Science.gov

Sample records for acid plga microspheres

  1. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate. PMID:26249587

  2. Development of Risperidone PLGA Microspheres

    PubMed Central

    D'Souza, Susan; Faraj, Jabar A.; Giovagnoli, Stefano; DeLuca, Patrick P.

    2014-01-01

    The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug. PMID:24616812

  3. Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat.

    PubMed

    Wen, Yujun; Yu, Shukui; Wu, Yanhong; Ju, Rongkai; Wang, Hao; Liu, Yujun; Wang, Ying; Xu, Qunyuan

    2016-04-01

    In order to create an optimal microenvironment for neural regeneration in the lesion area after spinal cord injury (SCI), we fabricated a novel scaffold composed of a hyaluronic acid (HA) hydrogel with a longitudinal multi-tubular conformation. The scaffold was modified by binding with an anti-Nogo receptor antibody (antiNgR) and mixed further with poly(lactic-co-glycolic acid) (PLGA) microspheres containing brain-derived neurotrophic factor and vascular endothelial growth factor (HA+PLGA). In the rat, after implantation of this composite into an injured area created by a dorsal hemisection at T9-10 of the spinal cord, favorable effects were seen with regard to the promotion of spinal repair, including excellent integration of the implants with host tissue, inhibition of inflammation, and gliosis. In particular, large numbers of new blood vessels and regenerated nerve fibers were found within and around the implants. Simultaneously, the implanted rats exhibited improved locomotor recovery. Thus, this novel composite material might provide a suitable microenvironment for neural regeneration following SCI. PMID:26463048

  4. Size matters: effects of PLGA-microsphere size in injectable CPC/PLGA on bone formation.

    PubMed

    Liao, Hongbing; Félix Lanao, Rosa P; van den Beucken, Jeroen J J P; Zhou, Nuo; Both, Sanne K; Wolke, Joop G C; Jansen, John A

    2016-08-01

    The aim of this study was to evaluate the effect of PLGA microsphere dimensions on bone formation after injection of calcium phosphate cement (CPC)/PLGA in a guinea pig tibial intramedullarly model. To this end, injectable CPC/PLGA formulations were prepared using PLGA microspheres with either a small (~25 µm) or large (~100 µm) diameter, which were incorporated at a 20:80 ratio (wt%) within apatite CPC. Both CPC/PLGA formulations were injected into a marrow-ablated tibial intramedullary cavity and, after an implantation period of 12 weeks, histology and histomorphometry were used to address bone formation. The results demonstrated bone ingrowth throughout the entire scaffold material for both CPC/PLGA formulations upon PLGA microsphere degradation. More importantly, bone formation within the CPC matrix was > two-fold higher for CPC-PLGA with 25 µm PLGA microspheres. Additionally, the pattern of bone and marrow formation showed distinct differences related to PLGA microsphere dimension. In general, this study demonstrates that PLGA microsphere dimensions of ~25 µm, leading to pores of ~25 µm within CPC, are sufficient for bone ingrowth and allow substantial bone formation. Further, the results demonstrate that PLGA microsphere dimensions provide a tool to control bone formation for injectable CPC/PLGA bone substitutes. Copyright © 2013 John Wiley & Sons, Ltd. PMID:24170734

  5. The in vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions.

    PubMed

    Hoekstra, Jan Willem M; Ma, Jinling; Plachokova, Adelina S; Bronkhorst, Ewald M; Bohner, Marc; Pan, Juli; Meijer, Gert J; Jansen, John A; van den Beucken, Jeroen J J P

    2013-07-01

    Enrichment of calcium phosphate (CaP) bone substitutes with poly(lactic-co-glycolic acid) (PLGA) microspheres to create porosity overcomes the problem of poor CaP degradation. The degradation of CaP-PLGA composites can be customized by changing the physical and chemical properties of PLGA and/or CaP. However, the effect of the size of dense (solid rather than hollow) PLGA microspheres in CaP has not previously been described. The present study aimed at determining the effect of different dense (i.e. solid) PLGA microsphere sizes (small (S) ~20μm vs. large (L) ~130μm) and of CaP composition (CaP with either anhydrous dicalcium phosphate (DCP) or calcium sulphate dihydrate (CSD)) on CaP scaffold biodegradability and subsequent bone in-growth. To this end mandibular defects in minipigs were filled with pre-set CaP-PLGA implants, with autologous bone being used as a control. After 4weeks the autologous bone group outperformed all CaP-PLGA groups in terms of the amount of bone present at the defect site. On the other hand, at 12weeks substantial bone formation was observed for all CaP-PLGA groups (ranging from 47±25% to 62±15%), showing equal amounts of bone compared with the autologous bone group (82±9%), except for CaP with DCP and large PLGA microspheres (47±25%). It was concluded that in the current study design the difference in PLGA microsphere size and CaP composition led to similar results with respect to scaffold degradation and subsequent bone in-growth. Further, after 12weeks all CaP-PLGA composites proved to be effective for bone substitution. PMID:23511808

  6. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites.

    PubMed

    Gu, Bing; Sun, Xuanhao; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2016-04-28

    The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS. PMID:26965956

  7. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment. PMID:26497115

  8. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions.

    PubMed

    Wei, Zengjiang; Wang, Chaoyang; Liu, Hao; Zou, Shengwen; Tong, Zhen

    2012-03-01

    This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase. The SiO(2) nanoparticle-coated PLGA microspheres were fabricated by the evaporation of CH(2)Cl(2) in situ, and then bare-PLGA microspheres were prepared by removal of the SiO(2) nanoparticles using HF aqueous solution. The two types of microspheres were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. Moreover, IBU was encapsulated into the hybrid beads by dispersing them in the CH(2)Cl(2) solution of PLGA in the fabrication process. The sustained release could be obtained due to the barrier of the polymeric matrix (PLGA). More over, the release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microspheres. The resulting microspheres may find applications as delivery vehicles for biomolecules, drugs, cosmetics and living cells. PMID:22088755

  9. Hollow superparamagnetic PLGA/Fe 3O 4 composite microspheres for lysozyme adsorption

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-01

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe3O4 composite microspheres composed of an inner cavity, PLGA inner shell and Fe3O4 outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe3O4 nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g-1) and high efficiency in lysozyme adsorption.

  10. Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption.

    PubMed

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-28

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe(3)O(4) composite microspheres composed of an inner cavity, PLGA inner shell and Fe(3)O(4) outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe(3)O(4) nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g(-1)) and high efficiency in lysozyme adsorption. PMID:24492410

  11. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  12. Active self-healing encapsulation of vaccine antigens in PLGA microspheres.

    PubMed

    Desai, Kashappa-Goud H; Schwendeman, Steven P

    2013-01-10

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to "actively" load the protein in the polymer pores and facilitate polymer self-healing at a temperature>the hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigens in PLGA was investigated. Active self-healing encapsulation of two antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvants (aluminum hydroxide (Al(OH)₃) or calcium phosphate). Active loading of vaccine antigen in Al(OH)₃-PLGA microspheres was found to: a) increase with an increasing loading of Al(OH)₃ (0.88-3 wt.%) and addition of porosigen, b) decrease when the inner Al(OH)₃/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively >0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)₃ in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt.% TT) and encapsulation efficiency (~97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer, and d

  13. Heuristic modeling of macromolecule release from PLGA microspheres.

    PubMed

    Szlęk, Jakub; Pacławski, Adam; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander

    2013-01-01

    Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model. PMID:24348037

  14. Heuristic modeling of macromolecule release from PLGA microspheres

    PubMed Central

    Szlęk, Jakub; Pacławski, Adam; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander

    2013-01-01

    Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model. PMID:24348037

  15. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    PubMed

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-01

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 μm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the

  16. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres.

    PubMed

    Marquette, S; Peerboom, C; Yates, A; Denis, L; Langer, I; Amighi, K; Goole, J

    2014-08-15

    Antibodies (Abs) require the development of stable formulations and specific delivery strategies given their susceptibility to a variety of physical and chemical degradation pathways. In this study, the encapsulation of an antibody into polylactide-co-glycolide (PLGA) based microspheres was explored to obtain a controlled-release of the incorporated drug. In order to avoid stability issues, a solid-in-oil-in-water (s/o/w) method was preferred. The solid phase was made of anti-TNF alpha monoclonal antibody (MAb) spray-dried microparticles, and the PLGA microspheres were produced using two different polymers (i.e., Resomer(®) RG505 and Resomer(®) RG755S). The stability of the MAb incorporated into the microspheres was investigated under three conditions (5 ± 3°C, 25 ± 2°C/60% RH and 40 ± 2°C/75% RH) for 12 weeks. During this stability study, it was demonstrated that the MAb loaded PLGA microspheres were stable when stored at 5 ± 3°C and that the Resomer(®) RG755S, composed of 75%(w/w) lactic acid as PLGA, was preferred to preserve the stability of the system. Storage at temperatures higher than 5°C led to antibody stability issues such as aggregation, fragmentation and loss of activity. The release profiles were also altered. Physical ageing of the system associated with changes in the glass transition temperature and enthalpy of relaxation was noticed during the storage of the MAb loaded PLGA microspheres. PMID:24792974

  17. Studies on the preparation, characterization and pharmacological evaluation of tolterodine PLGA microspheres.

    PubMed

    Sun, Fengying; Sui, Cheng; Teng, Lesheng; Liu, Ximing; Teng, Lirong; Meng, Qingfan; Li, Youxin

    2010-09-15

    In this study, poly(d,l-lactide-co-glycolide) (PLGA) microspheres of tolterodine depot formulation were prepared using oil in water (o/w) method to investigate their potential pharmacokinetic and pharmacodynamic advantages over tolterodine l-tartrate tablets. Morphological studies of the microspheres showed a spherical shape and smooth surface with mean size of 50.69-83.01 microm, and the encapsulation efficiency was improved from 62.55 to 79.10% when the polymer concentration increased from 180 to 230 mg/ml. The addition of stearic or palmitic acids could significantly raise the drug entrapment efficiency but only slightly affected the in vitro release. A low initial burst followed by a proximately constant release of tolterodine was noticed in the in vitro release profiles. The in vivo study was carried out by intramuscular (i.m.) administration of tolterodine-loaded microspheres on beagle dogs, and a sustained release of drug from the PLGA microspheres was achieved until the 18th day with a low initial burst. Since the absence of hepatic first pass metabolism, only a single active compound-tolterodine was detected in the plasma. This avoided the coexistence of two active compounds in plasma in the case of oral administration of tolterodine, which may lead to a difficulty in dose control due to the different metabolic capacity of patients. In the pharmacodynamic study, the influence of tolterodine PLGA microspheres on the inhibition of carbachol-induced rat urinary bladder contraction was more significant than that of tolterodine l-tartrate tablets. There were invisible changes in rat bladder slices between tolterodine-loaded PLGA microspheres group and tolterodine l-tartrate tablets group. These results indicate that the continuous inhibition of muscarinic receptor may offer an alternative therapy of urge incontinence. PMID:20600717

  18. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    PubMed Central

    Selmin, Francesca; Puoci, Francesco; Parisi, Ortensia I.; Franzé, Silvia; Musazzi, Umberto M.; Cilurzo, Francesco

    2015-01-01

    This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C). By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs. PMID:25569163

  19. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model.

    PubMed

    Kojima, Ryo; Yoshida, Takatsune; Tasaki, Hiroaki; Umejima, Hiroyuki; Maeda, Masashi; Higashi, Yasuyuki; Watanabe, Shunsuke; Oku, Naoto

    2015-08-15

    The objective of this study was to elucidate the release and absorption mechanisms of tacrolimus loaded into microspheres composed of poly(lactic-co-glycolic acid) (PLGA) and/or polylactic acid (PLA). Tacrolimus-loaded microspheres were prepared by the o/w emulsion solvent evaporation method. The entrapment efficiency correlated with the molecular weight of PLGA, and the glass transition temperature of PLGA microspheres was not decreased by the addition of tacrolimus. These results indicate that intermolecular interaction between tacrolimus and the polymer would affect the entrapment of tacrolimus in the microspheres. Tacrolimus was released with weight loss of the microspheres, and the dominant release mechanism of tacrolimus was considered to be erosion of the polymer rather than diffusion of the drug. The whole-blood concentration of tacrolimus in rats was maintained for at least 2 weeks after a single subcutaneous administration of the microspheres. The pharmacokinetic profile of tacrolimus following subcutaneous administration was similar to that following intramuscular administration, suggesting that the release and dissolution of tacrolimus, rather than the absorption of the dissolved tacrolimus, were rate-limiting steps. Graft-survival time in a heart transplantation rat model was prolonged by the administration of tacrolimus-loaded microspheres. The microsphere formulation of tacrolimus would be expected to precisely control the blood concentration while maintaining the immunosuppressive effect of the drug. PMID:26160668

  20. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits

    PubMed Central

    Ye, Zhuo; Ji, Yan-Li; Ma, Xiang; Wen, Jian-Guo; Wei, Wei; Huang, Shu-Man

    2015-01-01

    AIM To investigate the pharmacokinetics and distributions of bevacizumab by intravitreal injection of prepared bevacizumab-poly (L-lactic-co-glycolic acid) (PLGA) microspheres in rabbits, to provide evidence for clinical application of this kind of bevacizumab sustained release dosage form. METHODS Bevacizumab was encapsulated into PLGA microsphere via the solid-in-oil-in-hydrophilic oil (S/O/hO) method. Fifteen healthy New Zealand albino-rabbits were used in experiments. The eyes of each rabbit received an intravitreal injection. The left eyes were injected with prepared bevacizumab-PLGA microspheres and the right eyes were injected with bevacizumab solution. After intravitreal injection, rabbits were randomly selected at days 3, 7, 14, 28 and 42 respectively, three animals each day. Then we used immunofluorescence staining to observe the distribution and duration of bevacizumab in rabbit eye tissues, and used the sandwich ELISA to quantify the concentration of free bevacizumab from the rabbit aqueous humor and vitreous after intravitreal injection. RESULTS The results show that the concentration of bevacizumab in vitreous and aqueous humor after administration of PLGA formulation was higher than that of bevacizumab solution. The T1/2 of intravitreal injection of bevacizumab-PLGA microspheres is 9.6d in vitreous and 10.2d in aqueous humor, and the T1/2 of intravitreal injection of soluble bevacizumab is 3.91d in vitreous and 4.1d in aqueous humor. There were statistical significant difference for comparison the results of the bevacizumab in vitreous and aqueous humor between the left and right eyes (P<0.05). The AUC0-t of the sustained release dosage form was 1-fold higher than that of the soluble form. The relative bioavailability was raised significantly. The immunofluorescence staining of PLGA-encapsulated bevacizumab (b-PLGA) in rabbit eye tissues was still observed up to 42d. It was longer than that of the soluble form. CONCLUSION The result of this study

  1. Phagostimulatory effect of uptake of PLGA microspheres loaded with rifampicin on alveolar macrophages.

    PubMed

    Hirota, Keiji; Hasegawa, Taizo; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi

    2011-10-15

    Our previous results on the phagocytic activity of alveolar macrophages (Mϕs) toward poly(lactic-co-glycolic) acid microspheres (PLGA MS) loaded with the anti-tuberculosis agent rifampicin (R-PLGA MS) suggest that the phagocytosis of R-PLGA MS enhances the phagocytic activity of Mϕ cells. To confirm this possibility, we examined the effect of phagocytosis of R-PLGA MS and polystyrene latex (PSL) MS on the phagocytic uptake of fluorescent PSL (F-PSL) MS by cells of the rat alveolar macrophage cell line NR8383 at 37°C. Phagocytic activity was examined in terms of the population of Mϕ cells that had phagocytosed MS (N(total)) and the total number of MS phagocytosed (n(total)) by counting the phagocytic Mϕ cells and the MS ingested in optical microscopic fields. Phagocytosis of R-PLGA MS enhanced about 1.5 times the values of N(total) and n(total) of the phagocytosis of F-PSL MS under the conditions where the phagocytosis of F-PSL MS did not attain the saturated level. In contrast, the phagocytosis of PSL MS did not enhance the phagocytic activity of Mϕ cells toward F-PSL MS. In conclusion, R-PLGA MS are favorable for drug delivery of anti-tuberculosis agents into alveolar Mϕs due to their ability to up-regulate the phagocytosis of MS. PMID:21700434

  2. Anti-VEGFR2-conjugated PLGA microspheres as an x-ray phase contrast agent for assessing the VEGFR2 expression

    NASA Astrophysics Data System (ADS)

    Tang, Rongbiao; Chai, Wei-Min; Ying, Weihai; Yang, Guo-Yuan; Xie, Honglan; Liu, Hui-Qiang; Chen, Ke-Min

    2012-05-01

    The primary goal of this study was to evaluate the feasibility of using anti-vascular endothelial growth factor receptor 2 (VEGFR2)-conjugated poly(lactic-co-glycolic acid) (PLGA) microspheres as an x-ray phase contrast agent to assess the VEGFR2 expression in cell cultures. The cell lines, mouse LLC (Lewis lung carcinoma) and HUVEC (human umbilical vein endothelial cell), were selected for cell adhesion studies. The bound PLGA microspheres were found to better adhere to LLC cells or HUVECs than unbound ones. Absorption and phase contrast images of PLGA microspheres were acquired and compared in vitro. Phase contrast imaging (PCI) greatly improves the detection of the microspheres as compared to absorption contrast imaging. The cells incubated with PLGA microspheres were imaged by PCI, which provided clear 3D visualization of the beads, indicating the feasibility of using PLGA microspheres as a contrast agent for phase contrast CT. In addition, the microspheres could be clearly distinguished from the wall of the vessel on phase contrast CT images. Therefore, the approach holds promise for assessing the VEGFR2 expression on endothelial cells of tumor-associated vessels. We conclude that PLGA microsphere-based PCI of the VEGFR2 expression might be a novel, promising biomarker for future studies of tumor angiogenesis.

  3. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. PMID:26325309

  4. Design of Controlled Release PLGA Microspheres for Hydrophobic Fenretinide.

    PubMed

    Zhang, Ying; Wischke, Christian; Mittal, Sachin; Mitra, Amitava; Schwendeman, Steven P

    2016-08-01

    Fenretinide, a chemotherapeutic agent for cancer, is water-insoluble and has a very low oral bioavailability. Hence, the objective was to deliver it as an injectable depot and improve the drug solubility and release behavior from poly(lactide-co-glycolide) (PLGA) microspheres by incorporating nonionic surfactants with fenretinide. Enhancement of drug solubilization was observed with Brij 35 or 98, Tween 20, and Pluronic F127, but not Pluronic F68. Co-incorporation of Brij 98 with fenretinide significantly changed the microsphere morphology and improved the fenretinide release profile. The most optimal microsphere formulation, with 20% Brij 98 as excipient, showed an initial in vitro burst around 20% and a sustained release over 28 days in a solubilizing release medium at 37 °C. The effect of addition of MgCO3, drug loading, and polymer blending on the release of fenretinide from PLGA microspheres was also investigated and observed to enhance the drug release. Two sustained release formulations, one incorporating 20% Brij 98 and the other incorporating 3% MgCO3 in the oil phase, were selected for dosing in Sprague-Dawley rats and compared to a single injection of an equivalent dose of fenretinide drug suspension. These two formulations were chosen due to their high encapsulation efficiency, high cumulative release, and desirable in vitro release profile. The drug suspension resulted in a higher initial release in rats compared to the polymeric formulations, however, sustained release was also observed beyond 2 weeks, which may be attributed to the physiological disposition of the drug in vivo. The two PLGA based test formulations provided the desired low initial burst of fenretinide followed by 4 weeks of in vivo sustained release. PMID:27144450

  5. Local delivery of controlled-release simvastatin/PLGA/HAp microspheres enhances bone repair

    PubMed Central

    Tai, I-Chun; Fu, Yin-Chih; Wang, Chih-Kuang; Chang, Je-Ken; Ho, Mei-Ling

    2013-01-01

    Statins are used clinically for reduction of cholesterol synthesis to prevent cardiovascular disease. Previous in vitro and in vivo studies have shown that statins stimulate bone formation. However, orally administered statins may be degraded during first-pass metabolism in the liver. This study aimed to prevent this degradation by developing a locally administered formulation of simvastatin that is encapsulated in poly(lactic-co-glycolic acid)/hydroxyapatite (SIM/PLGA/HAp) microspheres with controlled-release properties. The effect of this formulation of simvastatin on bone repair was tested using a mouse model of gap fracture bridging with a graft of necrotic bone. The simvastatin released over 12 days from 3 mg and 5 mg of SIM/PLGA/HAp was 0.03–1.6 μg/day and 0.05–2.6 μg/day, respectively. SIM/PLGA/HAp significantly stimulated callus formation around the repaired area and increased neovascularization and cell ingrowth in the grafted necrotic bone at week 2 after surgery. At week 4, both 3 mg and 5 mg of SIM/PLGA/HAp increased neovascularization, but only 5 mg SIM/PLGA/HAp enhanced cell ingrowth into the necrotic bone. The low dose of simvastatin released from SIM/PLGA/HAp enhanced initial callus formation, neovascularization, and cell ingrowth in the grafted bone, indicating that SIM/PLGA/HAp facilitates bone regeneration. We suggest that SIM/PLGA/HAp should be developed as an osteoinductive agent to treat osteonecrosis or in combination with an osteoconductive scaffold to treat severe bone defects. PMID:24143094

  6. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification.

    PubMed

    Qi, Feng; Wu, Jie; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2014-10-01

    Poly(DL-lactic-co-glycolic acid) (PLGA) microspheres have been widely prepared by many methods, including solvent evaporation, solvent extraction and the co-solvent method. However, very few studies have compared the properties of microspheres fabricated by these methods. This is partly because the broad size distribution of the resultant particles severely complicates the analysis and affects the reliability of the comparison. To this end, uniform-sized PLGA microspheres have been prepared by Shirasu porous glass premix membrane emulsification and used to encapsulate exenatide, a drug for treating Type 2 diabetes. Based on this technique, the influences on the properties of microspheres fabricated by the aforementioned three methods were intensively investigated, including in vitro release, degradation and pharmacology. We found that these microspheres presented totally different release behaviors in vitro and in vivo, but exhibited a similar trend of PLGA degradation. Moreover, the internal structural evolution visually demonstrated these release behaviors. We selected for further examination the microsphere prepared by solvent evaporation because of its constant release rate, and explored its pharmacodynamics, histology, etc., in more detail. This microsphere when injected once showed equivalent efficacy to that of twice-daily injections of exenatide with no inflammatory response. PMID:24952071

  7. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  8. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature.

    PubMed

    Qutachi, Omar; Vetsch, Jolanda R; Gill, Daniel; Cox, Helen; Scurr, David J; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A; Shakesheff, Kevin M; Rahman, Cheryl V

    2014-12-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84±24μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37°C to form scaffold structures. The average compressive strength of the scaffolds after 24h at 37°C was 0.9±0.1MPa, and the average Young's modulus was 9.4±1.2MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54±38μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  9. Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy

    PubMed Central

    Liu, Yajun; Schwendeman, Steven P.

    2012-01-01

    The pH in the aqueous pores of poly(lactide-co-glycolide) (PLGA) matrix, also referred to microclimate pH (μpH), is often uncontrolled ranging from highly acidic to neutral pH range. The μpH distribution inside protein-encapsulated PLGA microspheres was quantitatively evaluated using confocal laser scanning microscopy. The fluorescent response of Lysosensor yellow/blue® dextran used to map μpH in PLGA was influenced by the presence of encapsulated protein. The nonprotonated form of pyridyl group on the fluorescence probe at neutral pH was responsible for the interference, which was dependent on the type and concentration of protein. A method for correction of this interference based on estimating protein concentration inside the microspheres was established and validated. After correction of the influence, the μpH distribution kinetics inside microspheres was evaluated for different PLGA 50/50 microsphere formulations under physiological conditions for 4 weeks. Generally, the μpH acidity increased with the progression of incubation time. The co-incorporation of poorly soluble base, magnesium carbonate, in the microspheres prolonged the appearance of detectable acidity for up to 3 weeks. Co-addition of an acetate buffer was able to control the μpH over a slightly acidic range (around pH 4.7) after two weeks incubation. Microspheres prepared from a lower polymer concentration exhibited a higher μpH, likely owing to reduced diffusional resistance to acidic degradation products. The stability of protein was enhanced by addition of MgCO3, acetate buffer, or by reduced polymer concentration in the preparation, as evidenced by more soluble protein recovered after incubation. Hence, the μpH imaging technique developed can be employed in the future for optimization of formulation strategies for controlling μpH and stabilizing encapsulated proteins. PMID:22428586

  10. Mapping microclimate pH distribution inside protein-encapsulated PLGA microspheres using confocal laser scanning microscopy.

    PubMed

    Liu, Yajun; Schwendeman, Steven P

    2012-05-01

    The pH in the aqueous pores of poly(lactide-co-glycolide) (PLGA) matrix, also referred to as microclimate pH (μpH), is often uncontrolled, ranging from highly acidic to neutral pH range. The μpH distribution inside protein-encapsulated PLGA microspheres was quantitatively evaluated using confocal laser scanning microscopy. The fluorescent response of Lysosensor yellow/blue dextran used to map μpH in PLGA was influenced by the presence of encapsulated protein. The nonprotonated form of pyridyl group on the fluorescence probe at neutral pH was responsible for the interference, which was dependent on the type and concentration of protein. A method for correction of this interference based on estimating protein concentration inside the microspheres was established and validated. After correction of the influence, the μpH distribution kinetics inside microspheres was evaluated for different PLGA 50/50 microsphere formulations under physiological conditions for 4 weeks. Generally, the μpH acidity increased with the progression of incubation time. The coincorporation of poorly soluble base, magnesium carbonate, in the microspheres prolonged the appearance of detectable acidity for up to 3 weeks. Co-addition of an acetate buffer was able to control the μpH over a slightly acidic range (around pH 4.7) after two week incubation. Microspheres prepared from a lower polymer concentration exhibited a higher μpH, likely owing to reduced diffusional resistance to acidic degradation products. The stability of protein was enhanced by addition of MgCO(3), acetate buffer, or by reduced polymer concentration in the preparation, as evidenced by more soluble protein recovered after incubation. Hence, the μpH imaging technique developed can be employed in the future for optimization of formulation strategies for controlling μpH and stabilizing encapsulated proteins. PMID:22428586

  11. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    PubMed

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. PMID:26803601

  12. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection.

