cd, Cu, Fe, Mn and Zn increased in the deeper 20-30cm and 30-40 cm relative to TCB. Samples from the greenhouse were compared to tailings from both the field site and tailings impacted soils used to grow vegetables. Mineral transformations and metal complexation, in the pre- and post-extracted tailings were analyzed by synchrotron transmission XRD and FTIR spectroscopy. The temporal change in plant available metal(loid)s in response to phytostabilization indicates mineralogical alteration that improves soil quality by reducing plant available metal(loid)s. These results will aid in the understanding and efficacy of phytostabilization as a means of remediating and reducing toxicity on mine tailings as well as providing information on health risk management in the region.

  10. Native plant restoration of biosolids-amended copper mine tailings

    SciTech Connect

    Kramer, P.A.; Zabowski, D.; Everett, R.L.; Scherer, G.

    1998-12-31

    Copper mine tailings are difficult to revegetate due to nutrient deficiencies, high levels of acidity, and potential metal toxicities. An amendment of biosolids could ameliorate these harsh growing conditions through the addition of available nutrients, improvement of physical soil properties (e.g., increased water holding capacity), and possible lowering of toxic metal availability through complexation with organic matter. A study was conducted on mine tailings at Holden, WA to evaluate the effect of an amendment of biosolids on the survival and growth of five native plant species (Sitka alder, big leaf maple, fireweed, w. yarrow, and pearly everlasting). Plots were established in tailings, gravel over tailings (G/T), and biosolids plus gravel over tailings. Each of the native plant species, except maple, had their highest survival in the biosolids-amended plot with 3 species at 100% survival. The biosolids amendment was shown to improve the growth of all species except maple. Fireweed produced 62 times more biomass in the biosolids-amended plot compared to the unamended plot (G/T). Plant analysis revealed a dramatic increase in nutrient content with the amendment of biosolids. Biosolids improved the survival, growth, and nutritional status of native plant species on the copper mine tailings.

  11. Plant growth-promoting bacteria for phytostabilization of mine tailings.

    PubMed

    Grandlic, Christopher J; Mendez, Monica O; Chorover, Jon; Machado, Blenda; Maier, Raina M

    2008-03-15

    Eolian dispersion of mine tailings in arid and semiarid environments is an emerging global issue for which economical remediation alternatives are needed. Phytostabilization, the revegetation of these sites with native plants, is one such alternative. Revegetation often requires the addition of bulky amendments such as compost which greatly increases cost. We report the use of plant growth-promoting bacteria (PGPB) to enhance the revegetation of mine tailings and minimize the need for compost amendment. Twenty promising PGPB isolates were used as seed inoculants in a series of greenhouse studies to examine revegetation of an extremely acidic, high metal contenttailings sample previously shown to require 15% compost amendment for normal plant growth. Several isolates significantly enhanced growth of two native species, quailbush and buffalo grass, in tailings. In this study, PGPB/compost outcomes were plant specific; for quailbush, PGPB were most effective in combination with 10% compost addition while for buffalo grass, PGPB enhanced growth in the complete absence of compost. Results indicate that selected PGPB can improve plant establishment and reduce the need for compost amendment. Further, PGPB activities necessary for aiding plant growth in mine tailings likely include tolerance to acidic pH and metals.

  12. Effects of plant growth-promoting bacteria isolated from copper tailings on plants in sterilized and non-sterilized tailings.

    PubMed

    Liu, Weiqiu; Yang, Chao; Shi, Si; Shu, Wensheng

    2014-02-01

    Ten strains of Cu-tolerant bacteria with potential plant growth-promoting ability were isolated by selecting strains with the ability to use 1-aminocyclopropane-1-carboxylate as a sole nitrogen source (designated ACC-B) or fix nitrogen (designated FLN-B) originating from the rhizosphere of plants growing on copper tailings. All 10 strains proved to have intrinsic ability to produce indole acetic acid and siderophores, and most of them could mobilize insoluble phosphate. In addition, a greenhouse study showed that ACC-B, FLN-B and a mixture of both had similar, potent ability to stimulate growth of Pennisetum purpureum, Medicago sativa and Oenothera erythrosepala plants grown on sterilized tailings. For instance, above-ground biomass of P. purpureum was 278-357% greater after 60d growth on sterilized tailings in their presence. They could also significantly promote the growth of the plants grown on non-sterilized tailings, though the growth-promoting effects were much weaker. So, strategies for using of the plant growth-promoting bacteria in the practice of phytoremediation deserve further studies to get higher growth-promoting efficiency.

  13. Plant and soil reactions to nickel ore processed tailings

    SciTech Connect

    Sheets, P.J.; Volk, V.V.; Gardner, E.H.

    1982-07-01

    Greenhouse and laboratory experiments were conducted to determine the effect that tailings, produced during the processing of nickeliferous laterite ores by a proposed U.S. Bureau of Mines Process, would have on plant growth and soil properties. The tailings contained soluble salts (7.6 mmhos/cm), NH/sub 4/-N (877 ..mu..g/g), Ni (0.28%), Mn (82 ..mu..g/g DTPA-extractable), Cr (0.44%), P (2 and 6 ..mu..g/g acid F- and NaHCO/sub 3/-extractable, respectively), and Ca and Mg (1.0 and 20.7 meq/100 g NH/sub 4/Ac-extractable, respectively). Water leaching decreased the NH/sub 4/-N concentration to 53 ..mu..g/g and the EC to 0.4 mmhos/cm by removal of (NH/sub 4/)/sub 2/SO/sub 4/ and MgSO/sub 4/ salts. Tall fescue (Festuca arundinacea Schreb.) was grown on Eightlar clay soil (skeletal, serpentinitic, mesic Typic Xerochrept) amended with 0, 223, 446, and 669 g tailings/kg soil and pure, unleached tailings for 32 weeks in the greenhouse. Seedling establishment of plants grown on soil amended at the highest tailings rate and the pure tailings was initially slow, but plants grown on soil amended at lower rates established readily and grew well. Plant P was <0.24%, while plant Ca concentrations were <0.45% throughout the growth period even though Ca(H/sub 2/PO/sub 2/)/sub 2/ and gypsum had been added. Ammonium acetate-extractable Ca at the end of the growth period was <5.0 meq/100 g on all amended soils.The Mn, Ni, and Cr concentrations of plants grown on treated soils were within normal ranges, although soil-analysis values were higher than commonly found. It is recommended that the tailings be washed to reduce NH/sub 4/-N and soluble salts prior to revegetation, and that native soil be added to the surface to reduce crusting.

  14. Phytostabilization of gold mine tailings, New Zealand. Part 1: Plant establishment in alkaline saline substrate.

    PubMed

    Mains, D; Craw, D; Rufaut, C G; Smith, C M S

    2006-01-01

    Tailings from the Macraes mine, southern New Zealand, are prone to wind erosion. Use of a vegetation cover for physical stabilization is one potential solution to this environmental problem. This study used field trials contained in lysimeters to 1), test the ability of different plant species to grow in un/amended tailings and 2), provide background information on the nutrient and chemical content of waters in tailings. Barley (Hordeum vulgare), blue lupin (Lupinus angustifolius), and rye corn (Secale cereale) were trialed, using Superphosphate fertilizer and sewage sludge as amendments. Rye corn grew well in fertilizer-amended tailings, but poorly in unamended tailings; barley growth was similar in amended and unamended tailings; blue lupins grew poorly overall The tailings had alkaline pH (7-8.5) and water rapidly (< 1 mo) interacted with the tailings to become strongly saline. Minor acid generation was neutralized by calcite, with associated release of calcium and carbonate ions. Leachate waters were supersaturated with respect to calcite and dolomite. Dissolved sodium concentrations were up to 1000 mg L(-1), but elevated Ca2+ calcium and Mg2+ ensured that sodicity was lower than plant-toxic levels. Rye corn is a potentially useful plant for rapid phytostabilization of tailings, with only minor phosphate amendment required.

  15. MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MIDDLE GORGE POWER PLANT, OWENS RIVER STREAM FLOWING OVER TAIL RACE OF POWER PLANT AND PENSTOCK HEADGATE TO LOWER GORGE CONTROL PLANT. A MINIMAL FLOW OF RIVER WATER IS REQUIRED TO MAINTAIN FISH LIFE - Los Angeles Aqueduct, Middle Gorge Power Plant, Los Angeles, Los Angeles County, CA

  16. Plant fatty acid hydroxylases

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  17. Reclamation of acidic copper mine tailings using municipal biosolids

    SciTech Connect

    Rogers, M.T.; Thompson, T.L.; Bengson, S.A.

    1998-12-31

    Reclamation of copper mine tailings in a cost effective, successful, and sustainable manner is an ongoing area of evaluation in the arid southwest. A study was initiated in September, 1996 near Hayden, Arizona to evaluate the use of municipal biosolids for reclaiming acidic copper mine tailings (pH of 2.5 to 4.0). The main objectives of the study were to (1) define an appropriate level of biosolids application for optimum plant growth, and (2) evaluate the effects of green waste and lime amendments. The experiment was a randomized complete block design with four biosolid rates of 20, 70, 100 and 135 dry tons/acre, three amendment treatments (none, green waste, and green waste plus lime); with three replications. Non-replicated controls (no treatment, green waste only and lime only) were included for comparison. Shortly after biosolids incorporation to a depth of 10--12 inches, composite soil samples (0--12 inches) of each plot were taken. Biosolids incorporation increased the pH of the tailings (>5.75) and additional increases in pH were noted with lime application. In January 1997, the plots were seeded and sprinkler irrigation was commenced. A total of 4.47 inches of rainfall and 3.8 inches of irrigation were applied until harvest in May 1997. Data from the first growing season indicates optimum growth (>66 lbs/acre) at biosolids rates of 70--100 dry tons/acre. There was a significant positive effect on growth of green waste and lime amendments. Surface NO{sub 3}-N concentrations in biosolids amended plots were greatly reduced (from 23 to 6 mg/kg) by addition of green waste. There was no evidence for NO{sub 3}N leaching below 12 inches.

  18. Arsenic and heavy metals in native plants at tailings impoundments in Queretaro, Mexico

    NASA Astrophysics Data System (ADS)

    Santos-Jallath, José; Castro-Rodríguez, Alejandrina; Huezo-Casillas, José; Torres-Bustillos, Luis

    Ten native plants species that grow in three tailings dams from Ag, Pb, Cu and Zn mine in Queretaro, Mexico were studied. Total concentrations in tailings were 183-14,660 mg/kg As, 45-308 mg/kg Cd, 327-1754 mg/kg Pb, 149-459 mg/kg Cu and 448-505 mg/kg Zn. In the three tailings dams, the solubility of these elements is low. Tailings in dam 1 are acid generating while tailings in dams 2 and 3 are not acid-generating potential. Plants species that accumulate arsenic and heavy metals was identified; Nicotina glauca generally presented the highest concentrations (92 mg/kg As, 106 mg/kg Cd, 189 mg/kg Pb, 95 mg/kg Cu and 1985 mg/kg Zn). Other species that accumulate these elements are Flaveria pubescens, Tecoma stans, Prosopis Sp, Casuarina Sp and Maurandia antirrhiniflora. Two species were found that accumulates a large amount of metals in the root, Cenchrus ciliaris and Opuntia lasiacantha. Concentrations in soils in which plants grow were 488-5990 mg/kg As, 5-129 mg/kg Cd, 169-3638 mg/kg Pb, 159-1254 mg/kg Cu and 1431-13,488 mg/kg Zn. The Accumulation Factor (AF) determined for plants was less than 1, with exception of N. glauca for Cd. The correlation between arsenic and heavy metals found in soils and plants was low. Knowledge of plant characteristics allows it use in planning the reforestation of tailings dams in controlled manner. This will reduce the risk of potentially toxic elements are integrated into the food chain of animal species.

  19. OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF CYANIDE PLANT REMAINS, TAILINGS PILES, PARKING LOT, AND MINE MANAGER'S HOME, LOOKING SOUTH SOUTHEAST. RIGHT, TAILINGS PILES ARE AT CENTER WITH CYANIDE PLANT FOUNDATIONS TO THE LEFT OF THE PILES. PARKING LOT IS AT UPPER LEFT. THE AREA BETWEEN THE COLLAPSED TANK AT CENTER LEFT AND THE REMAINS OF THE MANAGER'S HOUSE AT LOWER RIGHT IS A TAILINGS HOLDING AREA. TAILINGS FROM THE MILL WERE HELD HERE. THE LARGE SETTLING TANKS WERE CHARGED FROM THIS HOLDING AREA BY A TRAM ON RAILS AND BY A SLUICEWAY SEEN AS THE DARK SPOT ON THE CENTER LEFT EDGE OF THE FRAME. AFTER THE TAILINGS WERE LEACHED, THEY WERE DEPOSITED ON THE LARGE WASTE PILE AT CENTER RIGHT. THE TANK AT CENTER RIGHT EDGE IS WHERE THE WATER PIPELINE ENTERED THE WORKS. A STRAIGHT LINE OF POSTS IN THE GROUND GO ACROSS THE CENTER FROM LEFT TO RIGHT, WHICH ORIGINALLY SUSPENDED THE WATER PIPELINE GOING FROM THE WATER HOLDING TANK AT RIGHT UP TO THE SECONDARY WATER TANKS ABOVE THE MILL. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  20. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field.

    PubMed

    Gil-Loaiza, Juliana; White, Scott A; Root, Robert A; Solís-Dominguez, Fernando A; Hammond, Corin M; Chorover, Jon; Maier, Raina M

    2016-09-15

    Standard practice in reclamation of mine tailings is the emplacement of a 15 to 90cm soil/gravel/rock cap which is then hydro-seeded. In this study we investigate compost-assisted direct planting phytostabilization technology as an alternative to standard cap and plant practices. In phytostabilization the goal is to establish a vegetative cap using native plants that stabilize metals in the root zone with little to no shoot accumulation. The study site is a barren 62-hectare tailings pile characterized by extremely acidic pH as well as lead, arsenic, and zinc each exceeding 2000mgkg(-1). The study objective is to evaluate whether successful greenhouse phytostabilization results are scalable to the field. In May 2010, a 0.27ha study area was established on the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site with six irrigated treatments; tailings amended with 10, 15, or 20% (w/w) compost seeded with a mix of native plants (buffalo grass, arizona fescue, quailbush, mountain mahogany, mesquite, and catclaw acacia) and controls including composted (15 and 20%) unseeded treatments and an uncomposted unseeded treatment. Canopy cover ranging from 21 to 61% developed after 41 months in the compost-amended planted treatments, a canopy cover similar to that found in the surrounding region. No plants grew on unamended tailings. Neutrophilic heterotrophic bacterial counts were 1.5 to 4 orders of magnitude higher after 41months in planted versus unamended control plots. Shoot tissue accumulation of various metal(loids) was at or below Domestic Animal Toxicity Limits, with some plant specific exceptions in treatments receiving less compost. Parameters including % canopy cover, neutrophilic heterotrophic bacteria counts, and shoot uptake of metal(loids) are promising criteria to use in evaluating reclamation success. In summary, compost amendment and seeding, guided by preliminary greenhouse studies, allowed plant establishment and sustained growth over 4years

  1. Phytostabilization of mine tailings using compost-assisted direct planting: Translating greenhouse results to the field.

    PubMed

    Gil-Loaiza, Juliana; White, Scott A; Root, Robert A; Solís-Dominguez, Fernando A; Hammond, Corin M; Chorover, Jon; Maier, Raina M

    2016-09-15

    Standard practice in reclamation of mine tailings is the emplacement of a 15 to 90cm soil/gravel/rock cap which is then hydro-seeded. In this study we investigate compost-assisted direct planting phytostabilization technology as an alternative to standard cap and plant practices. In phytostabilization the goal is to establish a vegetative cap using native plants that stabilize metals in the root zone with little to no shoot accumulation. The study site is a barren 62-hectare tailings pile characterized by extremely acidic pH as well as lead, arsenic, and zinc each exceeding 2000mgkg(-1). The study objective is to evaluate whether successful greenhouse phytostabilization results are scalable to the field. In May 2010, a 0.27ha study area was established on the Iron King Mine and Humboldt Smelter Superfund (IKMHSS) site with six irrigated treatments; tailings amended with 10, 15, or 20% (w/w) compost seeded with a mix of native plants (buffalo grass, arizona fescue, quailbush, mountain mahogany, mesquite, and catclaw acacia) and controls including composted (15 and 20%) unseeded treatments and an uncomposted unseeded treatment. Canopy cover ranging from 21 to 61% developed after 41 months in the compost-amended planted treatments, a canopy cover similar to that found in the surrounding region. No plants grew on unamended tailings. Neutrophilic heterotrophic bacterial counts were 1.5 to 4 orders of magnitude higher after 41months in planted versus unamended control plots. Shoot tissue accumulation of various metal(loids) was at or below Domestic Animal Toxicity Limits, with some plant specific exceptions in treatments receiving less compost. Parameters including % canopy cover, neutrophilic heterotrophic bacteria counts, and shoot uptake of metal(loids) are promising criteria to use in evaluating reclamation success. In summary, compost amendment and seeding, guided by preliminary greenhouse studies, allowed plant establishment and sustained growth over 4years

  2. Role of organic acids in promoting colloidal transport of mercury from mine tailings

    USGS Publications Warehouse

    Slowey, A.J.; Johnson, S.B.; Rytuba, J.J.; Brown, Gordon E.

    2005-01-01

    A number of factors affect the transport of dissolved and paniculate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 ??M and 1 mM), particle-associated Hg was mobilized, with the onset of paniculate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was paniculate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release. ?? 2005 American Chemical Society.

  3. Role of organic acids in promoting colloidal transport of mercury from mine tailings.

    PubMed

    Slowey, Aaron J; Johnson, Stephen B; Rytuba, James J; Brown, Gordon E

    2005-10-15

    A number of factors affect the transport of dissolved and particulate mercury (Hg) from inoperative Hg mines, including the presence of organic acids in the rooting zone of vegetated mine waste. We examined the role of the two most common organic acids in soils (oxalic and citric acid) on Hg transport from such waste by pumping a mixed organic acid solution (pH 5.7) at 1 mL/min through Hg mine tailings columns. For the two total organic acid concentrations investigated (20 microM and 1 mM), particle-associated Hg was mobilized, with the onset of particulate Hg transport occurring later for the lower organic acid concentration. Chemical analyses of column effluent indicate that 98 wt % of Hg mobilized from the column was particulate. Hg speciation was determined using extended X-ray absorption fine structure spectroscopy and transmission electron microscopy, showing that HgS minerals are dominant in the mobilized particles. Hg adsorbed to colloids is another likely mode of transport due to the abundance of Fe-(oxyhydr)oxides, Fe-sulfides, alunite, and jarosite in the tailings to which Hg(II) adsorbs. Organic acids produced by plants are likely to enhance the transport of colloid-associated Hg from vegetated Hg mine tailings by dissolving cements to enable colloid release.

  4. Plant fatty acid hydroxylase

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  5. Revegetation of non-Acid-generating, thickened tailings with boreal trees: a greenhouse study.

    PubMed

    Larchevêque, Marie; Desrochers, Annie; Bussière, Bruno; Cartier, Hélène; David, Jean-Sébastien

    2013-01-01

    Tree planting presents clear advantages for mine reclamation that is aimed at achieving rapid reclamation of forested landscapes. A greenhouse study was conducted to evaluate the capacity of non-acid-generating, thickened tailings to support six boreal tree species during two growing seasons. One treatment was thickened tailings alone fertilized with inorganic N, P, and K fertilizer or chicken () manure. A thin layer of overburden topsoil was used to cover the tailings and was compared with topsoil alone, where normal tree growth was expected. Two amendments were also tested: overburden topsoil and vermicompost from food wastes. The presence of alkaline thickened tailings under the thin layer of acidic topsoil had a positive effect on tree height and root biomass (broadleaved and jack pine [ Lamb.]) by increasing topsoil pH and available Ca concentrations, which decreased Al, Zn, and Mn phytoavailability to trees; however, root contact with the tailings also increased their Cu concentrations. In thickened tailings that were mixed with topsoil, C/N ratios increased along the experiment from 21 to 40, a value where N immobilization by microorganisms occurred, as suggested by low N concentrations in tree tissues. In consequence, tree height growth (broadleaved) and biomass (conifers) were reduced. Amendment with compost raised the electrical conductivity (3.4 dS cm) to thresholds limiting broadleaved survival, while conifers showed a generalized decrease in biomass production. No trace metal contamination of the trees occurred in the mixtures, probably due to the near-neutral pH conferred by the tailings. PMID:23673827

  6. OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING NORTHEAST. THE LOWER TRAM TERMINAL AND MILL SITE IS AT TOP CENTER IN THE DISTANCE. THE DARK SPOT JUST BELOW THE TRAM TERMINAL ARE REMAINS OF THE DEWATERING BUILDING. THE MAIN ACCESS ROAD IS AT UPPER LEFT. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS WHERE TAILINGS FROM THE MILL SETTLED IN A CYANIDE SOLUTION IN ORDER TO RECLAIM ANY GOLD CONTENT. THE PREGNANT SOLUTION WAS THEN RUN THROUGH THE ZINC BOXES ON THE GROUND AT CENTER RIGHT, WHERE ZINC SHAVINGS WERE INTRODUCED, CAUSING THE GOLD TO PRECIPITATE OUT OF THE CYANIDE SOLUTION, WHICH COULD BE USED AGAIN. THE FLAT AREA IN THE FOREGROUND WITH THE TANK AND TANK HOOPS IS THE FOOTPRINT OF A LARGE BUILDING WHERE THE PRECIPITATION AND FURTHER FILTERING AND FINAL CASTING TOOK PLACE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA

  7. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds

    PubMed Central

    Feng, Zi-ming; Zhan, Zhi-lai; Yang, Ya-nan; Jiang, Jian-shuang; Zhang, Pei-cheng

    2016-01-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method. PMID:27166276

  8. Naturally occurring hybrids derived from γ-amino acids and sugars with potential tail to tail ether-bonds

    NASA Astrophysics Data System (ADS)

    Feng, Zi-Ming; Zhan, Zhi-Lai; Yang, Ya-Nan; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2016-05-01

    The basic substances of life include various amino acids and sugars. To search such molecules is the precondition to understand the essential nature. Here we reported four unprecedented hybrids of γ-amino acids and sugars from the roots of Ranunculus ternatus, which possess potential tail to tail ether-connected (6,6-ether-connected) modes in the sugar moiety. The structures of these hybrids were elucidated by extensive analyses of spectra and calculated electronic circular dichroism (ECD) method.

  9. Sulfur Oxidation, Microbes And Acidity In A Mine Tailings Lake

    NASA Astrophysics Data System (ADS)

    Warren, L. A.; Bernier, L.

    2003-12-01

    Disposal of tailings (waste rock) aqueously is a common approach at mine sites to minimize oxidation of the associated sulfur minerals (pyrrhotite, pyrite) and the associated generation of acidity that accompanies this process. The study site, Moose Lake, receives tailings runoff at a nickel mine in Northern Ontario, which has rendered the lake highly acidic (surface pH values less than 3.5) with high metal loads and on-going acid export to off-site, downstream systems. To investigate the potential influence of microbial processes for acid generation, as well as characterizing any attendant influences for metal behaviour, the biogeochemistry of Moose Lake was characterized on a seasonal and a diel basis during the summer of 2002. Physico-chemical profiles were used to identify the area of strong redox gradient across the thermocline (typically 1 to 2 metres across this zone) on each sampling day. Samples at five depths within this redox gradient, were then collected for Fe3+/Fe2+, SO42-/H2S, metal and microbial samples, in addition to more highly resolved Hydrolab profiling. Samples were collected both during the lighted portion of the day (10am-12pm) and at dusk (6pm-8pm) to evaluate any contributions to S and Fe cycling attributed to photosynthetic activity. Results indicate a clear seasonal increase in acidity in the upper waters of the lake: pH values dropped from 3.19 in May to 2.90 in September. Further, a strong diel trend of increasing acidity (lower pH) from mid morning to dusk was also observed for each sampling period. Biotic control on S processes appears to be important associated with the thermocline region of the lake, whilst surficial processes occurring in the upper one to three meters are more consistent with a dominant abiotic control. Both pathways contribute to acidity generation, however the controls and rates differ. These results and implications for mitigation strategies will be presented.

  10. Bacillus pumilus ES4: candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Bashan, Yoav; Maier, Raina

    2014-01-01

    Three plant growth-promoting bacteria (PGPB; Bacillus pumilus ES4, B. pumilus RIZO1, and Azospirillum brasilense Cd) were tested for their ability to enhance plant growth and development of the native Sonoran Desert shrub quailbush (Atriplex lentiformis) and for their effect on the native bacterial community in moderately acidic, high-metal content (AHMT) and in neutral, low metal content natural tailings (NLMT) in controlled greenhouse experiments. Inoculation of quailbush with all three PGPB significantly enhanced plant growth parameters, such as germination, root length, dry weight of shoots and roots, and root/shoot ratio in both types of tailings. The effect of inoculation on the indigenous bacterial community by the most successful PGPB Bacillus pumilus ES4 was evaluated by denaturating gradient gel electrophoresis (PCR-DGGE) fingerprinting and root colonization was followed by specific fluorescent in situ hybridization (FISH). Inoculation with this strain significantly changed the bacterial community over a period of 60 days. FISH analysis showed that the preferred site of colonization was the root tips and root elongation area. This study shows that inoculation of native perennial plants with PGPB can be used for developing technologies for phytostabilizing mine tailings. PMID:25009362

  11. Phytostabilization potential of Jatropha curcas L. in polymetallic acid mine tailings.

    PubMed

    Wu, Qihang; Wang, Shizhong; Thangavel, Palaniswamy; Li, Qingfei; Zheng, Han; Bai, Jun; Qiu, Rongliang

    2011-09-01

    Greenhouse pot experiments were conducted to determine the growth response, metal tolerance, and phytostabilization potential of Jatropha curcas L The plants were grown on different degrees of multi-metal contaminated acid mine soils (T0, control; T1, moderately and T2, highly contaminated soils) with or without limestone amendments. The order of metal accumulation in J. curcas was roots>stems>leaves. The higher tolerance index (>90%) with no phytotoxic symptoms and growth reduction in T1 showed that this plant has the ability to tolerate polymetallic acid mine tailings. Further, various enzymatic and non-enzymatic antioxidants also actively involved in metal defense mechanism in J. curcas. On the other hand, to alleviate the predominant phytoavailable toxic metals such as Al, Cu, and Pb, different rates (0.1, 0.25, 0.50, and 1%) of limestone amendments were added in both T1 and T2 soils. The growth performance of J. curcas was improved due to the increase in soil pH and decrease in phytoavailable soil A1 (95%), Zn (approximately 75%), and Cu (approximately 65%) contents at 0.50% of lime addition. Based on the inherent tolerance ability of J. curcas in existing adverse environmental conditions without liming, it could be used as a suitable candidate for phytostabilization in acid mine tailings. PMID:21972519

  12. The importance of edaphic niches and pioneer plant species succession for the phytomanagement of mine tailings.

    PubMed

    Parraga-Aguado, Isabel; Gonzalez-Alcaraz, Maria Nazaret; Alvarez-Rogel, Jose; Jimenez-Carceles, Francisco J; Conesa, Hector M

    2013-05-01

    Phytomanagement in terms of phytostabilisation is considered a suitable method to decrease environmental risks of metal(loid) enriched mine tailings. The goal of this study was to identify plant-favourable edaphic niches in mine tailings from a semiarid area, in order to obtain relevant information for further phytostabilisation procedures. For this purpose, a transect-designed sampling from non-disturbed soils to two mine tailings was performed, including the description of soil and plant ecology gradients. Plant ecological indicators showed several stages in plant succession: from weeds to stable patches of late successional plant species. PCA results revealed that plant distribution at the tailings was driven mainly by salinity while metal(loid) concentrations played a minor role. The presence of soil desiccation cracks generated low salinity patches which facilitated favourable niches for plant establishment. Edaphic-patch distribution may condition phytostabilisation since ploughing or the employment of certain amendments should take into account favourable niches for plant growth.

  13. Phytoremediation of Alberta oil sand tailings using native plants and fungal endophytes

    NASA Astrophysics Data System (ADS)

    Repas, T.; Germida, J.; Kaminskyj, S.

    2012-04-01

    Fungal endophytes colonize host plants without causing disease. Some endophytes confer plant tolerance to harsh environments. One such endophyte, Trichoderma harzianum strain TSTh20-1, was isolated from a plant growing on Athabasca oil sand tailings. Tailing sands are a high volume waste product from oil sand extraction that the industry is required to remediate. Tailing sands are low in organic carbon and mineral nutrients, and are hydrophobic due to residual polyaromatic hydrocarbons. Typically, tailing sands are remediated by planting young trees in large quantities of mulch plus mineral fertilizer, which is costly and labour intensive. In greenhouse trials, TSTh20-1 supports growth of tomato seedlings on tailing sands without fertilizer. The potential use of TSTh20-1 in combination with native grasses and forbs to remediate under field conditions is being assessed. Twenty-three commercially available plant species are being screened for seed germination and growth on tailing sands in the presence of TSTh20-1. The best candidates from this group will be used in greenhouse and small scale field trials. Potential mechanisms that contribute to endophyte-induced plant growth promotion, such as plant hormone production, stress tolerance, mineral solubilization, and uptake are also being assessed. As well, TSTh20-1 appears to be remarkably frugal in its nutrient requirements and the possibility that this attribute is characteristic of other plant-fungal endophytes from harsh environments is under study.

  14. Genomic analyses of metal resistance genes in three plant growth promoting bacteria of legume plants in Northwest mine tailings, China.

    PubMed

    Xie, Pin; Hao, Xiuli; Herzberg, Martin; Luo, Yantao; Nies, Dietrich H; Wei, Gehong

    2015-01-01

    To better understand the diversity of metal resistance genetic determinant from microbes that survived at metal tailings in northwest of China, a highly elevated level of heavy metal containing region, genomic analyses was conducted using genome sequence of three native metal-resistant plant growth promoting bacteria (PGPB). It shows that: Mesorhizobium amorphae CCNWGS0123 contains metal transporters from P-type ATPase, CDF (Cation Diffusion Facilitator), HupE/UreJ and CHR (chromate ion transporter) family involved in copper, zinc, nickel as well as chromate resistance and homeostasis. Meanwhile, the putative CopA/CueO system is expected to mediate copper resistance in Sinorhizobium meliloti CCNWSX0020 while ZntA transporter, assisted with putative CzcD, determines zinc tolerance in Agrobacterium tumefaciens CCNWGS0286. The greenhouse experiment provides the consistent evidence of the plant growth promoting effects of these microbes on their hosts by nitrogen fixation and/or indoleacetic acid (IAA) secretion, indicating a potential in-site phytoremediation usage in the mining tailing regions of China.

  15. Site-specific study on stabilization of acid-generating mine tailings using coal fly ash

    SciTech Connect

    Shang, J.Q.; Wang, H.L.; Kovac, V.; Fyfe, J.

    2006-03-15

    A site-specific study on stabilizing acid-generating mine tailings from Sudbury Mine using a coal fly ash from Nanticoke Generating Station is presented in this paper. The objective of the study is to evaluate the feasibility of codisposal of the fly ash and mine tailings to reduce environmental impacts of Sudbury tailings disposal sites. The study includes three phases, i.e., characterization of the mine tailings, and coal fly ash, oxidation tests on the mine tailings and kinetic column permeation tests. The results of the experiments indicate that when permeated with acid mine drainage, the hydraulic conductivity of Nanticoke coal fly ash decreased more than three orders of magnitude (from 1 x 10{sup -6} to 1 x 10{sup -9} cm/s), mainly due to chemical reactions between the ash solids and acid mine drainage. Furthermore, the hydraulic gradient required for acid mine drainage to break through the coal fly ash is increased up to ten times (from 17 to 150) as compared with that for water. The results also show that the leachate from coal fly ash neutralizes the acidic pore fluid of mine tailings. The concentrations of trace elements in effluents from all kinetic column permeation tests indicated that coplacement of coal fly ash with mine tailings has the benefit of immobilizing trace elements, especially heavy metals. All regulated element concentrations from effluent during testing are well below the leachate quality criteria set by the local regulatory authority.

  16. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    USGS Publications Warehouse

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  17. Calcium-triggered membrane interaction of the alpha-synuclein acidic tail.

    PubMed

    Tamamizu-Kato, Shiori; Kosaraju, Malathi G; Kato, Hiroyuki; Raussens, Vincent; Ruysschaert, Jean-Marie; Narayanaswami, Vasanthy

    2006-09-12

    Alpha-synuclein (alpha-syn) is a 140-residue protein that aggregates in intraneuronal inclusions called Lewy bodies in Parkinson's disease (PD). It is composed of an N-terminal domain with a propensity to bind lipids and a C-terminal domain rich in acidic residues (the acidic tail). The objective of this study was to examine the effect of Ca(2+) on the acidic tail conformation in lipid-bound alpha-syn. We exploit the extreme sensitivity of the band III fluorescence emission peak of the pyrene fluorophore to the polarity of its microenvironment to monitor subtle conformational response of the alpha-syn acidic tail to Ca(2+). Using recombinant human alpha-syn bearing a pyrene to probe either the N-terminal domain or the acidic tail, we noted that lipid binding resulted in an increase in band III emission intensity in the pyrene probe tagging the N-terminal domain but not that in the acidic tail. This suggests that the protein is anchored to the lipid surface via the N-terminal domain. However, addition of Ca(2+) caused an increase in band III emission intensity in the pyrene tagging the acidic tail, with a corresponding increased susceptibility to quenching by quenchers located in the lipid milieu, indicative of lipid interaction of this domain. Taken together with the increased beta-sheet content of membrane-associated alpha-syn in the presence of Ca(2+), we propose a model wherein initial lipid interaction occurs via the N-terminal domain, followed by a Ca(2+)-triggered membrane association of the acidic tail as a potential mechanism leading to alpha-syn aggregation. These observations have direct implications in the role of age-related oxidative stress and the attendant cellular Ca(2+) dysregulation as critical factors in alpha-syn aggregation in PD.

  18. Groundwater leaching of neutralized and untreated acid-leached uranium-mill tailings

    SciTech Connect

    Gee, G.W.; Begej, C.W.; Campbell, A.C.; Sauter, N.N.; Opitz, B.E.; Sherwood, D.R.

    1981-01-01

    Tailings neutralization was examined to determine the effect of neutralization on contaminant release. Column leaching of acid extracted uranium mill tailings from Exxon Highland Mill, Wyoming, Pathfinder Gas Hills Mill, Wyoming, and the Dawn Midnite Mill, Washington, resulted in the flushing of high concentrations of salts in the first four pore volumes of leachate, followed by a steady decrease to the original groundwater salt concentrations. Neutralization decreased the concentration of salts and radionuclides leaching from the tailings and decreased the volume of solution required to return the solution to the groundwater pH and EC. Radium-226 and uranium-238 leached quickly from the tailings in the initial pore volumes of both neutralized and unneutralized tailings, and then decreased significantly. 6 figures, 5 tables.

  19. Geophysical delineation of acidity and salinity in the Central Manitoba gold mine tailings pile, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Tycholiz, C.; Ferguson, I. J.; Sherriff, B. L.; Cordeiro, M.; Sri Ranjan, R.; Pérez-Flores, M. A.

    2016-08-01

    Surface electrical and electromagnetic geophysical methods can map enhanced electrical conductivity caused by acid mine drainage in mine tailings piles. In this case study, we investigate quantitative relationships between geophysical responses and the electrical conductivity, acidity and salinity of tailing samples at the Central Manitoba Mine tailings in Manitoba, Canada. Previous electromagnetic surveys at the site identified zones of enhanced conductivity that were hypothesized to be caused by acid mine drainage. In the present study, high-resolution EM31 and DC-resistivity measurements were made on a profile through a zone of enhanced conductivity and laboratory measurements of salinity and pH were made on saturation paste extracts from an array of tailing samples collected from the upper 2 m of tailings along the profile. Observed spatial correlation of pH and pore-fluid salinity in the tailings samples confirms that the enhanced conductivity in the Central Manitoba Mine tailings is due to acid mine drainage. Contoured cross-sections of the data indicate that the acid mine drainage is concentrated near the base of the oxidized zone in the thicker parts of the tailings pile. The zone of increased acidity extends to the surface on sloping margins causing an increase in apparent conductivity in shallow penetrating geophysical responses. The quantitative relationship between measured pH and salinity shows that the conductivity increase associated with the acid mine drainage is due only in part to conduction by ions produced from dissociation of sulfuric acid. Comparison of the observations with fluid conductivity estimates based on statistical relationships of pH and ion concentrations in water samples from across the tailings pile shows that Ca2 + and Mg2 + ions also make significant contributions to the conductivity at all values of pH and Cu2 +, Al3 + and Fe3 + ions make additional contributions at low pH. Variability in the measured conductivity at constant

  20. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: implications for land and water reclamation in tropical regions.

    PubMed

    Lottermoser, Bernd G; Ashley, Paul M

    2011-10-01

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions.

  1. Trace element uptake by Eleocharis equisetina (spike rush) in an abandoned acid mine tailings pond, northeastern Australia: implications for land and water reclamation in tropical regions.

    PubMed

    Lottermoser, Bernd G; Ashley, Paul M

    2011-10-01

    This study was conducted to determine the uptake of trace elements by the emergent wetland plant species Eleocharis equisetina at the historic Jumna tin processing plant, tropical Australia. The perennial emergent sedge was found growing in acid waters (pH 2.45) and metal-rich tailings (SnAsCuPbZn). E. equisetina displayed a pronounced acid tolerance and tendency to exclude environmentally significant elements (Al, As, Cd, Ce, Co, Cu, Fe, La, Ni, Pb, Se, Th, U, Y, Zn) from its above-substrate biomass. This study demonstrates that geobotanical and biogeochemical examinations of wetland plants at abandoned mined lands of tropical areas can reveal pioneering, metal-excluding macrophytes. Such aquatic macrophytes are of potential use in the remediation of acid mine waters and sulfidic tailings and the reclamation of disturbed acid sulfate soils in subtropical and tropical regions. PMID:21550704

  2. The internalization signal in the cytoplasmic tail of lysosomal acid phosphatase consists of the hexapeptide PGYRHV.

    PubMed Central

    Lehmann, L E; Eberle, W; Krull, S; Prill, V; Schmidt, B; Sander, C; von Figura, K; Peters, C

    1992-01-01

    Lysosomal acid phosphatase (LAP) is rapidly internalized from the cell surface due to a tyrosine-containing internalization signal in its 19 amino acid cytoplasmic tail. Measuring the internalization of a series of LAP cytoplasmic tail truncation and substitution mutants revealed that the N-terminal 12 amino acids of the cytoplasmic tail are sufficient for rapid endocytosis and that the hexapeptide 411-PGYRHV-416 is the tyrosine-containing internalization signal. Truncation and substitution mutants of amino acid residues following Val416 can prevent internalization even though these residues do not belong to the internalization signal. It was shown recently that part of the LAP cytoplasmic tail peptide corresponding to 410-PPGY-413 forms a well-ordered beta turn structure in solution. Two-dimensional NMR spectroscopy of two modified LAP tail peptides, in which the single tyrosine was substituted either by phenylalanine or by alanine, revealed that the tendency to form a beta turn is reduced by 25% in the phenylalanine-containing peptide and by approximately 50% in the alanine-containing mutant peptide. Our results suggest, that in the short cytoplasmic tail of LAP tyrosine is required for stabilization of the right turn and that the aromatic ring system of the tyrosine residue is a contact point to the putative cytoplasmic receptor. Images PMID:1425575

  3. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings.

    PubMed

    Zelaya-Molina, Lily X; Hernández-Soto, Luis M; Guerra-Camacho, Jairo E; Monterrubio-López, Ricardo; Patiño-Siciliano, Alfredo; Villa-Tanaca, Lourdes; Hernández-Rodríguez, César

    2016-08-01

    Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.

  4. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings.

    PubMed

    Zelaya-Molina, Lily X; Hernández-Soto, Luis M; Guerra-Camacho, Jairo E; Monterrubio-López, Ricardo; Patiño-Siciliano, Alfredo; Villa-Tanaca, Lourdes; Hernández-Rodríguez, César

    2016-08-01

    Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola. PMID:27138047

  5. Long-term stability of earthen materials in contact with acidic tailings solutions

    SciTech Connect

    Peterson, S.R.; Erikson, R.L.; Gee, G.W.

    1982-11-01

    The objectives of the studies documented in this report were to use experimental and geochemical computer modeling tools to assess the long-term environmental impact of leachate movement from acidic uranium mill tailings. Liner failure (i.e., an increase in the permeability of the liner material) was not found to be a problem when various acidic tailings solutions leached through liner materials for periods up to 3 years. On the contrary, materials that contained over 30% clay showed a decrease in permeability with time in the laboratory columns. The high clay materials tested appear suitable for lining tailings impoundment ponds. The decreases in permeability are attributed to pore plugging resulting from the precipitation of minerals and solids. This precipitation takes place due to the increase in pH of the tailings solution brought about by the buffering capacity of the soil. Geochemical modeling predicts, and x-ray characterization confirms, that precipitation of solids from solution is occurring in the acidic tailings solution/liner interactions studied. In conclusion the same mineralogical changes and contaminant reactions predicted by geochemical modeling and observed in laboratory studies were found at a drained evaporation pond (Lucky Mc in Wyoming) with a 4 year history of acid attack.

  6. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  7. Phytobarriers: Plants capture particles containing potentially toxic elements originating from mine tailings in semiarid regions.

    PubMed

    Sánchez-López, Ariadna S; Carrillo-González, Rogelio; González-Chávez, Ma Del Carmen Angeles; Rosas-Saito, Greta Hanako; Vangronsveld, Jaco

    2015-10-01

    Retention of particles containing potentially toxic elements (PTEs) on plants that spontaneously colonize mine tailings was studied through comparison of washed and unwashed shoot samples. Zn, Pb, Cd, Cu, Ni, Co and Mn concentrations were determined in plant samples. Particles retained on leaves were examined by Scanning Electronic Microscopy and energy dispersive X-Ray analysis. Particles containing PTEs were detected on both washed and unwashed leaves. This indicates that the thorough washing procedure did not remove all the particles containing PTEs from the leaf surface, leading to an overestimation of the concentrations of PTEs in plant tissues. Particularly trichomes and fungal mycelium were retaining particles. The quantity and composition of particles varied among plant species and place of collection. It is obvious that plants growing on toxic mine tailings form a physical barrier against particle dispersion and hence limit the spread of PTEs by wind.

  8. Using soil island plantings as dispersal vectors in large area copper tailings reforestation

    SciTech Connect

    Scherer, G.; Everett, R.

    1998-12-31

    The Wenatchee National Forest undertook the reforestation of the 80 acre (35 ha) Holden copper mine tailings of Washington State in 1989 by using 20, one-fourth acre, triangular shaped soil islands as a source of plant propagules targeted for gravel-covered tailings surfaces. The islands were constructed of soil and surface litter transported from a nearby gravel pit, and planted with four species of conifer seedlings, the shrub Sitka alder (Alnus sinuata) and eight species of grasses. Conifer and alder seedlings were also planted in graveled covered tailings with amendments. Since reproductive status of the conifers would not occur for several years, this propagule vector hypothesis was tested by measuring the distances traveled onto the tailings surface by grass seeds. The number of grass shoots established in four treatment blocks in target plots downwind from the soil island source plantings was also determined. After 36 months, grass seed had migrated to a distance of 32 feet (11 m) from the soil island source. Grass shoots were present within 10 feet (3 m) downwind of the soil island, the most frequent being Mountain brome (Bromus marginatus). Among the tree species, lodgepole pine (Pinus contorta) and Sitka alder grew an average of 6 inches (15--16 cm) after 40 months on the soil islands but somewhat less on the tailing surface. By the third growing season, the only tree species in reproductive condition on the tailings was alder. The soil-island technique is successful for grass dispersal and may have potential for conifer and alder migration.

  9. Bacterial community changes during plant establishment at the San Pedro River mine tailings site.

    PubMed

    Rosario, Karyna; Iverson, Sadie L; Henderson, David A; Chartrand, Shawna; McKeon, Casey; Glenn, Edward P; Maier, Raina M

    2007-01-01

    Mine tailings are moderately to severely impacted sites that lack normal plant cover, soil structure and development, and the associated microbial community. In arid and semiarid environments, tailings and their associated contaminants are prone to eolian dispersion and water erosion, thus becoming sources of metal contamination. One approach to minimize or eliminate these processes is to establish a permanent vegetation cover on tailings piles. Here we report a revegetation trial conducted at a moderately impacted mine tailings site in southern Arizona. A salt and drought-tolerant plant, four-wing saltbush [Atriplex canescens (Pursh) Nutt.], was chosen for the trial. A series of 3 by 3 m plots were established in quadruplicate on the test site to evaluate growth of four-wing saltbush transplants alone or with compost addition. Results show that >80% of the transplanted saltbush survived after 1.5 yr in both treatments. Enumeration of heterotrophs and community structure analysis were conducted to monitor bacterial community changes during plant establishment as an indicator of plant and soil health. The bacterial community was evaluated using denaturing gradient gel electrophoresis (DGGE) analysis of 16S rDNA PCR gene products from tailings samples taken beneath transplant canopies. Significant differences in heterotrophic counts and community composition were observed between the two treatments and unplanted controls throughout the trial, but treatment effects were not observed. The results suggest that compost is not necessary for plant establishment at this site and that plants, rather than added compost, is the primary factor enhancing bacterial heterotrophic counts and affecting community composition.

  10. Microbial Diversity and Metal Speciation Changes in Mine Tailings Following Compost-Assisted Direct Planting: A Four-Year Superfund Site Field Study

    NASA Astrophysics Data System (ADS)

    Maier, R. M.; Gil-Loaiza, J.; Honeker, L. K.; Hottenstein, J. D.; Valentin-Vargas, A.; Jennings, L. L.; Hammond, C.; Neilson, J. W.; Root, R. A.; Chorover, J.

    2015-12-01

    EPA estimates that future mine tailings remediation costs will exceed US $50 billion using present technologies based on constructing an inert or biological cap on the tailings. Both approaches require large amounts of capping materials that can be difficult and expensive to obtain especially for sites several thousand hectares in size. An alternative technology is direct planting into tailings. However, direct planting alone is not feasible for many legacy sites due to extreme acidity and high metal content which prevent plant germination and growth. Therefore the process must be "assisted" through the addition of amendments such as compost. Here we present results from the first four years of a field study at the Iron King Mine and Humboldt Smelter Superfund site demonstrating the feasibility of compost-assisted direct planting. Parameters measured during the field study included: canopy cover, pH, nutrient content, plant metal uptake, metal(loid) speciation, mineral analysis, microbiome analysis, and plant root-metal-microbe interactions. Integrated analysis of these parameters suggests that even in this "worst-case scenario" mine tailings site (pH 2.5; As and Pb each exceeding 2 g kg-1), we have created a sustainable system. In this system, phyto-catalyzed stabilization of inorganic contaminants in the root zone is driven by plant root exudates and the associated rhizosphere microbial community. The results of this research will be put into context of a larger topic- that of ecological engineering of mine tailings sites - a technique being proposed to prevent creation of acidic conditions and metal(loid) mobilization in the first place.

  11. Microbial Diversity and Metal Speciation Changes in Mine Tailings Following Compost-Assisted Direct Planting: A Four-Year Superfund Site Field Study

    NASA Astrophysics Data System (ADS)

    Maier, R. M.; Gil-Loaiza, J.; Honeker, L. K.; Hottenstein, J. D.; Valentin-Vargas, A.; Jennings, L. L.; Hammond, C.; Neilson, J. W.; Root, R. A.; Chorover, J.

    2014-12-01

    EPA estimates that future mine tailings remediation costs will exceed US $50 billion using present technologies based on constructing an inert or biological cap on the tailings. Both approaches require large amounts of capping materials that can be difficult and expensive to obtain especially for sites several thousand hectares in size. An alternative technology is direct planting into tailings. However, direct planting alone is not feasible for many legacy sites due to extreme acidity and high metal content which prevent plant germination and growth. Therefore the process must be "assisted" through the addition of amendments such as compost. Here we present results from the first four years of a field study at the Iron King Mine and Humboldt Smelter Superfund site demonstrating the feasibility of compost-assisted direct planting. Parameters measured during the field study included: canopy cover, pH, nutrient content, plant metal uptake, metal(loid) speciation, mineral analysis, microbiome analysis, and plant root-metal-microbe interactions. Integrated analysis of these parameters suggests that even in this "worst-case scenario" mine tailings site (pH 2.5; As and Pb each exceeding 2 g kg-1), we have created a sustainable system. In this system, phyto-catalyzed stabilization of inorganic contaminants in the root zone is driven by plant root exudates and the associated rhizosphere microbial community. The results of this research will be put into context of a larger topic- that of ecological engineering of mine tailings sites - a technique being proposed to prevent creation of acidic conditions and metal(loid) mobilization in the first place.

  12. Root growth, mycorrhization and physiological effects of plants growing on oil tailing sands

    NASA Astrophysics Data System (ADS)

    Boldt-Burisch, Katja M.; Naeth, Anne M.; Schneider, Bernd Uwe; Hüttl, Reinhard F.

    2015-04-01

    Surface mining creates large, intense disturbances of soils and produces large volumes of by-products and waste materials. After mining processes these materials often provide the basis for land reclamation and ecosystem restoration. In the present study, tailing sands (TS) and processed mature fine tailings (pMFT) from Fort McMurray (Alberta, Canada) were used. They represent challenging material for ecosystem rebuilding because of very low nutrient contents of TS and oil residuals, high density of MFT material. In this context, little is known about the interactions of pure TS, respectively mixtures of TS and MFT and root growth, mycorrhization and plant physiological effects. Four herbaceous plant species (Elymus trachycaulus, Koeleria macrantha, Deschampsia cespitosa, Lotus corniculatus) were chosen to investigate root development, chlorophyll fluorescence and mycorrhization intensity with and without application of Glomus mosseae (arbuscular mycorrhizae) on mainly tailing sands. Surprisingly both, plants growing on pure TS and plants growing on TS with additional AM-application showed mycorrhization of roots. In general, the mycorrhization intensity was lower for plants growing on pure tailings sands, but it is an interesting fact that there is a potential for mycorrhization available in tailing sands. The mycorrhizal intensity strongly increased with application of G. mosseae for K. macrantha and L. corniculatus and even more for E. trachycaulus. For D. cespitosa similar high mycorrhiza infection frequency was found for both variants, with and without AM-application. By the application of G. mosseae, root growth of E. trachycaulus and K. macrantha was significantly positively influenced. Analysis of leaf chlorophyll fluorescence showed no significant differences for E. trachycaulus but significant positive influence of mycorrhizal application on the physiological status of L. corniculatus. However, this effect could not be detected when TS was mixed with MFT

  13. Marble wastes and pig slurry improve the environmental and plant-relevant properties of mine tailings.

    PubMed

    Kabas, S; Faz, A; Acosta, J A; Arocena, J M; Zornoza, R; Martínez-Martínez, S; Carmona, D M

    2014-02-01

    Poor soil fertility is often the biggest challenge to the establishment of vegetation in mine wastes deposits. We conducted field trials in the El Gorguel and El Lirio sites in SE Spain, two representative tailing ponds of similar properties except for pH, to understand the environmental and plant-relevant benefits of marble waste (MW) and pig slurry (PS) applications to mine tailings. Low pH (5.4) tailings (El Lirio) exhibit reduction of up to fourfold in bio-availability of metals as shown by the DTPA-Zn, Pb, water-soluble Zn, Pb and up to 3× for water-soluble Cd. Tailings in El Gorguel have high pH (7.4) and did not exhibit significant trends in the reductions of water-extractable Zn, Pb, Cd and Cu. Improvements to the edaphic (plant-relevant) properties of tailings after the amendments are not as sensitive to pH compared to the environmental characteristics. The two sites had increases in aggregate stability, organic matter (total N and organic C) although total N is higher in the El Gorguel (up to 212 μg N kg(-1)) than the El Lirio (up to 26 μg N kg(-1)). However, cation exchange capacities are similar in both sites at 15.2 cmol(+) kg(-1). We conclude that the characteristics, especially pH, of tailing materials significantly influence the fate of metals but not improvements to plant-relevant properties such as cation exchange capacity and aggregate stability 1 year after the application of MW and PS amendments.

  14. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings

    PubMed Central

    Grandlic, Christopher J.; Palmer, Michael W.; Maier, Raina M.

    2009-01-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  15. Optimization of Plant Growth-Promoting Bacteria-Assisted Phytostabilization of Mine Tailings.

    PubMed

    Grandlic, Christopher J; Palmer, Michael W; Maier, Raina M

    2009-08-01

    Recent studies have indicated that plant growth-promoting bacteria (PGPB) can improve revegetation of arid mine tailings as measured by increased biomass production. The goals of the present study were first to evaluate how mode of application of known PGPB affects plant growth, and second to evaluate the effect of this inoculation on rhizosphere microbial community structure. PGPB application strategies investigated include preliminary surface sterilization of seeds (a common practice in phytoremediation trials) followed by a comparison of two application methods; immersion and alginate encapsulation. Results with two native desert plant species, Atriplex lentiformis and Buchloe dactyloides, suggest that seed surface sterilization prior to inoculation is not necessary to achieve beneficial effects of introduced PGPB. Both PGPB application techniques generally enhanced plant growth although results were both plant and PGPB specific. These results demonstrate that alginate encapsulation, which allows for long-term storage and easier application to seeds, is an effective way to inoculate PGPB. In addition, the influence of PGPB application on B. dactyloides rhizosphere community structure was evaluated using PCR-DGGE (denaturing gradient gel electrophoresis) analysis of bacterial DNA extracted from rhizosphere samples collected 75 d following planting. A comparative analysis of DGGE profiles was performed using canonical correspondence analysis (CCA). DGGE-CCA showed that rhizosphere community profiles from PGPB-inoculated treatments are significantly different from both uninoculated tailings rhizosphere profiles and profiles from the compost used to amend the tailings. Further, community profiles from B. dactyloides inoculated with the best performing PGPB (Arthro mix) were significantly different from two other PGPB tested. These results suggest that introduced PGPB have the potential to influence the development of the rhizosphere community structure found in

  16. Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil.

    PubMed

    Babu, A Giridhar; Shim, Jaehong; Bang, Keuk-Soo; Shea, Patrick J; Oh, Byung-Taek

    2014-01-01

    A heavy metal-tolerant fungus, Trichoderma virens PDR-28, was isolated from rhizosphere soil and evaluated for use in remediating mine tailing soil and for plant biomass production. PDR-28 exhibited plant growth-promoting traits, including 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, acid phosphatase and phytase activity, siderophore production, and P solubilization. HMs were more available in mine tailing soil inoculated soil with PDR-28 than in uninoculated soil; the order of HM bioleaching was Cd > As > Zn > Pb > Cu. PDR-28 effectively removed HMs in the order of Pb > Cd > As > Zn > Cu from liquid media containing 100 mg HM L(-1). Inoculating HM-contaminated mine tailing soil with the fungus significantly increased the dry biomass of maize roots (64%) and shoots (56%). Chlorophyll, total soluble sugars (reducible and nonreducible), starch, and protein contents increased by 46%, 28%, 30%, and 29%, respectively, compared to plants grown in uninoculated soil. Inoculation increased heavy metal concentrations in maize roots by 25% (Cu) to 62% (Cd) and in shoots by 35% (Cu) to 64% (Pb) compared to uninoculated plants. Results suggest that PDR-28 would be beneficial for phytostabilization and plant biomass production as a potential source of biofuel in the quest for renewable energy.

  17. Microbial diversity at the moderate acidic stage in three different sulfidic mine tailings dumps generating acid mine drainage.

    PubMed

    Korehi, Hananeh; Blöthe, Marco; Schippers, Axel

    2014-11-01

    In freshly deposited sulfidic mine tailings the pH is alkaline or circumneutral. Due to pyrite or pyrrhotite oxidation the pH is dropping over time to pH values <3 at which acidophilic iron- and sulfur-oxidizing prokaryotes prevail and accelerate the oxidation processes, well described for several mine waste sites. The microbial communities at the moderate acidic stage in mine tailings are only scarcely studied. Here we investigated the microbial diversity via 16S rRNA gene sequence analysis in eight samples (pH range 3.2-6.5) from three different sulfidic mine tailings dumps in Botswana, Germany and Sweden. In total 701 partial 16S rRNA gene sequences revealed a divergent microbial community between the three sites and at different tailings depths. Proteobacteria and Firmicutes were overall the most abundant phyla in the clone libraries. Acidobacteria, Actinobacteria, Bacteroidetes, and Nitrospira occurred less frequently. The found microbial communities were completely different to microbial communities in tailings at

  18. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits. PMID:25306090

  19. Oil sands thickened froth treatment tailings exhibit acid rock drainage potential during evaporative drying.

    PubMed

    Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-02-01

    Bitumen extraction from oil sands ores after surface mining produces different tailings waste streams: 'froth treatment tailings' are enriched in pyrite relative to other streams. Tailings treatment can include addition of organic polymers to produce thickened tailings (TT). TT may be further de-watered by deposition into geotechnical cells for evaporative drying to increase shear strength prior to reclamation. To examine the acid rock drainage (ARD) potential of TT, we performed predictive analyses and laboratory experiments on material from field trials of two types of thickened froth treatment tailings (TT1 and TT2). Acid-base accounting (ABA) of initial samples showed that both TT1 and TT2 initially had net acid-producing potential, with ABA values of -141 and -230 t CaCO₃ equiv. 1000 t(-1) of TT, respectively. In long-term kinetic experiments, duplicate ~2-kg samples of TT were incubated in shallow trays and intermittently irrigated under air flow for 459 days to simulate evaporative field drying. Leachates collected from both TT samples initially had pH~6.8 that began decreasing after ~50 days (TT2) or ~250 days (TT1), stabilizing at pH~2. Correspondingly, the redox potential of leachates increased from 100-200 mV to 500-580 mV and electrical conductivity increased from 2-5 dS m(-1) to 26 dS m(-1), indicating dissolution of minerals during ARD. The rapid onset and prolonged ARD observed with TT2 is attributed to its greater pyrite (13.4%) and lower carbonate (1.4%) contents versus the slower onset of ARD in TT1 (initially 6.0% pyrite and 2.5% carbonates). 16S rRNA gene pyrosequencing analysis revealed rapid shift in microbial community when conditions became strongly acidic (pH~2) favoring the enrichment of Acidithiobacillus and Sulfobacillus bacteria in TT. This is the first report showing ARD potential of TT and the results have significant implications for effective management of pyrite-enriched oil sands tailings streams/deposits.

  20. Assessment of the microbiological conditions of tails, tongues, and head meats at two beef-packing plants.

    PubMed

    Gill, C O; McGinnis, J C; Jones, T

    1999-06-01

    Newly skinned tails of beef carcasses at two packing plants were similarly contaminated with total aerobes and with coliforms that were largely Escherichia coli at log mean numbers about 3.5/cm2 and 4.5/100 cm2, respectively. The log mean numbers of aerobes and coliforms on the skinned tails after washing at plant A were, respectively, 1 and 2 log units less than the numbers on the newly skinned tails. At plant B, the log mean numbers of aerobes on skinned and on washed tails were similar while the log mean numbers of E. coli on washed tails were only about 1 log unit less than the numbers on skinned tails. Cooling of tails on racks in a chiller at plant B reduced the log mean numbers of E. coli by about 1 log unit but did not reduce the numbers of total aerobes. Tongues in the heads of carcasses at both plants were similarly contaminated with total aerobes and with coliforms that were largely E. coli at log mean numbers of about 4.5/cm2 and 4.5/100 cm2, respectively. The log mean numbers of aerobes on and the log total number of E. coli recovered from washed tongues were, respectively, about 2 and 4 log units less than for unwashed tongues at plant A and about 1 and 3 log units less than for unwashed tongues at plant B. The log mean numbers of aerobes and E. coli on washed cheeks and lips were both about 2 log units less than the numbers on unwashed tongues at both plants. With appropriate collection and washing procedures, the microbiological conditions of beef tails, tongues, and head meats can apparently be comparable to those of primal cuts and manufacturing beef at the times that the products are packed. PMID:10382660

  1. Uptake of uranium by aquatic plants growing in fresh water ecosystem around uranium mill tailings pond at Jaduguda, India.

    PubMed

    Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K

    2016-01-01

    Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent.

  2. Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products

    NASA Astrophysics Data System (ADS)

    Das, S. K.

    2015-04-01

    Mineralogical characterization and liberation of valuable minerals are primary concerns in mineral processing industries. The present investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN®, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spectrometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr2O3 and 39.19wt% Fe2O3, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 μm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr2O3 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.