    PubMed

    Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  13. Fabrication and evaluation of a sustained-release chitosan-based scaffold embedded with PLGA microspheres.

    PubMed

    Song, Kedong; Liu, Yingchao; Macedo, Hugo M; Jiang, Lili; Li, Chao; Mei, Guanyu; Liu, Tianqing

    2013-04-01

    Nutrient depletion within three-dimensional (3D) scaffolds is one of the major hurdles in the use of this technology to grow cells for applications in tissue engineering. In order to help in addressing it, we herein propose to use the controlled release of encapsulated nutrients within polymer microspheres into chitosan-based 3D scaffolds, wherein the microspheres are embedded. This method has allowed maintaining a stable concentration of nutrients within the scaffolds over the long term. The polymer microspheres were prepared using multiple emulsions (w/o/w), in which bovine serum albumin (BSA) and poly (lactic-co-glycolic) acid (PLGA) were regarded as the protein pattern and the exoperidium material, respectively. These were then mixed with a chitosan solution in order to form the scaffolds by cryo-desiccation. The release of BSA, entrapped within the embedded microspheres, was monitored with time using a BCA kit. The morphology and structure of the PLGA microspheres containing BSA before and after embedding within the scaffold were observed under a scanning electron microscope (SEM). These had a round shape with diameters in the range of 27-55 μm, whereas the chitosan-based scaffolds had a uniform porous structure with the microspheres uniformly dispersed within their 3D structure and without any morphological change. In addition, the porosity, water absorption and degradation rate at 37 °C in an aqueous environment of 1% chitosan-based scaffolds were (92.99±2.51) %, (89.66±0.66) % and (73.77±3.21) %, respectively. The studies of BSA release from the embedded microspheres have shown a sustained and cumulative tendency with little initial burst, with (20.24±0.83) % of the initial amount released after 168 h (an average rate of 0.12%/h). The protein concentration within the chitosan-based scaffolds after 168 h was found to be (11.44±1.81)×10(-2) mg/mL. This novel chitosan-based scaffold embedded with PLGA microspheres has proven to be a promising technique

  14. Development of new reverse micellar microencapsulation technique to load water-soluble drug into PLGA microspheres.

    PubMed

    Kim, Hyunjoo; Cho, Mihyun; Sah, Hongkee

    2005-03-01

    The objective of this study was to develop a new reverse micelle-based microencapsulation technique to load tetracycline hydrochloride into PLGA microspheres. To do so, a reverse micellar system was formulated to dissolve tetracycline hydrochloride and water in ethyl formate with the aid of cetyltrimethylammonium bromide. The resultant micellar solution was used to dissolve 0.3 to 0.75 g of PLGA, and microspheres were prepared following a modified solvent quenching technique. As a control experiment, the drug was encapsulated into PLGA microspheres via a conventional methylene chloride-based emulsion procedure. The microspheres were then characterized with regard to drug loading efficiency, their size distribution and morphology. The reverse micellar procedure led to the formation of free-flowing, spherical microspheres with the size mode of 88 microm. When PLGA microspheres were prepared following the conventional methylene chloride-based procedure, most of tetracycline hydrochloride leached to the aqueous external phase: A maximal loading efficiency observed our experimental conditions was below 5%. Their surfaces had numerous pores, while their internal architecture was honey-combed. In sharp contrast, the new reverse micellar encapsulation technique permitted the attainment of a maximal loading efficiency of 63.19 +/- 0.64%. Also, the microspheres had smooth and pore-free surfaces, and hollow cavities were absent from their internal matrices. The results of this study demonstrated that PLGA microspheres could be successfully prepared following the new reverse micellar encapsulation technique. PMID:15832828

  15. Sustained delivery of rhBMP-2 via PLGA microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis

    PubMed Central

    Wink, Jason D.; Gerety, Patrick A.; Sherif, Rami D.; Lim, Youngshin; A.Clarke, Nadya; Rajapakse, Chamith S.; Nah, Hyun-Duck; Taylor, Jesse A.

    2014-01-01

    Background Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. In this study, we utilize rhBMP2 encapsulated in PLGA microspheres (PLGA-rhBMP2) placed in a rabbit cranial defect model to test whether low-dose, sustained, delivery can effectively induce bone regeneration. Methods rhBMP2 was encapsulated in 15% poly (lactic-co-glycolic acid), using a double emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10mm) were created in the calvarium of New Zealand White rabbits (5-7 mos of age, M/F) and filled with a collagen scaffold containing one of four groups: 1) no implant, 2) collagen scaffold only, 3) PLGA-rhBMP2(0.1ug/implant), or 4) free rhBMP2 (0.1ug/implant). After 6 weeks, the rabbits were sacrificed and defects were analyzed by μCT, histology, and finite element analysis. Results RhBMP2 delivered via bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by μCT and histology (p=0.025, 0.025). FEA indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. Conclusions Sustained delivery via PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reduce the risk for recently reported rhBMP2 related adverse effects. Level of Evidence Animal Study PMID:24622573

  16. Fabrication of PLGA polymer microspheres for U. S. mediated gene delivery

    NASA Astrophysics Data System (ADS)

    Williamson, Rene G.; Saltzman, William M.; Brandsma, Janet L.

    2001-05-01

    The promises of gene therapy remain unfulfilled because of the lack of a safe and efficient method for transfecting DNA into cells. PLGA has been used as a vehicle for protein, drug, and gene delivery applications because of its biocompatibility and sustained release properties. PLGA polymer microspheres offer advantages of safety and the possibility of sustained intracytoplasmic delivery. The PLGA also protects the plasmid from degradation. Using the double-emulsion microsphere fabrication technique, a new DNA delivery vehicle, comprising of plasmid DNA and octafluoropropane gas encapsulated in PLGA polymer and PVA stabilizer (Sonospheres) was made. The encapsulated gas offers acoustic activity to the microspheres, which enables them to undergo cavitation in an acoustic field. The goal is to lead to increased DNA transfection when these Sonospheres are subjected to an acoustic field in the MHz frequency range. A summary of the fabrication methods and some initial in vitro studies will be presented.

  17. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.

    PubMed

    Tan, Huaping; Wu, Jindan; Lao, Lihong; Gao, Changyou

    2009-01-01

    Poly(lactide-co-glycotide) (PLGA) microspheres integrated into gelatin/chitosan/hyaluronan scaffolds were fabricated by freeze-drying and crosslinking with 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide. The effects of the microspheres on porosity, density, compressive modulus, phosphate-buffered saline uptake ratio and weight loss of the scaffolds were evaluated. Generally, a scaffold with a higher PLGA content had a lower porosity and weight loss, and a medium uptake ratio, but a larger apparent density and compressive modulus. When the PLGA content was lower than 50%, the PLGA-integrated scaffolds had a similar pore size (approximately 200microm) as that of the control, and as much as 90% of their porosity could be preserved. In vitro chondrocyte culture in the 50% PLGA-integrated scaffold demonstrated that the cells could proliferate and secrete extracellular matrix at the same level as in the control gelatin/chitosan/hyaluronan scaffold. PMID:18723417

  18. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin

    PubMed Central

    Nan, Kaihui; Ma, Feiyan; Hou, Huiyuan; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2014-01-01

    A water-soluble anthracycline antibiotic drug (daunorubicin, DNR) was loaded into oxidized porous silicon (pSiO2) microparticles and then encapsulated with a layer of polymer (poly lactide-co-glycolide, PLGA) to investigate their synergistic effects in control of DNR release. Similarly fabricated PLGA-DNR microspheres without pSiO2, and pSiO2 microparticles without PLGA were used as control particles. The composite microparticles synthesized by a solid-in-oil-in-water (S/O/W) emulsion method have mean diameters of 52.33±16.37 μm for PLGA-pSiO2_21/40-DNR and the mean diameter of 49.31±8.87 μm for PLGA-pSiO2_6/20-DNR. The mean size, 26.00±8 μm, of PLGA-DNR was significantly smaller, compared with the other two (p<0.0001). Optical microscopy revealed that PLGA-pSiO2-DNR microsphere contained multiple pSiO2 particles. In vitro release experiments determined that control PLGA-DNR microspheres completely released DNR within 38 days and control pSiO2-DNR microparticles (with no PLGA coating) released DNR within 14 days, while the PLGA-pSiO2-DNR microspheres released DNR for 74 days. Temporal release profiles of DNR from PLGA-pSiO2 composite particles indicated that both PLGA and pSiO2 contribute to the sustained release of the payload. The PLGA-pSiO2 composite displayed a more constant rate of DNR release than the pSiO2 control formulation, and it displayed a significantly slower release of DNR than either the PLGA or pSiO2 formulations. We conclude that this system may be useful in managing unwanted ocular proliferation when formulated with anti-proliferation compounds such as DNR. PMID:24793657

  19. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses.

    PubMed

    Salvador, Aiala; Sandgren, Kerrie J; Liang, Frank; Thompson, Elizabeth A; Koup, Richard A; Pedraz, José Luis; Hernandez, Rosa Maria; Loré, Karin; Igartua, Manoli

    2015-12-30

    Designing strategies for targeting antigens to dendritic cells is a major goal in vaccinology. Here, PLGA (poly lactic-co-glycolic acid) microspheres and with several surface modifications that affect to their uptake by human blood primary dendritic cells and monocytes have been evaluated. Higher uptake was found by all the cell types when cationic microspheres (PLGA modified with polyethylene imine) were used. These cationic particles were in vivo evaluated in mice. In addition, MPLA(1) or poly(I:C)(2) and α-GalCer(3) were also encapsulated to address their adjuvant effect. All the microspheres were able to produce humoral immune responses, albeit they were higher for cationic microspheres. Moreover, surface charge seemed to have a role on biasing the immune response; cationic microspheres induced higher IFN-γ levels, indicative of Th1 activation, while unmodified ones mainly triggered IL4 and IL17A release, showing Th2 activation. Thus, we have shown here the potential and versatility of these MS, which may be tailored to needs. PMID:26475970

  20. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of Mesenchymal Stem Cells (MSCs)

    PubMed Central

    Lee, Young Sook; Lim, Kwang Suk; Oh, Jung-Eun; Yun, Arum; Joo, Wan Seok; Kim, Hyun Soo; Yun, Chae-Ok; Kim, Sung Wan

    2015-01-01

    Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified water/oil/water (W1/O/W2) double emulsion solvent evaporation method was used for the construction of porous microspheres. PEI1.8k was blended with Poly(lactic-co-glycolic acid) (PLGA) to enhance electrostatic cellular attachment to the microspheres. The porous PLGA/PEI1.8k (PPP) particles demonstrated an average particle size of 290 µm and an average pore size of 14.3 µm, providing a micro-carrier for the MSC delivery. PPP particles allowed for better attachment of rMSCs than nonporous PLGA/PEI1.8k (NPP) particles and non-porous (NP) and porous PLGA (PP) microspheres. rMSC successfully grew on the PPP particles for 2 weeks in vitro. Next, PPP particles loaded with 3 different amounts of hMSC showed increased in vivo engraftment rates and maintained the stemness characteristics of hMSC compared with hMSCs-alone group in rats 2 weeks after intramyocardial administration. These customized PPP particles for MSC delivery are a biodegradable and injectable scaffold that can be used for clinical applications. PMID:25575866

  1. Formulation and in vitro/in vivo evaluation of terbutaline sulphate incorporated in PLGA (25/75) and L-PLA microspheres.

    PubMed

    Selek, H; Sahin, S; Ercan, M T; Sargon, M; Hincal, A A; Kas, H S

    2003-01-01

    Terbutaline sulphate (TBS) is widely used in the treatment of bronchial asthma, chronic bronchitis and emphysema. Because of its short biological half life and dosing schedule, a long acting TBS formulation is required to improve patient compliance. The objective of this study was to develop a TBS containing biodegradable microsphere formulation. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactic acid) (L-PLA) were chosen as matrix materials. A solvent evaporation method was used for preparation of microspheres. Surface morphology, particle size distribution and encapsulation efficiency were investigated. In vitro release studies were performed in pH 7.4 phosphate buffer. In vitro distribution of microspheres were studied in the Swiss albino male mice. All microspheres were spherical in shape and had a porous surface with mean diameters of 9-21 microm. The encapsulation efficiency was influenced by the polymer type, but not the molecular weight. About 90% of the initial amount was trapped in PLGA microspheres, and the remainder was on the surface. In the case of L-PLA, 50% of the total drug was associated with the surface of microspheres. The In vitro release pattern was biphasic characterized by an initial burst phase followed by a slower phase. The L-PLA microspheres released approximately 92% of the initial payload in 72 h. On the other hand, TBS release was increased with an increase in the molecular weight of PLGA. Biodistribution of L-PLA microspheres was characterized by an initially high uptake (35%) by the lungs. All these results suggest that L-PLA and PLGA microspheres have the potential to be used for passive lung targeting. PMID:12554379

  2. Effects of formulation parameters on encapsulation efficiency and release behavior of thienorphine loaded PLGA microspheres.

    PubMed

    Yang, Yang; Gao, Yongliang; Mei, Xingguo

    2013-01-01

    To develop a long-acting injectable thienorphine biodegradable poly (d, l-lactide-co-glycolide) (PLGA) microsphere for the therapy of opioid addiction, the effects of formulation parameters on encapsulation efficiency and release behavior were studied. The thienorphine loaded PLGA microspheres were prepared by o/w solvent evaporation method and characterized by HPLC, SEM, laser particle size analysis, residual solvent content and sterility testing. The microspheres were sterilized by gamma irradiation (2.5 kGy). The results indicated that the morphology of the thienorphine PLGA microspheres presented a spherical shape with smooth surface, the particle size was distributed from 30.19 ± 1.17 to 59.15 ± 0.67 μm and the drug encapsulation efficiency was influenced by drug/polymer ratio, homogeneous rotation speed, PVA concentration in the water phase and the polymer concentration in the oil phase. These changes were also reflected in drug release. The plasma drug concentration vs. time profiles were relatively smooth for about 25 days after injection of the thienorphine loaded PLGA microspheres to beagle dogs. In vitro and in vivo correlation was established. PMID:21967467

  3. Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres.

    PubMed

    Dormer, Nathan H; Gupta, Vineet; Scurto, Aaron M; Berkland, Cory J; Detamore, Michael S

    2013-10-01

    Macromolecule release from poly(d,l-lactide-co-glycolide) (PLGA) microspheres has been well-characterized, and is a popular approach for delivering bioactive signals from tissue-engineered scaffolds. However, the effect of some processing solvents, sterilization, and mineral incorporation (when used in concert) on long-term release and bioactivity has seldom been addressed. Understanding these effects is of significant importance for microsphere-based scaffolds, given that these scaffolds are becoming increasingly more popular, yet growth factor activity following sintering and/or sterilization is heretofore unknown. The current study evaluated the 6-week release of transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-2 from PLGA and PLGA/hydroxyapatite (HAp) microspheres following exposure to ethanol (EtOH), dense phase carbon dioxide (CO2), or ethylene oxide (EtO). EtO was chosen based on its common use in scaffold sterilization, whereas EtOH and CO2 were chosen given their importance in sintering microspheres together to create scaffolds. Release supernatants were then used in an accelerated cell stimulation study with human bone marrow stromal cells (hBMSCs) with monitoring of gene expression for major chondrogenic and osteogenic markers. Results indicated that in microspheres without HAp, EtOH exposure led to the greatest amount of delivery, while those treated with CO2 delivered the least growth factor. In contrast, formulations with HAp released almost half as much protein, regardless of EtOH or CO2 exposure. Notably, EtO exposure was not found to significantly affect the amount of protein released. Cell stimulation studies demonstrated that eluted protein samples performed similarly to positive controls in PLGA-only formulations, and ambiguously in PLGA/HAp composites. In conclusion, the use of EtOH, subcritical CO2, and EtO in microsphere-based scaffolds may have only slight adverse effects, and possibly even desirable effects in some

  4. Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres.

    PubMed

    Bao, Min; Zhou, Qihui; Dong, Wen; Lou, Xiangxin; Zhang, Yanzhong

    2013-06-10

    Minimally invasive implants and/or scaffolds integrated with multiple functionalities are of interest in the clinical settings. In this paper, chitosan (CTS) functionalized poly(lactic-co-glycolic acid) (PLGA) microspheres containing a model payload, lysozyme (Lyz), were prepared by a water-in-oil-in-water emulsion method, from which cylindrical shaped rod (5 mm in diameter) was fabricated by sintering the composite microspheres in a mold. High-intensity focused ultrasound (HIFU) was then employed as a unique technique to enable shape memory and payload release effects of the three-dimensional (3-D) structure. It was found that incorporation of CTS into PLGA microspheres could regulate the transition temperature Ttrans of the microsphere from 45 to 50 °C and affect shape memory ratio of the fabricated cylindrical rod to some extent. Shape memory test and drug release assay proved that HIFU could modulate the shape recovery process and synchronize the release kinetics of the encapsulated Lyz in the rod in a switchable manner. Moreover, the two processes could be manipulated by varying the acoustic power and insonation duration. Mechanical tests of the microspheres-based rod before and after ultrasound irradiation revealed its compressive properties in the range of trabecular bone. Examination of the degradation behavior indicated that the introduction of CTS into the PLGA microspheres also alleviated acidic degradation characteristic of the PLGA-dominant cylindrical rod. With HIFU, this study thus demonstrated the desired capabilities of shape recovery and payload release effects integrated in one microspheres-based biodegradable cylindrical structure. PMID:23675980

  5. Factors affecting the loading efficiency of water-soluble drugs in PLGA microspheres.

    PubMed

    Ito, Fuminori; Fujimori, Hiroyuki; Makino, Kimiko

    2008-01-15

    Poly(lactide-co-glycolide), PLGA, microspheres containing blue dextran as a hydrophilic model drug were prepared by a solvent evaporation method from w/o/w emulsions using a micro homogenizer. Effects of surfactant concentration in oil phase, stirring time period and stirring rate in the preparation procedure of primary emulsion (w/o) upon drug-loading efficiency were evaluated. Stirring rate during preparation of primary emulsion and surfactant concentration in oil phase affected drug-loading efficiency and the particle size of primary emulsion. Microspheres having the higher drug-loading efficiency were obtained when size differences between the primary emulsions and the secondary ones were large. That is, when the diameter of the primary emulsion is much smaller than that of the secondary emulsion, PLGA microspheres with high-loading efficiency of blue dextran were obtained. PMID:17719753

  6. Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs.

    PubMed

    Gaspar, Vítor M; Moreira, André F; Costa, Elisabete C; Queiroz, João A; Sousa, Fani; Pichon, Chantal; Correia, Ilídio J

    2015-10-01

    Drug-DNA combination therapies are receiving an ever growing focus due to their potential for improving cancer treatment. However, such approaches are still limited by the lack of multipurpose delivery systems that encapsulate drugs and condense DNA simultaneously. In this study, we describe the successful formulation of gas-generating pH-responsive D-α-tocopherol PEG succinate-poly(D,L-lactic-co-glycolic acid) (TPGS-PLGA) hollow microspheres loaded with both Doxorubicin (Dox) and minicircle DNA (mcDNA) nanoparticles as a strategy to co-deliver these therapeutics. For this study mcDNA vectors were chosen due to their increased therapeutic efficiency in comparison to standard plasmid DNA. The results demonstrate that TPGS-PLGA microcarriers can encapsulate Dox and chitosan nanoparticles completely condense mcDNA. The loading of mcDNA-nanoparticles into microspheres was confirmed by 3D confocal microscopy and co-localization analysis. The resulting TPGS-PLGA-Dox-mcDNA nanoparticle-in-microsphere hybrid carriers exhibit a well-defined spherical shape and neutral surface charge. Microcarriers incubation in acidic pH produced a gas-mediated Dox release, corroborating the microcarriers stimuli-responsive character. Also, the dual-loaded TPGS-PLGA particles achieved 5.2-fold higher cellular internalization in comparison with non-pegylated microspheres. This increased intracellular concentration resulted in a higher cytotoxic effect. Successful transgene expression was obtained after nanoparticle-mcDNA co-delivery in the microspheres. Overall these findings support the concept of using nanoparticle-microsphere multipart systems to achieve efficient co-delivery of various drug-mcDNA combinations. PMID:26209779

  7. In Vitro and In Vivo Evaluations of PLGA Microspheres Containing Nalmefene

    PubMed Central

    Xie, Xiangyang; Lin, Wen; Xing, Chuanfeng; Yang, Yanfang; Chi, Qiang; Zhang, Hui; Li, Ying; Li, Zhiping; Yang, Yang; Yang, Zhenbo; Li, Mingyuang

    2015-01-01

    Poor patient compliance, untoward reactions and unstable blood drug levels after the bolus administration are impeding the pharmacotherapy for insobriety. A long-acting preparation may address these limitations. The aim of this paper was to further investigate the in vitro characteristics and in vivo performances of nalmefene microspheres. Nalmefene was blended with poly (lactide-co-glycolide) (PLGA) to prepare the target microspheres by an O/O emulsification solvent evaporation method. The prepared microspheres exhibited a controlled release profile of nalmefene in vitro over 4 weeks, which was well fitted with a first-order model. In vitro degradation study showed that the drug release in vitro was dominated by both drug diffusion and polymer degradation mechanisms. Pharmacokinetics study indicated that the prepared microspheres could provide a relatively constant of nalmefene plasma concentration for at least one month in rats. The in vivo pharmacokinetics profile was well correlated with the in vitro drug release. Pharmacodynamics studies revealed that the drug loaded microspheres could produce a long-acting antagonism efficacy on rats. These results demonstrated the promising application of injectable PLGA microspheres containing nalmefene for the long-term treatment of alcohol dependence. PMID:25938514

  8. Release of a Wound-Healing Agent from PLGA Microspheres in a Thermosensitive Gel

    PubMed Central

    Machado, H. A.; Abercrombie, J. J.; You, T.; DeLuca, P. P.; Leung, K. P.

    2013-01-01

    The purpose of this research was to develop a topical microsphere delivery system in a thermosensitive 20% poloxamer 407 gel (Pluronic F127) to control release of KSL-W, a cationic antimicrobial decapeptide, for a period of 4–7 days for potential application in combat related injuries. KSL-W loaded microsphere formulations were prepared by a solvent extraction-evaporation method (water-oil-water), with poly (D,L-lactic-co-glycolic acid) (PLGA) (50 : 50, low-weight, and hydrophilic end) as the polymeric system. After optimization of the process, three formulations (A, B, and C) were prepared with different organic to water ratio of the primary emulsion while maintaining other components and manufacturing parameters constant. Formulations were characterized for surface morphology, porous nature, drug loading, in vitro drug release, and antimicrobial activity. Microspheres containing 20% peptide with porous surfaces and internal structure were prepared in satisfactory yields and in sizes varying from 25 to 50 μm. Gels of 20% Pluronic F127, which were liquid at or below 24.6°C and formed transparent films at body temperature, were used as carriers for the microspheres. Rheological studies showed a gelation temperature of 24.6°C for the 20% Pluronic F127 gel alone. Gelation temperature and viscosity of formulations A, B, and C as a function of temperature were very close to those of the carrier. A Franz diffusion cell system was used to study the release of peptide from the microspheres suspended in both, phosphate-buffered saline (PBS) and a 20% Pluronic F127 gel. In vitro release of greater than 50% peptide was found in all formulations in both PBS and the gel, and in one formulation there was a release of 75% in both PBS and the gel. Fractions collected from the release process were also tested for bactericidal activity against Staphylococcus epidermidis using the broth microdilution method and found to provide effective antimicrobial activity to warrant

  9. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits

    PubMed Central

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery. PMID:25028546

  10. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Moioli, Eduardo K; Hong, Liu; Guardado, Jesse; Clark, Paul A; Mao, Jeremy J

    2006-03-01

    Despite the widespread role of transforming growth factor-beta3 (TGFbeta3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFbeta3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFbeta3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was encapsulated in 50:50 PLGA microspheres and subjected to ethylene oxide (EO) gas, radio-frequency glow discharge (RFGD), or ultraviolet (UV) light. The release of bFGF was significantly attenuated by UV light, but not significantly altered by either EO or RFGD. To verify its bioactivity, TGFbeta3 (1.35 ng/mL) was control-released to the culture of human mesenchymal stem cells (hMSC) under induced osteogenic differentiation. Alkaline phosphatase staining intensity was markedly reduced 1 week after exposing hMSC-derived osteogenic cells to TGFbeta3. This was confirmed by lower alkaline phosphatase activity (2.25 +/- 0.57 mU/mL/ng DNA) than controls (TGFbeta3- free) at 5.8 +/- 0.9 mU/mL/ng DNA (p < 0.05). Control-released TGFbeta3 bioactivity was further confirmed by lack of significant differences in alkaline phosphatase upon direct addition of 1.35 ng/mL TGFbeta3 to cell culture (p > 0.05). These findings provide baseline data for potential uses of microencapsulated TGFbeta3 in wound healing and tissue-engineering applications. PMID:16579687

  11. Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly(lactide-co-glycolide) (PLGA) microspheres.

    PubMed

    Sandor, Maryellen; Riechel, Alex; Kaplan, Ian; Mathiowitz, Edith

    2002-02-15

    A model enzyme, carbonic anhydrase, was encapsulated and released from poly(lactide-co-glycolide) (PLGA) microspheres (1-3 microm) made by a novel phase inversion technique. Lecithin was used as a surfactant in the encapsulation process and was incorporated in either the organic phase, aqueous phase, both phases, or not at all. Additional microspheres were also made with lecithin incorporated in the aqueous phase and a basic salt, MgCO3, in the polymeric phase. Released carbonic anhydrase, protein extracted from microspheres, or enzyme incubated with lecithin and PLGA were analyzed via HPLC and activity assay to determine the effect of these additives on protein integrity and activity. Lecithin in the aqueous phase appeared to increase the fraction of enzyme in monomeric form as well as its activity for both extracted protein and released protein as compared to the other formulations without MgCO3. Incubation of enzyme with PLGA degradation products indicated that the acidic environment within the microspheres aids in the irreversible inactivation of the encapsulated protein. Addition of MgCO3 further increased the amount of monomer in both the extracted and released protein by decreasing the amount of acid-induced cleavage and noncovalent aggregation, but still greatly decreased the activity of the enzyme. PMID:11960690

  12. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres.

    PubMed

    Xu, Qingguo; Crossley, Alison; Czernuszka, Jan

    2009-07-01

    Negatively charged poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulated with hydrophilic drugs have been successfully prepared by a solid-in-oil-in-water (s/o/w) solvent evaporation method in the presence of anionic surfactants, sodium dodecyl sulfate (SDS), and dioctyl sodium sulfosuccinate (DSS), and nonionic surfactant polyvinyl alcohol (PVA). The effects of microencapsulation methods, surfactants types, and surfactant concentrations on the properties of microspheres were studied. Amoxicillin (AMX) was chosen as a hydrophilic model drug, and its encapsulation efficiency (EE) and in vitro release profiles were measured. The s/o/w method achieved higher EE of 40% in PLGA microspheres using surfactant SDS compared with the conventional water-in-oil-in-water (w/o/w) method (about 2%). Triphasic release profiles were observed for all PLGA microspheres (s/o/w) with slight drug burst, a slow diffusion-controlled release within the period of about 7 days and followed by the degradation-controlled sustained release for further 30 days. Smaller particle size and surface charge were achieved for s/o/w method than w/o/w method using the same anionic surfactants, and smooth surface and less porous interior matrix. The s/o/w method effectively encapsulated AMX into anionic PLGA microspheres using anionic surfactants, and these negatively charged PLGA microspheres represented an attractive approach for the controlled release of hydrophilic drugs. PMID:19009589

  13. Thermostabilization of inactivated polio vaccine in PLGA-based microspheres for pulsatile release.

    PubMed

    Tzeng, Stephany Y; Guarecuco, Rohiverth; McHugh, Kevin J; Rose, Sviatlana; Rosenberg, Evan M; Zeng, Yingying; Langer, Robert; Jaklenec, Ana

    2016-07-10

    Vaccines are a critical clinical tool in preventing illness and death due to infectious diseases and are regularly administered to children and adults across the globe. In order to obtain full protection from many vaccines, an individual needs to receive multiple doses over the course of months. However, vaccine administration in developing countries is limited by the difficulty in consistently delivering a second or third dose, and some vaccines, including the inactivated polio vaccine (IPV), must be injected more than once for efficacy. In addition, IPV does not remain stable over time at elevated temperatures, such as those it would encounter over time in the body if it were to be injected as a single-administration vaccine. In this manuscript, we describe microspheres composed of poly(lactic-co-glycolic acid) (PLGA) that can encapsulate IPV along with stabilizing excipients and release immunogenic IPV over the course of several weeks. Additionally, pH-sensitive, cationic dopants such as Eudragit E polymer caused clinically relevant amounts of stable IPV release upon degradation of the PLGA matrix. Specifically, IPV was released in two separate bursts, mimicking the delivery of two boluses approximately one month apart. In one of our top formulations, 1.4, 1.1, and 1.2 doses of the IPV serotype 1, 2, and 3, respectively, were released within the first few days from 50mg of particles. During the delayed, second burst, 0.5, 0.8, and 0.6 doses of each serotype, respectively, were released; thus, 50mg of these particles released approximately two clinical doses spaced a month apart. Immunization of rats with the leading microsphere formulation showed more robust and long-lasting humoral immune response compared to a single bolus injection and was statistically non-inferior from two bolus injections spaced 1 month apart. By minimizing the number of administrations of a vaccine, such as IPV, this technology can serve as a tool to aid in the eradication of polio and

  14. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. PMID:25809455

  15. Effect of osmotic pressure in the solvent extraction phase on BSA release profile from PLGA microspheres.

    PubMed

    Jiang, Ge; Thanoo, B C; DeLuca, Patrick P

    2002-11-01

    This study investigated the influence of osmotic pressure in the organic solvent extraction phase on release profile of bovine serum albumin (BSA) from poly(lactide-co-glycolide) (PLGA) microspheres. BSA-loaded PLGA microspheres with a target load of 10% were prepared by a double emulsion phase separation method. All the microsphere batches were fabricated in the same conditions except that in the organic solvent (CH2Cl2) evaporation step. Different concentrations of NaCl (0, 1.8, and 3.6%) or sucrose (20%) were used to generate a range of osmotic pressures in the extraction aqueous phase. These microspheres were characterized for incorporation efficiency, surface and internal morphology, particle size, protein stability, and in vitro release. The microspheres were spherical with particle size ranging from 16.8 to 27.8 microns. Higher osmotic pressure resulted in a denser internal structure although similar nonporous surface morphology was observed with all batches. No significant difference in encapsulation efficiency existed from batch to batch (87-94%). Sodium dodecyl sulfate-polyamide gel electrophoresis showed that BSA integrity was well retained. The release profile of the batch prepared with only water as the continuous (solvent extraction) phase exhibited a 79% burst release in the first 24 hr followed by a plateau and then a little release after 21 days. In the presence of NaCl or sucrose, the burst effect significantly decreased with increase in osmotic pressure in the extraction aqueous phase, which was then followed by sustained release for 35 days. A mass balance was made when the release terminated. Therefore, in the organic solvent extraction and evaporation step, increasing the osmotic pressure in the aqueous phase both reduced the burst release from the microspheres and improved the subsequent sustained release profile. PMID:12503521

  16. Preparation and properties of PLGA microspheres containing hydrophilic drugs by the SPG (shirasu porous glass) membrane emulsification technique.

    PubMed

    Ito, Fuminori; Honnami, Hiroyuki; Kawakami, Hiroyoshi; Kanamura, Kiyoshi; Makino, Kimiko

    2008-11-15

    In the present paper, monodisperse poly (lactide-co-glycolide) (PLGA) microspheres containing the hydrophilic model drug, blue dextran (BLD), were manufactured by the solvent evaporation method and the shirasu porous glass (SPG) membrane emulsification technique. In order to prepare PLGA microspheres with a higher drug loading efficiency by the membrane emulsification technique, the test of stability and productivity of the primary emulsion (w(1)/o emulsion) was preliminary examined by change species or concentration of the oil-soluble surfactant and the ratio of water and organic solvent. The primary emulsion (w(1)/o) composed of the BLD aqueous solution and dichloromethane (DCM) dissolved PLGA was prepared with the micro homogenizer. The secondary emulsion (w(1)/o/w(2)) was prepared by the SPG membrane emulsification technique. BLD/PLGA microspheres of various micro level sizes of 2.0-10 microm prepared by variation of pore size of the using SPG membrane. The highly monodisperse BLD/PLGA microspheres were also manufactured by added polyethylene glycol (PEG) into the water phase, as reported in a previous paper. The initial release rate of the drug from such microspheres controlled than the sample manufactured without an additive. PMID:18774278

  17. Localized and Sustained Delivery of Erythropoietin from PLGA Microspheres Promotes Functional Recovery and Nerve Regeneration in Peripheral Nerve Injury

    PubMed Central

    Zhang, Wei; Gao, Yuan; Zhou, Yan; Liu, Jianheng; Zhang, Licheng; Long, Anhua; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Erythropoietin (EPO) has been demonstrated to exert neuroprotective effects on peripheral nerve injury recovery. Though daily intraperitoneal injection of EPO during a long period of time was effective, it was a tedious procedure. In addition, only limited amount of EPO could reach the injury sites by general administration, and free EPO is easily degraded in vivo. In this study, we encapsulated EPO in poly(lactide-co-glycolide) (PLGA) microspheres. Both in vitro and in vivo release assays showed that the EPO-PLGA microspheres allowed sustained release of EPO within a period of two weeks. After administration of such EPO-PLGA microspheres, the peripheral nerve injured rats had significantly better recovery compared with those which received daily intraperitoneal injection of EPO, empty PLGA microspheres, or saline treatments. This was supported by the functional, electrophysiological, and histological evaluations of the recovery done at week 8 postoperatively. We conclude that sustained delivery of EPO could be achieved by using EPO-PLGA microspheres, and such delivery method could further enhance the recovery function of EPO in nerve injury recovery. PMID:25821803

  18. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy.

    PubMed

    Fang, Kun; Song, Lina; Gu, Zhuxiao; Yang, Fang; Zhang, Yu; Gu, Ning

    2015-12-01

    Controlled drug delivery systems have been extensively investigated for cancer therapy in order to obtain better specific targeting and therapeutic efficiency. Herein, we developed doxorubicin-loaded magnetic PLGA microspheres (DOX-MMS), in which DOX was encapsulated in the core and high contents (28.3 wt%) of γ-Fe2O3 nanoparticles (IOs) were electrostatically assembled on the surface of microsphere to ensure the high sensitivity to response of an external alternating current magnetic field (ACMF). The IOs in PLGA shell can both induce the heat effect and trigger shell permeability enhancement to release drugs when DOX-MMs was activated by ACMF. Results show that the cumulative drug release from DOX-MMs exposed to ACMF for 30 min (21.6%) was significantly higher (approximately 7 times higher) than that not exposed to ACMF (2.8%). The combination of hyperthermia and enhanced DOX release from DOX-MMS is beneficial for in vitro 4T1 breast cancer cell apoptosis as well as effective inhibition of tumor growth in 4T1 tumor xenografts. Therefore, the DOX-MMS can be optimized as powerful delivery system for efficient magnetic responsive drug release and chemo-thermal therapy. PMID:26513754

  19. Immunogenicity of single-dose diphtheria vaccines based on PLA/PLGA microspheres in guinea pigs.

    PubMed

    Johansen, P; Moon, L; Tamber, H; Merkle, H P; Gander, B; Sesardic, D

    1999-09-01

    Biodegradable polyester microspheres (MS) have shown potential for single-dose vaccines. This study examined the immunogenicity of diphtheria toxoid (Dtxd) microencapsulated in different types of poly(lactide) (PLA) and poly(lactide-co-glycolide) (PLGA) MS prepared by the methods of spray-drying and coacervation. We investigated the influence of polymer type (PLGA 50:50 of low M(w); PLA of high M(w); end-group stearylated PLAs of low M(w)) and co-encapsulated excipients (BSA and/or trehalose) on Dtxd content, in vitro release and immunogenicity in guinea pigs. The co-encapsulated trehalose lowered the Dtxd entrapment efficiency in the spray-dried particles from 75 to 56%, whereas albumin alone had no effect in the spray-drying, but improved the encapsulation in the coacervation process. With the hydrophobic, end-group stearylated PLAs, Dtxd could only be encapsulated in the presence of albumin. Guinea pigs immunised with Dtxd-MS made with the relatively hydrophilic PLGA 50:50 exhibited specific and sustained antibody responses over 40 weeks, comparable to the responses to alum-adjuvanted toxoid. In contrast, undetectable or very low antibody responses were determined after immunisation with MS made with hydrophobic polymers. Surprisingly, large (15-60 microm) and small (1-5 microm) MS gave comparable primary antibody responses. In conclusion, the data presented confirm the feasibility of MS vaccines to induce strong, long-lasting protective antibody responses after a single immunisation. PMID:10506644

  20. Tissue Engineering: Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake (Small 11/2016).

    PubMed

    Minardi, Silvia; Corradetti, Bruna; Taraballi, Francesca; Sandri, Monica; Martinez, Jonathan O; Powell, Sebastian T; Tampieri, Anna; Weiner, Bradley K; Tasciotti, Ennio

    2016-03-01

    Avoiding the clearance of drug delivery systems from 3D scaffolds is crucial to preserve the bioactivity of their therapeutic payload. This is accomplished on page 1479, by E. Tasciotti and co-workers, through a "concealing" strategy: cloaking PLGA microspheres with the type I collagen matrix of a biomimetic scaffold, which enables the control of the production of inflammatory mediators. PMID:26970527

  1. Synchronic release of two hormonal contraceptives for about one month from the PLGA microspheres: in vitro and in vivo studies.

    PubMed

    Sun, Yi; Wang, Jiancheng; Zhang, Xuan; Zhang, Zhijun; Zheng, Yan; Chen, Dawei; Zhang, Qiang

    2008-08-01

    A controlled drug release system based on the injectable PLGA microspheres loaded with gestodene and ethinyl estradiol was prepared and evaluated for the feasibility of monthly synchronic delivery of the two hormonal contraceptives. The scanning electron microscopy, light-scattering analyzer and gel permeation chromatography were used to study the morphology, particle size and molecular weight of the polymer microspheres, respectively. HPLC was utilized to determine the drug loading and the drug released, while a LC-MS-MS system was employed to analyze the plasma drug concentration. Result indicated that the PLGA particles obtained were spherical and appropriate in size. The formulation was stable during the test period. In vitro drug release from the microspheres for both drugs was sustained for about 30 days mostly by the diffusion mechanism. The plasma drug concentration-time profiles of the drug-loaded microspheres were relatively smooth after subcutaneous injection to rats for about 1-month, compared with that for drug suspension. In vitro and in vivo correlation was established. One of the most important facts is the synchronicity of the two contraceptives both in the release kinetics in vitro and the pharmacokinetic behaviors in vivo. Therefore, the synchronic delivery of two contraceptives is achieved for about 1 month by using the injectable PLGA-based microspheres. PMID:18539353

  2. Use of biodegradable PLGA microspheres as a slow release delivery system for the Boophilus microplus synthetic vaccine SBm7462.

    PubMed

    Sales-Junior, P A; Guzman, F; Vargas, M I; Sossai, S; Patarroyo V, A M; González, C Z L; Patarroyo, J H

    2005-09-15

    The synthetic anti-Boophilus microplus vaccine SBm7462 derived from the tick intestinal protein, Bm86, induced a protective immune response when emulsified in saponin and used in cattle. Using a mice model, and with the objective of improving the vaccine by continual peptide release, it was encapsulated in PLGA 50:50 microspheres and inoculated in BALB/c mice to assess the immunological response by detection of anti-peptide IgGs. Comparative studies were made with the peptide emulsified in saponin and with another synthetic vaccine, and the microsphere/peptide was characterized for efficiency of encapsulation, in vitro release profile, morphology, size, peptide integrity after encapsulation and stability in different pHs. The findings showed that saponin enhances a better immune response from SBm7462 and that the PLGA 50:50 microspheres are suitable for use with this peptide. PMID:16002149

  3. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA.

    PubMed

    Lin, Liulan; Gao, Haitao; Dong, Yangyang

    2015-01-01

    To reveal the latent capacity of the growth factor-like low-molecular-weight material OIC-A006 in tissue regeneration, it is essential to design a porous scaffold in order to concurrently accommodate cells and drug release in a controlled manner. Consequently, we fabricated poly (L-lactide-co-glycolide) (PLGA)-based microspheres with an OIC-A006-loaded gradient-structured β-TCP/PLGA scaffold by freeze-drying which could then be used for drug delivery and bone regeneration. The OIC-A006-loaded β-TCP/PLGA scaffold consisted of two parts which loaded different doses of OIC-A006 (6.25 μM, outside; 12.5 μM, inside). The porosity, compressive strength, SEM, degradation, and cumulative amount of drug release in vitro were characterized. Furthermore, we confirmed the incorporation of OIC-A006 into the PLGA-based microspheres within the scaffolds using UV-spectrophotometry, and the amount of drug remaining in the scaffold was maintained by 10 % for up to 28 days. The drug release was slower in the normal-structured drug-loaded scaffold. The OIC-A006 released action from the OIC-A006-loaded β-TCP/PLGA scaffold with ideal therapeutic prospects in tissue regeneration. In vitro cell culture results showed that this gradient-structured composite scaffold can induce the adhesion and proliferation of rat bone marrow stromal cells towards osteoblasts. These results showed that the newly developed OIC-A006-loaded scaffolds with gradient structure can be potentially applied to bone regeneration in clinical applications. PMID:25577209

  4. A novel study on the mechanisms of drug release in PLGA-mPEG microspheres with fluorescent drug.

    PubMed

    Shi, Chen; Feng, Shuibin; Liu, Ping; Liu, Xianzhe; Feng, Xiaobo; Fu, Dehao

    2016-06-01

    The purpose of this research was to proof the microspheres release mechanism by a novel method-detecting and comparing the drugs fluorescent changes on the microspheres surface. Fluorescein sodium (FS, 0.4 kDa) and fluorescein isothiocyanate-bovine serum albumin (FITC-BSA, 66.8 kDa) were employed as model drugs. FS and FITC-BSA were encapsulated into PLGA-mPEG microspheres through double emulsion evaporation method, and the drug-loaded microspheres in vitro degradation and release behaviors were evaluated by scanning electron microscope, gel permeation chromatography, confocal laser scanning microscopy (CLSM), BCA assay kit, and UV-vis spectrophotometry. FS-loaded microspheres revealed a severe initial burst release, followed by a sustained release, and we could observe a bright fluorescent on the microspheres surface during the early release period under the CLSM. The bright fluorescent gradually faded out in the later period as only 1~2% FS was remained after 14 days release. FITC-BSA-loaded microspheres revealed a typical tri-phase release profile, and we observed a weak fluorescent on the microspheres surface after the initial burst release, and the fluorescent came bright again after an obvious erosion appeared on the microspheres surface. In the later release stage, the fluorescent gradually faded out as the fast release of FITC-BSA. PMID:26980344

  5. Control of drug loading efficiency and drug release behavior in preparation of hydrophilic-drug-containing monodisperse PLGA microspheres.

    PubMed

    Ito, Fuminori; Fujimori, Hiroyuki; Honnami, Hiroyuki; Kawakami, Hiroyoshi; Kanamura, Kiyoshi; Makino, Kimiko

    2010-05-01

    We prepared monodisperse poly(lactide-co-glycolide) (PLGA) microspheres containing blue dextran (BLD)--a hydrophilic drug--by membrane emulsification technique. The effects of electrolyte addition to the w(2) phase and significance of the droplet size ratio between primary (w(1)/o) and secondary (w(1)/o/w(2)) emulsions during the preparation of these microspheres was examined. The droplet size ratio was evaluated from the effect of stirring rate of the homogenizer when preparing the primary emulsion. The drug loading efficiency of BLD in these microspheres increased with stirring rate. It increased to approximately 90% when 2.0% NaCl was added to the w(2) phase. Drug release from these microspheres was slower than that when they were prepared without electrolyte addition. Despite the very high efficiency drug release was gradual because BLD was distributed at the microspheres core. Relatively monodisperse hydrophilic-drug-containing PLGA microspheres with controlled drug loading efficiency and drug release behavior were prepared. PMID:20221788

  6. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Pandey, Chandra Mouli; Sharma, Aditya; Sumana, Gajjala; Tiwari, Ida; Malhotra, Bansi Dhar

    2013-04-01

    Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (ks) of 61.73 s-1. Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10-14 M and is found to retain about 81% of the initial activity after 9 cycles of use.Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the

  7. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    PubMed

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use. PMID:27343696

  8. A novel and simple preparative method for uniform-sized PLGA microspheres: Preliminary application in antitubercular drug delivery.

    PubMed

    Liu, Zhiqiang; Li, Xia; Xiu, Bingshui; Duan, Cuimi; Li, Jiangxue; Zhang, Xuhui; Yang, Xiqin; Dai, Wenhao; Johnson, Heather; Zhang, Heqiu; Feng, Xiaoyan

    2016-09-01

    Particle size has been demonstrated as a key parameter influencing the phagocytosis of drug-loaded PLGA microspheres (MS) by the target cells. However, the current preparative methods were either insufficient in controlling the homogeneity of the produced MS, or requires sophisticated and costly equipment. This study aimed to explore a simple and economical method for uniform PLGA MS preparation. Based on the heterogeneous emulsification of routine mechanical stirring, we designed an adjuvant strategy to enhance the homogeneity of MS. By using glass beads as adjutant, the dispersion produced during mechanical stirring was much more homogeneous in the solution. The particles produced were much smaller and the size distribution was much narrower as compared with those produced using the routine mechanical stirring method under the same condition. After enrichment by selective centrifugation, about 60% of the particles of similar size were obtained, providing further evidence for the efficiency of the novel method in controlling particle homogeneity. Further, the method was applied to prepare rifampicin-loaded PLGA MS of the optimized size for macrophage uptake. The functional evaluation showed that the prepared PLGA MS could efficiently deliver an antitubercular drug into macrophages and maintain a higher intracellular concentration by controlled release, suggesting the potential application of the method in PLGA MS-based drug delivery. Collectively, the study provided a simple and economical method for preparing uniform-sized PLGA MS with potential of widespread applications. PMID:27289309

  9. The Pharmacokinetics and Pharmacodynamics of Lidocaine-Loaded Biodegradable Poly(lactic-co-glycolic acid) Microspheres

    PubMed Central

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(d,l-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34 ± 0.3 μm. The poly disperse index was 0.21 ± 0.03, and the zeta potential was +0.34 ± 0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5% ± 4.3% and 11.2% ± 1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02–2.06-fold that of lidocaine injection (p < 0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency. PMID:25268618

  10. Controlled release of imatinib mesylate from PLGA microspheres inhibit craniopharyngioma mediated angiogenesis.

    PubMed

    Karal-Yilmaz, Oksan; Ozkan, Abdulkadir; Akgun, Emel; Kukut, Manolya; Baysal, Kemal; Avsar, Timucin; Kilic, Turker

    2013-01-01

    Poly(lactic-co-glycolic acid) microspheres loaded with imatinib mesylate has been developed as a new therapeutic strategy to prevent craniopharyngioma recurrence. Microspheres composed of different lactic/glycolic acid ratios, molecular weights and drug compositions were synthesized and loaded with imatinib mesylate by modified double-emulsion/solvent evaporation technique and subsequently characterized by particle-size distribution, scanning electron microscopy, encapsulation efficiency and in vitro drug release. Inhibitory potential of imatinib containing microspheres on tumor neovascularization was investigated on craniopharyngioma tumor samples by rat cornea angiogenesis assay. Results showed that microspheres in different LA:GA ratios [LA:GA 50:50 (G50), 75:25 (G25), 85:15 (G15)] considerably reduced neovascularization induced by recurrent tumor samples in an in vivo angiogenesis assay (P < 0.01). Our data indicate that local delivery of imatinib mesylate to the post-surgical tumoral cavity using biodegradable microspheres may be a promising biologically selective approach to prevent the recurrence of craniopharyngiomas, via inhibition of neovascularization. PMID:23053813

  11. Poly(D,L-lactic-co-glycolic acid) microspheres for sustained delivery and stabilization of camptothecin.

    PubMed

    Ertl, B; Platzer, P; Wirth, M; Gabor, F

    1999-09-20

    Camptothecin (CPT) and its water-insoluble derivatives are known as topoisomerase-I inhibitors exhibiting high antitumoral activity against a wide spectrum of human malignancies. Until now clinical application of CPT is restricted by insolubility and instability of the drug in its active lactone form resulting in less antitumor potency and poor bioavailability. For these reasons CPT-loaded-microspheres were prepared by the solvent evaporation method using the H-series of poly(D,L-lactide-co-glycolide) (H-PLGA), which contain more carboxylic acid end chains and hydrate faster than the non-H-series. At 1.2% CPT-payload the drug was molecular dispersed throughout the matrix whereas at higher CPT-payload the amount of crystalline CPT-islets increased with the CPT content. The release pattern of CPT was biphasic comprising a first burst effect delivering 20-35% of the payload and increasing with drug-loading. This phase was followed by sustained delivery of CPT releasing 40-75% of the payload within 160 h. In comparison to PLGA-microspheres, the CPT-release rate from H-PLGA was twofold higher and accelerated. The active CPT-lactone was maintained during preparation, storage and release due to hindered diffusion of acidic oligomers among other mechanisms. Thus stabilization and sustained release of CPT from PLGA-microspheres might reduce local toxicity combined with prolonged efficacy offering new perspectives in CPT chemotherapy. PMID:10477803

  12. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres.

    PubMed

    Nie, Lei; Zhang, Guohua; Hou, Ruixia; Xu, Haiping; Li, Yaping; Fu, Jun

    2015-01-01

    Poly(vinyl alcohol) (PVA) hydrogels have been candidate materials for cartilage tissue engineering. However, the cell non-adhesive nature of PVA hydrogels has been a limit. In this paper, the cell adhesion and growth on PVA hydrogels were promoted by compositing with transform growth factor-β1 (TGF-β1) loaded porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres. The porous microspheres were fabricated by a modified double emulsion method with bovine serum albumin (BSA) as porogen. The average pore size of microspheres was manipulated by changing the BSA/PLGA ratio. Such controllable porous structures effectively influenced the encapsulation efficiency (Eencaps) and release profile of TGF-β1. By compositing PVA hydrogels with such TGF-β1-loaded PLGA microspheres, chondrocyte adhesion and proliferation were significantly promoted in a controllable manner, as confirmed by fluorescent imaging and quantitative CCK-8 assay. That is, the chondrocyte proliferation was favored by using PLGA microspheres with high Eencaps of TGF-β1 or by increasing the PLGA microsphere content in the hydrogels. These results demonstrated a facile method to improve the cell adhesion and growth on the intrinsically cell non-adhesive PVA hydrogels, which may find applications in cartilage substitution. PMID:25437063

  13. Stem cell differentiation-related protein-loaded PLGA microspheres as a novel platform micro-typed scaffold for chondrogenesis.

    PubMed

    Park, Ji Sun; Lim, Hye-Jin; Yi, Se Won; Park, Keun-Hong

    2016-01-01

    During cell differentiation for tissue regeneration, several factors, including growth factors and proteins, influence cascades in stem cells such as embryonic stem cells and mesenchymal stem cells (MSCs). In this study, transforming growth factor (TGF)-β3 and SOX9, which is an important protein in chondrocytes, were used to generate mature chondrocytes from human MSCs (hMSCs). For safe and effective delivery of bioactive molecules into hMSCs, biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) microspheres (MSs) were coated with TGF-β3 and loaded with SOX9. Instead of SOX9 protein, release of the model protein FITC-bovine serum albumin (BSA) from PLGA MS was evaluated in vitro and in vivo by confocal laser microscopy and Kodak imaging. The bioactivities of TGF-β3 and SOX9 were evaluated by assessing α-helical formation using circular dichroism. PLGA MS loaded with FITC-BSA easily entered hMSCs without causing cytotoxicity. To confirm that internalization of PLGA MSs harboring TGF-β3 and SOX9 induced chondrogenesis of hMSCs, we performed several molecular analyses. By analysis, the specific marker gene expression levels in hMSCs adhered onto PLGA MSs coated with TGF-β3 and loaded with SOX9 were more than 3-5 times that of the control group both in vitro and in vivo. This result revealed that PLGA MS uptake and subsequent release of SOX9 induced chondrogenesis of hMSCs was enhanced by coating PLGA MSs with TGF-β3. PMID:27586647

  14. [Studies on preparation by SPG membrane emulsification method and in vitro characterization of tetradrine-tashionone II(A)-PLGA composite microspheres].