  3. Amino acid residues 201-205 in C-terminal acidic tail region plays a crucial role in antibacterial activity of HMGB1

    PubMed Central

    2009-01-01

    Background Antibacterial activity is a novel function of high-mobility group box 1 (HMGB1). However, the functional site for this new effect is presently unknown. Methods and Results In this study, recombinant human HMGB1 A box and B box (rHMGB1 A box, rHMGB1 B box), recombinant human HMGB1 (rHMGB1) and the truncated C-terminal acidic tail mutant (tHMGB1) were prepared by the prokaryotic expression system. The C-terminal acidic tail (C peptide) was synthesized, which was composed of 30 amino acid residues. Antibacterial assays showed that both the full length rHMGB1 and the synthetic C peptide alone could efficiently inhibit bacteria proliferation, but rHMGB1 A box and B box, and tHMGB1 lacking the C-terminal acidic tail had no antibacterial function. These results suggest that C-terminal acidic tail is the key region for the antibacterial activity of HMGB1. Furthermore, we prepared eleven different deleted mutants lacking several amino acid residues in C-terminal acidic tail of HMGB1. Antibacterial assays of these mutants demonstrate that the amino acid residues 201-205 in C-terminal acidic tail region is the core functional site for the antibacterial activity of the molecule. Conclusion In sum, these results define the key region and the crucial site in HMGB1 for its antibacterial function, which is helpful to illustrating the antibacterial mechanisms of HMGB1. PMID:19751520

  4. Pollution in acid mine drainage from mine tailings in Svalbard Norwegian Arctic

    NASA Astrophysics Data System (ADS)

    Holm, E. B.; Brandvik, P. J.; Steinnes, E.

    2003-05-01

    Throughout the summer season of 2000 samples of acid mine drainage (AMD) were collected from areas below tailing deposits from the coal mining in Svalbard, Norwegian Arctic. The water was analysed for pH, oxygen, conductivity, 9 sulfate and various metals. Oxygen, pH and conductivity were measured by standard electrodes, sulphate was determined gravimetrically and metals were determined by flame/graphite furnace AAS. The AMD was found to contain heavy metals and sulphate in high concentrations, causing damage to the local tundra vegetation. Large spatial variation however was observed in pH (2.5-9.5) as well as in metal concentrations in the AMD, indicating strongly inhomogeneous distribution of sulphide minerais in the tailing deposits.

  5. Laboratory evaluation of limestone and lime neutralization of acidic uranium mill tailings solution. Progress report

    SciTech Connect

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1984-02-01

    Experiments were conducted to evaluate a two-step neutralization scheme for treatment of acidic uranium mill tailings solutions. Tailings solutions from the Lucky Mc Mill and Exxon Highland Mill, both in Wyoming, were neutralized with limestone, CaCO/sub 3/, to an intermediate pH of 4.0 or 5.0, followed by lime, Ca(OH)/sub 2/, neutralization to pH 7.3. The combination limestone/lime treatment methods, CaCO/sub 3/ neutralization to pH 4 followed by neutralization with Ca(OH)/sub 2/ to pH 7.3 resulted in the highest quality effluent solution with respect to EPA's water quality guidelines. The combination method is the most cost-effective treatment procedure tested in our studies. Neutralization experiments to evaluate the optimum solution pH for contaminant removal were performed on the same two tailings solutions using only lime Ca(OH)/sub 2/ as the neutralizing agent. The data indicate solution neutralization above pH 7.3 does not significantly increase removal of pH dependent contaminants from solution. Column leaching experiments were performed on the neutralized sludge material (the precipitated solid material which forms as the acidic tailings solutions are neutralized to pH 4 or above). The sludges were contacted with laboratory prepared synthetic ground water until several effluent pore volumes were collected. Effluent solutions were analyzed for macro ions, trace metals and radionuclides in an effort to evaluate the long term effectiveness of attenuating contaminants in sludges formed during solution neutralization. Neutralized sludge leaching experiments indicate that Ca, Na, Mg, Se, Cl, and SO/sub 4/ are the only constituents which show solution concentrations significantly higher than the synthetic ground water in the early pore volumes of long-term leaching studies.

  6. Early performance of native shrubs and trees planted on amended Athabasca oil sand tailings

    SciTech Connect

    Fedkenheuer, A.W.; Heacock, H.M.; Lewis, D.L.

    1980-01-01

    The present accepted end land uses for land disturbed by surface mining in the Athabasca oil sands deposit are forestry, wildlife and recreation, in that order of priority. Consistent with government requirements, the main objective of the reclamation program is the establishment of a system at least equal to the predisturbed state in terms of ecological productivity. This system should be consistent with the regional surface hydrology, the natural vegetation and the land use for forestry, wildlife and recreation. In addition, the plant communities in these systems will be permanent, self-supporting and maintenance free. The lack of available information regarding the procedures necessary to permanently reclaim the tailings sand left after extraction of the oil prompted Syncrude to initiate this study in 1977. Four replicated soil amendment treatments were established on a one meter deep experimental area of tailings sand located on the lease area. The plots were subsequently seeded with a grass-legume mix in July 1977. Trees and shrubs were planted in August 1977 and June 1978. Results to date indicate over-winter survival was very satisfactory with most plant species. A dry spell during the 1978 growing season had a pronounced effect on the survival of some of the tree and shrub seedlings. Those species which had the highest survival rates over the range of treatments were Amelanchier alnifolia, Pinus banksiana, Pinus contorta, Potentilla fruticosa, Shepherdia canadensis and Symphoricarpos albus. Performance of the other trees and shrubs was fair to poor, depending on the species and the treatment.

  7. Uptake of Uranium and Other Elements of Concern by Plants Growing on Uranium Mill Tailings Disposal Cells

    NASA Astrophysics Data System (ADS)

    Joseph, C. N.; Waugh, W.; Glenn, E.

    2015-12-01

    The U.S. Department of Energy (DOE) is responsible for long-term stewardship of disposal cells for uranium mill tailings throughout the United States. Rock-armored disposal cell covers create favorable habitat for deep-rooted plants by reducing soil evaporation, increasing soil water storage, and trapping windblown dust, thereby providing water and nutrients for plant germination and establishment. DOE is studying the tradeoffs of potential detrimental and beneficial effects of plants growing on disposal cell covers to develop a rational and consistent vegetation management policy. Plant roots often extend vertically through disposal cell covers into underlying tailings, therefore, uptake of tailings contaminants and dissemination through animals foraging on stems and leaves is a possible exposure pathway. The literature shows that plant uptake of contaminants in uranium mill tailings occurs, but levels can vary widely depending on plant species, tailings and soil chemistry, and cover soil hydrology. Our empirical field study measured concentrations of uranium, radium, thorium, molybdenum, selenium, manganese, lead, and arsenic in above ground tissues harvested from plants growing on disposal cells near Native American communities in western states that represent a range of climates, cover designs, cover soil types, and vegetation types. For risk screening, contaminant levels in above ground tissues harvested from plants on disposal cells were compared to Maximum Tolerance Levels (MTLs) set for livestock by the National Research Council, and to tissue levels in the same plant species growing in reference areas near disposal cells. Although tailings were covered with uncontaminated soils, for 14 of 46 comparisons, levels of uranium and other contaminants were higher in plants growing on disposal cells compared to reference area plants, indicating possible mobilization of these elements from the tailing into plant tissues. However, with one exception, all plant

  8. [Effects of Three Industrial Organic Wastes as Amendments on Plant Growth and the Biochemical Properties of a Pb/Zn Mine Tailings].

    PubMed

    Peng, Xi-zhu; Yang, Sheng-xiang; Li, Feng-mei; Cao, Jian-bing; Peng, Qing-jing

    2016-01-15

    A field trial was conducted in an abandoned Pb/Zn mine tailings to evaluate the effectiveness of three industrial wastes [sweet sorghum vinasse (SSV), medicinal herb residues (MHR) and spent mushroom compost (SMC)] as organic amendments on plant growth, soil nutrients and enzyme activities, and heavy metal concentrations in plant tissues and the mine tailings. (1) The main findings were as follows: (1) The mean concentrations of diethylene-triamine-pentaacetic acid (DTPA)-extractable Cd, Cu, Pb and Zn in SSV, MHR and SMC treatments decreased by 24.2%-27.3%, 45.7%-48.3%, 18.0%-20.9% and 10.1%-14.2% as compared to the control tailings. When compared to the control tailings, the mean values of organic matter, ammonium-N and available P in SSV, MHR and SMC treatments increased by 2.27-2.32, 12.4-12.8 and 4.04-4.74 times, respectively. Similarly, the addition of SSV, MHR and SMC significantly enhanced soil enzyme activities (dehydrogenase, beta-glucosidase, urease and phosphatase), being 5.51-6.37, 1.72-1.96, 6.32-6.62 and 2.35-2.62 times higher than those in the control tailings. (2) The application of these wastes promoted seed germination and seedling growth. The vegetation cover reached 84%, 79% and 86% at SSV, MHR and SMC subplots. For Lolium perenne and Cynodon dactylon, the addition of SSV, MHR and SMC led to significant increases in the shoot biomass yields with 4.2-5.6 and 15.7-17.3 times greater than those in the tailings. Moreover, the addition of SSV, MHR and SMC significantly reduced the concentrations of Cd, Cu, Pb and Zn in the shoots of L. perenne and C. dactylon in comparison with the control tailings. (3) Pearson's correlation coefficients showed that the vegetation cover and biomass were positively correlated with soil nutrient elements and enzyme activities. Significant negative correlations were observed between DTPA-extractable metal concentrations and vegetation cover and biomass. The metal concentrations in plants were positively correlated with

  9. Mechanical changes in rat tail tendons induced by dibasic amino acids as a function of age.

    PubMed

    Reihsner, R; Menzel, E J

    1994-01-01

    Rat tail tendons from 54-day-old and 900-day-old animals were incubated with different concentrations of the dibasic amino acids, lysine and arginine. We observed a significant incorporation of these amino acids into the tendons. Uniaxial tension tests and relaxation experiments were performed at strain levels within the linear portion of the stress-strain relationship. The incorporation of the amino acids resulted in a decrease of ultimate stress and maximum Young's modulus and, after separation of the elastic and viscous stress components, in a decrease of the elastic fraction. The incorporation of amino acids and the resulting mechanical alterations were more pronounced in the young animals. The reversibility of the effects induced by the amino acids was tested. After the glycosaminoglycan chains were digested with chondroitinase ABC, we showed that the dibasic amino acids bind predominantly to the proteoglycan matrix. A possible analogy to the effects of amino acid incorporation on biomechanics and swelling with a monovalent cation such as Na+ is discussed.

  10. Growth of Quailbush in Acidic, Metalliferous Desert Mine Tailings: Effect of Azospirillum brasilense Sp6 on Biomass Production and Rhizosphere Community Structure

    PubMed Central

    de-Bashan, Luz E.; Hernandez, Juan-Pablo; Nelson, Karis N.; Bashan, Yoav

    2010-01-01

    Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p<0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development. PMID:20632001

  11. Growth of quailbush in acidic, metalliferous desert mine tailings: effect of Azospirillum brasilense Sp6 on biomass production and rhizosphere community structure.

    PubMed

    de-Bashan, Luz E; Hernandez, Juan-Pablo; Nelson, Karis N; Bashan, Yoav; Maier, Raina M

    2010-11-01

    Mine tailing deposits in semiarid and arid environments frequently remain devoid of vegetation due to the toxicity of the substrate and the absence of a diverse soil microbial community capable of supporting seed germination and plant growth. The contribution of the plant growth promoting bacterium (PGPB) Azospirillum brasilense Sp6 to the growth of quailbush in compost-amended, moderately acidic, high-metal content mine tailings using an irrigation-based reclamation strategy was examined along with its influence on the rhizosphere bacterial community. Sp6 inoculation resulted in a significant (2.2-fold) increase in plant biomass production. The data suggest that the inoculum successfully colonized the root surface and persisted throughout the 60-day experiment in both the rhizosphere, as demonstrated by excision and sequencing of the appropriate denaturing gradient gel electrophoresis (DGGE) band, and the rhizoplane, as indicated by fluorescent in situ hybridization of root surfaces. Changes in rhizosphere community structure in response to Sp6 inoculation were evaluated after 15, 30, and 60 days using DGGE analysis of 16S rRNA polymerase chain reaction amplicons. A comparison of DGGE profiles using canonical correspondence analysis revealed a significant treatment effect (Sp6-inoculated vs. uninoculated plants vs. unplanted) on bacterial community structure at 15, 30, and 60 days (p < 0.05). These data indicate that in an extremely stressed environment such as acid mine tailings, an inoculated plant growth promoting bacterium not only can persist and stimulate plant growth but also can directly or indirectly influence rhizobacterial community development.

  12. White-tailed deer alter specialist and generalist insect herbivory through plant traits.

    PubMed

    Lind, Eric M; Myron, Emily P; Giaccai, Jennifer; Parker, John D

    2012-12-01

    Within a plant species, leaf traits can vary across environmental, genetic, spatial, and temporal gradients, even showing drastic differences within individuals. Herbivory can also induce variation in leaf morphology, defensive structure, and chemistry including nutritional content. Indirect effects of prior insect herbivory on later herbivores have been well documented, but the induction of trait changes after vertebrate herbivory has been little explored. Here, we examined how browsing of spicebush (Lindera benzoin L.), a dominant understory shrub in eastern mesic forests, by white-tailed deer (Odocoileus virginianus L.) altered plant quality and subsequent foliar herbivory by insects. Browsing history explained ≈ 10% of overall leaf trait variation; regenerated leaves had greater water content and specific leaf area (P = 0.009), but were lower in nitrogen and greater in carbon (P < 0.001), than leaves on unbrowsed plants. However, browsing did not shift terpene chemistry as revealed by GC-MS. In the lab, caterpillars of the specialist spicebush swallowtail (Papilio troilus L.) preferred (P = 0.02) and grew 20% faster (P = 0.02) on foliage from browsed plants; whereas total herbivory in the field, including generalist insect herbivory, was twice as high on unbrowsed plants (P = 0.016). These results suggest that the ecological impacts of deer in forest understories can have cascading impacts on arthropod communities by changing the suitability of host-plants to insect herbivores.

  13. Efficient degradation of Acid Orange 7 in aqueous solution by iron ore tailing Fenton-like process.

    PubMed

    Zheng, Jianming; Gao, Zhanqi; He, Huan; Yang, Shaogui; Sun, Cheng

    2016-05-01

    An effective method based on iron ore tailing Fenton-like process was studied for removing an azo dye, Acid Orange 7 (AO7) in aqueous solution. Five tailings were characterized by X-ray fluorescence spectroscope (XFS), Brunner-Emmet-Teller (BET) measurement, and Scanning Electron Microscope (SEM). The result of XFS showed that Fe, Si and Ca were the most abundant elements and some toxic heavy metals were also present in the studied tailings. The result of BET analysis indicated that the studied tailings had very low surface areas (0.64-5.68 m(2) g(-1)). The degradation efficiencies of AO7 were positively correlated with the content of iron oxide and cupric oxide, and not related with the BET surface area of the tailings. The co-existing metal elements, particularly Cu, might accelerate the heterogeneous Fenton-like reaction. The effects of other parameters on heterogeneous Fenton-like degradation of AO7 by a converter slag iron tailing (tailing E) which contains highest iron oxide were also investigated. The tailing could be reused 10 times without significant decrease of the catalytic capacity. Very low amount of iron species and almost undetectable toxic elements were leached in the catalytic degradation of AO7 by the tailing E. The reaction products were identified by gas chromatography-mass spectrometry and a possible pathway of AO7 degradation was proposed. This study not only provides an effective method for removing azo dyes in polluted water by employing waste tailings as Fenton-like catalysts, but also uses waste tailings as the secondary resource. PMID:26891355

  14. Plant community and white-tailed deer nutritional carrying capacity response to intercropping switchgrass in loblolly pine plantations

    NASA Astrophysics Data System (ADS)

    Greene, Ethan Jacob

    Switchgrass (Panicum virgatum L.) is a cellulosic feedstock for alternative energy production that could grow well between planted pines (Pinus spp.). Southeastern planted pine occupies 15.8 million hectares and thus, switchgrass intercropping could affect biodiversity if broadly implemented. Therefore, I evaluated effects of intercropping switchgrass in loblolly pine (P. taeda L.) plantations on plant community diversity, plant biomass production, and white-tailed deer (Odocoileus virginianus Zimmerman) nutritional carrying capacity. In a randomized complete block design, I assigned three treatments (switchgrass intercropped, switchgrass monoculture, and a "control" of traditional pine management) to 4 replicates of 10-ha experimental units in Kemper County, Mississippi during 2014-2015. I detected 246 different plant species. Switchgrass intercropping reduced plant species richness and diversity but maintained evenness. I observed reduced forb and high-use deer forage biomass but only in intercropped alleys (interbeds). Soil micronutrient interactions affected forage protein of deer plants. White-tailed deer nutritional carrying capacity remained unaffected.

  15. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  16. The Role of the CAI-1 Fatty Acid Tail in the Vibrio cholerae Quorum Sensing Response

    PubMed Central

    Perez, Lark J.; Ng, Wai-Leung; Marano, Paul; Brook, Karolina; Bassler, Bonnie L.; Semmelhack, Martin F.

    2013-01-01

    Quorum sensing is a mechanism of chemical communication among bacteria that enables collective behaviors. In V. cholerae, the etiological agent of the disease cholera, quorum sensing controls group behaviors including virulence factor production and biofilm formation. The major V. cholerae quorum-sensing system consists of the extracellular signal molecule called CAI-1 and its cognate membrane bound receptor called CqsS. Here, the ligand binding activity of CqsS is probed with structural analogs of the natural signal. Enabled by our discovery of a structurally simplified analog of CAI-1, we prepared and analyzed a focused library. The molecules were designed to probe the effects of conformational and structural changes along the length of the fatty acid tail of CAI-1. Our results, combined with pharmacophore modeling, suggest a molecular basis for signal molecule recognition and receptor fidelity with respect to the fatty acid tail portion of CAI-1. These efforts provide novel probes to enhance discovery of anti-virulence agents for the treatment of V. cholerae. PMID:23092313

  17. Nutritional restriction and acid-base balance in white-tailed deer

    USGS Publications Warehouse

    DelGiudice, G.D.; Mech, L.D.; Seal, U.S.

    1994-01-01

    We examined the effect of progressive nutritional restriction on acid-base balance in seven captive, adult white-tailed deer (Odocoileus virginianus) from 4 February to 5 May 1988 in north central Minnesota (USA). Metabolic acidosis was indicated by low mean blood pH (7.25 to 7.33) in deer throughout the study. Mean urinary pH values declined (P = 0.020) from a mean (+SE) baseline of 8.3 +0.1 to 6.7 + 0.3 as restriction progressed. Acidemia and aciduria were associated with significant variations in mean blood CO2 (P = 0.006) and pO2 (P = 0.032), serum potassium (P = 0.004) concentrations, and with a significant (P = 0.104) handling date times group interaction in urinary potassium:creatinine values. Mean bicarbonate:carbonic acid ratios were consistently below 20:1 during nutritional restriction. Mean packed cell volume increased (P = 0.019) and serum total protein decreased (P = 0.001); thus there was evidence for progressive dehydration and net protein catabolism, respectively. Blood pCO2, serum sodium, and urinary sodium:creatinine were stable throughout the study. We propose that acidosis and aciduria are metabolic complications associated with nutritional restriction of white-tailed deer.

  18. Factors influencing reproduction of female white-tailed deer on the Savannah River Plant

    SciTech Connect

    Rhodes, O.E. Jr.

    1987-05-01

    Data were taken on 1103 pregnant white-tailed deer (Odocoileus virginianus) harvested from the Savannah River Plant (SRP) in South Carolina from 1965--1985 to describe temporal, age-specific, and habitat effects on fetal number. Time periods represented intervals of high and low density. Age significantly affected fetal number both with and without the data from fawns included. Low fetal numbers in yearlings and a high incidence of twinning in older deer were responsible for this effect. Mean number of fetuses per pregnant doe for the 0.5 year old deer (/bar X/ = 1.06) was less than for 1.5 (/bar X/ = 1.56), 2.5 (/bar X/ = 1.73), and greater than or equal to3.5 (/bar X/ = 1.76) year age classes. Temporal and age-specific effects on fetal number among time periods were significant using data from all age classes. These effects were probably not due to density-dependent feedback mechanisms, but to a sampling bias due to differential representation of age classes or habitat of origin in the statistical analyses. Significant differences were observed in fetal numbers between females from the swamp and upland areas both with and without fawn data. Differences between the densities and/or habitat quality in the 2 areas were responsible for this effect. Data were gathered on 2542 female white-tailed deer harvested on the SRP from 1967 to 1985. 48 refs., 3 figs., 6 tabs.

  19. Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid.

    PubMed

    Wang, Suiling; Mulligan, Catherine N

    2009-01-01

    Arsenic and heavy metal mobilization from mine tailings is an issue of concern as it might pose potential groundwater or ecological risks. Increasing attention recently has been focused on the effects of natural organic matter on the mobility behavior of the toxicants in the environment. Column experiments were carried out in this research study to evaluate the feasibility of using humic acid (HA) to mobilize arsenic and heavy metals (i.e., Cu, Pb and Zn) from an oxidized Pb-Zn mine tailings sample collected from Bathurst, New Brunswick, Canada. Capillary electrophoresis analyses indicated that arsenate [As(V)] was the only extractable arsenic species in the mine tailings and the addition of HA at pH 11 did not incur the oxidation-reduction or methylation reactions of arsenic. A 0.1% HA solution with an initial pH adjusted to 11 was selected as the flushing solution, while distilled water (initial pH adjusted to 11) was used as the control to account for the mobilization of arsenic and the heavy metals by physical mixing and the effect of pH. It was found that the HA could significantly enhance the mobilization of arsenic and heavy metals simultaneously from the mine tailings. After a 70-pore-volume-flushing, the mobilization of arsenic, copper, lead and zinc reached 97, 35, 838 and 224 mg kg(-1), respectively. The mobilization of arsenic and the heavy metals was found to be positively correlated with the mobilization of Fe in the presence of the HA. Moreover, the mobilization of arsenic was also correlated well with that of the heavy metals. The mobilization of co-existing metals to some extent might enhance arsenic mobilization in the presence of the HA by helping incorporate it into soluble aqueous organic complexes through metal-bridging mechanisms. Use of HA in arsenic and heavy metal remediation may be developed as an environmentally benign and possible effective remedial option to reduce and avoid further contamination.

  20. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area. PMID:27450331

  1. Efficient inhibition of heavy metal release from mine tailings against acid rain exposure by triethylenetetramine intercalated montmorillonite (TETA-Mt).

    PubMed

    Gong, Beini; Wu, Pingxiao; Huang, Zhujian; Li, Yuanyuan; Yang, Shanshan; Dang, Zhi; Ruan, Bo; Kang, Chunxi

    2016-11-15

    The potential application of triethylenetetramine intercalated montmorillonite (TETA-Mt) in mine tailings treatment and AMD (acid mine drainage) remediation was investigated with batch experiments. The structural and morphological characteristics of TETA-Mt were analyzed with XRD, FTIR, DTG-TG and SEM. The inhibition efficiencies of TETA-Mt against heavy metal release from mine tailings when exposed to acid rain leaching was examined and compared with that of triethylenetetramine (TETA) and Mt. Results showed that the overall inhibition by TETA-Mt surpassed that by TETA or Mt for various heavy metal ions over an acid rain pH range of 3-5.6 and a temperature range of 25-40°C. When mine tailings were exposed to acid rain of pH 4.8 (the average rain pH of the mining site where the mine tailings were from), TETA-Mt achieved an inhibition efficiency of over 90% for Cu(2+), Zn(2+), Cd(2+) and Mn(2+) release, and 70% for Pb(2+) at 25°C. It was shown that TETA-Mt has a strong buffering capacity. Moreover, TETA-Mt was able to adsorb heavy metal ions and the adsorption process was fast, suggesting that coordination was mainly responsible. These results showed the potential of TETA-Mt in AMD mitigation, especially in acid rain affected mining area.

  2. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams. PMID:27443453

  3. Trace metal mobilization from oil sands froth treatment thickened tailings exhibiting acid rock drainage.

    PubMed

    Kuznetsova, Alsu; Kuznetsov, Petr; Foght, Julia M; Siddique, Tariq

    2016-11-15

    Froth treatment thickened tailings (TT) are a waste product of bitumen extraction from surface-mined oil sands ores. When incubated in a laboratory under simulated moist oxic environmental conditions for ~450d, two different types of TT (TT1 and TT2) exhibited the potential to generate acid rock drainage (ARD) by producing acid leachate after 250 and 50d, respectively. We report here the release of toxic metals from TT via ARD, which could pose an environmental threat if oil sands TT deposits are not properly managed. Trace metal concentrations in leachate samples collected periodically revealed that Mn and Sr were released immediately even before the onset of ARD. Spikes in Co and Ni concentrations were observed both pre-ARD and during active ARD, particularly in TT1. For most elements measured (Fe, Cr, V, As, Cu, Pb, Zn, Cd, and Se), leaching was associated with ARD production. Though equivalent acidification (pH2) was achieved in leachate from both TT types, greater metal release was observed from TT2 where concentrations reached 10,000ppb for Ni, 5000ppb for Co, 3000ppb for As, 2000ppb for V, and 1000ppb for Cr. Generally, metal concentrations decreased in leachate with time during ARD and became negligible by the end of incubation (~450d) despite appreciable metals remaining in the leached TT. These results suggest that using TT for land reclamation purposes or surface deposition for volume reduction may unfavorably impact the environment, and warrants application of appropriate strategies for management of pyrite-enriched oil sands tailings streams.

  4. Manganese ore tailing: optimization of acid leaching conditions and recovery of soluble manganese.

    PubMed

    Santos, Olívia de Souza Heleno; Carvalho, Cornélio de Freitas; Silva, Gilmare Antônia da; Santos, Cláudio Gouvêa Dos

    2015-01-01

    Manganese recovery from industrial ore processing waste by means of leaching with sulfuric acid was the objective of this study. Experimental conditions were optimized by multivariate experimental design approaches. In order to study the factors affecting leaching, a screening step was used involving a full factorial design with central point for three variables in two levels (2(3)). The three variables studied were leaching time, concentration of sulfuric acid and sample amount. The three factors screened were shown to be relevant and therefore a Doehlert design was applied to determine the best working conditions for leaching and to build the response surface. By applying the best leaching conditions, the concentrations of 12.80 and 13.64 %w/w of manganese for the global sample and for the fraction -44 + 37 μm, respectively, were found. Microbeads of chitosan were tested for removal of leachate acidity and recovering of soluble manganese. Manganese recovery from the leachate was 95.4%. Upon drying the leachate, a solid containing mostly manganese sulfate was obtained, showing that the proposed optimized method is efficient for manganese recovery from ore tailings.

  5. In situ bioremediation of naphthenic acids contaminated tailing pond waters in the athabasca oil sands region--demonstrated field studies and plausible options: a review.

    PubMed

    Quagraine, E K; Peterson, H G; Headley, J V

    2005-01-01

    Currently, there are three industrial plants that recover oil from the lower Athabasca oil sands area, and there are plans in the future for several additional mines. The extraction procedures produce large volumes of slurry wastes contaminated with naphthenic acids (NAs). Because of a "zero discharge" policy the oil sands companies do not release any extraction wastes from their leases. The process-affected waters and fluid tailings contaminated with NAs are contained on-site primarily in large settling ponds. These fluid wastes from the tailing ponds can be acutely and chronically toxic to aquatic organisms, and NAs have been associated with this toxicity. The huge tailings containment area must ultimately be reclaimed, and this is of major concern to the oil sands industry. Some reclamation options have been investigated by both pioneering industries (Syncrude Energy Inc. and Suncor Inc.) with mixed results. The bioremediation techniques have limited success to date in biodegrading NAs to levels below 19 mg/L. Some tailing pond waters have been stored for more than 10 years, and it appears that the remaining high molecular weight NAs are refractory to the natural biodegradation process in the ponds. Some plausible options to further degrade the NAs in the tailings pond water include: bioaugmentation with bacteria selected to degrade the more refractory classes of NAs; the use of attachment materials such as clays to concentrate both the NA and the NA-degrading bacteria in their surfaces and/or pores; synergistic association between algae and bacteria consortia to promote efficient aerobic degradation; and biostimulation with nutrients to promote the growth and activity of the microorganisms. PMID:15756978

  6. An efficient process for recovery of fine coal from tailings of coal washing plants

    SciTech Connect

    Cicek, T.; Cocen, I.; Engin, V.T.; Cengizler, H.

    2008-07-01

    Gravity concentration of hard lignites using conventional jigs and heavy media separation equipment is prone to produce coal-rich fine tailings. This study aims to establish a fine coal recovery process of very high efficiency at reasonable capital investment and operational costs. The technical feasibility to upgrade the properties of the predeslimed fine refuse of a lignite washing plant with 35.9% ash content was investigated by employing gravity separation methods. The laboratory tests carried out with the combination of shaking table and Mozley multi-gravity separator (MGS) revealed that the clean coal with 18% ash content on dry basis could be obtained with 58.9% clean coal recovery by the shaking table stage and 4.1% clean coal recovery by MGS stage, totaling to the sum of 63.0% clean coal recovery from a predeslimed feed. The combustible recovery and the organic efficiency of the shaking table + MGS combination were 79.5% and 95.5%, respectively. Based on the results of the study, a flow sheet of a high-efficiency fine coal recovery process was proposed, which is also applicable to the coal refuse pond slurry of a lignite washing plant.

  7. Gasified Grass and Wood Biochars Facilitate Plant Establishment in Acid Mine Soils.

    PubMed

    Phillips, Claire L; Trippe, Kristin M; Whittaker, Gerald; Griffith, Stephen M; Johnson, Mark G; Banowetz, Gary M

    2016-05-01

    Heavy metals in exposed mine tailings threaten ecosystems that surround thousands of abandoned mines in the United States. Biochars derived from the pyrolysis or gasification of biomass may serve as a valuable soil amendment to revegetate mine sites. We evaluated the ability of two biochars, produced by gasification of either Kentucky bluegrass seed screenings (KB) or mixed conifer wood (CW), to support the growth of plants in mine spoils from the abandoned Formosa and Almeda Mines in Oregon. To evaluate the potential for plant establishment in mine tailings, wheat was grown in tailings amended with biochar at rates ranging from 0 to 9% (w/w). Both KB and CW biochars promoted plant establishment by increasing soil pH, increasing concentrations of macro- and micronutrients, and decreasing the solubility and plant uptake of heavy metals. Formosa tailings required at least 4% biochar and Almeda soil required at least 2% biochar to promote healthy wheat growth. A complimentary experiment in which mine spoils were leached with simulated precipitation indicated that biochar amendment rates ≥4% were sufficient to neutralize the elution pH and reduce concentrations of potentially toxic elements (Zn, Cu, Ni, Al) to levels near or below concern. These findings support the use of gasified biochar amendments to revegetate acid mine soils. PMID:27136169

  8. Comparison of the meat quality and fatty acid composition of traditional fat-tailed (Chall) and tailed (Zel) Iranian sheep breeds.

    PubMed

    Yousefi, Ali Reza; Kohram, Hamid; Zare Shahneh, Ahmad; Nik-khah, Ali; Campbell, Anna W

    2012-12-01

    The aim of this study was to compare the meat quality of a traditional fat-tailed breed, Chall, to a tailed Iranian sheep breed, Zel. Lambs were grazed on pasture until weaning, and then were finished until slaughter at 10-12 months. Meat quality traits were measured on the longissimus dorsi (LD) muscle. Zel lambs accumulated more intramuscular fat (IMF) (p<0.01) and had lower shear force and drip loss than Chall lambs (p<0.05). The meat color of Zel lambs was higher for both a* (p<0.001) and b* (p<0.01) compared to Chall lambs. Meat from Zel lambs was more tender (p<0.01) and more juicy (p<0.05) than Chall lambs. The PUFA:SFA fatty acid ratio (P:S) was higher (p<0.05) and the n-6:n-3 PUFA ratio was lower in Chall compared to Zel lambs (p<0.05). Overall, these results show that the eating quality of Zel lambs was better, but that this was at the cost of less favorable fatty acid profiles and poorer meat color. PMID:22652069

  9. Hyperaccumulator of Pb in native plants growing on Peruvian mine tailings

    NASA Astrophysics Data System (ADS)

    Bech, Jaume; Roca, Nuria; Boluda, Rafael; Tume, Pedro; Duran, Paola; Poma, Wilfredo; Sanchez, Isidoro

    2014-05-01

    Tailings usually provide an unfavourable substrate for plant growth because of their extreme pH, low organic matter and nutrients, high concentrations of trace elements and physical disturbance, such as bad soil structure, and low water availability. Heavy metal contamination has also been one serious problem in the vicinity of mine sites due to the discharge and dispersion of mine-waste materials into the ecosystem. Moreover, Pb is considered a target metal when undertaking soil remediation, because it is usually quite immobile and not readily accumulated in upper plant parts. The presence of vegetation reduces water and wind erosion, which may decrease the downward migration of contaminants into the groundwater and improve aesthetical aspects. Plants growing on naturally metal-enriched soils are of particular interest in this perspective, since they are genetically tolerant to high metal concentrations, have an excellent adaptation to this multi-stress environment. Efficient phytoextraction requires plant species combining both high metal tolerance and elevated capacity for metal uptake and metal translocation to easily harvestable plant organs (e.g. shoots). Soil and plant samples were taken in Peru, at a polymetallic mine (mainly Ag, Pb and Cu) in Cajamarca Province, Hualgayoc district. Top soils (0-20 cm) were analysed for physical and chemical properties by standard methods. Total Pb concentrations in top soils were determined by ICP-OES. Pb content in plants were analysed separately (aerial and root system) by ICP-MS. Ti content was used as an indicator for contamination of plant samples with soil particles. Translocation Factor (TF) and Shoot Accumulation Factor (SAF) were determined to assess the tolerance strategies developed by these species and to evaluate their potential for phytoremediation purposes. The non-polluted soils had near neutral pH (6.8±0.1), a great content of organic carbon (42 ± 4.0 g•kg-1) and a silt loamy texture. Soil and plant

  10. [Heavy metal contents and enrichment characteristics of dominant plants in a lead-zinc tailings in Xiashuiwan of Hunan Province].

    PubMed

    He, Dong; Qiu, Bo; Peng, Jin-hui; Peng, Liang; Hu, Ling-xue; Hu, Yao

    2013-09-01

    The key of phytoremediation was researches and selecting of dominant species in the lead-zinc tailings. This assay analyzed the amount of heavy metals, and the enrichment and transporting features of heavy metals, such as Pb, Zn, Cu, Cd and Mn, in the dominant species in the district, and then we can select the pioneer plants for ecosystem restoration of the area. Results showed that there were 40 species of higher plants, which belonged to 40 chasses and 22 families in the area. And we selected 15 dominant species by heavy metals. Among these dominant species, the content of Pb in Ficus tikoua was 4. 01 times higher than that in other plants, the transfer factor (TF) was 3.91, and bioaccumulation factor (BCF) was 14.4. The capability of TF and BCF of Ficus zikoua was high, so Ficus tikoua had potentials in phytoremediation of heavy metals in polluted area and its enrichment capability of Pb was worth for the further research. Apart from Ficus zikoua, other 14 kinds of dominant plants had a better tolerance in metal pollution in tailings, and they can be used as pioneer plants of ecological rehabilitation in lead-zinc tailings in Xiashuiwan.

  11. Use of poly(lactic acid) amendments to promote the bacterial fixation of metals in zinc smelter tailings.

    PubMed

    Edenborn, H M

    2004-04-01

    The ability of poly(lactic acid) (PLA) to serve as a long-term source of lactic acid for bacterial sulfate reduction activity in zinc smelter tailings was investigated. Solid PLA polymers mixed in water hydrolyzed abiotically to release lactic acid into solution over an extended period of time. The addition of both PLA and gypsum was required for indigenous bacteria to lower redox potential, raise pH, and stimulate sulfate reduction activity in highly oxidized smelter tailings after one year of treatment. Bioavailable cadmium, copper, lead and zinc were all lowered significantly in PLA/gypsum treated soil, but PLA amendments alone increased the bioavailability of lead, nickel and zinc. Similar PLA amendments may be useful in constructed wetlands and reactive barrier walls for the passive treatment of mine drainage, where enhanced rates of bacterial sulfate reduction are desirable.

  12. 2-Hydroxy Acids in Plant Metabolism

    PubMed Central

    Maurino, Veronica G.; Engqvist, Martin K. M.

    2015-01-01

    Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis. PMID:26380567

  13. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2011-08-23

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  14. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank; Boddupalli, Sekhar S.

    2005-08-30

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  15. Differential effect of metals/metalloids on the growth and element uptake of mesquite plants obtained from plants grown at a copper mine tailing and commercial seeds.

    PubMed

    Haque, N; Peralta-Videa, J R; Duarte-Gardea, M; Gardea-Torresdey, J L

    2009-12-01

    The selection of appropriate seeds is essential for the success of phytoremediation/restoration projects. In this research, the growth and elements uptake by the offspring of mesquite plants (Prosopis sp.) grown in a copper mine tailing (site seeds, SS) and plants derived from vendor seeds (VS) was investigated. Plants were grown in a modified Hoagland solution containing a mixture of Cu, Mo, Zn, As(III) and Cr(VI) at 0, 1, 5 and 10 mg L(-1) each. After one week, plants were harvested and the concentration of elements was determined by using ICP-OES. At 1 mg L(-1), plants originated from SS grew faster and longer than control plants (0 mg L(-1)); whereas plants grown from VS had opposite response. At 5 mg L(-1), 50% of the plants grown from VS did not survive, while plants grown from SS had no toxicity effects on growth. Finally, plants grown from VS did not survive at 10 mg L(-1) treatment, whilst 50% of the plants grown from SS survived. The ICP-OES data demonstrated that at 1 mg L(-1) the concentration of all elements in SS plants was significantly higher compared to control plants and VS plants. While at 5 mg L(-1), the shoots of SS plants had significantly more Cu, Mo, As, and Cr. The results suggest that SS could be a better source of plants intended to be used for phytoremediation of soil impacted with Cu, Mo, Zn, As and Cr.

  16. Biotransformation of cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid by plant cell cultures of Eucalyptus perriniana.

    PubMed

    Katsuragi, Hisashi; Shimoda, Kei; Kubota, Naoji; Nakajima, Nobuyoshi; Hamada, Hatsuyuki; Hamada, Hiroki

    2010-01-01

    Biotransformations of phenylpropanoids such as cinnamic acid, p-coumaric acid, caffeic acid, and ferulic acid were investigated with plant-cultured cells of Eucalyptus perriniana. The plant-cultured cells of E. perriniana converted cinnamic acid into cinnamic acid β-D-glucopyranosyl ester, p-coumaric acid, and 4-O-β-D-glucopyranosylcoumaric acid. p-Coumaric acid was converted into 4-O-β-D-glucopyranosylcoumaric acid, p-coumaric acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcoumaric acid β-D-glucopyranosyl ester, a new compound, caffeic acid, and 3-O-β-D-glucopyranosylcaffeic acid. On the other hand, incubation of caffeic acid with cultured E. perriniana cells gave 3-O-β-D-glucopyranosylcaffeic acid, 3-O-(6-O-β-D-glucopyranosyl)-β-D-glucopyranosylcaffeic acid, a new compound, 3-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, 4-O-β-D-glucopyranosylcaffeic acid, 4-O-β-D-glucopyranosylcaffeic acid β-D-glucopyranosyl ester, ferulic acid, and 4-O-β-D-glucopyranosylferulic acid. 4-O-β-D-Glucopyranosylferulic acid, ferulic acid β-D-glucopyranosyl ester, and 4-O-β-D-glucopyranosylferulic acid β-D-glucopyranosyl ester were isolated from E. perriniana cells treated with ferulic acid.

  17. Culturable Heavy Metal-Resistant and Plant Growth Promoting Bacteria in V-Ti Magnetite Mine Tailing Soil from Panzhihua, China

    PubMed Central

    Zhang, Chu; Liu, Huiying; Liu, Jin; Zheng, Wenwen; Kang, Xia; Leng, Xuejun; Zhao, Ke; Gu, Yunfu; Zhang, Xiaoping; Xiang, Quanju; Chen, Qiang

    2014-01-01

    To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil. PMID:25188470

  18. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Roldán, A

    2009-01-01

    Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity. PMID:18954889

  19. Soil acidity determines the effectiveness of an organic amendment and a native bacterium for increasing soil stabilisation in semiarid mine tailings.

    PubMed

    Carrasco, L; Caravaca, F; Azcón, R; Roldán, A

    2009-01-01

    Unstable mine tailings are vulnerable to water and air erosion, so it is important to promote their surface stabilisation in order to avoid the spread of heavy metals. In a greenhouse experiment, we assessed the effect of the addition of Aspergillus niger-treated sugar beet waste and inoculation with a native bacterium, Bacillus cereus, on the stabilisation of soil aggregates of two acidic, semiarid mine tailings, with different acidity degree, during watering and drying periods. Organic amendment raised the pH of both the moderately and highly acidic tailings, whereas the bacterial inoculation increased this parameter in the former. Only the amendment addition increased soil water-soluble carbon in both tailings compared with their controls, under either watering or drying conditions. Both the amendment and B. cereus enhanced water-soluble carbohydrates. Both treatments increased dehydrogenase activity and aggregate stability, particularly in the moderately acidic tailing under drying conditions. After soil drying, aggregate stability was increased by the amendment (about 66% higher than the control soil) and by the bacterium (about 45% higher than the control soil) in the moderately acidic tailing. The effectiveness of these treatments as structure-stabilisation methods for degraded, semiarid mine ecosystems appears to be restricted to tailings of moderate acidity.

  20. Characterization and quantification of mining-related "naphthenic acids" in groundwater near a major oil sands tailings pond.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang; Savard, Martine M; Calderhead, Angus I; Gammon, Paul R; Rivera, Alfonso; Peru, Kerry M; Headley, John V

    2013-05-21

    The high levels of acid extractable organics (AEOs) containing naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) are a growing concern in monitoring studies of aquatic ecosystems in the Athabasca oil sands region. The complexity of these compounds has substantially hindered their accurate analysis and quantification. Using a recently developed technique which determines the intramolecular carbon isotope signature of AEOs generated by online pyrolysis (δ(13)Cpyr), natural abundance radiocarbon, and high resolution Orbitrap mass spectrometry analyses, we evaluated the sources of AEOs along a groundwater flow path from a major oil sands tailings pond to the Athabasca River. OSPW was characterized by a δ(13)Cpyr value of approximately -21‰ and relatively high proportions of O₂ and O₂S species classes. In contrast, AEO samples located furthest down-gradient from the tailings pond and from the Athabasca River were characterized by a δ(13)Cpyr value of around -29‰, a greater proportion of highly oxygenated and N-containing compound classes, and a significant component of nonfossil and, hence, non-bitumen-derived carbon. The groundwater concentrations of mining-related AEOs determined using a two end-member isotopic mass balance were between 1.6 and 9.3 mg/L lower than total AEO concentrations, implying that a less discriminating approach to quantification would have overestimated subsurface levels of OSPW. This research highlights the need for accurate characterization of "naphthenic acids" in order to quantify potential seepage from tailings ponds. PMID:23607666

  1. Characterization and quantification of mining-related "naphthenic acids" in groundwater near a major oil sands tailings pond.

    PubMed

    Ahad, Jason M E; Pakdel, Hooshang; Savard, Martine M; Calderhead, Angus I; Gammon, Paul R; Rivera, Alfonso; Peru, Kerry M; Headley, John V

    2013-05-21

    The high levels of acid extractable organics (AEOs) containing naphthenic acids (NAs) found in oil sands process-affected waters (OSPW) are a growing concern in monitoring studies of aquatic ecosystems in the Athabasca oil sands region. The complexity of these compounds has substantially hindered their accurate analysis and quantification. Using a recently developed technique which determines the intramolecular carbon isotope signature of AEOs generated by online pyrolysis (δ(13)Cpyr), natural abundance radiocarbon, and high resolution Orbitrap mass spectrometry analyses, we evaluated the sources of AEOs along a groundwater flow path from a major oil sands tailings pond to the Athabasca River. OSPW was characterized by a δ(13)Cpyr value of approximately -21‰ and relatively high proportions of O₂ and O₂S species classes. In contrast, AEO samples located furthest down-gradient from the tailings pond and from the Athabasca River were characterized by a δ(13)Cpyr value of around -29‰, a greater proportion of highly oxygenated and N-containing compound classes, and a significant component of nonfossil and, hence, non-bitumen-derived carbon. The groundwater concentrations of mining-related AEOs determined using a two end-member isotopic mass balance were between 1.6 and 9.3 mg/L lower than total AEO concentrations, implying that a less discriminating approach to quantification would have overestimated subsurface levels of OSPW. This research highlights the need for accurate characterization of "naphthenic acids" in order to quantify potential seepage from tailings ponds.

  2. Bio-physicochemical effects of gamma irradiation treatment for naphthenic acids in oil sands fluid fine tailings.

    PubMed

    Boudens, Ryan; Reid, Thomas; VanMensel, Danielle; Prakasan M R, Sabari; Ciborowski, Jan J H; Weisener, Christopher G

    2016-01-01

    Naphthenic acids (NAs) are persistent compounds that are components of most petroleum, including those found in the Athabasca oil sands. Their presence in freshly processed tailings is of significant environmental concern due to their toxicity to aquatic organisms. Gamma irradiation (GI) was used to reduce the toxicity and concentration of NAs in oil sands process water (OSPW) and fluid fine tailings (FFT). This investigation systematically studied the impact of GI on the biogeochemical development and progressive reduction of toxicity using laboratory incubations of fresh and aged tailings under anoxic and oxic conditions. GI reduced NA concentrations in OSPW by up to 97% in OSPW and in FFT by 85%. The GI-treated FFT exhibited increased rates of biogeochemical change, dependent on the age of the tailings source. Dissolved oxygen (DO) flux was enhanced in GI-treated FFT from fresh and aged source materials, whereas hydrogen sulfide (HS(-)) flux was stimulated only in the fresh FFT. Acute toxicity to Vibrio fischeri was immediately reduced following GI treatment of fresh OSPW. GI treatment followed by 4-week incubation reduced toxicity of aged OSPW to V. fischeri. PMID:26356184

  3. Evolution of soil properties and metals in acid and alkaline mine tailing ponds after amendments and microorganisms application

    NASA Astrophysics Data System (ADS)

    Acosta, Jose A.; Faz, Ángel; Zornoza, Raúl; Martínez-Martínez, Silvia; Bech, Jaume

    2015-04-01

    Intense mining activities in the past were carried out in Cartagena-La Unión mining district, SE Spain, and caused excessive accumulation of toxic metals in tailing ponds which poses a high environmental and ecological risk. One of the remediation options gaining considerable interest in recent years is the in situ immobilization of metals. A corresponding reduction in the plant-available metal fraction allows re-vegetation and ecosystem restoration of the heavily contaminated sites. In addition, the use of microorganisms to improve the soil condition is a new tool used to increase spontaneous plant colonization. The aim of this research was to assess the effect of amendments (pig manure, sewage sludge, and lime) and microorganisms on the evolution of soil properties and metals in acid and alkaline tailing ponds and to evaluate the content of metals in Zygophylum fabago one year after amendments application. The study was carried out in two mine ponds (acid and alkaline). Twenty seven square field plots, each one consisting of 4 m2, were located in each pond. Four different doses of microorganism (EM) (0 ml, 20 ml, 100 ml and 200 ml of microorganism solution in each plot) and one dose of pig manure (5 kg per plot), sewage sludge (4 kg per plot) and lime (22 kg per plot) were used. Organic amendment doses were calculated according to European nitrogen legislations, and lime dose was calculated according with the potential acid production through total sulphur oxidation. Three replicates of each treatment (organic amendment + lime + microorganism dose 0, 1, 2, or 3) and control soil (with no amendments) were carried out. Plots were left to the semi-arid climate conditions after the addition of amendments to simulate real potential applications of the results. Soil samples was collected every 4 month from each plot during one year, after this time Zygophylum fabago plants were sampled from each plots. Soil properties including: pH, salinity, total, inorganic and

  4. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  5. Production of hydroxylated fatty acids in genetically modified plants

    DOEpatents

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants.

  6. Clean tailing reclamation: Tailing reprocessing for sulfide removal and vegetation establishment

    SciTech Connect

    Jennings, S.R.; Kruegar, J.

    1997-12-31

    Mine wastes exhibiting elevated heavy metal concentrations are widespread causes of resource degradation in the western US and elsewhere. This problem is further exacerbated by the presence of pyrite that oxidizes upon exposure to the atmosphere resulting in acid generation. Since pyrite was not recovered as a mineral of economic value during mining, it was disposed of in waste piles and tailing ponds that are now a source of acid generation and release of metals to the environment. Tailing cleaning, or sulfide mineral recovery through reprocessing, was evaluated as an innovative reclamation technology. Tailing materials, from both operational and abandoned mines, were collected to evaluate the feasibility of sulfide mineral recovery. Successful mineral separation was performed resulting in a low volume metal sulfide concentrate and a high volume cleaned silicate media. Total metal concentrations were decreased in the cleaned tailing material and elevated in the sulfide concentrate compared with the original tailing chemistry. In greenhouse trials, vegetation establishment in cleaned tailing material was compared with plant growth in topsoil and lime-amended tailings. While vegetation performance was best in the topsoil control, both lime-amended and cleaned tailings displayed adequate plant growth.

  7. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors. PMID:23736740

  8. Determination of thermodynamic and transport parameters of naphthenic acids and organic process chemicals in oil sand tailings pond water.

    PubMed

    Wang, Xiaomeng; Robinson, Lisa; Wen, Qing; Kasperski, Kim L

    2013-07-01

    Oil sand tailings pond water contains naphthenic acids and process chemicals (e.g., alkyl sulphates, quaternary ammonium compounds, and alkylphenol ethoxylates). These chemicals are toxic and can seep through the foundation of the tailings pond to the subsurface, potentially affecting the quality of groundwater. As a result, it is important to measure the thermodynamic and transport parameters of these chemicals in order to study the transport behavior of contaminants through the foundation as well as underground. In this study, batch adsorption studies and column experiments were performed. It was found that the transport parameters of these chemicals are related to their molecular structures and other properties. The computer program (CXTFIT) was used to further evaluate the transport process in the column experiments. The results from this study show that the transport of naphthenic acids in a glass column is an equilibrium process while the transport of process chemicals seems to be a non-equilibrium process. At the end of this paper we present a real-world case study in which the transport of the contaminants through the foundation of an external tailings pond is calculated using the lab-measured data. The results show that long-term groundwater monitoring of contaminant transport at the oil sand mining site may be necessary to avoid chemicals from reaching any nearby receptors.

  9. The Effect of Lactic Acid Bacteria-fermented Soybean Milk Products on Carrageenan-induced Tail Thrombosis in Rats

    PubMed Central

    KAMIYA, Seitaro; OGASAWARA, Masayoshi; ARAKAWA, Masayuki; HAGIMORI, Masayori

    2013-01-01

    Thrombosis is characterized by congenital and acquired procatarxis. Lactic acid bacteria-fermented soybean milk products (FS-LAB) inhibit hepatic lipid accumulation and prevent atherosclerotic plaque formation. However, the therapeutic efficacy of FS-LAB against thrombosis has yet to be investigated. In this study, FS-LAB were administered subcutaneously into the tails of rats, with the subsequent intravenous administration of κ-carrageenan 12 hr after the initial injection. In general, administration of κ-carrageenan induces thrombosis. The length of the infarcted tail regions was significantly shorter in the rats administered a single-fold or double-fold concentration of the FS-LAB solution compared with the region in control rats. Therefore, FS-LAB exhibited significant antithrombotic effects. Our study is the first to characterize the properties of FS-LAB and, by testing their efficacy on an in vivo rat model of thrombosis, demonstrate the potency of their antithrombotic effect. PMID:24936368

  10. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  11. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOEpatents

    Ohlrogge, John B.; Cahoon, Edgar B.; Shanklin, John; Somerville, Christopher R.

    1995-01-01

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  12. An assessment of plant biointrusion at the Uranium Mill Tailings Remedial Action Project rock-covered disposal cells

    SciTech Connect

    Not Available

    1990-10-01

    This study is one of a number of special studies that have been conducted regarding various aspects of the Uranium Mill Tailings Remedial Action (UMTRA) Project. This special study was proposed following routine surveillance and maintenance surveys and observations reported in a special study of vegetative covers (DOE, 1988), in which plants were observed growing up through the rock erosion layer at recently completed disposal cells. Some of the plants observed were deep-rooted woody species, and questions concerning root intrusion into disposal cells and the need to control plant growth were raised. The special study discussed in this report was designed to address some of the ramifications of plant growth on disposal cells that have rock covers. The NRC has chosen rock covers over vegetative covers in the arid western United States because licenses cannot substantiate that the vegetative covers will be significantly greater than 30 percent and preferably 70 percent,'' which is the amount of vegetation required to reduce flow to a point of stability.'' The potential impacts of vegetation growing in rock covers are not addressed by the NRC (1990). The objectives, then, of this study were to determine the species of plants growing on two rock-covered disposal cells, study the rooting pattern of plants on these cells, and identify possible impacts of plant root penetration on these and other UMTRA Project rock-covered cells.

  13. Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste

    NASA Astrophysics Data System (ADS)

    Tozsin, Gulsen

    2016-01-01

    Acid mine drainage (AMD) with high concentrations of sulfates and metals is generated by the oxidation of sulfide bearing wastes. CaCO3-rich marble cutting waste is a residual material produced by the cutting and polishing of marble stone. In this study, the feasibility of using the marble cutting waste as an acid-neutralizing agent to inhibit AMD and immobilize heavy metals from copper flotation tailings (sulfide- bearing wastes) was investigated. Continuous-stirring shake-flask tests were conducted for 40 d, and the pH value, sulfate content, and dissolved metal content of the leachate were analyzed every 10 d to determine the effectiveness of the marble cutting waste as an acid neutralizer. For comparison, CaCO3 was also used as a neutralizing agent. The average pH value of the leachate was 2.1 at the beginning of the experiment ( t = 0). In the experiment employing the marble cutting waste, the pH value of the leachate changed from 6.5 to 7.8, and the sulfate and iron concentrations decreased from 4558 to 838 mg/L and from 536 to 0.01 mg/L, respectively, after 40 d. The marble cutting waste also removed more than 80wt% of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) from AMD generated by copper flotation tailings.

  14. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt.

    PubMed

    Rashed, M N

    2010-06-15

    This study includes tailing from gold mine, at Allaqi Wadi Aswan, Egypt, used by incident Egyptian and after by some English companies. Tailings, soils and wild plants (Acia Raddiena and Aerva Javanica) were sampled and analysed for toxic metals (Hg, Cd, Pb and As) and associated heavy metals (Cr, Ag, Ni, Au, Mo, Zn, Mn and Cu) using ICP-MS, ICP-AES, CVAAS and FAAS techniques. The present work concerns the distribution and mobility of these metals from tailing to the surrounding soils and wild flora. The results reveal that Cr, Cu, Zn, Ni, Ag, Au, Mn, Hg, As, Ag, Au and Pb in soil decreased as faraway from the tailing, after then irregular trends as a result of input from surrounding rocks. Acia Raddiena plant accumulated As, Cd and Pb in higher levels than Aerva Javanica. Quantification of soil and plant pollution was studied using enrichment factors, contamination factor, pollution index and bioaccumulation factors and show good interpretations of the results. The overall results of this study show that the soil and plants near the gold mine tailing were highly toxic, and the plants and soil must not be uses for grazing or agriculture.

  15. Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt.

    PubMed

    Rashed, M N

    2010-06-15

    This study includes tailing from gold mine, at Allaqi Wadi Aswan, Egypt, used by incident Egyptian and after by some English companies. Tailings, soils and wild plants (Acia Raddiena and Aerva Javanica) were sampled and analysed for toxic metals (Hg, Cd, Pb and As) and associated heavy metals (Cr, Ag, Ni, Au, Mo, Zn, Mn and Cu) using ICP-MS, ICP-AES, CVAAS and FAAS techniques. The present work concerns the distribution and mobility of these metals from tailing to the surrounding soils and wild flora. The results reveal that Cr, Cu, Zn, Ni, Ag, Au, Mn, Hg, As, Ag, Au and Pb in soil decreased as faraway from the tailing, after then irregular trends as a result of input from surrounding rocks. Acia Raddiena plant accumulated As, Cd and Pb in higher levels than Aerva Javanica. Quantification of soil and plant pollution was studied using enrichment factors, contamination factor, pollution index and bioaccumulation factors and show good interpretations of the results. The overall results of this study show that the soil and plants near the gold mine tailing were highly toxic, and the plants and soil must not be uses for grazing or agriculture. PMID:20188467

  16. Contact of clay-liner materials with acidic tailings. II. Chemical modeling

    SciTech Connect

    Peterson, S.R.; Krupka, K.M.

    1981-09-01

    The ion speciation-solubility model WATEQ3 was used to model original aqueous solutions and solutions resulting from liner materials contacted with uranium mill tailings, synthetic mill tailings or H/sub 2/SO/sub 4/. The modeling results indicate solution species which are in apparent equilibrium with respect to particular solids. These solids provide potential solubility controls for their corresponding dissolved constituents. The disequilibrium indices computed by WATEQ3 indicate amorphic Fe(OH)/sub 3/(A), Al0HO/sub 4/, alunite (KA1/sub 3/(SO/sub 4/)/sub 2/(OH)/sub 6/), gypsum (CaSO/sub 4/ . 2H/sub 2/O), celestite (SrSO/sub 4/), anglesite (PbSO/sub 4/) and MnHPO/sub 4/ may have precipitated in the contacted liner materials and may also provide solubility controls for their dissolved constituents. The disequilibrium indices also show that the solutions resulting from the interaction of Highland Mill tailings are oversaturated with K-, H-, and Na-jarosites ((K,H,Na)Fe/sub 3/(SO/sub 4/)/sub 2/(OH)/sub 6/). Because jarosite has been identified by x-ray diffraction as a precipitate in these reacted liner materials, it would appear that there is a kinetic barrier which prohibits jarosite from being an effective solubility control. Results of this study also show that the solubilities of many solid phases were pH dependent. This exploratory use of geochemical modeling has demonstrated its capability to test solubility hypotheses for clay liners reacted with tailings solutions and to guide the analyses of important constituents and parameters for these solutions. Geochemical modeling can be used, in parallel with characterization techniques for the solid phases, to support the presence of the solid phase and to guide the search for further solid phases. Geochemical modeling is also an effective tool in delineating the chemical causes for changes in permeability of liner materials.

  17. Crystallogenesis of bacteriophage P22 tail accessory factor gp26 at acidic and neutral pH

    SciTech Connect

    Cingolani, Gino Andrews, Dewan; Casjens, Sherwood

    2006-05-01

    The crystallogenesis of bacteriophage P22 tail-fiber gp26 is described. To study possible pH-induced conformational changes in gp26 structure, native trimeric gp26 has been crystallized at acidic pH (4.6) and a chimera of gp26 fused to maltose-binding protein (MBP-gp26) has been crystallized at neutral and alkaline pH (7-10). Gp26 is one of three phage P22-encoded tail accessory factors essential for stabilization of viral DNA within the mature capsid. In solution, gp26 exists as an extended triple-stranded coiled-coil protein which shares profound structural similarities with class I viral membrane-fusion protein. In the cryo-EM reconstruction of P22 tail extracted from mature virions, gp26 forms an ∼220 Å extended needle structure emanating from the neck of the tail, which is likely to be brought into contact with the cell’s outer membrane when the viral DNA-injection process is initiated. To shed light on the potential role of gp26 in cell-wall penetration and DNA injection, gp26 has been crystallized at acidic, neutral and alkaline pH. Crystals of native gp26 grown at pH 4.6 diffract X-rays to 2.0 Å resolution and belong to space group P2{sub 1}, with a dimer of trimeric gp26 molecules in the asymmetric unit. To study potential pH-induced conformational changes in the gp26 structure, a chimera of gp26 fused to maltose-binding protein (MBP-gp26) was generated. Hexagonal crystals of MBP-gp26 were obtained at neutral and alkaline pH using the high-throughput crystallization robot at the Hauptman–Woodward Medical Research Institute, Buffalo, NY, USA. These crystals diffract X-rays to beyond 2.0 Å resolution. Structural analysis of gp26 crystallized at acidic, neutral and alkaline pH is in progress.

  18. Community-level impacts of white-tailed deer on understorey plants in North American forests: a meta-analysis

    PubMed Central

    Habeck, Christopher W.; Schultz, Alexis K.

    2015-01-01

    The impacts of introduced or overabundant large herbivores are a concern for the conservation of forest plant communities and the sustainability of ecosystem function. White-tailed deer (Odocoileus virginianus) are considered ecologically overabundant in much of North America. Previous work suggests that impacts of deer overabundance are broadly negative and are consequently degrading forests at multiple ecological and taxonomic levels. However, no quantitative synthesis currently exists to verify the generality or magnitude of these impacts. Here, we report the results of a meta-analysis quantifying the effects of deer exclusion on the diversity, cover and abundance of woody, herbaceous and whole community components of forest understories in North America. In addition, we explore the relationships of environmental and experimental factors on the direction and magnitude of plant community outcomes using meta-regression. Using 119 calculated effect sizes sourced from 25 peer-reviewed articles, we constructed 10 community-specific data sets and found strongly positive diversity, cover and abundance responses of the woody community to deer exclusion, but no significant effects for the herbaceous or whole community components of forest understories. Local deer density and time since exclusion were significant moderators of both whole community and woody community richness. Local deer density also moderated the effects of deer exclusion on whole community cover. Plot area, in contrast, showed no relationship to any of the community response outcomes. We suggest that the use of inadequate diversity indices, non-native species replacement or legacy effects of chronic deer overabundance might explain why the herbaceous and whole community components of forest understories showed no diversity or cover responses to deer exclusion. We also suggest some strategies to increase opportunities for future quantitative syntheses of deer impacts on forests, including providing

  19. Community-level impacts of white-tailed deer on understorey plants in North American forests: a meta-analysis.

    PubMed

    Habeck, Christopher W; Schultz, Alexis K

    2015-01-01

    The impacts of introduced or overabundant large herbivores are a concern for the conservation of forest plant communities and the sustainability of ecosystem function. White-tailed deer (Odocoileus virginianus) are considered ecologically overabundant in much of North America. Previous work suggests that impacts of deer overabundance are broadly negative and are consequently degrading forests at multiple ecological and taxonomic levels. However, no quantitative synthesis currently exists to verify the generality or magnitude of these impacts. Here, we report the results of a meta-analysis quantifying the effects of deer exclusion on the diversity, cover and abundance of woody, herbaceous and whole community components of forest understories in North America. In addition, we explore the relationships of environmental and experimental factors on the direction and magnitude of plant community outcomes using meta-regression. Using 119 calculated effect sizes sourced from 25 peer-reviewed articles, we constructed 10 community-specific data sets and found strongly positive diversity, cover and abundance responses of the woody community to deer exclusion, but no significant effects for the herbaceous or whole community components of forest understories. Local deer density and time since exclusion were significant moderators of both whole community and woody community richness. Local deer density also moderated the effects of deer exclusion on whole community cover. Plot area, in contrast, showed no relationship to any of the community response outcomes. We suggest that the use of inadequate diversity indices, non-native species replacement or legacy effects of chronic deer overabundance might explain why the herbaceous and whole community components of forest understories showed no diversity or cover responses to deer exclusion. We also suggest some strategies to increase opportunities for future quantitative syntheses of deer impacts on forests, including providing

  20. In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium.

    PubMed

    Mahdavi, Hamed; Prasad, Vinay; Liu, Yang; Ulrich, Ania C

    2015-01-01

    In this study, the biodegradation of total acid-extractable organics (TAOs), commonly called naphthenic acids (NAs), was investigated. An indigenous microbial culture containing algae and bacteria was taken from the surface of a tailings pond and incubated over the course of 120days. The influence of light, oxygen and the presence of indigenous algae and bacteria, and a diatom (Navicula pelliculosa) on the TAO removal rate were elucidated. The highest biodegradation rate was observed with bacteria growth only (without light exposure) with a half-life (t(1/2)) of 203days. The algae-bacteria consortium enhanced the detoxification process, however, bacterial biomass played the main role in toxicity reduction. Principal component analysis (PCA) conducted on FT-IR spectra, identified functional groups and bonds (representing potential markers for biotransformation of TAOs) as follows: hydroxyl, carboxyl and amide groups along with CH, arylH, arylOH and NH bonds.

  1. TACN-based cationic lipids with amino acid backbone and double tails: materials for non-viral gene delivery.

    PubMed

    Wang, Bing; Yi, Wen-Jing; Zhang, Ji; Zhang, Qin-Fang; Xun, Miao-Miao; Yu, Xiao-Qi

    2014-04-01

    Cationic lipids have become an efficient type of non-viral vectors for gene delivery. In this Letter, four cationic lipids containing 1,4,7-triazacyclononane (TACN) headgroup, glutamic/aspartic acid backbone and dioleyl tails were designed and synthesized. The TACN headgroup gives these lipids excellent pH buffering capacities, which were higher than branched 25 kDa PEI. Cationic liposomes prepared from these lipids and DOPE showed good DNA affinity, and full DNA condensation was found at N/P ratio of 3 via agarose gel electrophoresis. The lipoplexes were characterized by dynamic light scattering (DLS) assay, which gave proper particle sizes and zeta-potentials for transfection. In vitro gene transfection results in two cell lines reveal that TAN (with aspartic acid and amide bond in the structure) shows the best transfection efficiency, which is close to commercially available transfection agent Lipofectamine 2000.

  2. Environmental factors influencing the structural dynamics of soil microbial communities during assisted phytostabilization of acid-generating mine tailings: a mesocosm experiment.

    PubMed

    Valentín-Vargas, Alexis; Root, Robert A; Neilson, Julia W; Chorover, Jon; Maier, Raina M

    2014-12-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  3. Environmental Factors Influencing the Structural Dynamics of Soil Microbial Communities During Assisted Phytostabilization of Acid-Generating Mine Tailings: a Mesocosm Experiment

    PubMed Central

    Valentín-Vargas, Alexis; Root, Robert A.; Neilson, Julia W; Chorover, Jon; Maier, Raina M.

    2014-01-01

    Compost-assisted phytostabilization has recently emerged as a robust alternative for reclamation of metalliferous mine tailings. Previous studies suggest that root-associated microbes may be important for facilitating plant establishment on the tailings, yet little is known about the long-term dynamics of microbial communities during reclamation. A mechanistic understanding of microbial community dynamics in tailings ecosystems undergoing remediation is critical because these dynamics profoundly influence both the biogeochemical weathering of tailings and the sustainability of a plant cover. Here we monitor the dynamics of soil microbial communities (i.e. bacteria, fungi, archaea) during a 12-month mesocosm study that included 4 treatments: 2 unplanted controls (unamended and compost-amended tailings) and 2 compost-amended seeded tailings treatments. Bacterial, fungal and archaeal communities responded distinctively to the revegetation process and concurrent changes in environmental conditions and pore water chemistry. Compost addition significantly increased microbial diversity and had an immediate and relatively long-lasting buffering-effect on pH, allowing plants to germinate and thrive during the early stages of the experiment. However, the compost buffering capacity diminished after six months and acidification took over as the major factor affecting plant survival and microbial community structure. Immediate changes in bacterial communities were observed following plant establishment, whereas fungal communities showed a delayed response that apparently correlated with the pH decline. Fluctuations in cobalt pore water concentrations, in particular, had a significant effect on the structure of all three microbial groups, which may be linked to the role of cobalt in metal detoxification pathways. The present study represents, to our knowledge, the first documentation of the dynamics of the three major microbial groups during revegetation of compost

  4. Lead sulfate nano- and microparticles in the acid plant blow-down generated at the sulfuric acid plant of the El Teniente mine, Chile.

    PubMed

    Barassi, Giancarlo M; Klimsa, Martin; Borrmann, Thomas; Cairns, Mathew J; Kinkel, Joachim; Valenzuela, Fernando

    2014-12-01

    The acid plant 'blow-down' (also called weak acid) produced at El Teniente mine in Chile was characterized. This liquid waste (tailing) is generated during the cooling and cleaning of the smelter gas prior to the production of sulfuric acid. The weak acid was composed of a liquid and a solid phase (suspended solids). The liquid phase of the sample analyzed in this study mainly contained Cu (562 mg L(-1)), SO4(2-) (32 800 mg L(-1)), Ca (1449 mg L(-1)), Fe (185 mg L(-1)), As (6 mg L(-1)), K (467 mg L(-1)) and Al (113 mg L(-1)). Additionally, the sample had a pH-value and total acidity of 0.45 and 2970 mg L(-1) as CaCO3, respectively. Hence, this waste was classified as extremely acidic and with a high metal content following the Ficklin diagram classification. Elemental analysis using atomic absorption, inductively coupled plasma, X-ray diffraction and electron microscopy showed that the suspended solids were anglesite (PbSO4) nano- and microparticles ranging from 50 nm to 500 nm in diameter.

  5. Enumeration of Thiobacilli within pH-Neutral and Acidic Mine Tailings and Their Role in the Development of Secondary Mineral Soil

    PubMed Central

    Southam, G.; Beveridge, T. J.

    1992-01-01

    The Lemoine tailings of Chibougamau, Quebec, Canada, were deposited as a pH-neutral mineral conglomerate consisting of aluminum-silicates, iron-aluminum-silicates, pyrite, chalcopyrite, and sphalerite. These tailings are colonized by an active population of Thiobacillus ferrooxidans which is localized to an acid zone occupying 40% of the tailings' surface. This population peaked at 7 × 108 most probable number per gram of tailings during July and August 1990 and extended to a depth of 40 cm from the surface. Examination of samples over this depth profile by transmission electron microscopy and electron dispersive spectroscopy revealed a microbially mediated mineral transition from sulfides (below 40 cm) to chlorides and phosphates (at the surface). Silicate minerals were unaltered by microbial action. Transmission electron microscopy showed a tight association between Thiobacillus species and the sulfide minerals, which helps account for their prominence in tailings environments. Accurate enumeration of T. ferrooxidans from tailings required the disruption of their bonding to the mineral interface. Vortexing of a 10% aqueous suspension of the tailings material prior to most-probable-number analysis best facilitated this release. Even though heavy metals were highly mobile under acidic conditions at the Lemoine tailings, it was evident by transmission electron microscopy and electron dispersive spectroscopy that they were being immobilized as bona fide fine-grain minerals containing iron, copper, chlorine, phosphorus, and oxygen on bacterial surfaces and exopolymers. This biomineralization increased with increasing bacterial numbers and was most evident in the upper 3 cm of the acidic zone. Images PMID:16348721

  6. Long-term biobarriers to plant and animal intrusions of uranium tailings. [24% trifluralin, 18% carbon black, and 58% polymer

    SciTech Connect

    Cline, J.F.; Burton, F.G.; Cataldo, D.A.; Skiens, W.E.; Gano, K.A.

    1982-09-01

    The objective of this project was to develop and evaluate the effectiveness of physical and chemical barriers designed to prevent plant and animal breachment of uranium mill tailings containment systems for an extended period of time. A polymeric carrier/biocide delivery system was developed and tested in the laboratory, greenhouse and field. A continuous flow technique was established to determine the release rates of the biocides from the PCD systems; polymeric carrier specifications were established. Studies were conducted to determine effective biocide concentrations required to produce a phytotoxic response and the relative rates of phytotoxin degradation resulting from chemical and biological breakdown in soils. The final PCD system developed was a pelletized system containing 24% trifluralin, 18% carbon black and 58% polymer. Pellets were placed in the soil at the Grand Junction U-tailings site at one in. and two in. intervals. Data obtained in the field determined that the pellets released enough herbicide to the soil layer to stop root elongation past the barrier. Physical barriers to subsurface movement of burrowing animals were investigated. Small crushed stone (1 to 1 1/2 in. diameter) placed over asphalt emulsion and multilayer soil seals proved effective as barriers to a small mammal (ground squirrels) but were not of sufficient size to stop a larger animal (the prairie dog). No penetrations were made through the asphalt emulsion or the clay layer of the multilayer soil seals by either of the two mammals tested. A literature survey was prepared and published on the burrowing habits of the animals that may be found at U-tailings sites.

  7. The production of unusual fatty acids in transgenic plants.

    PubMed

    Napier, Johnathan A

    2007-01-01

    The ability to genetically engineer plants has facilitated the generation of oilseeds synthesizing non-native fatty acids. Two particular classes of fatty acids are considered in this review. First, so-called industrial fatty acids, which usually contain functional groups such as hydroxyl, epoxy, or acetylenic bonds, and second, very long chain polyunsaturated fatty acids normally found in fish oils and marine microorganisms. For industrial fatty acids, there has been limited progress toward obtaining high-level accumulation of these products in transgenic plants. For very long chain polyunsaturated fatty acids, although they have a much more complex biosynthesis, accumulation of some target fatty acids has been remarkably successful. In this review, we consider the probable factors responsible for these different outcomes, as well as the potential for further optimization of the transgenic production of unusual fatty acids in transgenic plants.

  8. Effects of a chemical weapons incineration plant on red-tailed tropicbirds

    USGS Publications Warehouse

    Schreiber, E.A.; Doherty, P.F.; Schenk, G.A.

    2001-01-01

    From 1990 to 2000, the Johnston Atoll Chemical Agent Disposal System (JACADS) incinerated part of the U.S. stockpile of chemical weapons on Johnston Atoll, central Pacific Ocean, which also is a National Wildlife Refuge and home to approximately a half-million breeding seabirds. The effect on wildlife of incineration of these weapons is unknown. Using a multi-strata mark-recapture analysis, we investigated the effects of JACADS on reproductive success, survival, and movement probabilities of red-tailed tropicbirds (Phaethon rubricauda) nesting both downwind and upwind of the incineration site. We found no effect of chemical incineration on these tropicbird demographic parameters over the 8 years of our study. An additional 3 years of monitoring tropicbird demography will take place, post-incineration.

  9. [Stress effects of simulant acid rain on three woody plants].

    PubMed

    Zhou, Qing; Huang, Xiaohua; Liu, Xiaolin

    2002-09-01

    Osmanthus fragrana, Chimonanthus praecox and Prunus persica were used as materials to investigate the effect of simulant acid rain on chlorophyll (Chl) content, cell membrane permeability(L%), the content of proline (Pro) and malondialdehyde (MDA) in three woody plants with different resistance, and effects of the light and dark conditions on acid rain injury. The results showed that the change degree of four kinds of physiological and biochemical indexes for these woody plants was as sequence: Osmanthus fragrana > Chimonanthus praecox > Prunus persica. The change of chlorophyll content in these woody plants was not obviously when acid rain stress was influenced by the light and dark.

  10. REE, Uranium (U) and Thorium (Th) contents in Betula pendula leaf growing around Komsomolsk gold concentration plant tailing (Kemerovo region, Western Siberia, Russia)

    NASA Astrophysics Data System (ADS)

    Yusupov, D. V.; Karpenko, Yu A.

    2016-09-01

    The article deals with the research findings of peculiarities of REE, Uranium and Thorium distribution in the territory surrounding the tailing of former Komsomolsk gold concentration plant according to the data from Betula pendula leaf testing. In the leaf element composition the slight deficiency of MREE and substantial excess of HREE are presented. In the nearest impacted area around the tailing, La, Yb, U and Th content, and Th/U ratio are lower than in the distant buffer area. It is shown, that value of Th/U ratio and REE can be an indicator for geochemical transformations of technogenic landscapes in mining districts. The results of the research can be used for biomonitoring of the territory around the tailing.

  11. Structure and Mechanism of Dimer-Monomer Transition of a Plant Poly(A)-Binding Protein upon RNA Interaction: Insights into Its Poly(A) Tail Assembly.

    PubMed

    Domingues, Mariane Noronha; Sforça, Mauricio Luis; Soprano, Adriana Santos; Lee, Jack; Souza, Tatiana de Arruda Campos Brasil de; Cassago, Alexandre; Portugal, Rodrigo Villares; Zeri, Ana Carolina de Mattos; Murakami, Mario Tyago; Sadanandom, Ari; Oliveira, Paulo Sergio Lopes de; Benedetti, Celso Eduardo

    2015-07-31

    Poly(A)-binding proteins (PABPs) play crucial roles in mRNA biogenesis, stability, transport and translational control in most eukaryotic cells. Although animal PABPs are well-studied proteins, the biological role, three-dimensional structure and RNA-binding mode of plant PABPs remain largely uncharacterized. Here, we report the structural features and RNA-binding mode of a Citrus sinensis PABP (CsPABPN1). CsPABPN1 has a domain architecture of nuclear PABPs (PABPNs) with a single RNA recognition motif (RRM) flanked by an acidic N-terminus and a GRPF-rich C-terminus. The RRM domain of CsPABPN1 displays virtually the same three-dimensional structure and poly(A)-binding mode of animal PABPNs. However, while the CsPABPN1 RRM domain specifically binds poly(A), the full-length protein also binds poly(U). CsPABPN1 localizes to the nucleus of plant cells and undergoes a dimer-monomer transition upon poly(A) interaction. We show that poly(A) binding by CsPABPN1 begins with the recognition of the RNA-binding sites RNP1 and RNP2, followed by interactions with residues of the β2 strands, which stabilize the dimer, thus leading to dimer dissociation. Like human PABPN1, CsPABPN1 also seems to form filaments in the presence of poly(A). Based on these data, we propose a structural model in which contiguous CsPABPN1 RRM monomers wrap around the RNA molecule creating a superhelical structure that could not only shield the poly(A) tail but also serve as a scaffold for the assembly of additional mRNA processing factors.

  12. Structure and Mechanism of Dimer-Monomer Transition of a Plant Poly(A)-Binding Protein upon RNA Interaction: Insights into Its Poly(A) Tail Assembly.

    PubMed

    Domingues, Mariane Noronha; Sforça, Mauricio Luis; Soprano, Adriana Santos; Lee, Jack; Souza, Tatiana de Arruda Campos Brasil de; Cassago, Alexandre; Portugal, Rodrigo Villares; Zeri, Ana Carolina de Mattos; Murakami, Mario Tyago; Sadanandom, Ari; Oliveira, Paulo Sergio Lopes de; Benedetti, Celso Eduardo

    2015-07-31

    Poly(A)-binding proteins (PABPs) play crucial roles in mRNA biogenesis, stability, transport and translational control in most eukaryotic cells. Although animal PABPs are well-studied proteins, the biological role, three-dimensional structure and RNA-binding mode of plant PABPs remain largely uncharacterized. Here, we report the structural features and RNA-binding mode of a Citrus sinensis PABP (CsPABPN1). CsPABPN1 has a domain architecture of nuclear PABPs (PABPNs) with a single RNA recognition motif (RRM) flanked by an acidic N-terminus and a GRPF-rich C-terminus. The RRM domain of CsPABPN1 displays virtually the same three-dimensional structure and poly(A)-binding mode of animal PABPNs. However, while the CsPABPN1 RRM domain specifically binds poly(A), the full-length protein also binds poly(U). CsPABPN1 localizes to the nucleus of plant cells and undergoes a dimer-monomer transition upon poly(A) interaction. We show that poly(A) binding by CsPABPN1 begins with the recognition of the RNA-binding sites RNP1 and RNP2, followed by interactions with residues of the β2 strands, which stabilize the dimer, thus leading to dimer dissociation. Like human PABPN1, CsPABPN1 also seems to form filaments in the presence of poly(A). Based on these data, we propose a structural model in which contiguous CsPABPN1 RRM monomers wrap around the RNA molecule creating a superhelical structure that could not only shield the poly(A) tail but also serve as a scaffold for the assembly of additional mRNA processing factors. PMID:26013164

  13. Enzymatic production of caffeic acid by koji from plant resources containing caffeoylquinic acid derivatives.

    PubMed

    Yoshimoto, Makoto; Kurata-Azuma, Rie; Fujii, Makoto; Hou, De-Xing; Ikeda, Kohji; Yoshidome, Tomohisa; Osako, Miho

    2005-09-01

    The effect of a koji (Aspergillus awamori mut.) extract on the caffeoylquinic acid derivatives purified from sweetpotato (Ipomoea batatas L.) leaves was examined to develop the mass production of caffeic acid. A koji extract hydrolyzed the caffeoylquinic acid derivatives, chlorogenic acid, 3,4-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 4,5-di-O-caffeoylquinic acid and 3,4,5-tri-O-caffeoylquinic acid, to caffeic acid. Furthermore, the koji extract also converted the major polyphenolic components from sweetpotato, burdock (Arctium lappa L.), and mugwort (Artemisia indica var. maximowiczii) leaves to caffeic acid. These results suggest that the production of caffeic acid from plant resources containing caffeoylquinic acid derivatives is possible.

  14. Aminomethylphosphonic acid accumulation in plant species treated with glyphosate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminomethylphosphonic acid (AMPA) is the most frequently detected metabolite of glyphosate in plants. Greenhouse studies were conducted to determine the glyphosate I50 values (rate required to cause a 50% reduction in plant growth) and to quantify AMPA and shikimate concentrations in selected legum...

  15. Phosphatidic acid: an emerging plant lipid second messenger.

    PubMed

    Munnik, T

    2001-05-01

    Evidence is accumulating that phosphatidic acid is a second messenger. Its level increases within minutes of a wide variety of stress treatments including ethylene, wounding, pathogen elicitors, osmotic and oxidative stress, and abscisic acid. Enhanced signal levels are rapidly attenuated by phosphorylating phosphatidic acid to diacylglycerol pyrophosphate. Phosphatidic acid is the product of two signalling pathways, those of phospholipases C and D, the former in combination with diacylglycerol kinase. Families of these genes are now being cloned from plants. Several downstream targets of phosphatidic acid have been identified, including protein kinases and ion channels.

  16. 75 FR 9377 - Endangered and Threatened Wildlife and Plants; Listing the Flat-Tailed Horned Lizard as Threatened

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... distinct vertebrate population segments (61 FR 4722). (6) The potential effects global climate change may..., 1993 (58 FR 62624), to list the flat-tailed horned lizard as a threatened species, and reopens the... proposed rule to list the flat-tailed horned lizard as a threatened species under the Act (58 FR 62624)....

  17. Molecular Evolution of Plant AAP and LHT Amino Acid Transporters.

    PubMed

    Tegeder, Mechthild; Ward, John M

    2012-01-01

    Nitrogen is an essential mineral nutrient and it is often transported within living organisms in its reduced form, as amino acids. Transport of amino acids across cellular membranes requires proteins, and here we report the phylogenetic analysis across taxa of two amino acid transporter families, the amino acid permeases (AAPs) and the lysine-histidine-like transporters (LHTs). We found that the two transporter families form two distinct groups in plants supporting the concept that both are essential. AAP transporters seem to be restricted to land plants. They were found in Selaginella moellendorffii and Physcomitrella patens but not in Chlorophyte, Charophyte, or Rhodophyte algae. AAPs were strongly represented in vascular plants, consistent with their major function in phloem (vascular tissue) loading of amino acids for sink nitrogen supply. LHTs on the other hand appeared prior to land plants. LHTs were not found in chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean alga Klebsormidium flaccidum encodes KfLHT13 and phylogenetic analysis indicates that it is basal to land plant LHTs. This is consistent with the hypothesis that characean algae are ancestral to land plants. LHTs were also found in both S. moellendorffii and P. patens as well as in monocots and eudicots. To date, AAPs and LHTs have mainly been characterized in Arabidopsis (eudicots) and these studies provide clues to the functions of the newly identified homologs. PMID:22645574

  18. Molecular Evolution of Plant AAP and LHT Amino Acid Transporters

    PubMed Central

    Tegeder, Mechthild; Ward, John M.

    2012-01-01

    Nitrogen is an essential mineral nutrient and it is often transported within living organisms in its reduced form, as amino acids. Transport of amino acids across cellular membranes requires proteins, and here we report the phylogenetic analysis across taxa of two amino acid transporter families, the amino acid permeases (AAPs) and the lysine–histidine-like transporters (LHTs). We found that the two transporter families form two distinct groups in plants supporting the concept that both are essential. AAP transporters seem to be restricted to land plants. They were found in Selaginella moellendorffii and Physcomitrella patens but not in Chlorophyte, Charophyte, or Rhodophyte algae. AAPs were strongly represented in vascular plants, consistent with their major function in phloem (vascular tissue) loading of amino acids for sink nitrogen supply. LHTs on the other hand appeared prior to land plants. LHTs were not found in chlorophyte algae Chlamydomonas reinhardtii and Volvox carterii. However, the characean alga Klebsormidium flaccidum encodes KfLHT13 and phylogenetic analysis indicates that it is basal to land plant LHTs. This is consistent with the hypothesis that characean algae are ancestral to land plants. LHTs were also found in both S. moellendorffii and P. patens as well as in monocots and eudicots. To date, AAPs and LHTs have mainly been characterized in Arabidopsis (eudicots) and these studies provide clues to the functions of the newly identified homologs. PMID:22645574

  19. A collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Irving, P.; Kuja, A.; Lee, J.; Shriner, D.; Troiano, J.; Perrigan, S.; Cullinan, V.

    1989-01-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain on dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. 14 refs., 2 figs., 7 tabs.

  20. Ca(2+)/calmodulin regulates salicylic-acid-mediated plant immunity.

    PubMed

    Du, Liqun; Ali, Gul S; Simons, Kayla A; Hou, Jingguo; Yang, Tianbao; Reddy, A S N; Poovaiah, B W

    2009-02-26

    Intracellular calcium transients during plant-pathogen interactions are necessary early events leading to local and systemic acquired resistance. Salicylic acid, a critical messenger, is also required for both of these responses, but whether and how salicylic acid level is regulated by Ca(2+) signalling during plant-pathogen interaction is unclear. Here we report a mechanism connecting Ca(2+) signal to salicylic-acid-mediated immune response through calmodulin, AtSR1 (also known as CAMTA3), a Ca(2+)/calmodulin-binding transcription factor, and EDS1, an established regulator of salicylic acid level. Constitutive disease resistance and elevated levels of salicylic acid in loss-of-function alleles of Arabidopsis AtSR1 suggest that AtSR1 is a negative regulator of plant immunity. This was confirmed by epistasis analysis with mutants of compromised salicylic acid accumulation and disease resistance. We show that AtSR1 interacts with the promoter of EDS1 and represses its expression. Furthermore, Ca(2+)/calmodulin-binding to AtSR1 is required for suppression of plant defence, indicating a direct role for Ca(2+)/calmodulin in regulating the function of AtSR1. These results reveal a previously unknown regulatory mechanism linking Ca(2+) signalling to salicylic acid level.

  1. Mutations in type 3 reovirus that determine binding to sialic acid are contained in the fibrous tail domain of viral attachment protein sigma1.

    PubMed

    Chappell, J D; Gunn, V L; Wetzel, J D; Baer, G S; Dermody, T S

    1997-03-01

    The reovirus attachment protein, sigma1, determines numerous aspects of reovirus-induced disease, including viral virulence, pathways of spread, and tropism for certain types of cells in the central nervous system. The sigma1 protein projects from the virion surface and consists of two distinct morphologic domains, a virion-distal globular domain known as the head and an elongated fibrous domain, termed the tail, which is anchored into the virion capsid. To better understand structure-function relationships of sigma1 protein, we conducted experiments to identify sequences in sigma1 important for viral binding to sialic acid, a component of the receptor for type 3 reovirus. Three serotype 3 reovirus strains incapable of binding sialylated receptors were adapted to growth in murine erythroleukemia (MEL) cells, in which sialic acid is essential for reovirus infectivity. MEL-adapted (MA) mutant viruses isolated by serial passage in MEL cells acquired the capacity to bind sialic acid-containing receptors and demonstrated a dependence on sialic acid for infection of MEL cells. Analysis of reassortant viruses isolated from crosses of an MA mutant virus and a reovirus strain that does not bind sialic acid indicated that the sigma1 protein is solely responsible for efficient growth of MA mutant viruses in MEL cells. The deduced sigma1 amino acid sequences of the MA mutant viruses revealed that each strain contains a substitution within a short region of sequence in the sigma1 tail predicted to form beta-sheet. These studies identify specific sequences that determine the capacity of reovirus to bind sialylated receptors and suggest a location for a sialic acid-binding domain. Furthermore, the results support a model in which type 3 sigma1 protein contains discrete receptor binding domains, one in the head and another in the tail that binds sialic acid.

  2. ACID/HEAVY METAL TOLERANT PLANTS

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 30. The objective of Project 30 was to select populations (i.e., ecotypes) from native, indigenous plant species that demonstrate superior growth characteristics and sustainability on...

  3. Carnitine is associated with fatty acid metabolism in plants.

    PubMed

    Bourdin, Benoîte; Adenier, Hervé; Perrin, Yolande

    2007-12-01

    The finding of acylcarnitines alongside free carnitine in Arabidopsis thaliana and other plant species, using tandem mass spectrometry coupled to liquid chromatography shows a link between carnitine and plant fatty acid metabolism. Moreover the occurrence of both medium- and long-chain acylcarnitines suggests that carnitine is connected to diverse fatty acid metabolic pathways in plant tissues. The carnitine and acylcarnitine contents in plant tissues are respectively a hundred and a thousand times lower than in animal tissues, and acylcarnitines represent less than 2% of the total carnitine pool whereas this percentage reaches 30% in animal tissues. These results suggest that carnitine plays a lesser role in lipid metabolism in plants than it does in animals.

  4. Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion, and migration of plants in eastern North America.

    PubMed

    Myers, Jonathan A; Vellend, Mark; Gardescu, Sana; Marks, P L

    2004-03-01

    For many plant species in eastern North America, short observed seed dispersal distances (ranging up to a few tens of meters) fail to explain rapid rates of invasion and migration. This discrepancy points to a substantial gap in our knowledge of the mechanisms by which seeds are dispersed long distances. We investigated the potential for white-tailed deer ( Odocoileus virginianus Zimm.), the dominant large herbivore in much of eastern North America, to disperse seeds via endozoochory. This is the first comprehensive study of seed dispersal by white-tailed deer, despite a vast body of research on other aspects of their ecology. More than 70 plant species germinated from deer feces collected over a 1-year period in central New York State, USA. Viable seeds included native and alien herbs, shrubs, and trees, including several invasive introduced species, from the full range of habitat types in the local flora. A mean of >30 seeds germinated per fecal pellet group, and seeds were dispersed during all months of the year. A wide variety of presumed dispersal modes were represented (endo- and exozoochory, wind, ballistic, ant, and unassisted). The majority were species with small-seeded fruits having no obvious adaptations for dispersal, underscoring the difficulty of inferring dispersal ability from diaspore morphology. Due to their broad diet, wide-ranging movements, and relatively long gut retention times, white-tailed deer have tremendous potential for effecting long-distance seed dispersal via ingestion and defecation. We conclude that white-tailed deer represent a significant and previously unappreciated vector of seed dispersal across the North American landscape, probably contributing an important long-distance component to the seed shadows of hundreds of plant species, and providing a mechanism to help explain rapid rates of plant migration.

  5. The effects of black-tailed prairie dogs on plant communities within a complex urban landscape: an ecological surprise?

    PubMed

    Beals, Stower C; Hartley, Laurel M; Prevéy, Janet S; Seastedt, Timothy R

    2014-05-01

    Historically, prairie dogs (Cynomys spp.) have been considered essential keystone species of western United States grassland ecosystems because they provide unique services and increase vegetation community richness, evenness, and diversity. However, the effects of black-tailed prairie dogs (Cynomys ludovicianus) on lands adjacent to or surrounded by urban areas may not result in the same ecosystem benefits historically associated with their presence. An urban landscape presents prairie dogs with movement challenges unparalleled in natural landscapes, as well as suites of nonnative plant species that are more common in disturbed areas. This study examined a complex ecosystem where vegetation communities are being influenced by directional environmental change, and quantified the synergistic effects resulting from the protective management of a native keystone species. The data set for this analysis was comprised of 71 paired (occupied by prairie dogs vs. unoccupied) vegetation surveys and 156 additional unpaired surveys collected from around the city of Boulder, Colorado, USA for 14 yr. Linear mixed models were used to compare data from transects occupied and unoccupied by prairie dogs, as well as to evaluate the effect of prairie dog occupation duration. In the absence of prairie dogs, vegetation in this region exhibited declines in native grasses, no changes in introduced grasses, and increases in native and nonnative forbs and bare soil over the study interval. In the presence of prairie dogs, these observed directional changes were nearly all amplified at rates four to 10 times greater than when prairie dogs were absent. Areas in Boulder occupied by prairie dogs also had significantly lower richness, evenness, and diversity of plant species, compared to unoccupied areas. Analysis of plant functional groups revealed the significant reduction of perennial native grasses, as well as a significantly higher cover of introduced forbs in occupied areas. Prairie dogs

  6. Plant amino acid-derived vitamins: biosynthesis and function.

    PubMed

    Miret, Javier A; Munné-Bosch, Sergi

    2014-04-01

    Vitamins are essential organic compounds for humans, having lost the ability to de novo synthesize them. Hence, they represent dietary requirements, which are covered by plants as the main dietary source of most vitamins (through food or livestock's feed). Most vitamins synthesized by plants present amino acids as precursors (B1, B2, B3, B5, B7, B9 and E) and are therefore linked to plant nitrogen metabolism. Amino acids play different roles in their biosynthesis and metabolism, either incorporated into the backbone of the vitamin or as amino, sulfur or one-carbon group donors. There is a high natural variation in vitamin contents in crops and its exploitation through breeding, metabolic engineering and agronomic practices can enhance their nutritional quality. While the underlying biochemical roles of vitamins as cosubstrates or cofactors are usually common for most eukaryotes, the impact of vitamins B and E in metabolism and physiology can be quite different on plants and animals. Here, we first aim at giving an overview of the biosynthesis of amino acid-derived vitamins in plants, with a particular focus on how this knowledge can be exploited to increase vitamin contents in crops. Second, we will focus on the functions of these vitamins in both plants and animals (and humans in particular), to unravel common and specific roles for vitamins in evolutionary distant organisms, in which these amino acid-derived vitamins play, however, an essential role.

  7. Amino acids in the rhizosphere: from plants to microbes.

    PubMed

    Moe, Luke A

    2013-09-01

    Often referred to as the "building blocks of proteins", the 20 canonical proteinogenic amino acids are ubiquitous in biological systems as the functional units in proteins. Sometimes overlooked are their varying additional roles that include serving as metabolic intermediaries, playing structural roles in bioactive natural products, acting as cosubstrates in enzymatic transformations, and as key regulators of cellular physiology. Amino acids can also serve as biological sources of both carbon and nitrogen and are found in the rhizosphere as a result of lysis or cellular efflux from plants and microbes and proteolysis of existing peptides. While both plants and microbes apparently prefer to take up nitrogen in its inorganic form, their ability to take up and use amino acids may confer a selective advantage in certain environments where organic nitrogen is abundant. Further, certain amino acids (e.g., glutamate and proline) and their betaines (e.g., glycine betaine) serve as compatible solutes necessary for osmoregulation in plants and microbes and can undergo rapid cellular flux. This ability is of particular importance in an ecological niche such as the rhizosphere, which is prone to significant variations in solute concentrations. Amino acids are also shown to alter key phenotypes related to plant root growth and microbial colonization, symbiotic interactions, and pathogenesis in the rhizosphere. This review will focus on the sources, transport mechanisms, and potential roles of the 20 canonical proteinogenic amino acids in the rhizosphere.

  8. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1998-09-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  9. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, C.; Loo, F. van de

    1997-09-16

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds. 35 figs.

  10. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1998-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  11. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    1997-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  12. Use of plant fatty acyl hydroxylases to produce hydroxylated fatty acids and derivatives in plants

    DOEpatents

    Somerville, Chris; van de Loo, Frank

    2002-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  13. Collaborative effort to model plant response to acidic rain

    SciTech Connect

    Jacobson, J.; Kuja, A.; Shriner, D.; Perrigan, S.; Irving, P.; Lee, J.; Troiano, J.; Cullinan, V.

    1988-06-01

    Radish plants were exposed three times per week to simulated acidic rain at pH values of 2.6 to 5.4 over the course of four weeks in trials performed at Argonne, Illinois; Ithaca and Upton, New York; Corvallis, Oregon; Oak Ridge, Tennessee; and Toronto, Canada. Uniform genotype, soil media and planting techniques, treatment procedures, biological measurements, and experimental design were employed. Growth of plants differed among trials as a result of variation in greenhouse environmental conditions according to location and facilities. Larger plants underwent greater absolute but lower relative reductions in biomass after exposure to the higher levels of acidity. A generalized Mitscherlich function was used to model the effects of acidity of simulated rain or dry mass of hypocotyls using data from three laboratories that performed duplicate trials. The remaining data, from three other laboratories that performed only one trial each, were used to test the model. When the laboratory by trial effect was removed, lack of fit to the Mitscherlich function was insignificant. Thus, a single mathematical model satisfactorily characterized the relationship between acidity and mean plant response.

  14. Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania.

    PubMed

    Sima, Mihaela; Dold, Bernhard; Frei, Linda; Senila, Marin; Balteanu, Dan; Zobrist, Jurg

    2011-05-30

    Sulfidic mine tailings have to be classified as one of the major source of hazardous materials leading to water contamination. This study highlights the processes leading to sulfide oxidation and acid mine drainage (AMD) formation in the active stage of two tailings impoundments located in the southern part of the Apuseni Mountains, in Romania, a well-known region for its long-term gold-silver and metal mining activity. Sampling was undertaken when both impoundments were still in operation in order to assess their actual stage of oxidation and long-term behavior in terms of the potential for acid mine drainage generation. Both tailings have high potential for AMD formation (2.5 and 3.7 wt.% of pyrite equivalent, respectively) with lesser amount of carbonates (5.6 and 3.6 wt.% of calcite equivalent) as neutralization potential (ABA=-55.6 and -85.1 tCaCO(3)/1000 t ) and showed clear signs of sulfide oxidation yet during operation. Sequential extraction results indicate a stronger enrichment and mobility of elements in the oxidized tailings: Fe as Fe(III) oxy-hydroxides and oxides (transformation from sulfide minerals, leaching in oxidation zone), Ca mainly in water soluble and exchangeable form where gypsum and calcite are dissolved and higher mobility of Cu for Ribita and Pb for Mialu. Two processes leading to the formation of mine drainage at this stage could be highlighted (1) a neutral Fe(II) plume forming in the impoundment with ferrihydrite precipitation at its outcrop and (2) acid mine drainage seeping in the unsaturated zone of the active dam, leading to the formation of schwertmannite at its outcrop. PMID:21316846

  15. Omega-3 fatty acids and antioxidants in edible wild plants.

    PubMed

    Simopoulos, Artemis P

    2004-01-01

    Human beings evolved on a diet that was balanced in the omega-6 and omega-3 polyunsaturated fatty acids (PUFA), and was high in antioxidants. Edible wild plants provide alpha-linolenic acid (ALA) and higher amounts of vitamin E and vitamin C than cultivated plants. In addition to the antioxidant vitamins, edible wild plants are rich in phenols and other compounds that increase their antioxidant capacity. It is therefore important to systematically analyze the total antioxidant capacity of wild plants and promote their commercialization in both developed and developing countries. The diets of Western countries have contained increasingly larger amounts of linoleic acid (LA), which has been promoted for its cholesterol-lowering effect. It is now recognized that dietary LA favors oxidative modification of low density lipoprotein (LDL) cholesterol and increases platelet response to aggregation. In contrast, ALA intake is associated with inhibitory effects on the clotting activity of platelets, on their response to thrombin, and on the regulation of arachidonic acid (AA) metabolism. In clinical studies, ALA contributed to lowering of blood pressure, and a prospective epidemiological study showed that ALA is inversely related to the risk of coronary heart disease in men. Dietary amounts of LA as well as the ratio of LA to ALA appear to be important for the metabolism of ALA to longer-chain omega-3 PUFAs. Relatively large reserves of LA in body fat. as are found in vegans or in the diet of omnivores in Western societies, would tend to slow down the formation of long-chain omega-3 fatty acids from ALA. Therefore, the role of ALA in human nutrition becomes important in terms of long-term dietary intake. One advantage of the consumption of ALA over omega-3 fatty acids from fish is that the problem of insufficient vitamin E intake does not exist with high intake of ALA from plant sources.

  16. Listeria phage and phage tail induction triggered by components of bacterial growth media (phosphate, LiCl, nalidixic acid, and acriflavine).

    PubMed

    Lemaître, Jean-Paul; Duroux, Amandine; Pimpie, Romain; Duez, Jean-Marie; Milat, Marie-Louise

    2015-03-01

    The detection of Listeria monocytogenes from food is currently carried out using a double enrichment. For the ISO methodology, this double enrichment is performed using half-Fraser and Fraser broths, in which the overgrowth of L. innocua can occur in samples where both species are present. In this study, we analyzed the induction of phages and phage tails of Listeria spp. in these media and in two brain heart infusion (BHI) broths (BHIM [bioMérieux] and BHIK [Biokar]) to identify putative effectors. It appears that Na2HPO4 at concentrations ranging from 1 to 40 g/liter with an initial pH of 7.5 can induce phage or phage tail production of Listeria spp., especially with 10 g/liter of Na2HPO4 and a pH of 7.5, conditions present in half-Fraser and Fraser broths. Exposure to LiCl in BHIM (18 to 21 g/liter) can also induce phage and phage tail release, but in half-Fraser and Fraser broths, the concentration of LiCl is much lower (3 g/liter). Low phage titers were induced by acriflavine and/or nalidixic acid. We also show that the production of phages and phage tails can occur in half-Fraser and Fraser broths. This study points out that induction of phages and phage tails could be triggered by compounds present in enrichment media. This could lead to a false-negative result for the detection of L. monocytogenes in food products.

  17. Speciation And Colloid Transport of Arsenic From Mine Tailings

    SciTech Connect

    Slowey, A.J.; Johnson, S.B.; Newville, M.; Brown, G.E., Jr.

    2007-07-13

    In addition to affecting biogeochemical transformations, the speciation of As also influences its transport from tailings at inoperative mines. The speciation of As in tailings from the Sulfur Bank Mercury Mine site in Clear Lake, California (USA) (a hot-spring Hg deposit) and particles mobilized from these tailings have been examined during laboratory-column experiments. Solutions containing two common, plant-derived organic acids (oxalic and citric acid) were pumped at 13 pore volumes d{sup -1} through 25 by 500 mm columns of calcined Hg ore, analogous to the pedogenesis of tailings. Chemical analysis of column effluent indicated that all of the As mobilized was particulate (1.5 mg, or 6% of the total As in the column through 255 pore volumes of leaching). Arsenic speciation was evaluated using X-ray absorption spectroscopy (XAS), indicating the dominance of arsenate [As(V)] sorbed to poorly crystalline Fe(III)-(hydr)oxides and coprecipitated with jarosite [KFe{sub 3}(SO{sub 4}, AsO{sub 4}){sub 2}(OH){sub 6}] with no detectable primary or secondary minerals in the tailings and mobilized particles. Sequential chemical extractions (SCE) of <45 {micro}m mine tailings fractions also suggest that As occurs adsorbed to Fe (hydr)oxides (35%) and coprecipitated within poorly crystalline phases (45%). In addition, SCEs suggest that As is associated with 1 N acid-soluble phases such as carbonate minerals (20%) and within crystalline Fe-(hydr)oxides (10%). The finding that As is transported from these mine tailings dominantly as As(V) adsorbed to Fe (hydr)oxides or coprecipitated within hydroxysulfates such as jarosite suggests that As release from soils and sediments contaminated with tailings will be controlled by either organic acid-promoted dissolution or reductive dissolution of host phases.

  18. Gamma amino butyric acid accumulation in medicinal plants without stress

    PubMed Central

    Anju, P.; Moothedath, Ismail; Rema Shree, Azhimala Bhaskaranpillai

    2014-01-01

    Introduction: Gamma amino butyric acid (GABA) is an important ubiquitous four carbon nonprotein amino acid with an amino group attached to gamma carbon instead of beta carbon. It exists in different organisms including bacteria, plants, and animals and plays a crucial role in humans by regulating neuronal excitability throughout the nervous system. It is directly responsible for the regulation of muscle tone and also effective in lowering stress, blood pressure, and hypertension. Aim and Objective: The aim of the study was to develop the fingerprint profile of selected medicinally and economically important plants having central nervous system (CNS) activity and to determine the quantity of GABA in the selected plants grown under natural conditions without any added stress. Materials and Methods: The high-performance thin layer chromatography analysis was performed on precoated silica gel plate 60F–254 plate (20 cm × 10 cm) in the form of bands with width 8 mm using Hamilton syringe (100 μl) using n-butanol, acetic acid, and water in the proportion 5:2:2 as mobile phase in a CAMAG chamber which was previously saturated for 30 min. CAMAG TLC scanner 3 was used for the densitometric scanning at 550 nm. Specific marker compounds were used for the quantification. Results and Conclusion: Among the screened medicinal plants, Zingiber officinale and Solanum torvum were found to have GABA. The percentage of GABA present in Z. officinale and S. torvum were found to be 0.0114% and 0.0119%, respectively. The present work confirmed that among the selected CNS active medicinal plants, only two plants contain GABA. We found a negative correlation with plant having CNS activity and accumulation of GABA. The GABA shunt is a conserved pathway in eukaryotes and prokaryotes but, although the role of GABA as a neurotransmitter in mammals is clearly established, its role in plants is still vague. PMID:25861139

  19. Nocturnal water storage in plants having Crassulacean acid metabolism.

    PubMed

    Lüttge, U

    1986-06-01

    Measurements of water uptake and transpiration, during the dark period of plants having Crassulacean acid metabolism (CAM) allow calculation of leaf-volume changes (ΔV). Nocturnal leaf-volume changes of CAM plants have also been reported in the literature on the basis of waterdisplacement measurements. A third way of estimation is from measurements of turgor changes and cellular water-storage capacity using the pressure probe, cytomorphometry and the Scholander pressure chamber. An extension of the interpretation of results reported in the literature shows that for leaf succulent CAM plants the three different approaches give similar values of ΔV ranging between 2.3 and 10.7% (v/v). It is evident that nocturnal malic-acid accumulation osmotically drives significant water storage in CAM leaf tissue. PMID:24232034

  20. The potential use of Piptatherum miliaceum for the phytomanagement of mine tailings in semiarid areas: Role of soil fertility and plant competition.

    PubMed

    Parraga-Aguado, Isabel; González-Alcaraz, María Nazaret; Schulin, Rainer; Conesa, Héctor M

    2015-08-01

    Phytomanagement in terms of phytostabilisation has been proposed as a suitable technique to decrease the environmental risks of metal(loid) enriched mine tailings. Nevertheless, at these sites some issues must be solved to assure the long-term establishment of vegetation (e.g. salinity, low fertility, metal(loid) phytotoxicity, etc.) The objective of this study was to assess the effects of the addition of a municipal solid waste on a mine tailings soil and on the growth and metal(loid) accumulation of a grass plant species (Piptatherum miliaceum). In addition, the effects of intra-specific interactions were evaluated. A pot experiment was performed during 8 months, including two soil treatments: the mine soil and its combination with municipal solid wastes. For each treatment, pots without plants, pots with one plant, and pots with two plants were arranged. The addition of municipal solid wastes improved the soil fertility and plant growth in the mine soil, but also increased the mobile fractions of Zn, Pb, Cd, Mn and Ni. Plants in the amended treatments showed better nutritional status (higher P and K). Stable isotope δ(15)N was associated to the better nutritional status, while δ(13)C and δ(18)O indicated higher photosynthetic efficiency and stomatal conductance in amended treatments. Although the accumulation in leaves of most metal(loid)s decreased with the municipal waste application, the concentrations in both treatments did not exceed toxic limits for fodder. There was an effect of intra-specific competition in plant growth, probably due to lack of nutrients in the mining soil or limited pots volume in the treatments with municipal waste.

  1. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  2. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-01-01

    An iron ore mine site in Swaziland is currently (2015) in a derelict state as a consequence of past (1964-1988) and present (2011 - current) iron ore mining operations. In order to control problems associated with mine wastes, the Swaziland Water Services Corporation (SWSC) recently (2013) proposed the application of biosolids in sites degraded by mining operations. It is thought that this practice could generally improve soil conditions and enhance plant reestablishment. More importantly, the SWSC foresees this as a potential solution to the biosolids disposal problems. In order to investigate the effects of biosolids and plants in soil physicochemical conditions of iron mine soils, we conducted two plant growth trials. Trial 1 consisted of tailings that received biosolids and topsoil (TUSB mix) while in trial 2, tailings received biosolids only (TB mix). In the two trials, the application rates of 0 (control), 10, 25, 50, 75 and 100 t ha(-1) were used. After 30 days of equilibration, 25 seeds of Cynodon dactylon were sown in each pot and thinned to 10 plants after 4 weeks. Plants were watered twice weekly and remained under greenhouse conditions for 12 weeks, subsequent to which soils were subjected to chemical analysis. According to the results obtained, there were significant improvements in soil parameters related to fertility such as organic matter (OM), water holding capacity (WHC), cation exchange capacity (CEC), ammonium [Formula: see text] , magnesium (Mg(2+)), calcium (Ca(2+)) and phosphorus ( [Formula: see text] ). With regard to heavy metals, biosolids led to significant increases in soil total concentrations of Cu, Zn, Cd, Hg and Pb. The higher concentrations of Zn and Cu in treated tailings compared to undisturbed adjacent soils are a cause for concern because in the field, this might work against the broader objectives of mine soil remediation, which include the recolonization of reclaimed sites by soil-dwelling organisms. Therefore, while

  3. Effects of organic acids on the photosynthetic and antioxidant properties and accumulations of heavy metals of Melilotus officinalis grown in Cu tailing.

    PubMed

    Han, Yulin; Wu, Xue; Gu, Jiguang; Zhao, Jiuzhou; Huang, Suzhen; Yuan, Haiyan; Fu, Jiajia

    2016-09-01

    The effect of citric acid (CA), acetic acid (Ac), and ethylene diamine tetraacetic acid (EDTA) on the photosynthetic and antioxidant properties and the accumulation of some heavy metals (HMs) of Melilotus officinalis seedling growing in Cu mine tailings for 25 days were studied. Results showed that the formation of photosynthesizing cells of M. officinalis was inhibited by EDTA at 2 mmol/kg. Photosynthetic pigment contents under EDTA of 2 mmol/kg were reduced by 26, 40, and 19 %, respectively, compared to the control. The proline contents in aboveground and underground parts increased as the level of EDTA was enhanced. CA and Ac enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in the aboveground parts and EDTA inhibited the activity of POD in the underground parts. The addition of CA promoted significantly the growth of M. officinalis, while the biomass decreased significantly under 2 mmol/kg EDTA. Cu contents in the aboveground parts treated with 0.5 and 2.0 mmol/kg EDTA reached 175.50 and 265.17 μg/g dry weight, respectively. Ac and EDTA treatments promoted Cd to translocate from root to aboveground parts. The result indicated that M. officinalis was a tolerant species of Cu tailing and can be used to remediate Cu contaminated environment, and rationally utilization of organic acids, especially EDTA, in the phytoremediation can improve the growth and metals accumulation of M. officinalis. PMID:27255310

  4. Effects of organic acids on the photosynthetic and antioxidant properties and accumulations of heavy metals of Melilotus officinalis grown in Cu tailing.

    PubMed

    Han, Yulin; Wu, Xue; Gu, Jiguang; Zhao, Jiuzhou; Huang, Suzhen; Yuan, Haiyan; Fu, Jiajia

    2016-09-01

    The effect of citric acid (CA), acetic acid (Ac), and ethylene diamine tetraacetic acid (EDTA) on the photosynthetic and antioxidant properties and the accumulation of some heavy metals (HMs) of Melilotus officinalis seedling growing in Cu mine tailings for 25 days were studied. Results showed that the formation of photosynthesizing cells of M. officinalis was inhibited by EDTA at 2 mmol/kg. Photosynthetic pigment contents under EDTA of 2 mmol/kg were reduced by 26, 40, and 19 %, respectively, compared to the control. The proline contents in aboveground and underground parts increased as the level of EDTA was enhanced. CA and Ac enhanced the activities of superoxide dismutase (SOD) and peroxidase (POD) in the aboveground parts and EDTA inhibited the activity of POD in the underground parts. The addition of CA promoted significantly the growth of M. officinalis, while the biomass decreased significantly under 2 mmol/kg EDTA. Cu contents in the aboveground parts treated with 0.5 and 2.0 mmol/kg EDTA reached 175.50 and 265.17 μg/g dry weight, respectively. Ac and EDTA treatments promoted Cd to translocate from root to aboveground parts. The result indicated that M. officinalis was a tolerant species of Cu tailing and can be used to remediate Cu contaminated environment, and rationally utilization of organic acids, especially EDTA, in the phytoremediation can improve the growth and metals accumulation of M. officinalis.

  5. Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.

    PubMed

    Gertsch, Jürg

    2008-05-01

    Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.

  6. Innovative Approach to Prevent Acid Drainage from Uranium Mill Tailings Based on the Application of Na-Ferrate (VI)

    SciTech Connect

    Fernandes, H.M.; Reinhart, D.; Lettie, L.; Franklin, M.R.; Fernandes, H.M.; Franklin, M.R.; Daly, L.J.

    2006-07-01

    The operation of uranium mining and milling plants gives rise to huge amounts of wastes from both mining and milling operations. When pyrite is present in these materials, the generation of acid drainage can take place and result in the contamination of underground and surface waters through the leaching of heavy metals and radionuclides. To solve this problem, many studies have been conducted to find cost-effective solutions to manage acid mine drainage; however, no adequate strategy to deal with sulfide-ric h wastes is currently available. Ferrate (VI) is a powerful oxidizing agent in aqueous media. Under acidic conditions, the redox potential of the Ferrate (VI) ion is the highest of any other oxidant used in wastewater treatment processes. The standard half cell reduction potential of ferrate (VI) has been determined as +2.20 V to + 0.72 V in acidic and basic solutions, respectively. Ferrate (VI) exhibits a multitude of advantageous properties, including higher reactivity and selectivity than traditional oxidant alternatives, as well as disinfectant, flocculating, and coagulant properties. Despite numerous beneficial properties in environmental applications, ferrate (VI) has remained commercially unavailable. Starting in 1953, different methods for producing a high purity, powdered ferrate (VI) product were developed. However, producing this dry, stabilized ferrate (VI) product required numerous process steps which led to excessive synthesis costs (over $20/lb) thereby preventing bulk industrial use. Recently a novel synthesis method for the production of a liquid ferrate (VI) based on hypochlorite oxidation of ferric ion in strongly alkaline solutions has been discovered (USPTO 6,790,428; September 14, 2004). This on-site synthesis process dramatically reduces manufacturing cost for the production of ferrate (VI) by utilizing common commodity feedstocks. This breakthrough means that for the first time ferrate (VI) can be an economical alternative to treating

  7. Glutamate receptor-like channels in plants: a role as amino acid sensors in plant defence?

    PubMed Central

    Roberts, Michael R.

    2014-01-01

    Plant glutamate receptor-like genes (GLRs) are homologous to the genes for mammalian ionotropic glutamate receptors (iGluRs), after which they were named, but in the 16 years since their existence was first revealed, progress in elucidating their biological role has been disappointingly slow. Recently, however, studies from a number of laboratories focusing on the model plant species Arabidopsis thaliana (L.) have thrown new light on the functional properties of some members of the GLR gene family. One important finding has been that plant GLR receptors have a much broader ligand specificity than their mammalian iGluR counterparts, with evidence that some individual GLR receptors can be gated by as many as seven amino acids. These results, together with the ubiquity of their expression throughout the plant, open up the possibility that GLR receptors could have a pervasive role in plants as non-specific amino acid sensors in diverse biological processes. Addressing what one of these roles could be, recent studies examining the wound response and disease susceptibility in GLR knockout mutants have provided evidence that some members of clade 3 of the GLR gene family encode important components of the plant's defence response. Ways in which this family of amino acid receptors might contribute to the plant's ability to respond to an attack from pests and pathogens are discussed. PMID:24991414

  8. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.

    PubMed

    Reynolds, A M

    2012-11-01

    ABSTRACT The turbulent dispersal of fungal spores within plant canopies is very different from that within atmospheric boundary-layers and closely analogous to dispersal within turbulent mixing-layers. The process is dominated by the presence of large coherent flow structures, high-velocity downdrafts (sweeps) and updrafts (ejections), that punctuate otherwise quiescent flow. Turbulent dispersion within plant canopies is best predicted by Lagrangian stochastic (particle-tracking) models because other approaches (e.g., diffusion models and similarity theory) are either inappropriate or invalid. Nonetheless, attempts to construct such models have not been wholly successful. Accounting for sweeps and ejections has substantially worsened rather than improved model agreement with experimental dispersion data. Here we show how this long-standing difficulty with the formulation of Lagrangian stochastic models can be overcome. The new model is shown to be in good agreement with data from a carefully controlled, well-documented wind-tunnel study of scalar dispersion within plant canopy turbulence. Equally good agreement with this data is obtained using Thomson's (1987) Gaussian model. This bolsters confidence in the application of this simple model to the prediction of spore dispersal within plant canopy turbulence. Contact distributions-the probability distribution function for the distance of viable fungal spore movement until deposition-are predicted to have "heavy" inverse power-law tails. It is known that heavy-tailed contact distributions also characterize the dispersal of spores which pass through the canopy turbulence and enter into the overlying atmospheric boundary-layer. Plant disease epidemics due to the airborne dispersal of fungal spores are therefore predicted to develop as accelerating waves over a vast range of scales-from the within field scale to intercontinental scales. This prediction is consistent with recent analyses of field and historical data for

  9. Incorporating sweeps and ejections into Lagrangian stochastic models of spore trajectories within plant canopy turbulence: modeled contact distributions are heavy-tailed.

    PubMed

    Reynolds, A M

    2012-11-01

    ABSTRACT The turbulent dispersal of fungal spores within plant canopies is very different from that within atmospheric boundary-layers and closely analogous to dispersal within turbulent mixing-layers. The process is dominated by the presence of large coherent flow structures, high-velocity downdrafts (sweeps) and updrafts (ejections), that punctuate otherwise quiescent flow. Turbulent dispersion within plant canopies is best predicted by Lagrangian stochastic (particle-tracking) models because other approaches (e.g., diffusion models and similarity theory) are either inappropriate or invalid. Nonetheless, attempts to construct such models have not been wholly successful. Accounting for sweeps and ejections has substantially worsened rather than improved model agreement with experimental dispersion data. Here we show how this long-standing difficulty with the formulation of Lagrangian stochastic models can be overcome. The new model is shown to be in good agreement with data from a carefully controlled, well-documented wind-tunnel study of scalar dispersion within plant canopy turbulence. Equally good agreement with this data is obtained using Thomson's (1987) Gaussian model. This bolsters confidence in the application of this simple model to the prediction of spore dispersal within plant canopy turbulence. Contact distributions-the probability distribution function for the distance of viable fungal spore movement until deposition-are predicted to have "heavy" inverse power-law tails. It is known that heavy-tailed contact distributions also characterize the dispersal of spores which pass through the canopy turbulence and enter into the overlying atmospheric boundary-layer. Plant disease epidemics due to the airborne dispersal of fungal spores are therefore predicted to develop as accelerating waves over a vast range of scales-from the within field scale to intercontinental scales. This prediction is consistent with recent analyses of field and historical data for

  10. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.

    PubMed

    Bigot, M; Guterres, J; Rossato, L; Pudmenzky, A; Doley, D; Whittaker, M; Pillai-McGarry, U; Schmidt, S

    2013-03-15

    Soil contaminants are potentially a major threat to human and ecosystem health and sustainable production of food and energy where mineral processing wastes are discharged into the environment. In extreme conditions, metal concentrations in wastes often exceed even the metal tolerance thresholds of metallophytes (metal-tolerant plants) and sites remain barren with high risks of contaminant leaching and dispersion into the environment via erosion. A novel soil amendment based on micron-size thiol functional cross-linked acrylamide polymer hydrogel particles (X3) binds toxic soluble metals irreversibly and significantly reduces their concentrations in the soil solution to below the phytotoxicity thresholds. X3 mixed into the top 50mm of phytotoxic mine waste materials in pots in glasshouse conditions reduced total soluble concentrations of toxic contaminants by 90.3-98.7% in waste rock, and 88.6-96.4% in tailings immediately after application. After 61 days, quality of unamended bottom layer of X3-treated pots was also significantly improved in both wastes. Combination of X3 and metallophytes was more efficient at improving soil solution quality than X3 alone. Addition of X3 to substrates increased substrate water retention and water availability to plants by up to 108% and 98% for waste rock and tailings respectively. Soil quality improvement by X3 allowed successful early establishment of the native metallophyte grass Astrebla lappacea on both wastes where plants failed to establish otherwise. PMID:23416487

  11. Metal-binding hydrogel particles alleviate soil toxicity and facilitate healthy plant establishment of the native metallophyte grass Astrebla lappacea in mine waste rock and tailings.