    PubMed

    Lu, Jin; Zhang, Meng; Zhu, Hua-xu; Guo, Li-wei; Pan, Lin-mei; Fu, Ting-ming

    2015-03-01

    Tetradrine-tashionone II(A)-PLGA composite microspheres were prepared by the SPG membrane emulsification method, and the characterization of tetradrine-tashionone II(A) -PLGA composite microspheres were studied in this experiment. The results of IR, DSC and XRD showed that teradrine and tashionone II(A) in composite microspheres were highly dispersed in the PLGA with amorphous form. The results of tetradrine-tashionone II(A) -PLGA composite microspheres in vitro release experiment showed that the cumulative release amounts of tetradrine and tashionone II(A) were 6.44% and 3.60% in 24 h, and the cumulative release amounts of tetradrine and tashionone II(A) were 89.02% and 21.24% in 17 d. The process of drug in vitro release accorded with the model of Riger-Peppas. Tetradrine-tashionone II(A) -PLGA composite microspheres had slow-release effect, and it could significantly reduce the burst release, prolong the therapeutic time, decrease the dosage of drugs and provide a new idea and method to prepare traditional Chinese medicine compound. PMID:26226751

  15. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.

    PubMed

    Rong, Zi-Jie; Yang, Lian-Jun; Cai, Bao-Ta; Zhu, Li-Xin; Cao, Yan-Lin; Wu, Guo-Feng; Zhang, Zan-Jie

    2016-05-01

    To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic

  16. Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis.

    PubMed

    Kang, Feirong; Singh, Jagdish

    2003-07-01

    The goal of this study was to investigate the conformational stability of a model protein, bovine serum albumin (BSA), during the primary emulsification process of poly(D,L-lactide-co-glycolide) (PLGA) microspheres preparation. Differential scanning calorimeter (DSC) was utilized to assess the conformational structure of BSA during primary emulsification in the presence and absence of PLGA. Three excipients [i.e. mannitol, hydroxypropyl-beta-cyclodextrin (HP-beta-CD) and sodium dodecyl sulfate (SDS)] were investigated for their stabilizing effect on BSA during emulsification process. The DSC profile of intact BSA was best fitted by a non-2-state model with two peaks, which have midpoint temperatures (T(m1), 60.9 +/- 0.4 degrees C and T(m2), 66.4 +/- 1.0 degrees C), respectively, and a total calorimetric enthalpy Delta H(tot) of 599 +/- 42 kJ/mol. After emulsifying BSA aqueous solution with methylene chloride, an additional apparent peak at a higher temperature was observed. The T(m) of this peak was 77.4 +/- 0.8 degrees C. HP-beta-CD was able to suppress the occurrence of an additional peak, whereas mannitol failed. SDS increased the thermal stability of BSA dramatically. Furthermore, HP-beta-CD increased BSA recovery from 72 +/- 8% to 89 +/- 7% after extraction from w/o in the presence of PLGA. These results provided evidence that HP-beta-CD could be a promising excipient for conformational stability of BSA during synthesis of PLGA microspheres. PMID:12818819

  17. Effect of Dexamethasone-Loaded Poly(Lactic-Co-Glycolic Acid) Microsphere/Poly(Vinyl Alcohol) Hydrogel Composite Coatings on the Basic Characteristics of Implantable Glucose Sensors

    PubMed Central

    Wang, Yan; Vaddiraju, Santhisagar; Qiang, Liangliang; Xu, Xiaoming; Papadimitrakopoulos, Fotios; Burgess, Diane J.

    2012-01-01

    Background Hydrogels alone and in combination with microsphere drug delivery systems are being considered as biocompatible coatings for implantable glucose biosensors to prevent/minimize the foreign body response. Previously, our group has demonstrated that continuous release of dexamethasone from poly(lactic-co-glycolic acid) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composites can successfully prevent foreign body response at the implantation site. The objective of this study was to investigate the effect of this composite coating on sensor functionality. Methods The PLGA microsphere/PVA hydrogel coatings were prepared and applied to glucose biosensors. The swelling properties of the composite coatings and their diffusivity to glucose were evaluated as a function of microsphere loading. Sensor linearity, response time, and sensitivity were also evaluated as a function of coating composition. Results The PLGA microsphere/PVA hydrogel composite coating did not compromise sensor linearity (sensors were linear up to 30 mM), which is well beyond the physiological glucose range (2 to 22 mM). The sensor response time did increase in the presence of the coating (from 10 to 19 s); however, this response time was still less than the average reported values. Although the sensitivity of the sensors decreased from 73 to 62 nA/mM glucose when the PLGA microsphere loading in the PVA hydrogel changed from 0 to 100 mg/ml, this reduced sensitivity is acceptable for sensor functionality. The changes in sensor response time and sensitivity were due to changes in glucose permeability as a result of the coatings. The embedded PLGA microspheres reduced the fraction of bulk water present in the hydrogel matrix and consequently reduced glucose diffusion. Conclusions This study demonstrates that the PLGA microsphere/PVA hydrogel composite coatings allow sufficient glucose diffusion and sensor functionality and therefore may be utilized as a smart coating for implantable

  18. Evaluation of PEGylated exendin-4 released from poly (lactic-co-glycolic acid) microspheres for antidiabetic therapy.

    PubMed

    Lim, Sung Mook; Eom, Ha Na; Jiang, Hai Hua; Sohn, Minji; Lee, Kang Choon

    2015-01-01

    Peptide-based therapies have the potential to induce antibody formation if the molecules differ from a native human peptide. Several reports have disclosed the occurrence of antibody generation in a patient treated with exenatide. The immune response can be problematic from a clinical stand point, particularly if the antibodies neutralize the efficacy of the biotherapeutic agent or cause a general immune reaction. To overcome this limit, PEGylated exendin-4 analogs were designed and examined for metabolic stability and biological activity. To develop an extended release delivery system for exendin-4 for the safe and effective delivery of bioactive exendin-4 without peptide acylation and immunogenicity, PEGylated exendin-4 was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres by w/o/w double emulsion solvent evaporation method. Peptide-loaded microspheres were characterized in terms of morphology, particle diameter, and peptide encapsulation efficiency. Then, the release profile of the peptide from PLGA microspheres and the acylated products from PLGA polymer degradation was determined. The results obtained showed that the stability of exendin-4 was greatly improved by PEGylation. Moreover, eliminated acylation during PLGA polymer degradation in vitro and reduced immunogenicity in vivo were observed. The findings demonstrate that PEGylated exendin-4-loaded microspheres may be a safe and biocompatible system for clinical development. PMID:25407390

  19. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect. PMID:23988864

  20. In vitro stress effect on degradation and drug release behaviors of basic fibroblast growth factor – poly(lactic-co-glycolic-acid) microsphere

    PubMed Central

    Xiong, Yan; Yu, Zeping; Lang, Yun; Hu, Juanyu; Li, Hong; Yan, Yonggang; Tu, Chongqi; Yang, Tianfu; Song, Yueming; Duan, Hong; Pei, Fuxing

    2016-01-01

    Objective To study the degradation and basic fibroblast growth factor (bFGF) release activity of bFGF – poly(lactic-co-glycolic-acid) microsphere (bFGF-PLGA MS) under stress in vitro, including the static pressure and shearing force-simulating mechanical environment of the joint cavity. Method First, bFGF-PLGA MSs were created. Meanwhile, two self-made experimental instruments (static pressure and shearing force loading instruments) were initially explored to provide stress-simulating mechanical environment of the joint cavity. Then, bFGF-PLGA MSs were loaded into the two instruments respectively, to study microsphere degradation and drug release experiments. In the static pressure loading experiment, normal atmospheric pressure loading (approximately 0.1 MPa), 0.35 MPa, and 4.0 MPa pressure loading and shaking flask oscillation groups were designed to study bFGF-PLGA MS degradation and bFGF release. In the shearing force loading experiment, a pulsating pump was used to give the experimental group an output of 1,000 mL/min and the control group an output of 10 mL/min to carry out bFGF-PLGA MS degradation and drug release experiments. Changes of bFGF-PLGA MSs, including microsphere morphology, quality, weight-average molecular weight of polymer, and microsphere degradation and bFGF release, were analyzed respectively. Results In the static pressure loading experiment, bFGF-PLGA MSs at different pressure were stable initially. The trend of molecular weight change, quality loss, and bFGF release was consistent. Meanwhile, microsphere degradation and bFGF release rates in the 4.0 MPa pressure loading group were faster than those in the normal and 0.35 MPa pressure loading groups. It was the fastest in the shaking flask group, showing a statistically significant difference (P<0.0001). In the shearing force loading experiment, there were no distinctive differences in the rates of microsphere degradation and bFGF release between experimental and control group. Meanwhile

  1. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles.

    PubMed

    Malinovskaja-Gomez, K; Labouta, H I; Schneider, M; Hirvonen, J; Laaksonen, T

    2016-06-30

    The objective of this study was to test in vitro a drug delivery system that combines nanoencapsulation and iontophoresis for the transdermal delivery of lipophilic model drug using poly(lactic-co-glycolic acid) (PLGA) as the carrier polymer. Negatively charged fluorescent nanoparticles loaded with negatively charged flufenamic acid were prepared. The colloidal properties of the particles were stable under iontophoretic current (constant, pulsed and alternating) profiles and in contact with skin barrier. The release of the drug from the particles was not affected by iontophoresis and remained always limited (≈50%), leading to significantly lower transdermal fluxes across human epidermis and full thickness porcine skin compared to respective free drug formulation. From nanoparticles, pulsed current profile resulted in comparable or higher fluxes compared to constant current profile although fluorescence imaging was not able to confirm deeper distribution of nanoparticles in skin. Based on our results, there is no clear advantage with respect to drug permeation from nanoencapsulating flufenamic acid into PLGA nanoparticles compared to free drug formulation, either in passive or iontophoretic delivery regimens. However, pulsed current iontophoresis could be an effective alternative instead of traditional constant current iontophoresis to enhance transdermal permeation of drugs from nanoencapsulated formulations. PMID:27131608

  2. Ketoprofen-poly(D,L-lactic-co-glycolic acid) microspheres: influence of manufacturing parameters and type of polymer on the release characteristics.

    PubMed

    Gabor, F; Ertl, B; Wirth, M; Mallinger, R

    1999-01-01

    The effect of manufacturing parameters on the size and drug-loading of ketoprofen-containing biodegradable and biocompatible poly(DL-lactic-co-glycolic acid) (PLGA) microspheres prepared by the solvent evaporation method was investigated. For both drug-free and drug-loaded microspheres, smaller microspheres with a narrower size distribution were obtained when the stirring rate or the volume of the organic phase was increased. Incorporation of ketoprofen was found to increase with increasing volume of the organic phase and decreasing pH of the aqueous phase, but was independent of the acidity and the inherent viscosity of the PLGA used. The biphasic release profile of ketoprofen from the microspheres was dependent on the type of PLGA as well as the size and drug-loading, two parameters governed by the manufacturing process. The first burst effect was found to increase with the drug content, reduction of size of the microspheres and increasing inherent viscosity of the matrix, whereas acidity of the PLGA had no effect on the release of this acidic drug. A vigorous first burst effect was associated with reduced sustained delivery of ketoprofen, the rate of the delayed release phase being dependent on the inherent viscosity of the matrix, the size, the payload and the pH during preparation of the microspheres. Thus, by selection of the manufacturing parameters and the type of PLGA, it is possible to design a controlled drug delivery system for the prolonged release of ketoprofen, improving therapy by possible reduction of time intervals between peroral administration and reduction of local gastrointestinal side effects. PMID:9972498

  3. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement.

    PubMed

    Fei, Zhengqi; Hu, Yunyu; Wu, Daocheng; Wu, Hong; Lu, Rong; Bai, Jianping; Song, Hongxun

    2008-03-01

    Calcium phosphate cement (CPC) is a highly promising bone substitute and an excellent carrier for delivering growth factors. Yet, the lack of macro-porosity and osteoinductive ability, limit its use. This study is aimed at developing a novel biodegradable biomaterial for bone repair with both highly osteoconductive and osteoinductive properties. RhBMP-2 loaded PLGA microspheres were incorporated into rhBMP-2/CPC for macropores for bone ingrowth. The compressive strength, crystallinity, microscopic structure, and bioactivity of the composites were investigated. The results showed that with the incorporation of rhBMP-2 loaded PLGA microspheres, the compressive strength was decreased from (29.48+/-6.42) MPa to (8.26+/-3.58) MPa. X-ray diffraction revealed that the crystallinity pattern of HA formed by CPC had no significant change. Inside the composite, the microspheres distributed homogeneously and contacted intimately with the HA matrix, as observed by scanning electron microscopy (SEM). When the PLGA microspheres dissolved after having been emerged in PBS for 56 days, macropores were created within the CPC. The rhBMP-2/PLGA/CPC composite, showing a 4.9% initial release of rhBMP-2 in 24 h, followed by a prolonged release for 28 days, should have a greater amount of rhBMP-2 released compared to the CPC delivery system. When rabbit marrow stromal cells were cocultured with the composite, the alkaline phosphatase (ALP) and osteocalcin (OC) showed a dose response to the rhBMP-2 released from the composite, indicating that the activity of rhBMP-2 was retained. This study shows that the new composite reveals more rhBMP-2 release and osteogenic activity. This novel BMP/PLGA/CPC composite could be a promising synthetic bone graft in craniofacial and orthopedic repairs. PMID:17701313

  4. Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease.

    PubMed

    Herrmann, Valerie L; Hartmayer, Carmen; Planz, Oliver; Groettrup, Marcus

    2015-10-28

    Current influenza virus vaccines aim to elicit antibodies directed toward viral surface glycoproteins, which however are prone to antigenic drift. Cytotoxic T lymphocytes (CTLs) can exhibit heterosubtypic immunity against most influenza A viruses. In our study, we encapsulated the highly conserved, immunodominant, HLA-A*0201 restricted epitope from the influenza virus matrix protein M158-66 together with TLR ligands in biodegradable poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Subcutaneous immunization of transgenic mice expressing chimeric HLA-A*0201 molecules with these microspheres induced a strong and sustained CTL response which sufficed to prevent replication of a recombinant vaccinia virus expressing the influenza A virus (IAV) matrix protein but not the replication of IAV in the lung. However, subcutaneous priming followed by intranasal boosting with M158-66 bearing PLGA microspheres was able to induce vigorous CTL responses both in the lung and spleen of mice which interfered with IAV replication, weight loss, and infection-related death. Taken together, vaccination with well-defined and highly conserved IAV-derived CTL epitopes encapsulated into clinically compatible PLGA microspheres contribute to the control of influenza A virus infections. The promptitude and broad reactivity of the CTL response may help to attenuate pandemic outbreaks of influenza viruses. PMID:26276509

  5. Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer

    PubMed Central

    Bharali, Dhruba J; Yalcin, Murat; Davis, Paul J; Mousa, Shaker A

    2013-01-01

    Aim The aim was to evaluate tetraiodothyroacetic acid (tetrac), a thyroid hormone analog of l-thyroxin, conjugated to poly(lactic-co-glycolic acid) nanoparticles (T-PLGA-NPs) both in vitro and in vivo for the treatment of drug-resistant breast cancer. Materials & methods The uptake of tetrac and T-PLGA-NPs in doxorubicin-resistant MCF7 (MCF7-Dx) cells was evaluated using confocal microscopy. Cell proliferation assays and a chick chorioallantoic membrane model of FGF2-induced angiogenesis were used to evaluate the anticancer effects of T-PLGA-NPs. In vivo efficacy was examined in a MCF7-Dx orthotopic tumor BALBc nude mouse model. Results T-PLGA-NPs were restricted from entering into the cell nucleus, and T-PLGA-NPs inhibited angiogenesis by 100% compared with 60% by free tetrac. T-PLGA-NPs enhanced inhibition of tumor-cell proliferation at a low-dose equivalent of free tetrac. In vivo treatment with either tetrac or T-PLGA-NPs resulted in a three- to five-fold inhibition of tumor weight. Conclusion T-PLGA-NPs have high potential as anticancer agents, with possible applications in the treatment of drug-resistant cancer. PMID:23448245

  6. Quantitative multi-agent models for simulating protein release from PLGA bioerodible nano- and microspheres.

    PubMed

    Barat, Ana; Crane, Martin; Ruskin, Heather J

    2008-09-29

    Using poly(lactide-co-glycolide) (PLGA) particles for drug encapsulation and delivery has recently gained considerable popularity for a number of reasons. An advantage in one sense, but a drawback of PLGA use in another, is that drug delivery systems made of this material can provide a wide range of dissolution profiles, due to their internal structure and properties related to particles' manufacture. The advantages of enriching particulate drug design experimentation with computer models, are evident with simulations used to predict and optimize design, as well as indicate choice of best manufacturing parameters. In the present work, we seek to understand the phenomena observed for PLGA micro- and nanospheres, through Cellular Automata (CA) agent-based Monte Carlo (MC) models. Systems are studied both over large temporal scales (capturing slow erosion of PLGA) and for various spatial configurations (capturing initial as well as dynamic morphology). The major strength of this multi-agent approach is to observe dissolution directly, by monitoring the emergent behaviour: the dissolution profile manifested, as a sphere erodes. Different problematic aspects of the modelling process are discussed in details in this paper. The models were tested on experimental data from literature, demonstrating very good performance. Quantitative discussion is provided throughout the text in order to make a demonstration of the use in practice of the proposed model. PMID:18436414

  7. Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake.

    PubMed

    Minardi, Silvia; Corradetti, Bruna; Taraballi, Francesca; Sandri, Monica; Martinez, Jonathan O; Powell, Sebastian T; Tampieri, Anna; Weiner, Bradley K; Tasciotti, Ennio

    2016-03-01

    Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release. PMID:26797709

  8. Biodegradable poly(lactic-co-glycolic acid) microspheres loaded with S-nitroso-N-acetyl-D-penicillamine for controlled nitric oxide delivery.

    PubMed

    Lautner, Gergely; Meyerhoff, Mark E; Schwendeman, Steven P

    2016-03-10

    Nitric oxide (NO) is a fascinating and important endogenous free-radical gas with potent antimicrobial, vasodilating, smooth muscle relaxant, and growth factor stimulating effects. However, its wider biomedical applicability is hindered by its cumbersome administration, since NO is unstable especially in biological environments. In this work, to ultimately develop site-specific controlled release vehicles for NO, the NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) was encapsulated within poly(lactic-co-glycolic acid) 50:50 (PLGA) microspheres by using a solid-in-oil-in-water emulsion solvent evaporation method. The highest payload was 0.56(±0.01) μmol SNAP/mg microspheres. The in vitro release kinetics of the donor were controlled by the bioerosion of the PLGA microspheres. By using an uncapped PLGA (Mw=24,000-38,000) SNAP was slowly released for over 10days, whereas by using the ester capped PLGA (Mw=38,000-54,000) the release lasted for over 4weeks. The presence of copper ions and/or ascorbate in solution was necessary to efficiently decompose the released NO donor and obtain sustained NO release. It was also demonstrated that light can be used to induce rapid NO release from the microspheres over several hours. SNAP exhibited excellent storage stability when encapsulated in the PLGA microspheres. These new microsphere formulations may be useful for site-specific administration and treatment of pathologies associated with dysfunction in endogenous NO production, e.g. treatment of diabetic wounds, or in diseases involving other biological functions of NO including vasodilation, antimicrobial, anticancer, and neurotransmission. PMID:26763376

  9. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-08-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. PMID:26154695

  10. Surface studies of coated polymer microspheres and protein release from tissue-engineered scaffolds.

    PubMed

    Meese, Thomas M; Hu, Yunhua; Nowak, Richard W; Marra, Kacey G

    2002-01-01

    The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA. PMID:12022746

  11. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guérin.

    PubMed

    Yoshida, Aya; Matumoto, Makoto; Hshizume, Hiroyuki; Oba, Yoshiro; Tomishige, Tatuo; Inagawa, Hiroyuki; Kohchi, Chie; Hino, Mami; Ito, Fuminori; Tomoda, Keishiro; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi; Hori, Hitoshi; Soma, Gen-Ichiro

    2006-08-01

    Macrophages and their phagocytotic abilities play a dominant role for defense against infected organisms. However, Mycobacterium tuberculosis can survive in the phagosomes of macrophages. In this study, the effective delivery of a drug and the killing effect of tubercle bacilli within macrophages were investigated utilizing the phagocytotic uptake of rifampicin (RFP) that had been incorporated into poly(DL-lactic-co-glycolic) acid (PLGA) microspheres. The microspheres were composed of PLGA that had a monomer ratio (lactic acid/glycolic acid) of either 50/50 or 75/25. They had molecular weights from 5000 to 20,000, and diameters of 1.5, 3.5, 6.2 and 8.9 microm. The most significant factor for phagocytotic activity of macrophages was the diameter of the microspheres. By contrast, molecular weight and monomer ratio of PLGA did not influence phagocytosis. The amount of RFP delivered into cells was also investigated. RFP-PLGA microspheres composed of PLGA with a molecular weight of 20,000 and monomer ratio of 75/25 showed the highest amount of delivery (4 microg/1 x 10(6) cells). Fourteen days after infection, the survival rate of treated intracellular bacilli was 1% when compared with untreated cells. There was almost no killing effect of free RFP (4 or 15 microg/ml) on intracellular bacilli. In vivo efficacy of RFP-PLGA was also examined in rats infected with M. tuberculosis Kurono. Intratracheal administration of RFP-PLGA microspheres was shown to be superior to free RFP for killing of intracellular bacilli and preventing granuloma formation in some lobes. These results suggest that phagocytotic activity could be part of a new drug delivery system that selectively targeted macrophages. PMID:16879999

  12. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications.

    PubMed

    Ghorbani, Farnaz; Nojehdehian, Hanieh; Zamanian, Ali

    2016-12-01

    Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation. PMID:27612706

  13. Preparation and characterization of poly(lactic-co-glycolic acid) microspheres loaded with a labile antiparkinson prodrug.

    PubMed

    D'Aurizio, E; van Nostrum, C F; van Steenbergen, M J; Sozio, P; Siepmann, F; Siepmann, J; Hennink, W E; Di Stefano, A

    2011-05-16

    L-dopa-α-lipoic acid (LD-LA) is a new multifunctional prodrug for the treatment of Parkinson's disease. In human plasma, LD-LA catechol esters and amide bonds are chemically and enzymatically cleaved, respectively, resulting in a half-life time of about fifty minutes. In the present work, the unstable LD-LA was entrapped into biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres designed as depot systems to protect this prodrug against degradation and to obtain a sustained release of the intact compound. The microspheres were prepared by an oil-in-water emulsion/solvent evaporation technique and the effect of formulation and processing parameters (polymer concentration in the organic solvent, volumes ratio of the phases, rate of the organic solvent evaporation) on microspheres characteristics (size, loading, morphology, release) was investigated. Also emphasis was given on the stability of the drug before and after release as well as on the underlying mass transport mechanisms controlling LD-LA release. Interestingly, when encapsulated in appropriate conditions into PLGA microspheres, the labile prodrug was stabilized and released via Fickian diffusion up to more than one week. PMID:21356295

  14. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier

    PubMed Central

    Makadia, Hirenkumar K.; Siegel, Steven J.

    2011-01-01

    In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. In particular, PLGA has been extensively studied for the development of devices for controlled delivery of small molecule drugs, proteins and other macromolecules in commercial use and in research. This manuscript describes the various fabrication techniques for these devices and the factors affecting their degradation and drug release. PMID:22577513

  15. PLGA microspheres for the delivery of a novel subunit TB vaccine.

    PubMed

    Kirby, Daniel J; Rosenkrands, Ida; Agger, Else M; Andersen, Peter; Coombes, Allan G A; Perrie, Yvonne

    2008-05-01

    Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 microm range (1.50 +/- 0.13 microm), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres. PMID:18446607

  16. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration.

    PubMed

    Rodríguez Villanueva, Javier; Bravo-Osuna, Irene; Herrero-Vanrell, Rocío; Molina Martínez, Irene Teresa; Guzmán Navarro, Manuel

    2016-09-20

    Successful therapy for chronic diseases affecting the posterior segment of the eye requires sustained drug concentrations at the site of action for extended periods of time. To achieve this, it is necessary to use high systemic doses or frequent intraocular injections, both associated with serious adverse effects. In order to avoid these complications and improve patient's quality of life, an experimental study has been conducted on the preparation of a new generation of biodegradable poly(D,L-lactide-co-glycolide) (50:50) (PLGA) polymer microspheres (MSs) loaded with Dxm, vitamin E and/or human serum albumin (HSA). Particles were prepared according to a S/O/W encapsulation method and the 20-40μm fraction was selected. This narrow size distribution is suitable for minimally invasive intravitreal injection by small calibre needles. Characterisation of the MSs showed high Dxm loading and encapsulation efficiency (> 90%) without a strong interaction with the polymer matrix, as revealed by DSC analysis. MSs drug release studies indicated a small burst effect (lower than 5%) during the first five hours and subsequently, drug release was sustained for at least 30days, led by diffusion and erosion mechanisms. Dxm release rate was modulated when solid state HSA was incorporated into MSs formulation. SDS-PAGE analysis showed that the protein maintained its integrity during the encapsulation process, as well as for the release study. MSs presented good tolerance and lack of cytotoxicity in macrophages and HeLa cultured cells. After 12months of storage under standard refrigerated conditions (4±1°C), MSs retained appropriate physical and chemical properties and analogous drug release kinetics. Therefore, we conclude that these microspheres are promising pharmaceutical systems for intraocular administration, allowing controlled release of the drug. PMID:26987610

  17. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres

    PubMed Central

    Wright, Bernice; Parmar, Nina; Bozec, Laurent; Aguayo, Sebastian D

    2015-01-01

    Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min–24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features

  18. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    PubMed

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. PMID:27025293

  19. Protocell-like Microspheres from Thermal Polyaspartic Acid

    NASA Astrophysics Data System (ADS)

    Bahn, Peter R.; Pappelis, Aristotel; Bozzola, John

    2006-12-01

    One of the most prominent amino acids to appear in monomer-generating origin-of-life experiments is aspartic acid. Hugo Schiff found in 1897 that aspartic acid polymerizes when heated to form polyaspartylimide which hydrolyzes in basic aqueous solution to form thermal polyaspartic acid which is a branched polypeptide. We recently reported at the ISSOL 2005 Conference that commercially made thermal polyaspartic acid forms microspheres when heated in boiling water and allowed to cool. In a new experiment we heated aspartic acid at 180°C for up to 100 h to form thermal polyaspartylimide which when heated in boiling water without addition of base hydrolyzed to form thermal polyaspartic acid which upon cooling formed microspheres. Thermal polyaspartic acid microspheres appear protocell-like in the sense of being prebiotically plausible lattices or containers that could eventually have been filled with just the right additions of primordial proteins, nucleic acids, lipids, and metabolites so as to constitute protocells capable of undergoing further chemical and biological evolution. Thermal polyaspartic acid microspheres are extremely simple models of protocells that are more amenable to precise quantitative experimental investigation than the proteinoid microspheres of Sidney W. Fox. We present here scanning electron microscope images of such thermal polyaspartic acid microspheres. Figure 1 shows thermal polyaspartic acid microspheres from l-aspartic acid heated at 180°C for 50 h, at a magnification of 3,500×. Figure 2 shows thermal polyaspartic acid microspheres from the same sample at a magnification of 7,000×. The thermal polyaspartic acid microspheres have a diameter of approximately 1 μm These images were viewed with a Hitachi S2460N scanning electron microscope at 20 kV acceleration voltage. [Figure not available: see fulltext.][Figure not available: see fulltext.

  20. Inhibition of Octreotide Acylation Inside PLGA Microspheres by Derivatization of the Amines of the Peptide with a Self-Immolative Protecting Group.

    PubMed

    Shirangi, Mehrnoosh; Najafi, Marzieh; Rijkers, Dirk T S; Kok, Robbert Jan; Hennink, Wim E; van Nostrum, Cornelus F

    2016-03-16

    Acylation of biopharmaceuticals such as peptides has been identified as a major obstacle for the successful development of PLGA controlled release formulations. The purpose of this study was to develop a method to inhibit peptide acylation in poly(d,l-lactide-co-glycolide) (PLGA) formulations by reversibly and temporarily blocking the amine groups of a model peptide (octreotide) with a self-immolative protecting group (SIP), O-4-nitrophenyl-O'-4-acetoxybenzyl carbonate. The octreotide with two self-immolative protecting groups (OctdiSIP) on the N-terminus and lysine side chain was synthesized by reaction of the peptide with O-4-nitrophenyl-O'-4-acetoxybenzyl carbonate, purified by preparative RP-HPLC and characterized by mass spectrometry. Degradation studies of OctdiSIP in aqueous solutions of different pH values showed that protected octreotide was stable at low pH (pH 5) whereas the protecting group was eliminated at physiological pH, especially in the presence of an esterase, to generate native octreotide. OctdiSIP encapsulated in PLGA microspheres, prepared using a double emulsion solvent evaporation method, showed substantial inhibition of acylation as compared to the unprotected octreotide: 52.5% of unprotected octreotide was acylated after 50 days incubation of microspheres in PBS pH 7.4 at 37 °C, whereas OctdiSIP showed only 5.0% acylation in the same time frame. In conclusion, the incorporation of self-immolative protection groups provides a viable approach for inhibition of acylation of peptides in PLGA delivery systems. PMID:26726953

  1. Release of PLGA-encapsulated dexamethasone from microsphere loaded porous surfaces.

    PubMed

    Dawes, G J S; Fratila-Apachitei, L E; Necula, B S; Apachitei, I; Witkamp, G J; Duszczyk, J

    2010-01-01

    The aim of the present study was to investigate the morphology and function of a drug eluting metallic porous surface produced by the immobilization of poly lactide-co-glycolide microspheres bearing dexamethasone onto plasma electrolytically oxidized Ti-6Al-7Nb medical alloy. Spheres of 20 microm diameter were produced by an oil-in-water emulsion/solvent evaporation method and thermally immobilized onto titanium discs. The scanning electron microscopy investigations revealed that the size distribution and morphology of the attached spheres had not changed significantly. The drug release profiles following degradation in phosphate buffered saline for 1000 h showed that, upon immobilisation, the spheres maintained a sustained release, with a triphasic profile similar to the non-attached system. The only significant change was an increased release rate during the first 100 h. This difference was attributed to the effect of thermal attachment of the spheres to the surface. PMID:19669866

  2. Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration.

    PubMed

    Jamuna-Thevi, Kalitheertha; Saarani, Nur Najiha; Abdul Kadir, Mohamed Rafiq; Hermawan, Hendra

    2014-10-01

    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents. PMID:25175212

  3. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis

    PubMed Central

    Qiao, Chunyan; Zhang, Kai; Sun, Bin; Liu, Jinzhong; Song, Jiyu; Hu, Yue; Yang, Shihui; Sun, Hongchen; Yang, Bai

    2015-01-01

    Bone regeneration often requires continuous stimulation to promote local bone formation. In the present study, calcium phosphate (CaPi) was used to promote transfection of human bone morphogenetic protein 2 (BMP-2) cDNA plasmid, and poly (lactic-co-glycolic acid) (PLGA) was used to prepare microspheres of pBMP-2/CaPi (i.e., PLGA@pBMP-2/CaPi) using W/O/W double emulsion solvent evaporation method. We showed that PLGA@pBMP-2/CaPi microspheres were spherical with smooth surface, and the particle size ranged from 0.5 to 35 μm. Encapsulation efficiency was up to 30~50%. The release of BMP-2 cDNA from microspheres continued more than 30 days and constituted, less than 7.5% of total plasmid amount within the first 24 h. Real-time PCR results showed that co-culturing of PLGA@pBMP-2/CaPi with bone marrow-derived mesenchymal stem cells (BMSCs) increased calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7, and collagen type I (COLL I) in a time-dependent manner. Finally, X-ray analysis demonstrated that in vivo delivery of PLGA@pBMP-2/CaPi microspheres into the tibialis anterior muscles of rats promoted the generation of osteoblasts, bone tissue, and bone structure. The findings suggested that PLGA@pBMP-2/CaPi microspheres can promote ectopic osteogenesis in non-bone tissues, with strong prospects in promoting bone regeneration. PMID:26885257

  4. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: In vitro characterization and application in polycaprolactone fumarate nerve conduits

    PubMed Central

    Rui, Jing; Dadsetan, Mahrokh; Runge, M. Brett; Spinner, Robert J.; Yaszemski, Michael J.; Windebank, Anthony J.; Wang, Huan

    2014-01-01

    Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator. Controlled release of such stimulators may enhance and guide the vascularization process, and when applied in a nerve conduit may play a role in nerve regeneration. We report the fabrication and in vitro characterization of VEGF encapsulating poly-lactic-co-glycolic acid (PLGA) microspheres and the in vivo application of nerve conduits supplemented with VEGF-containing microspheres. PLGA microspheres containing VEGF were prepared by the double emulsion-solvent evaporation technique. This yielded 83.16% of the microspheres with a diameter < 53 µm. VEGF content measured by ELISA indicated 93.79 ±10.64% encapsulation efficiency. Release kinetics were characterized by an initial burst release of 67.6±8.25% within the first 24 hours, followed by consistent release of approximately 0.34% per day for 4 weeks. Bioactivity of the released VEGF was tested by human umbilical vein endothelial cell (HUVEC) proliferation assay. VEGF released at all time points enhanced HUVEC proliferation confirming that VEGF retained its bioactivity through the 4-week time period. When the microsphere delivery system was placed in a biosynthetic nerve scaffold, robust nerve regeneration was observed. This study established a novel system for controlled release of growth factors and enables in vivo studies of nerve conduits conditioned with this system. PMID:22019759

  5. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor. PMID:26876867

  6. Propaedeutic study for the delivery of nucleic acid-based molecules from PLGA microparticles and stearic acid nanoparticles

    PubMed Central

    Grassi, G; Coceani, N; Farra, R; Dapas, B; Racchi, G; Fiotti, N; Pascotto, A; Rehimers, B; Guarnieri, G; Grassi, M

    2006-01-01

    We studied the mechanism governing the delivery of nucleic acid-based drugs (NABD) from microparticles and nanoparticles in zero shear conditions, a situation occurring in applications such as in situ delivery to organ parenchyma. The delivery of a NABD molecule from poly(DL-lactide-co-glycolide) (PLGA) microparticles and stearic acid (SA) nanoparticles was studied using an experimental apparatus comprising a donor chamber separated from the receiver chamber by a synthetic membrane. A possible toxic effect on cell biology, as evaluated by studying cell proliferation, was also conducted for just PLGA microparticles. A mathematical model based on the hypothesis that NABD release from particles is due to particle erosion was used to interpret experimental release data. Despite zero shear conditions imposed in the donor chamber, particle erosion was the leading mechanism for NABD release from both PLGA microparticles and SA nanoparticles. PLGA microparticle erosion speed is one order of magnitude higher than that of competing to SA nanoparticles. Finally, no deleterious effects of PLGA microparticles on cell proliferation were detected. Thus, the data here reported can help optimize the delivery systems aimed at release of NABD from micro- and nanoparticles. PMID:17722283

  7. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. PMID:27285778

  8. New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres

    PubMed Central

    Robinson, Rebecca; Bertram, James P.; Reiter, Jill L.; Lavik, Erin B.

    2015-01-01

    Inhibition of the epidermal growth factor receptor (EGFR) has been shown to reduce tumor growth and metastases and promote axon regeneration in the central nervous system. Current strategies for inhibiting EGFR include the administration of reversible or irreversible small-molecule tyrosine kinase inhibitors (TKIs). However, to be effective in vivo constant and sustained delivery is required. This study explored the feasibility of encapsulating the tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) in poly(lactic-co-glycolic acid) (PLGA) microspheres to achieve sustained delivery of the TKI. We characterized microspheres prepared using three different emulsion methods: solid-in-oil-in-water, oil-in-water, and oil-in-water with co-solvent. Addition of a co-solvent increased the loading and release of AG1478, and significantly (P<0.001) decreased the size of the microspheres which facilitates administration of the spheres. On average, sustained delivery of AG1478 from microspheres was achieved for six months. However, the addition of a co-solvent prolonged release for over nine months (266 days). In addition, AG1478 retained its bioactivity upon delivery, and inhibited EGFR in both immortalized rat fibroblasts and in EGFR-amplified human carcinoma cells. These results demonstrate that AG1478 can be encapsulated in PLGA and retain bioactivity; thereby providing a new platform for controlled administration of EGFR TKIs. PMID:20055747

  9. [Relation between drug release and the drug status within curcumin-loaded microsphere].

    PubMed

    Chen, De; Liu, Yi; Fan, Kai-yan; Xie, Yi-qiao; Yu, An-an; Xia, Zi-hua; Yang, Fan

    2016-01-01

    To study the relation between drug release and the drug status within curcumin-loaded microsphere, SPG (shirasu porous glass) membrane emulsification was used to prepare the curcumin-PLGA (polylactic-co-glycolic acid) microspheres with three levels of drug loading respectively, and the in vitro release was studied with high-performance liquid chromatography (HPLC). The morphology of microspheres was observed with scanning electron microscopy (SEM), and the drug status was studied with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and infrared analysis (IR). The drug loading of microspheres was (5.85 ± 0.21)%, (11.71 ± 0.39)%, (15.41 ± 0.40)%, respectively. No chemical connection was found between curcumin and PLGA. According to the results of XRD, curcumin dispersed in PLGA as amorphous form within the microspheres of the lowest drug loading, while (2.12 ± 0.64)% and (5.66 ± 0.07)% curcumin crystals was detected in the other two kinds of microspheres, respectively, indicating that the drug status was different within three kinds of microspheres. In the data analysis, we found that PLGA had a limited capacity of dissolving curcumin. When the drug loading exceeded the limit, the excess curcumin would exist in the form of crystals in microspheres independently. Meanwhile, this factor contributes to the difference in drug release behavior of the three groups of microspheres. PMID:27405176

  10. Hyaluronic Acid-Modified Cationic Lipid-PLGA Hybrid Nanoparticles as a Nanovaccine Induce Robust Humoral and Cellular Immune Responses.

    PubMed

    Liu, Lanxia; Cao, Fengqiang; Liu, Xiaoxuan; Wang, Hai; Zhang, Chao; Sun, Hongfan; Wang, Chun; Leng, Xigang; Song, Cunxian; Kong, Deling; Ma, Guilei

    2016-05-18

    Here, we investigated the use of hyaluronic acid (HA)-decorated cationic lipid-poly(lactide-co-glycolide) acid (PLGA) hybrid nanoparticles (HA-DOTAP-PLGA NPs) as vaccine delivery vehicles, which were originally developed for the cytosolic delivery of genes. Our results demonstrated that after the NPs uptake by dendritic cells (DCs), some of the antigens that were encapsulated in HA-DOTAP-PLGA NPs escaped to the cytosolic compartment, and whereas some of the antigens remained in the endosomal/lysosomal compartment, where both MHC-I and MHC-II antigen presentation occurred. Moreover, HA-DOTAP-PLGA NPs led to the up-regulation of MHC, costimulatory molecules, and cytokines. In vivo experiments further revealed that more powerful immune responses were induced from mice immunized with HA-DOTAP-PLGA NPs when compared with cationic lipid-PLGA nanoparticles and free ovalbumin (OVA); the responses included antigen-specific CD4(+) and CD8(+) T-cell responses, the production of antigen-specific IgG antibodies and the generation of memory CD4(+) and CD8(+) T cells. Overall, these data demonstrate the high potential of HA-DOTAP-PLGA NPs for use as vaccine delivery vehicles to elevate cellular and humoral immune responses. PMID:27088457

  11. Influence of PEI as a Core Modifying Agent on PLGA Microspheres of PGE1, A Pulmonary Selective Vasodilator

    PubMed Central

    Gupta, Vivek; Ahsan, Fakhrul

    2011-01-01

    This study tests the hypothesis that large porous poly (lactic-co-glycolic acid) (PLGA) microparticles modified with polyethyleneimine (PEI) are viable carriers for pulmonary delivery of prostaglandin E1 (PGE1) used in the treatment of pulmonary arterial hypertension (PAH), a pulmonary vascular disorder. The particles were prepared by a double-emulsion solvent evaporation method with PEI-25 kDa in the internal aqueous phase to produce an osmotic pressure gradient. Polyvinyl alcohol (PVA) was used for external coating of the particles. The particles were examined for morphology, size, aerodynamic diameter, surface area, pore volume and in-vitro release profiles. Particles with optimal properties for inhalation were tested for in-vivo pulmonary absorption, metabolic stability in rat lung homogenates, and acute toxicity in rat bronchoalveolar lavage fluid and respiratory epithelial cells, Calu-3. The micromeritic data indicated that the PEI-modified particles of PGE1 are optimal for inhalation. Incorporation of PEI in the formulations resulted in an increased entrapment efficiency–83.26±3.04% for particles with 1% PVA and 95.48±0.46% for particles with 2% PVA. The amount of cumulative drug released into the simulated interstitial lung fluid was between 50.8±0.76% and 55.36±0.06%. A remarkable extension of the circulation half-life up to 6.0–6.5 hours was observed when the formulations were administered via the lungs. The metabolic stability and toxicity studies showed that the optimized formulations were stable at physiological conditions and relatively safe to the lungs and respiratory epithelium. Overall, this study demonstrates that large porous inhalable polymeric microparticles can be a feasible option for non-invasive and controlled release of PGE1 for treatment of PAH. PMID:21530623

  12. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    NASA Astrophysics Data System (ADS)

    Hu, Xixue; Shen, Hong; Yang, Fei; Liang, Xinjie; Wang, Shenguo; Wu, Decheng

    2014-02-01

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion-solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  13. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.

    PubMed

    He, Shu; Lin, Kai-Feng; Sun, Zhen; Song, Yue; Zhao, Yi-Nan; Wang, Zheng; Bi, Long; Liu, Jian

    2016-07-01

    The aim of the current study was to prepare microsphere-based composite scaffolds made of nano-hydroxyapatite (nHA)/poly (DL-lactic-co-glycolic acid) (PLGA) at different ratios and evaluate the effects of nHA on the characteristics of scaffolds for tissue engineering application. First, microsphere-based composite scaffolds made of two ratios of nHA/PLGA (nHA/PLGA = 20/80 and nHA/PLGA = 50/50) were prepared. Then, the effects of nHA on the wettability, mechanical strength, and degradation of scaffolds were investigated. Second, the biocompatibility and osteoinductivity were evaluated and compared by co-culture of scaffolds with bone marrow stromal stem cells (BMSCs). The results showed that the adhesion, proliferation, and osteogenic differentiation of BMSCs with nHA/PLGA (50/50) were better than those with nHA/PLGA (20/80). Finally, we implanted the scaffolds into femur bone defects in a rabbit model, then the capacity of guiding bone regeneration as well as the in vivo degradation were observed by micro-CT and histological examinations. After 4 weeks' implantation, there was no significant difference on the repair of bone defects. However, after 8 and 12 weeks' implantation, the nHA/PLGA (20/80) exhibited better bone formation than nHA/PLGA (50/50). These results suggested that a proper concentration of nHA in the nHA/PLGA composite should be taken into account when the composite scaffolds were prepared, which plays an important role in the biocompatibility, degradation rate and osteoconductivity. PMID:27378617

  14. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    , while both cytokines are over-expressed within the first day following injury, CTGF protein levels could not be correlated with observed adhesion development. In addition, we synthesized linear triblock copolymers of polyethylene glycol (PEG) and poly(D,L-lactide-co-glycolide) (PLGA), two of the most widely studied biodegradable polymers in use today. Bulk gels and microparticles of the copolymers were then evaluated for gelling behavior, temperature stability, and drug loading and release kinetics in order assess their suitability as potential carriers of antisense therapeutics. A novel approach to affecting the antisense oligonucleotide release kinetics by varying the relative concentrations of co-encapsulated cationic lipid transfection agents was also presented.

  15. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles.

    PubMed

    Xiong, Sijing; George, Saji; Yu, Haiyang; Damoiseaux, Robert; France, Bryan; Ng, Kee Woei; Loo, Joachim Say-Chye

    2013-06-01

    The aim of this study is to uncover the size influence of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles on their potential cytotoxicity. PLGA and TiO(2) nanoparticles of three different sizes were thoroughly characterized before in vitro cytotoxic tests which included viability, generation of reactive oxygen species (ROS), mitochondrial depolarization, integrity of plasma membrane, intracellular calcium influx and cytokine release. Size-dependent cytotoxic effect was observed in both RAW264.7 cells and BEAS-2B cells after cells were incubated with PLGA or TiO(2) nanoparticles for 24 h. Although PLGA nanoparticles did not trigger significantly lethal toxicity up to a concentration of 300 μg/ml, the TNF-α release after the stimulation of PLGA nanoparticles should not be ignored especially in clinical applications. Relatively more toxic TiO(2) nanoparticles triggered cell death, ROS generation, mitochondrial depolarization, plasma membrane damage, intracellular calcium concentration increase and size-dependent TNF-α release, especially at a concentration higher than 100 μg/ml. These cytotoxic effects could be due to the size-dependent interaction between nanoparticles and biomolecules, as smaller particles tend to adsorb more biomolecules. In summary, we demonstrated that the ability of protein adsorption could be an important paradigm to predict the in vitro cytotoxicity of nanoparticles, especially for low toxic nanomaterials such as PLGA and TiO(2) nanoparticles. PMID:22983807

  16. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  17. [Experimental study on application recombinant human bone morphogenetic protein 2(rhBMP-2)/poly-lactide-co-glycolic acid (PLGA)/fibrin sealant(FS) on repair of rabbit radial bone defect].

    PubMed

    Fan, Zhongkai; Cao, Yang; Zhang, Zhe; Zhang, Mingchao; Lu, Wei; Tang, Lei; Yao, Qi; Lu, Gang

    2012-10-01

    This paper is aimed to investigate the repair of rabbit radial bone defect by the recombinant human bone morphogenetic protein 2/poly-lactideco-glycolic acid microsphere with fibrin sealant (rhBMP-2/PLGA/FS). The radial bone defect models were prepared using New Zealand white rabbits, which were randomly divided into 3 groups, experiment group which were injected with eMP-2/PLGA/FS at bone defect location, control group which were injected with FS at bone defect location, and blank control group without treatment. The ability of repairing bone defect was evaluated with X-ray radiograph. Bone mineral density in the defect regions was analysed using the level of ossification. The osteogenetic ability of repairing bone defect, the degradation of the material, the morphologic change and the bone formation were assessed by HE staining and Masson staining. The result showed that rhBMP-2/PLGA/FS had overwhelming superiority in the osteogenetic ability and quality of bone defect over the control group, and it could promote the repair of bone defect and could especially repair the radial bone defect of rabbit well. It may be a promising and efficient synthetic bone graft. PMID:23198432

  18. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering

    PubMed Central

    Gentile, Piergiorgio; Chiono, Valeria; Carmagnola, Irene; Hatton, Paul V.

    2014-01-01

    Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function. PMID:24590126

  19. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  20. Aldocyanoin microspheres: partial amino acid analysis of the microparticulates formed from simple reactants under various conditions.

    PubMed

    Pollock, G E; Heiderer, R

    1979-10-01

    The work of Kenyon and Nissenbaum on aldocyanoin microspheres was repeated and extended. It was determined that the microspheres contained amino acids and that specific amino acids could be incorporated into the microspheres by adding the requisite aldehyde or ketone precursor to the model mixture. Microsphere formation was found to be dependent on the availability of oxygen. Under anaerobic conditions of synthesis, no microspheres formed in the time allotted and the amino acid composition of the macromolecular material was simple. Microparticulate material synthesized by C. Folsome using a quenched spark technique was analyzed and found to contain amino acids that had a qualitative composition similar to both a Miller-Urey discharge and the Kenyon-Nissenbaum microspheres. PMID:501747

  1. Cellular uptake, antioxidant and antiproliferative activity of entrapped α-tocopherol and γ-tocotrienol in poly (lactic-co-glycolic) acid (PLGA) and chitosan covered PLGA nanoparticles (PLGA-Chi).

    PubMed

    Alqahtani, Saeed; Simon, Lacey; Astete, Carlos E; Alayoubi, Alaadin; Sylvester, Paul W; Nazzal, Sami; Shen, Yixiao; Xu, Zhimin; Kaddoumi, Amal; Sabliov, Cristina M

    2015-05-01

    The aim of this study was to formulate and characterize α-tocopherol (α-T) and tocotrienol-rich fraction (TRF) entrapped in poly (lactide-co-glycolide) (PLGA) and chitosan covered PLGA (PLGA-Chi) based nanoparticles. The resultant nanoparticles were characterized and the effect of nanoparticles entrapment on the cellular uptake, antioxidant, and antiproliferative activity of α-T and TRF were tested. In vitro uptake studies in Caco2 cells showed that PLGA and PLGA-Chi nanoparticles displayed a greater enhancement in the cellular uptake of α-T and TRF when compared with the control without causing toxicity to the cells (p<0.0001). Furthermore, the cellular internalization of both PLGA and PLGA-Chi nanoparticles labeled with FITC was investigated by fluorescence microscopy; both types of nanoparticles were able to get internalized into the cells with reasonable amounts. However, PLGA-Chi nanoparticles showed significantly higher (3.5-fold) cellular uptake compared to PLGA nanoparticles. The antioxidant activity studies demonstrated that entrapment of α-T and TRF in PLGA and PLGA-Chi nanoparticles exhibited greater ability in inhibiting cholesterol oxidation at 48 h compared to the control. In vitro antiproliferative studies confirmed marked cytotoxicity of TRF on MCF-7 and MDA-MB-231 cell lines when delivered by PLGA and PLGA-Chi nanoparticles after 48 h incubation compared to control. In summary, PLGA and PLGA-Chi nanoparticles may be considered as an attractive and promising approach to enhance the bioavailability and activity of poorly water soluble compounds such as α-tocopherol and tocotrienols. PMID:25622049

  2. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres

    PubMed Central

    Ford Versypt, Ashlee N.; Arendt, Paul D.; Pack, Daniel W.; Braatz, Richard D.

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction. PMID:26284787

  3. Derivation of an Analytical Solution to a Reaction-Diffusion Model for Autocatalytic Degradation and Erosion in Polymer Microspheres.

    PubMed

    Ford Versypt, Ashlee N; Arendt, Paul D; Pack, Daniel W; Braatz, Richard D

    2015-01-01

    A mathematical reaction-diffusion model is defined to describe the gradual decomposition of polymer microspheres composed of poly(D,L-lactic-co-glycolic acid) (PLGA) that are used for pharmaceutical drug delivery over extended periods of time. The partial differential equation (PDE) model treats simultaneous first-order generation due to chemical reaction and diffusion of reaction products in spherical geometry to capture the microsphere-size-dependent effects of autocatalysis on PLGA erosion that occurs when the microspheres are exposed to aqueous media such as biological fluids. The model is solved analytically for the concentration of the autocatalytic carboxylic acid end groups of the polymer chains that comprise the microspheres as a function of radial position and time. The analytical solution for the reaction and transport of the autocatalytic chemical species is useful for predicting the conditions under which drug release from PLGA microspheres transitions from diffusion-controlled to erosion-controlled release, for understanding the dynamic coupling between the PLGA degradation and erosion mechanisms, and for designing drug release particles. The model is the first to provide an analytical prediction for the dynamics and spatial heterogeneities of PLGA degradation and erosion within a spherical particle. The analytical solution is applicable to other spherical systems with simultaneous diffusive transport and first-order generation by reaction. PMID:26284787

  4. Production and characterization of 166Ho polylactic acid microspheres.

    PubMed

    Yavari, Kamal; Yeganeh, Ehsan; Abolghasemi, Hossein

    2016-01-01

    Microsphere and particle technology with selective transport of radiation represents a new generation of therapeutics. Poly-L-lactic acid (PLLA) microspheres loaded with holmium-166 acetylacetonate ((166)Ho-PLLA-MS) are novel microdevices. In this research, (165)HoAcAc-PLLA microparticles were prepared by the solvent evaporation technique. Microspheres were irradiated at Tehran Research Reactor. The diameter and surface morphologies were characterized by particle sizer and scanning electron microscopy before and after irradiation. The complex stability, radiochemical purity, and in vivo biodistribiotion were checked in the final solution up to 3 days. In this study, (166)Ho-PLLA spherical particles with a smooth surface and diameter of 20-40 µm were obtained, which were stable in vitro and in vivo studies. Neutron irradiation did not damage the particles. The ease with which the PLLA spheres could be made in the optimal size range for later irradiation and their ability to retain the (166)Ho provided good evidence for their potential use in radioembolization. PMID:26691104

  5. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  6. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release.