    PubMed

    Bigot, M; Guterres, J; Rossato, L; Pudmenzky, A; Doley, D; Whittaker, M; Pillai-McGarry, U; Schmidt, S

    2013-03-15

    Soil contaminants are potentially a major threat to human and ecosystem health and sustainable production of food and energy where mineral processing wastes are discharged into the environment. In extreme conditions, metal concentrations in wastes often exceed even the metal tolerance thresholds of metallophytes (metal-tolerant plants) and sites remain barren with high risks of contaminant leaching and dispersion into the environment via erosion. A novel soil amendment based on micron-size thiol functional cross-linked acrylamide polymer hydrogel particles (X3) binds toxic soluble metals irreversibly and significantly reduces their concentrations in the soil solution to below the phytotoxicity thresholds. X3 mixed into the top 50mm of phytotoxic mine waste materials in pots in glasshouse conditions reduced total soluble concentrations of toxic contaminants by 90.3-98.7% in waste rock, and 88.6-96.4% in tailings immediately after application. After 61 days, quality of unamended bottom layer of X3-treated pots was also significantly improved in both wastes. Combination of X3 and metallophytes was more efficient at improving soil solution quality than X3 alone. Addition of X3 to substrates increased substrate water retention and water availability to plants by up to 108% and 98% for waste rock and tailings respectively. Soil quality improvement by X3 allowed successful early establishment of the native metallophyte grass Astrebla lappacea on both wastes where plants failed to establish otherwise.

  12. Targeting of the Plant Vacuolar Sorting Receptor BP80 Is Dependent on Multiple Sorting Signals in the Cytosolic Tail[W

    PubMed Central

    daSilva, Luis L.P.; Foresti, Ombretta; Denecke, Jurgen

    2006-01-01

    Although signals for vacuolar sorting of soluble proteins are well described, we have yet to learn how the plant vacuolar sorting receptor BP80 reaches its correct destination and recycles. To shed light on receptor targeting, we used an in vivo competition assay in which a truncated receptor (green fluorescent protein-BP80) specifically competes with sorting machinery and causes hypersecretion of BP80-ligands from tobacco (Nicotiana tabacum) leaf protoplasts. We show that both the transmembrane domain and the cytosolic tail of BP80 contain information necessary for efficient progress to the prevacuolar compartment (PVC). Furthermore, the tail must be exposed on the correct membrane surface to compete with sorting machinery. Mutational analysis of conserved residues revealed that multiple sequence motifs are necessary for competition, one of which is a typical Tyr-based motif (YXXΦ). Substitution of Tyr-612 for Ala causes partial retention in the Golgi apparatus, mistargeting to the plasma membrane (PM), and slower progress to the PVC. A role in Golgi-to-PVC transport was confirmed by generating the corresponding mutation on full-length BP80. The mutant receptor was partially mistargeted to the PM and induced the secretion of a coexpressed BP80-ligand. Further mutants indicate that the cytosolic tail is likely to contain other information besides the YXXΦ motif, possibly for endoplasmic reticulum export, endocytosis from the PM, and PVC-to-Golgi recycling. PMID:16714388

  13. Inhibition of plant fatty acid synthesis by nitroimidazoles.

    PubMed Central

    Jones, A V; Harwood, J L; Stratford, M R; Stumpf, P K

    1981-01-01

    1. The effect of the addition of a number of nitroimidazoles was tested on fatty acid synthesis by germinating pea seeds, isolated lettuce chloroplasts and a soluble fraction from pea seeds. 2. All the compounds tested had a marked inhibition on stearate desaturation by lettuce chloroplasts and on the synthesis of very-long-chain fatty acids by pea seeds. 3. In contrast, the effect of the drugs on total fatty acid synthesis from [14C]acetate in chloroplasts was related to the compound's electron reduction potentials. 4. Of the compounds used, only metronidazole had a marked inhibition on palmitate elongation in the systems tested. 5. The mechanism of inhibition of plant fatty acid synthesis by nitroimidazoles is discussed and the possible relevance of these findings to their neurotoxicity is suggested. PMID:7325993

  14. Regulation of amino acid metabolic enzymes and transporters in plants.

    PubMed

    Pratelli, Réjane; Pilot, Guillaume

    2014-10-01

    Amino acids play several critical roles in plants, from providing the building blocks of proteins to being essential metabolites interacting with many branches of metabolism. They are also important molecules that shuttle organic nitrogen through the plant. Because of this central role in nitrogen metabolism, amino acid biosynthesis, degradation, and transport are tightly regulated to meet demand in response to nitrogen and carbon availability. While much is known about the feedback regulation of the branched biosynthesis pathways by the amino acids themselves, the regulation mechanisms at the transcriptional, post-transcriptional, and protein levels remain to be identified. This review focuses mainly on the current state of our understanding of the regulation of the enzymes and transporters at the transcript level. Current results describing the effect of transcription factors and protein modifications lead to a fragmental picture that hints at multiple, complex levels of regulation that control and coordinate transport and enzyme activities. It also appears that amino acid metabolism, amino acid transport, and stress signal integration can influence each other in a so-far unpredictable fashion.

  15. Tail Buffeting

    NASA Technical Reports Server (NTRS)

    Abdrashitov, G.

    1943-01-01

    An approximate theory of buffeting is here presented, based on the assumption of harmonic disturbing forces. Two cases of buffeting are considered: namely, for a tail angle of attack greater and less than the stalling angle, respectively. On the basis of the tests conducted and the results of foreign investigators, a general analysis is given of the nature of the forced vibrations the possible load limits on the tail, and the methods of elimination of buffeting.

  16. Abscisic acid signaling through cyclic ADP-ribose in plants

    SciTech Connect

    Wu, Yan; Kuzma, J.; Marechal, E.

    1997-12-19

    Abscisic acid (ABA) is the primary hormone that mediates plant responses to stresses such as cold, drought, and salinity. Single-cell microinjection experiments in tomato were used to identify possible intermediates involved in ABA signal transduction. Cyclic ADP-ribose (cADPR) was identified as a signaling molecule in the ABA response and was shown to exert its effects by way of calcium. Bioassay experiments showed that the amounts of cADPR in Arabidopsis thaliana plants increased in response to ABA treatment and before ABA-induced gene expression.

  17. Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China.

    PubMed

    Li, Guang-yue; Hu, Nan; Ding, De-xin; Zheng, Ji-fang; Liu, Yu-long; Wang, Yong-dong; Nie, Xiao-qin

    2011-06-01

    The concentrations of uranium, thorium, barium, nickel, strontium and lead in the samples of the tailings and plant species collected from a uranium mill tailings repository in South China were analyzed. Then, the removal capability of a plant for a target element was assessed. It was found that Phragmites australis had the greatest removal capabilities for uranium (820 μg), thorium (103 μg) and lead (1,870 μg). Miscanthus floridulus had the greatest removal capabilities for barium (3,730 μg) and nickel (667 μg), and Parthenocissus quinquefolia had the greatest removal capability for strontium (3,920 μg). In this study, a novel coefficient, termed as phytoremediation factor (PF), was proposed, for the first time, to assess the potential of a plant to be used in phytoremediation of a target element contaminated soil. Phragmites australis has the highest PFs for uranium (16.6), thorium (8.68), barium (10.0) and lead (10.5). Miscanthus floridulus has the highest PF for Ni (25.0). Broussonetia papyrifera and Parthenocissus quinquefolia have the relatively high PFs for strontium (28.1 and 25.4, respectively). On the basis of the definition for a hyperaccumulator, only Cyperus iria and Parthenocissus quinquefolia satisfied the criteria for hyperaccumulator of uranium (36.4 μg/g) and strontium (190 μg/g), and could be the candidates for phytoremediation of uranium and strontium contaminated soils. The results show that the PF has advantage over the hyperaccumulator in reflecting the removal capabilities of a plant for a target element, and is more adequate for assessing the potential of a plant to be used in phytoremediation than conventional method.

  18. Chemical and plant tests to assess the viability of amendments to reduce metal availability in mine soils and tailings.

    PubMed

    Rodríguez, Luis; Gómez, Rocío; Sánchez, Virtudes; Alonso-Azcárate, Jacinto

    2016-04-01

    The goal of this research was to assess the potential of several industrial wastes to immobilise metals in two polluted soils deriving from an old Pb/Zn mine. Two different approaches were used to assess the performance of different amendments: a chemical one, using extraction by ethylenediaminetetraacetic acid (EDTA), and a biological one, using Lupinus albus as a bio-indicator. Four amendments were used: inorganic sugar production waste (named 'sugar foam', SF), sludge from a drinking water treatment sludge (DWS), organic waste from olive mill waste (OMW) and paper mill sludge (PMS). Amendment to soil ratios ranged from 0.1 to 0.3 (w/w). All the amendments were capable of significantly decreasing (p < 0.05) EDTA-extractable Pb, Zn and Cu concentrations in the two soils used, with decreases in ranges 21-100, 25-100 and 2-100 % for Pb, Zn and Cu, respectively. The amendments tested were also effective in reducing the bioavailability of Pb and Zn for L. albus, which gave rise to a decrease in shoot metal accumulation by the lupine plants compared to that found in the control soil. That decrease reached up to 5.6 and 2.8 times for Pb and Zn, respectively, being statistically significant in most cases. Moreover, application of the OMW, DWS and SF amendments led to higher average values of plant biomass (up to 71%) than those obtained in the control soil. The results obtained showed the technology put forward to be a viable means of remediating mine soils as it led to a decrease in the availability and toxicity of metals and, thus, facilitated the growth of a vegetation layer. PMID:25772873

  19. Educational outreach and impacts of white-tailed deer browse on native and invasive plants at the Crooked Creek Environmental Learning Center, Armstrong County, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Lindsay, Lisa O.

    Overabundance of deer can assist the intrusion of invasive plants through browse, leading to homogenization of plant communities. Public attitudes towards native and invasive plant species and white-tailed deer browse related to personal experiences, can be changed through education focusing public awareness of ramifications of deer browse on native and invasive plants. I developed an interactive, interpretive Self-Guided Walking Tour brochure of the "You Can Trail" to provide an educational outreach program for visitors of Crooked Creek Environmental Learning Center that includes ecologically important native and invasive plants species from my investigation. This research study focuses on the overall abundance of native and invasive plant species once Odocoileus virginianus have been removed from the landscape during collection periods in June and September 2013 from exclosure and access plots that were maintained for seven years. Similarity of abundance were found in native and invasive abundance of forbs, bushes and percentage of ground cover. Differences included native bush volume being greater than invasive bush volume in the access plot in June with opposing results in the exclosure plot, being greater in invasive bush volume. However, in September, native and invasive bush volume was similar within the exclosure plot, while invasive bush volume decreased in the access plot. Invasive vines recorded in the June access plot were absent in the September collection period.

  20. Amino acid-sensing ion channels in plants

    SciTech Connect

    Spalding, Edgar P.

    2014-08-12

    The title of our project is “Amino acid-sensing ion channels in plants”. Its goals are two-fold: to determine the molecular functions of glutamate receptor-like (GLR) proteins, and to elucidate their biological roles (physiological or developmental) in plants. Here is our final technical report. We were highly successful in two of the three aims, modestly successful in the third.

  1. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.

    PubMed

    Sade, Hemalatha; Meriga, Balaji; Surapu, Varalakshmi; Gadi, Jogeswar; Sunita, M S L; Suravajhala, Prashanth; Kavi Kishor, P B

    2016-04-01

    Aluminum (Al) stress is one of the serious limiting factors in plant productivity in acidic soils, which constitute about 50 % of the world's potentially arable lands and causes anywhere between 25 and 80 % of yield losses depending upon the species. The mechanism of Al toxicity and tolerance has been examined in plants, which is vital for crop improvement and enhanced food production in the future. Two mechanisms that facilitate Al tolerance in plants are Al exclusion from the roots and the ability to tolerate Al in the symplast or both. Although efforts have been made to unravel Al-resistant factors, many aspects remain unclear. Certain gene families such as MATE, ALMT, ASR, and ABC transporters have been implicated in some plants for resistance to Al which would enhance the opportunities for creating crop plants suitable to grow in acidic soils. Though QTLs have been identified related to Al-tolerance, no crop plant that is tolerant to Al has been evolved so far using breeding or molecular approaches. The remarkable changes that plants experience at the physiological, biochemical and molecular level under Al stress, the vast array of genes involved in Al toxicity-tolerance, the underlying signaling events and the holistic image of the molecular regulation, and the possibility of creating transgenics for Al tolerance are discussed in this review. PMID:26796895

  2. Metabolic regulation of the plant hormone indole-3-acetic acid

    SciTech Connect

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  3. Plant-enhanced phenanthrene and pyrene biodegradation in acidic soil.

    PubMed

    Chouychai, Waraporn; Thongkukiatkul, Amporn; Upatham, Suchart; Lee, Hung; Pokethitiyook, Prayad; Kruatrachue, Maleeya

    2009-01-01

    A study was undertaken to assess if corn plant (Zea may L.) maybe able to enhance the degradation of phenanthrene and pyrene in acidic soil inoculated with a bacterial strain (Pseudomonas putida MUB1) capable of degrading polycyclic aromatic hydrocarbons (PAHs). Planting with corn, inoculating with MUB1, ora combination of the two were found to promote the degradation of phenanthrene and pyrene in acidic soil at different rates. In the presence of corn plants, the rates of phenanthrene and pyrene removal were 41.7 and 38.8% in the first 10 days, while the rates were 58.8 and 53.6%, respectively in the treatment which received MUB1 only. After 60 days, the corn + MUB1 treatment led to the greatest reduction in both phenanthrene and pyrene biodegradation (89 and 88.2%, respectively). In control autoclaved soil, the rates of phenanthrene and pyrene removal were 14.2 and 28.7%, respectively while in non-autoclaved soil, the rates were 68.7 and 53.2%, respectively. These results show that corn, which was previously shown to grow well in PAH-contaminated acidic soil, also can enhance PAH degradation in such soil. Inoculation with a known PAH degrader further enhanced PAH degradation in the presence of corn.

  4. Maintenance Carbon Cycle in Crassulacean Acid Metabolism Plant Leaves 1

    PubMed Central

    Kenyon, William H.; Severson, Ray F.; Black, Clanton C.

    1985-01-01

    The reciprocal relationship between diurnal changes in organic acid and storage carbohydrate was examined in the leaves of three Crassulacean acid metabolism plants. It was found that depletion of leaf hexoses at night was sufficient to account quantitatively for increase in malate in Ananas comosus but not in Sedum telephium or Kalanchoë daigremontiana. Fructose and to a lesser extent glucose underwent the largest changes. Glucose levels in S. telephium leaves oscillated diurnally but were not reciprocally related to malate fluctuations. Analysis of isolated protoplasts and vacuoles from leaves of A. comosus and S. telephium revealed that vacuoles contain a large percentage (>50%) of the protoplast glucose, fructose and malate, citrate, isocitrate, ascorbate and succinate. Sucrose, a major constituent of intact leaves, was not detectable or was at extremely low levels in protoplasts and vacuoles from both plants. In isolated vacuoles from both A. comosus and S. telephium, hexose levels decreased at night at the same time malate increased. Only in A. comosus, however, could hexose metabolism account for a significant amount of the nocturnal increase in malate. We conclude that, in A. comosus, soluble sugars are part of the daily maintenance carbon cycle and that the vacuole plays a dynamic role in the diurnal carbon assimilation cycle of this Crassulacean acid metabolism plant. PMID:16664005

  5. Exposure of two upland plant species to acidic fogs.

    PubMed

    Ashenden, T W; Rafarel, C R; Bell, S A

    1991-01-01

    A system is described for exposing large numbers of plants to acidic fogs. The system allows low volumes of treatment solutions to be provided at particle sizes chiefly in the 5-30 microm range (equivalent to fog/cloud droplets). Plants of Poa alpina L. and Epilobium brunnescens were propagated from material collected in Snowdonia, North Wales and exposed to fog treatments at pH values of 2.5, 3.5, 4.5 and 5.6. There were 3 x 4 h exposures per week which provided a total of 6 mm deposition. Supplementary watering was with pH 4.5 simulated acid rain (24 mm per week). After 21 weeks, there was increased lowering and a greater dry weight for plants of E. brunnescens exposed to the pH 2.5 fog in comparison with other treatments. Also, the plants used assimilated material to form shoots rather than roots. A similar increase in dry weight accumulation in the pH 2.5 treatment was found in P. alpina after 63 weeks but this was not associated with changes in assimilate partitioning.

  6. CE IGCC Repowering plant sulfuric acid plant. Topical report, June 1993

    SciTech Connect

    Chester, A.M.

    1993-12-01

    A goal of the CE IGCC Repowering project is to demonstrate a hot gas clean-up system (HGCU), for the removal of sulfur from the product gas stream exiting the gasifier island. Combustion Engineering, Inc. (ABB CE) intends to use a HGCU developed by General Electric Environmental Services (GEESI). The original design of this system called for the installation of the HGCU, with a conventional cold gas clean-up system included as a full-load operational back-up. Each of these systems removes sulfur compounds and converts them into an acid off-gas. This report deals with the investigation of equipment to treat this off-gas, recovering these sulfur compounds as elemental sulfur, sulfuric acid or some other form. ABB CE contracted ABB Lummus Crest Inc. (ABB LCI) to perform an engineering evaluation to compare several such process options. This study concluded that the installation of a sulfuric acid plant represented the best option from both a technical and economic point of view. Based on this evaluation, ABB CE specified that a sulfuric acid plant be installed to remove sulfur from off-gas exiling the gas clean-up system. ABB LCI prepared a request for quotation (RFQ) for the construction of a sulfuric acid production plant. Monsanto Enviro-Chem Inc. presented the only proposal, and was eventually selected as the EPC contractor for this system.

  7. Long-Term Effects of White-Tailed Deer Exclusion on the Invasion of Exotic Plants: A Case Study in a Mid-Atlantic Temperate Forest.

    PubMed

    Shen, Xiaoli; Bourg, Norman A; McShea, William J; Turner, Benjamin L

    2016-01-01

    Exotic plant invasions and chronic high levels of herbivory are two of the major biotic stressors impacting temperate forest ecosystems in eastern North America, and the two problems are often linked. We used a 4-ha deer exclosure maintained since 1991 to examine the influence of a generalist herbivore, white-tailed deer (Odocoileus virginianus), on the abundance of four exotic invasive (Rosa multiflora, Berberis thunbergii, Rubus phoenicolasius and Microstegium vimineum) and one native (Cynoglossum virginianum) plant species, within a 25.6-ha mature temperate forest dynamics plot in Virginia, USA. We identified significant predictors of the abundance of each focal species using generalized linear models incorporating 10 environmental and landscape variables. After controlling for those predictors, we applied our models to a 4-ha deer exclusion site and a 4-ha reference site, both embedded within the larger plot, to test the role of deer on the abundance of the focal species. Slope, edge effects and soil pH were the most frequent predictors of the abundance of the focal species on the larger plot. The abundance of C. virginianum, known to be deer-dispersed, was significantly lower in the exclosure. Similar patterns were detected for B. thunbergii, R. phoenicolasius and M. vimineum, whereas R. multiflora was more abundant within the exclosure. Our results indicate that chronic high deer density facilitates increased abundances of several exotic invasive plant species, with the notable exception of R. multiflora. We infer that the invasion of many exotic plant species that are browse-tolerant to white-tailed deer could be limited by reducing deer populations.

  8. Long-Term Effects of White-Tailed Deer Exclusion on the Invasion of Exotic Plants: A Case Study in a Mid-Atlantic Temperate Forest

    PubMed Central

    Shen, Xiaoli; Bourg, Norman A.; McShea, William J.; Turner, Benjamin L.

    2016-01-01

    Exotic plant invasions and chronic high levels of herbivory are two of the major biotic stressors impacting temperate forest ecosystems in eastern North America, and the two problems are often linked. We used a 4-ha deer exclosure maintained since 1991 to examine the influence of a generalist herbivore, white-tailed deer (Odocoileus virginianus), on the abundance of four exotic invasive (Rosa multiflora, Berberis thunbergii, Rubus phoenicolasius and Microstegium vimineum) and one native (Cynoglossum virginianum) plant species, within a 25.6-ha mature temperate forest dynamics plot in Virginia, USA. We identified significant predictors of the abundance of each focal species using generalized linear models incorporating 10 environmental and landscape variables. After controlling for those predictors, we applied our models to a 4-ha deer exclusion site and a 4-ha reference site, both embedded within the larger plot, to test the role of deer on the abundance of the focal species. Slope, edge effects and soil pH were the most frequent predictors of the abundance of the focal species on the larger plot. The abundance of C. virginianum, known to be deer-dispersed, was significantly lower in the exclosure. Similar patterns were detected for B. thunbergii, R. phoenicolasius and M. vimineum, whereas R. multiflora was more abundant within the exclosure. Our results indicate that chronic high deer density facilitates increased abundances of several exotic invasive plant species, with the notable exception of R. multiflora. We infer that the invasion of many exotic plant species that are browse-tolerant to white-tailed deer could be limited by reducing deer populations. PMID:27019356

  9. Long-Term Effects of White-Tailed Deer Exclusion on the Invasion of Exotic Plants: A Case Study in a Mid-Atlantic Temperate Forest.

    PubMed

    Shen, Xiaoli; Bourg, Norman A; McShea, William J; Turner, Benjamin L

    2016-01-01

    Exotic plant invasions and chronic high levels of herbivory are two of the major biotic stressors impacting temperate forest ecosystems in eastern North America, and the two problems are often linked. We used a 4-ha deer exclosure maintained since 1991 to examine the influence of a generalist herbivore, white-tailed deer (Odocoileus virginianus), on the abundance of four exotic invasive (Rosa multiflora, Berberis thunbergii, Rubus phoenicolasius and Microstegium vimineum) and one native (Cynoglossum virginianum) plant species, within a 25.6-ha mature temperate forest dynamics plot in Virginia, USA. We identified significant predictors of the abundance of each focal species using generalized linear models incorporating 10 environmental and landscape variables. After controlling for those predictors, we applied our models to a 4-ha deer exclusion site and a 4-ha reference site, both embedded within the larger plot, to test the role of deer on the abundance of the focal species. Slope, edge effects and soil pH were the most frequent predictors of the abundance of the focal species on the larger plot. The abundance of C. virginianum, known to be deer-dispersed, was significantly lower in the exclosure. Similar patterns were detected for B. thunbergii, R. phoenicolasius and M. vimineum, whereas R. multiflora was more abundant within the exclosure. Our results indicate that chronic high deer density facilitates increased abundances of several exotic invasive plant species, with the notable exception of R. multiflora. We infer that the invasion of many exotic plant species that are browse-tolerant to white-tailed deer could be limited by reducing deer populations. PMID:27019356

  10. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the metallurgical acid plants subcategory. The provisions of this subpart apply to process wastewater...

  11. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the metallurgical acid plants subcategory. The provisions of this subpart apply to process wastewater...

  12. 40 CFR 421.90 - Applicability: Description of the metallurgical acid plants subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metallurgical acid plants subcategory. 421.90 Section 421.90 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Metallurgical Acid Plants Subcategory § 421.90 Applicability: Description of the metallurgical acid plants subcategory. The provisions of this subpart apply to process wastewater...

  13. Gibberellic acid in plant: still a mystery unresolved.

    PubMed

    Gupta, Ramwant; Chakrabarty, S K

    2013-09-01

    Gibberellic acid (GA), a plant hormone stimulating plant growth and development, is a tetracyclic di-terpenoid compound. GAs stimulate seed germination, trigger transitions from meristem to shoot growth, juvenile to adult leaf stage, vegetative to flowering, determines sex expression and grain development along with an interaction of different environmental factors viz., light, temperature and water. The major site of bioactive GA is stamens that influence male flower production and pedicel growth. However, this opens up the question of how female flowers regulate growth and development, since regulatory mechanisms/organs other than those in male flowers are mandatory. Although GAs are thought to act occasionally like paracrine signals do, it is still a mystery to understand the GA biosynthesis and its movement. It has not yet confirmed the appropriate site of bioactive GA in plants or which tissues targeted by bioactive GAs to initiate their action. Presently, it is a great challenge for scientific community to understand the appropriate mechanism of GA movement in plant's growth, floral development, sex expression, grain development and seed germination. The appropriate elucidation of GA transport mechanism is essential for the survival of plant species and successful crop production.

  14. Organic acids on the growth, anatomical structure, biochemical parameters and heavy metal accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings.

    PubMed

    Han, Yu-Lin; Huang, Su-Zhen; Yuan, Hai-Yan; Zhao, Jiu-Zhou; Gu, Ji-Guang

    2013-08-01

    The effect of citric acid (CA) and ethylene diamine tetraacetic acid (EDTA) on the growth, anatomical structure, physiological responses and lead (Pb) accumulation of Iris lactea var. chinensis seedling growing in Pb mine tailings for 30 days were studied. Results showed that the dry weights (DW) of roots decreased significantly under both levels of CA. The DWs of leaves and roots treated with 2 mmol/kg EDTA decreased significantly and were 23 and 54 %, respectively, lower than those of the control. The tolerant indexes of I. lactea var. chinensis under all treatments of organic acids were lower than control. The root tip anatomical structure was little affected under the treatments of 2 mmol/kg CA and 2 mmol/kg EDTA compared with control. However, the formation of photosynthesizing cells was inhibited by the treatment of 2 mmol/kg EDTA. The concentrations of chlorophyll a, chlorophyll b and total carotenoids in the leaves treated with 2 mmol/kg EDTA significantly decreased. Higher CA level and lower EDTA level could trigger the synthesis of ascorbic acid and higher level of EDTA could trigger the synthesis of glutathione. CA and EDTA could promote Pb accumulation of I. lactea var. chinensis and Pb concentration in the leaves and roots at 2 mmol/kg EDTA treatment increased significantly and reached to 160.44 and 936.08 μg/g DW, respectively, and 1.8 and 1.6 times higher than those of the control. The results indicated that I. lactea var. chinensis could be used to remediate Pb tailing and the role of EDTA in promoting Pb accumulation was better than CA did.

  15. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA. PMID:27131397

  16. UV-C-Induced alleviation of transcriptional gene silencing through plant-plant communication: Key roles of jasmonic acid and salicylic acid pathways.

    PubMed

    Xu, Wei; Wang, Ting; Xu, Shaoxin; Li, Fanghua; Deng, Chenguang; Wu, Lijun; Wu, Yuejin; Bian, Po

    2016-08-01

    Plant stress responses at the epigenetic level are expected to allow more permanent changes of gene expression and potentially long-term adaptation. While it has been reported that plants subjected to adverse environments initiate various stress responses in their neighboring plants, little is known regarding epigenetic responses to external stresses mediated by plant-plant communication. In this study, we show that DNA repetitive elements of Arabidopsis thaliana, whose expression is inhibited epigenetically by transcriptional gene silencing (TGS) mechanism, are activated by UV-C irradiation through airborne plant-plant and plant-plant-plant communications, accompanied by DNA demethylation at CHH sites. Moreover, the TGS is alleviated by direct treatments with exogenous methyl jasmonate (MeJA) and methyl salicylate (MeSA). Further, the plant-plant and plant-plant-plant communications are blocked by mutations in the biosynthesis or signaling of jasmonic acid (JA) or salicylic acid (SA), indicating that JA and SA pathways are involved in the interplant communication for epigenetic responses. For the plant-plant-plant communication, stress cues are relayed to the last set of receiver plants by promoting the production of JA and SA signals in relaying plants, which exhibit upregulated expression of genes for JA and SA biosynthesis and enhanced emanation of MeJA and MeSA.

  17. A potential plant-derived antifungal acetylenic acid mediates its activity by interfering with fatty acid homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    6-Nonadecynoic acid (6-NDA), a plant-derived acetylenic acid, exhibits strong inhibitory activity against the human fungal pathogens Candida albicans, Aspergillus fumigatus, and Trichophyton mentagrophytes. In the present study, transcriptional profiling coupled with mutant and biochemical analyses...

  18. Effects of simulated sulfuric acid rain on crop plants

    SciTech Connect

    Cohen, C.J.; Grothaus, L.C.; Perrigan, S.C.

    1981-01-01

    Since relatively little is known about the effects of acid precipitation on growth and productivity of crop plants, a crop survey was initiated to study effects of H/sub 2/SO/sub 4/ rain simulants on growth, yield, and quality of selected crops which were chosen to represent diverse taxonomic groups and crop products. Plants were grown in pots in field-exposure chambers and subjected to three H/sub 2/SO/sub 4/ rain simulants (pH levels 4.0, 3.5, and 3.0) and to a control simulant (pH 5.6). Yield of approximately two-thirds of the crops surveyed was not affected by the H/sub 2/SO/sub 4/ rain treatments. Equal numbers of the remaining crops exhibited stimulatory and inhibitory yield responses at some H/sub 2/SO/sub 4/ rain simulant pH levels. These results did not suggest that acid rain treatment either generally inhibited or stimulated crop productivity. Crop response depended on crop species and crop product. For example, while forage yield of alfalfa and timothy was stimulated at some acid rain pH levels, yield of the remaining forage legume and grass species was not generally affected by acid rain treatment. However, root and fruit crop species exhibited generalized responses (yield inhibition and stimulation, respectively) which appeared to be more closely associated with crop product than occurred for other crop product groupings. Effects on crop quality were also important. For instance, although yield of some horticultural leaf and fruit crops was either unaffected or stimulated by H/sub 2/SO/sub 4/ rain treatment, marketability was adversely affected at low pH because of the presence of discoloration and/or lesions produced by H/sub 2/SO/sub 4/ rain treatment. This preliminary study demonstrates considerable variability in crop response to acid rain.

  19. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    PubMed

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  20. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants

    PubMed Central

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-01-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins. PMID:26076971

  1. Distinct Characteristics of Indole-3-Acetic Acid and Phenylacetic Acid, Two Common Auxins in Plants.

    PubMed

    Sugawara, Satoko; Mashiguchi, Kiyoshi; Tanaka, Keita; Hishiyama, Shojiro; Sakai, Tatsuya; Hanada, Kousuke; Kinoshita-Tsujimura, Kaori; Yu, Hong; Dai, Xinhua; Takebayashi, Yumiko; Takeda-Kamiya, Noriko; Kakimoto, Tatsuo; Kawaide, Hiroshi; Natsume, Masahiro; Estelle, Mark; Zhao, Yunde; Hayashi, Ken-Ichiro; Kamiya, Yuji; Kasahara, Hiroyuki

    2015-08-01

    The phytohormone auxin plays a central role in many aspects of plant growth and development. IAA is the most studied natural auxin that possesses the property of polar transport in plants. Phenylacetic acid (PAA) has also been recognized as a natural auxin for >40 years, but its role in plant growth and development remains unclear. In this study, we show that IAA and PAA have overlapping regulatory roles but distinct transport characteristics as auxins in plants. PAA is widely distributed in vascular and non-vascular plants. Although the biological activities of PAA are lower than those of IAA, the endogenous levels of PAA are much higher than those of IAA in various plant tissues in Arabidopsis. PAA and IAA can regulate the same set of auxin-responsive genes through the TIR1/AFB pathway in Arabidopsis. IAA actively forms concentration gradients in maize coleoptiles in response to gravitropic stimulation, whereas PAA does not, indicating that PAA is not actively transported in a polar manner. The induction of the YUCCA (YUC) genes increases PAA metabolite levels in Arabidopsis, indicating that YUC flavin-containing monooxygenases may play a role in PAA biosynthesis. Our results provide new insights into the regulation of plant growth and development by different types of auxins.

  2. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    PubMed

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands.

  3. Susceptibility of riparian wetland plants to perfluorooctanoic acid (PFOA) accumulation.

    PubMed

    Mudumbi, J B N; Ntwampe, S K O; Muganza, M; Okonkwo, J O

    2014-01-01

    As plants have been shown to accumulate organic compounds from contaminated sediments, there is a potential for long-lasting ecological impact as a result of contaminant accumulation in riparian areas of wetlands, particularly the accumulation of non-biodegradable contaminants such as perfluorooctanoic acid (PFOA). In this study, commonly found riparian wetland plants including reeds, i.e., Xanthium strumarium, Phragmites australis, Schoenoplectus corymbosus, Ruppia maritime; Populus canescens, Polygonum salicifolium, Cyperus congestus; Persicaria amphibian, Ficus carica, Artemisia schmidtiana, Eichhornia crassipes, were studied to determine their susceptibility to PFOA accumulation from PFOA contaminated riparian sediment with a known PFOA concentration, using liquid chromatography/tandem mass spectrometry (LC/MS/MS). The bioconcentration factor (BCF) indicated that the plants affinity to PFOA accumulation was; E. crassipes, > P. sali-cifolium, > C. congestus, > P. x canescens, > P. amphibian, > F. carica, > A. schmidtiana, > X. strumarium,> P. australis, > R. maritime, > S. corymbosus. The concentration of PFOA in the plants and/or reeds was in the range 11.7 to 38 ng/g, with a BCF range of 0.05 to 0.37. The highest BCF was observed in sediment for which its core water had a high salinity, total organic carbon and a pH which was near neutral. As the studied plants had a higher affinity for PFOA, the resultant effect is that riparian plants such as E. crassipes, X. strumarium, and P. salicifolium, typified by a fibrous rooting system, which grow closer to the water edge, exacerbate the accumulation of PFOA in riparian wetlands. PMID:24933893

  4. Evaluation of sulfidic mine tailings solidified/stabilized with cement kiln dust and fly ash to control acid mine drainage

    SciTech Connect

    Nehdi, M.; Tariq, A.

    2008-11-15

    In the present research, industrial byproducts, namely, cement kiln dust (CKD) and Class C fly ash (FAC) have been used as candidate materials along with the partial addition of sulfate-resistant cement (SRC) in the Stabilization/solidification of polymetallic sulfidic mine tailings (MT). The effectiveness of S/S was assessed by comparing laboratory experimental values obtained from unconfined compressive strength, hydraulic conductivity and leaching propensity tests of S/S samples with regulatory standards for safe surface disposal of such wastes. Despite general regulatory compliance of compressive strength and hydraulic conductivity, some solidified/stabilized-cured matrices were found unable to provide the required immobilization of pollutants. Solidified/stabilized and 90-day cured mine tailings specimens made with composite binders containing (10% CKD + 10% FAC), (5% SRC + 15% FAC) and (5% SRC + 5% CKD + 10% FAC) significantly impaired the solubility of all contaminants investigated and proved successful in fixing metals within the matrix, in addition to achieving adequate unconfined compressive strength and hydraulic conductivity values, thus satisfying USEPA regulations. Laboratory investigations revealed that, for polymetallic mining waste, leachate concentrations are the most critical factor in assessing the effectiveness of S/S technology.

  5. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants

    PubMed Central

    Sah, Saroj K.; Reddy, Kambham R.; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  6. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants.

    PubMed

    Sah, Saroj K; Reddy, Kambham R; Li, Jiaxu

    2016-01-01

    Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression. PMID:27200044

  7. Plants having modified response to ethylene by transformation with an ETR nucleic acid

    DOEpatents

    Meyerowitz, Elliott M.; Chang, Caren; Bleecker, Anthony B.

    2001-01-01

    The invention includes transformed plants having at least one cell transformed with a modified ETR nucleic acid. Such plants have a phenotype characterized by a decrease in the response of at least one transformed plant cell to ethylene as compared to a plant not containing the transformed plant cell. Tissue and/or temporal specificity for expression of the modified ETR nucleic acid is controlled by selecting appropriate expression regulation sequences to target the location and/or time of expression of the transformed nucleic acid. The plants are made by transforming at least one plant cell with an appropriate modified ETR nucleic acid, regenerating plants from one or more of the transformed plant cells and selecting at least one plant having the desired phenotype.

  8. Shifts in root-associated microbial communities of Typha latifolia growing in naphthenic acids and relationship to plant health.

    PubMed

    Phillips, Lori A; Armstrong, Sarah A; Headley, John V; Greer, Charles W; Germida, James J

    2010-01-01

    Naphthenic acids (NAs) are a complex mixture of organic acid compounds released during the extraction of crude oil from oil sands operations. The accumulation of toxic NAs in tailings pond water (TPW) is of significant environmental concern, and phytoremediation using constructed wetlands is one remediation option being assessed. Since root-associated microorganisms are an important factor during phytoremediation of organic compounds, this study investigated the impact of NAs on the microbial communities associated with the macrophyte Typha latifolia (cattail). Denaturing gradient gel electrophoresis revealed that the impact of NAs on microbial communities was niche dependent, with endophytic communities being the most stable and bulk water communities being the least stable. The type of NA used was significant to microbial response, with commercial NAs causing greater adverse changes than TPW NAs. In general, plant beneficial bacteria such as diazotrophs were favoured in cattails grown in TPW NAs, while potentially deleterious bacteria such as denitrifying Dechlorospirillum species increased in commercial NA treatments. These findings suggest that NAs may affect plant health by impacting root-associated microbial communities. A better understanding of these impacts may allow researchers to optimize those microbial communities that support plant health, and thus further optimize wetland treatment systems.

  9. Thallium speciation in plant tissues-Tl(III) found in Sinapis alba L. grown in soil polluted with tailing sediment containing thallium minerals.

    PubMed

    Krasnodębska-Ostręga, Beata; Sadowska, Monika; Ostrowska, Sylwia

    2012-05-15

    Besides the dominant species in plants-Tl(I), noticeable amounts of Tl(III) (about 10% of total Tl content) were found in extracts of plants cultivated in the presence of tailing sediments, which are the main source of anthropogenic thallium already present in the environment. It is an important step of gaining knowledge about the detoxification mechanisms developed by Sinapis alba. This plant species is highly tolerant to Tl and it is able to cumulate high amounts of Tl and transport it into the above-ground organs. For more adequate estimation of accumulating abilities of S. alba, the elements' bioavailability was taken into consideration. The obtained bioconcentration factors of Cd (AF=0.6) and Zn (AF=1-2) were significantly lower than of Tl (AF=100-200). The biomass production was similar to the biomass of control cultivation. The results were based on ICP MS measurements of total elements' content and HPLC ICP MS for speciation analysis. The quality of obtained results was evaluated based on the intermethod comparison with voltammetry as a reference method. Comparison of data obtained using ICP MS and electrochemical methods (after a proper chemical treatment) was also used for indication of Tl(III) presence and for proving that Tl(I) was not transferred into Tl(III) during analytical procedures.

  10. Vegetation successfully prevents oxidization of sulfide minerals in mine tailings.

    PubMed

    Li, Yang; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-07-15

    The oxidization of metal sulfide in tailings causes acid mine drainage. However, it remains unclear whether vegetation prevents the oxidization of metal sulfides. The oxidization characteristics and microbial indices of the tailings in the presence of various plant species were investigated to explore the effects of vegetation on the oxidization of sulfide minerals in tailings. The pH, reducing sulfur, free iron oxides (Fed), chemical oxygen consumption (COC) and biological oxygen consumption (BOC) were measured. Key iron- and sulfur-oxidizing bacteria (Acidithiobacillus spp., Leptospirillum spp. and Thiobacillus spp.) were quantified using real-time PCR. The results indicate that vegetation growing on tailings can effectively prevent the oxidization of sulfide minerals in tailings. A higher pH and reducing-sulfur content and lower Fed were observed in the 0-30 cm depth interval in the presence of vegetation compared to bare tailings (BT). The COC gradually decreased with depth in all of the soil profiles; specifically, the COC rapidly decreased in the 10-20 cm interval in the presence of vegetation but gradually decreased in the BT profiles. Imperata cylindrica (IC) and Chrysopogon zizanoides (CZ) profiles contained the highest BOC in the 10-20 cm interval. The abundance of key iron- and sulfur-oxidizing bacteria in the vegetated tailings were significantly lower than in the BT; in particular, IC was associated with the lowest iron- and sulfur-oxidizing bacterial abundance. In conclusion, vegetation successfully prevented the oxidization of sulfide minerals in the tailings, and Imperata cylindrica is the most effective in reducing the number of iron- and sulfur-oxidizing bacteria and helped to prevent the oxidization of sulfide minerals in the long term.

  11. Distribution, synthesis, and absorption of kynurenic acid in plants.

    PubMed

    Turski, Michal P; Turska, Monika; Zgrajka, Wojciech; Bartnik, Magdalena; Kocki, Tomasz; Turski, Waldemar A

    2011-05-01

    Kynurenic acid (KYNA) is an endogenous antagonist of the ionotropic glutamate receptors and the α7 nicotinic acetylcholine receptor as well as an agonist of the G-protein-coupled receptor GPR35. In this study, KYNA distribution and synthesis in plants as well as its absorption was researched. KYNA level was determined by means of the high-performance liquid chromatography with fluorescence detection. KYNA was found in leaves, flowers, and roots of tested medicinal herbs: dandelion (Taraxacum officinale), common nettle (Urtica dioica), and greater celandine (Chelidoniummajus). The highest concentration of this compound was detected in leaves of dandelion--a mean value of 0.49 µg/g wet weight. It was shown that KYNA can be synthesized enzymatically in plants from its precursor, L-kynurenine, or absorbed by plants from the soil. Finally, the content of KYNA was investigated in 21 herbal tablets, herbal tea, herbs in sachets, and single herbs in bags. The highest content of KYNA in a maximum daily dose of herbal medicines appeared in St. John's wort--33.75 µg (tablets) or 32.60 µg (sachets). The pharmacological properties of KYNA and its presence in high concentrations in medicinal herbs may suggest that it possesses therapeutic potential, especially in the digestive system and should be considered a new valuable dietary supplement. PMID:21157681

  12. Analgesic and Anti-Inflammatory Properties of Gelsolin in Acetic Acid Induced Writhing, Tail Immersion and Carrageenan Induced Paw Edema in Mice

    PubMed Central

    Gupta, Ashok Kumar; Parasar, Devraj; Sagar, Amin; Choudhary, Vikas; Chopra, Bhupinder Singh; Garg, Renu; Ashish; Khatri, Neeraj

    2015-01-01

    Plasma gelsolin levels significantly decline in several disease conditions, since gelsolin gets scavenged when it depolymerizes and caps filamentous actin released in the circulation following tissue injury. It is well established that our body require/implement inflammatory and analgesic responses to protect against cell damage and injury to the tissue. This study was envisaged to examine analgesic and anti-inflammatory activity of exogenous gelsolin (8 mg/mouse) in mice models of pain and acute inflammation. Administration of gelsolin in acetic acid-induced writhing and tail immersion tests not only demonstrated a significant reduction in the number of acetic acid-induced writhing effects, but also exhibited an analgesic activity in tail immersion test in mice as compared to placebo treated mice. Additionally, anti-inflammatory function of gelsolin (8 mg/mouse) compared with anti-inflammatory drug diclofenac sodium (10 mg/kg)] was confirmed in the carrageenan injection induced paw edema where latter was measured by vernier caliper and fluorescent tomography imaging. Interestingly, results showed that plasma gelsolin was capable of reducing severity of inflammation in mice comparable to diclofenac sodium. Analysis of cytokines and histo-pathological examinations of tissue revealed administration of gelsolin and diclofenac sodium significantly reduced production of pro-inflammatory cytokines, TNF-α and IL-6. Additionally, carrageenan groups pretreated with diclofenac sodium or gelsolin showed a marked decrease in edema and infiltration of inflammatory cells in paw tissue. Our study provides evidence that administration of gelsolin can effectively reduce the pain and inflammation in mice model. PMID:26426535

  13. Membrane-directed effects of the plant hormones abscisic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid.

    PubMed

    Schauf, C L; Bringle, B; Stillwell, W

    1987-03-30

    This study examines two ways plant hormones might influence membrane processes, effects on overall permeability and modifications of specific ion channels. Abscisic acid (ABA) and indole-3-acetic acid (IAA) greatly enhanced erythritol permeability in mixed egg lecithin bilayers. In single component dioleoylphosphatidylcholine bilayers ABA was less effective than IAA, while 2,4-dichlorophenoxyacetate (2,4-D) did not affect either system or alter their ABA response. In Myxicola axons ABA and IAA had no effect, while 2,4-D (10 uM) caused a depolarizing shift of voltage-dependent Na+ and K+ activation by 25 +/- 4 mV and 15 +/- 3 mV, consistent with internal negative surface charge changes of -0.002 e-/A2 and -0.0007 e-/A2. We conclude that both generalized and ion channel-directed effects may link plant hormones and intracellular regulation.

  14. Metal concentrations in the soils and native plants surrounding the old flotation tailings pond of the copper mining and smelting complex Bor (Serbia).

    PubMed

    Antonijević, M M; Dimitrijević, M D; Milić, S M; Nujkić, M M

    2012-03-01

    In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As.

  15. Is Acetylcarnitine a Substrate for Fatty Acid Synthesis in Plants?

    PubMed

    Roughan, G.; Post-Beittenmiller, D.; Ohlrogge, J.; Browse, J.

    1993-04-01

    Long-chain fatty acid synthesis from [1-14C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-14C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-14C]-Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-14C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-14C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-14C]acetylcarnitine and 47 to 57% of the [1-14C]acetate taken up was incorporated into lipids. Most (78-82%) of the [1-14C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants.

  16. Is acetylcarnitine a substrate for fatty acid synthesis in plants

    SciTech Connect

    Roughan, G. ); Post-Beittenmiller, D.; Ohlrogge, J. ); Browse, J. )

    1993-04-01

    Long-chain fatty acid synthesis from [1-[sup 14]C]acetylcarnitine by chloroplasts isolated from spinach (Spinacia oleracea), pea (Pisum sativum), amaranthus (Amaranthus lividus), or maize (Zea mays) occurred at less than 2% of the rate of fatty acid synthesis from [1-[sup 14]C]acetate irrespective of the maturity of the leaves or whether the plastids were purified using sucrose or Percoll medium. [1-[sup 14]C]Acetylcarnitine was not significantly utilized by highly active chloroplasts rapidly prepared from pea and spinach using methods not involving density gradient centrifugation. [1-[sup 14]C]Acetylcarnitine was recovered quantitatively from chloroplast incubations following 10 min in the light. Unlabeled acetyl-L-carnitine (0.4 mM) did not compete with [1-[sup 14]C]acetate (0.2 mM) as a substrate for fatty acid synthesis by any of the more than 70 chloroplast preparations tested in this study. Carnitine acetyltransferase activity was not detected in any chloroplast preparation and was present in whole leaf homogenates at about 0.1% of the level of acetyl-coenzyme A synthetase activity. When supplied to detached pea shoots and detached spinach, amaranthus, and maize leaves via the transpiration stream, 1 to 4% of the [1-[sup 14]C]acetylcarnitine and 47 to 57% of the [1-[sup 14]C]acetate taken up was incorporated into lipids. Most (78--82%) of the [1-[sup 14]C]acetylcarnitine taken up was recovered intact. It is concluded that acetylcarnitine is not a major precursor for fatty acid synthesis in plants. 29 refs., 5 tabs.

  17. Defining the needs for non-destructive assay of UF6 feed, product, and tails at gas centrifuge enrichment plants and possible next steps

    SciTech Connect

    Boyer, Brian D; Swinhoe, Martyn T; Moran, Bruce W; Lebrun, Alain

    2009-01-01

    Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to detect undeclared LEU production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of UF{sub 6} bulk material used in the process of enrichment at GCEPS. The inspectors also take destructive assay (DA) samples for analysis off-site which provide accurate, on the order of 0.1 % to 0.5% uncertainty, data on the enrichment of the UF{sub 6} feed, tails, and product. However, DA sample taking is a much more labor intensive and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of the results and contains the possibility of the loss of the continuity of knowledge of the samples during the storage and transit of the material. Use of the IAEA's inspection sampling algorithm shows that while total sample size is fixed by the total population of potential samples and its intrinsic qualities, the split of the samples into NDA or DA samples is determined by the uncertainties in the NDA measurements. Therefore, the larger the uncertainties in the NDA methods, more of the sample taken must be DA samples. Since the DA sampling is arduous and costly, improvements in NDA methods would reduce the number of DA samples needed. Furthermore, if methods of on-site analysis of the samples could be developed that have uncertainties in the 1-2% range, a lot of the problems inherent in DA sampling could be removed. The use of an unattended system that could give an overview of the entire process giving complementary data on the enrichment process as well as accurate measures of enrichment and weights of the UF{sub 6} feed, tails, and product would be a major step

  18. How to Do It. Plant Eco-Physiology: Experiments on Crassulacean Acid Metabolism, Using Minimal Equipment.

    ERIC Educational Resources Information Center

    Friend, Douglas J. C.

    1990-01-01

    Features of Crassulacean Acid Metabolism plants are presented. Investigations of a complex eco-physiological plant adaptation to the problems of growth in an arid environment are discussed. Materials and procedures for these investigations are described. (CW)

  19. A Simple Demonstration of Carbon Dioxide Fixation and Acid Production in CAM Plants

    ERIC Educational Resources Information Center

    Walker, John R. L.; McWha, James A.

    1976-01-01

    Described is an experiment investigating carbon dioxide fixation in the dark and the diurnal rhythm of acid production in plants exhibiting Crassulacean Acid Metabolism. Included are suggestions for four further investigations. (SL)

  20. New insights into the regulation of plant immunity by amino acid metabolic pathways.

    PubMed

    Zeier, Jürgen

    2013-12-01

    Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.

  1. Carbon isotope ratios in crassulacean Acid metabolism plants: seasonal patterns from plants in natural stands.

    PubMed

    Szarek, S R

    1976-09-01

    A year round study of photosynthesis and carbon isotope fractionation was conducted with plants of Opuntia phaeacantha Engelm. and Yucca baccata Torr. occurring in natural stands at elevations of 525, 970, 1450 and 1900 m. Plant water potentials and the daytime pattern of (14)CO(2) photosynthesis were similar for all cacti along the elevational gradient, despite significant differences in temperature regime and soil water status. Carbon isotope ratios of total tissue and soluble extract fractions were relatively constant throughtout the entire year. Additionally, the sigma(13)C values were similar in all plants of the same species along the elevational gradient, i.e. -12.5 +/- 0.86 per thousand for O. phaeacantha and -15.7 +/- 0.95 per thousand for Y. baccata. The results of this study indicate Crassulacean acid metabolism predominates as the major carbon pathway of these plants, which do not facultatively utilize the reductive pentose phosphate cycle of photosynthesis as the primary carboxylation reaction. PMID:16659680

  2. Arsenic as an Endocrine Disruptor: Arsenic Disrupts Retinoic Acid Receptor–and Thyroid Hormone Receptor–Mediated Gene Regulation and Thyroid Hormone–Mediated Amphibian Tail Metamorphosis

    PubMed Central

    Davey, Jennifer C.; Nomikos, Athena P.; Wungjiranirun, Manida; Sherman, Jenna R.; Ingram, Liam; Batki, Cavus; Lariviere, Jean P.; Hamilton, Joshua W.

    2008-01-01

    Background Chronic exposure to excess arsenic in drinking water has been strongly associated with increased risks of multiple cancers, diabetes, heart disease, and reproductive and developmental problems in humans. We previously demonstrated that As, a potent endocrine disruptor at low, environmentally relevant levels, alters steroid signaling at the level of receptor-mediated gene regulation for all five steroid receptors. Objectives The goal of this study was to determine whether As can also disrupt gene regulation via the retinoic acid (RA) receptor (RAR) and/or the thyroid hormone (TH) receptor (TR) and whether these effects are similar to previously observed effects on steroid regulation. Methods and results Human embryonic NT2 or rat pituitary GH3 cells were treated with 0.01–5 μM sodium arsenite for 24 hr, with or without RA or TH, respectively, to examine effects of As on receptor-mediated gene transcription. At low, noncytotoxic doses, As significantly altered RAR-dependent gene transcription of a transfected RAR response element–luciferase construct and the native RA-inducible cytochrome P450 CYP26A gene in NT2 cells. Likewise, low-dose As significantly altered expression of a transfected TR response element–luciferase construct and the endogenous TR-regulated type I deiodinase (DIO1) gene in a similar manner in GH3 cells. An amphibian ex vivo tail metamorphosis assay was used to examine whether endocrine disruption by low-dose As could have specific pathophysiologic consequences, because tail metamorphosis is tightly controlled by TH through TR. TH-dependent tail shrinkage was inhibited in a dose-dependent manner by 0.1– 4.0 μM As. Conclusions As had similar effects on RAR- and TR-mediated gene regulation as those previously observed for the steroid receptors, suggesting a common mechanism or action. Arsenic also profoundly affected a TR-dependent developmental process in a model animal system at very low concentrations. Because RAR and TH are

  3. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    SciTech Connect

    Loewus, F.A. . Inst. of Biological Chemistry); Seib, P.A. . Dept. of Grain Science and Industry)

    1991-01-01

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  4. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants). Final report

    SciTech Connect

    Loewus, F.A.; Seib, P.A.

    1991-12-31

    The origin of oxalate in plants has received considerable attention and glycolate metabolism has been generally regarded as a prime precursor candidate although studies on the metabolism of L-ascorbic acid single out that plant constituent as well. Experiments with oxalate-accumulating plants that contain little or no tartaric acid revealed the presence of a comparable L-ascorbic acid metabolism with the exception that the cleavage products were oxalic acid and L-threonic acid or products of L-threonic acid metabolism. A reasonable mechanism for cleavage of L-ascorbic acid at the endiolic bond is found in studies on the photooxygenation of L-ascorbic acid. Presumably, analogs of L-ascorbic acid that differ only in the substituent at C4 also form a hydroperoxide in the presence of alkaline hydrogen peroxide and subsequently yield oxalic acid and the corresponding aldonic acid or its lactone. We became interested in such a possibility when we discovered that L-ascorbic acid was rare or absent in certain yeasts and fungi whereas a L-ascorbic acid analog, D-glycero-pent-2-enono- 1,4-lactone (D-erythroascorbic acid), was present. It has long been known that oxalate occurs in yeasts and fungi and its production plays a role in plant pathogenesis. As to the biosynthetic origin of fungal oxalic acid there is little information although it is generally assumed that oxaloacetate or possibly, glycolate, might be that precursor.

  5. Improved growth, productivity and quality of tomato (Solanum lycopersicum L.) plants through application of shikimic acid

    PubMed Central

    Al-Amri, Salem M.

    2013-01-01

    A field experiment was conducted to investigate the effect of seed presoaking of shikimic acid (30, 60 and 120 ppm) on growth parameters, fruit productivity and quality, transpiration rate, photosynthetic pigments and some mineral nutrition contents of tomato plants. Shikimic acid at all concentrations significantly increased fresh and dry weights, fruit number, average fresh and dry fruit yield, vitamin C, lycopene, carotenoid contents, total acidity and fruit total soluble sugars of tomato plants when compared to control plants. Seed pretreatment with shikimic acid at various doses induces a significant increase in total leaf conductivity, transpiration rate and photosynthetic pigments (Chl. a, chl. b and carotenoids) of tomato plants. Furthermore, shikimic acid at various doses applied significantly increased the concentration of nitrogen, phosphorus and potassium in tomato leaves as compared to control non-treated tomato plants. Among all doses of shikimic acid treatment, it was found that 60 ppm treatment caused a marked increase in growth, fruit productivity and quality and most studied parameters of tomato plants when compared to other treatments. On the other hand, no significant differences were observed in total photosynthetic pigments, concentrations of nitrogen and potassium in leaves of tomato plants treated with 30 ppm of shikimic acid and control plants. According to these results, it could be suggested that shikimic acid used for seed soaking could be used for increasing growth, fruit productivity and quality of tomato plants growing under field conditions. PMID:24235870

  6. 14. Credit PED. Downstream elevation, near completion, showing tail race ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Credit PED. Downstream elevation, near completion, showing tail race and trestle used to carry excavated rock and construction materials across tail race. Photo c. 1909. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  7. L-Ascorbic Acid: A Multifunctional Molecule Supporting Plant Growth and Development

    PubMed Central

    Gallie, Daniel R.

    2013-01-01

    L-Ascorbic acid (vitamin C) is as essential to plants as it is to animals. Ascorbic acid functions as a major redox buffer and as a cofactor for enzymes involved in regulating photosynthesis, hormone biosynthesis, and regenerating other antioxidants. Ascorbic acid regulates cell division and growth and is involved in signal transduction. In contrast to the single pathway responsible for ascorbic acid biosynthesis in animals, plants use multiple pathways to synthesize ascorbic acid, perhaps reflecting the importance of this molecule to plant health. Given the importance of ascorbic acid to human nutrition, several technologies have been developed to increase the ascorbic acid content of plants through the manipulation of biosynthetic or recycling pathways. This paper provides an overview of these approaches as well as the consequences that changes in ascorbic acid content have on plant growth and function. Discussed is the capacity of plants to tolerate changes in ascorbic acid content. The many functions that ascorbic acid serves in plants, however, will require highly targeted approaches to improve their nutritional quality without compromising their health. PMID:24278786

  8. Response of amino acids in hindlimb muscles to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Cook, P. H.

    1985-01-01

    Concentrations of glutamine, glutamate, aspartate (+ asparagine) and alanine were compared in hindlimb muscles of SL-3 and ground control rats. Alanine was lower in the soleus of flown rats but not of suspended animals, with no response in other muscles except a slight increase in the unloaded plantaris. With recovery, alanine in the soleus was elevated. Since no differences in alanine metabolism were found by isolated muscle, changes in muscle alanine are probably due to altered body use of this amino acid leading to varied plasma levels.

  9. Responses of amino acids in hindlimb muscles to recovery from hypogravity and unloading by tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Cook, P. H.

    1985-01-01

    Amino acids were assayed in muscles from rats exposed to 7 days of hypogravity and 12 h of gravity (F) or 6 days of suspension with (R) or without (H) 12 h of loading. In these groups, lower aspartate was common only to the soleus (SOL) relative to control muscles, the smallest difference being in group R. This difference in aspartate for F and H, but not for R, correlated with lower malate suggesting diminution of citric acid cycle intermediates. The R SOL value was increased over the H SOL. Therefore desite 12 h of loading, the F SOL was more comparable to the H SOL. The role of stress in preventing recovery of the F SOL was apparent from the ratios of glutamine/glutamate. Synthesis of glutamine is enhanced by glucocorticoids and is reflected by an increased ratio. In 5 of the 6 F muscles studied, this ratio was greater than in controls. In contrast, the ratio in all R muscles was similar to controls and showed recovery from the values in H muscles. Hence the post-flight treatment of F rats may have produced additional stress. Despite this stress, in some respects the SOL responses to hypogravity were similar to its responses to unloding by suspension.

  10. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4

    PubMed Central

    Liu, Qian; Chen, Haoqian; Ojode, Teresa; Gao, Xiangxi; Anaya-O'Brien, Sandra; Turner, Nicholas A.; Ulrick, Jean; DeCastro, Rosamma; Kelly, Corin; Cardones, Adela R.; Gold, Stuart H.; Hwang, Eugene I.; Wechsler, Daniel S.; Malech, Harry L.; Murphy, Philip M.

    2012-01-01

    WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4R334X, the most common truncation mutation in WHIM syndrome, CXCR4E343K mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4E343K had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling. PMID:22596258

  11. The evaluation of the activity of medicinal remedies of plant and animal origin on the regeneration of the earthworms' tail segments.

    PubMed

    Bybin, Viktor Alexandrovich; Stom, Daevard Iosifovich

    2014-01-01

    Now, in the global community there is enough hard recommendation to replace the vertebrate test animals into simpler organisms at the development, testing, and evaluation of the quality pharmaceuticals. The feature of planarian to regenerate in new individual planarian from a piece, which is only 1/7 of the original animal, allowed to create the alternative methods of testing of drugs, dietary supplements, water quality, influence of electromagnetic fields, and other radiations. The tests on planarian can replace the ones that are held today on mammals. However, the lacks of the bioassays based on the planarian regeneration are the need for complex and expensive video equipment for recording the regrowth of worms' body, the difficulties of culturing of flatworms and fairly long period of response. These difficulties can be avoided by using another group of the worms of type Annelida. The new individual can be fully recovered only from the front half of the body in many species of earthworms. Thus, the influence of the pharmaceuticals from earthworms, mummy, and Orthilia secunda on the ability of earthworms to regenerate lost tail segments has been investigated. The relations of the activity of preparations tested with doses and the time of the storage have been revealed. The principal possibility of applicability of the test reaction studied as a way to evaluate the effects and quality of remedies based on medicinal plants and earthworms has been shown. PMID:26692755

  12. The evaluation of the activity of medicinal remedies of plant and animal origin on the regeneration of the earthworms’ tail segments

    PubMed Central

    Bybin, Viktor Alexandrovich; Stom, Daevard Iosifovich

    2015-01-01

    Now, in the global community there is enough hard recommendation to replace the vertebrate test animals into simpler organisms at the development, testing, and evaluation of the quality pharmaceuticals. The feature of planarian to regenerate in new individual planarian from a piece, which is only 1/7 of the original animal, allowed to create the alternative methods of testing of drugs, dietary supplements, water quality, influence of electromagnetic fields, and other radiations. The tests on planarian can replace the ones that are held today on mammals. However, the lacks of the bioassays based on the planarian regeneration are the need for complex and expensive video equipment for recording the regrowth of worms’ body, the difficulties of culturing of flatworms and fairly long period of response. These difficulties can be avoided by using another group of the worms of type Annelida. The new individual can be fully recovered only from the front half of the body in many species of earthworms. Thus, the influence of the pharmaceuticals from earthworms, mummy, and Orthilia secunda on the ability of earthworms to regenerate lost tail segments has been investigated. The relations of the activity of preparations tested with doses and the time of the storage have been revealed. The principal possibility of applicability of the test reaction studied as a way to evaluate the effects and quality of remedies based on medicinal plants and earthworms has been shown. PMID:26692755

  13. Quantification of jasmonic acid by SPME in tomato plants stressed by ozone.

    PubMed

    Zadra, Claudia; Borgogni, Andrea; Marucchini, Cesare

    2006-12-13

    Jasmonates are signalling molecules induced in plants as a response to various biotic and/or abiotic stresses. As ozone is known to activate defense responses in plants, we have monitored the concentration of jasmonic acid in tomato leaves during and after an acute exposure to this abiotic elicitor. In this experiment, we observed that the maximum induction of jasmonic acid in O3-fumigated plants occurred 9 h after the end of treatment and the concentration of jasmonic acid in stressed plants increased 13-fold. However, the level of endogenous methyl-jasmonate was constant during the observed period. The extraction and quantification of jasmonic acid as its methyl ester was performed by headspace-solid-phase microextraction (or HS-SPME) in combination with GC-FID and GC-MS. The sensitivity (LOD = 2 ng/g) of this method permitted the detection and quantification of jasmonic acid present in plant tissues at very low concentrations. PMID:17147413

  14. A monoclonal antibody against the plant growth regulator, abscisic acid.

    PubMed

    Banowetz, G M; Hess, J R; Carman, J G

    1994-12-01

    Monoclonal antibodies were prepared against the plant growth regulator abscisic acid (ABA) conjugated to keyhole limpet hemocyanin through C-4. One of these antibodies was characterized for use in a competition fluorescence enzyme-linked immunosorbent assay (F-ELISA). The antibody detected femtomole quantities of ABA when used in the F-ELISA and showed minimal cross-reactivity with ABA metabolites and structural analogs. Dilution analysis suggested that the F-ELISA could be used to determine the ABA content of methanolic extracts of crude samples of wheat seeds without further purification. The F-ELISA was used to determine the effect of seed priming on ABA levels in wheat seeds. The antibody also was used in a modified noncompetitive indirect ELISA to measure ABA content of wheat caryopses. The noncompetitive ELISA was more sensitive than the F-ELISA, although the F-ELISA had a broader measuring range. When our anti-ABA antibody and a commercially available anti-ABA antibody were compared by indirect ELISA, there were no significant differences between the ABA estimates.

  15. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: consequences for the positional specificity of oxygenation.

    PubMed

    Saura, Patricia; Maréchal, Jean-Didier; Masgrau, Laura; Lluch, José M; González-Lafont, Àngels

    2016-08-17

    In the present work we have combined homology modeling, protein-ligand dockings, quantum mechanics/molecular mechanics calculations and molecular dynamics simulations to generate human 5-lipoxygenase (5-LOX):arachidonic acid (AA) complexes consistent with the 5-lipoxygenating activity (which implies hydrogen abstraction at the C7 position). Our results suggest that both the holo and the apo forms of human Stable 5-LOX could accommodate AA in a productive form for 5-lipoxygenation. The former, in a tail-first orientation, with the AA carboxylate end interacting with Lys409, gives the desired structures with C7 close to the Fe-OH(-) cofactor and suitable barrier heights for H7 abstraction. Only when using the apo form structure, a head-first orientation with the AA carboxylate close to His600 (a residue recently proposed as essential for AA positioning) is obtained in the docking calculations. However, the calculated barrier heights for this head-first orientation are in principle consistent with 5-LOX specificity, but also with 12/8 regioselectivity. Finally, long MD simulations give support to the recent hypothesis that the Phe177 + Tyr181 pair needs to close the active site access during the chemical reaction, and suggest that in the case of a head-first orientation Phe177 may be the residue interacting with the AA carboxylate. PMID:27489112

  16. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication

    PubMed Central

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V.; Mintaev, Ramil R.; Alexeevski, Andrei V.; Veit, Michael

    2015-01-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  17. Two Cytoplasmic Acylation Sites and an Adjacent Hydrophobic Residue, but No Other Conserved Amino Acids in the Cytoplasmic Tail of HA from Influenza A Virus Are Crucial for Virus Replication.

    PubMed

    Siche, Stefanie; Brett, Katharina; Möller, Lars; Kordyukova, Larisa V; Mintaev, Ramil R; Alexeevski, Andrei V; Veit, Michael

    2015-12-01

    Recruitment of the matrix protein M1 to the assembly site of the influenza virus is thought to be mediated by interactions with the cytoplasmic tail of hemagglutinin (HA). Based on a comprehensive sequence comparison of all sequences present in the database, we analyzed the effect of mutating conserved residues in the cytosol-facing part of the transmembrane region and cytoplasmic tail of HA (A/WSN/33 (H1N1) strain) on virus replication and morphology of virions. Removal of the two cytoplasmic acylation sites and substitution of a neighboring isoleucine by glutamine prevented rescue of infectious virions. In contrast, a conservative exchange of the same isoleucine, non-conservative exchanges of glycine and glutamine, deletion of the acylation site at the end of the transmembrane region and shifting it into the tail did not affect virus morphology and had only subtle effects on virus growth and on the incorporation of M1 and Ribo-Nucleoprotein Particles (RNPs). Thus, assuming that essential amino acids are conserved between HA subtypes we suggest that, besides the two cytoplasmic acylation sites (including adjacent hydrophobic residues), no other amino acids in the cytoplasmic tail of HA are indispensable for virus assembly and budding. PMID:26670246

  18. Virulent Hessian fly larvae manipulate the free amino acid content of host wheat plants.

    PubMed

    Saltzmann, Kurt D; Giovanini, Marcelo P; Zheng, Cheng; Williams, Christie E

    2008-11-01

    Gall-forming insects induce host plants to form specialized structures (galls) that provide immature life stages of the insect access to host plant nutrients and protection from natural enemies. Feeding by larvae of the Hessian fly (Mayetiola destructor Say) causes susceptible host wheat plants to produce a gall-like nutritive tissue that supports larval growth and development. To determine if changes in host plant free amino acid levels are associated with virulent Biotype L Hessian fly larval feeding, we quantified free amino acid levels in crown tissues of susceptible Newton wheat plants 1, 4, and 7 days after Hessian fly egg hatch. Hessian fly-infested susceptible plants were more responsive than resistant plants or uninfested controls, showing higher concentrations of alanine, glutamic acid, glycine, phenylalanine, proline, and serine 4 days after egg hatch. This 4-day post-hatch time point corresponds to the maturation of nutritive tissue cells in susceptible plants and the onset of rapid larval growth. By 7 days after egg hatch, when virulent second instars are actively feeding on the contents of nutritive tissue cells, the aromatic amino acids phenylalanine and tyrosine were more abundant compared to uninfested controls, but the levels of other free amino acids were no longer elevated. Changes in free amino acid abundance described in this report were associated with increased levels of mRNA encoded by wheat genes involved in amino acid synthesis and transport.

  19. Deviation from niche optima affects the nature of plant-plant interactions along a soil acidity gradient.

    PubMed

    He, Lei; Cheng, Lulu; Hu, Liangliang; Tang, Jianjun; Chen, Xin

    2016-01-01

    There is increasing recognition of the importance of niche optima in the shift of plant-plant interactions along environmental stress gradients. Here, we investigate whether deviation from niche optima would affect the outcome of plant-plant interactions along a soil acidity gradient (pH = 3.1, 4.1, 5.5 and 6.1) in a pot experiment. We used the acid-tolerant species Lespedeza formosa Koehne as the neighbouring plant and the acid-tolerant species Indigofera pseudotinctoria Mats. or acid-sensitive species Medicago sativa L. as the target plants. Biomass was used to determine the optimal pH and to calculate the relative interaction index (RII). We found that the relationships between RII and the deviation of soil pH from the target's optimal pH were linear for both target species. Both targets were increasingly promoted by the neighbour as pH values deviated from their optima; neighbours benefitted target plants by promoting soil symbiotic arbuscular mycorrhizal fungi, increasing soil organic matter or reducing soil exchangeable aluminium. Our results suggest that the shape of the curve describing the relationship between soil pH and facilitation/competition depends on the soil pH optima of the particular species. PMID:26740568

  20. A perspective of stepwise utilisation of Bayer red mud: Step two--Extracting and recovering Ti from Ti-enriched tailing with acid leaching and precipitate flotation.

    PubMed

    Huang, Yanfang; Chai, Wencui; Han, Guihong; Wang, Wenjuan; Yang, Shuzhen; Liu, Jiongtian

    2016-04-15

    The extraction and recovery of Ti from Ti-enriched tailing with acid leaching and precipitate flotation, as one of the critical steps, was proposed for the stepwise utilization of red mud. The factors influencing acid leaching and precipitate flotation were examined by factorial design. The leaching thermodynamics, kinetics of Ti(4+), Al(3+) and Fe(3+), and the mechanism of selectively Fe(3+) removal using [Hbet][Tf2N] as precipitating reagent were discussed. The extracting of Ti(4+), Al(3+) and Fe(3+) in concentrated H2SO4 is controlled by diffusion reactions, depending mainly upon leaching time and temperature. The maximum extracting efficiency of Ti(4+) is approximately 92.3%, whereas Al(3+) and Fe(3+) leaching are respectively 75.8% and 84.2%. [Hbet][Tf2N], as a precipitating reagent, operates through a coordination mechanism in flotation. The pH value is the key factor influencing the flotation recovery of Ti(4+), whereas the dosage of precipitating reagent is that for Al(3+) recovery. The maximum flotation recovery of Ti(4+) is 92.7%, whereas the maximum Al(3+) recovery is 93.5%. The total recovery rate for extracting and recovering titanium is 85.5%. The liquor with Ti(4+) of 15.5g/L, Al(3+) of 30.4g/L and Fe(3+) of 0.48g/L was obtained for the following hydrolysis step in the integrated process for red mud utilisation. PMID:26799223

  1. Comparison of the formation of nicotinic acid conjugates in leaves of different plant species.

    PubMed

    Ashihara, Hiroshi; Yin, Yuling; Katahira, Riko; Watanabe, Shin; Mimura, Tetsuro; Sasamoto, Hamako

    2012-11-01

    There are three metabolic fates of nicotinic acid in plants: (1) nicotinic acid mononucleotide formation for NAD synthesis by the so-called salvage pathway of pyridine nucleotide biosynthesis; (2) nicotinic acid N-glucoside formation; and (3) trigonelline (N-methylnicotinic acid) formation. In the present study, the metabolism of [carbonyl-(14)C]nicotinamide was investigated in leaves of 23 wild plant species. All species readily converted nicotinamide to nicotinic acid, and only a fraction of nicotinic acid was utilised for NAD and NADP synthesis. The remaining nicotinic acid is converted to the nicotinic acid conjugates. Only one plant species, Cycas revoluta, produced both nicotinic acid N-glucoside and trigonelline; the other 22 species produced one or other of the conjugates. The nicotinic acid N-glucoside-forming plants are Cyathea lepifera, Arenga trewmula var. englri, Barringtonia racemosa, Ilex paraguariensis, Angelica japonica, Scaevola taccada and Farfugium japonicum. In contrast, trigonelline is formed in C. lepifera, Ginkgo biloba, Pinus luchuensis, Casuarina equisetifolia, Alocasia odora, Pandanus odoratissimus, Hylocereus undatus, Kalanchoe pinnata, Kalanchoe tubiflora, Populus alba, Garcinia subelliptica, Oxalis corymbosa, Leucaena leucocephala, Vigna marina, Hibiscus tiliaceus and Melicope triphylla. The diversity of nicotinic acid conjugate formation in plants is discussed using these results and our previous investigation involving a few model plants, various crops and ferns. Nicotinic acid N-glucoside formation was restricted mostly to ferns and selected orders of angiosperms, whereas other plants produce trigonelline. In most cases the formation of both nicotinic acid conjugates is incompatible, but some exceptions have been found. PMID:22983143

  2. Sialic acid concentrations in plants are in the range of inadvertent contamination.

    PubMed

    Zeleny, Reinhard; Kolarich, Daniel; Strasser, Richard; Altmann, Friedrich

    2006-06-01

    The long held but challenged view that plants do not synthesize sialic acids was re-evaluated using two different procedures to isolate putative sialic acid containing material from plant tissues and cells. The extracts were reacted with 1,2-diamino-4,5-methylene dioxybenzene and the fluorescently labelled 2-keto sugar acids analysed by reversed phase and normal phase HPLC and by HPLC-electrospray tandem mass spectrometry. No N-glycolylneuraminic acid was found in the protein fraction from Arabidopsis thaliana MM2d cells. However, we did detect 3-deoxy-D: -manno-octulosonic acid and trace amounts (3-18 pmol/g fresh weight) of a compound indistinguishable from N-acetylneuraminic acid by its retention time and its mass spectral fragmentation pattern. Thus, plant cells and tissues contain five orders of magnitude less sialic acid than mammalian tissues such as porcine liver. Similar or lower amounts of N-acetylneuraminic acid were detected in tobacco cells, mung bean sprouts, apple and banana. Yet even yeast and buffer blanks, when subjected to the same isolation procedures, apparently contained the equivalent of 5 pmol of sialic acid per gram of material. Thus, we conclude that it is not possible to demonstrate unequivocally that plants synthesize sialic acids because the amounts of these sugars detected in plant cells and tissues are so small that they may originate from extraneous contaminants. PMID:16395581

  3. Fumaric acid: an overlooked form of fixed carbon in Arabidopsis and other plant species

    SciTech Connect

    Chia, D.W.; Yoder, T.J.; Reiter, W.D.; Gibson, S.I.

    2000-10-01

    Photoassimilates are used by plants for production of energy, as carbon skeletons and in transport of fixed carbon between different plant organs. Many studies have been devoted to characterizing the factors that. regulate photoassimilate concentrations in different plant species. Most studies examining photoassimilate concentrations in C{sub 3} plants have focused on analyzing starch and soluble sugars. However, work presented here demonstrates that a number of C{sub 3} plants, including the popular model organism Arabidopsis thaliana (L.) Heynh., and agriculturally important plants, such as soybean [Glycine ma (L.) Merr.], contain significant quantities of furnaric acid. In fact, furnaric acid can accumulate to levels of several mg per g fresh weight in A-abidopsis leaves, often exceeding starch and soluble sugar levels. Furnaric acid is a component of the tricarboxylic acid cycle and, like starch and soluble sugars, can be metabolized to yield energy and carbon skeletons for production of other compounds. Fumaric acid concentrations increase with plant age and light intensity in Arabidopsis leaves. Arabidopsis phloem exudates contain significant quantities of fumaric acid, raising the possibility that fumaric acid may function in carbon transport.

  4. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent. PMID:27278067

  5. Effects and mechanism of acid rain on plant chloroplast ATP synthase.

    PubMed

    Sun, Jingwen; Hu, Huiqing; Li, Yueli; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2016-09-01

    Acid rain can directly or indirectly affect plant physiological functions, especially photosynthesis. The enzyme ATP synthase is the key in photosynthetic energy conversion, and thus, it affects plant photosynthesis. To clarify the mechanism by which acid rain affects photosynthesis, we studied the effects of acid rain on plant growth, photosynthesis, chloroplast ATP synthase activity and gene expression, chloroplast ultrastructure, intracellular H(+) level, and water content of rice seedlings. Acid rain at pH 4.5 remained the chloroplast structure unchanged but increased the expression of six chloroplast ATP synthase subunits, promoted chloroplast ATP synthase activity, and increased photosynthesis and plant growth. Acid rain at pH 4.0 or less decreased leaf water content, destroyed chloroplast structure, inhibited the expression of six chloroplast ATP synthase subunits, decreased chloroplast ATP synthase activity, and reduced photosynthesis and plant growth. In conclusion, acid rain affected the chloroplast ultrastructure, chloroplast ATPase transcription and activity, and P n by changing the acidity in the cells, and thus influencing the plant growth and development. Finally, the effects of simulated acid rain on the test indices were found to be dose-dependent.

  6. Tail gut cyst.

    PubMed

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  7. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  8. The terminal six amino-acids of the carboxy cytoplasmic tail of CD36 contain a functional domain implicated in the binding and capture of oxidized low-density lipoprotein.

    PubMed Central

    Malaud, Eric; Hourton, Delphine; Giroux, Louise Marie; Ninio, Ewa; Buckland, Robin; McGregor, John L

    2002-01-01

    CD36, a major adhesion molecule expressed by monocytes/macrophages, plays a key role in the binding and internalization of oxidized low-density lipoprotein (OxLDL). This adhesion molecule, a member of an important scavenger receptor family, contains a very short C-terminal cytoplasmic tail that is known to induce intracellular signalling events. However, the domains on the cytoplasmic tail involved in such signal transduction are unknown. In this study, we have investigated the functional components of the cytoplasmic tail by site-directed mutagenesis coupled with functional OxLDL and monoclonal antibody (mAb) binding studies. Seven truncated or punctual CD36 constructs, localized in the cytoplasmic tail, were produced by site-directed mutagenesis. Each construct was stably expressed in HEK293 cells. We used a quantitative and a qualitative method, labelling OxLDL with either iodine or rhodamine, to determine the functional importance of the cytoplasmic domains in OxLDL internalization. Results indicate that: (1) a deletion of the last amino-acid (construct K472STOP) significantly reduces, compared with wild-type, the binding, internalization and degradation of OxLDL; (2) truncation of the last six amino-acids (construct R467STOP) significantly reduces OxLDL binding; (3) the above two constructs (K472STOP and R467STOP) showed a reduced rate of OxLDL internalization compared with wild-type; (4) the binding and rate of internalization of an anti-CD36 monoclonal antibody (10/5) was not affected by the above mentioned mutants (K472STOP and R467STOP), compared with wild-type. This study shows, for the first time, a specific site on the CD36 cytoplasmic tail that is critical for the binding, endocytosis and targeting of OxLDL. PMID:12023894

  9. Abscisic acid and other plant hormones: Methods to visualize distribution and signaling.

    PubMed

    Waadt, Rainer; Hsu, Po-Kai; Schroeder, Julian I

    2015-12-01

    The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporters) for the analysis of the distribution and signaling of various plant hormones. Furthermore, we provide examples of their utility for gaining novel insights into plant hormone action with a deeper focus on the drought hormone abscisic acid.

  10. Abscisic acid and other plant hormones: Methods to visualize distribution and signaling

    PubMed Central

    Waadt, Rainer; Hsu, Po-Kai; Schroeder, Julian I.

    2015-01-01

    The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporters) for the analysis of the distribution and signaling of various plant hormones. Furthermore, we provide examples of their utility for gaining novel insights into plant hormone action with a deeper focus on the drought hormone abscisic acid. PMID:26577078

  11. Abscisic acid and other plant hormones: Methods to visualize distribution and signaling.

    PubMed

    Waadt, Rainer; Hsu, Po-Kai; Schroeder, Julian I

    2015-12-01

    The exploration of plant behavior on a cellular scale in a minimal invasive manner is key to understanding plant adaptations to their environment. Plant hormones regulate multiple aspects of growth and development and mediate environmental responses to ensure a successful life cycle. To monitor the dynamics of plant hormone actions in intact tissue, we need qualitative and quantitative tools with high temporal and spatial resolution. Here, we describe a set of biological instruments (reporters) for the analysis of the distribution and signaling of various plant hormones. Furthermore, we provide examples of their utility for gaining novel insights into plant hormone action with a deeper focus on the drought hormone abscisic acid. PMID:26577078

  12. Tail biting in pigs.

    PubMed

    Schrøder-Petersen, D L; Simonsen, H B

    2001-11-01

    One of the costly and welfare-reducing problems in modern pig production is tail biting. Tail biting is an abnormal behaviour, characterized by one pig's dental manipulation of another pig's tail. Tail biting can be classified into two groups: the pre-injury stage, before any wound on the tail is present, and the injury stage, where the tail is wounded and bleeding. Tail biting in the injury stage will reduce welfare of the bitten pig and the possible spread of infection is a health as well as welfare problem. The pigs that become tail biters may also suffer, because they are frustrated due to living in a stressful environment. This frustration may result in an excessive motivation for biting the tails of pen mates. This review aims to summarize recent research and theories in relation to tail biting. PMID:11681870

  13. Simultaneous determination of shikimic acid, salicylic acid and jasmonic acid in wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses.

    PubMed

    Scalabrin, Elisa; Radaelli, Marta; Capodaglio, Gabriele

    2016-06-01

    The presence and relative concentration of phytohormones may be regarded as a good indicator of an organism's physiological state. The integration of the rolC gene from Agrobacterium rhizogenes and of the rat glucocorticoid receptor (gr) in Nicotiana langsdorffii Weinmann plants has shown to determine various physiological and metabolic effects. The analysis of wild and transgenic N. langsdorffii plants, exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations) was conducted, in order to investigate the metabolic effects of the inserted genes in response to the applied stresses. The development of a new analytical procedure was necessary, in order to assure the simultaneous determination of analytes and to obtain an adequately low limit of quantification. For the first time, a sensitive HPLC-HRMS quantitative method for the simultaneous determination of salicylic acid, jasmonic acid and shikimic acid was developed and validated. The method was applied to 80 plant samples, permitting the evaluation of plant stress responses and highlighting some metabolic mechanisms. Salicylic, jasmonic and shikimic acids proved to be suitable for the comprehension of plant stress responses. Chemical and heat stresses showed to induce the highest changes in plant hormonal status, differently affecting plant response. The potential of each genetic modification toward the applied stresses was marked and particularly the resistance of the gr modified plants was evidenced. This work provides new information in the study of N. langsdorffii and transgenic organisms, which could be useful for the further application of these transgenes.

  14. Functional analysis of a phosphatidic acid binding domain in human Raf-1 kinase: mutations in the phosphatidate binding domain lead to tail and trunk abnormalities in developing zebrafish embryos.

    PubMed

    Ghosh, Sujoy; Moore, Sean; Bell, Robert M; Dush, Michael

    2003-11-14

    Previously, we and others identified a 35-amino acid segment within human Raf-1 kinase that preferentially binds phosphatidic acid. The presence of phosphatidic acid was found to be necessary for the translocation of Raf-1 to the plasma membrane. We have now employed a combination of alanine-scanning and deletion mutagenesis to identify the critical amino acid residues in Raf-1 necessary for interaction with phosphatidic acid. Progressive mutations within a tetrapeptide motif (residues 398-401 of human Raf-1) reduced and finally eliminated binding of Raf-1 to phosphatidic acid. We then injected zebrafish embryos with RNA encoding wild-type Raf-1 kinase or a mutant version with triple alanine mutations in the tetrapeptide motif and followed the morphological fate of embryonic development. Embryos with mutant but not wild-type Raf-1 exhibited defects in posterior axis formation exemplified by bent trunk and tail structures. Molecular evidence for lack of signaling through mutated Raf-1 was obtained by aberrant in situ hybridization of the ntl (no tail) gene, which functions downstream of Raf-1. Our results demonstrate that a functional phosphatidate binding site is necessary for Raf-1 function in embryonic development.

  15. Influence of decenylsuccinic Acid on water permeability of plant cells.

    PubMed

    Lee, O Y; Stadelmann, E J; Weiser, C J

    1972-11-01

    Decenylsuccinic acid altered permeability to water of epidermal cells of bulb scales of Allium cepa and of the leaf midrib of Rhoeo discolor. Water permeability, as determined by deplasmolysis time measurements, was related to the dose of undissociated decenylsuccinic acid (mm undissociated decenylsuccinic acid x minute). No relationship was found between permeability and total dose of decenylsuccinic acid, or dose of dissociated decenylsuccinic acid, suggesting that the undissociated molecule was the active factor in permeability changes and injury.At doses which did not damage cells (0.0008 to 0.6 [mm of the undissociated molecule x minute]) decenylsuccinic acid decreased water permeability. At higher doses (e.g., 4 to 8 [mm x minute]) injury to cells was common and decenylsuccinic acid increased permeability. Doses above the 10 to 20 (mm x minute) range were generally lethal. The plasmolysis form of uninjured cells was altered and protoplasmic swelling occasionally was observed. The dose-dependent reversal of water permeability changes (decreased to increased permeability) may reflect decenylsuccinic acid-induced changes in membrane structure. Reported effects of decenylsuccinic acid on temperature dependence of permeability and frost resistance were not verified. PMID:16658227

  16. Production of stilbenoids and phenolic acids by the peanut plant at early stages of growth.

    PubMed

    Sobolev, Victor S; Horn, Bruce W; Potter, Thomas L; Deyrup, Stephen T; Gloer, James B

    2006-05-17

    The peanut plant (Arachis hypogaea) is known to produce stilbene phytoalexins as a defensive response to fungal invasion; however, the distribution of phytoalexins among different organs of the peanut plant at early stages of growth under axenic conditions has not been studied. Axenic plants produced a stilbenoid, resveratrol, as well as soluble bound and free phenolic acids, including 4-methoxycinnamic acid, which is reported in peanuts for the first time. Neither resveratrol nor phenolic acids were found in the root mucilage; the prenylated stilbenes were restricted to the mucilage and were not found in other organs of the peanut plant. These findings may lead to a better understanding of the defensive role of peanut stilbenes and phenolic acids.

  17. ERT studies on tailings ponds of the Sierra Minera Cartagena-La Union, SE Spain (Invited)

    NASA Astrophysics Data System (ADS)

    Martinez-Pagan, P.; Faz-Cano, A.; Rosales-Aranda, M. R.

    2009-12-01

    The Sierra Minera Cartagena - La Union (SE Spain) is a huge area that has been mined for centuries. That mining extraction activity was particularly enormous in the second half of the twentieth century. By the early 1980’s almost all mineral deposits of this area had been depleted and the mineral processing plants had left 80 tailings ponds of different shape and height as a result of their activity. At the present, these former mining areas are close to important urban and industrial centers, where the tailings ponds are potential points of environmental and geotechnical concerns among others. In the 1972, there was also an important collapse of a tailings pond after a strong stormy event. Because of that, nowadays, there are several researcher groups working on the area with the goal of improving the environmental, geotechnical, safety, and use conditions of the tailings ponds. In this framework, the electrical resistivity tomography (ERT) method was used to obtain complementary information from the inner of the tailings ponds itself. Due to the high electrical resistivity contrast between the tailings and the hard-rock the geo-electrical methods became very useful in getting information about the bedrock geometry. In addition, where the tailing ponds have not been built up with a more complex interne structure (Figure 1) then it has been possible to obtain their construction history based on the grain distribution which is related in some extent to the electrical resistivity. In some cases, based on the fact of the presence of big cracks into the pond as pathways (Figure 2) where the mine acid waters are infiltrated easily, the use of ERT technique has proved its usefulness in highlighting them. Moreover, the ERT method can be an interesting tool in tailings ponds remediation works by delimiting the acid areas on the surface characterized by low electrical resistivity values.

  18. Natural toxins that affect plant amino acid metabolism

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A diverse range of natural compounds interfere with the synthesis and other aspects of amino acid metabolism. Some are amino acid analogues, but most are not. This review covers a number of specific natural phytotoxic compounds by molecular target site. Inhibition of glutamine synthetase is of part...

  19. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum.

    PubMed

    Vinale, Francesco; Flematti, Gavin; Sivasithamparam, Krishnapillai; Lorito, Matteo; Marra, Roberta; Skelton, Brian W; Ghisalberti, Emilio L

    2009-11-01

    A Trichoderma harzianum strain, isolated from composted hardwood bark in Western Australia, was found to produce a metabolite with antifungal and plant growth promoting activity. The structure and absolute configuration of the fungal compound, harzianic acid (1), were determined by X-ray diffraction studies. Harzianic acid showed antibiotic activity against Pythium irregulare, Sclerotinia sclerotiorum, and Rhizoctonia solani. A plant growth promotion effect was observed at low concentrations of 1.

  20. Floral Induction of Vegetative Plants Supplied a Purified Fraction of Deoxyribonucleic Acid from Stems of Flowering Plants 1

    PubMed Central

    Wardell, William L.

    1977-01-01

    It has been found that floral induced stems of flowering tobacco (Nicotiana tabacum cv. Wis. 38) plants contain large amounts of rapidly renaturing DNA, whereas noninduced stems of vegetative plants contain only small amounts. In addition, it has been shown that the striking qualitative difference in DNA between stems of flowering and vegetative plants mimics the over-all quantitative difference in DNA content (on a fresh weight basis). Therefore, the extra DNA in stems of flowering plants seems, at least in part, to represent preferential synthesis of rapidly renaturing DNA. Rapidly renatured DNA (flowering plants) has been purified (cesium chloride gradients) from heated-cooled DNA solution and under noninductive conditions has been tested for floral activity. It has been found that when rapidly renatured DNA in buffer solution is supplied to axillary vegetative buds of vegetative plants and then the axillary buds are defoliated every 4th day for 12 days, the treated buds change into flower buds. On the other hand, control axillary buds supplied buffer solution alone remain vegetative. In stem segments from flowering plants, the concept, discussed in previous reports, that indole-3-acetic acid may modify in vitro bud expression by directly affecting DNA synthesis has been reviewed. On the basis of this report, the concept is elaborated by proposing here that indole-3-acetic acid may act partially in bud expression by directly suppressing synthesis of rapidly renaturing DNA. PMID:16660207

  1. Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants.

    PubMed

    Rogalski, Marcelo; Carrer, Helaine

    2011-06-01

    The ability to manipulate plant fatty acid biosynthesis by using new biotechnological approaches has allowed the production of transgenic plants with unusual fatty acid profile and increased oil content. This review focuses on the production of very long chain polyunsaturated fatty acids (VLCPUFAs) and the increase in oil content in plants using molecular biology tools. Evidences suggest that regular consumption of food rich in VLCPUFAs has multiple positive health benefits. Alternative sources of these nutritional fatty acids are found in cold-water fishes. However, fish stocks are in severe decline because of decades of overfishing, and also fish oils can be contaminated by the accumulation of toxic compounds. Recently, there is also an increase in oilseed use for the production of biofuels. This tendency is partly associated with the rapidly rising costs of petroleum, increased concern about the environmental impact of fossil oil and the attractive need to develop renewable sources of fuel. In contrast to this scenario, oil derived from crop plants is normally contaminant free and less environmentally aggressive. Genetic engineering of the plastid genome (plastome) offers a number of attractive advantages, including high-level foreign protein expression, marker-gene excision and transgene containment because of maternal inheritance of plastid genome in most crops. Here, we describe the possibility to improve fatty acid biosynthesis in plastids, production of new fatty acids and increase their content in plants by genetic engineering of plastid fatty acid biosynthesis via plastid transformation.

  2. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gibberellic acid (GA), a plant hormone, regulates many crucial growth and developmental processes, including seed germination, leaf expansion, induction of flowering and stem elongation. A common problem in the production of ornamental potted plants is undesirably tall growth, so inhibitors of gibbe...

  3. Phosphoric acid fuel cell power plant system performance model and computer program

    NASA Technical Reports Server (NTRS)

    Alkasab, K. A.; Lu, C. Y.

    1984-01-01

    A FORTRAN computer program was developed for analyzing the performance of phosphoric acid fuel cell power plant systems. Energy mass and electrochemical analysis in the reformer, the shaft converters, the heat exchangers, and the fuel cell stack were combined to develop a mathematical model for the power plant for both atmospheric and pressurized conditions, and for several commercial fuels.

  4. Biogeochemistry of metalliferous mine tailings during phytostabilizatio

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Root, R. A.; Hammond, C.; Wang, Y.; Maier, R. M.

    2015-12-01

    In the semi-arid southwest US, legacy mine tailings and the associated metal(loid) contaminants, are prone to wind dispersion and water erosion. Without remediation, tailings can remain barren for decades to centuries, providing a point source of toxic contamination. Successful mitigation of toxins (As, Pb) from fugitive dust is often limited to confinement and stabilization. Capping mine tailings with soil or gravel is an accepted, although expensive, strategy to reduce erosion. Revegetation via assisted direct planting (also known as phytostabilization) has the potential to be a cost-effective and self-sustaining alternative "green-technology" to expensive capping. The impact of phytostabilization, and requisite added organic carbon and irrigation on mechanisms of contaminant mobility is being investigated with concurrent highly-instrumented greenhouse mesocosms and in situ field studies using advanced microbiological tools and synchrotron x-ray based molecular probes. Composted treatments initially neutralized the near surface acid tailings (~2 to ~6.5). However, after 9 mo the mesocosms showed a gradual and eventual decrease back to pH 2. The exception was the root zone of Atriplex lentiformis, which buffered the acidic conditions for 12 months. Rhizosphere microbiota experienced a 5-log increase in the compost-amended compared to control greenhouse mesocosms. Weathering of the primary sulfidic mineral assemblage, indicated by the iron and sulfur speciation, was shown to control the mobility, speciation and bioavailability of both As and Pb via sequestration in (meta)stable neoformed jarosite phases as plumbojarosite and As(V) substituted for sulfate in hydronium jarosite, with important implications for human and environmental health risk management. We conclude that the disequilibrium imposed by phytostabilization results in an increase of heterotrophic biomass that is concurrent with a time series of geochemical transformations, which controls the species

  5. Phytoremediation of uranium-contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants

    SciTech Connect

    Huang, J.W.; Blaylock, M.J.; Kapulnik, Y.; Ensley, B.D.

    1998-07-01

    Uranium phytoextraction, the use of plants to extract U from contaminated soils, is an emerging technology. The authors report on the development of this technology for the cleanup of U-contaminated soils. In this research, they investigated the effects of various soil amendments on U desorption from soil to soil solution, studied the physiological characteristics of U uptake and accumulation in plants, and developed techniques to trigger U hyperaccumulation in plants. A key to the success of U phytoextraction is to increase soil U availability to plants. The authors have found that some organic acids can be added to soils to increase U desorption from soil to soil solution and to trigger a rapid U accumulation in plants. Of the organic acids (acetic acid, citric acid, and malic acid) tested, citric acid was the most effective in enhancing U accumulation in plants. Shoot U concentrations of Brassica juncea and Brassica chinensis grown in a U-contaminated soil increased from less than 5 mg kg{sup {minus}1} to more than 5,000 mg kg{sup {minus}1} in citric acid-treated soils. To their knowledge, this is the highest shoot U concentration reported for plants grown on U-contaminated soils. Using this U hyperaccumulation technique, they are now able to increase U accumulation in shoots of selected plant species grown in two U-contaminated soils by more than 1,000-fold within a few days. The results suggest that U phytoextraction may provide an environmentally friendly alternative for the cleanup of U-contaminated soils.

  6. Fermentation of aqueous plant seed extracts by lactic acid bacteria

    SciTech Connect

    Schafner, D.W.; Beuchat, R.L.

    1986-05-01

    The effects of lactic acid bacterial fermentation on chemical and physical changes in aqueous extracts of cowpea (Vigna unguiculata), peanut (Arachis hypogea), soybean (Glycine max), and sorghum (Sorghum vulgare) were studied. The bacteria investigated were Lactobacillus helveticus, L. delbrueckii, L. casei, L. bulgaricus, L. acidophilus, and Streptococcus thermophilus. Organisms were inoculated individually into all of the seed extracts; L. bulgaricus and S. thermophilus were also evaluated together as inocula for fermenting the legume extracts. During fermentation, bacterial population and changes in titratable acidity, pH, viscosity, and color were measured over a 72 h period at 37 degrees C. Maximum bacterial populations, titratable acidity, pH, and viscosity varied depending upon the type of extract and bacterial strain. The maximum population of each organism was influenced by fermentable carbohydrates, which, in turn, influenced acid production and change in pH. Change in viscosity was correlated with the amount of protein and titratable acidity of products. Color was affected by pasteurization treatment and fermentation as well as the source of extract. In the extracts inoculated simultaneously with L. bulgaricus and S. thermophilus, a synergistic effect resulted in increased bacterial populations, titratable acidity, and viscosity, and decreased pH in all the legume extracts when compared to the extracts fermented with either of these organisms individually. Fermented extracts offer potential as substitutes for cultured dairy products. 24 references.

  7. D-erythroascorbic acid: Its preparations, chemistry, and metabolism (fungi and plants)

    SciTech Connect

    Loewus, F.A. . Inst. of Biological Chemistry); Seib, P.A. . Dept. of Grain Science and Industry)

    1990-01-01

    Sclerotinia sclerotiorum contains D-erythroascorbic acid (EAA) and a closely related reducing acid, possibly the open-chain form of EAA. The organism cleaves one of these products or possibly both to yield OA and D-glyceric acid. The OA is rapidly secreted into the medium. An analogy can be made between AA-linked OA biosynthesis in higher plants and EAA-linked OA biosynthesis in fungi as exemplified by S. sclerotiorum.

  8. Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones.

    PubMed

    Baccelli, Ivan; Mauch-Mani, Brigitte

    2016-08-01

    Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal. Here, we report on the effects of beta-aminobutyric acid, a priming agent with an exceptionally wide range of action and describe its way of preparing plants to defend themselves against various attacks, among others through the modulation of their hormonal defense signaling, and highlight the special role of abscisic acid in this process.

  9. Epidemiological-environmental study of lead acid battery workers. I. Environmental study of five lead acid battery plants.

    PubMed

    Jones, W; Gamble, J

    1984-10-01

    Industrial hygiene measurements were taken at five lead acid battery plants. The average of all personal samples for H2SO4 was 0.18 mg/m3 with a range of "nondetectable" to 1.7 mg/m3. Highest levels of acid were found in the charging and forming areas of the plants. Stibine and arsine were also detected in the charging and forming areas (means = 0.44 and 0.042 mg/m3, respectively). Arsenic in particulate form was also detected, but levels were low (means = 0.00083 mg/m3). The average mass median aerodynamic diameter of the acid mist as measured by cascade impactors was approximately 5 micron. Air lead results were variable with an overall average of 0.072 mg/m3 and a standard deviation of 0.11 mg/m3.

  10. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    SciTech Connect

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N{sub 2}O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH){sub 3}. Among the carboxylic acids investigated in this study the {alpha}-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments.

  11. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth.

    PubMed

    Saxena, Bhawna; Subramaniyan, Mayavan; Malhotra, Karan; Bhavesh, Neel Sarovar; Potlakayala, Shobha Devi; Kumar, Shashi

    2014-03-01

    Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.

  12. Biosynthesis of jasmonic acid in a plant pathogenic fungus, Lasiodiplodia theobromae.

    PubMed

    Tsukada, Kohei; Takahashi, Kosaku; Nabeta, Kensuke

    2010-12-01

    Jasmonic acid (JA) is a plant hormone that plays an important role in a wide variety of plant physiological processes. The plant pathogenic fungus, Lasiodiplodia theobromae also produces JA; however, its biosynthesis in this fungus has yet to be explored. Administration of [1-(13)C] and [2-(13)C] NaOAc into L. theobromae established that JA in this fungus originates from a fatty acid synthetic pathway. The methyl ester of 12-oxo-phytodienoic acid (OPDA) was detected in the culture extracts of L. theobromae by GC-MS analysis. This finding indicates the presence of OPDA (a known intermediate of JA biosynthesis in plants) in L. theobromae. (2)H NMR spectroscopic data of JA produced by L. theobromae with the incorporation of [9,10,12,13,15,16-(2)H(6)] linolenic acid showed that five deuterium atoms remained intact. In plants, this is speculated to arise from JA being produced by the octadecanoid pathway. However, the observed stereoselectivity of the cyclopentenone olefin reduction in L. theobromae was opposite to that observed in plants. These data suggest that JA biosynthesis in L. theobromae is similar to that in plants, but differing in the facial selectivity of the enone reduction. PMID:20952041

  13. Nematodes Associated with Plants from Naturally Acidic Wetlands Soil

    PubMed Central

    Cox, Robert John; Smart, Grover C.

    1994-01-01

    Four plants, Cyperus ochraceus, Eriocaulon compressum, Lythrum alatum, and Xyris jupicai, growing along the shoreline of an oligotrophic lake in north central Florida were sampled for nematodes. The nematodes recovered were placed in four trophic groups: bacterivores, herbivores, omnivores, and predators. When the nematodes on all plants were considered, 27% were bacterivores, 23% were herbivores, 7% were omnivores, and 43% were predators. Tripyla was the dominant predator and the dominant genus of all nematodes, and Malenchus was the dominant herbivore. Dominance was not clearly pronounced in the other trophic groups. PMID:19279927

  14. Nematodes associated with plants from naturally acidic wetlands soil.

    PubMed

    Cox, R J; Smart, G C

    1994-12-01

    Four plants, Cyperus ochraceus, Eriocaulon compressum, Lythrum alatum, and Xyris jupicai, growing along the shoreline of an oligotrophic lake in north central Florida were sampled for nematodes. The nematodes recovered were placed in four trophic groups: bacterivores, herbivores, omnivores, and predators. When the nematodes on all plants were considered, 27% were bacterivores, 23% were herbivores, 7% were omnivores, and 43% were predators. Tripyla was the dominant predator and the dominant genus of all nematodes, and Malenchus was the dominant herbivore. Dominance was not clearly pronounced in the other trophic groups.

  15. Pb uptake and toxicity to Iris halophila tested on Pb mine tailing materials.

    PubMed

    Han, Yulin; Zhang, Lili; Yang, Yongheng; Yuan, Haiyan; Zhao, Jiuzhou; Gu, Jiguang; Huang, Suzhen

    2016-07-01

    Pb tolerant mechanisms, plant physiological response and Pb sub-cellular localization in the root cells of Iris halophila were studied in sand culture and the Pb mine tailings. Results showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) in the underground parts and the activity of catalase (CAT) in the aboveground and underground parts increased as Pb level was enhanced. Glutathione (GSH) and ascorbic acid (AsA) contents increased by Pb treatments. Pb deposits were found in the middle cell walls or along the inner side of epibiotic protoplasm of some cells which accumulated a large quantity of Pb and died. The dry weights (DWs) of aboveground parts under all Pb tailings treatments decreased insignificantly, while the DW of the underground parts growing in the pure Pb tailings decreased significantly. Pb, Cu, Cd, and Zn contents increased significantly as the levels of Pb tailings were enhanced and Pb contents in the aboveground and underground parts reached 64.75 and 751.75 μg/g DW, respectively, at pure Pb tailings treatment. The results indicated that I. halophila is a promising plant in the phytoremediation of Pb contaminated environment. Some antioxidant enzymes, antioxidants and compartmentalization of Pb were played major roles in Pb tolerance of I. halophila. PMID:27131809

  16. First record of soybean as a host plant of a subspecies of the eastern tailed-blue, Cupido comyntas comyntas (Lepidoptera: Lycaenidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A multitude of invertebrate herbivores feeds upon soybean in North America, with many species considered to be pests of soybean in northern U.S. production areas. Cupido comyntas, the eastern tailed-blue (Lepidoptera: Lycaenidae), is a legume-feeding caterpillar native to North America. One of its...

  17. Alteration of plant physiology by glyphosate and its by-product aminomethylphosphonic acid: an overview.

    PubMed

    Gomes, Marcelo P; Smedbol, Elise; Chalifour, Annie; Hénault-Ethier, Louise; Labrecque, Michel; Lepage, Laurent; Lucotte, Marc; Juneau, Philippe

    2014-09-01

    It is generally claimed that glyphosate kills undesired plants by affecting the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) enzyme, disturbing the shikimate pathway. However, the mechanisms leading to plant death may also be related to secondary or indirect effects of glyphosate on plant physiology. Moreover, some plants can metabolize glyphosate to aminomethylphosphonic acid (AMPA) or be exposed to AMPA from different environmental matrices. AMPA is a recognized phytotoxin, and its co-occurrence with glyphosate could modify the effects of glyphosate on plant physiology. The present review provides an overall picture of alterations of plant physiology caused by environmental exposure to glyphosate and its metabolite AMPA, and summarizes their effects on several physiological processes. It particularly focuses on photosynthesis, from photochemical events to C assimilation and translocation, as well as oxidative stress. The effects of glyphosate and AMPA on several plant physiological processes have been linked, with the aim of better understanding their phytotoxicity and glyphosate herbicidal effects. PMID:25039071

  18. Very long chain fatty acid and lipid signaling in the response of plants to pathogens

    PubMed Central

    Raffaele, Sylvain; Leger, Amandine

    2009-01-01

    Recent findings indicate that lipid signaling is essential for plant resistance to pathogens. Besides oxylipins and unsaturated fatty acids known to play important signaling functions during plant-pathogen interactions, the very long chain fatty acid (VLCFA) biosynthesis pathway has been recently associated to plant defense through different aspects. VLCFAs are indeed required for the biosynthesis of the plant cuticle and the generation of sphingolipids. Elucidation of the roles of these lipids in biotic stress responses is the result of the use of genetic approaches together with the identification of the genes/proteins involved in their biosynthesis. This review focuses on recent observations which revealed the complex function of the cuticle and cuticle-derived signals, and the key role of sphingolipids as bioactive molecules involved in signal transduction and cell death regulation during plant-pathogen interactions. PMID:19649180

  19. Electrodialytic remediation of copper mine tailings.

    PubMed

    Hansen, Henrik K; Rojo, Adrián; Ottosen, Lisbeth M

    2005-01-31

    Mining activities in Chile have generated large amounts of solid waste, which have been deposited in mine tailing impoundments. These impoundments cause concern to the communities due to dam failures or natural leaching to groundwater and rivers. This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2 V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2 V/cm. The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20 V using approximately 1.8 kg mine tailing on dry basis. In addition, experiments with acidic tailing show that the copper removal is proportional with time.

  20. Gene-Enzyme Relationships of Aromatic Amino Acid Biosynthesis in Higher Plants

    SciTech Connect

    2002-08-12

    Inhibition studies of amino acids in Nicotiana silvestris suspension cells gave clues to the difficulties for obtaining mutants deficient in post prephenate pathway proteins of aromatic amino acid biosynthesis (prephenate aminotransferase, arogenate dehydrogenase and arogenate dehydratase). Such mutants, if successfully obtained, would allow gene-enzyme relationships of aromatic amino acid proteins to be studied. We found that amino acids were inhibitory toward plant cell growth, and thus were unable to rescue analog resistant mutants. Toxicity of all amino acids toward exponentially dividing Nicotiana silvestris suspension cultured cells was monitored by following growth rates. Except for L-glutamine, all 19 protein amino acids inhibited cell growth. Inhibition of growth progressed to cell deterioration. Electron microscopy showed that amino acids triggered a state of cell shrinkage that eventually degenerated to total cellular disorganization. L-glutamine was not only an effective agent for prevention of amino acid toxicity, but enhanced the final growth yield. L-glutamine also was able to completely reverse inhibition effects in cells that had been in the slowed exponential phase. Two types of inhibition occurred and we have proposed that any amino acid inhibition that can be completely antagonized by L-glutamine be called ''general amino acid inhibition''. ''Specific amino acid inhibition'' resulting from particular pathway imbalances caused by certain exogenous amino acids, can be recognized and studied in the presence of L-glutamine which can abolishes the complication effects of general amino acid inhibition.

  1. Effect of the structure of gallic acid and its derivatives on their interaction with plant ferritin.

    PubMed

    Wang, Qunqun; Zhou, Kai; Ning, Yong; Zhao, Guanghua

    2016-12-15

    Gallic acid and its derivatives co-exist with protein components in foodstuffs, but there is few report on their interaction with proteins. On the other hand, plant ferritin represents not only a novel class of iron supplement, but also a new nanocarrier for encapsulation of bioactive nutrients. However, plant ferritin is easy to be degraded by pepsin in the stomach, thereby limiting its application. Herein, we investigated the interaction of gallic acid and its derivatives with recombinant soybean seed H-2 ferritin (rH-2). We found that these phenolic acids interacted with rH-2 in a structure-dependent manner; namely, gallic acid (GA), methyl gallate (MEGA) and propyl gallate (PG) having three HO groups can bind to rH-2, while their analogues with two HO groups cannot. Consequently, such binding largely inhibited ferritin degradation by pepsin. These findings advance our understanding of the relationship between the structure and function of phenolic acids.

  2. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies.

  3. A Binary Host Plant Volatile Lure Combined With Acetic Acid to Monitor Codling Moth (Lepidoptera: Tortricidae).

    PubMed

    Knight, A L; Basoalto, E; Katalin, J; El-Sayed, A M

    2015-10-01

    Field studies were conducted in the United States, Hungary, and New Zealand to evaluate the effectiveness of septa lures loaded with ethyl (E,Z)-2,4-decadienoate (pear ester) and (E)-4,8-dimethyl-1,3,7-nonatriene (nonatriene) alone and in combination with an acetic acid co-lure for both sexes of codling moth, Cydia pomonella (L.). Additional studies were conducted to evaluate these host plant volatiles and acetic acid in combination with the sex pheromone, (E,E)-8,10-dodecadien-1-ol (codlemone). Traps baited with pear ester/nonatriene + acetic acid placed within orchards treated either with codlemone dispensers or left untreated caught significantly more males, females, and total moths than similar traps baited with pear ester + acetic acid in some assays. Similarly, traps baited with codlemone/pear ester/nonatriene + acetic acid caught significantly greater numbers of moths than traps with codlemone/pear ester + acetic acid lures in some assays in orchards treated with combinational dispensers (dispensers loaded with codlemone/pear ester). These data suggest that monitoring of codling moth can be marginally improved in orchards under variable management plans using a binary host plant volatile lure in combination with codlemone and acetic acid. These results are likely to be most significant in orchards treated with combinational dispensers. Significant increases in the catch of female codling moths in traps with the binary host plant volatile blend plus acetic acid should be useful in developing more effective mass trapping strategies. PMID:26314018

  4. Multihydroxylation of ursolic acid by Pestalotiopsis microspora isolated from the medicinal plant Huperzia serrata.

    PubMed

    Fu, Shao-bin; Yang, Jun-shan; Cui, Jin-long; Meng, Qing-feng; Feng, Xu; Sun, Di-An

    2011-10-01

    The structural modification of ursolic acid by an endophytic fungus Pestalotiopsis microspora, isolated from medicinal plant Huperzia serrata was reported for the first time. The structure diversity was very important for the SAR study of ursolic acid and its derivatives. Incubation of ursolic acid 1 with P. microspora afforded four metabolites: 3-oxo-15α, 30-dihydroxy-urs-12-en-28-oic acid (2), 3β, 15α-dihydroxy-urs-12-en-28-oic acid (3), 3β, 15α, 30- trihydroxy-urs-12-en-28-oic acid (4) and 3,4-seco-ursan-4,30-dihydroxy-12-en-3,28-dioic acid (5). All products were new compounds and their structures elucidation was mainly based on the spectroscopic data.

  5. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture.

    PubMed

    Hernandez, Ludwi Rodríguez; Mendiola, Martha A Rodríguez; Castro, Carlos Arias; Gutiérrez-Miceli, Federico A

    2015-01-01

    The influence of Naphtaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP) on callus formation, its morphology and fatty acids profile were examined from Jatropha curcas L. Embryo from seeds of J. curcas L. were sown in Murashige and skoog (MS) medium with NAA and BAP. All treatments induced callus formation, however callus morphology was different in most of the treatments. Higher callus biomass was presented with 1.0 NAA + 0.5 BAP mg/L. Plant growth regulators modifies the fatty acids profile in callus of J. curcas L. BAP was induced linoleic and linolenic acids.

  6. Effect of plant growth regulators on fatty acids composition in Jatropha curcas L. callus culture.

    PubMed

    Hernandez, Ludwi Rodríguez; Mendiola, Martha A Rodríguez; Castro, Carlos Arias; Gutiérrez-Miceli, Federico A

    2015-01-01

    The influence of Naphtaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP) on callus formation, its morphology and fatty acids profile were examined from Jatropha curcas L. Embryo from seeds of J. curcas L. were sown in Murashige and skoog (MS) medium with NAA and BAP. All treatments induced callus formation, however callus morphology was different in most of the treatments. Higher callus biomass was presented with 1.0 NAA + 0.5 BAP mg/L. Plant growth regulators modifies the fatty acids profile in callus of J. curcas L. BAP was induced linoleic and linolenic acids. PMID:25757437

  7. Local and Systemic Biosynthesis of Salicylic Acid in Infected Cucumber Plants.

    PubMed Central

    Meuwly, P.; Molders, W.; Buchala, A.; Metraux, J. P.

    1995-01-01

    Radiolabeling studies showed that salicylic acid (SA), an essential component in the signal transduction pathway leading to systemic acquired resistance, is synthesized from phenylalanine (Phe) and benzoic acid in cucumber (Cucumis sativus L.) plants inoculated with pathogens. Leaf discs from plants inoculated with either tobacco necrosis virus or Pseudomonas lachrymans incorporated more [14C]Phe into [14C]SA than mock-inoculated controls. The identity of SA was confirmed by gas chromatography-mass spectrometry. No reduction in specific activity of [14C]SA was observed for either free or bound SA between control and infected plants after feeding [14C]Phe. A specific inhibitor of Phe ammonia-lyase, 2-aminoindan-2-phosphonic acid, completely inhibited the incorporation of [14C]Phe into [14C]SA, although plants treated with 2-aminoindan-2-phosphonic acid could still produce [14C]SA from [14C]benzoic acid. Biosynthesis of SA in tissue inoculated with tobacco necrosis virus followed a transient pattern with the highest induction occurring 72 h postinoculation. Uninfected tissues from an infected plant synthesized de novo more SA than did controls. This suggests the involvement of a systemic signal triggering SA synthesis in tissue distant from the site of infection that display systemic acquired resistance. PMID:12228656

  8. Effects of a mixture of fatty acids from sugar cane (Saccharum officinarum L.) wax oil in two models of inflammation: zymosan-induced arthritis and mice tail test of psoriasis.

    PubMed

    Ledón, N; Casacó, A; Remirez, D; González, A; Cruz, J; González, R; Capote, A; Tolón, Z; Rojas, E; Rodríguez, V J; Merino, N; Rodríguez, S; Ancheta, O; Cano, M C

    2007-10-01

    A mixture of fatty acids obtained from sugar cane (Saccharum officinarum L.) wax oil (FAM), in which the main constituents are palmitic, oleic, linoleic, and linolenic acids, was evaluated in two models of inflammation: zymosan-induced arthritis and in the tail test for psoriasis, both on mice. In the first model, FAM significantly reduced zymozan-induced increase of beta glucuronidase (DE(50) 90+/-7 mg/kg). Histopathological studies showed inhibition in cellular infiltration and reduction of synovial hyperplasia and synovitis, whereas in the second test, histopathological and ultrastructural studies showed that topical application of FAM induced orthokeratosis with the presence of keratohyalin granules in the previously parakeratotic adult mouse tail, and without effects on epidermal thickness. The ED(50) of FAM in this model was 155+/-10 mg. The results of our studies showed that topical application of FAM exerts an important anti-inflammatory activity in both tests without evidence of irritant effects. The anti-inflamatory effects exerted by FAM may be due to its inhibitory effects on arachidonic acid metabolism. To our knowledge, this is the first report on the anti-inflammatory effect of sugar cane by-products in experimental models of arthritis and psoriasis.

  9. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants

    SciTech Connect

    Dallam, R.D.

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H/sub 2//sup 35/SO/sub 4/) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato. 9 references, 2 figures, 5 tables.

  10. Sulfate metabolism. I. Sulfate uptake and redistribution of acid rain sulfate by edible plants.

    PubMed

    Dallam, R D

    1987-03-23

    Sulfur is the major component of polluted air in industrialized societies. Atmospheric sulfur is converted to sulfuric acid through a series of chemical reactions which can eventually reenter many ecosystems. When edible plants are grown in soils containing varying amounts of sulfate, the roots take up and transport inorganic sulfate to the stems and leaves. The sulfate taken up by the roots and the amount transported to the stem and leaves was found to be a function of the concentration of sulfate in the soil. Inorganic sulfate taken up by a corn plant seedling can be rapidly converted to organic sulfate by the root system. Nine days after one of a pair of pea plants was inoculated with artificial acid rain sulfate (dilute H2 35SO4) it was found that the sulfate was translocated not only in the inoculated plant, but also to the uninoculated pea plant in the same container. Also, when the leaves of a mature potato plant were inoculated with artificial acid rain sulfate it was found that the sulfate was translocated into the edible potatoes. Fractionation of the potatoes showed that most of the sulfate was water soluble of which 30% was inorganic sulfate and 70% was in the form of organic sulfur. One third of the non-water soluble translocated acid rain sulfate was equally divided between lipid and non-lipid organic sulfur of the potato.

  11. Changes in fatty acid composition in plant tissues expressing a mammalian delta9 desaturase.

    PubMed

    Moon, H; Hazebroek, J; Hildebrand, D F

    2000-05-01

    Plant tissues expressing a mammalian stearoyl-CoA delta9 desaturase were reported to accumulate delta9 hexadecenoic acid (16:1), normally very minor in most plant tissues. The transgenic plants were thoroughly analyzed for alterations of individual lipids in different subcellular sites. Western blot analysis indicated that the animal desaturase was targeted to the microsomes. The delta9 16:1 was incorporated into both the sn-1 and sn-2 positions of all the major membrane lipids tested, indicating that the endoplasmic reticulum acyltransferases do not exclude unsaturated C16 fatty acids from the sn-2 position. In addition to increases in monounsaturated and decreases in saturated fatty acids, accumulation of 16:1 was accompanied by a reduction in 18:3 in all the lipids tested except phosphatidylglycerol, and increases in 18:2 in phospholipids. Total C16 fatty acid content in the galactolipids of the transgenics was significantly higher than that in the control, but those in the phospholipids were unchanged. In transgenics, delta11 18:1 was detected in the sn-1 position of the lipids tested except phosphatidylinositol and phosphatidylserine. Introduction of the animal desaturase, controlled by a seed-specific phaseolin promoter, into soybean somatic embryo resulted in a significant reduction in saturated fatty acids. Such effects were greater in cotyledons than hypocotyl-radicles. This study demonstrated that the animal desaturase can be used to decrease the levels of saturated fatty acids in a crop plant. PMID:10907781

  12. Effects of root-zone acidity on utilization of nitrate and ammonium in tobacco plants

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1989-01-01

    Tobacco (Nicotiana tabacum L., cv. 'Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3- or 1.0 mM NH4+ as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3- or NH4+ uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO3- [correction of NO-] was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4+ was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3(-) -fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4(+) -fed plants was increased to pH 4.0, however, specific rate of NH4+ uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4(+) -fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4(+) -fed plants to increased root-zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.

  13. Acidic deposition, plant pests, and the fate of forest ecosystems.

    PubMed

    Gragnani, A; Gatto, M; Rinaldi, S

    1998-12-01

    We present and analyze a nonlinear dynamical system modelling forest-pests interactions and the way they are affected by acidic deposition. The model includes mechanisms of carbon and nitrogen exchange between soil and vegetation, biomass decomposition and microbial mineralization, and defoliation by pest grazers, which are partially controlled by avian or mammalian predators. Acidic deposition is assumed to directly damage vegetation, to decrease soil pH, which in turn damages roots and inhibits microbial activity, and to predispose trees to increased pest attack. All the model parameters are set to realistic values except the inflow of protons to soil and the predation mortality inflicted to the pest which are allowed to vary inside reasonable ranges. A numerical bifurcation analysis with respect to these two parameters is carried out. Five functioning modes are uncovered: (i) pest-free equilibrium; (ii) pest persisting at endemic equilibrium; (iii) forest-pest permanent oscillations; (iv) bistable behavior with the system converging either to pest-free equilibrium or endemic pest presence in accordance with initial conditions; (v) bistable behavior with convergence to endemic pest presence or permanent oscillations depending on initial conditions. Catastrophic bifurcations between the different behavior modes are possible, provided the abundance of predators is not too small. Numerical simulation shows that increasing acidic load can lead the forest to collapse in a short time period without important warning signals.

  14. Selecting Rhizobium meliloti for inoculation of alfalfa planted in acid soils

    SciTech Connect

    Lowendorf, H.S.; Alexander, M.

    1983-01-01

    The study was conducted to obtain Rhizobium meliloti strains suitable for use with alfalfa grown in acid soils. Thirteen strains of R. meliloti were examined for their ability to grow in acidified culture media and seven of these were characterized for the ability to surive in acid and limed nonsterile soils or grow in the presence of the host legume, Medicago sativa L. The pH values of the most acid, defined medium that permitted growth of the bacteria from a small inoculum ranged from pH 5.3 to 6.0. For R. meliloti 411SE1 and GH1-1SE1, the minimum pH that allowed for growth, the critical pH, was not a dependable indicator of survival in a more acid medium. Strains of R. meliloti with relatively low critical pH values survived better in a limed soil but not in acid soils than strains with higher critical pH values. Three strains of R. meliloti previously identified as good inoculants for alfalfa in acid soils did not consistently survive beter than other strains in a planted or unplanted acid soil of pH 5.3. However, the plants increase the population densities of these three strains more than other strains. These results suggest that R. meliloti strains suitable for inoculation of alfalfa in acid soils may be selected not by simple saprophytic properties but by their stimulation by the host legume in acid soils.