    PubMed

    Huang, Xiaozhou; Li, Na; Wang, Dajiang; Luo, Yuyan; Wu, Ziyu; Guo, Zhefei; Jin, Qixing; Liu, Zhuying; Huang, Yafei; Zhang, Yongming; Wu, Chuanbin

    2015-08-10

    The objective of this study was to investigate the use of transmission hard X-ray nano-computed-tomography (nano-CT) for characterization of the pore structure and drug distribution in poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating bovine serum albumin and to study the correlation between drug distribution and burst release. The PLGA microspheres were fabricated using a double-emulsion method. The results of pore structure analysis accessed with nano-CT were compared with those acquired by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface pore interconnectivity and surface protein interconnectivity were obtained using combined nano-CT and pixel analysis. The correlation between surface protein interconnectivity with the initial burst release across various tested formulations was also analyzed. The size, shape, and distribution of the pores and protein could be clearly observed in the whole microsphere using nano-CT, whereas only the sectional information was observed using SEM or CLSM. Interconnected pores and surface connected pores could be clearly distinguished in nano-CT, which enables the quantitative analysis of surface pore interconnectivity and surface protein interconnectivity. The surface protein interconnectivity in different formulations correlated well with the burst release at 5-10h. Nano-CT provided a nondestructive, high-resolution, and three-dimensional analysis method to characterize the porous microsphere. PMID:25951620

  7. Aspartic acid-based modified PLGA-PEG nanoparticles for bone targeting: in vitro and in vivo evaluation.

    PubMed

    Fu, Yin-Chih; Fu, Tzu-Fun; Wang, Hung-Jen; Lin, Che-Wei; Lee, Gang-Hui; Wu, Shun-Cheng; Wang, Chih-Kuang

    2014-11-01

    Nanoparticles (NP) that target bone tissue were developed using PLGA-PEG (poly(lactic-co-glycolic acid)-polyethylene glycol) diblock copolymers and bone-targeting moieties based on aspartic acid, (Asp)(n(1,3)). These NP are expected to enable the transport of hydrophobic drugs. The molecular structures were examined by (1)H NMR or identified using mass spectrometry and Fourier transform infrared (FT-IR) spectra. The NP were prepared using the water miscible solvent displacement method, and their size characteristics were evaluated using transmission electron microscopy (TEM) and dynamic light scattering. The bone targeting potential of the NP was evaluated in vitro using hydroxyapatite affinity assays and in vivo using fluorescent imaging in zebrafish and rats. It was confirmed that the average particle size of the NP was <200 nm and that the dendritic Asp3 moiety of the PLGA-PEG-Asp3 NP exhibited the best apatite mineral binding ability. Preliminary findings in vivo bone affinity assays in zebrafish and rats indicated that the PLGA-PEG-ASP3 NP may display increased bone-targeting efficiency compared with other PLGA-PEG-based NP that lack a dendritic Asp3 moiety. These NP may act as a delivery system for hydrophobic drugs, warranting further evaluation of the treatment of bone disease. PMID:25050775

  8. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers

    NASA Astrophysics Data System (ADS)

    Cao, Long-Bin; Zeng, Sha; Zhao, Wei

    2016-06-01

    In the present study, a highly stable luteinizing-hormone-releasing hormone (LHRH)-conjugated PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles were developed for the successful treatment of prostate cancers. We have demonstrated that a unique combination of targeted drug delivery and controlled drug release is effective against prostate cancer therapy. The docetaxel (DTX)/PLGA-LHRH micelles possessed a uniform spherical shape with an average diameter of ~170 nm. The micelles exhibited a controlled drug release for up to 96 h which can minimize the non-specific systemic spread of toxic drugs during circulation while maximizing the efficiency of tumor-targeted drug delivery. The LHRH-conjugated micelles showed enhanced cellular uptake and exhibited significantly higher cytotoxicity against LNCaP cancer cells. We have showed that PLGA-LHRH induced greater caspase-3 activity indicating its superior apoptosis potential. Consistently, LHRH-conjugated micelles induced threefold and twofold higher G2/M phase arrest than compared to free DTX or PLGA NP-treated groups. Overall, results indicate that use of LHRH-conjugated nanocarriers may potentially be an effective nanocarrier to effectively treat prostate cancer.

  9. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers.

    PubMed

    Cao, Long-Bin; Zeng, Sha; Zhao, Wei

    2016-12-01

    In the present study, a highly stable luteinizing-hormone-releasing hormone (LHRH)-conjugated PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles were developed for the successful treatment of prostate cancers. We have demonstrated that a unique combination of targeted drug delivery and controlled drug release is effective against prostate cancer therapy. The docetaxel (DTX)/PLGA-LHRH micelles possessed a uniform spherical shape with an average diameter of ~170 nm. The micelles exhibited a controlled drug release for up to 96 h which can minimize the non-specific systemic spread of toxic drugs during circulation while maximizing the efficiency of tumor-targeted drug delivery. The LHRH-conjugated micelles showed enhanced cellular uptake and exhibited significantly higher cytotoxicity against LNCaP cancer cells. We have showed that PLGA-LHRH induced greater caspase-3 activity indicating its superior apoptosis potential. Consistently, LHRH-conjugated micelles induced threefold and twofold higher G2/M phase arrest than compared to free DTX or PLGA NP-treated groups. Overall, results indicate that use of LHRH-conjugated nanocarriers may potentially be an effective nanocarrier to effectively treat prostate cancer. PMID:27325521

  10. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles.

    PubMed

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  11. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles

    PubMed Central

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  12. PLGA microdevices for retinoids sustained release produced by supercritical emulsion extraction: continuous versus batch operation layouts.

    PubMed

    Porta, Giovanna Della; Campardelli, Roberta; Falco, Nunzia; Reverchon, Ernesto

    2011-10-01

    Retinyl acetate (RA) was selected as a model compound to be entrapped in poly(lactic-co-glycolic)acid (PLGA) microspheres using supercritical emulsion extraction (SEE). Several oil-in-water emulsions prepared using acetone and aqueous glycerol (80% glycerol, 20% water) were processed using supercritical carbon dioxide (SC-CO2 ) to extract the oily phase and to induce microspheres formation. The characteristics of the microspheres obtained by conventional liquid emulsion extraction and SEE were also compared: SEE produced spherical and free flowing microspheres, whereas the conventional liquid-liquid extraction showed large intraparticles aggregation. Emulsion extraction by SC-CO2 technology was tested using two different operation layouts: batch (SEE-B) and continuous (SEE-C). SEE-C was performed using a packed tower to produce emulsion/SC-CO2 contact in countercurrent mode, allowing higher microsphere recovery and process efficiencies. Operating at 80 bar and 36°C, SEE-C produced PLGA/RA microspheres with mean sizes between 3.3 and 4.5 μm with an excellent encapsulation efficiency of 80%-90%. Almost all the drug was released in about 6 days when charged at 2.7% (w/w), whereas only 40% and 10% of RA were released in the same period of time when the charge was 5.2% and 8.8% (w/w), respectively. Release kinetics constants calculated from the experimental data, using a mathematical model, were also proposed and discussed. PMID:21638283

  13. One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application.

    PubMed

    Dong, Hua; Tang, Guannan; Ma, Ting; Cao, Xiaodong

    2016-01-01

    In this paper, we report one-step fabrication of poly(lactide-co-glycolic acid)/titanium oxide (PLGA/TiO2) hybrid microspheres with tunable surface texture via droplet-based microfluidics. Surface texture of microspheres can be continuously tuned by changing the mass ratio between titanium tetraisopropoxide (TTIP) and PLGA in the dispersed phase. The fast hydrolysis of TTIP on the droplet surface can generate a thin shell membrane, resulting in a wrinkled surface after extraction of organic solvent. In vitro drug release monitoring of tanshinone IIA-loaded PLGA/TiO2 hybrid microsphere reveals that surface texture can affect the drug release rate to a large extent without sacrificing the drug encapsulation efficiency. Our finding might benefit the sustained drug delivery where variable drug release rate and high drug encapsulation efficiency are both required. PMID:26610930

  14. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  15. A biomimetic approach to active self-microencapsulation of proteins in PLGA.

    PubMed

    Shah, Ronak B; Schwendeman, Steven P

    2014-12-28

    A biomimetic approach to organic solvent-free microencapsulation of proteins based on the self-healing capacity of poly (DL)-lactic-co-glycolic acid (PLGA) microspheres containing glycosaminoglycan-like biopolymers (BPs), was examined. To screen BPs, aqueous solutions of BP [high molecular weight dextran sulfate (HDS), low molecular weight dextran sulfate (LDS), chondroitin sulfate (CS), heparin (HP), hyaluronic acid (HA), chitosan (CH)] and model protein lysozyme (LYZ) were combined in different molar and mass ratios, at 37 °C and pH7. The BP-PLGA microspheres (20-63 μm) were prepared by a double water-oil-water emulsion method with a range of BP content, and trehalose and MgCO3 to control microclimate pH and to create percolating pores for protein. Biomimetic active self-encapsulation (ASE) of proteins [LYZ, vascular endothelial growth factor165 (VEGF) and fibroblast growth factor (FgF-20)] was accomplished by incubating blank BP-PLGA microspheres in low concentration protein solutions at ~24 °C, for 48 h. Pore closure was induced at 42.5 °C under mild agitation for 42h. Formulation parameters of BP-PLGA microspheres and loading conditions were studied to optimize protein loading and subsequent release. LDS and HP were found to bind >95% LYZ at BP:LYZ>0.125 w/w, whereas HDS and CS bound >80% LYZ at BP:LYZ of 0.25-1 and <0.33, respectively. HA-PLGA microspheres were found to be not ideal for obtaining high protein loading (>2% w/w of LYZ). Sulfated BP-PLGA microspheres were capable of loading LYZ (~2-7% w/w), VEGF (~4% w/w), and FgF-20 (~2% w/w) with high efficiency. Protein loading was found to be dependent on the loading solution concentration, with higher protein loading obtained at higher loading solution concentration within the range investigated. Loading also increased with content of sulfated BP in microspheres. Release kinetics of proteins was evaluated in-vitro with complete release media replacement. Rate and extent of release were found to depend

  16. A Biomimetic Approach to Active Self-Microencapsulation of Proteins in PLGA

    PubMed Central

    Shah, Ronak B.; Schwendeman, Steven P.

    2014-01-01

    A biomimetic approach to organic solvent-free microencapsulation of proteins based on the self-healing capacity of poly (DL)-lactic-co-glycolic acid (PLGA) microspheres containing glycosaminoglycan-like biopolymers (BPs), was examined. To screen BPs, aqueous solutions of BP [high molecular weight dextran sulfate (HDS), low molecular weight dextran sulfate (LDS), chondroitin sulfate (CS), heparin (HP), hyaluronic acid (HA), chitosan (CH)] and model protein lysozyme (LYZ) were combined in different molar and mass ratios, at 37 °C and pH 7. The BP-PLGA microspheres (20–63 µm) were prepared by a double water-oil-water emulsion method with a range of BP content, and trehalose and MgCO3 to control microclimate pH and to create percolating pores for protein. Biomimetic active self-encapsulation (ASE) of proteins [LYZ, vascular endothelial growth factor165 (VEGF) and fibroblast growth factor (FgF-20)] was accomplished by incubating blank BP-PLGA microspheres in low concentration protein solutions at ~24 °C, for 48 h. Pore closure was induced at 42.5 °C under mild agitation for 42 h. Formulation parameters of BP-PLGA microspheres and loading conditions were studied to optimize protein loading and subsequent release. LDS and HP were found to bind >95% LYZ at BP:LYZ >0.125 w/w, whereas HDS and CS bound > 80% LYZ at BP:LYZ of 0.25–1 and < 0.33, respectively. HA-PLGA microspheres were found to be not ideal for obtaining high protein loading (>2% w/w of LYZ). Sulfated BP-PLGA microspheres were capable of loading LYZ (~2–7 % w/w), VEGF (~ 4% w/w), and FgF-20 (~2% w/w) with high efficiency. Protein loading was found to be dependent on the loading solution concentration, with higher protein loading obtained at higher loading solution concentration within the range investigated. Loading also increased with content of sulfated BP in microspheres. Release kinetics of proteins was evaluated in-vitro with complete release media replacement. Rate and extent of release were

  17. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood

  18. Release of FITC-BSA from poly(l-lactic acid) microspheres analysis using flow cytometry.

    PubMed

    Kuo, Chih-Feng; Tsao, Nina; Chou, Hsin-Hao; Liu, Yi-Ling; Hsieh, Wen-Chuan

    2012-01-01

    In this investigation, biodegradable polymer poly(L-lactic acid) (PLA) microspheres were prepared by the W(1)/O/W(2) solvent evaporation method. The inner phase was aqueous solution (W(1)) that contained bovine serum albumin that was labeled with fluorescein isothiocyanate (FITC-BSA). PLA was dissolved in chloroform with emulsifier sorbitan monooleate (span 80) as the dispersed phase (O). These two solutions (W(1)/O) were emulsified by a homogenizer to form a primary emulsion. Polyvinyl alcohol (PVA) used as surfactant, was applied in the formation of microspheres (W(2)). 0.5% (w/v) PLA was stirred at 3000 rpm using a homogenizer. Microspheres with sizes of up to around 10 μm were produced. These microspheres were separated by the glycerol gradient method, and take microspheres at part of 25% glycerol gradient concentration was analyzed by flow cytometry, indicating a more homogeneous particle size distribution than that not separated. The microspheres were degraded using several enzymes, and around 40% was degraded by 72 h. This result reveals the effectiveness of drug delivery by PLA microspheres, which was evaluated by performing a drug release test and flow cytometric analysis. The FITC-BSA concentration in the supernatant increased with the experimental time. At the phagocytosis experiments, encapsulated with FITC-BSA drug of microspheres can be used by the cell, as particle size approximately 1 μm. PMID:21992796

  19. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres.

    PubMed

    Shen, Jie; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2015-11-28

    The objective of the present study was to determine whether an in vitro-in vivo correlation (IVIVC) can be established for polymeric microspheres that are equivalent in formulation composition but prepared with different manufacturing processes. Risperidone was chosen as a model therapeutic and poly(lactic-co-glycolic acid) (PLGA) with similar molecular weight as that used in the commercial product Risperdal® Consta® was used to prepare risperidone microspheres. Various manufacturing processes were investigated to produce the risperidone microspheres with similar drug loading (approx. 37%) but distinctly different physicochemical properties (e.g. porosity, particle size and particle size distribution). In vitro release of the risperidone microspheres was investigated using different release testing methods (such as sample-and-separate and USP apparatus 4). In vivo pharmacokinetic profiles of the risperidone microsphere formulations following intramuscular administration were determined using a rabbit model. Furthermore, the obtained pharmacokinetic profiles were deconvoluted using the Loo-Riegelman method and the calculated in vivo release was compared with the in vitro release of these microspheres. Level A IVIVCs were established and validated for the compositionally equivalent risperidone microspheres based on the in vitro release data obtained using USP apparatus 4. The developed IVIVCs demonstrated good predictability and were robust. These results showed that the developed USP apparatus 4 method was capable of discriminating PLGA microspheres that are equivalent in formulation composition but with manufacturing differences and predicting their in vivo performance in the investigated animal model. PMID:26423236

  20. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres

    PubMed Central

    Zhao, Hong; Gagnon, Jeffrey; Häfeli, Urs O

    2007-01-01

    The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 μm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting. PMID:17407608

  1. An exploratory study on the efficacy of rat dedifferentiated fat cells (rDFATs) with a poly lactic-co-glycolic acid/hydroxylapatite (PLGA/HA) composite for bone formation in a rat calvarial defect model.

    PubMed

    Shirakata, Yoshinori; Nakamura, Toshiaki; Shinohara, Yukiya; Taniyama, Katsuyoshi; Sakoda, Kenji; Yoshimoto, Takehiko; Noguchi, Kazuyuki

    2014-03-01

    In the last two decades, tissue-engineering approaches using scaffolds, growth factors, and cells, or their combination, have been developed for the regeneration of periodontal tissue and bone. The aim of this study was to examine the effects of rat dedifferentiated fat cells (rDFATs) with a poly lactic-co-glycolic acid/hydroxylapatite (PLGA/HA) composite on bone formation in rat calvarial defects. Twenty animals surgically received two calvarial defects (diameter, 5 mm) bilaterally in each parietal bone. The defects were treated by one of the following procedures: PLGA/HA+osteo-differentiated rDFATs implantation (PLGA/HA+rDFATs (OD)); PLGA/HA+rDFATs implantation (PLGA/HA+rDFATs); PLGA/HA implantation (PLGA/HA); no implantation as a control. The animals were euthanized at 8 weeks after the surgery for histological evaluation. The PLGA/HA composite was remarkably resorbed and the amounts of residual PLGA/HA were very slight at 8 weeks after the surgery. The PLGA/HA-implanted groups (PLGA/HA+rDFATs (OD), PLGA/HA+rDFATs and PLGA/HA) showed recovery of the original volume and contour of the defects. The newly formed bone area was significantly larger in the PLGA/HA group (42.10 ± 9.16 %) compared with the PLGA/HA+rDFATs (21.35 ± 13.49 %) and control (22.17 ± 13.08 %) groups (P < 0.05). The percentage of defect closure (DC) by new bone in the PLGA/HA+rDFATs (OD) group (83.16 ± 13.87 %) was significantly greater than that in the control group (40.61 ± 29.62 %) (P < 0.05). Furthermore, the PLGA/HA+rDFATs (OD) group showed the highest level of DC among all the groups. The present results suggest that the PLGA/HA composite is a promising scaffold and that PLGA/HA+DFATs (OD) may be effective for bone formation. PMID:24363067

  2. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Ghaedi, Kamran; Salehi, Hossein; Arpanaei, Ayyoob

    2015-08-01

    Aligned poly lactic-co-glycolic acid (PLGA) and PLGA/gelatin nanofibrous scaffolds embedded with mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. The mean diameters of nanofibers were 641±24 nm for the pure PLGA scaffolds vs 418±85 nm and 267±58 nm for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The contact angle measurement results (102°±6.7 for the pure PLGA scaffold vs 81°±6.8 and 18°±8.7 for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively) revealed enhanced hydrophilicity of scaffolds upon incorporation of gelatin and MSNPs. Besides, embedding the scaffolds with MSNPs resulted in improved tensile mechanical properties. Cultivation of PC12 cells on the scaffolds demonstrated that introduction of MSNPs into PLGA and PLGA/gelatin matrices leads to the improved cell attachment and proliferation as well as long cellular processes. DAPI staining results indicated that cell proliferations on the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds were strikingly (nearly 2.5 and 3 folds, respectively) higher than that on the aligned pure PLGA scaffolds. These results suggest superior properties of silica nanoparticles-incorporated PLGA/gelatin eletrospun nanofibrous scaffolds for the stem cell culture and tissue engineering applications. PMID:26045092

  3. In vitro drug release behavior, mechanism and antimicrobial activity of rifampicin loaded low molecular weight PLGA-PEG-PLGA triblock copolymeric nanospheres.

    PubMed

    Gajendiran, M; Divakar, S; Raaman, N; Balasubramanian, S

    2013-12-01

    Poly (lactic-co-glycolic acid) (PLGA (92:8)) and a series of PLGA-PEG-PLGA tri block copolymers were synthesized by direct melt polycondensation. The copolymers were characterized by FTIR, and 1HNMR spectroscopic techniques, viscosity, gel permeation chromatography (GPC) and powder x-ray diffraction (XRD). The rifampicin (RIF) loaded polymeric nanospheres (NPs) were prepared by ultrasonication-W/O emulsification technique. The NPs have been characterized by field emission scanning electron microscopy (FESEM), TEM, powder X-ray diffraction (XRD), UVvisible spectroscopy and DLS measurements. The drug loaded triblock copolymeric NPs have five folds higher drug content and drug loading efficiency than that of PLGA microspheres (MPs). The in vitro drug release study shows that the drug loaded NPs showed an initial burst release after that sustained release up to 72 h. All the triblock copolymeric NPs follow anomalous drug diffusion mechanism while the PLGA MPs follow non-Fickian super case-II mechanism up to 12 h. The overall in-vitro release follows second order polynomial kinetics up to 72 h. The antimicrobial activity of the RIF loaded polymer NPs was compared with that of pure RIF and tetracycline (TA). The RIF loaded triblock copolymeric NPs inhibited the bacterial growth more effectively than the pure RIF and TA. PMID:23701139

  4. Polyamine/salt-assembled microspheres coated with hyaluronic acid for targeting and pH sensing.

    PubMed

    Zhang, Pan; Yang, Hui; Wang, Guojun; Tong, Weijun; Gao, Changyou

    2016-06-01

    The poly(allylamine hydrochloride)/trisodium citrate aggregates were fabricated and further covalently crosslinked via the coupling reaction of carboxylic sites on trisodium citrate with the amine groups on polyamine, onto which poly-L-lysine and hyaluronic acid were sequentially assembled, forming stable microspheres. The pH sensitive dye and pH insensitive dye were further labeled to enable the microspheres with pH sensing property. Moreover, these microspheres could be specifically targeted to HeLa tumor cells, since hyaluronic acid can specifically recognize and bind to CD44, a receptor overexpressed on many tumor cells. Quantitative pH measurement by confocal laser scanning microscopy demonstrated that the microspheres were internalized into HeLa cells, and accumulated in acidic compartments. By contrast, only a few microspheres were adhered on the NIH 3T3 cells surface. The microspheres with combined pH sensing property and targeting ability can enhance the insight understanding of the targeted drug vehicles trafficking after cellular internalization. PMID:26954089

  5. PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity.

    PubMed

    Carreño, Juan Manuel; Perez-Shibayama, Christian; Gil-Cruz, Cristina; Printz, Andrea; Pastelin, Rodolfo; Isibasi, Armando; Chariatte, Dominic; Tanoue, Yutaka; Lopez-Macias, Constantino; Gander, Bruno; Ludewig, Burkhard

    2016-07-29

    Salmonella (S.) enterica infections are an important global health problem with more than 20 million individuals suffering from enteric fever annually and more than 200,000 lethal cases per year. Although enteric fever can be treated appropriately with antibiotics, an increasing number of antibiotic resistant Salmonella strains is detected. While two vaccines against typhoid fever are currently on the market, their availability in subtropical endemic areas is limited because these products need to be kept in uninterrupted cold chains. Hence, the development of a thermally stable vaccine that induces mucosal immune responses would greatly improve human health in endemic areas. Here, we have combined the high structural stability of Salmonella typhi outer membrane proteins (porins) with their microencapsulation into poly(lactic-co-glycolic acid) (PLGA) to generate an orally applicable vaccine. Encapsulated porins were protected from acidic degradation and exhibited enhanced immunogenicity following oral administration. In particular, the vaccine elicited strong S. typhi-specific B cell responses in Peyer's patches and mesenteric lymph nodes. In sum, PLGA microencapsulation substantially improved the efficacy of oral vaccination against S. typhi. PMID:27372155

  6. Injectable polymer microspheres enhance immunogenicity of a contraceptive peptide vaccine.

    PubMed

    Cui, Chengji; Stevens, Vernon C; Schwendeman, Steven P

    2007-01-01

    Advanced contraceptive peptide vaccines suffer from the unavailability of adjuvants capable of enhancing the antibody response with acceptable safety. We sought to overcome this limitation by employing two novel poly(lactic-co-glycolic acid) (PLGA) microsphere formulations to deliver a synthetic human chorionic gonadotropin (hCG) peptide antigen co-synthesized with a T-cell epitope from tetanus toxoid (TT), C-TT2-CTP35: surface-conjugated immunogen to induce phagocytosis; and encapsulated peptide to provide a depot effect, with MgCO(3) co-encapsulated in the polymer to neutralize acidity from the biodegrading PLGA polyester. A single immunization of encapsulated peptide in rabbits elicited a stronger antibody response with equivalent duration relative to a positive control--three injections of the peptide administered in a squalene-based water-in-oil emulsion. Surface-conjugated peptide was less effective but enhanced antibody levels at 1/5 the dose, relative to soluble antigen. Most remarkable and unexpected was the finding that co-encapsulation of base was essential to attain the powerful adjuvant effect of the PLGA-MgCO(3) system, as the MgCO(3)-free microspheres were completely ineffective. A promising contraceptive hCG peptide vaccine with acceptable side effects (i.e., local tissue reactions) was achieved by minimizing PLGA and MgCO(3) doses, without significantly affecting antibody response. PMID:16996662

  7. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery

    PubMed Central

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery. PMID:24855351

  8. Bacterial protease triggered release of biocides from microspheres with an oily core.

    PubMed

    Craig, Marina; Amiri, Mona; Holmberg, Krister

    2015-03-01

    This study deals with controlled release of drugs to a Staphylococcus aureus infected site from microspheres with an oily core and a polymeric shell. The intended use of the microspheres is for chronic wounds and the microspheres may be administered in the form of a wash liquid or incorporated in a gel. Chronic wounds often carry infection, and the use of microspheres with drug release triggered by the bacterial infection is therefore of interest. A lipophilic drug or a model of the drug was dissolved in an oil and the oil phase was dispersed into an o/w emulsion. A nanofilm shell was then assembled around the oil droplets with the layer-by-layer technique using the two biodegradable polypeptides anionic poly-L-glutamic acid (PLGA) and cationic poly-L-lysine (PLL). Since S. aureus exudes proteases such as glutamyl endopeptidase (V8) during colonization and infection, its substrate specificity was key when assembling the nanofilm. Since V8 is known to be substrate specific to the Glu-X bond, PLGA was chosen as the terminating layer of the nanofilm. Crosslinking the nanofilm after assembly lead to increased stability of the microspheres. It was shown that in a non-infectious environment, i.e. when a human wound enzyme, HNE (human neutrophile elastase), was present, the microspheres remained intact. The staphylococcal protease V8, on the other hand, readily catalyzed degradation of the microspheres, thus releasing the drug when triggered by the infectious environment. PMID:25679492

  9. Biodegradable polymeric microspheres with "open/closed" pores for sustained release of human growth hormone.

    PubMed

    Kim, Hong Kee; Chung, Hyun Jung; Park, Tae Gwan

    2006-05-15

    A new approach for attaining sustained release of protein is introduced, involving a pore-closing process of preformed porous PLGA microspheres. Highly porous biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres were fabricated by a single water-in-oil emulsion solvent evaporation technique using Pluronic F127 as an extractable porogen. Recombinant human growth hormone (rhGH) was incorporated into porous microspheres by a simple solution dipping method. For their controlled release, porous microspheres containing hGH were treated with water-miscible solvents in aqueous phase for production of pore-closed microspheres. These microspheres showed sustained release patterns over an extended period; however, the drug loading efficiency was extremely low. To overcome the drug loading problem, the pore-closing process was performed in an ethanol vapor phase using a fluidized bed reactor. The resultant pore-closed microspheres exhibited high protein loading amount as well as sustained rhGH release profiles. Also, the released rhGH exhibited structural integrity after the treatment. PMID:16542746

  10. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites.