  15. Fatty acid constituents of Peganum harmala plant using Gas Chromatography–Mass Spectroscopy

    PubMed Central

    Moussa, Tarek A.A.; Almaghrabi, Omar A.

    2015-01-01

    Fatty acid contents of the Peganum harmala plant as a result of hexane extraction were analyzed using GC–MS. The saturated fatty acid composition of the harmal plant was tetradecanoic, pentadecanoic, tridecanoic, hexadecanoic, heptadecanoic and octadecanoic acids, while the saturated fatty acid derivatives were 12-methyl tetradecanoic, 5,9,13-trimethyl tetradecanoic and 2-methyl octadecanoic acids. The most abundant fatty acid was hexadecanoic with concentration 48.13% followed by octadecanoic with concentration 13.80%. There are four unsaturated fatty acids called (E)-9-dodecenoic, (Z)-9-hexadecenoic, (Z,Z)-9,12-octadecadienoic and (Z,Z,Z)-9,12,15-octadecatrienoic. The most abundant unsaturated fatty acid was (Z,Z,Z)-9,12,15-octadecatrienoic with concentration 14.79% followed by (Z,Z)-9,12-octadecadienoic with concentration 10.61%. Also, there are eight non-fatty acid compounds 1-octadecene, 6,10,14-trimethyl-2-pentadecanone, (E)-15-heptadecenal, oxacyclohexadecan-2 one, 1,2,2,6,8-pentamethyl-7-oxabicyclo[4.3.1]dec-8-en-10-one, hexadecane-1,2-diol, n-heneicosane and eicosan-3-ol. PMID:27081366

  16. The kangaroo's tail propels and powers pentapedal locomotion

    PubMed Central

    O'Connor, Shawn M.; Dawson, Terence J.; Kram, Rodger; Donelan, J. Maxwell

    2014-01-01

    When moving slowly, kangaroos plant their tail on the ground in sequence with their front and hind legs. To determine the tail's role in this ‘pentapedal’ gait, we measured the forces the tail exerts on the ground and calculated the mechanical power it generates. We found that the tail is responsible for as much propulsive force as the front and hind legs combined. It also generates almost exclusively positive mechanical power, performing as much mass-specific mechanical work as does a human leg during walking at the same speed. Kangaroos use their muscular tail to support, propel and power their pentapedal gait just like a leg. PMID:24990111

  17. Fortifying plants with the essential amino acids lysine and methionine to improve nutritional quality.

    PubMed

    Galili, Gad; Amir, Rachel

    2013-02-01

    Humans, as well as farm animals, cannot synthesize a number of essential amino acids, which are critical for their survival. Hence, these organisms must obtain these essential amino acids from their diets. Cereal and legume crops, which represent the major food and feed sources for humans and livestock worldwide, possess limiting levels of some of these essential amino acids, particularly Lys and Met. Extensive efforts were made to fortify crop plants with these essential amino acids using traditional breeding and mutagenesis. However, aside from some results obtained with maize, none of these approaches was successful. Therefore, additional efforts using genetic engineering approaches concentrated on increasing the synthesis and reducing the catabolism of these essential amino acids and also on the expression of recombinant proteins enriched in them. In the present review, we discuss the basic biological aspects associated with the synthesis and accumulation of these amino acids in plants and also describe recent developments associated with the fortification of crop plants with essential amino acids by genetic engineering approaches.

  18. Higher plant metabolism and energetics in hypogravity: Amino acid metabolism in higher plants

    NASA Technical Reports Server (NTRS)

    Mazelis, M.

    1976-01-01

    Laboratory's investigation into the amino acid metabolism of dwarf marigolds exposed to an environment of simulated hypogravity is summarized. Using both in vivo, and/or in vitro studies, the following effects of hypogravitational stress have been shown: (1) increased proline incorporation into cell wall protein, (2) inhibition of amino acid decarboxylation, (3) decrease in glutamic acid decarboxylase activity; and (4) decrease in the relative amount of a number of soluble amino acids present in deproteinized extracts of marigold leaves. It is concluded from these data there are several rapid, major alterations in amino acid metabolism associated with hypogravitational stress in marigolds. The mechanism(s) and generality of these effects with regard to other species is still unknown.

  19. Tundra plant uptake of amino acid and NH{sub 4}{sup +} nitrogen in situ: Plants compete well for amino acid N{sup 1}

    SciTech Connect

    Schimel, J.P.; Chapin, F.S. III

    1996-10-01

    Traditional models of nutrient cycling assume that soil microorganisms must decompose organic matter, releasing inorganic N, to make N available to plants. Several lines of evidence have raised doubts about this assumption in arctic tundra, but no firm evidence existed. Here we demonstrate that Eriophorum vaginatum and Carex aquatilis, two tundra sedges, compete well for glycine and asparate N relative to NH{sub 4}{sup +} in situ. At relatively high concentrations (25 {mu}g N/g soil), during the peak of the season, E. vaginatum took up amino acid N more rapidly than NH{sub 4}{sup +}, while later in the season and at lower concentrations (2-4 {mu}g N/g soil) both E. vaginatum and C. aqualtilis took up glycine N and NH{sub 4}{sup +} at similar rates. These results are incompatible with a simple mechanism of amino acid mineralization followed by plant uptake of the released N. These results indicate that these tundra plants have active mechanisms for enhancing their access to amino acid N in situ. 18 refs., 4 tabs.

  20. Lipids in salicylic acid-mediated defense in plants: focusing on the roles of phosphatidic acid and phosphatidylinositol 4-phosphate

    PubMed Central

    Zhang, Qiong; Xiao, Shunyuan

    2015-01-01

    Plants have evolved effective defense strategies to protect themselves from various pathogens. Salicylic acid (SA) is an essential signaling molecule that mediates pathogen-triggered signals perceived by different immune receptors to induce downstream defense responses. While many proteins play essential roles in regulating SA signaling, increasing evidence also supports important roles for signaling phospholipids in this process. In this review, we collate the experimental evidence in support of the regulatory roles of two phospholipids, phosphatidic acid (PA), and phosphatidylinositol 4-phosphate (PI4P), and their metabolizing enzymes in plant defense, and examine the possible mechanistic interaction between phospholipid signaling and SA-dependent immunity with a particular focus on the immunity-stimulated biphasic PA production that is reminiscent of and perhaps mechanistically connected to the biphasic reactive oxygen species (ROS) generation and SA accumulation during defense activation. PMID:26074946

  1. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis.

    PubMed

    Mata-Pérez, Capilla; Sánchez-Calvo, Beatriz; Padilla, María N; Begara-Morales, Juan C; Luque, Francisco; Melguizo, Manuel; Jiménez-Ruiz, Jaime; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel; Corpas, Francisco J; Barroso, Juan B

    2016-02-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant's development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  2. Good and bad protons: genetic aspects of acidity stress responses in plants.

    PubMed

    Shavrukov, Yuri; Hirai, Yoshihiko

    2016-01-01

    Physiological aspects of acidity stress in plants (synonymous with H(+) rhizotoxicity or low-pH stress) have long been a focus of research, in particular with respect to acidic soils where aluminium and H(+) rhizotoxicities often co-occur. However, toxic H(+) and Al(3+) elicit different response mechanisms in plants, and it is important to consider their effects separately. The primary aim of this review was to provide the current state of knowledge regarding the genetics of the specific reactions to low-pH stress in growing plants. A comparison of the results gleaned from quantitative trait loci analysis and global transcriptome profiling of plants in response to high proton concentrations revealed a two-stage genetic response: (i) in the short-term, proton pump H(+)-ATPases present the first barrier in root cells, allocating an excess of H(+) into either the apoplast or vacuole; the ensuing defence signaling system involves auxin, salicylic acid, and methyl jasmonate, which subsequently initiate expression of STOP and DREB transcription factors as well as chaperone ROF; (2) the long-term response includes other genes, such as alternative oxidase and type II NAD(P)H dehydrogenase, which act to detoxify dangerous reactive oxygen species in mitochondria, and help plants better manage the stress. A range of transporter genes including those for nitrate (NTR1), malate (ALMT1), and heavy metals are often up-regulated by H(+) rhizotoxicity. Expansins, cell-wall-related genes, the γ-aminobutyric acid shunt and biochemical pH-stat genes also reflect changes in cell metabolism and biochemistry in acidic conditions. However, the genetics underlying the acidity stress response of plants is complicated and only fragmentally understood.

  3. Root Environment Acidity as a Regulatory Factor in Ammonium Assimilation by the Bean Plant 1

    PubMed Central

    Barker, A. V.; Volk, R. J.; Jackson, W. A.

    1966-01-01

    Previous experiments have revealed a much greater efficiency of ammonium utilization by bean plants (Phaseolus vulgaris L.) when the acidity of the ambient medium was maintained at near-neutral conditions with carbonates or hydroxides. The present investigation, in which 15N-labeled ammonium was used, permitted an assessment of the origin of nitrogen in tissue nitrogen pools with and without acidity control (CaCO3 treated and untreated, respectively) in the root environment. Control of acidity resulted in greater ammonium uptake and greater incorporation into the amino fraction, amide, and ethanol-insoluble nitrogen by the root tissue. These differences were clearly evident by the fifth day after ammonium nitrogen had been applied. Shoots of the untreated plants rapidly accumulated free ammonium and amino nitrogen. A substantial portion of both fractions came from pre-existing nitrogen in the plants, indicating significant protein degradation. No evidence was found for such degradation in the roots of the untreated plants or in either roots or shoots of CaCO3 treated plants. The data indicate that control of ambient acidity in the root environment during ammonium absorption enhanced the conversion of entering ammonium to organic nitrogen compounds in the root tissue thereby restricting movement of free ammonium to shoots. Consequently, the detrimental effects of high ammonium concentrations in the leaves were largely prevented. PMID:16656383

  4. Marsh plant response to metals: Exudation of aliphatic low molecular weight organic acids (ALMWOAs)

    NASA Astrophysics Data System (ADS)

    Rocha, A. Cristina S.; Almeida, C. Marisa R.; Basto, M. Clara P.; Vasconcelos, M. Teresa S. D.

    2016-03-01

    Metal exposure is known to induce the production and secretion of substances, such as aliphatic low molecular weight organic acids (ALMWOAs), into the rhizosphere by plant roots. Knowledge on this matter is extensive for soil plants but still considerably scarce regarding marsh plants roots adapted to high salinity media. Phragmites australis and Halimione portulacoides, two marsh plants commonly distributed in European estuarine salt marshes, were used to assess the response of roots of both species, in terms of ALMWOAs exudation, to Cu, Ni and Cd exposure (isolated and in mixture since in natural environment, they are exposed to mixture of metals). As previous studies were carried out in unrealistic and synthetic media, here a more natural medium was selected. Therefore, in vitro experiments were carried out, with specimens of both marsh plants, and in freshwater contaminated with two different Cu, Ni and Cd concentrations (individual metal and in mixture). Both marsh plants were capable of liberating ALMWOAs into the surrounding medium. Oxalic, citric and maleic acids were found in P. australis root exudate solutions and oxalic and maleic acids in H. portulacoides root exudate solutions. ALMWOA liberation by both plants was plant species and metal-dependent. For instance, Cu affected the exudation of oxalic acid by H. portulacoides and of oxalic and citric acids by P. australis roots. In contrast, Ni and Cd did not stimulate any specific response. Regarding the combination of all metals, H. portulacoides showed a similar response to that observed for Cu individually. However, in the P. australis case, at high metal concentration mixture, a synergetic effect led to the increase of oxalic acid levels in root exudate solution and to a decrease of citric acid liberation. A correlation between ALMWOAs exudation and metal accumulation could not be established. P. australis and H. portulacoides are considered suitable metal phytoremediators of estuarine impacted areas

  5. Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials

    NASA Astrophysics Data System (ADS)

    Araújo, Geórgia C. L.; Gonzalez, Mário H.; Ferreira, Antônio G.; Nogueira, Ana Rita A.; Nóbrega, Joaquim A.

    2002-12-01

    The efficiency of microwave-assisted acid digestion of plants using different concentrations of nitric acid (2.0, 3.0, 5.0, 7.0 and 14 mol l -1) with hydrogen peroxide (30% v/v) was evaluated by measuring the residual carbon content (RCC) using inductively coupled plasma optical emission spectrometry (ICP-OES) with axial viewing. Certified reference materials were used for evaluating the accuracy attained when 2 mol l -1 HNO 3 was employed for digestion. Under all experimental conditions RCC values were always lower than 13% w/v, and even the highest concentration did not cause any interference with element recovery. It seems that the high pressure reached for closed-vessel operation improved the oxidative action of nitric acid due to consequent temperature increase, even when this reagent was not used at high concentrations. According to acid-base titration data, residual acid in the digestates varied from 1.2 to 4.0 mol l -1, depending on the acid concentration initially added. It can be concluded that for plant materials, microwave-assisted acid digestion can be carried out under mild conditions, which implies that digestates do not need extensive dilution before introduction by pneumatic nebulization to ICP-OES. An additional advantage is the lower amount of residue generated when working with less concentrated acid solutions.

  6. Plant resistance mechanisms to air pollutants: rhythms in ascorbic acid production during growth under ozone stress

    SciTech Connect

    Lee, E.H. )

    1991-01-01

    Relationships between ozone (O3) tolerance and leaf ascorbic acid concentrations in O3-susceptible (O3-S) 'Hark' and O3-resistant (O3-R) 'Hood' soybean, Glycine max (L.) Merr., cultivars were examined with high-performance liquid chromatography (HPLC). Leaf samples were analyzed at 4 intervals during a 24 h period. Soybean cultivars grown in the greenhouse with charcoal filtered (CF) and nonfiltered (NF) air showed daily oscillations in ascorbic acid production. Highest ascorbic acid levels in leaves during light coincided with highest concentrations of photochemical oxidants in the atmosphere at 2:00 p.m. The resistant genotype produced more ascorbic acid in its trifoliate leaves than did the corresponding susceptible genotype. Under CF air (an O3-reduced environment) O3-S and O3-R cultivars showed rhythms in ascorbic acid production. In NF air (an O3 stress environment) the O3-R cultivar alone showed rhythms in ascorbic acid production. Results indicated that superior O3 tolerance in the Hood soybean cultivar (compared with Hark) was associated with a greater increase in endogenous levels of ascorbic acid. Ascorbic acid may scavenge free radicals and thereby protect cells from injury by O3 or other oxyradical products. Plants defend themselves against photochemical oxidant stress, such as O3, by several mechanisms. Experimental evidence indicates that antioxidant defense systems existing in plant tissues may function to protect cellular components from deleterious effects of photochemical oxidants through endogenous and exogenous controls.

  7. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants

    PubMed Central

    Khan, M. Iqbal R.; Fatma, Mehar; Per, Tasir S.; Anjum, Naser A.; Khan, Nafees A.

    2015-01-01

    Abiotic stresses (such as metals/metalloids, salinity, ozone, UV-B radiation, extreme temperatures, and drought) are among the most challenging threats to agricultural system and economic yield of crop plants. These stresses (in isolation and/or combination) induce numerous adverse effects in plants, impair biochemical/physiological and molecular processes, and eventually cause severe reductions in plant growth, development and overall productivity. Phytohormones have been recognized as a strong tool for sustainably alleviating adverse effects of abiotic stresses in crop plants. In particular, the significance of salicylic acid (SA) has been increasingly recognized in improved plant abiotic stress-tolerance via SA-mediated control of major plant-metabolic processes. However, the basic biochemical/physiological and molecular mechanisms that potentially underpin SA-induced plant-tolerance to major abiotic stresses remain least discussed. Based on recent reports, this paper: (a) overviews historical background and biosynthesis of SA under both optimal and stressful environments in plants; (b) critically appraises the role of SA in plants exposed to major abiotic stresses; (c) cross-talks potential mechanisms potentially governing SA-induced plant abiotic stress-tolerance; and finally (d) briefly highlights major aspects so far unexplored in the current context. PMID:26175738

  8. Responses of herbivore and predatory mites to tomato plants exposed to jasmonic acid seed treatment.

    PubMed

    Smart, Lesley E; Martin, Janet L; Limpalaër, Marlène; Bruce, Toby J A; Pickett, John A

    2013-10-01

    Jasmonic acid (JA) signalling can influence plant defense and the production of plant volatiles that mediate interactions with insects. Here, we tested whether a JA seed treatment could alter direct and indirect defenses. First, oviposition levels of herbivorous mites, Tetranychus urticae, on JA seed-treated and control tomato plants were compared. They were not significantly different on tomato cv. 'Moneymaker', however, there was a significant reduction in oviposition on treated plants in additional experiments with cv. 'Carousel'. Second, responses of predatory mites, Phytoseiulus persimilis, were assessed in a Y-tube olfactometer. Volatiles from JA seed-treated tomato cv. 'Moneymaker' plants were significantly more attractive than volatiles from control plants. Volatiles collected from plants were analysed by GC/MS, and samples from JA seed-treated plants contained more methyl salicylate and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT) than samples from control plants. Our results indicate that JA seed treatment can make tomato plants more attractive to predatory mites, but that direct effects on herbivorous mites are variable and cultivar dependent.

  9. Activated carbon cleanup of the acid gas feed to Claus sulfur plants

    SciTech Connect

    Harruff, L.G.; Bushkuhl, S.J.

    1996-12-31

    This paper presents the details of a recently developed novel process using activated carbon to remove hydrocarbon contaminants from the acid gas feed to Claus sulfur recovery units. Heavy hydrocarbons, particularly benzene, toluene and xylene (BTX) have been linked to coke formation and catalyst deactivation in Claus converters. This deactivation results in reduced sulfur recovery and increased sulfur emissions from these plants. This effect is especially evident in split flow Claus plants which bypass some of the acid gas feed stream around the initial combustion step because of a low hydrogen sulfide concentration. This new clean-up process was proven to be capable of removing 95% of the BTX and other C{sub 6}{sup +} hydrocarbons from acid gas over a wide range of actual plant conditions. Following the adsorption step, the activated carbon was easily regenerated using low pressure steam. A post regeneration drying step using plant fuel gas also proved beneficial. This technology was extensively pilot tested in Saudi Aramco`s facilities in Saudi Arabia. Full scale commercial units are planned for two plants in the near future with the first coming on-line in 1997. The process described here represents the first application of activated carbon in this service, and a patent has been applied for. The paper will discuss the pilot plant results and the issues involved in scale-up to commercial size.

  10. Salicylic Acid, a Plant Defense Hormone, Is Specifically Secreted by a Molluscan Herbivore

    PubMed Central

    Kästner, Julia; von Knorre, Dietrich; Himanshu, Himanshu; Erb, Matthias; Baldwin, Ian T.; Meldau, Stefan

    2014-01-01

    Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding. PMID:24466122

  11. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  12. Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment.

    PubMed

    Tauxe-Wuersch, A; De Alencastro, L F; Grandjean, D; Tarradellas, J

    2005-05-01

    The occurrence and fate of five acidic drugs (Mefenamic acid, Ibuprofen, Ketoprofen, Diclofenac and Clofibric acid) were analysed in three sewage treatment plants (STP) over 4-7 consecutive days. The results point out that the five substances were persistent in wastewater effluents after municipal wastewater treatment. At the most, half of Mefenamic acid was eliminated. Ibuprofen was well removed (80%) by one sewage treatment plant. The removal of Ibuprofen is dependent on the residence time of wastewater in the STPs. A long raining period induce an important decrease of removal of Ibuprofen and Ketoprofen. Removal rates showed a great variability according to sewage treatment plants and types of treatments (e.g. biological, physico-chemical). The concentrations of Ibuprofen, Mefenamic acid and Diclofenac were relatively high in the effluents (150-2000 ng/l), showing a potential contamination of surface water. An environmental risk assessment is presented. Mefenamic acid seems to present a risk for the aquatic environment, with a ratio PEC/PNEC higher than one.

  13. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.

  14. Roles of organic acid anion secretion in aluminium tolerance of higher plants.

    PubMed

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium (Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H(+)-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  15. Response of citrus and other selected plant species to simulated HCL - acid rain

    NASA Technical Reports Server (NTRS)

    Knott, W. M.; Heagle, A. S.

    1980-01-01

    Mature valencia orange trees were sprayed with hydrochloric acid solutions (pH 7.8, 2.0, 1.0, and 0.5) in the field at the full bloom stage and at one month after fruit set. Potted valencia orange and dwarf citrus trees, four species of plants native to Merritt Island, and four agronomic species were exposed to various pH levels of simulated acid rain under controlled conditions. The acid rain was generated from dilutions of hydrochloric acid solutions or by passing water through an exhaust generated by burning solid rocket fuel. The plants were injured severely at pH levels below 1.0, but showed only slight injury at pH levels of 2.0 and above. Threshold injury levels were between 2.0 and 3.0 pH. The sensitivity of the different plant species to acid solutions was similar. Foliar injury symptoms were representative of acid rain including necrosis of young tissue, isolated necrotic spots or patches, and leaf abscission. Mature valencia orange trees sprayed with concentrations of 1.0 pH and 0.5 pH in the field had reduced fruit yields for two harvests after the treatment. All experimental trees were back to full productivity by the third harvest after treatment.

  16. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.

    PubMed

    Finiti, Ivan; de la O Leyva, María; Vicedo, Begonya; Gómez-Pastor, Rocío; López-Cruz, Jaime; García-Agustín, Pilar; Real, Maria Dolores; González-Bosch, Carmen

    2014-08-01

    Treatment with the resistance priming inducer hexanoic acid (Hx) protects tomato plants from Botrytis cinerea by activating defence responses. To investigate the molecular mechanisms underlying hexanoic acid-induced resistance (Hx-IR), we compared the expression profiles of three different conditions: Botrytis-infected plants (Inf), Hx-treated plants (Hx) and Hx-treated + infected plants (Hx+Inf). The microarray analysis at 24 h post-inoculation showed that Hx and Hx+Inf plants exhibited the differential expression and priming of many Botrytis-induced genes. Interestingly, we found that the activation by Hx of other genes was not altered by the fungus at this time point. These genes may be considered to be specific targets of the Hx priming effect and may help to elucidate its mechanisms of action. It is noteworthy that, in Hx and Hx+Inf plants, there was up-regulation of proteinase inhibitor genes, DNA-binding factors, enzymes involved in plant hormone signalling and synthesis, and, remarkably, the genes involved in oxidative stress. Given the relevance of the oxidative burst occurring in plant-pathogen interactions, the effect of Hx on this process was studied in depth. We showed by specific staining that reactive oxygen species (ROS) accumulation in Hx+Inf plants was reduced and more restricted around infection sites. In addition, these plants showed higher ratios of reduced to oxidized glutathione and ascorbate, and normal levels of antioxidant activities. The results obtained indicate that Hx protects tomato plants from B. cinerea by regulating and priming Botrytis-specific and non-specific genes, preventing the harmful effects of oxidative stress produced by infection.

  17. Crassulacean acid metabolism (CAM) in an epiphytic ant-plant, Myrmecodia beccarii Hook.f. (Rubiaceae).

    PubMed

    Tsen, Edward W J; Holtum, Joseph A M

    2012-09-01

    This study demonstrates unequivocally the presence of crassulacean acid metabolism (CAM) in a species of the Rubiaceae, the fourth largest angiosperm plant family. The tropical Australian endemic epiphytic ant-plant, Myrmecodia beccarii Hook.f., exhibits net CO(2) uptake in the dark and a concomitant accumulation of titratable acidity in plants in the field and in cultivation. Plants growing near Cardwell, in a north Queensland coastal seasonally dry forest of Melaleuca viridiflora Sol. ex Gaertn., accumulated ~50 % of their 24 h carbon gain in the dark during the warm wet season. During the transition from the wet season to the dry season, 24 h carbon gain was reduced whilst the proportion of carbon accumulated during the dark increased. By mid dry season many plants exhibited zero net carbon uptake over 24 h, but CO(2) uptake in the dark was observed in some plants following localised rainfall. In a shade-house experiment, droughted plants in which CO(2) uptake in the light was absent and dark CO(2) uptake was reduced, were able to return to relatively high rates of CO(2) uptake in the light and dark within 12 h of rewatering.

  18. Fluoride accumulation by plants grown in acid soils amended with flue gas desulphurisation gypsum.

    PubMed

    Álvarez-Ayuso, E; Giménez, A; Ballesteros, J C

    2011-09-15

    The application of flue gas desulphurisation (FGD) gypsum as an acid soil ameliorant was studied in order to establish the possible detrimental effects on plants and animals feeding on them caused by the high fluoride content in this by-product. A greenhouse experiment was conducted under controlled conditions to determine the F accumulation by two plant species (alfalfa (Medicago sativa L.) and ryegrass (Lolium perenne L.)) grown in acid soils amended with different FGD gypsum doses (0-10%). The F concentrations in plant aerial parts were comprised in the range 22-65 mg kg(-1), and those in plant roots varied from 49 to 135 mg kg(-1). The F contents in the above-ground plant tissues showed to decrease with the FGD gypsum application rate, whereas an inverse trend was manifested by plant roots. The increase in the soil content of soluble Ca as a result of the FGD gypsum addition seemed to play an important role in limiting the translocation of F to plant aerial parts.

  19. Safety assessment of animal- and plant-derived amino acids as used in cosmetics.

    PubMed

    Burnett, Christina; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2014-01-01

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the safety of animal- and plant-derived amino acid mixtures, which function as skin and hair conditioning agents. The safety of α-amino acids as direct food additives has been well established, based on extensive research through acute and chronic dietary exposures and the Panel previously has reviewed the safety of individual α-amino acids in cosmetics. The Panel focused its review on dermal irritation and sensitization data relevant to the use of these ingredients in topical cosmetics. The Panel concluded that these 21 ingredients are safe in the present practices of use and concentration as used in cosmetics.

  20. Life and death among plant lysophosphatidic acid acyltransferases.

    PubMed

    Maisonneuve, Sylvie; Guyot, Romain; Roscoe, Thomas

    2010-07-01

    The tetraploid Brassica napus possesses several seed-expressed microsomal lysophosphatidic acid acyltransferases (LPAAT ) including BAT1.5, which has been retained after genome duplication as a consequence of a subfunctionalisation of the gene encoding the ubiquitously expressed Kennedy pathway enzyme BAT1.13. Next, cDNA BAT1.3, encoding a LPAAT was subsequently isolated from an embryo library. The rapeseed LPAAT encoded by BAT1.3 is orthologous to the Arabidopsis thaliana At1g51260 gene product possibly associated with tapetum development and male fertility. However, BAT1.3 expression is predominant during the mid stages of embryo development in seeds of Brassica napus. Functional characterisation of BAT1.3 provides further support for a hypothesis of gene dosage sensitivity of LPAATs as does an analysis of the chromosomal localisation of LPAAT genes in Arabidopsis thaliana. The pattern of retention or loss of LPAAT genes after polyploidisation or segmental duplication is consistent with a model of balanced gene drive.

  1. Nitro-Fatty Acids in Plant Signaling: Nitro-Linolenic Acid Induces the Molecular Chaperone Network in Arabidopsis1[OPEN

    PubMed Central

    Padilla, María N.; Begara-Morales, Juan C.; Luque, Francisco; Melguizo, Manuel; Fierro-Risco, Jesús; Peñas-Sanjuán, Antonio; Valderrama, Raquel

    2016-01-01

    Nitro-fatty acids (NO2-FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO2-FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO2-Ln) in Arabidopsis and the modulation of NO2-Ln levels throughout this plant’s development by mass spectrometry. The observed levels of this NO2-FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO2-Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO2-Ln was also involved in the response to oxidative stress conditions, mainly depicted by H2O2, reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO2-Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO2-Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations. PMID:26628746

  2. Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34.

    PubMed

    Segarra, Guillem; Casanova, Eva; Bellido, David; Odena, Maria Antonia; Oliveira, Eliandre; Trillas, Isabel

    2007-11-01

    Trichoderma spp. is one of the most commonly used biological control agents against plant pathogens. This fungus produces changes in plant metabolism, thus increasing growth and enhancing resistance to biotic and abiotic stresses. However, its modes of action remain to be defined. In the first hours of interaction between cucumber plant roots and Trichoderma asperellum strain T34, salicylic and jasmonic acid levels and typical antipathogenic peroxidase activity increase in the cotyledons to different degrees depending on the applied concentration of the fungi. The use of 2-DE protein profiling and MS analysis allowed us to identify 28 proteins whose expression was affected in cotyledons after cucumber root colonization by Trichoderma applied at high concentrations: 17 were found to be up-regulated while 11 were down-regulated. Proteins involved in ROS scavenging, stress response, isoprenoid and ethylene biosynthesis, and in photosynthesis, photorespiration, and carbohydrate metabolism were differentially regulated by Trichoderma. The proteome changes found in this study help to give an understanding of how Trichoderma-treated plants become more resistant to pathogen attacks through the changes in expression of a set of defence-oriented proteins which can directly protect the plant or switch the metabolism to a defensive, nonassimilatory state.

  3. Priming of plant resistance by natural compounds. Hexanoic acid as a model

    PubMed Central

    Aranega-Bou, Paz; de la O Leyva, Maria; Finiti, Ivan; García-Agustín, Pilar; González-Bosch, Carmen

    2014-01-01

    Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen’s lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound. PMID:25324848

  4. Fatty acid profile of 25 plant oils and implications for industrial applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fatty acid (FA) profiles of plant oils extracted from twenty-five alternative feedstocks were determined. This information was utilized to determine what industrial application(s) each oil is best suited for. The basis for the selection was the premise that FA composition influences properties o...

  5. Effect of acid solutions on plants studied by the optical beam deflection method.

    PubMed

    Nie, Liangjiao; Kuboda, Mitsutoshi; Inoue, Tomomi; Wu, Xingzheng

    2013-12-01

    The optical beam deflection method was applied to study the effects of acid solution on both a terrestial and aquatic plants Egeria and Cerastium, which are common aquatic plant and terrestial weed respectively. A probe beam from a He-Ne laser was passed through a vicinity of a leaf of the plants, which were put in culture dishes filled with acid solutions. Deflection signals of the probe beam were monitored and compared for acid solutions with different pH values. The results of Egria showed that the deflection signals changed dramatically when pH values of acid solutions were 2.0 and 3.0, while little at pH of 4.0 and 5.0. For Cerastium when pH were below 3.0, deflection signals changed greatly with time at the begining. After a certain period of time, deflection signals changed little with time. When pH value was above 4.0, deflection signals of Cerastium were still changing with time even after 20 hours. The results suggested that the damage threshold of pH was between 3.0 and 4.0 for both the land and aquatic plants.

  6. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant unde...

  7. 77 FR 48433 - New Source Performance Standards Review for Nitric Acid Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-14

    ... Federal Register on December 23, 1971 (36 FR 24881). The first review of the Nitric Acid Plants NSPS was completed on June 19, 1979 (44 FR 35265). An additional review was completed on April 5, 1984 (49 FR 13654... were made during three reviews since the original promulgation in 1971 (October 6, 1975 (40 FR...

  8. 76 FR 63878 - New Source Performance Standards Review for Nitric Acid Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ..., Subpart G) were promulgated in the Federal Register on December 23, 1971 (36 FR 24881). The first review of the Nitric Acid Plants NSPS was completed on June 19, 1979 (44 FR 35265). An additional review was completed on April 5, 1984 (49 FR 13654). No changes were made to the NSPS as a result of those...

  9. Effect of acid solutions on plants studied by the optical beam deflection method.

    PubMed

    Nie, Liangjiao; Kuboda, Mitsutoshi; Inoue, Tomomi; Wu, Xingzheng

    2013-12-01

    The optical beam deflection method was applied to study the effects of acid solution on both a terrestial and aquatic plants Egeria and Cerastium, which are common aquatic plant and terrestial weed respectively. A probe beam from a He-Ne laser was passed through a vicinity of a leaf of the plants, which were put in culture dishes filled with acid solutions. Deflection signals of the probe beam were monitored and compared for acid solutions with different pH values. The results of Egria showed that the deflection signals changed dramatically when pH values of acid solutions were 2.0 and 3.0, while little at pH of 4.0 and 5.0. For Cerastium when pH were below 3.0, deflection signals changed greatly with time at the begining. After a certain period of time, deflection signals changed little with time. When pH value was above 4.0, deflection signals of Cerastium were still changing with time even after 20 hours. The results suggested that the damage threshold of pH was between 3.0 and 4.0 for both the land and aquatic plants. PMID:25078849

  10. Manual of phosphoric acid fuel cell power plant cost model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    Cost analysis of phosphoric acid fuel cell power plant includes two parts: a method for estimation of system capital costs, and an economic analysis which determines the levelized annual cost of operating the system used in the capital cost estimation. A FORTRAN computer has been developed for this cost analysis.

  11. Influence of simulated acid snow stress on leaf tissue of wintering herbaceous plants.

    PubMed

    Inada, Hidetoshi; Nagao, Manabu; Fujikawa, Seizo; Arakawa, Keita

    2006-04-01

    Acid snow might be an environmental stress factor for wintering plants since acid precipitates are locally concentrated in snow and the period in which ice crystals are in contact with shoots might be longer than that of acid precipitates in rain. In this study, 'equilibrium' and 'prolonged' freezing tests with sulfuric acid, which simulate situations of temperature depression and chronic freezing at a subzero temperature with acid precipitate as acid snow stress, respectively, were carried out using leaf segments of cold-acclimated winter wheat. When leaf segments were frozen in the presence of sulfuric acid solution (pH 4.0, 3.0 or 2.0) by equilibrium freezing with ice seeding, the survival rate of leaf samples treated with sulfuric acid solution of pH 2.0 decreased markedly. Leaf samples after supercooling to -4 and -8 degrees C in the presence of sulfuric acid solution (pH 2.0) without ice seeding were less damaged. When leaf samples were subjected to prolonged freezing at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0), the survival rates of leaf samples exposed to sulfuric acid decreased more than those of leaf samples treated with water. On the other hand, leaf samples were less damaged by prolonged supercooling at -4 and -8 degrees C for 7 d with sulfuric acid (pH 2.0). The results suggest that an acid condition (pH 2.0) in the process of extracellular freezing and/or thawing promotes freezing injury of wheat leaves.

  12. Selection of an acid-gas removal process for an LNG plant

    SciTech Connect

    Stone, J.B.; Jones, G.N.; Denton, R.D.

    1996-12-31

    Acid gas contaminants, such as, CO{sub 2}, H{sub 2}S and mercaptans, must be removed to a very low level from a feed natural gas before it is liquefied. CO{sub 2} is typically removed to a level of about 100 ppm to prevent freezing during LNG processing. Sulfur compounds are removed to levels required by the eventual consumer of the gas. Acid-gas removal processes can be broadly classified as: solvent-based, adsorption, cryogenic or physical separation. The advantages and disadvantages of these processes will be discussed along with design and operating considerations. This paper will also discuss the important considerations affecting the choice of the best acid-gas removal process for LNG plants. Some of these considerations are: the remoteness of the LNG plant from the resource; the cost of the feed gas and the economics of minimizing capital expenditures; the ultimate disposition of the acid gas; potential for energy integration; and the composition, including LPG and conditions of the feed gas. The example of the selection of the acid-gas removal process for an LNG plant.

  13. Diurnal variations in leaf fluorescence induction kinetics: variable fluorescence in crassulacean Acid metabolism plants.

    PubMed

    Everson, G; Chen, S S; Black, C C

    1983-06-01

    The variable fluorescence of leaves from Kalanchoë daigremontiana and pineapple, Ananas comosus, both CAM plants, was found to change over a 24-hour cycle and to exhibit high temperature-dependent maxima during the night period. The time course of the induced fluorescence was correlated with malic acid accumulation but not with other aspects of CAM such as with the nature of the decarboxylation pathway or with stomatal movements. The variable fluorescences of sunflower (Helianthus annuus L.) and corn (Zea mays L.) leaves were compared with the CAM plants diurnally; both plants also exhibit high fluorescence maxima during the night period. We conclude that the assembly of the photosystems in the light is a primary process in photosynthesis induction and may be influenced by other cellular metabolic processes, specifically in the case of CAM leaves by malic acid accumulation. PMID:16663024

  14. Effects of acid precipitation on reproduction in alpine plant species. [Erythronium grandiflorum; Aquilegia caerulea

    SciTech Connect

    McKenna, M.A.; Hille-Salgueiro, M.; Musselman, R.C. Dept. of Agriculture, Fort Collins, CO )

    1990-01-01

    A series of experiments were designed to determine the impact of acid rain on plant reproductive processes, a critical component of a species life history. Research was carried out in herbaceous alpine communities at the USDA (United States Department of Agriculture) Forest Service Glacier Lakes Ecosystem Experiments Site in the Snowy Mts. of Wyoming. A range of species were surveyed to monitor the sensitivity of pollen to acidification during germination and growth, and all species demonstrated reduced in vitro pollen germination in acidified media. Field pollinations were carried out in Erythronium grandiflorum and Aquilegia caerulea to determine the reproductive success of plants exposed to simulated ambient precipitation (pH 5.6) or simulated acid precipitation (pH 3.6) prior to pollination. In Erythronium, no differences were observed in seed set and seed weight of fruits resulting from the two pollination treatments. In Aquilegia, fruits resulting from the acid spray treatment produced fewer seeds and lighter seeds.

  15. Photosensitivity and allergy to aromatic lichen acids, Compositae oleoresins and other plant substances.

    PubMed

    Thune, P O; Solberg, Y J

    1980-01-01

    Sixteen patients with verified light sensitivity to both UVB and UVA wavebands showed allergic reactions to various lichen plants (Parmelia spp., Hypogymnia spp., Pseuodovernia spp., Cladonia spp., Platismatia spp., Physcia spp., Umbilicaria spp. and Cetraria spp.). Among the aromatic lichen compounds, atranorin was observed to be the most frequently involved allergen but also several other isolated lichen acids were immunologically active: d-usnic, evernic, stictic, fumarprotocetraric, lobaric, salazinic, diffractaic and physodic/physodalic acid. Several patients showed allergy to other plant substances from other sources such as seven different species from the Compositae family, alantolactone, balsam of Peru, colophony and wood tars. Sensitivity to known photosensitizers was observed in four patients. Aromatic lichen acids are UV-absorbing substances and several are evidently able to photosensitive human skin. PMID:7398280

  16. Photosensitivity and allergy to aromatic lichen acids, Compositae oleoresins and other plant substances.

    PubMed

    Thune, P O; Solberg, Y J

    1980-01-01

    Sixteen patients with verified light sensitivity to both UVB and UVA wavebands showed allergic reactions to various lichen plants (Parmelia spp., Hypogymnia spp., Pseudovernia spp., Cladonia spp., Platismatia spp., Physcia spp., Umbilicaria spp. and Cetraria spp.). Among the aromatic lichen compounds, atranorin was observed to be the most frequently involved allergen, but also several other isolated lichen acids were immunologically active: d-usnic, evernic, stictic, fumarprotocetraric, lobaric, salazinic, diffractaic and physodic/physodalic acid. Several patients showed allergy to other plant substances from other sources such as seven different species from the Compositae family, alantolactone, balsam of Peru, colophony and wood tars. Sensitivity to known photosensitizers was observed in four patients. Aromatic lichen acids are UV-absorbing substances and several are evidently able to photosensitize human skin. PMID:7398259

  17. Photosensitivity and allergy to aromatic lichen acids, Compositae oleoresins and other plant substances.

    PubMed

    Thune, P O; Solberg, Y J

    1980-01-01

    Sixteen patients with verified light sensitivity to both UVB and UVA wavebands showed allergic reactions to various lichen plants (Parmelia spp., Hypogymnia spp., Pseuodovernia spp., Cladonia spp., Platismatia spp., Physcia spp., Umbilicaria spp. and Cetraria spp.). Among the aromatic lichen compounds, atranorin was observed to be the most frequently involved allergen but also several other isolated lichen acids were immunologically active: d-usnic, evernic, stictic, fumarprotocetraric, lobaric, salazinic, diffractaic and physodic/physodalic acid. Several patients showed allergy to other plant substances from other sources such as seven different species from the Compositae family, alantolactone, balsam of Peru, colophony and wood tars. Sensitivity to known photosensitizers was observed in four patients. Aromatic lichen acids are UV-absorbing substances and several are evidently able to photosensitive human skin.

  18. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution.

  19. Naturally occurring radioactive material (NORM) from a former phosphoric acid processing plant.

    PubMed

    Beddow, H; Black, S; Read, D

    2006-01-01

    In recent years there has been an increasing awareness of the radiological impact of non-nuclear industries that extract and/or process ores and minerals containing naturally occurring radioactive material (NORM). These industrial activities may result in significant radioactive contamination of (by-) products, wastes and plant installations. In this study, scale samples were collected from a decommissioned phosphoric acid processing plant. To determine the nature and concentration of NORM retained in pipe-work and associated process plant, four main areas of the site were investigated: (1) the 'Green Acid Plant', where crude acid was concentrated; (2) the green acid storage tanks; (3) the Purified White Acid (PWA) plant, where inorganic impurities were removed; and (4) the solid waste, disposed of on-site as landfill. The scale samples predominantly comprise the following: fluorides (e.g. ralstonite); calcium sulphate (e.g. gypsum); and an assemblage of mixed fluorides and phosphates (e.g. iron fluoride hydrate, calcium phosphate), respectively. The radioactive inventory is dominated by 238U and its decay chain products, and significant fractionation along the series occurs. Compared to the feedstock ore, elevated concentrations (< or =8.8 Bq/g) of 238U were found to be retained in installations where the process stream was rich in fluorides and phosphates. In addition, enriched levels (< or =11 Bq/g) of 226Ra were found in association with precipitates of calcium sulphate. Water extraction tests indicate that many of the scales and waste contain significantly soluble materials and readily release radioactivity into solution. PMID:16303218

  20. In situ phytostabilisation capacity of three legumes and their associated Plant Growth Promoting Bacteria (PGPBs) in mine tailings of northern Tunisia.

    PubMed

    Saadani, Omar; Fatnassi, Imen Challougui; Chiboub, Manel; Abdelkrim, Souhir; Barhoumi, Fathi; Jebara, Moez; Jebara, Salwa Harzalli

    2016-08-01

    PGPBs-legumes associations represent an alternative procedure for phytostabilisation of heavy metals polluted soils mainly generated by industrial and agricultural practices. In this study we evaluated the capacity of Vicia faba, Lens culinaris and Sulla coronaria, inoculated in situ by specific heavy metals resistant inocula, for the phytostabilisation of copper, lead and cadmium respectively. The experimentation was performed in mine tailings of northern Tunisia. Results proved that inoculation enhanced roots and shoots biomass production of faba bean by 14% and 12%, respectively, and significantly improved pods yield by 91%. In lentil, the inoculation ameliorated shoot biomass up to 27%. The highest nitrogen fixation was recorded by Sulla coronaria. The three symbioses accumulated heavy metals essentially in roots, and poorly in shoots. In addition, cadmium accumulation in roots of inoculated sulla was enhanced by 39%. Furthermore, inoculations decreased heavy metals availability in the soil up to -10% of Cu and -47% of Pb respectively in roots of faba bean and lentil. Our results suggested a positive effect of co-inoculation of legumes by appropriate heavy metals resistant PGPBs for the phytostabilisation of mine tailings. Elsewhere, the enhancement in the antioxidant enzymes activities demonstrated the role of the three inocula to alleviate the heavy metals induced stress. PMID:27151677

  1. Engineering assessment of inactive uranium mill tailings

    SciTech Connect

    Not Available

    1981-07-01

    The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

  2. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci.

    PubMed

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles-especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  3. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.).

    PubMed

    War, Abdul Rashid; Paulraj, Michael Gabriel; War, Mohd Yousf; Ignacimuthu, Savarimuthu

    2011-11-01

    Salicylic acid (SA), a plant hormone plays an important role in induction of plant defense against a variety of biotic and abiotic stresses through morphological, physiological and biochemical mechanisms. A series of experiments were carried out to evaluate the biochemical response of the chickpea (Cicer arietinum L.) plants to a range of SA concentrations (1, 1.5, and 2 mM). Water treated plants were maintained as control. Activities of peroxidase (POD) and polyphenol oxidase (PPO) were evaluated and amounts of total phenols, hydrogen peroxide (H2O2), and proteins were calculated after 96 h of treatment. Plants responded very quickly to SA at 1.5 mM and showed higher induction of POD and PPO activities, besides the higher accumulation of phenols, H2O2 and proteins. Plants treated with SA at 2 mM showed phytotoxic symptoms. These results suggest that SA at 1.5 mM is safe to these plants and could be utilized for the induction of plant defense.

  4. The Salicylic Acid-Mediated Release of Plant Volatiles Affects the Host Choice of Bemisia tabaci

    PubMed Central

    Shi, Xiaobin; Chen, Gong; Tian, Lixia; Peng, Zhengke; Xie, Wen; Wu, Qingjun; Wang, Shaoli; Zhou, Xuguo; Zhang, Youjun

    2016-01-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) causes serious crop losses worldwide by transmitting viruses. We have previously shown that salicylic acid (SA)-related plant defenses directly affect whiteflies. In this study, we applied exogenous SA to tomato plants in order to investigate the interaction between SA-induced plant volatiles and nonviruliferous B. tabaci B and Q or B- and Q-carrying tomato yellow leaf curl virus (TYLCV). The results showed that exogenous SA caused plants to repel nonviruliferous whiteflies, but the effect was reduced when the SA concentration was low and when the whiteflies were viruliferous. Exogenous SA increased the number and quantity of plant volatiles—especially the quantity of methyl salicylate and δ-limonene. In Y-tube olfactometer assays, methyl salicylate and δ-limonene repelled the whiteflies, but the repellency was reduced for viruliferous Q. We suggest that the release of plant volatiles as mediated by SA affects the interaction between whiteflies, plants, and viruses. Further studies are needed to determine why viruliferous Q is less sensitive than nonviruliferous Q to repellent plant volatiles. PMID:27376280

  5. [Rapid determination of eight organic acids in plant tissue by sequential extraction and high performance liquid chromatography].

    PubMed

    Huang, Tianzhi; Wang, Shijie; Liu Xiuming; Liu, Hong; Wu, Yanyou; Luo Xuqiang

    2014-12-01

    A sequential extraction method was developed to determine different forms of oxalate and seven oxalate-metabolism-related organic acids (glyoxylic acid, tartaric acid, glycolic acid, malic acid, acetic acid, citric acid, succinic acid) in plant tissue. The ultra-pure water was used as the extraction medium to obtain water-soluble oxalic acid and the other seven water-soluble organic acids. After the extraction of the water-soluble organic acids, the residues were extracted by dilute hydrochloric acid successively to get the acid-soluble oxalate which entered the liquid phase. A Hypersil ODS column was used with 5 mmol/L potassium dihydrogen phosphate buffer solution (pH 2. 8) as the mobile phase. The diode array detector was set at 210 nm and the column temperature at 30 °C with the injection volume of 5 µL. The flow rate was controlled at different times which allowed a good and rapid separation of the organic acids and hydrochloric acid. Under these conditions, the linear ranges of the method were 1-2000 mg/L for oxalic acid, 25-2,000 mg/L for acetic acid, and 10-2,000 mg/L for glyoxylic acid, tartaric acid, glycolic acid, malic acid, citric acid and succinic acid, with the correlation coefficients of the eight organic acids ≥ 0. 9996. The average recoveries of the eight organic acids in leaves and roots were 93. 5%-104. 4% and 85. 3%-105. 4% with RSDs of 0. 15% -2.43% and 0. 31%-2. 9% (n=7), respectively. The limits of detection ranged from 1 to 10 ng (S/N=3). The results indicated that the method is accurate, rapid and reproducible for the determination of organic acids in plant samples.

  6. Plant-bacteria bioremediation agents affect the response of plant bioindicators independent of 2-chlorobenzoic acid degradation

    SciTech Connect

    Siciliano, S.D.; Germida, J.J.

    1995-12-31

    Plants are known to degrade toxicants in soil and are potentially useful bioremediation agents. The authors developed plant-bacteria associations (e.g., Meadow brome [Bromus riparius] and Pseudomonas aeruginosa strain R75) that degrade 2-chlorobenzoic acid (2CBA) in soil, and assessed their success using Slender wheatgrass (Agropyron trachycaulum) germination as a bioindicator of 2CBA levels. Gas chromatography was used to chemically assess 2CBA levels. Specific plant-bacteria bioremediation treatments decreased soil 2CBA levels by 17 to 52%, but bioindicator response did not correspond to chemical analysis. Contaminated and uncontaminated soil was subjected to bioremediation treatments. After 42 days, uncontaminated soil was collected and amended to various 2CBA levels. This soil and the remediated soil were analyzed by the plant bioindicator and gas chromatography. Bioremediation treatments altered germination of Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass in both contaminated and noncontaminated soils to a similar extent. These treatments decreased the toxicity of 2CBA to Slender wheatgrass at low 2CBA levels, but increased the toxicity of 2CBA at high 2CBA levels. For example, germination in soil subjected to the Meadow brome and R75 treatment was increased by ca. 30% at 50 mg kg{sup {minus}1} 2CBA, but decreased by ca. 50% at 150 mg kg{sup {minus}1} 2CBA. The results indicate that specific plant-bacteria bioremediation treatments affect plant bioindicator response independent of 2CBA degradation, and may confound efforts to determine the toxicity of 2CBA in soil.

  7. Distribution of eastern equine encephalomyelitis viral protein and nucleic acid within central nervous tissue lesions in white-tailed deer (Odocoileus virginianus).

    PubMed

    Kiupel, M; Fitzgerald, S D; Pennick, K E; Cooley, T M; O'Brien, D J; Bolin, S R; Maes, R K; Del Piero, F

    2013-11-01

    An outbreak of eastern equine encephalomyelitis (EEE) occurred in Michigan free-ranging white-tailed deer (Odocoileus virginianus) during late summer and fall of 2005. Brain tissue from 7 deer with EEE, as confirmed by reverse transcriptase polymerase chain reaction, was studied. Detailed microscopic examination, indirect immunohistochemistry (IHC), and in situ hybridization (ISH) were used to characterize the lesions and distribution of the EEE virus within the brain. The main lesion in all 7 deer was a polioencephalomyelitis with leptomeningitis, which was more prominent within the cerebral cortex, thalamus, hypothalamus, and brainstem. In 3 deer, multifocal microhemorrhages surrounded smaller vessels with or without perivascular cuffing, although vasculitis was not observed. Neuronal necrosis, associated with perineuronal satellitosis and neutrophilic neuronophagia, was most prominent in the thalamus and the brainstem. Positive IHC labeling was mainly observed in the perikaryon, axons, and dendrites of necrotic and intact neurons and, to a much lesser degree, in glial cells, a few neutrophils in the thalamus and the brainstem, and occasionally the cerebral cortex of the 7 deer. There was minimal IHC-based labeling in the cerebellum and hippocampus. ISH labeling was exclusively observed in the cytoplasm of neurons, with a distribution similar to IHC-positive neurons. Neurons positive by IHC and ISH were most prominent in the thalamus and brainstem. The neuropathology of EEE in deer is compared with other species. Based on our findings, EEE has to be considered a differential diagnosis for neurologic disease and meningoencephalitis in white-tailed deer.

  8. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome

    PubMed Central

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  9. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2. PMID:26466097

  10. Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome.

    PubMed

    Matsubara, Ryuma; Aonuma, Hiroka; Kojima, Mikiko; Tahara, Michiru; Andrabi, Syed Bilal Ahmad; Sakakibara, Hitoshi; Nagamune, Kisaburo

    2015-01-01

    The apicomplexan parasite Toxoplasma gondii produces the plant hormone abscisic acid, but it is unclear if phytohormones are produced by the malaria parasite Plasmodium spp., the most important parasite of this phylum. Here, we report detection of salicylic acid, an immune-related phytohormone of land plants, in P. berghei ANKA and T. gondii cell lysates. However, addition of salicylic acid to P. falciparum and T. gondii culture had no effect. We transfected P. falciparum 3D7 with the nahG gene, which encodes a salicylic acid-degrading enzyme isolated from plant-infecting Pseudomonas sp., and established a salicylic acid-deficient mutant. The mutant had a significantly decreased concentration of parasite-synthesized prostaglandin E2, which potentially modulates host immunity as an adaptive evolution of Plasmodium spp. To investigate the function of salicylic acid and prostaglandin E2 on host immunity, we established P. berghei ANKA mutants expressing nahG. C57BL/6 mice infected with nahG transfectants developed enhanced cerebral malaria, as assessed by Evans blue leakage and brain histological observation. The nahG-transfectant also significantly increased the mortality rate of mice. Prostaglandin E2 reduced the brain symptoms by induction of T helper-2 cytokines. As expected, T helper-1 cytokines including interferon-γ and interleukin-2 were significantly elevated by infection with the nahG transfectant. Thus, salicylic acid of Plasmodium spp. may be a new pathogenic factor of this threatening parasite and may modulate immune function via parasite-produced prostaglandin E2.

  11. Strigolactone Regulates Anthocyanin Accumulation, Acid Phosphatases Production and Plant Growth under Low Phosphate Condition in Arabidopsis

    PubMed Central

    Ito, Shinsaku; Nozoye, Tomoko; Sasaki, Eriko; Imai, Misaki; Shiwa, Yuh; Shibata-Hatta, Mari; Ishige, Taichiro; Fukui, Kosuke; Ito, Ken; Nakanishi, Hiromi; Nishizawa, Naoko K.; Yajima, Shunsuke; Asami, Tadao

    2015-01-01

    Phosphate is an essential macronutrient in plant growth and development; however, the concentration of inorganic phosphate (Pi) in soil is often suboptimal for crop performance. Accordingly, plants have developed physiological strategies to adapt to low Pi availability. Here, we report that typical Pi starvation responses in Arabidopsis are partially dependent on the strigolactone (SL) signaling pathway. SL treatment induced root hair elongation, anthocyanin accumulation, activation of acid phosphatase, and reduced plant weight, which are characteristic responses to phosphate starvation. Furthermore, the expression profile of SL-response genes correlated with the expression of genes induced by Pi starvation. These results suggest a potential overlap between SL signaling and Pi starvation signaling pathways in plants. PMID:25793732

  12. Indanylacetic acid derivatives carrying 4-thiazolyl-phenoxy tail groups, a new class of potent PPAR alpha/gamma/delta pan agonists: synthesis, structure-activity relationship, and in vivo efficacy.

    PubMed

    Rudolph, Joachim; Chen, Libing; Majumdar, Dyuti; Bullock, William H; Burns, Michael; Claus, Thomas; Dela Cruz, Fernando E; Daly, Michelle; Ehrgott, Frederick J; Johnson, Jeffrey S; Livingston, James N; Schoenleber, Robert W; Shapiro, Jeffrey; Yang, Ling; Tsutsumi, Manami; Ma, Xin

    2007-03-01

    Compounds that simultaneously activate the three peroxisome proliferator-activated receptor (PPAR) subtypes alpha, gamma, and delta hold potential to address the adverse metabolic and cardiovascular conditions associated with diabetes and the metabolic syndrome. We recently identified the indanylacetic acid moiety as a well-tunable PPAR agonist head group. Here we report the synthesis and structure-activity relationship (SAR) studies of novel aryl tail group derivatives that led to a new class of potent PPAR pan agonists. While most of the tail group modifications imparted potent PPAR delta agonist activity, improvement of PPAR alpha and gamma activity required the introduction of new heterocyclic substituents that were not known in the PPAR literature. Systematic optimization led to the discovery of 4-thiazolyl-phenyl derivatives with potent PPAR alpha/gamma/delta pan agonistic activity. The lead candidate from this series was found to exhibit excellent ADME properties and superior therapeutic potential compared to known PPAR gamma activating agents by favorably modulating lipid levels in hApoA1 mice and hyperlipidemic hamsters, while normalizing glucose levels in diabetic rodent models. PMID:17274610

  13. Binding of polyphenols to plant cell wall analogues - Part 2: Phenolic acids.

    PubMed

    Padayachee, A; Netzel, G; Netzel, M; Day, L; Zabaras, D; Mikkelsen, D; Gidley, M J

    2012-12-15

    Bacterial cellulose and cellulose-pectin composites were used as well-defined model plant cell wall (PCW) systems to study the interaction between phenolic acids (PA) derived from purple carrot juice concentrate (PCJC) and PCW components. Significant PA depletion from solution occurred, with pure cellulose initially (30s-1h) absorbing more than cellulose-pectin composites in the first hour (ca 20% cf 10-15%), but with all composites absorbing similar levels (ca 30%) after several days. Individual PAs bound to different relative extents with caffeic acid>chlorogenic acid>ferulic acid. Extrapolation of data for these model systems to carrot puree suggests that nutritionally-significant amounts of PAs could bind to cell walls, potentially restricting bioavailability in the small intestine and, as a consequence, delivering PAs to the large intestine for fermentation and metabolism by gut bacteria.

  14. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.

    PubMed

    Arai, Naoki; Nishimura, Emi; Kikuchi, Yo; Ohyama, Takashi

    2015-09-11

    Unlike plants with no carnivory, carnivorous plants seem to use S-like ribonucleases (RNases) as an enzyme for carnivory. Carnivorous plant-specific conserved amino acid residues are present at four positions around the conserved active site (CAS). The roles of these conserved amino acid residues in the enzymatic function were explored in the current study by preparing five recombinant variants of DA-I, the S-like RNase of Drosera adelae. The kcat and kcat/Km values of the enzymes revealed that among the four variants with a single mutation, the serine to glycine mutation at position 111 most negatively influenced the enzymatic activity. The change in the bulkiness of the amino acid residue side-chain seemed to be the major cause of the above effect. Modeling of the three dimensional (3D) structures strongly suggested that the S to G mutation at 111 greatly altered the overall enzyme conformation. The conserved four amino acid residues are likely to function in keeping the two histidine residues, which are essential for the cleavage of RNA strands, and the CAS in the most functional enzymatic conformation.

  15. Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode.

    PubMed

    Hung, Pao Chen; Chi, Kai Hsien; Chen, Mei Lien; Chang, Moo Been

    2012-01-30

    The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in the flue gas of a Waelz plant operated in acid and basic modes, respectively. To abate (PCDD/F) and other pollutants, the plant operates with a post-treatment of flue gases by activated carbon injection and subsequent filtration. Relatively high PCDD/F discharge by fly ashes is found with acid kiln mode of the Waelz process. Therefore, basic kiln mode of the Waelz process is investigated and compared in this plant. With the adsorbent injection rate of 7 kg/h (95 mg/Nm(3)), the PCDD/F concentration in stack gas was measured as 0.123 ng I-TEQ/Nm(3) in the basic operating mode. The added Ca(OH)(2) reacted with metal catalysts and HCl((g)) in the flue gas and thus effectively suppressed the formation of PCDD/Fs. PCDD/F concentrations in fly ashes sampled from the dust settling chamber, cyclone, primary filter and secondary filter in basic kiln mode were significantly lower than that in acid kiln mode. Total PCDD/F emission on the basis of treating one kg of electric arc furnace dust in the basic operation mode was 269 ng I-TEQ/kg EAF-dust treated which was significantly lower than that in acid mode (640 ng I-TEQ/kg EAF-dust treated).

  16. Functional analyses of carnivorous plant-specific amino acid residues in S-like ribonucleases.

    PubMed

    Arai, Naoki; Nishimura, Emi; Kikuchi, Yo; Ohyama, Takashi

    2015-09-11

    Unlike plants with no carnivory, carnivorous plants seem to use S-like ribonucleases (RNases) as an enzyme for carnivory. Carnivorous plant-specific conserved amino acid residues are present at four positions around the conserved active site (CAS). The roles of these conserved amino acid residues in the enzymatic function were explored in the current study by preparing five recombinant variants of DA-I, the S-like RNase of Drosera adelae. The kcat and kcat/Km values of the enzymes revealed that among the four variants with a single mutation, the serine to glycine mutation at position 111 most negatively influenced the enzymatic activity. The change in the bulkiness of the amino acid residue side-chain seemed to be the major cause of the above effect. Modeling of the three dimensional (3D) structures strongly suggested that the S to G mutation at 111 greatly altered the overall enzyme conformation. The conserved four amino acid residues are likely to function in keeping the two histidine residues, which are essential for the cleavage of RNA strands, and the CAS in the most functional enzymatic conformation. PMID:26235877

  17. Characteristics of dioxin emissions from a Waelz plant with acid and basic kiln mode.

    PubMed

    Hung, Pao Chen; Chi, Kai Hsien; Chen, Mei Lien; Chang, Moo Been

    2012-01-30

    The concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in the flue gas of a Waelz plant operated in acid and basic modes, respectively. To abate (PCDD/F) and other pollutants, the plant operates with a post-treatment of flue gases by activated carbon injection and subsequent filtration. Relatively high PCDD/F discharge by fly ashes is found with acid kiln mode of the Waelz process. Therefore, basic kiln mode of the Waelz process is investigated and compared in this plant. With the adsorbent injection rate of 7 kg/h (95 mg/Nm(3)), the PCDD/F concentration in stack gas was measured as 0.123 ng I-TEQ/Nm(3) in the basic operating mode. The added Ca(OH)(2) reacted with metal catalysts and HCl((g)) in the flue gas and thus effectively suppressed the formation of PCDD/Fs. PCDD/F concentrations in fly ashes sampled from the dust settling chamber, cyclone, primary filter and secondary filter in basic kiln mode were significantly lower than that in acid kiln mode. Total PCDD/F emission on the basis of treating one kg of electric arc furnace dust in the basic operation mode was 269 ng I-TEQ/kg EAF-dust treated which was significantly lower than that in acid mode (640 ng I-TEQ/kg EAF-dust treated). PMID:22178278

  18. Effects of acid rain, alone and in combination with gaseous pollutants, on growth and yield of crop plants

    SciTech Connect

    Shriner, D.S.; Johnston, J.W. Jr.

    1985-01-01

    Greenhouse, growth chamber, and field experiments were conducted to determine the response of crop plants to levels of acidity in simulated rain. The major objectives were: to determine the levels of acidity in rain that alter crop productivity; to evaluate varietal differences in crop response; and to determine the response of crop plants to the combined stress of acid rain and gaseous pollutants, primarily ozone. Results showed additive effects rather than synergistic ones.

  19. Human ortholog of a plant salicylic acid receptor found in SK-N-SH cell line.

    PubMed

    Skubatz, Hanna; Howald, William N

    2013-12-01

    Our previous studies have described the purification and characterization of a novel plant NAD(P)-reductase like protein (RL) from the thermogenic appendix of the Sauromatum guttatum inflorescence. RL is mainly located in cytoplasm of thermogenic plants and it can act like a bistable switch. It adopts a compact conformation during heat-production and a more expanded conformation when heat is not generated. Addition of salicylic acid, a natural thermogenic inducer, at picomolar concentration to a solution of purified RL induced a discontinuous volume phase transition in which the volume of RL in the oligomeric form expanded and shrunk repeatedly every 4-5 min. In the present study using ESI-MS analysis we have demonstrated the existence of RL in the human SK-N-SH cell line and in mouse brain tissue. The molecular mass of human RL is in the same range as of its plant counterpart, 34,140 ± 34 Da. The charge state distribution of the human RL is identical to its plant counterpart from the Sauromatum appendix during heat-production. Human RL was present in the compact state when it was purified from the SK-N-SH cell line When these cells were treated with salicylic acid (10 μM) a shift to a much more compact conformation was observed. It seems that the potential of RL to respond to salicylic acid was conserved. These results may reveal the existence of a thermoregulation system that is evolutionarily conserved and is operating by conformational changes. This discovery may also represent an opportunity for a better understanding of some of the diverse functions of salicylic acid and aspirin in plants and humans.

  20. Defense signaling among interconnected ramets of a rhizomatous clonal plant, induced by jasmonic-acid application

    NASA Astrophysics Data System (ADS)

    Chen, Jin-Song; Lei, Ning-Fei; Liu, Qing

    2011-07-01

    Resource sharing between ramets of clonal plants is a well-known phenomenon that allows stoloniferous and rhizomatous species to internally transport water, mineral nutrients and carbohydrates from sites of high supply to sites of high demand. Moreover, vascular ramet connections are likely to provide an excellent means to share substances other than resources, such as defense signals. In a greenhouse experiment, the rhizomatous sedge Carex alrofusca, consisting of integrated ramets of different ages, was used to study the transmission of defense signals through belowground rhizome connections in response to local spray with jasmonic-acid. A feeding preference test with the caterpillar Gynaephora rnenyuanensis was employed to assess benefits of rhizome connections on defense signaling. Young ramets were more responsive to jasmonic-acid treatment than middle-aged or old ramets. Condensed tannin content in the foliage of young ramets showed a significant increase and soluble carbohydrate and nitrogen content showed marginally significant decreases in the 1 mM jasmonic-acid treatment but not in control and/or 0.0001 mM jasmonic-acid treatments. The caterpillar G. rnenyuanensis preferentially grazed young ramets. After a localized spray of 1 mM jasmonic-acid, the leaf area of young ramets consumed by herbivores was greatly reduced. We propose that defense signals may be transmitted through physical connections (stolon or rhizome) among interconnected ramets of clonal plants. Induced resistance to herbivory may selectively enhance the protection of more vulnerable and valuable plant tissues and confer a significant benefit to clonal plants by a modular risk-spreading strategy, equalizing ontogenetic differences of unevenly-aged ramets in chemical defense compounds and nutritional properties of tissue.

  1. Enhanced rosmarinic acid production in cultured plants of two species of Mentha.

    PubMed

    Roy, Debleena; Mukhopadhyay, Sandip

    2012-11-01

    In the present investigation an attempt has been made to enhance rosmarinic acid level in plants, grown in vitro, of 2 species of Mentha in presence of 2 precursors in the nutrient media during culture. For in vitro culture establishment and shoot bud multiplication, MS basal media were used supplemented with different concentrations and combinations of different growth regulator like NAA (alpha-napthaleneacetic acid), BAP (6-benzylaminopurine). The medium containing NAA (0.25 mg/L) and BAP (2.5 mg/L) gave the highest potentiality of shoot formation (average 58.0 numbers of shoots) per explant for Mentha piperita L. and the medium containing BAP (2.0 mg/L) gave the highest potentiality of shoot (average 19.2 numbers of shoots) formation per explant for Mentha arvensis L. The complete plants were regenerated in above mentioned media after 8 weeks of subculture. For in vitro enhancement of rosmarinic acid production, the 2 precursors tyrosine (Tyr) and phenylalanine (Phe) were added in the nutrient media at different levels (0.5 mg/L to 15.0 mg/L). Tyrosine was found to be very effective for augmenting rosmarinic acid content in Mentha piperita L. It nearly increased the production up to 1.77 times. In case of Mentha arvensis L., phenylalanine significantly affected the production of rosmarinic acid and the production was nearly 2.03 times more than the control. No significant increase in biomass was observed after addition of these precursors indicating that the added amino acids acting as precursors for rosmarinic acid synthesis were readily utilized in producing rosmarinic acid without promoting growth. Total protein profile also revealed the presence of a specific band in polyacrylamide gel electrophoresis.

  2. Rapid and efficient isolation of high quality nucleic acids from plant tissues rich in polyphenols and polysaccharides.

    PubMed

    Japelaghi, Reza Heidari; Haddad, Raheem; Garoosi, Ghasem-Ali

    2011-10-01

    Isolation of high quality nucleic acids from plant tissues rich in polysaccharides and polyphenols is often difficult. The presence of these substances can affect the quality and/or quantity of the nucleic acids isolated. Here, we describe a rapid and efficient nucleic acids extraction protocol that in contrast to other methods tested, effectively purify high quality nucleic acids from plant tissues rich in polysaccharides and polyphenolic compounds such as different grape tissues and fruit tissue of fruit trees. The nucleic acids isolated with this protocol were successfully used for many functional genomic based experiments including polymerase chain reaction, reverse transcription polymerase chain reaction (RT-PCR), cloning, and semiquantitative RT-PCR.

  3. 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene!

    PubMed Central

    Van de Poel, Bram; Van Der Straeten, Dominique

    2014-01-01

    Ethylene is a simple two carbon atom molecule with profound effects on plants. There are quite a few review papers covering all aspects of ethylene biology in plants, including its biosynthesis, signaling and physiology. This is merely a logical consequence of the fascinating and pleiotropic nature of this gaseous plant hormone. Its biochemical precursor, 1-aminocyclopropane-1-carboxylic acid (ACC) is also a fairly simple molecule, but perhaps its role in plant biology is seriously underestimated. This triangularly shaped amino acid has many more features than just being the precursor of the lead-role player ethylene. For example, ACC can be conjugated to three different derivatives, but their biological role remains vague. ACC can also be metabolized by bacteria using ACC-deaminase, favoring plant growth and lowering stress susceptibility. ACC is also subjected to a sophisticated transport mechanism to ensure local and long-distance ethylene responses. Last but not least, there are now a few exciting studies where ACC has been reported to function as a signal itself, independently from ethylene. This review puts ACC in the spotlight, not to give it the lead-role, but to create a picture of the stunning co-production of the hormone and its precursor. PMID:25426135

  4. 12. Credit PED. View of tail race and dam showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Credit PED. View of tail race and dam showing dumping of construction rubble into river bed by rail car; and preparations for pouring a concrete cap onto tail race wall. Photo c. 1909. - Dam No. 4 Hydroelectric Plant, Potomac River, Martinsburg, Berkeley County, WV

  5. Simulated acid rain alters litter decomposition and enhances the allelopathic potential of the invasive plant Wedelia trilobata (Creeping Daisy)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Invasive species and acid rain cause global environmental problems. Limited information exists, however, concerning the effects of acid rain on the invasiveness of these plants. For example, creeping daisy, an invasive exotic allelopathic weed, has caused great damage in southern China where acid ra...

  6. 78 FR 15753 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-12

    ... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., DG-1269 ``Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear... lead-acid storage batteries in nuclear power plants. DATES: Submit comments by May 13, 2013....

  7. Theroa zethus Caterpillars Use Acid Secretion of Anti-Predator Gland to Deactivate Plant Defense.

    PubMed

    Dussourd, David E

    2015-01-01

    In North America, notodontid caterpillars feed almost exclusively on hardwood trees. One notable exception, Theroa zethus feeds instead on herbaceous plants in the Euphorbiaceae protected by laticifers. These elongate canals follow leaf veins and contain latex under pressure; rupture causes the immediate release of sticky poisonous exudate. T. zethus larvae deactivate the latex defense of poinsettia and other euphorbs by applying acid from their ventral eversible gland, thereby creating furrows in the veins. The acid secretion softens the veins allowing larvae to compress even large veins with their mandibles and to disrupt laticifers internally often without contacting latex. Acid secretion collected from caterpillars and applied to the vein surface sufficed to create a furrow and to reduce latex exudation distal to the furrow where T. zethus larvae invariably feed. Larvae with their ventral eversible gland blocked were unable to create furrows and suffered reduced growth on poinsettia. The ventral eversible gland in T. zethus and other notodontids ordinarily serves to deter predators; when threatened, larvae spray acid from the gland orifice located between the mouthparts and first pair of legs. To my knowledge, T. zethus is the first caterpillar found to use an antipredator gland for disabling plant defenses. The novel combination of acid application and vein constriction allows T. zethus to exploit its unusual latex-bearing hosts.

  8. Theroa zethus Caterpillars Use Acid Secretion of Anti-Predator Gland to Deactivate Plant Defense.

    PubMed

    Dussourd, David E

    2015-01-01

    In North America, notodontid caterpillars feed almost exclusively on hardwood trees. One notable exception, Theroa zethus feeds instead on herbaceous plants in the Euphorbiaceae protected by laticifers. These elongate canals follow leaf veins and contain latex under pressure; rupture causes the immediate release of sticky poisonous exudate. T. zethus larvae deactivate the latex defense of poinsettia and other euphorbs by applying acid from their ventral eversible gland, thereby creating furrows in the veins. The acid secretion softens the veins allowing larvae to compress even large veins with their mandibles and to disrupt laticifers internally often without contacting latex. Acid secretion collected from caterpillars and applied to the vein surface sufficed to create a furrow and to reduce latex exudation distal to the furrow where T. zethus larvae invariably feed. Larvae with their ventral eversible gland blocked were unable to create furrows and suffered reduced growth on poinsettia. The ventral eversible gland in T. zethus and other notodontids ordinarily serves to deter predators; when threatened, larvae spray acid from the gland orifice located between the mouthparts and first pair of legs. To my knowledge, T. zethus is the first caterpillar found to use an antipredator gland for disabling plant defenses. The novel combination of acid application and vein constriction allows T. zethus to exploit its unusual latex-bearing hosts. PMID:26517872

  9. Theroa zethus Caterpillars Use Acid Secretion of Anti-Predator Gland to Deactivate Plant Defense

    PubMed Central

    Dussourd, David E.

    2015-01-01

    In North America, notodontid caterpillars feed almost exclusively on hardwood trees. One notable exception, Theroa zethus feeds instead on herbaceous plants in the Euphorbiaceae protected by laticifers. These elongate canals follow leaf veins and contain latex under pressure; rupture causes the immediate release of sticky poisonous exudate. T. zethus larvae deactivate the latex defense of poinsettia and other euphorbs by applying acid from their ventral eversible gland, thereby creating furrows in the veins. The acid secretion softens the veins allowing larvae to compress even large veins with their mandibles and to disrupt laticifers internally often without contacting latex. Acid secretion collected from caterpillars and applied to the vein surface sufficed to create a furrow and to reduce latex exudation distal to the furrow where T. zethus larvae invariably feed. Larvae with their ventral eversible gland blocked were unable to create furrows and suffered reduced growth on poinsettia. The ventral eversible gland in T. zethus and other notodontids ordinarily serves to deter predators; when threatened, larvae spray acid from the gland orifice located between the mouthparts and first pair of legs. To my knowledge, T. zethus is the first caterpillar found to use an antipredator gland for disabling plant defenses. The novel combination of acid application and vein constriction allows T. zethus to exploit its unusual latex-bearing hosts. PMID:26517872

  10. Nucleic acids encoding plant glutamine phenylpyruvate transaminase (GPT) and uses thereof

    DOEpatents

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-03-29

    Glutamine phenylpyruvate transaminase (GPT) proteins, nucleic acid molecules encoding GPT proteins, and uses thereof are disclosed. Provided herein are various GPT proteins and GPT gene coding sequences isolated from a number of plant species. As disclosed herein, GPT proteins share remarkable structural similarity within plant species, and are active in catalyzing the synthesis of 2-hydroxy-5-oxoproline (2-oxoglutaramate), a powerful signal metabolite which regulates the function of a large number of genes involved in the photosynthesis apparatus, carbon fixation and nitrogen metabolism.

  11. The Tail of BPM

    NASA Astrophysics Data System (ADS)

    Kruba, Steve; Meyer, Jim

    Business process management suites (BPMS's) represent one of the fastest growing segments in the software industry as organizations automate their key business processes. As this market matures, it is interesting to compare it to Chris Anderson's 'Long Tail.' Although the 2004 "Long Tail" article in Wired magazine was primarily about the media and entertainment industries, it has since been applied (and perhaps misapplied) to other markets. Analysts describe a "Tail of BPM" market that is, perhaps, several times larger than the traditional BPMS product market. This paper will draw comparisons between the concepts in Anderson's article (and subsequent book) and the BPM solutions market.

  12. Jupiter's magnetic tail

    NASA Technical Reports Server (NTRS)

    Ness, N. F.; Acuna, M. H.; Lepping, R. P.; Behannon, K. W.; Burlaga, L. F.; Neubauer, F. M.

    1979-01-01

    Voyager 1 observations of the Jovian magnetosphere are discussed which are most naturally interpreted in terms of a well-developed magnetic tail on the nightside of the planet. It is shown that this tail, with a 'neutral sheet' separating the upper and lower lobes of opposite field polarity, is formed and controlled by external forces associated with the solar wind. The inner magnetosphere's current tail is found to merge with the magnetotail's neutral sheet. It is concluded that this configuration leads to a strong local-time control of the outer Jovian magnetosphere rather than planetary control.

  13. Isolation of acetic, propionic and butyric acid-forming bacteria from biogas plants.

    PubMed

    Cibis, Katharina Gabriela; Gneipel, Armin; König, Helmut

    2016-02-20

    In this study, acetic, propionic and butyric acid-forming bacteria were isolated from thermophilic and mesophilic biogas plants (BGP) located in Germany. The fermenters were fed with maize silage and cattle or swine manure. Furthermore, pressurized laboratory fermenters digesting maize silage were sampled. Enrichment cultures for the isolation of acid-forming bacteria were grown in minimal medium supplemented with one of the following carbon sources: Na(+)-dl-lactate, succinate, ethanol, glycerol, glucose or a mixture of amino acids. These substrates could be converted by the isolates to acetic, propionic or butyric acid. In total, 49 isolates were obtained, which belonged to the phyla Firmicutes, Tenericutes or Thermotogae. According to 16S rRNA gene sequences, most isolates were related to Clostridium sporosphaeroides, Defluviitoga tunisiensis and Dendrosporobacter quercicolus. Acetic, propionic or butyric acid were produced in cultures of isolates affiliated to Bacillus thermoamylovorans, Clostridium aminovalericum, Clostridium cochlearium/Clostridium tetani, C. sporosphaeroides, D. quercicolus, Proteiniborus ethanoligenes, Selenomonas bovis and Tepidanaerobacter sp. Isolates related to Thermoanaerobacterium thermosaccharolyticum produced acetic, butyric and lactic acid, and isolates related to D. tunisiensis formed acetic acid. Specific primer sets targeting 16S rRNA gene sequences were designed and used for real-time quantitative PCR (qPCR). The isolates were physiologically characterized and their role in BGP discussed.

  14. Principal transcriptional regulation and genome-wide system interactions of the Asp-family and aromatic amino acid networks of amino acid metabolism in plants.

    PubMed

    Less, Hadar; Angelovici, Ruthie; Tzin, Vered; Galili, Gad

    2010-10-01

    Amino acid metabolism is among the most important and best recognized networks within biological systems. In plants, amino acids serve multiple functions associated with growth. Besides their function in protein synthesis, the amino acids are also catabolized into energy-associated metabolites as well we into numerous secondary metabolites, which are essential for plant growth and response to various stresses. Despite the central importance of amino acids in plants growth, elucidation of the regulation of amino acid metabolism within the context of the entire system, particularly transcriptional regulation, is still in its infancy. The different amino acids are synthesized by a number of distinct metabolic networks, which are expected to possess regulatory cross interactions between them for proper coordination of their interactive functions, such as incorporation into proteins. Yet, individual amino acid metabolic networks are also expected to differentially cross interact with various genome-wide gene expression programs and metabolic networks, in respect to their functions as precursors for various metabolites with distinct functions. In the present review, we discuss our recent genomics, metabolic and bioinformatics studies, which were aimed at addressing these questions, focusing mainly on the Asp-family metabolic network as the main example and also comparing it to the aromatic amino acids metabolic network as a second example (Angelovici et al. in Plant Physiol 151:2058-2072, 2009; Less and Galili in BMC Syst Biol 3:14, 2009; Tzin et al. in Plant J 60:156-167, 2009). Our focus on these two networks is because of the followings: (i) both networks are central to plant metabolism and growth and are also precursors for a wide range of primary and secondary metabolites that are indispensable to plant growth; (ii) the amino acids produced by these two networks are also essential to the nutrition and health of human and farm animals; and (iii) both networks contain

  15. [Metabolism of nicotinic acid in plant cell suspension cultures, IV: Occurrence and metabolism of nicotinic acid N-alpha-arabinoside (author's transl)].

    PubMed

    Leienbach, K W; Heeger, V; Barz, W

    1976-08-01

    Application of nicotinic acid to cell suspension cultures of Petroselinum hortense Hoffm., Daucus carota, Nicotiana tabacum and Nicotiana glauca leads to the formation of the recently isolated[2] nicotinic acid N-alpha-L-arabinoside. In these cell cultures the arabinoside is a metabolically active compound; the nicotinic acid moiety is used for NAD synthesis and nicotinic acid degradation involving decarboxylation and ring fission. N-Methylnicotinic acid (trigonelline) and nicotinic acid N-alpha-L-arabinoside occur alternatively in plant cell suspension cultures, but seem to fulfil the same function as a reserve form for nicotinic acid. Catabolism of nicotinic acid in parsley cell suspension cultures does not involve 6-hydroxynicotinic acid as an intermediate.

  16. Uranium mill tailings neutralization: contaminant complexation and tailings leaching studies

    SciTech Connect

    Opitz, B.E.; Dodson, M.E.; Serne, R.J.

    1985-05-01

    Laboratory experiments were performed to compare the effectiveness of limestone (CaCO/sub 3/) and hydrated lime (Ca(OH)/sub 2/) for improving waste water quality through the neutralization of acidic uranium mill tailings liquor. The experiments were designed to also assess the effects of three proposed mechanisms - carbonate complexation, elevated pH, and colloidal particle adsorption - on the solubility of toxic contaminants found in a typical uranium mill waste solution. Of special interest were the effects each of these possible mechanisms had on the solution concentrations of trace metals such as Cd, Co, Mo, Zn, and U after neutralization. Results indicated that the neutralization of acidic tailings to a pH of 7.3 using hydrated lime provided the highest overall waste water quality. Both the presence of a carbonate source or elevating solution pH beyond pH = 7.3 resulted in a lowering of previously achieved water quality, while adsorption of contaminants onto colloidal particles was not found to affect the solution concentration of any constituent investigated. 24 refs., 8 figs., 19 tabs.

  17. PLANT MICROBIOME. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa.

    PubMed

    Lebeis, Sarah L; Paredes, Sur Herrera; Lundberg, Derek S; Breakfield, Natalie; Gehring, Jase; McDonald, Meredith; Malfatti, Stephanie; Glavina del Rio, Tijana; Jones, Corbin D; Tringe, Susannah G; Dangl, Jeffery L

    2015-08-21

    Immune systems distinguish "self" from "nonself" to maintain homeostasis and must differentially gate access to allow colonization by potentially beneficial, nonpathogenic microbes. Plant roots grow within extremely diverse soil microbial communities but assemble a taxonomically limited root-associated microbiome. We grew isogenic Arabidopsis thaliana mutants with altered immune systems in a wild soil and also in recolonization experiments with a synthetic bacterial community. We established that biosynthesis of, and signaling dependent on, the foliar defense phytohormone salicylic acid is required to assemble a normal root microbiome. Salicylic acid modulates colonization of the root by specific bacterial families. Thus, plant immune signaling drives selection from the available microbial communities to sculpt the root microbiome.

  18. Plastidic aspartate aminotransferases and the biosynthesis of essential amino acids in plants.

    PubMed

    de la Torre, Fernando; Cañas, Rafael A; Pascual, M Belén; Avila, Concepción; Cánovas, Francisco M

    2014-10-01

    In the chloroplasts and in non-green plastids of plants, aspartate is the precursor for the biosynthesis of different amino acids and derived metabolites that play distinct and important roles in plant growth, reproduction, development or defence. Aspartate biosynthesis is mediated by the enzyme aspartate aminotransferase (EC 2.6.1.1), which catalyses the reversible transamination between glutamate and oxaloacetate to generate aspartate and 2-oxoglutarate. Plastids contain two aspartate aminotransferases: a eukaryotic-type and a prokaryotic-type bifunctional enzyme displaying aspartate and prephenate aminotransferase activities. A general overview of the biochemistry, regulation, functional significance, and phylogenetic origin of both enzymes is presented. The roles of these plastidic aminotransferases in the biosynthesis of essential amino acids are discussed.

  19. Salicylic acid negatively affects the response to salt stress in pea plants.

    PubMed

    Barba-Espín, G; Clemente-Moreno, M J; Alvarez, S; García-Legaz, M F; Hernández, J A; Díaz-Vivancos, P

    2011-11-01

    We studied the effect of salicylic acid (SA) treatment on the response of pea plants to salinity. Sodium chloride (NaCl)-induced damage to leaves was increased by SA, which was correlated with a reduction in plant growth. The content of reduced ascorbate and glutathione in leaves of salt-treated plants increased in response to SA, although accumulation of the respective oxidised forms occurred. An increase in hydrogen peroxide also occurred in leaves of salt-exposed plants treated with SA. In the absence of NaCl, SA increased ascorbate peroxidase (APX; 100 μm) and glutathione-S transferase (GST; 50 μm) activities and increased catalase (CAT) activity in a concentration-dependent manner. Salinity decreased glutathione reductase (GR) activity, but increased GST and CAT activity. In salt-stressed plants, SA also produced changes in antioxidative enzymes: 100 μm SA decreased APX but increased GST. Finally, a concentration-dependent increase in superoxide dismutase (SOD) activity was induced by SA treatment in salt-stressed plants. Induction of PR-1b was observed in NaCl-stressed plants treated with SA. The treatment with SA, as well as the interaction between salinity and SA treatment, had a significant effect on PsMAPK3 expression. The expression of PsMAPK3 was not altered by 70 mm NaCl, but was statistically higher in the absence than in the presence of SA. Overall, the results show that SA treatment negatively affected the response of pea plants to NaCl, and this response correlated with an imbalance in antioxidant metabolism. The data also show that SA treatment could enhance the resistance of salt-stressed plants to possible opportunistic pathogen attack, as suggested by increased PR-1b gene expression.

  20. Pseudometallophytes colonising Pb/Zn mine tailings: a description of the plant-microorganism-rhizosphere soil system and isolation of metal-tolerant bacteria.

    PubMed

    Becerra-Castro, C; Monterroso, C; Prieto-Fernández, A; Rodríguez-Lamas, L; Loureiro-Viñas, M; Acea, M J; Kidd, P S

    2012-05-30

    The plant-microorganism-soil system of three pseudometallophytes (Betula celtiberica, Cytisus scoparius and Festuca rubra) growing in a Pb/Zn mine was characterised. Plant metal accumulation, soil metal fractions (rhizosphere and non-vegetated) and bacterial densities were determined. Total Cd, Pb and Zn in non-vegetated soils was up to 50, 3000 and 20,000 mg kg(-1) dry weight, respectively. The residual fraction dominated non-vegetated soils, whereas plant-available fractions became important in rhizosphere soils. All plant species effectively excluded metals from the shoot. F. rubra presented a shoot:root transport factor of ≤0.2 and this population could be useful in future phytostabilisation trials. Culturable bacterial densities and diversity were low (predominantly Actinobacteria). Rhizosphere soils hosted higher total and metal-tolerant bacterial densities. Seventy-four metal-tolerant rhizobacteria were isolated, and characterised genotypically (BOX-PCR, 16S rDNA) and phenotypically [Cd/Zn tolerance, biosurfactant production and plant growth promoting (PGP) traits]. Several isolates resisted high concentrations of Cd and Zn, and only a few presented PGP traits. Fourteen isolates were evaluated for promoting plant growth of two species (Salix viminalis and Festuca pratensis). Thirteen inoculants enhanced growth of F. pratensis, while only three enhanced growth of S. viminalis. Growth enhancement could not always be related to isolate PGP traits. In conclusion, some isolates show potential application in phytostabilisation or phytoextraction techniques. PMID:22483595

  1. The planté formation process for lead—acid positive electrodes

    NASA Astrophysics Data System (ADS)

    Hampson, Noel; Lazarides, Constantine; Henderson, M.

    1981-11-01

    The perchlorate assisted oxidation of lead to lead dioxide in dilute sulphuric acid containing perchlorate ion has been investigated under conditions similar to those used for Planté electrode production. The optimum concentration of perchlorate ion has been estimated. It is shown that if the electrode is not fully passivated by lead sulphate before the potential is increased to form PbO 2, the process of PbO 2 formation proceeds progressively.

  2. Nematicidal activity of 5-hydroxymethyl-2-furoic acid against plant-parasitic nematodes.

    PubMed

    Kimura, Yasuo; Tani, Satoko; Hayashi, Asami; Ohtani, Kouhei; Fujioka, Shozo; Kawano, Tsuyoshi; Shimada, Atsumi

    2007-01-01

    A nematicide, 5-hydroxymethyl-2-furoic acid (1), was isolated from cultures of the fungus Aspergillus sp. and its structure was identified by spectroscopic analysis. Compound 1 showed effective nematicidal activities against the pine wood nematode Bursaphelenchus xylophilus and the free-living nematode Caenorhabditis elegans without inhibitory activity against plant growth, but 1 did not show any effective nematicidal activity against Pratylenchus penetrans. PMID:17542490

  3. Combining hexanoic acid plant priming with Bacillus thuringiensis insecticidal activity against Colorado potato beetle.

    PubMed

    García-Robles, Inmaculada; Ochoa-Campuzano, Camila; Fernández-Crespo, Emma; Camañes, Gemma; Martínez-Ramírez, Amparo C; González-Bosch, Carmen; García-Agustín, Pilar; Rausell, Carolina; Real, María Dolores

    2013-01-01

    Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction. PMID:23743826

  4. Abscisic acid - an overlooked player in plant-microbe symbioses formation?

    PubMed

    Stec, Natalia; Banasiak, Joanna; Jasiński, Michał

    2016-01-01

    Abscisic acid (ABA) is an ubiquitous plant hormone and one of the foremost signalling molecules, controlling plants' growth and development, as well as their response to environmental stresses. To date, the function of ABA has been extensively investigated as an abiotic stress molecule which regulates the plants' water status. However, in the context of symbiotic associations, ABA is less recognized. In contrast to well-described auxin/cytokinin and gibberellin/strigolactone involvement in symbioses, ABA has long been underestimated. Interestingly, ABA emerges as an important player in arbuscular mycorrhiza and legume-rhizobium symbiosis. The plant's use of stress hormones like ABA in regulation of those interactions directly links the efficiency of these processes to the environmental status of the plant, notably during drought stress. Here we provide an overview of ABA interplay in beneficial associations of plants with microorganisms and propose ABA as a potential factor determining whether the investment in establishing the interaction is higher than the profit coming from it. PMID:26828669

  5. Combining Hexanoic Acid Plant Priming with Bacillus thuringiensis Insecticidal Activity against Colorado Potato Beetle

    PubMed Central

    García-Robles, Inmaculada; Ochoa-Campuzano, Camila; Fernández-Crespo, Emma; Camañes, Gemma; Martínez-Ramírez, Amparo C.; González-Bosch, Carmen; García-Agustín, Pilar; Rausell, Carolina; Real, María Dolores

    2013-01-01

    Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction. PMID:23743826

  6. Combining hexanoic acid plant priming with Bacillus thuringiensis insecticidal activity against Colorado potato beetle.

    PubMed

    García-Robles, Inmaculada; Ochoa-Campuzano, Camila; Fernández-Crespo, Emma; Camañes, Gemma; Martínez-Ramírez, Amparo C; González-Bosch, Carmen; García-Agustín, Pilar; Rausell, Carolina; Real, María Dolores

    2013-06-06

    Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction.

  7. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses.

    PubMed

    Heo, W D; Lee, S H; Kim, M C; Kim, J C; Chung, W S; Chun, H J; Lee, K J; Park, C Y; Park, H C; Choi, J Y; Cho, M J

    1999-01-19

    The Ca2+ signal is essential for the activation of plant defense responses, but downstream components of the signaling pathway are still poorly defined. Here we demonstrate that specific calmodulin (CaM) isoforms are activated by infection or pathogen-derived elicitors and participate in Ca2+-mediated induction of plant disease resistance responses. Soybean CaM (SCaM)-4 and SCaM-5 genes, which encode for divergent CaM isoforms, were induced within 30 min by a fungal elicitor or pathogen, whereas other SCaM genes encoding highly conserved CaM isoforms did not show such response. This pathogen-triggered induction of these genes specifically depended on the increase of intracellular Ca2+ level. Constitutive expression of SCaM-4 and SCaM-5 in transgenic tobacco plants triggered spontaneous induction of lesions and induces an array of systemic acquired resistance (SAR)-associated genes. Surprisingly, these transgenic plants have normal levels of endogenous salicylic acid (SA). Furthermore, coexpression of nahG gene did not block the induction of SAR-associated genes in these transgenic plants, indicating that SA is not involved in the SAR gene induction mediated by SCaM-4 or SCaM-5. The transgenic plants exhibit enhanced resistance to a wide spectrum of virulent and avirulent pathogens, including bacteria, fungi, and virus. These results suggest that specific CaM isoforms are components of a SA-independent signal transduction chain leading to disease resistance.

  8. Ecological restoration alters microbial communities in mine tailings profiles.

    PubMed

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0-30 cm soils and altered the bacterial communities at 0-20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30-60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0-20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  9. Ecological restoration alters microbial communities in mine tailings profiles

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-04-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings.

  10. Ecological restoration alters microbial communities in mine tailings profiles

    PubMed Central

    Li, Yang; Jia, Zhongjun; Sun, Qingye; Zhan, Jing; Yang, Yang; Wang, Dan

    2016-01-01

    Ecological restoration of mine tailings have impact on soil physiochemical properties and microbial communities. The surface soil has been a primary concern in the past decades, however it remains poorly understood about the adaptive response of microbial communities along the profile during ecological restoration of the tailings. In this study, microbial communities along a 60-cm profile were investigated in a mine tailing pond during ecological restoration of the bare waste tailings (BW) with two vegetated soils of Imperata cylindrica (IC) and Chrysopogon zizanioides (CZ) plants. Revegetation of both IC and CZ could retard soil degradation of mine tailing by stimulation of soil pH at 0–30 cm soils and altered the bacterial communities at 0–20 cm depths of the mine tailings. Significant differences existed in the relative abundance of the phyla Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Firmicutes and Nitrospira. Slight difference of bacterial communities were found at 30–60 cm depths of mine tailings. Abundance and activity analysis of nifH genes also explained the elevated soil nitrogen contents at the surface 0–20 cm of the vegetated soils. These results suggest that microbial succession occurred primarily at surface tailings and vegetation of pioneering plants might have promoted ecological restoration of mine tailings. PMID:27126064

  11. Metabolic engineering of the omega-3 long chain polyunsaturated fatty acid biosynthetic pathway into transgenic plants.

    PubMed

    Ruiz-López, Noemi; Sayanova, Olga; Napier, Johnathan A; Haslam, Richard P

    2012-04-01

    Omega-3 (ω-3) very long chain polyunsaturated fatty acids (VLC-PUFAs) such as eicosapentaenoic acid (EPA; 20:5 Δ5,8,11,14,17) and docosahexaenoic acid (DHA; 22:6 Δ4,7,10,13,16,19) have been shown to have significant roles in human health. Currently the primary dietary source of these fatty acids are marine fish; however, the increasing demand for fish and fish oil (in particular the expansion of the aquaculture industry) is placing enormous pressure on diminishing marine stocks. Such overfishing and concerns related to pollution in the marine environment have directed research towards the development of a viable alternative sustainable source of VLC-PUFAs. As a result, the last decade has seen many genes encoding the primary VLC-PUFA biosynthetic activities identified and characterized. This has allowed the reconstitution of the VLC-PUFA biosynthetic pathway in oilseed crops, producing transgenic plants engineered to accumulate ω-3 VLC-PUFAs at levels approaching those found in native marine organisms. Moreover, as a result of these engineering activities, knowledge of the fundamental processes surrounding acyl exchange and lipid remodelling has progressed. The application of new technologies, for example lipidomics and next-generation sequencing, is providing a better understanding of seed oil biosynthesis and opportunities for increasing the production of unusual fatty acids. Certainly, it is now possible to modify the composition of plant oils successfully, and, in this review, the most recent developments in this field and the challenges of producing VLC-PUFAs in the seed oil of higher plants will be described.

  12. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides

    PubMed Central

    Gagne, Steve J.; Stout, Jake M.; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M.; Page, Jonathan E.

    2012-01-01

    Δ9-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2–C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity. PMID:22802619

  13. Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides.

    PubMed

    Gagne, Steve J; Stout, Jake M; Liu, Enwu; Boubakir, Zakia; Clark, Shawn M; Page, Jonathan E

    2012-07-31

    Δ(9)-Tetrahydrocannabinol (THC) and other cannabinoids are responsible for the psychoactive and medicinal properties of Cannabis sativa L. (marijuana). The first intermediate in the cannabinoid biosynthetic pathway is proposed to be olivetolic acid (OA), an alkylresorcinolic acid that forms the polyketide nucleus of the cannabinoids. OA has been postulated to be synthesized by a type III polyketide synthase (PKS) enzyme, but so far type III PKSs from cannabis have been shown to produce catalytic byproducts instead of OA. We analyzed the transcriptome of glandular trichomes from female cannabis flowers, which are the primary site of cannabinoid biosynthesis, and searched for polyketide cyclase-like enzymes that could assist in OA cyclization. Here, we show that a type III PKS (tetraketide synthase) from cannabis trichomes requires the presence of a polyketide cyclase enzyme, olivetolic acid cyclase (OAC), which catalyzes a C2-C7 intramolecular aldol condensation with carboxylate retention to form OA. OAC is a dimeric α+β barrel (DABB) protein that is structurally similar to polyketide cyclases from Streptomyces species. OAC transcript is present at high levels in glandular trichomes, an expression profile that parallels other cannabinoid pathway enzymes. Our identification of OAC both clarifies the cannabinoid pathway and demonstrates unexpected evolutionary parallels between polyketide biosynthesis in plants and bacteria. In addition, the widespread occurrence of DABB proteins in plants suggests that polyketide cyclases may play an overlooked role in generating plant chemical diversity.

  14. The Tail Suspension Test

    PubMed Central

    Terrillion, Chantelle E.; Piantadosi, Sean C.; Bhat, Shambhu; Gould, Todd D.

    2012-01-01

    The tail-suspension test is a mouse behavioral test useful in the screening of potential antidepressant drugs, and assessing of other manipulations that are expected to affect depression related behaviors. Mice are suspended by their tails with tape, in such a position that it cannot escape or hold on to nearby surfaces. During this test, typically six minutes in duration, the resulting escape oriented behaviors are quantified. The tail-suspension test is a valuable tool in drug discovery for high-throughput screening of prospective antidepressant compounds. Here, we describe the details required for implementation of this test with additional emphasis on potential problems that may occur and how to avoid them. We also offer a solution to the tail climbing behavior, a common problem that renders this test useless in some mouse strains, such as the widely used C57BL/6. Specifically, we prevent tail climbing behaviors by passing mouse tails through a small plastic cylinder prior to suspension. Finally, we detail how to manually score the behaviors that are manifested in this test. PMID:22315011

  15. Assessment and comparison of 100-MW coal gasification phosphoric acid fuel cell power plants

    NASA Technical Reports Server (NTRS)

    Lu, Cheng-Yi

    1988-01-01

    One of the advantages of fuel cell (FC) power plants is fuel versatility. With changes only in the fuel processor, the power plant will be able to accept a variety of fuels. This study was performed to design process diagrams, evaluate performance, and to estimate cost of 100 MW coal gasifier (CG)/phosphoric acid fuel cell (PAFC) power plant systems utilizing coal, which is the largest single potential source of alternate hydrocarbon liquids and gases in the United States, as the fuel. Results of this study will identify the most promising integrated CG/PAFC design and its near-optimal operating conditions. The comparison is based on the performance and cost of electricity which is calculated under consistent financial assumptions.

  16. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations.

    PubMed

    Guala, Sebastián; Vega, Flora A; Covelo, Emma F

    2013-01-01

    On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.

  17. Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway.

    PubMed

    Kim, Tae-Houn; Hauser, Felix; Ha, Tracy; Xue, Shaowu; Böhmer, Maik; Nishimura, Noriyuki; Munemasa, Shintaro; Hubbard, Katharine; Peine, Nora; Lee, Byeong-Ha; Lee, Stephen; Robert, Nadia; Parker, Jane E; Schroeder, Julian I

    2011-06-01

    Coordinated regulation of protection mechanisms against environmental abiotic stress and pathogen attack is essential for plant adaptation and survival. Initial abiotic stress can interfere with disease-resistance signaling [1-6]. Conversely, initial plant immune signaling may interrupt subsequent abscisic acid (ABA) signal transduction [7, 8]. However, the processes involved in this crosstalk between these signaling networks have not been determined. By screening a 9600-compound chemical library, we identified a small molecule [5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione (DFPM) that rapidly downregulates ABA-dependent gene expression and also inhibits ABA-induced stomatal closure. Transcriptome analyses show that DFPM also stimulates expression of plant defense-related genes. Major early regulators of pathogen-resistance responses, including EDS1, PAD4, RAR1, and SGT1b, are required for DFPM-and notably also for Pseudomonas-interference with ABA signal transduction, whereas salicylic acid, EDS16, and NPR1 are not necessary. Although DFPM does not interfere with early ABA perception by PYR/RCAR receptors or ABA activation of SnRK2 kinases, it disrupts cytosolic Ca(2+) signaling and downstream anion channel activation in a PAD4-dependent manner. Our findings provide evidence that activation of EDS1/PAD4-dependent plant immune responses rapidly disrupts ABA signal transduction and that this occurs at the level of Ca(2+) signaling, illuminating how the initial biotic stress pathway interferes with ABA signaling.

  18. Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Hilda; Gonzalez, Tania; Goire, Isabel; Bashan, Yoav

    2004-11-01

    In vitro gluconic acid formation and phosphate solubilization from sparingly soluble phosphorus sources by two strains of the plant growth-promoting bacteria A. brasilense (Cd and 8-I) and one strain of A. lipoferum JA4 were studied. Strains of A. brasilense were capable of producing gluconic acid when grown in sparingly soluble calcium phosphate medium when their usual fructose carbon source is amended with glucose. At the same time, there is a reduction in pH of the medium and release of soluble phosphate. To a greater extent, gluconic acid production and pH reduction were observed for A. lipoferum JA4. For the three strains, clearing halos were detected on solid medium plates with calcium phosphate. This is the first report of in vitro gluconic acid production and direct phosphate solubilization by A. brasilense and the first report of P solubilization by A. lipoferum. This adds to the very broad spectrum of plant growth-promoting abilities of this genus.

  19. Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants.

    PubMed

    Pazmiño, D M; Rodríguez-Serrano, M; Sanz, M; Romero-Puertas, M C; Sandalio, L M

    2014-07-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4-D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4-D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4-D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3-1, ctr 1-1, etr 1-1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4-D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4-D.

  20. Geochemistry of Metals from mine tailing in Taxco Mexico

    NASA Astrophysics Data System (ADS)

    Morton-Bermea, O.; ARMIENTA, A.; BARRERA, M.; TALAVERA, O.; HERNANDEZ, E.

    2001-12-01

    The mining district of Taxco in Central Mexico has been exploited since prehispanic times. The processing of metals produced tailings with high heavy metal concentrations. Those tailings constitute a potential risk to the environment. To assess the effects of the mine tailing on water quality, tailing samples and water samples from rivers, wells and tailing effluents were collected and analyzed for Cu, Zn, As and Pb. Metals were analyzed with by ICP-MS. Tailing samples were leached with water to determine pH and sulfate concentration. The highest metal contents were found in the samples with a pH acid. As, Pb and Zn are over the drinking water standards in some of the water samples.

  1. Enrichment of By-Product Materials from Steel Pickling Acid Regeneration Plants (TRP 9942)

    SciTech Connect

    Lu Swan, Delta Ferrites LLC

    2009-09-30

    A new process for manufacturing an enriched, iron-based product (strontium hexaferrite) in existing steel pickling acid regeneration facilities was evaluated. Process enhancements and equipment additions were made to an existing acid regeneration plant to develop and demonstrate (via pilot scale testing and partial-capacity production trials) the viability of a patented method to produce strontium-based compounds that, when mixed with steel pickling acid and roasted, would result in a strontium hexaferrite powder precursor which could then be subjected to further heat treatment in an atmosphere that promotes rapid, relatively low-temperature formation of discrete strontium hexaferrite magnetic domains yielding an enriched iron-based product, strontium hexaferrite, that can be used in manufacturing hard ferrite magnets.

  2. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane. PMID:27451203

  3. Fatty acids and sterols composition, and antioxidant activity of oils extracted from plant seeds.

    PubMed

    Kozłowska, Mariola; Gruczyńska, Eliza; Ścibisz, Iwona; Rudzińska, Magdalena

    2016-12-15

    This study determined and compared the contents of bioactive components in plant seed oils extracted with n-hexane (Soxhlet method) and chloroform/methanol (Folch method) from coriander, caraway, anise, nutmeg and white mustard seeds. Oleic acid dominated among unsaturated fatty acids in nutmeg and anise seed oils while petroselinic acid was present in coriander and caraway oils. Concerning sterols, β-sitosterol was the main component in seed oils extracted with both methods. The content of total phenolics in nutmeg, white mustard and coriander seed oils extracted with chloroform/methanol was higher than in their counterparts prepared with n-hexane. The seed oil samples extracted according to the Folch method exhibited a higher ability to scavenge DPPH radicals compared to the oil samples prepared with the Soxhlet method. DPPH values of the methanolic extracts derived from oils produced with the Folch method were also higher than in the oils extracted with n-hexane.

  4. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions.

    PubMed

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C F R

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus.

  5. HPLC-Profiles of Tocopherols, Sugars, and Organic Acids in Three Medicinal Plants Consumed as Infusions

    PubMed Central

    Roriz, Custódio Lobo; Barros, Lillian; Carvalho, Ana Maria; Ferreira, Isabel C. F. R.

    2014-01-01

    Pterospartum tridentatum (L.) Willk, Gomphrena globosa L., and Cymbopogon citratus (DC.) Stapf are medicinal plants that require a more detailed chemical characterization, given the importance of their consumption as infusions. Therefore, the individual profiles in tocopherols, free sugars, and organic acids were obtained by high performance liquid chromatography (HPLC) coupled to different detectors (fluorescence, refraction index, and photodiode array, resp.). C. citratus revealed the highest content of α-, and total tocopherols, glucose, sucrose, succinic, and ascorbic acids. P. tridentatum presented the highest fructose and total sugars content. Otherwise, G. globosa showed the highest organic acids concentration. As far as we know, this is the first study reporting the mentioned chemical compounds in G. globosa and C. citratus. PMID:26904623

  6. Air and blood lead levels in lead acid battery recycling and manufacturing plants in Kenya.

    PubMed

    Were, Faridah H; Kamau, Geoffrey N; Shiundu, Paul M; Wafula, Godfrey A; Moturi, Charles M

    2012-01-01

    The concentration of airborne and blood lead (Pb) was assessed in a Pb acid battery recycling plant and in a Pb acid battery manufacturing plant in Kenya. In the recycling plant, full-shift area samples taken across 5 days in several production sections showed a mean value ± standard deviation (SD) of 427 ± 124 μg/m(3), while area samples in the office area had a mean ± SD of 59.2 ± 22.7 μg/m(3). In the battery manufacturing plant, full-shift area samples taken across 5 days in several production areas showed a mean value ± SD of 349 ± 107 μg/m(3), while area samples in the office area had a mean ± SD of 55.2 ± 33.2 μg/m(3). All these mean values exceed the U.S. Occupational Safety and Health Administration's permissible exposure limit of 50 μg/m(3) as an 8-hr time-weighted average. In the battery recycling plant, production workers had a mean blood Pb level ± SD of 62.2 ± 12.7 μg/dL, and office workers had a mean blood Pb level ± SD of 43.4 ± 6.6 μg/dL. In the battery manufacturing plant, production workers had a mean blood Pb level ± SD of 59.5 ± 10.1 μg/dL, and office workers had a mean blood Pb level ± SD of 41.6 ± 7.4 μg/dL. All the measured blood Pb levels exceeded 30 μg/dL, which is the maximum blood Pb level recommended by the ACGIH(®). Observations made in these facilities revealed numerous sources of Pb exposure due to inadequacies in engineering controls, work practices, respirator use, and personal hygiene.

  7. 40 CFR 174.507 - Nucleic acids that are part of a plant-incorporated protectant; exemption from the requirement of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Nucleic acids that are part of a plant... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.507 Nucleic acids that are part... nucleic acids that are part of a plant-incorporated protectant are exempt from the requirement of...

  8. 40 CFR 174.507 - Nucleic acids that are part of a plant-incorporated protectant; exemption from the requirement of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Nucleic acids that are part of a plant... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.507 Nucleic acids that are part... nucleic acids that are part of a plant-incorporated protectant are exempt from the requirement of...

  9. 40 CFR 174.507 - Nucleic acids that are part of a plant-incorporated protectant; exemption from the requirement of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Nucleic acids that are part of a plant... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.507 Nucleic acids that are part... nucleic acids that are part of a plant-incorporated protectant are exempt from the requirement of...

  10. 40 CFR 174.507 - Nucleic acids that are part of a plant-incorporated protectant; exemption from the requirement of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Nucleic acids that are part of a plant... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.507 Nucleic acids that are part... nucleic acids that are part of a plant-incorporated protectant are exempt from the requirement of...

  11. 40 CFR 174.507 - Nucleic acids that are part of a plant-incorporated protectant; exemption from the requirement of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Nucleic acids that are part of a plant... PLANT-INCORPORATED PROTECTANTS Tolerances and Tolerance Exemptions § 174.507 Nucleic acids that are part... nucleic acids that are part of a plant-incorporated protectant are exempt from the requirement of...

  12. How to eliminate the formation of chlorogenic acids artefacts during plants analysis? Sea sand disruption method (SSDM) in the HPLC analysis of chlorogenic acids and their native derivatives in plants.

    PubMed

    Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L

    2015-09-01

    The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism. PMID:26231294

  13. How to eliminate the formation of chlorogenic acids artefacts during plants analysis? Sea sand disruption method (SSDM) in the HPLC analysis of chlorogenic acids and their native derivatives in plants.

    PubMed

    Wianowska, Dorota; Typek, Rafał; Dawidowicz, Andrzej L

    2015-09-01

    The analytical procedures for determining plant constituents involve the application of sample preparation methods to fully isolate and/or pre-concentrate the analyzed substances. High-temperature liquid extraction is still applied most frequently for this purpose. The present paper shows that high-temperature extraction cannot be applied for the analysis of chlorogenic acids (CQAs) and their derivatives in plants as it causes the CQAs transformation leading to erroneous quantitative estimations of these compounds. Experiments performed on different plants (black elder, hawthorn, nettle, yerba maté, St John's wort and green coffee) demonstrate that the most appropriate method for the estimation of CQAs/CQAs derivatives is sea sand disruption method (SSDM) because it does not induce any transformation and/or degradation processes in the analyzed substances. Owing to the SSDM method application we found that the investigated plants, besides four main CQAs, contain sixteen CQAs derivatives, among them three quinic acids. The application of SSDM in plant analysis not only allows to establish a true concentration of individual CQAs in the examined plants but also to determine which chlorogenic acids derivatives are native plant components and what is their concentration level. What is even more important, the application of SSDM in plant analysis allows to eliminate errors that may arise or might have arisen in the study of chlorogenic acids and their derivatives in plant metabolism.

  14. Accumulation of seleno-amino acids in legume and grass plant species grown in selenium-laden soils

    SciTech Connect

    Wu, L.; Guo, X.; Banuelos, G.S.

    1997-03-01

    Seleno-amino acid accumulation was studied for two legume and two grass species grown in Selenium (Se)-laden soils. An antagonistic relationship was found between the tissue Se-amino acid concentration and the corresponding sulfur-amino acid concentration. This relationship demonstrates a competitive interaction between Se and sulfate at the amino acid synthesis level. The nonsulfur-containing amino acids were not substantially affected by the increase of tissue Se concentration. Sour clover (Melilotus indica L.) was able to accumulate much greater tissue Se concentration than the other three species. Tissue methionine concentration of sour clover, rabbitfoot grass (Polypogon monspeliensis L.), and tall fescue (Festuca arundinacea Schreb.) was not significantly affected by the increase of tissue selenomethionine concentration, but a highly significant negative correlation was found in alfalfa (Medicago sativa L.). This discrepancy suggests that a less antagonistic effect on sulfur-amino acids under the increase of Se-amino acid analogues in the tissue might be able to minimize Se toxicity to the plant. Both Se-methylselenocysteine (nonprotein amino acid) and selenomethionine (protein amino acid) accumulated in the plants when grown in Se-laden soils. Possible effects of these Se-amino acids accumulated by plants on animal health should be tested before the plants are used for forage supplementation.

  15. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants.

    PubMed

    Kim, Hyun Uk; Lee, Kyeong-Ryeol; Go, Young Sam; Jung, Jin Hee; Suh, Mi-Chung; Kim, Jong Bum

    2011-06-01

    Ricinoleic acid (12-hydroxy-octadeca-9-enoic acid) is a major unusual fatty acid in castor oil. This hydroxy fatty acid is useful in industrial materials. This unusual fatty acid accumulates in triacylglycerol (TAG) in the seeds of the castor bean (Ricinus communis L.), even though it is synthesized in phospholipids, which indicates that the castor plant has an editing enzyme, which functions as a phospholipid:diacylglycerol acyltransferase (PDAT) that is specific to ricinoleic acid. Transgenic plants containing fatty acid Δ12-hydroxylase encoded by the castor bean FAH12 gene produce a limited amount of hydroxy fatty acid, a maximum of around 17% of TAGs present in Arabidopsis seeds, and this unusual fatty acid remains in phospholipids of cell membranes in seeds. Identification of ricinoleate-specific PDAT from castor bean and manipulation of the phospholipid editing system in transgenic plants will enhance accumulation of the hydroxy fatty acid in transgenic seeds. The castor plant has three PDAT genes; PDAT1-1 and PDAT2 are homologs of PDAT, which are commonly found in plants; however, PDAT1-2 is newly grouped as a castor bean-specific gene. PDAT1-2 is expressed in developing seeds and localized in the endoplasmic reticulum, similar to FAH12, indicating its involvement in conversion of ricinoleic acid into TAG. PDAT1-2 significantly enhances accumulation of total hydroxy fatty acid up to 25%, with a significant increase in castor-like oil, 2-OH TAG, in seeds of transgenic Arabidopsis, which is an identification of the key gene for oilseed engineering in production of unusual fatty acids.

  16. Effect of fertilizer on the growth of radish plants exposed to simulated acidic rain containing different sulfate to nitrate ratios.

    PubMed

    Jacobson, J S; Troiano, J J; Heller, L I; Osmeloski, L

    1987-01-01

    Two successive experiments were performed in the greenhouse to test the hypothesis that plant response to the amounts and ratios of sulfuric and nitric acids in rain is affected by the amount of fertilizer added to the growing medium. Radish plants, grown with different levels of N?P?K fertilizer, were given ten 1-h exposures over a 3-week period to simulate acidic rain at pH values from 2.6 to 5.0 and sulfate to nitrate mass ratios from 0.3 to 7.5. Increased acidity of simulated rain reduced plant growth, with a greater depression of hypocotyl mass than shoot mass. The reverse growth response occurred with increased supply of fertilizer: plant biomass rose with a larger increase in shoot mass than hypocotyl mass. In one experiment, plants that received a greater supply of fertilizer exhibited more obvious reductions in growth of hoots at the higher levels of acidity of simulated rain. There were no significant effects of sulfate to nitrate ratios in simulated rain on plant growth, nor any effect of this ratio on the response of shoots and hypocotyls to acidity of simulated rain. Addition of fertilizer had no effect on plant response to sulfate to nitrate ratios. These results do not support the hypothesis that nutrient-deficient plants are either more or less responsive to sulfate and nitrate in rain than plants grown with optimal supplies of nutrients. They support previous results indicating no effects of sulfate to nitrate ratio in simulated acidic rain on plant growth. The results also suggest that the greatest risk of harmful effects on vegetation may come from the combination of high sulfate and high acidity in rainfall.

  17. Plant and Soil Emissions of Amines and Amino Acids: A Source of Secondary Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Jackson, M. L.; Doskey, P. V.; Pypker, T. G.

    2011-12-01

    Ammonia (NH3) is the most abundant alkaline gas in the atmosphere and forms secondary aerosol by neutralizing sulfuric and nitric acids that are released during combustion of fossil fuels. Ammonia is primarily emitted by cropping and livestock operations. However, C2 and C3 amines (pKb 3.3-3.4), which are stronger bases than NH3 (pKb 4.7) have been observed in nuclei mode aerosol that is the precursor to secondary aerosol. Mixtures of amines and amino acids have been identified in diverse environments in aerosol, fog water, cloud water, the soluble fraction of precipitation, and in dew. Glycine (pKb 4.2), serine (pKb 4.8) and alanine (pKb 3.7 and 4.1 for the D and L forms, respectively) are typically the most abundant species. The only reported values of gas-phase glycine, serine and alanine were in marine air and ranged from 6-14 pptv. The origin of atmospheric amines and amino acids has not been fully identified, although sources are likely similar to NH3. Nitrate assimilation in plants forms glycine, serine, and L-alanine, while D-alanine is present in bacterial cell walls. Glycine is converted to serine during C3 plant photorespiration, producing CO2 and NH3. Bacteria metabolize glycine and alanine to methylamine and ethylamine via decarboxylation. Likely sources of amino acids are plants and bacteria, thus concentrations near continental sources are likely greater than those measured in marine air. The overall goal of the research is to examine seasonal variations and relationships between the exchange of CO2, NH3, amines, and amino acids with a corn/soybean rotation in the Midwest Corn Belt. The study presents gaseous profiles of organic amine compounds from various species of vegetation using a mist chamber trapping technique and analysis of the derivatized species by high pressure liquid chromatography with fluorescence detection. Amino acid and amine profiles were obtained for red oak (Quercus rubra), sugar maple (Acer saccharinum), white pine (Pinus

  18. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone. PMID:25046756

  19. Effect of 1-naphthaleneacetic acid on organic acid exudation by the roots of white lupin plants grown under phosphorus-deficient conditions.

    PubMed

    Gómez, Diego A; Carpena, Ramón O

    2014-09-15

    The effect of NAA (1-naphthaleneacetic acid) on organic acid exudation in white lupin plants grown under phosphorus deficiency was investigated. Plants were sampled periodically for collecting of organic acids (citrate, malate, succinate), and also were used to study the effect on proton extrusion and release of Na(+), K(+), Ca(2+) and Mg(2+). The tissues were later processed to quantify the organic acids in tissues, the phosphorus content and the effects on plant biomass. The exogenous addition of NAA led to an increase in organic acid exudation, but this response was not proportional to the concentration of the dose applied, noticing the largest increments with NAA 10(-8)M. In contrast the increase in root weight was proportional to the dose applied, which shows that with higher doses the roots produced are not of proteoid type. Proton extrusion and the release of cations were related to the NAA dose, the first was proportional to the dose applied and the second inversely proportional. Regarding the analysis of tissues, the results of citrate and phosphorus content in shoots show that the overall status of these parts are the main responsible of the organic acids exuded. NAA served as an enhancer of the organic acid exudation that occurs under phosphorus deficient conditions, with a response that depends on the dose applied, not only in its magnitude, but also in the mechanism of action of the plant hormone.

  20. Salicylic acid and gentisic acid induce RNA silencing-related genes and plant resistance to RNA pathogens.

    PubMed

    Campos, Laura; Granell, Pablo; Tárraga, Susana; López-Gresa, Pilar; Conejero, Vicente; Bellés, José María; Rodrigo, Ismael; Lisón, Purificación

    2014-04-01

    We have observed that treatments with salicylic acid (SA) or gentisic acid (GA) induced resistance to RNA pathogens such as ToMV and CEVd in tomato and Gynura auriantiaca, respectively. Accumulation of SA and GA has been found to occur in plants infected by these pathogens, thus pointing out a possible defence role of both molecules. To study the molecular basis of the observed induced resistance to RNA pathogens the induction of silencing-related genes by SA and GA was considered. For that purpose, we searched for tomato genes which were orthologous to those described in Arabidopsis thaliana, such as AtDCL1, AtDCL2, AtDCL4, AtRDR1, AtRDR2 and AtRDR6, and we tracked their induction in tomato along virus and viroid infections. We observed that CEVd significantly induced all these genes in tomato, with the exception of ToRDR6, being the induction of ToDCL4 the most outstanding. Regarding the ToMV asymptomatic infection, with the exception of ToRDR2, we observed a significant induction of all the indicated silencing-related genes, being ToDCL2 the most induced gene. Subsequently, we analyzed their transcriptional activation by SA and at the time when ToMV was inoculated on plants. ToDCL2, ToRDR1 and ToRDR2 were significantly induced by both SA and GA, whereas ToDCL1 was only induced by SA. Such an induction resulted more effective by SA treatment, which is in agreement with the stronger SA-induced resistance observed. Our results suggest that the observed delay in the RNA pathogen accumulation could be due to the pre-induction of RNA silencing-related genes by SA or GA.

  1. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants.

    PubMed

    Qualley, Anthony V; Widhalm, Joshua R; Adebesin, Funmilayo; Kish, Christine M; Dudareva, Natalia

    2012-10-01

    Despite the importance of benzoic acid (BA) as a precursor for a wide array of primary and secondary metabolites, its biosynthesis in plants has not been fully elucidated. BA formation from phenylalanine requires shortening of the C(3) side chain by two carbon units, which can occur by a non-β-oxidative route and/or a β-oxidative pathway analogous to the catabolism of fatty acids. Enzymes responsible for the first and last reactions of the core BA β-oxidative pathway (cinnamic acid → cinnamoyl-CoA → 3-hydroxy-3-phenylpropanoyl-CoA → 3-oxo-3-phenylpropanoyl-CoA → BA-CoA) have previously been characterized in petunia, a plant with flowers rich in phenylpropanoid/benzenoid volatile compounds. Using a functional genomics approach, we have identified a petunia gene encoding cinnamoyl-CoA hydratase-dehydrogenase (PhCHD), a bifunctional peroxisomal enzyme responsible for two consecutively occurring unexplored intermediate steps in the core BA β-oxidative pathway. PhCHD spatially, developmentally, and temporally coexpresses with known genes in the BA β-oxidative pathway, and correlates with emission of benzenoid volatiles. Kinetic analysis of recombinant PhCHD revealed it most efficiently converts cinnamoyl-CoA to 3-oxo-3-phenylpropanoyl-CoA, thus forming the substrate for the final step in the pathway. Down-regulation of PhCHD expression in petunia flowers resulted in reduced CHD enzyme activity, as well as decreased formation of BA-CoA, BA and their derived volatiles. Moreover, transgenic lines accumulated the PhCHD substrate cinnamoyl-CoA and the upstream pathway intermediate cinnamic acid. Discovery of PhCHD completes the elucidation of the core BA β-oxidative route in plants, and together with the previously characterized CoA-ligase and thiolase enzymes, provides evidence that the whole pathway occurs in peroxisomes.