    PubMed

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  11. Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance.

    PubMed

    Ke, Cherng-Jyh; Chiang, Wei-Lun; Liao, Zi-Xian; Chen, Hsin-Lung; Lai, Ping-Shan; Sun, Jui-Sheng; Sung, Hsing-Wen

    2013-01-01

    Chemotherapy research highly prioritizes overcoming the multi-drug resistance (MDR) effect in cancer cells. To overcome the drug efflux mediated by P-glycoprotein (P-gp) transporters, we developed pH-responsive poly(D,L-lactic-co-glycolic acid) hollow particles (PLGA HPs), capable of delivering doxorubicin (DOX) into MDR cells (MCF-7/ADR). The shell wall of PLGA HPs contained DiO (a hydrophobic dye), and their aqueous core carried DOX hydrochloride salt and sodium bicarbonate, a gas-generating agent when present in acidic environments. Both DiO and DOX could serve as fluorescence probes to localize HPs and visualize their intracellular drug release in real-time. Real-time confocal images provided visible evidences of the acid-responsive intracellular release of DOX from PLGA HPs in MDR cells. Via the macropinocytosis pathway, PLGA HPs taken up by cells experienced an increasingly acidic environment as they trafficked through the early endosomes and then matured into more acidic late endosomes/lysosomes. The progressive acidification of the internalized particles in the late endosomes/lysosomes generated CO(2) bubbles, leading to the disruption of HPs, prompt release of DOX, its accumulation in the nuclei, and finally the death of MDR cells. Conversely, taken up via a passive diffusion mechanism, free DOX was found mainly at the perimembrane region and barely reached the cell nuclei; therefore, no apparent cytotoxicity was observed. These results suggest that the developed PLGA HPs were less susceptible to the P-gp-mediated drug efflux in MDR cells and is a highly promising approach in chemotherapy. PMID:23044041

  12. Preparation of silver-poly(acrylamide-co-methacrylic acid) composite microspheres with patterned surface structures.

    PubMed

    Xia, Huiyun; Zhang, Ying; Peng, Junxia; Fang, Yu; Gu, Zhongze

    2006-01-01

    Acrylamide (AM) and methacrylic acid (MAA) copolymer microgels were prepared by a reverse suspension polymerization technique. The microgels were used as templates for the preparation of silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres. The surface structures of the microspheres prepared in this way are characterized by zigzag-like structures. It was found that the composition of the microgels, the nature and dosage of surfactants, the quantity of the metal, and even the reduction methods employed have a significant effect upon the surface structures of the microspheres. X-ray diffraction analysis confirmed that Ag formed during the process is in a crystal state of a face-centered cubic structure. PMID:24058232

  13. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres.

    PubMed

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W; Wang, Chi-Hwa

    2013-12-18

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres. PMID:24347672

  14. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres

    PubMed Central

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W.; Wang, Chi-Hwa

    2013-01-01

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres. PMID:24347672

  15. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres—Focus on Feature Selection

    PubMed Central

    Zawbaa, Hossam M.; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  16. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine–loaded microspheres against dengue 2 virus

    PubMed Central

    Huang, Shih-Shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2013-01-01

    Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine–loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein–loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein–loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein–loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine

  17. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine-loaded microspheres against dengue 2 virus.

    PubMed

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2013-01-01

    Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine-loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein-loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein-loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein-loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine incorporation

  18. Reduction of acidity and removal of metal ions from coal mining effluents using chitosan microspheres.

    PubMed

    Laus, Rogério; Geremias, Reginaldo; Vasconcelos, Helder L; Laranjeira, Mauro C M; Fávere, Valfredo T

    2007-10-22

    Effluents from coal mining operations are not only highly acid but also depict elevated concentrations of metals which may contaminate the environment. Due to the polybasic characteristic of chitosan, this biopolymer is capable of both neutralizing and removing iron, aluminum and copper ions from such effluents. The present study aimed at evaluating the use of chitosan microspheres for their importance in continuous systems. The microspheres were prepared by the phase inversion method. Their average diameter and morphology were determined. Water samples from decantation pool (DP) and acidic mine drainage (AMD) effluents were treated using different amounts of microspheres. The pH and concentration of Fe, Al and Cu ions were evaluated both before and after treatment of effluent samples. The results revealed that the microspheres were capable of increasing the pH of DP and AMD samples from 2.34 and 2.58, respectively, to 6.20, i.e., close to neutrality. The treatment also resulted in full removal of the metals investigated. PMID:17499431

  19. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  20. Functional motor recovery is improved due to local placement of GDNF microspheres after delayed nerve repair.

    PubMed

    Wood, Matthew D; Gordon, Tessa; Kemp, Stephen W P; Liu, Edward H; Kim, Howard; Shoichet, Molly S; Borschel, Gregory H

    2013-05-01

    The majority of bioengineering strategies to promote peripheral nerve regeneration after injury have focused on therapies to bridge large nerve defects while fewer therapies are being developed to treat other nerve injuries, such as nerve transection. We constructed delivery systems using fibrin gels containing either free GDNF or polylactide-glycolic acid (PLGA) microspheres with GDNF to treat delayed nerve repair, where ELISA verified GDNF release. We determined the formulation of microspheres containing GDNF that optimized nerve regeneration and functional recovery in a rat model of delayed nerve repair. Experimental groups underwent delayed nerve repair and treatment with GDNF microspheres in fibrin glue at the repair site or control treatments (empty microspheres or free GDNF without microspheres). Contractile muscle force, muscle mass, and MUNE were measured 12 weeks following treatment, where GDNF microspheres (2 weeks formulation) were superior compared to either no GDNF or short-term release of free GDNF to nerve. Nerve histology distal to the repair site demonstrated increased axon counts and fiber diameters due to GDNF microspheres (2 weeks formulation). GDNF microspheres partially reversed the deleterious effects of chronic nerve injury, and recovery was slightly favored with the 2 weeks formulation compared to the 4 weeks formulation. PMID:23239194

  1. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

  2. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  3. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  4. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  5. Development of thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres for dietary supplementation.

    PubMed

    Chatterjee, Niladri Sekhar; Anandan, Rangasamy; Navitha, Mary; Asha, K K; Kumar, K Ashok; Mathew, Suseela; Ravishankar, C N

    2016-01-01

    Therapeutic potential of water soluble vitamins has been known for long and in recent times they are being widely supplemented in processed food. Phenolic acid-grafted chitosan derivatives can serve as excellent biofunctional encapsulating materials for these vitamins. As a proof of concept, thiamine and pyridoxine loaded ferulic acid-grafted chitosan microspheres were developed. Ferulic acid was successfully grafted on chitosan by a free radical mediated reaction and the structure was confirmed by FTIR and NMR analysis. When compared to FTIR spectra of chitosan, intensity of amide I (at around 1644 cm(-1)) and amide II (at around 1549 cm(-1)) bands in spectra of ferulic acid-grafted chitosan were found increased, indicating formation of new amide linkage. Strong signals at δ = 6.3-7.9 ppm corresponding to methine protons of ferulic acid were observed in NMR spectra of ferulic acid-grafted chitosan, suggesting the successful grafting of ferulic acid onto chitosan. Grafting ratio of the derivative was 263 mg ferulic acid equivalent/g polymer. Positively charged particles (zeta potential 31 mv) of mean diameter 4.5 and 4.8 μ, corresponding to number distribution and area distribution respectively were observed. Compact microspheres with smooth surfaces and no apparent cracks or pores were observed under scanning electron microscope. Efficient microencapsulation was further proved by X-ray diffraction patterns and thermal analysis. Preliminary anti-inflammatory activity of the vitamin-loaded microspheres was demonstrated. PMID:26787974

  6. Synthesis and Characterization of PLGA Shell Microcapsules Containing Aqueous Cores Prepared by Internal Phase Separation.

    PubMed

    Abulateefeh, Samer R; Alkilany, Alaaldin M

    2016-08-01

    The preparation of microcapsules consisting of poly(D,L-lactide-co-glycolide) (PLGA) polymer shell and aqueous core is a clear challenge and hence has been rarely addressed in literature. Herein, aqueous core-PLGA shell microcapsules have been prepared by internal phase separation from acetone-water in oil emulsion. The resulting microcapsules exhibited mean particle size of 1.1 ± 0.39 μm (PDI = 0.35) with spherical surface morphology and internal poly-nuclear core morphology as indicated by scanning electron microscopy (SEM). The incorporation of water molecules into PLGA microcapsules was confirmed by differential scanning calorimetry (DSC). Aqueous core-PLGA shell microcapsules and the corresponding conventional PLGA microspheres were prepared and loaded with risedronate sodium as a model drug. Interestingly, aqueous core-PLGA shell microcapsules illustrated 2.5-fold increase in drug encapsulation in comparison to the classical PLGA microspheres (i.e., 31.6 vs. 12.7%), while exhibiting sustained release behavior following diffusion-controlled Higuchi model. The reported method could be extrapolated to encapsulate other water soluble drugs and hydrophilic macromolecules into PLGA microcapsules, which should overcome various drawbacks correlated with conventional PLGA microspheres in terms of drug loading and release. PMID:26416284

  7. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors.

    PubMed

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm(3)) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects. PMID:27398152

  8. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors

    PubMed Central

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm3) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects. PMID:27398152

  9. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.

    PubMed

    Ge, Zigang; Tian, Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo, Jin Fei; Cao, Tong

    2009-04-01

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. PMID:19208943

  10. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  11. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  12. Tunable delivery of niflumic acid from resorbable embolization microspheres for uterine fibroid embolization.

    PubMed

    Bédouet, Laurent; Moine, Laurence; Servais, Emeline; Beilvert, Anne; Labarre, Denis; Laurent, Alexandre

    2016-09-10

    Uterine arteries embolization (UAE) is a recent technique that aims, by means of particles injected percutaneously, to stifle fibroids (leiomyomas). This treatment is non-invasive, compared with uterine ablation, but generates pelvic pain for a few days. A strategy to reduce the post-embolization pain would be to use calibrated embolization microspheres preloaded with a non-steroidal inflammatory drug (NSAID). In this study, we first compared four drugs, all active at low concentration on cyclooxygenase-2, i.e. ketoprofen, sodium diclofenac, flurbiprofen and niflumic acid (NFA), for their capacity to be loaded on resorbable embolization microspheres (REM) 500-700μm. NFA had the highest capacity of loading (5mg/mL) on resorbable microspheres. Then, we evaluated in vitro the NFA release profiles from REM having various degradation times of one, two or five days. NFA release was biphasic, with an initial burst (about 60% of the loading) followed by a sustained release that correlated significantly to REM's hydrolysis (rho=0.761, p<0.0001). For each group of beads, the size distribution was not modified by the loading of NFA and their delivery through microcatheter was not impaired by the drug. NFA eluted from REM inhibited the synthesis of prostaglandin E2 from rabbit uterus explants. In summary, NFA is loadable on REM in significant amount and its delivery can be tuned according to the degradation rate of REM to provide an antalgic effect for a few days after UAE. PMID:27374196

  13. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects. PMID:26633595

  14. Possibility for the development of cosmetics with PLGA nanospheres.

    PubMed

    Ito, Fuminori; Takahashi, Tadahito; Kanamura, Kiyoshi; Kawakami, Hiroyoshi

    2013-05-01

    The optimized preparation of Poly-(lactide-co-glycolic acid) (PLGA) nanospheres containing ubiquinone (UQ) for cosmetic products was pursued. By investigating various conditions for the preparation of UQ/PLGA nanospheres such as the molecular weight of PLGA, PLGA concentration, and UQ concentration, UQ/PLGA nanospheres with increased stability and slower drug release at a higher drug loading efficiency were prepared. Permeation tests on the prepared nanospheres using iontophoresis via electric dermal administration on membrane filters (200 nm pore size) and hairless mouse skin samples were also carried out. After iontophoresis, the nanospheres choked the membrane filter and remained on the horny layer of the hairless mouse skin, even after washing. Therefore, the prepared UQ/PLGA nanospheres and the established iontophoresis technique with the PLGA nanospheres in the present study can be applied to the future development of cosmetics. PMID:22725249

  15. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    PubMed

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres. PMID:26652353

  16. Hydrogel-PLGA delivery system prolongs 2-methoxyestradiol-mediated anti-tumor effects in osteosarcoma cells.

    PubMed

    Maran, Avudaiappan; Dadsetan, Mahrokh; Buenz, Colleen M; Shogren, Kristen L; Lu, Lichun; Yaszemski, Michael J

    2013-09-01

    Osteosarcoma is a bone tumor that affects children and young adults. 2-Methoxyestradiol (2-ME), a naturally occurring estrogen metabolite, kills osteosarcoma cells, but does not affect normal osteoblasts. In order to effectively target osteosarcoma and improve the therapeutic index of the drug 2-ME, we have encapsulated 2-ME in a composite of oligo-(polyethylene glycol) fumarate (OPF) hydrogel and poly (lactic-co-glycolic acid) (PLGA) microspheres and investigated the effect of polymer composition on 2-ME release kinetics and osteosarcoma cell survival. The in vitro study shows that 2-ME can be released in a controlled manner over 21-days. The initial burst releases observed on day 1 were 50% and 32% for OPF and OPF/PLGA composites, respectively. The extended release kinetics show that 100% of the encapsulated 2-ME is released by day 12 from OPF, whereas the OPF/PLGA composites showed a release of 85% on day 21. 2-ME released from the polymers was biologically active and blocked osteosarcoma cell proliferation in vitro. Also, comparison of 2-ME delivery in osteosarcoma cells in culture, shows that direct treatment has no effect after 3 days, whereas polymer-mediated delivery produces anti-tumor effects that could be sustained for 21 days. These findings show that the OPF and PLGA polymeric system may prove to be useful in controlled and sustained delivery of 2-ME and could be further explored in the treatment of osteosarcoma. PMID:23355512

  17. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    PubMed

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  18. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein.

    PubMed

    Pan, Miaorong; Sun, Yangfei; Zheng, Jin; Yang, Wuli

    2013-09-11

    In this work, core-shell-shell-structured boronic acid-functionalized magnetic composite microspheres Fe3O4@SiO2@poly (methyl methacrylate-co-4-vinylphenylbornoic acid) (Fe3O4@SiO2@P(MMA-co-VPBA)) with a uniform size and fine morphology were synthesized. Here, Fe3O4 magnetic particles were prepared by a solvothermal reaction, whereas the Fe3O4@SiO2 microspheres with a core-shell structure were obtained by a sol-gel process. 3-(Trimethoxysilyl) propyl methacrylate (MPS)-modified Fe3O4@SiO2 was used as the seed in the emulsion polymerization of MMA and VPBA to form the core-shell-shell-structured magnetic composite microspheres. As the boronic acid groups on the surface of Fe3O4@SiO2@P(MMA-co-VPBA) could form tight yet reversible covalent bonds with the cis-1,2-diols groups of glycoproteins, the magnetic composite microspheres were applied to enrich a standard glycoprotein, horseradish peroxidase (HRP), and the results demonstrated that the composite microspheres have a higher affinity for the glycoproteins in the presence of the nonglycoprotein bovine serum albumin (BSA) over HRP. Additionally, different monomer mole ratios of MMA/VPBA were studied, and the results implied that using MMA as the major monomer could reduce the amount of VPBA with a similar glycoprotein enrichment efficiency but a lower cost. PMID:23924282

  19. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

    PubMed

    He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen

    2016-06-01

    In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles. PMID:26695149

  20. Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)

    SciTech Connect

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun -Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You -Yeon

    2015-08-26

    Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.

  1. A method to tune the shape of protein-encapsulated polymeric microspheres

    PubMed Central

    Alteriis, Renato de; Vecchione, Raffaele; Attanasio, Chiara; Gregorio, Maria De; Porzio, Massimiliano; Battista, Edmondo; Netti, Paolo A.

    2015-01-01

    Protein encapsulation technologies of polymeric microspheres currently in use have been optimized to effectively protect their “protein cargo” from inactivation occurring in biological environments, preserving its bioactivity during release up to several weeks. The scenario of protein delivery would greatly benefit by strategies enabling the production of non-spherical particles. Herein we report an easy and effective stamp-based method to produce poly-lactic-glycolic-acid (PLGA) microparticles encapsulating Vascular Endothelial Growth Factor (VEGF) of different shapes. We demonstrate that PLGA microspheres can be deformed at room temperature exploiting solvent/non-solvent plasticization in order to preserve the properties of the starting microspheres. This gentle method allows the production of shaped particles that provide a prolonged release of VEGF in active form, as verified by an angiogenic assay. The retention of the biological activity of an extremely labile molecule, i.e. VEGF, lets us hypothesize that a wide variety of drug and protein encapsulated polymeric microspheres can be processed using this method. PMID:26224659

  2. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  3. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    PubMed

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. PMID:27209393

  4. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    PubMed

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. PMID:26642446

  5. Exendin-4-loaded PLGA microspheres relieve cerebral ischemia/reperfusion injury and neurologic deficits through long-lasting bioactivity-mediated phosphorylated Akt/eNOS signaling in rats.

    PubMed

    Chien, Chiang-Ting; Jou, Ming-Jia; Cheng, Tai-Yu; Yang, Chih-Hui; Yu, Tzu-Ying; Li, Ping-Chia

    2015-11-01

    Glucagon-like peptide-1 (GLP-1) receptor activation in the brain provides neuroprotection. Exendin-4 (Ex-4), a GLP-1 analog, has seen limited clinical usage because of its short half-life. We developed long-lasting Ex-4-loaded poly(D,L-lactide-co-glycolide) microspheres (PEx-4) and explored its neuroprotective potential against cerebral ischemia in diabetic rats. Compared with Ex-4, PEx-4 in the gradually degraded microspheres sustained higher Ex-4 levels in the plasma and cerebrospinal fluid for at least 2 weeks and improved diabetes-induced glycemia after a single subcutaneous administration (20 μg/day). Ten minutes of bilateral carotid artery occlusion (CAO) combined with hemorrhage-induced hypotension (around 30 mm Hg) significantly decreased cerebral blood flow and microcirculation in male Wistar rats subjected to streptozotocin-induced diabetes. CAO increased cortical O2(-) levels by chemiluminescence amplification and prefrontal cortex edema by T2-weighted magnetic resonance imaging analysis. CAO significantly increased aquaporin 4 and glial fibrillary acidic protein expression and led to cognition deficits. CAO downregulated phosphorylated Akt/endothelial nitric oxide synthase (p-Akt/p-eNOS) signaling and enhanced nuclear factor (NF)-κBp65/intercellular adhesion molecule-1 (ICAM-1) expression, endoplasmic reticulum (ER) stress, and apoptosis in the cerebral cortex. PEx-4 was more effective than Ex-4 to improve CAO-induced oxidative injury and cognitive deficits. The neuroprotection provided by PEx-4 was through p-Akt/p-eNOS pathways, which suppressed CAO-enhanced NF-κB/ICAM-1 signaling, ER stress, and apoptosis. PMID:26058696

  6. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  7. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection. PMID:17045253

  8. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer monomer pairs

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Wang, Changchun; Mao, Weiyong; Yang, Wuli; Liu, Changjia; Chen, Jiyao

    2008-08-01

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe3O4 and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  9. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.

    PubMed

    Yang, Chih-Hui; Huang, Keng-Shiang; Grumezescu, Alexandru Mihai; Wang, Chih-Yu; Tzeng, Shian-Chiuan; Chen, Szu-Yu; Lin, Yu-Hsin; Lin, Yung-Sheng

    2014-02-01

    Applications of poly(l-lactide) (PLA) and poly(d,l-lactide-co-glycolide) (PLGA) microspheres are widely used in the biomedical and pharmaceutical fields. The effects of PLA/PLGA on microsphere properties when using conventional particulate preparation methods are not easily defined due to the uncontrollable particle size and size distribution. This study was aimed to synthesize uniform PLA and PLGA microspheres using a phenol formaldehyde resin-based microfluidic chip, which has the advantage of being solvent-resistant, flexible, and is readily disassembled for cleaning. The proposed chip can rapidly fabricate reproducible PLA and PLGA microspheres. Uniform emulsion droplets can be achieved by hydrodynamic flow focusing. After solvent evaporation, the free-flowing PLA and PLGA microspheres have a high level of morphological uniformity and size, allowing for a clear comparison of material effects. The results indicate that the sizes of the PLA and PLGA microspheres for the various flow rates of dispersed/continuous phases are very similar. The PLA/PLGA materials do not have a significant effect on particle size, but the particle surface indicates a different morphology. The result of the cytotoxicity evaluation shows no difference between PLA and PLGA and ensures the biocompatibility of both prepared PLA and PLGA microspheres for biomedical and pharmaceutical applications in the future. PMID:23857679

  10. Bioactive Microsphere-Based Scaffolds Containing Decellularized Cartilage.

    PubMed

    Sutherland, Amanda J; Detamore, Michael S

    2015-07-01

    The aim of this study was to fabricate mechanically functional microsphere-based scaffolds containing decellularized cartilage (DCC), with the hypothesis that this approach would induce chondrogenesis of rat bone marrow-derived mesenchymal stem cells (rBMSCs) in vitro. The DCC was derived from porcine articular cartilage and decellularized using a combination of physical and chemical methods. Four types of scaffolds were fabricated: poly(d,l-lactic-co-glycolic acid) (PLGA) only (negative control), TGF-β-encapsulated (positive control), PLGA surface coated with DCC, and DCC-encapsulated. These scaffolds were seeded with rBMSCs and cultured up to 6 weeks. The compressive modulus of the DCC-coated scaffolds prior to cell seeding was significantly lower than all other scaffold types. Gene expression was comparable between DCC-encapsulated and TGF-β-encapsulated groups. Notably, DCC-encapsulated scaffolds contained 70% higher glycosaminoglyan (GAG) content and 85% more hydroxyproline compared to the TGF-β group at week 3 (with baseline levels subtracted out from acellular DCC scaffolds). Certainly, bioactivity was demonstrated in eliciting a biosynthetic response from the cells with DCC, although true demonstration of chondrogenesis remained elusive under the prescribed conditions. Encapsulation of DCC appeared to lead to improved cell performance relative to coating with DCC, although this finding may be a dose-dependent observation. Overall, DCC introduced via microsphere-based scaffolds appears to be promising as a bioactive approach to cartilage regeneration, although additional studies will be required to conclusively demonstrate chondroinductivity. PMID:25821206

  11. Magnetically directed poly(lactic acid) [sup 90]Y-microspheres: Novel agents for targeted intracavitary radiotherapy

    SciTech Connect

    Haefeli, U.O.; Sweeney, S.M.; Beresford, B.A.; Sim, E.H.; Macklis, R.M. . Joint Center for Radiation Therapy)

    1994-08-01

    High energy [beta]-emitting radioisotopes like Yttrium-90 have a radiotoxic range of about one centimeter. For cancer treatment they must be brought near the tumor cells and kept there for as long as they are radioactive. The authors developed as carriers for the ionic form of [sup 90]Y a matrix-type polymeric drug delivery system, poly(lactic acid) (PLA) microspheres. This radiopharmaceutical could be selectively delivered to the target site after incorporating 10% Fe[sub 3]O[sub 4] which made the magnetic microspheres (MMS) responsive to an external magnetic field. Furthermore, MMS are biodegradable and slowly hydrolyze into physiologic lactic acid after the radioactivity is completely decayed. Previously prepared 10--40 [mu]m MMS were radiochemically loaded to high specific activity with [sup 90]Y at a pH of 5.7. Stability studies showed that approximately 95% of added [sup 90]Y is retained within the PLA matrix after 28 days (> 10 half-lives) at 37 C in serum, and electron microscopy showed that the microspheres retained their characteristic morphologic appearance for the same time period. Cytotoxicity studies with SK-N-SH neuroblastoma cells growing in monolayer showed that the radiocytotoxicity of the microspheres could be directed magnetically to either kill or spare specific cell populations, thus making them of great interest for targeted intracavitary tumor therapy. The authors are currently optimizing this system for use in the treatment of neoplastic meningitis.