  2. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    NASA Astrophysics Data System (ADS)

    Gioseffi, E.; de Neergaard, A.; Schjoerring, J. K.

    2011-11-01

    Soil-borne amino acids may constitute a nitrogen (N) source for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3-) and (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake. Amino acids were enriched with double-labelled 15N and 13C, while NO3- and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3- and NH4+ did not differ from each other and were about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50 % of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3- did not affect glycine uptake, while the presence of glycine down-regulated NO3- uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic nitrogen.

  3. Interactions between uptake of amino acids and inorganic nitrogen in wheat plants

    NASA Astrophysics Data System (ADS)

    Gioseffi, E.; de Neergaard, A.; Schjoerring, J. K.

    2012-04-01

    Soil-borne amino acids may constitute a source of nitrogen (N) for plants in various terrestrial ecosystems but their importance for total N nutrition is unclear, particularly in nutrient-rich arable soils. One reason for this uncertainty is lack of information on how the absorption of amino acids by plant roots is affected by the simultaneous presence of inorganic N forms. The objective of the present study was to study absorption of glycine (Gly) and glutamine (Gln) by wheat roots and their interactions with nitrate (NO3-) and ammonium (NH4+) during uptake. The underlying hypothesis was that amino acids, when present in nutrient solution together with inorganic N, may lead to down-regulation of the inorganic N uptake, thereby resulting in similar total N uptake rates. Amino acids were enriched with double-labelled 15N and 13C, while NO3- and NH4+ acquisition was determined by their rate of removal from the nutrient solution surrounding the roots. The uptake rates of NO3- and NH4+ did not differ from each other and were generally about twice as high as the uptake rate of organic N when the different N forms were supplied separately in concentrations of 2 mM. Nevertheless, replacement of 50% of the inorganic N with organic N was able to restore the N uptake to the same level as that in the presence of only inorganic N. Co-provision of NO3- did not affect glycine uptake, while the presence of glycine down-regulated NO3- uptake. The ratio between 13C and 15N were lower in shoots than in roots and also lower than the theoretical values, reflecting higher C losses via respiratory processes compared to N losses. It is concluded that organic N can constitute a significant N-source for wheat plants and that there is an interaction between the uptake of inorganic and organic N.

  4. On resin amino acid side chain attachment strategy for the head to tail synthesis of new glutamine containing gramicidin-S analogs and their antimicrobial activity.

    PubMed

    Derbal, Safa; Hensler, Mary; Fang, Weiqin; Nizet, Victor; Ghedira, Kamel; Nefzi, Adel

    2010-10-01

    The alarming increase in infections caused by multiple drug resistant bacteria including methicillin-resistant Staphylococcus aureus has prompted a desperate search for new antimicrobials. Augmenting the discoveries of completely new scaffolds with antimicrobial activity are efforts aimed at modifying existing molecules to optimize activity or reduce toxicity. We report herein the parallel solid-phase synthesis of analogues of the cationic antimicrobial peptide gramicidin S (GS) using amino acid side chain attachment strategy. The ornithine (Orn) residues were replaced by glutamine (Gln) and the aromatic D-phenylalanine (Phe) were replaced by different aromatic D-amino acids. Additional Gln containing GS analogues with all the possible combinations of the hydrophobic amino acids valine and leucine were also synthesized. In this work we also report the antibacterial activity of these analogs against several clinically-important drug-resistant Gram-positive and Gram-negative pathogens.

  5. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals

    PubMed Central

    Klessig, Daniel F.; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  6. Phosphatidic Acid Produced by Phospholipase D Promotes RNA Replication of a Plant RNA Virus

    PubMed Central

    Hyodo, Kiwamu; Taniguchi, Takako; Manabe, Yuki; Kaido, Masanori; Mise, Kazuyuki; Sugawara, Tatsuya; Taniguchi, Hisaaki; Okuno, Tetsuro

    2015-01-01

    Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate. PMID:26020241

  7. Controlling plant architecture by manipulation of gibberellic acid signalling in petunia.

    PubMed

    Liang, Yin-Chih; Reid, Michael S; Jiang, Cai-Zhong

    2014-01-01

    Since stem elongation is a gibberellic acid (GA) response, GA inhibitors are commonly used to control plant height in the production of potted ornamentals and bedding plants. In this study, we investigated interfering with GA signaling by using molecular techniques as an alternative approach. We isolated three putative GID1 genes (PhGID1A, PhGID1B and PhGID1C) encoding GA receptors from petunia. Virus-induced gene silencing (VIGS) of these genes results in stunted growth, dark-green leaves and late-flowering. We also isolated the gai mutant gene (gai-1) from Arabidopsis. We have generated transgenic petunia plants in which the gai mutant protein is over-expressed under the control of a dexamethasone-inducible promoter. This system permits induction of the dominant Arabidopsis gai mutant gene at a desired stage of plant development in petunia plants by the application of dexamethasone (Dex). The induction of gai in Dex-treated T1 petunia seedlings caused dramatic growth retardation with short internodes.

  8. Multiple Targets of Salicylic Acid and Its Derivatives in Plants and Animals.

    PubMed

    Klessig, Daniel F; Tian, Miaoying; Choi, Hyong Woo

    2016-01-01

    Salicylic acid (SA) is a critical plant hormone that is involved in many processes, including seed germination, root initiation, stomatal closure, floral induction, thermogenesis, and response to abiotic and biotic stresses. Its central role in plant immunity, although extensively studied, is still only partially understood. Classical biochemical approaches and, more recently, genome-wide high-throughput screens have identified more than two dozen plant SA-binding proteins (SABPs), as well as multiple candidates that have yet to be characterized. Some of these proteins bind SA with high affinity, while the affinity of others exhibit is low. Given that SA levels vary greatly even within a particular plant species depending on subcellular location, tissue type, developmental stage, and with respect to both time and location after an environmental stimulus such as infection, the presence of SABPs exhibiting a wide range of affinities for SA may provide great flexibility and multiple mechanisms through which SA can act. SA and its derivatives, both natural and synthetic, also have multiple targets in animals/humans. Interestingly, many of these proteins, like their plant counterparts, are associated with immunity or disease development. Two recently identified SABPs, high mobility group box protein and glyceraldehyde 3-phosphate dehydrogenase, are critical proteins that not only serve key structural or metabolic functions but also play prominent roles in disease responses in both kingdoms. PMID:27303403

  9. Ability of crassulacean acid metabolism plants to overcome interacting stresses in tropical environments

    PubMed Central

    Lüttge, Ulrich

    2010-01-01

    Background and aims Single stressors such as scarcity of water and extreme temperatures dominate the struggle for life in severely dry desert ecosystems or cold polar regions and at high elevations. In contrast, stress in the tropics typically arises from a dynamic network of interacting stressors, such as availability of water, CO2, light and nutrients, temperature and salinity. This requires more plastic spatio-temporal responsiveness and versatility in the acquisition and defence of ecological niches. Crassulacean acid metabolism The mode of photosynthesis of crassulacean acid metabolism (CAM) is described and its flexible expression endows plants with powerful strategies for both acclimation and adaptation. Thus, CAM plants are able to inhabit many diverse habitats in the tropics and are not, as commonly thought, successful predominantly in dry, high-insolation habitats. Tropical CAM habitats Typical tropical CAM habitats or ecosystems include exposed lava fields, rock outcrops of inselbergs, salinas, savannas, restingas, high-altitude páramos, dry forests and moist forests. Morphotypical and physiotypical plasticity of CAM Morphotypical and physiotypical plasticity of CAM phenotypes allow a wide ecophysiological amplitude of niche occupation in the tropics. Physiological and biochemical plasticity appear more responsive by having more readily reversible variations in performance than do morphological adaptations. This makes CAM plants particularly fit for the multi-factor stressor networks of tropical forests. Thus, while the physiognomy of semi-deserts outside the tropics is often determined by tall succulent CAM plants, tropical forests house many more CAM plants in terms of quantity (biomass) and quality (species diversity). PMID:22476063

  10. Dynamin at actin tails.

    PubMed

    Lee, Eunkyung; De Camilli, Pietro

    2002-01-01

    Dynamin, the product of the shibire gene of Drosophila, is a GTPase critically required for endocytosis. Some studies have suggested a functional link between dynamin and the actin cytoskeleton. This link is of special interest, because there is evidence implicating actin dynamics in endocytosis. Here we show that endogenous dynamin 2, as well as green fluorescence protein fusion proteins of both dynamin 1 and 2, is present in actin comets generated by Listeria or by type I PIP kinase (PIPK) overexpression. In PIPK-induced tails, dynamin is further enriched at the interface between the tails and the moving organelles. Dynamin mutants harboring mutations in the GTPase domain inhibited nucleation of actin tails induced by PIPK and moderately reduced their speed. Although dynamin localization to the tails required its proline-rich domain, expression of a dynamin mutant lacking this domain also diminished tail formation. In addition, this mutant disrupted a membrane-associated actin scaffold (podosome rosette) previously shown to include dynamin. These findings suggest that dynamin is part of a protein network that controls nucleation of actin from membranes. At endocytic sites, dynamin may couple the fission reaction to the polymerization of an actin pool that functions in the separation of the endocytic vesicles from the plasma membrane. PMID:11782545

  11. Occurrence of carboxylic acids in different steps of two drinking-water treatment plants using different disinfectants.

    PubMed

    Jurado-Sánchez, Beatriz; Ballesteros, Evaristo; Gallego, Mercedes

    2014-03-15

    The occurrence of 35 aliphatic and aromatic carboxylic acids within two full scale drinking-water treatment plants was evaluated for the first time in this research. At the intake of each plant (raw water), the occurrence of carboxylic acids varied according to the quality of the water source although in both cases 13 acids were detected at average concentrations of 6.9 and 4.7 μg/L (in winter). In the following steps in each treatment plant, the concentration patterns of these compounds differed depending on the type of disinfectant applied. Thus, after disinfection by chloramination, the levels of the acids remained almost constant (average concentration, 6.3 μg/L) and four new acids were formed (butyric, 2-methylbutyric, 3-hydroxybenzoic and 2-nitrobenzoic) at low levels (1.1-5 μg/L). When ozonation/chlorination was used, the total concentration of the carboxylic acids in the raw water sample (4.7 μg/L) increased up to 6 times (average concentration, 26.3 μg/L) after disinfection and 6 new acids (mainly aromatic) were produced at high levels (3.5-100 μg/L). Seasonal variations of the carboxylic acids under study showed that in both plants, maximum levels of all the analytes were reached in the coldest months (autumn and winter), aromatic acids only being found in those seasons.

  12. Transporters for ammonium, amino acids and peptides are expressed in pitchers of the carnivorous plant Nepenthes.

    PubMed

    Schulze, W; Frommer, W B; Ward, J M

    1999-03-01

    Insect capture and digestion contribute substantially to the nitrogen budget of carnivorous plants. In Nepenthes, insect-derived nitrogenous compounds are imported from the pitcher fluid and transported throughout the plant via the vascular tissue to support growth. Import and distribution of nutrients may require transmembrane nitrogen transporters. Representatives of three classes of genes encoding transporters for the nitrogenous compounds ammonium, amino acids and peptides were identified in Nepenthes pitchers. The expression at the cellular level of an ammonium transporter gene, three amino acid transporter genes, and one peptide transporter gene were investigated in the insect trapping organs of Nepenthes. Expression of the ammonium transporter gene NaAMT1 was detected in the head cells of digestive glands in the lower part of the pitcher where NaAMT1 may function in ammonium uptake from the pitcher fluid. One amino acid transporter gene, NaAAP1, was expressed in bundle sheath cells surrounding the vascular tissue. To understand the locations where transmembrane transport could be required within the pitcher, symplasmic and apoplasmic continuity was probed using fluorescent dyes. Symplasmic connections were not found between cortical cells and vascular bundles. Therefore, the amino acid transporter encoded by NaAAP1 may be involved in transport of amino acids into the vascular tissue. In contrast, expression of the peptide transporter gene NaNTR1 was detected in phloem cells of the vascular tissue within pitchers. NaNTR1 may function in the export of nitrogen from the pitcher by loading peptides into the phloem. PMID:10230062

  13. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields.

  14. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid.

    PubMed

    Hiradate, Syuntaro; Morita, Sayaka; Furubayashi, Akihiro; Fujii, Yoshiharu; Harada, Jiro

    2005-03-01

    Spiraea thunbergii Sieb. contains 1-O-cis-cinnamoyl-beta-D-glucopyranose (CG) and 6-O-(4'-hydroxy-2'-methylene-butyroyl)-1-O-cis-cinnamoyl-beta-D-glucopyranose (BCG) as major plant growth inhibiting constituents. In the present study, we determined the inhibitory activity of CG and BCG on root elongation of germinated seedlings of lettuce (Lactuca sativa), pigweed (Amaranthus retroflexus), red clover (Trifolium pratense), timothy (Phleum pratense), and bok choy (Brassica rapa var chinensis) in comparison with that of two well-known growth inhibitors, 2,4-dichlorophenoxyacetic acid (2,4-D) and (+)-2-cis-4-trans-abscisic acid (cis-ABA), as well as two related chemicals of CG and BCG, cis-cinnamic acid (cis-CA) and trans-cinnamic acid (trans-CA). The EC50 values for CG and BCG on lettuce were roughly one-half to one-quarter of the value for cis-ABA. cis-Cinnamic acid, which is a component of CG and BCG, possessed almost the same inhibitory activity of CG and BCG, suggesting that the essential chemical structure responsible for the inhibitory activity of CG and BCG is cis-CA. The cis-stereochemistry of the methylene moiety is apparently needed for high inhibitory activity, as trans-CA had an EC50 value roughly 100 times that of CG, BCG, and cis-CA. Growth inhibition by CG, BCG, and cis-CA was influenced by the nature of the soil in the growing medium: alluvial soil preserved the bioactivity, whereas volcanic ash and calcareous soils inhibited bioactivity. These findings indicate a potential role of cis-CA and its glucosides as allelochemicals for use as plant growth regulators in agricultural fields. PMID:15898503

  15. Abscisic Acid Regulation of Root Hydraulic Conductivity and Aquaporin Gene Expression Is Crucial to the Plant Shoot Growth Enhancement Caused by Rhizosphere Humic Acids.

    PubMed

    Olaetxea, Maite; Mora, Verónica; Bacaicoa, Eva; Garnica, María; Fuentes, Marta; Casanova, Esther; Zamarreño, Angel M; Iriarte, Juan C; Etayo, David; Ederra, Iñigo; Gonzalo, Ramón; Baigorri, Roberto; García-Mina, Jose M

    2015-12-01

    The physiological and metabolic mechanisms behind the humic acid-mediated plant growth enhancement are discussed in detail. Experiments using cucumber (Cucumis sativus) plants show that the shoot growth enhancement caused by a structurally well-characterized humic acid with sedimentary origin is functionally associated with significant increases in abscisic acid (ABA) root concentration and root hydraulic conductivity. Complementary experiments involving a blocking agent of cell wall pores and water root transport (polyethylenglycol) show that increases in root hydraulic conductivity are essential in the shoot growth-promoting action of the model humic acid. Further experiments involving an inhibitor of ABA biosynthesis in root and shoot (fluridone) show that the humic acid-mediated enhancement of both root hydraulic conductivity and shoot growth depended on ABA signaling pathways. These experiments also show that a significant increase in the gene expression of the main root plasma membrane aquaporins is associated with the increase of root hydraulic conductivity caused by the model humic acid. Finally, experimental data suggest that all of these actions of model humic acid on root functionality, which are linked to its beneficial action on plant shoot growth, are likely related to the conformational structure of humic acid in solution and its interaction with the cell wall at the root surface.

  16. Effect of gibberellic acid on growth and indole metabolism of dwarf-pea plants

    SciTech Connect

    Husain, Z.

    1987-01-01

    A study was conducted to describe the pathway of biosynthesis of indole-3-acetic acid (IAA) from tryptophan (TPP) and determine the effect of gibberellic acid (GA/sub 3/) on this system. Treatment of dwarf peas (Pisum sativum L. var Little Marvel) with 0.8 ..mu..g GA/sub 3//plant resulted in increase in plant height along with increased auxin level. A cell-free preparation of pea shoot tissue was able to convert D,L-tryptophan-3-/sup 14/C into different indole metabolites. The acidic and neutral fractions obtained after TPP incubation were subjected to thin-layer chromatography. In the neutral fraction, two peaks of radioactivity were found and these matched the Rfs for indole-acetaldehyde (IAAId) and indole-3-ethanol (IEt). One major peak of radioactivity was observed in the radiochromatograms of the acidic fraction and it corresponded with a authentic IAA. The enzymes involved in the conversion of TPP to IAA involved, in the first step, a transaminase (tryptophan aminotransferase, EC 2 x 6 x 1) reaction. The aminotransferase was purified about 82-fold by acetone precipitation and Sephadex G-200 filtration. It had a pH optimum of 8.5 and a temperature optimum of 40/sup 0/C. With ..cap alpha..-ketoglutarate a co-substrate, the enzyme transaminated aromatic as well as aliphatic amino acids including D,L-tryptophan, D,L-alanine and D,L leucine. D-TPP was found to be more effective than L-TPP as a substrate. GA/sub 3/ treatment to dwarf pea plants results in increase in the specific activity of the enzyme over the observation period. In the second step of TPP conversion, IPyA is decarboxylated by an enzyme to IAAId. In plants treated with GA/sub 3/, the enzyme activity was significantly higher three days after treatment but remained unaffected at all other stages when observations were made. The final step enzyme is a dehydrogenase that can convert IAAId to IAA in the presence of MAD as a co-factor.

  17. Plant-based Paste Fermented by Lactic Acid Bacteria and Yeast: Functional Analysis and Possibility of Application to Functional Foods.

    PubMed

    Kuwaki, Shinsuke; Nakajima, Nobuyoshi; Tanaka, Hidehiko; Ishihara, Kohji

    2012-01-01

    A plant-based paste fermented by lactic acid bacteria and yeast (fermented paste) was made from various plant materials. The paste was made of fermented food by applying traditional food-preservation techniques, that is, fermentation and sugaring. The fermented paste contained major nutrients (carbohydrates, proteins, and lipids), 18 kinds of amino acids, and vitamins (vitamin A, B1, B2, B6, B12, E, K, niacin, biotin, pantothenic acid, and folic acid). It contained five kinds of organic acids, and a large amount of dietary fiber and plant phytochemicals. Sucrose from brown sugar, used as a material, was completely resolved into glucose and fructose. Some physiological functions of the fermented paste were examined in vitro. It was demonstrated that the paste possessed antioxidant, antihypertensive, antibacterial, anti-inflammatory, anti-allergy and anti-tyrosinase activities in vitro. It was thought that the fermented paste would be a helpful functional food with various nutrients to help prevent lifestyle diseases.

  18. Characterization of potato spindle tuber viroid-specific nucleic acids in tomato plants

    SciTech Connect

    Branch, A.D.

    1981-01-01

    Blot hybridization was used to characterize potato spindle tuber viroid (PSTV)-specific nucleic acids present in extracts of tomato plants; a model for viroid replication based on these experiments is presented. Southern hybridization demonstrated that DNA of both uninfected and PSTV-infected tomato plants are free of detectable regions complementary to the viroid. Although significant hybridization was observed when conventionally prepared viroid (labeled in vitro with /sup 125/I) was used as a probe, fingerprint analysis demonstrated that this was due to the presence of rDNA fragments in the viroid preparation. When highly purified viroid was used, all traces of hybridization due to host contaminants disappeared and no viroid-specific bands could be detected. Under these same conditions, as little as one-quarter copy of a gene 550 base pairs in length could be detected. Northern hybridization was done using fully denatured nucleic acids probed with /sup 125/I-labeled PSTV. To seek evidence of a possible connection between viroid replication and pathogenesis, a set of biological experiments was carried out in which plants were simultaneously inoculated with mixtures of two variants of PSTV.

  19. Effect of Plant Oils upon Lipase and Citric Acid Production in Yarrowia lipolytica Yeast

    PubMed Central

    Darvishi, Farshad; Nahvi, Iraj; Zarkesh-Esfahani, Hamid; Momenbeik, Fariborz

    2009-01-01

    The nonconventional yeast Yarrowia lipolytica degrades very efficiently hydrophobic substrates to produce organic acids, single-cell oil, lipases, and so forth. The aim of this study was to investigate the biochemical behavior and simultaneous production of valuable metabolites such as lipase, citric acid (CA), and single-cell protein (SCP) by Yarrowia lipolytica DSM 3286 grown on various plant oils as sole carbon source. Among tested plant oils, olive oil proved to be the best medium for lipase and CA production. The Y. lipolytica DSM 3286 produced 34.6 ± 0.1 U/mL of lipase and also CA and SCP as by-product on olive oil medium supplemented with yeast extract. Urea, as organic nitrogen, was the best nitrogen source for CA production. The results of this study suggest that the two biotechnologically valuable products, lipase and CA, could be produced simultaneously by this strain using renewable low-cost substrates such as plant oils in one procedure. PMID:19826636

  20. Methods for the quantitation of abscisic acid and its precursors from plant tissues.

    PubMed

    Duffield, P H; Netting, A G

    2001-02-15

    Methods are given for the quantitation of the plant stress hormone, abscisic acid (ABA), and its two metabolic precursors, ketone and enolate, that are applicable to all species tested so far. The plant extract is homogenized at neutral pH, hexane-soluble neutrals are extracted and discarded, and then the free ABA and other organic acids are extracted as ion pairs. The remaining aqueous phase is acidified, allowed to stand, neutralized, and extracted to give the ABA ex ketone fraction and then the aqueous phase is treated with base and again extracted to give the ABA ex enolate fraction. Each of these three fractions, free ABA, ABA ex ketone, and ABA ex enolate, along with a deuteriated internal standard, [side-chain-(2)H(4)]ABA, is then derivatized with pentafluorobenzyl bromide and purified on an automated sample preparation system. The resulting pentafluorobenzyl abscisate samples are then quantified using electron capture negative ionization mass spectrometry with methane as the reagent gas. Using these procedures free ABA, and ABA from its precursors, can be quantified at the level of 100 fg on column. If a large volume injector is used so that the total sample is injected it should be possible to quantify ABA and its precursors in the parts per billion range on a few milligrams of plant tissue.

  1. Characterisation of the FAD2 gene family from Hiptage benghalensis: a ricinoleic acid accumulating plant.

    PubMed

    Zhou, Xue-Rong; Singh, Surinder P; Green, Allan G

    2013-08-01

    We have characterised the FAD2 gene family from Hiptage benghalensis, a tropical plant that accumulates high levels of ricinoleic acid in its seeds. Functional characterisation of six FAD2 gene family members showed that two of them were capable of functioning as Δ12-hydroxylases while the other FAD2 members were confirmed to be Δ12-desaturases. The Δ12-hydroxylation function of these two genes was confirmed in yeast cells, using C16:1(Δ9) and C18:1(Δ9) monounsaturated fatty acids as substrates. These Δ12-hydroxylases, like the other Δ12-hydroxylases previously cloned from plants Ricinus communis (castor), Physaria fendleri and fungus Claviceps purpurea, also showed some Δ12-desaturase activity. The hydroxylation activity of the two Hiptage hydroxylases was further confirmed by their expression in the Arabidopsis fad2/fae1 double mutant where they were able to produce equivalent or higher levels hydroxylated fatty acids in the seed oil when compared with the other known hydroxylases.

  2. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators.

    PubMed

    Macuvele, Domingos Lusitaneo Pier; Sithole, Gerre Zebedias Samo; Cesca, Karina; Macuvele, Suzana Lília Pinare; Matsinhe, Jonas Valente

    2016-06-01

    Indicators are substances that change color as the pH of the medium. Many of these substances are dyes of synthetic origin. The mulala plant (Euclea natalensis), which roots are commonly used by rural communities for their oral hygiene, and roseira (Hibiscus rosa-sinensis), an ornamental plant, are abundant in Mozambique. Currently, synthetic acid-base indicators are most commonly used but have environmental implications and, on the other hand, are expensive products, so the demand for natural indicators started. This study investigated the applicability of aqueous extracts of H. rosa-sinensis and E. natalensis as acid-base indicators. Ground on this work, the extracts can be used as acid-base indicators. On the basis of the absorption spectroscopy in both the UV-Vis region and previous studies, it was possible to preliminarily pinpoint anthocyanins and naphthoquinones as responsible for the shifting of colors depending on the pH range of aqueous extracts of H. rosa-sinensis and E. natalensis. These natural indicators are easily accessible, inexpensive, easy to extract, environmentally safe, and locally available. PMID:26936478

  3. Expanded perlite insulation selected for process piping in $80 million boric acid plant

    SciTech Connect

    Nannini, L.; Gaines, A.

    1982-03-01

    U.S. Borax's new $80 million chemical facility in Boron, California utilizes the most modern technology to produce 200,000 tons per year of boric acid that is used in texyile fiber glass, various types of heat resistant glasses, metallurgy, drugs and cosmetics. The boric acid plant contains thousands of feet of pipe to convey liquors to mixing tanks, clarifiers, crystallizers, centrifuges and other equipment for the refining process. Steel pipe lined with polyvinylidene fluoride (PVDF) was used for a major portion of the piping system to avoid corrosion problems and assure products free of contaminants. The process lines were insulated with a lightweight, asbestos-free product made of expanded perlite containing millions of air cells for low thermal conductivity, bonded together by special binders and reinforcing fibers for good compressive strength. The rigid, molded, insulation can withstand continuous and cycling temperatures to 1500/sup 0/F with minimal shrinkage, and contains less than 150 ppm chlorides to avoid stress corrosion cracking of austenitic stainless steels. The boric acid plant, which is one of the world's largest, began operations in August 1980, and the performance of the expanded perlite pipe insulation in maintaining process temperatures is considered very satisfactory. Any line leakage that occurred during start-up or normal operation has not affected the heat barrier efficiency or structural integrity of the insulation. The combined strength of the insulation and PVC jacket has prevented any serious damage to the pipe covering when struck or scraped.

  4. Estimates of the occupational exposure to tenorm in the phosphoric acid production plant in Iran.

    PubMed

    Fathabadi, N; Vasheghani Farahani, M; Moradi, M; Hadadi, B

    2012-09-01

    Phosphate rock is used world wide for manufacturing phosphoric acid and several chemical fertilisers. It is known that the phosphate rock contains various concentrations of uranium, thorium, radium and their daughters. The subject of this study is the evaluation of the radiation exposure to workers in the phosphoric acid production plant due to technologically enhanced naturally occurring radioactive materials that can result from the presence of naturally occurring radioactive materials in phosphate ores used in the manufacturing of phosphoric acid. Radiation exposure due to direct gamma radiation, dust inhalation and radon gas has been investigated and external and internal doses of exposed workers have been calculated. Natural radioactivity due to (40)K, (226)Ra and (232)Th have been measured in phosphate rock, phosphogypsum, chemical fertilisers and other samples by gamma spectrometry system with a high-purity germanium. The average concentrations of (226)Ra and (40)K observed in the phosphate rock are 760 and 80 Bq kg(-1), respectively. Annual effective dose from external radiation had a mean value of ∼0.673 mSv y(-1). Dust sampling revealed greatest values in the storage area. The annual average effective dose from inhalation of long-lived airborne was 0.113 mSv y(-1). Radon gas concentrations in the processing plant and storage area were found to be of the same value as the background. In this study the estimated annual effective doses to workers were below 1 mSv y(-1). PMID:22361352

  5. Searching for health beneficial n-3 and n-6 fatty acids in plant seeds.

    PubMed

    Kuhnt, Katrin; Degen, Christian; Jaudszus, Anke; Jahreis, Gerhard

    2012-02-01

    Various plant seeds have received little attention in fatty acid research. Seeds from 30 species mainly of Boraginaceae and Primulaceae were analysed in order to identify potential new sources of the n-3 PUFA α-linolenic acid (ALA) and stearidonic acid (SDA) and of the n-6 PUFA γ-linolenic acid (GLA). The fatty acid distribution differed enormously between genera of the same family. Echium species (Boraginaceae) contained the highest amount of total n-3 PUFA (47.1%), predominantly ALA (36.6%) and SDA (10.5%) combined with high GLA (10.2%). Further species of Boraginaceae rich in both SDA and GLA were Omphalodes linifolia (8.4, 17.2%, resp.), Cerinthe minor (7.5, 9.9%, resp.) and Buglossoides purpureocaerulea (6.1, 16.6%, resp.). Alkanna species belonging to Boraginaceae had comparable amounts of ALA (37.3%) and GLA (11.4%) like Echium but lower SDA contents (3.7%). Different genera of Primulaceae (Dodecatheon and Primula) had varying ALA (14.8, 28.8%, resp.) and GLA portions (4.1, 1.5%, resp.), but similar amounts of SDA (4.9, 4.5%, resp.). Cannabis sativa cultivars (Cannabaceae) were rich in linoleic acid (57.1%), but poor in SDA and GLA (0.8, 2.7%, resp.). In conclusion, several of the presented plant seeds contain considerable amounts of n-3 PUFA and GLA, which could be relevant for nutritional purposes due to their biological function as precursors for eicosanoid synthesis. PRACTICAL APPLICATIONS: N-3 PUFA are important for human health and nutrition. Unfortunately, due to the increasing world population, overfishing of the seas and generally low amounts of n-3 PUFA in major oil crops, there is a demand for new sources of n-3 PUFA. One approach involves searching for potential vegetable sources of n-3 PUFA; especially those rich in ALA and SDA. The conversion of ALA to SDA in humans is dependent on the rate-limiting Δ6-desaturation. Plant-derived SDA is therefore a promising precursor regarding the endogenous synthesis of n-3 long-chain PUFA in humans. The

  6. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway.

    PubMed Central

    Penninckx, I A; Eggermont, K; Terras, F R; Thomma, B P; De Samblanx, G W; Buchala, A; Métraux, J P; Manners, J M; Broekaert, W F

    1996-01-01

    A 5-kD plant defensin was purified from Arabidopsis leaves challenged with the fungus Alternaria brassicicola and shown to possess antifungal properties in vitro. The corresponding plant defensin gene was induced after treatment of leaves with methyl jasmonate or ethylene but not with salicylic acid or 2,6-dichloroisonicotinic acid. When challenged with A. brassicicola, the levels of the plant defensin protein and mRNA rose both in inoculated leaves and in nontreated leaves of inoculated plants (systemic leaves). These events coincided with an increase in the endogenous jasmonic acid content of both types of leaves. Systemic pathogen-induced expression of the plant defensin gene was unaffected in Arabidopsis transformants (nahG) or mutants (npr1 and cpr1) affected in the salicylic acid response but was strongly reduced in the Arabidopsis mutants eln2 and col1 that are blocked in their response to ethylene and methyl jasmonate, respectively. Our results indicate that systemic pathogen-induced expression of the plant defensin gene in Arabidopsis is independent of salicylic acid but requires components of the ethylene and jasmonic acid response. PMID:8989885

  7. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    PubMed

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  8. 78 FR 58574 - Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... identification as Draft Regulatory Guide, DG-1269, in the Federal Register on March 12, 2013 (78 FR 15753), for a... COMMISSION Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power..., Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants.'' The...

  9. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases.

    PubMed

    Salmon, Melissa; Thimmappa, Ramesha B; Minto, Robert E; Melton, Rachel E; Hughes, Richard K; O'Maille, Paul E; Hemmings, Andrew M; Osbourn, Anne

    2016-07-26

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  10. Mechanistic Basis for Plant Responses to Drought Stress : Regulatory Mechanism of Abscisic Acid Signaling

    NASA Astrophysics Data System (ADS)

    Miyakawa, Takuya; Tanokura, Masaru

    The phytohormone abscisic acid (ABA) plays a key role in the rapid adaptation of plants to environmental stresses such as drought and high salinity. Accumulated ABA in plant cells promotes stomatal closure in guard cells and transcription of stress-tolerant genes. Our understanding of ABA responses dramatically improved by the discovery of both PYR/PYL/RCAR as a soluble ABA receptor and inhibitory complex of a protein phospatase PP2C and a protein kinase SnRK2. Moreover, several structural analyses of PYR/PYL/RCAR revealed the mechanistic basis for the regulatory mechanism of ABA signaling, which provides a rational framework for the design of alternative agonists in future.

  11. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  12. Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)?

    PubMed

    Holtum, Joseph Am; Hancock, Lillian P; Edwards, Erika J; Crisp, Michael D; Crayn, Darren M; Sage, Rowan; Winter, Klaus

    2016-06-01

    In the flora of Australia, the driest vegetated continent, crassulacean acid metabolism (CAM), the most water-use efficient form of photosynthesis, is documented in only 0.6% of native species. Most are epiphytes and only seven terrestrial. However, much of Australia is unsurveyed, and carbon isotope signature, commonly used to assess photosynthetic pathway diversity, does not distinguish between plants with low-levels of CAM and C3 plants. We provide the first census of CAM for the Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of terrestrial CAM species probably 10-fold greater. Still unresolved is the question why the large stem-succulent life - form is absent from the native Australian flora even though exotic large cacti have successfully invaded and established in Australia.

  13. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants

    SciTech Connect

    Voelker, T.A.; Worrell, A.C.; Anderson, L.; Bleibaum, J.; Fan, C.; Hawkins, D.J.; Radke, S.E.; Davies, H.M. )

    1992-07-03

    Medium-chain fatty acids (FAs), found in storage lipids of certain plants, are an important renewable resource. Seeds of undomesticated California bay accumulate laurate (12:0), and a 12:0-acyl-carrier protein thioesterase (BTE) has been purified from this tissue. Sequencing of BTE enabled the cloning of a complementary DNA coding for a plastid-targeted preprotein. Expression of the complementary DNA in the seeds of Arabidopsis thaliana resulted in BTE activity, and medium chains accumulated at the expense of long-chain ({ge}16) FAs. Laurate became the most abundant FA species and was deposited in the storage triacylglycerols. These results demonstrate a mechanism for medium-chain FA synthesis in plants.

  14. Agrochemical control of plant water use using engineered abscisic acid receptors.

    PubMed

    Park, Sang-Youl; Peterson, Francis C; Mosquna, Assaf; Yao, Jin; Volkman, Brian F; Cutler, Sean R

    2015-04-23

    Rising temperatures and lessening fresh water supplies are threatening agricultural productivity and have motivated efforts to improve plant water use and drought tolerance. During water deficit, plants produce elevated levels of abscisic acid (ABA), which improves water consumption and stress tolerance by controlling guard cell aperture and other protective responses. One attractive strategy for controlling water use is to develop compounds that activate ABA receptors, but agonists approved for use have yet to be developed. In principle, an engineered ABA receptor that can be activated by an existing agrochemical could achieve this goal. Here we describe a variant of the ABA receptor PYRABACTIN RESISTANCE 1 (PYR1) that possesses nanomolar sensitivity to the agrochemical mandipropamid and demonstrate its efficacy for controlling ABA responses and drought tolerance in transgenic plants. Furthermore, crystallographic studies provide a mechanistic basis for its activity and demonstrate the relative ease with which the PYR1 ligand-binding pocket can be altered to accommodate new ligands. Thus, we have successfully repurposed an agrochemical for a new application using receptor engineering. We anticipate that this strategy will be applied to other plant receptors and represents a new avenue for crop improvement. PMID:25652827

  15. Evidence for a cyclic diguanylic acid-dependent cellulose synthase in plants.

    PubMed Central

    Amor, Y; Mayer, R; Benziman, M; Delmer, D

    1991-01-01

    Because numerous attempts to detect an activity for a cellulose synthase in plants have failed, we have taken a different approach toward detecting polypeptides involved in this process. The uniqueness of the structure and function of cyclic diguanylic acid (c-di-GMP) as an activator of the cellulose synthase of the bacterium Acetobacter xylinum makes it an attractive probe to use in a search for a c-di-GMP receptor that might be involved in the process in plants. Direct photolabeling with 32P-c-di-GMP has been used, therefore, to identify in plants two membrane polypeptides of 83 and 48 kD derived from cotton fibers that possess properties consistent with their being components of a c-di-GMP-dependent cellulose synthase. Based upon several criteria, the 48-kD species is proposed to be derived by proteolytic cleavage of the 83-kD polypeptide. Both polypeptides bind c-di-GMP with high affinity and specificity and show antigenic relatedness to the bacterial cellulose synthase, and the N-terminal sequence of the 48-kD polypeptide also indicates relatedness to the bacterial synthase. Ability to detect both cotton fiber polypeptides by photolabeling increases markedly in extracts derived from fibers entering the active phase of secondary wall cellulose synthesis. These results provide a basis for future work aimed at identifying and characterizing genes involved in cellulose synthesis in plants. PMID:1668373

  16. Hypothesis: Nitro-fatty acids play a role in plant metabolism.

    PubMed

    Sánchez-Calvo, Beatriz; Barroso, Juan B; Corpas, Francisco J

    2013-02-01

    The free radical molecule nitric oxide (NO) is involved in a wide range of plant functions such as growth, senescence, fruit ripening, and responses to adverse environmental conditions. NO and NO-derived molecules peroxynitrite and S-nitrosoglutathione are reactive nitrogen species (RNS) that can directly or indirectly interact with a broad spectrum of biomolecules that affect their biological functions. Plant NO research has focused on post-translational modifications in proteins, mainly S-nitrosylation and nitration. There are other potential target biomolecules in plants that have not been studied, which have been studied in animal systems, such as lipids. Nitro-fatty acids (NO(2)-FAs) are involved in pleiotropic activities in animal systems, including modulation of macrophage activation, prevention of leukocyte and platelet activation, and promotion of blood vessel relaxation. NO(2)-FAs are therefore novel mediators in NO signaling pathways and metabolism. This review will focus on these molecules and will highlight their potential in relation to the physiology of higher plants.

  17. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  18. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots.

  19. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    PubMed

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants.

  20. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. PMID:26851887

  1. Endiandric Acid Derivatives and Other Constituents of Plants from the Genera Beilschmiedia and Endiandra (Lauraceae)

    PubMed Central

    Ndjakou Lenta, Bruno; Chouna, Jean Rodolphe; Nkeng-Efouet, Pepin Alango; Sewald, Norbert

    2015-01-01

    Plants of the Lauraceae family are widely used in traditional medicine and are sources of various classes of secondary metabolites. Two genera of this family, Beilschmiedia and Endiandra, have been the subject of numerous investigations over the past decades because of their application in traditional medicine. They are the only source of bioactive endiandric acid derivatives. Noteworthy is that their biosynthesis contains two consecutive non-enzymatic electrocyclic reactions. Several interesting biological activities for this specific class of secondary metabolites and other constituents of the two genera have been reported, including antimicrobial, enzymes inhibitory and cytotoxic properties. This review compiles information on the structures of the compounds described between January 1960 and March 2015, their biological activities and information on endiandric acid biosynthesis, with 104 references being cited. PMID:26117852

  2. Effects of ammonium on elemental nutrition of red spruce and indicator plants grown in acid soil

    SciTech Connect

    Hoelldampf, B.; Barker, A.V. )

    1993-01-01

    Decline of high elevation red spruce forests in the northeastern United States has been related to acid rain, particularly with respect to the deposition of nitrogenous materials. Ca and Mg deficiencies may be induced by input of air-borne nitrogenous nutrients into the forest ecosystem. This research investigated the effects of N nutrition on mineral nutrition of red spruce and radish, as an indicator plant, grown in acid forest soil. Red spruce and radishes in the greenhouse were treated with complete nutrient solutions with 15 mM N supplied as 0, 3.75, 7.5, 11.25, or 15 mM NH[sub 4][sup +] with the remainder being supplied as NO[sub 3][sup [minus

  3. Nesting habitat relationships of sympatric Crested Caracaras, Red-tailed Hawks, and White-tailed Hawks in South Texas

    USGS Publications Warehouse

    Actkinson, M.A.; Kuvlesky, W.P.; Boal, C.W.; Brennan, L.A.; Hernandez, F.

    2007-01-01

    We quantified nesting-site habitats for sympatric White-tailed Hawks (Buteo albicaudatus) (n = 40), Red-tailed Hawks (B. jamaicensis) (n = 39), and Crested Caracaras (Caracara cheriway) (n = 24) in the Coastal Sand Plain of south Texas. White-tailed Hawks and Crested Caracara nest sites occurred in savannas, whereas Red-tailed Hawk nest sites occurred in woodlands on the edge of savannas. White-tailed Hawk nest sites were in shrubs and trees that were shorter (3.5 ?? 1.0 m) and had smaller canopy diameters (5.5 ?? 2.1 m) than those of Red-tailed Hawks (10.1 ?? 2.0 m, 13.7 ?? 5.8 m) and Crested Caracaras (5.6 ?? 1.7 m, 8.5 ?? 3.5 m). Red-tailed Hawk nest sites had higher woody densities (15.7 ?? 9.6 plants) and more woody cover (84 ?? 19%) than those of White-tailed Hawks (5.6 ?? 5.8 plants, 20 ?? 21%) and Crested Caracaras (9.9 ?? 6.7 plants, 55 ?? 34%). Crested Caracara nest sites were in dense, multi-branched shrubs composed of more living material (97 ?? 3%) than those of White-tailed (88 ?? 18%) and Red-tailed hawks (88 ?? 18%). Nest sites of White-tailed Hawks, Red-tailed Hawks, and Crested Caracaras were similar to random samples from the surrounding habitat indicating that preferred nesting habitat was available for each of these species at least within 60 m of active nest sites. Nest tree height, along with woody plant and native grass cover best discriminated nest sites among the three raptor species. There was no overlap at Red-tailed and White-tailed hawk nest sites in vegetation structure, while Crested Caracara nests were in habitat intermediate between the two other species. Partitioning of nesting habitat may be how these raptor species co-exist at the broader landscape scale of our study area in the Coastal Sand Plain of Texas.

  4. Myxostiolide, myxostiol, and clavatoic acid, plant growth regulators from the fungus Myxotrichum stipitatum.

    PubMed

    Kimura, Yasuo; Shimada, Atsumi; Kusano, Miyako; Yoshii, Katsunobu; Morita, Akiko; Nishibe, Masahiko; Fujioka, Shozo; Kawano, Tsuyoshi

    2002-04-01

    New plant growth regulators, named myxostiolide (1), myxostiol (2), and clavatoic acid (3), have been isolated from Myxotrichum stipitatum, and their structures have been established by spectroscopic methods including 2D NMR. The biological activities of 1, 2, and 3 have been examined using tea pollen and lettuce seedling bioassay methods. With tea pollen, compound 1 inhibited the pollen tube growth to 14% of control at a concentration of 100 mg/L. With lettuce seedlings, compound 2 accelerated the root growth from 1 mg/L to 100 mg/L and compound 3 inhibited the root growth, to 52% of control, at a concentration of 100 mg/L.

  5. Manual of phosphoric acid fuel cell power plant optimization model and computer program

    NASA Technical Reports Server (NTRS)

    Lu, C. Y.; Alkasab, K. A.

    1984-01-01

    An optimized cost and performance model for a phosphoric acid fuel cell power plant system was derived and developed into a modular FORTRAN computer code. Cost, energy, mass, and electrochemical analyses were combined to develop a mathematical model for optimizing the steam to methane ratio in the reformer, hydrogen utilization in the PAFC plates per stack. The nonlinear programming code, COMPUTE, was used to solve this model, in which the method of mixed penalty function combined with Hooke and Jeeves pattern search was chosen to evaluate this specific optimization problem.

  6. Degradation of the plant defence hormone salicylic acid by the biotrophic fungus Ustilago maydis.

    PubMed

    Rabe, Franziska; Ajami-Rashidi, Ziba; Doehlemann, Gunther; Kahmann, Regine; Djamei, Armin

    2013-07-01

    Salicylic acid (SA) is a key plant defence hormone which plays an important role in local and systemic defence responses against biotrophic pathogens like the smut fungus Ustilago maydis. Here we identified Shy1, a cytoplasmic U. maydis salicylate hydroxylase which has orthologues in the closely related smuts Ustilago hordei and Sporisorium reilianum. shy1 is transcriptionally induced during the biotrophic stages of development but not required for virulence during seedling infection. Shy1 activity is needed for growth on plates with SA as a sole carbon source. The trigger for shy1 transcriptional induction is SA, suggesting the possibility of a SA sensing mechanism in this fungus.

  7. How Very-Long-Chain Fatty Acids Could Signal Stressful Conditions in Plants?

    PubMed Central

    De Bigault Du Granrut, Antoine; Cacas, Jean-Luc

    2016-01-01

    Although encountered in minor amounts in plant cells, very-long-chain fatty acids exert crucial functions in developmental processes. When their levels are perturbed by means of genetic approaches, marked phenotypic consequences that range from severe growth retardation to embryo lethality was indeed reported. More recently, a growing body of findings has also accumulated that points to a potential role for these lipids as signals in governing both biotic and abiotic stress outcomes. In the present work, we discuss the latter theory and explore the ins and outs of very-long-chain fatty acid-based signaling in response to stress, with an attempt to reconcile two supposedly antagonistic parameters: the insoluble nature of fatty acids and their signaling function. To explain this apparent dilemma, we provide new interpretations of pre-existing data based on the fact that sphingolipids are the main reservoir of very-long-chain fatty acids in leaves. Thus, three non-exclusive, molecular scenarii that involve these lipids as membrane-embedded and free entities are proposed. PMID:27803703

  8. Free aluminium extraction from various reference materials and acid soils with relation to plant availability.

    PubMed

    Matús, Peter; Kubová, Jana; Bujdos, Marek; Medved', Ján

    2006-12-15

    The single extractions with 15 extractants (agents) (H(2)O, KCl, NH(4)Cl, NH(4)F, CaCl(2), BaCl(2), CuCl(2), LaCl(3), Na(2)S(2)O(4), (NH(4))(2)C(2)O(4), Na(4)P(2)O(7), NTA, EDTA, DTPA, HCl), the optimised BCR (Community Bureau of Reference) three-step sequential extraction procedure (SEP) and the solid phase extraction (SPE) by the chelating ion-exchanger Iontosorb Salicyl (cellulose resin containing covalently bound salicylic acid functional groups) were used for the partitioning of Al in very acid soil samples taken from an area influenced by acid mine solutions. The precision, accuracy and repeatibility for all steps of the optimised BCR SEP were checked on the various reference materials (CRM 483 sewage sludge amended soil, CRM BCR 701 freshwater sediment, SRM 2710 and SRM 2711 Montana soils). Also the new indicative values of the optimised BCR SEP fractional Al concentrations were obtained for these reference materials. The aluminium amounts obtained by the used extraction procedures were valuated and discussed from the aspect of the Al concentration in the plants (grass) growing on the same studied soils. The aluminium toxicity indexes (ATI) calculated for the studied soils, the BaCl(2) and acetic acid soil extracts and the grass stems and roots were used for the assessment of the Al toxicity to the plants. The ATI value was defined as the ratio of the nutrient cations (Ca, Mg, K, Na) concentration sum to the Al concentration. The flame atomic absorption spectrometry (LOQ=0.2mgl(-1)) and the inductively coupled plasma optical emission spectrometry (LOQ=0.03mgl(-1)) were used for the aluminium quantification. PMID:18970873

  9. [Effects of simulated acid rain on physiological and biochemical characters of eggplant, the host plant of Tetranychus cinnabarinus].

    PubMed

    Zhang, Jianping; Wang, Jinjun; Zhao, Zhimo; Chen, Yang; Dou, Wei

    2005-03-01

    In a series of laboratory trials, this paper studied the responses of eggplant (Solanum melongena), the host plant of carmine spider mite Tetranychus cinnabarinus, to different pH values simulated acid rain. The results showed that with the increasing acidity of simulated acid rain, the CAT activity and the contents of P and soluble protein in egg plant leaves increased significantly first, reaching the highest at pH 4.0 or 3.0, and then decreased; while the POD activity and soluble sugar content were in adverse. The reduced sugar content and SOD activity of eggplant leaves increased, but the pH value decreased with increasing acidity of acid rain. Acid rain had no effect on leaf water content. Among the test indices, leaf POD was most insensitive to the acid rain, followed by leaf pH, SOD and CAT, while the others were very sensitive. Weak acid rain (pH > 4.0) promoted the protective ability of eggplant leaf and its growth, and the growth of T. cinnabarinus was also promoted because of the changed contents of soluble sugar, P and soluble protein in eggplant leaves being more favorable to its eating; while strong acid rain (pH < 3.0) inhibited the growth of both host plant and mite.

  10. REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR PROFILE OF TAIL FROM SECOND LEVEL OF TAIL DOCK STAND, SHOWING AIRCRAFT NUMBER (319), HORIZONTAL STABILIZER, TAIL CONE AND COOLING CTS FOR THE AUXILIARY POWER UNIT (APU), MECHANIC PAUL RIDEOUT IS LOWERING THE BALANCE PANELS ON THE STABILIZERS FOR LUBRICATION AND INSPECTION. - Greater Buffalo International Airport, Maintenance Hangar, Buffalo, Erie County, NY

  11. Type III Secretion System Genes of Dickeya dadantii 3937 Are Induced by Plant Phenolic Acids

    PubMed Central

    Yang, Shihui; Peng, Quan; San Francisco, Michael; Wang, Yongjun; Zeng, Quan; Yang, Ching-Hong

    2008-01-01

    Background Dickeya dadantii is a broad-host range phytopathogen. D. dadantii 3937 (Ech3937) possesses a type III secretion system (T3SS), a major virulence factor secretion system in many Gram-negative pathogens of plants and animals. In Ech3937, the T3SS is regulated by two major regulatory pathways, HrpX/HrpY-HrpS-HrpL and GacS/GacA-rsmB-RsmA pathways. Although the plant apoplast environment, low pH, low temperature, and absence of complex nitrogen sources in media have been associated with the induction of T3SS genes of phytobacteria, no specific inducer has yet been identified. Methodology/Principal Findings In this work, we identified two novel plant phenolic compounds, o-coumaric acid (OCA) and t-cinnamic acid (TCA), that induced the expression of T3SS genes dspE (a T3SS effector), hrpA (a structural protein of the T3SS pilus), and hrpN (a T3SS harpin) in vitro. Assays by qRT-PCR showed higher amounts of mRNA of hrpL (a T3SS alternative sigma factor) and rsmB (an untranslated regulatory RNA), but not hrpS (a σ54-enhancer binding protein) of Ech3937 when these two plant compounds were supplemented into minimal medium (MM). However, promoter activity assays using flow cytometry showed similar promoter activities of hrpN in rsmB mutant Ech148 grown in MM and MM supplemented with these phenolic compounds. Compared with MM alone, only slightly higher promoter activities of hrpL were observed in bacterial cells grown in MM supplemented with OCA/TCA. Conclusion/Significance The induction of T3SS expression by OCA and TCA is moderated through the rsmB-RsmA pathway. This is the first report of plant phenolic compounds that induce the expression T3SS genes of plant pathogenic bacteria. PMID:18698421

  12. Transcriptome analysis highlights changes in the leaves of maize plants cultivated in acidic soil containing toxic levels of Al(3+).

    PubMed

    Mattiello, Lucia; Begcy, Kevin; da Silva, Felipe Rodrigues; Jorge, Renato A; Menossi, Marcelo

    2014-12-01

    Soil acidity limits crop yields worldwide and is a common result of aluminum (Al) phytotoxicity, which is known to inhibit root growth. Here, we compared the transcriptome of leaves from maize seedlings grown under control conditions (soil without free Al) and under acidic soil containing toxic levels of Al. This study reports, for the first time, the complex transcriptional changes that occur in the leaves of maize plants grown in acidic soil with phytotoxic levels of Al. Our data indicate that 668 genes were differentially expressed in the leaves of plants grown in acidic soil, which is significantly greater than that observed in our previous work with roots. Genes encoding TCA cycle enzymes were upregulated, although no specific transporter of organic acids was differentially expressed in leaves. We also provide evidence for positive roles for auxin and brassinosteroids in Al tolerance, whereas gibberellin and jasmonate may have negative roles. Our data indicate that plant responses to acidic soil with high Al content are not restricted to the root; tolerance mechanisms are also displayed in the aerial parts of the plant, thus indicating that the entire plant responds to stress. PMID:25205121

  13. Expression of an abscisic acid-binding single-chain antibody influences the subcellular distribution of abscisic acid and leads to developmental changes in transgenic potato plants.

    PubMed

    Strauss, M; Kauder, F; Peisker, M; Sonnewald, U; Conrad, U; Heineke, D

    2001-07-01

    Potato (Solanum tuberosum L. cv. Désirée) plants were transformed to express a single-chain variable-fragment antibody against abscisic acid (ABA), and present in the endoplasmic reticulum at to up to 0.24% of the soluble leaf protein. The resulting transgenic plants were only able to grow normally at 95% humidity and moderate light. Four-week-old plants accumulated ABA to high extent, were retarded in growth and their leaves were smaller than those of control plants. Leaf stomatal conductivity was increased due to larger stomates. The subcellular concentrations of ABA in the chloroplast, cytoplasm and vacuole, and the apoplastic space of leaves were determined. In the 4-week-old transgenic plants the concentration of ABA not bound to the antibody was identical to that of control plants and the stomates were able to close in response to lower humidity of the atmosphere. A detailed analysis of age-dependent changes in plant metabolism showed that leaves of young transformed plants developed in ABA deficiency and leaves of older plants in ABA excess. Phenotypic changes developed in ABA deficiency partly disappeared in older plants.

  14. Structural evolution of differential amino acid effector regulation in plant chorismate mutases.

    PubMed

    Westfall, Corey S; Xu, Ang; Jez, Joseph M

    2014-10-10

    Chorismate mutase converts chorismate into prephenate for aromatic amino acid biosynthesis. To understand the molecular basis of allosteric regulation in the plant chorismate mutases, we analyzed the three Arabidopsis thaliana chorismate mutase isoforms (AtCM1-3) and determined the x-ray crystal structures of AtCM1 in complex with phenylalanine and tyrosine. Functional analyses show a wider range of effector control in the Arabidopsis chorismate mutases than previously reported. AtCM1 is activated by tryptophan with phenylalanine and tyrosine acting as negative effectors; however, tryptophan, cysteine, and histidine activate AtCM3. AtCM2 is a nonallosteric form. The crystal structure of AtCM1 in complex with tyrosine and phenylalanine identifies differences in the effector sites of the allosterically regulated yeast enzyme and the other two Arabidopsis isoforms. Site-directed mutagenesis of residues in the effector site reveals key features leading to differential effector regulation in these enzymes. In AtCM1, mutations of Gly-213 abolish allosteric regulation, as observed in AtCM2. A second effector site position, Gly-149 in AtCM1 and Asp-132 in AtCM3, controls amino acid effector specificity in AtCM1 and AtCM3. Comparisons of chorismate mutases from multiple plants suggest that subtle differences in the effector site are conserved in different lineages and may lead to specialized regulation of this branch point enzyme.

  15. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-01-01

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase. PMID:25710843

  16. Connecting Proline and γ-Aminobutyric Acid in Stressed Plants through Non-Enzymatic Reactions

    PubMed Central

    Signorelli, Santiago; Dans, Pablo D.; Coitiño, E. Laura; Borsani, Omar; Monza, Jorge

    2015-01-01

    The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H–abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity. PMID:25775459

  17. Connecting proline and γ-aminobutyric acid in stressed plants through non-enzymatic reactions.

    PubMed

    Signorelli, Santiago; Dans, Pablo D; Coitiño, E Laura; Borsani, Omar; Monza, Jorge

    2015-01-01

    The accumulation of proline (Pro) in plants exposed to biotic/abiotic stress is a well-documented and conserved response in most vegetal species. Stress conditions induce the overproduction of reactive oxygen species which can lead to cellular damage. In vitro assays have shown that enzyme inactivation by hydroxyl radicals (·OH) can be avoided in presence of Pro, suggesting that this amino acid could act as an ·OH scavenger. We applied Density Functional Theory coupled with a polarizable continuum model to elucidate how Pro reacts with ·OH. In this work we suggest that Pro reacts favourably with ·OH by H-abstraction on the amine group. This reaction produces the spontaneous decarboxylation of Pro leading to the formation of pyrrolidin-1-yl. In turn, pyrrolidin-1-yl can easily be converted to Δ1-pyrroline, the substrate of the enzyme Δ1-pyrroline dehydrogenase, which produces γ-aminobutyric acid (GABA). GABA and Pro are frequently accumulated in stressed plants and several protective roles have been assigned to these molecules. Thereby we present an alternative non-enzymatic way to synthetize GABA under oxidative stress. Finally this work sheds light on a new beneficial role of Pro accumulation in the maintenance of photosynthetic activity.

  18. Effects of indole-3-acetic acid on Botrytis cinerea isolates obtained from potted plants.

    PubMed

    Martínez, J A; Valdés, R; Gómez-Bellot, M J; Bañón, S

    2011-01-01

    We study the growth of different isolates of Botrytis cinerea collected from potted plants which were affected by Botrytis blight in southern Spain during recent years. These isolates, which show widely phenotypic differences when grown in vitro, are differentially affected by growth temperature, gibberellic acid applications and paclobutrazol, an efficient plant growth retardant and fungicide at the same time. In this work, we have evaluated the effect of the auxin indole-3-acetic acid (IAA) dose (0, 1, 10, and 100 mg/plate) on the growth of the collection of B. cinerea isolates obtained from the following potted plants: Cyclamen persicum, Hydrangea macrophylla, Lantona camara, and Lonicera japonica. B. cinerea produces indolacetic acid, but so far the precise biosynthetic pathway and some effects on this fungal species are still unclear, although recent studies have revealed an antifungal activity of IAA on several fungi, including B. cinerea isolated from harvested fruits. Mycelial growth curves and growth rates assessed from difference in colony areas during the both linear and deceleration phase, conidiation (measured as time of appearance), conidia length (microm), and sclerotia production (number/plate) were evaluated in the isolates, which were grown at 26 degrees C on Petri dishes containing potato dextrose agar for up to 35 days. Mycelial growth curves fitted a typical kinetic equation of fungi grown on solid media. B. cinerea isolates showed a high degree of variability in their growth kinetics, depending on the isolate and auxin dose. This plant growth substance delayed mycelial growth during the linear phase in an isolate-dependent manner, thus isolates from C. persicum, H. macrophylla and L. camara were more affected by IAA than L. japonica. On the other hand, 100 mg of IAA was the critical dose to significantly reduce the growth rate in all isolates and to promote brown-striped hyphae development, especially in isolate from C. persicum. 10 and 100 mg

  19. Routine sample preparation and HPLC analysis for ascorbic acid (vitamin C) determination in wheat plants and Arabidopsis leaf tissues.

    PubMed

    Szalai, Gabriella; Janda, T; Pál, Magda

    2014-06-01

    Plants have developed various mechanisms to protect themselves against oxidative stress. One of the most important non-enzymatic antioxidants is ascorbic acid. There is thus a need for a rapid, sensitive method for the analysis of the reduced and oxidised forms of ascorbic acid in crop plants. In this paper a simple, economic, selective, precise and stable HPLC method is presented for the detection of ascorbate in plant tissue. The sensitivity, the short retention time and the simple isocratic elution mean that the method is suitable for the routine quantification of ascorbate in a high daily sample number. The method has been found to be better than previously reported methods, because of the use of an economical, readily available mobile phase, UV detection and the lack of complicated extraction procedures. The method has been tested on Arabidopsis plants with different ascorbate levels and on wheat plants during Cd stress.

  20. Removal of sulfuric acid mist from lead-acid battery plants by coal fly ash-based sorbents.

    PubMed

    Shu, Yuehong; Wei, Xiangyu; Fang, Yu; Lan, Bingyan; Chen, Hongyu

    2015-04-01

    Sorbents from coal fly ash (CFA) activated by NaOH, CaO and H2O were prepared for H2SO4 mist removal from lead-acid battery plants. The effects of parameters including temperature, time, the ratios of CFA/activator and water/solid during sorbent preparation were investigated. It is found that the synthesized sorbents exhibit much higher removal capacity for H2SO4 mist when compared with that of raw coal fly ash and CaO except for H2O activated sorbent and this sorbent was hence excluded from the study because of its low capacity. The H2SO4 mist removal efficiency increases with the increasing of preparation time length and temperature. In addition, the ratios of CFA/activator and water/solid also impact the removal efficiency, and the optimum preparation conditions are identified as: a water/sol