  12. Fabrication of superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure.

    PubMed

    Yang, Song; Liu, Huarong; Huang, Haofeng; Zhang, Zhicheng

    2009-10-15

    We herein report a novel and facile approach to the fabrication of the superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure via gamma-ray radiation induced inverse emulsion polymerization under room temperature and at ambient pressure. 12-Acryloxy-9-octadecenoic acid (AOA, containing part of sodium salts Na-AOA) as a surfactant can also copolymerize with the styrene. It is interesting that just by changing the added amount of styrene, the magnetic hollow spheres with different wall thickness and various sizes of core, up to the magnetic solid spheres, can be obtained. The final products were thoroughly characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron diffraction (TEM), field-emission scanning electron microscopy (FESEM), thermogravimetric analysis (TGA) which showed the formation of magnetite/poly(styrene-co-AOA) nanocomposite microspheres. Magnetic hysteresis loop measurements showed that the magnetic nanocomposite microspheres exhibited superparamagnetism, which should make them have potential applications in biotechnology and biomedicine. Furthermore, we also proposed a possible formation mechanism of these magnetic microspheres with different morphologies. PMID:19640548

  13. A short term quality control tool for biodegradable microspheres.

    PubMed

    D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P

    2014-06-01

    Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C. PMID:24519488

  14. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Doolaanea, Abd Almonen

    2016-06-01

    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin. PMID:26817478

  15. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.

    PubMed

    Gupta, Vineet; Lyne, Dina V; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-07-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix components relevant to bone tissue compared to the "blank" (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  16. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    PubMed Central

    Fu, Yin-Chih; Wang, Yan-Hsiung; Chen, Chung-Hwan; Wang, Chih-Kuang; Wang, Gwo-Jaw; Ho, Mei-Ling

    2015-01-01

    Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid) microspheres (SIM/PLGA) that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS) bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration of bone in the clinical setting. PMID:26664114

  17. Copolymeric hexyl acrylate-methacrylic acid microspheres - surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2016-10-01

    Copolymeric acrylate microspheres were prepared from hexyl acrylate using different amounts of methacrylic acid, resulting in a series of microspheres of gradually changing properties. The distribution of carboxyl groups - between surface and bulk of microspheres was evaluated. Bulk reactive carboxyl groups were determined using reverse coulometric titration with H(+) ions, following hydroxide ions have been generated and allowed to react with microspheres in the first step. It was found that the number of reactive carboxyl groups available in copolymeric microspheres is lower compared to number of methacrylic acid units used for polymerization process. Moreover, there is correlation between the number of groups introduced and found to be reactive in microspheres. On the other hand, the number of surface reactive groups was proportional to the number of groups introduced in course of polymerization. Thus, the surface reactive groups can be used as reagent, in novel heterogeneous microtitration procedure, in which a constant number of microspheres of different carboxyl groups contents is introduced to the sample to react with the analyte. The applicability of novel proposed method was tested on the example of Ni(2+) determination. PMID:27474305

  18. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. PMID:27207035

  19. An HPLC Method for Microanalysis and Pharmacokinetics of Marine Sulfated Polysaccharide PSS-Loaded Poly Lactic-co-Glycolic Acid (PLGA) Nanoparticles in Rat Plasma

    PubMed Central

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-01-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with d-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1–500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  20. An HPLC method for microanalysis and pharmacokinetics of marine sulfated polysaccharide PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles in rat plasma.

    PubMed

    Li, Peng-Li; Li, Chun-Xia; Xue, Yi-Ting; Li, Hai-Hua; Liu, Hong-Bing; He, Xiao-Xi; Yu, Guang-Li; Guan, Hua-Shi

    2013-04-01

    This study was aimed at developing a sensitive and selective HPLC method with postcolumn fluorescence derivatization for the detection of propylene glycol alginate sodium sulfate (PSS) in rat plasma. Plasma samples were prepared by a simple and fast ultrafiltration method. PSS was extracted from rat plasma with D-glucuronic acid as internal standard. Isocratic chromatographic separation was performed on a TSKgel G2500 PWxL column with the mobile phase of 0.1 M sodium sulfate at a flow rate of 0.5 mL/min. Analyte detection was achieved by fluorescence detection (FLD) at 250 nm (excitation) and 435 nm (emission) using guanidine hydrochloride as postcolumn derivatizing reagent in an alkaline medium at 120 °C. The calibration curve was linear over a concentration range of 1-500 μg/mL, and the lower limit of detection (LLOD) was found to be 250 ng/mL. This validated method was applied successfully to the pharmacokinetic study of PSS and PSS-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (PSS-NP) in rat plasma after a single intravenous (PSS only) and oral administration (PSS and PSS-NP). Significant differences in the main pharmacokinetic parameters of PSS and PSS-NP were observed. The relative bioavailability of PSS-NP was 190.10% compared with PSS which shows that PSS-NP can improve oral bioavailability. PMID:23549283

  1. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer

    PubMed Central

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-01-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  2. Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates

    NASA Astrophysics Data System (ADS)

    Sorge, Matthew; Bean, Thomas; Woodland, Travis; Canning, John; Cheng, I. Frank; Edwards, Dean B.

    2014-11-01

    Porous, hollow, glass microspheres (PHGMs) can be used to increase porosity in lead acid battery electrodes to improve the battery's power and energy performance at higher discharge rates. As reported in this paper, the PHGM additives did improve electrolyte storage and porosity in the electrodes. However, the nonconductive PHGMs do reduce the critical volume fraction (CVF) of the electrodes as predicted from conductivity models. The increase in electrode performance due to increased porosity may therefore be partially offset by the drop in capacity due to a lower critical volume fraction. Empirical equations are developed that relate the CFV and porosity of an electrode to the amount, size, and porosity of the additives in that electrode. The porosity estimates made from the empirical equations compare favorably with the experimental data from plates fabricated with these additives. The performance of electrodes with additives is estimated from computer models using the electrode's CVF and porosity as provided by the equations. Tests were performed on plates having volume loadings of PHGMs from 11% to 44% of total solids in positive electrodes to determine their effect on active material utilizations. The results from these discharge tests are reported and compared with theoretical models.

  3. Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of Cd(II) ions from aqueous solution.

    PubMed

    Huang, Liqiang; Yuan, Shaojun; Lv, Li; Tan, Guangqun; Liang, Bin; Pehkonen, S O

    2013-09-01

    Cross-linked chitosan (CCS) microspheres tethered with pH-sensitive poly(methacrylic acid) (PMAA) brushes were developed for the efficient removal of Cd(II) ions from aqueous solutions. Functional PMAA brushes containing dense and active carboxyl groups (COOH) were grafted onto the CCS microsphere surface via surface-initiated atom transfer radical polymerization (ATRP). Batch adsorption results showed that solution pH values had a major impact on cadmium adsorption by the PMAA-grafted CCS microspheres with the optimal removal observed above pH 5. The CCS-g-PMAA microsphere was found to achieve the adsorption equilibrium of Cd(II) within 1 h, much faster than about 7 h on the CCS microsphere. At pH 5 and with an initial concentration 0.089-2.49 mmol dm(-3), the maximum adsorption capacity of Cd(II), derived from the Langmuir fitting on the PMAA-grafted microspheres was around 1.3 mmol g(-1). Desorption and adsorption cycle experimental results revealed that the PMAA-grafted CCS microspheres loaded with Cd(II) can be effectively regenerated in a dilute HNO3 solution, and the adsorption capacity remained almost unchanged upon five cycle reuse. PMID:23755995

  4. Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement.

    PubMed

    van Houdt, C I A; Preethanath, R S; van Oirschot, B A J A; Zwarts, P H W; Ulrich, D J O; Anil, S; Jansen, J A; van den Beucken, J J J P

    2016-02-01

    This work aimed to compare in vitro degradation of dense PLGA microspheres and milled PLGA particles as porogens within CPC, considering that the manufacturing of milled PLGA is more cost-effective when compared with PLGA microspheres. Additionally, we aimed to examine the effect of porogen amount within CPC/PLGA on degradation and bone formation. Our in vitro results showed no differences between both forms of PLGA particles (as porogens in CPC; spherical for microspheres, irregular for milled) regarding morphology, porosity, and degradation. Using milled PLGA as porogens within CPC/PLGA, we evaluated the effect of porogen amount on degradation and bone forming capacity in vivo. Titanium landmarks surrounded by CPC/PLGA with 30 and 50 wt % PLGA, were implanted in forty femoral bone defects of twenty male Wistar rats. Histomorphometrical results showed a significant temporal decrease in the amount of CPC, for both formulas, and confirmed that 50 wt % PLGA degrades faster than 30 wt%, and allows for a 1.5-fold higher amount of newly formed bone. Taken together, this study demonstrated that (i) milled PLGA particles perform equal to PLGA microspheres, and (ii) tuning of the PLGA content in CPC/PLGA is a feasible approach to leverage material degradation and bone formation. PMID:26454146

  5. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells.

    PubMed

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(d,l-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ∼500 times of enhancement compared to the simple mixture of the two drugs. PMID:26344365

  6. Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F-18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography

    PubMed Central

    2015-01-01

    The avidin–biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidin-modified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [18F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [18F]-fluorobenzylamide-poly(ethylene glycol)4-biotin ([18F]NPB4) was prepared with high purity and specific activity. The attachment of the [18F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain. PMID:25322194

  7. Radiolabeling of poly(lactic-co-glycolic acid) (PLGA) nanoparticles with biotinylated F-18 prosthetic groups and imaging of their delivery to the brain with positron emission tomography.

    PubMed

    Sirianni, Rachael W; Zheng, Ming-Qiang; Patel, Toral R; Shafbauer, Thomas; Zhou, Jiangbing; Saltzman, W Mark; Carson, Richard E; Huang, Yiyun

    2014-12-17

    The avidin-biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidin-modified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [(18)F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [(18)F]-fluorobenzylamide-poly(ethylene glycol)4-biotin ([(18)F]NPB4) was prepared with high purity and specific activity. The attachment of the [(18)F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain. PMID:25322194

  8. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  9. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  10. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolyis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  11. Metabolic microspheres

    NASA Astrophysics Data System (ADS)

    Fox, Sidney W.

    1980-08-01

    A systematic review of catalytic activities in thermal proteinoids and microspheres aggregated therefrom yields some new inferences on the origins and evolution of metabolism. Experiments suggest that, instead of being inert, protocells were already biochemically and cytophysically competent. The emergence and refinement of metabolism ab initio is thus partly traced conceptually. When the principle of molecular self-instruction, as of amino acids in peptide synthesis, is taken into account as a concomitant of natural selection, an expanded theory of organismic evolution, including saltations, emerges.

  12. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  13. Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications

    PubMed Central

    Tavanai, Hossein; Hilborn, Jöns; Donzel-Gargand, Olivier; Leifer, Klaus; Arpanaei, Ayyoob

    2014-01-01

    Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction. PMID:24689041

  14. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

    PubMed

    Zhang, Hongye; Xie, Yun; Liu, Zhimin; Tao, Ranting; Sun, Zhenyu; Ding, Kunlun; An, Guimin

    2009-10-15

    Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction. PMID:19616218

  15. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    produced hydrophilic spin adducts of PBN and monomeric radicals of lactic or glycolic acid. These degradation products were not detected by EPR. This result is confirmed by the observation that possible diamagnetic reaction products of low molecular weight, consisting of TEMPOL and lactide or glycolide monomers, could not be detected by GC-MS. While an irradiation dose-dependent decrease in molecular weight of PLGA could be verified in agreement with the literature, TCH content of the microspheres was not affected by the exposure to gamma-rays. It can be concluded that EPR spectroscopy in combination with GPC, DSC, and HPLC allows a detailed characterization of the impact of gamma-sterilization on biodegradable parenteral drug delivery systems. PMID:10210719

  16. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  17. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    PubMed

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation. PMID:22750408

  18. Electrospinning Growth Factor Releasing Microspheres into Fibrous Scaffolds

    PubMed Central

    Whitehead, Tonya J.; Sundararaghavan, Harini G.

    2014-01-01

    This procedure describes a method to fabricate a multifaceted substrate to direct nerve cell growth. This system incorporates mechanical, topographical, adhesive and chemical signals. Mechanical properties are controlled by the type of material used to fabricate the electrospun fibers. In this protocol we use 30% methacrylated Hyaluronic Acid (HA), which has a tensile modulus of ~500 Pa, to produce a soft fibrous scaffold. Electrospinning on to a rotating mandrel produces aligned fibers to create a topographical cue. Adhesion is achieved by coating the scaffold with fibronectin. The primary challenge addressed herein is providing a chemical signal throughout the depth of the scaffold for extended periods. This procedure describes fabricating poly(lactic-co-glycolic acid) (PLGA) microspheres that contain Nerve Growth Factor (NGF) and directly impregnating the scaffold with these microspheres during the electrospinning process. Due to the harsh production environment, including high sheer forces and electrical charges, protein viability is measured after production. The system provides protein release for over 60 days and has been shown to promote primary nerve cell growth. PMID:25178038

  19. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: A novel strategy for drug delivery to bone forming cells.

    PubMed

    Kavas, Ayşegül; Keskin, Dilek; Altunbaş, Korhan; Tezcaner, Ayşen

    2016-08-20

    Raloxifene (Ral)- or Ral-poly(ethylene glycol) (PEG) conjugate-loaded microspheres were prepared with poly(ε-caprolactone) (PCL) alone or with the blend of PCL and poly(D,L-lactide-co-glycolide) (PLGA) to provide controlled and sustained Ral release systems. Benefits of these formulations were evaluated on bone regeneration. Ral-loaded PCL microspheres had the highest encapsulation efficiency (70.7±5.0%) among all groups owing to high hydrophobic natures of both Ral and PCL. Cumulative amount of Ral released from Ral-PEG (1:2) conjugate-loaded PCL:PLGA (1:1) microspheres (26.9±8.8%) after 60days was significantly higher relative to other microsphere groups. This finding can be ascribed to two factors: i) Ral-PEG conjugation, resulting in increased water-solubility of Ral and increased degradation rates of PCL and PLGA with enhanced water penetration into the polymer matrix, and ii) usage of PLGA besides PCL in the carrier composition to benefit from less hydrophobic and faster degradable nature of PLGA in comparison to PCL. In vitro cytotoxicity studies performed using adipose-derived mesenchymal stem cells (ASCs) demonstrated that all microspheres were non-toxic. Evaluation of intensities of Alizarin red S staining conducted after 7 and 14days of incubation of ASCs in the release media of the different microsphere groups was performed with Image J analysis software. At day 7, it was observed that the matrix deposited by the cells cultivated in the release medium of Ral-PEG (1:2) conjugate-loaded PCL:PLGA (1:1) microspheres had significantly higher mineral content (26.78±6.23%) than that of the matrix deposited by the cells cultivated in the release media of the other microsphere groups except Ral-loaded PCL:PLGA (1:1) microsphere group. At day 14, Ral release from Ral-PEG (1:2) conjugate-loaded PCL:PLGA (1:1) microsphere group resulted with significantly higher mineralization of the matrix (32.31±1.85%) deposited by ASCs in comparison to all other microsphere

  20. Biomimetic mucin modified PLGA nanoparticles for enhanced blood compatibility.

    PubMed

    Thasneem, Y M; Rekha, M R; Sajeesh, S; Sharma, Chandra P

    2013-11-01

    Efforts to develop long circulating polymeric nanoparticles have propelled many strategies in nanoparticle surface modification to bypass immune surveillance and systemic clearance. In this context, our present study reports on the preparation and evaluation of mucin functionalized poly lactic-co-glycolic acid (PLGA) nanoparticles as hemocompatible, cell penetrating nanoparticulate drug delivery system. Amino groups of mucin were conjugated to the terminal carboxylic acid groups on PLGA to be followed by nanoparticle synthesis via standard solvent evaporation technique. Detailed in vitro experiments were performed to illustrate the significance of alternating copolymer structured mucin modified PLGA nanoparticles in terms of enhanced hemocompatibility and cellular uptake. Mucylation proved promising in controlling PLGA nanoparticle- interaction with plasma proteins (opsonins) and blood components via hemolysis, thrombogenecity and complement activation. Besides hemocompatibility, the modified and unmodified nanoparticles were also found to be cytocompatible with L929 and C6 cell lines. The fluorescent and confocal image analysis evaluated the extent of cellular uptake of nanoparticles into C6 cells. Specifically the combination of stealth properties and cellular internalization capacity of mucin modified PLGA nanoparticle (PLGA-Mucin) lead us to propose it as a safe, efficient and multifunctional nanoplatform for disease specific intravenous drug delivery applications as far as in vitro experiments are concerned. PMID:23978287

  1. Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering.

    PubMed

    Qodratnama, Roozbeh; Serino, Lorenzo Pio; Cox, Helen C; Qutachi, Omar; White, Lisa J

    2015-02-01

    In this study we present an approach to pre-program lysozyme release from large size (100-300 μm) poly(DL-lactic acid-co-glycolic acid) (PLGA) microparticles. This approach involved blending in-house synthesized triblock copolymers with a PLGA 85:15. In this work it is demonstrated that the lysozyme release rate and the total release are related to the mass of triblock copolymer present in polymer formulation. Two triblock copolymers (PLGA-PEG1500-PLGA and PLGA-PEG1000-PLGA) were synthesized and used in this study. In a like-for-like comparison, these two triblock copolymers appeared to have similar effects on the release of lysozyme. It was shown that blending resulted in the increase of the total lysozyme release and shortened the release period (70% release within 30 days). These results demonstrated that blending PLGA-PEG-PLGA triblock copolymer with PLGA 85:15 can be used as a method to pre-program protein release from microparticles. These microparticles with modulated protein release properties may be used to create microparticle-based tissue engineering constructs with pre-programmed release properties. PMID:25492193

  2. Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy

    PubMed Central

    Xu, Qingxing; Xia, Yujie; Wang, Chi-Hwa; Pack, Daniel W.

    2012-01-01

    We have designed and evaluated a dual anticancer delivery system to provide combined gene therapy and chemotherapy. Double-walled microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(lactic acid) (PLA) shell were fabricated via the precision particle fabrication (PPF) technique. We make use of the advantages of double-walled microspheres to deliver chitosan-DNA nanoparticles containing the gene encoding the p53 tumor suppressor protein (chi-p53) and/or doxorubicin (Dox), loaded in the shell and core phases, respectively. Different molecular weights of PLA were used to form the shell layer for each formulation. The microspheres were monodisperse with a mean diameter of 65 to 75 μm and uniform shell thickness of 8 to 17 μm. Blank and Dox-loaded microspheres typically exhibited a smooth surface with relatively few small pores, while chi-microspheres containing p53 nanoparticles, with and without Dox, presented rough and porous surfaces. The encapsulation efficiency of Dox was significantly higher when it was encapsulated alone compared to co-encapsulation with chi-p53 nanoparticles. The encapsulation efficiency of chi-p53 nanoparticles, on the other hand, was not affected by the presence of Dox. As desired, chi-p53 nanoparticles were released first, followed by simultaneous release of chi-p53 nanoparticles and Dox at a near zero-order rate. Thus, we have demonstrated that the PPF method is capable of producing double-walled microspheres and encapsulating dual agents for combined modality treatment, such as gene therapy and chemotherapy. PMID:22981564

  3. Systemic delivery to central nervous system by engineered PLGA nanoparticles.

    PubMed

    Cai, Qiang; Wang, Long; Deng, Gang; Liu, Junhui; Chen, Qianxue; Chen, Zhibiao

    2016-01-01

    Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications. PMID:27158367

  4. Systemic delivery to central nervous system by engineered PLGA nanoparticles

    PubMed Central

    Cai, Qiang; Wang, Long; Deng, Gang; Liu, Junhui; Chen, Qianxue; Chen, Zhibiao

    2016-01-01

    Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications. PMID:27158367

  5. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  6. Bone Regeneration from PLGA Micro-Nanoparticles.

    PubMed

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed. PMID:26509156

  7. Bone Regeneration from PLGA Micro-Nanoparticles

    PubMed Central

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed. PMID:26509156

  8. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  9. Reverse micelle-based microencapsulation of oxytetracycline hydrochloride into poly-d,l-lactide-co-glycolide microspheres.

    PubMed

    Kim, Hyunjoo; Lee, Beom-Jin; Sah, Hongkee

    2007-02-01

    The objectives of this study were to solubilize oxytetracycline hydrochloride (HCl) in reverse micelles to prepare poly-d,l-lactide-co-glycolide (PLGA) microspheres and to explore parameters affecting its encapsulation efficiency. Oxytetracycline HCl was dissolved in the reverse micelles consisting of cetyltrimethylammonium bromide, water, and ethyl formate. A PLGA polymer was then dissolved in the reverse micellar solution, and a modified solvent quenching procedure was carried out to prepare PLGA microspheres. Encapsulation efficiencies of oxytetracycline HCl ranged from 2.3 +/- 0.2 to 24.9 +/- 4.6%, depending on experimental conditions. Important parameters affecting its encapsulation efficiency included the amounts of water used to prepare the reverse micelles and PLGA polymer. With regard to microsphere morphology, the reverse micellar process produced the microspheres with smooth and pore-free surfaces. In particular, their internal matrices did not possess hollow cavities that were frequently observed when a typical double emulsion technique was used to make microspheres. In summary, it was possible to encapsulate oxytetracycline HCl into PLGA microspheres via the ethyl formate-based reverse micellar technique. We also anticipate that the use of ethyl formate could avoid environmental and human toxicity issues associated with methylene chloride. PMID:17364873

  10. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C). PMID:25469674

  11. Citric Acid Induced Synthesis of a Series of Morphology-Controllable Ag Microspheres and Their Surface-Enhanced Raman Scattering

    NASA Astrophysics Data System (ADS)

    Hu, J.; Wang, F.; Li, Y.; Li, Q.

    2015-11-01

    A facile route has been used to synthesize a series of morphology-controllable 3D hierarchical Ag microspheres (AgMS) by using citric acid as a morphology directing-reagent. The AgMS are self-assembled by Ag nanosheets which can be controlled, including the thickness of the nanosheets and the distance between two nanosheets by varying the concentration of citric acid. The average thickness of the Ag nanosheets decreased from ~107 to ~22 nm with increasing citric acid concentration. The distance between two of Ag nanosheets is at a range of 15 to 35 nm. The SERS activity of the products has been investigated in detail by using rhodamine 6G (R6G). The results show that R6G can be detected in a concentration as low as 10-7 M. The appropriate interstitial sites of interlaced Ag nanosheets assembled on AgMS provide "hot spots" which result in a strong SERS response, and the electromagnetic enhancement may play the main role in SERS. The SERS activity of a sample has been studied by using melamine, and the limit of detection is found to be 0.6 ppm.

  12. Material characterization of microsphere-based scaffolds with encapsulated raw materials.

    PubMed

    Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J; Detamore, Michael S

    2016-06-01

    "Raw materials," or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4weeks. Raw material encapsulated groups were compared to 'blank' groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236

  13. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  14. An Inorganic Microsphere Composite for the Selective Removal of Cesium 137 from Acidic Nuclear Waste Solutions - Parts 1 and 2

    SciTech Connect

    T. J. Tranter; T. A. Vereschchagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales. A new inorganic ion exchange composite consisting of ammonium molybdophosphate, (NH4)3P(Mo3O10)4•3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C) has been developed. Two different batches of the sorbent were produced resulting in 20% and 25% AMP loading for two and three loading cycles, respectively. The selective cesium exchange capacity of this inorganic composite was evaluated using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Equilibrium isotherms obtained from these experiments

  15. Fabrication of Fucoxanthin-Loaded Microsphere(F-LM) By Two Steps Double-Emulsion Solvent Evaporation Method and Characterization of Fucoxanthin before and after Microencapsulation.

    PubMed

    Noviendri, Dedi; Jaswir, Irwandi; Taher, Muhammad; Mohamed, Farahidah; Salleh, Hamzah Mohd; Noorbatcha, Ibrahim Ali; Octavianti, Fitri; Lestari, Widya; Hendri, Ridar; Ahmad, Hasna; Miyashita, Kazuo; Abdullah, Alias

    2016-08-01

    Microencapsulation is a promising approach in drug delivery to protect the drug from degradation and allow controlled release of the drug in the body. Fucoxanthin-loaded microsphere (F-LM) was fabricated by two step w/o/w double emulsion solvent evaporation method with poly (L-lactic-coglycolic acid) (PLGA) as carrier. The effect of four types of surfactants (PVA, Tween-20, Span-20 and SDS), homogenization speed, and concentration of PLGA polymer and surfactant (PVA), respectively, on particle size and morphology of F-LM were investigated. Among the surfactants tested, PVA showed the best results with smallest particle size (9.18 µm) and a smooth spherical surface. Increasing the homogenization speed resulted in a smaller mean F-LM particle size [d(0.50)] from 17.12 to 9.18 µm. Best particle size results and good morphology were attained at homogenization speed of 20 500 rpm. Meanwhile, increased PLGA concentration from 1.5 to 11.0 (% w/v) resulted in increased F-LM particle size. The mean particle size [d(0.5)] of F-LM increased from 3.93 to 11.88 µm. At 6.0 (% w/v) PLGA, F-LM showed the best structure and external morphology. Finally, increasing PVA concentration from 0.5 to 3.5 (% w/v) resulted in decreased particle size from 9.18 to 4.86 µm. Fucoxanthin characterization before and after microencapsulation was carried out to assess the success of the microencapsulation procedure. Thermo gravimetry analysis (TGA), glass transition (Tg) temperature of F-LM and fucoxanthin measured using DSC, ATR-FTIR and XRD indicated that fucoxanthin was successfully encapsulated into the PLGA matrix, while maintaining the structural and chemical integrity of fucoxanthin. PMID:27430384

  16. Sustained release of risperidone from biodegradable microspheres prepared by in-situ suspension-evaporation process.

    PubMed

    An, Taekun; Choi, Juhyuen; Kim, Aram; Lee, Jin Ho; Nam, Yoonjin; Park, Junsung; Sun, Bo Kyung; Suh, Hearan; Kim, Cherng-Ju; Hwang, Sung-Joo

    2016-04-30

    Risperidone-loaded poly (d,l-lactide-co-glycolide) (PLGA) microspheres were prepared with a suspension-evaporation process with an aqueous suspension containing an in situ-formed aluminum hydroxide inorganic gel (SEP-AL process) and evaluated for encapsulation efficiency, particle size, surface morphology, glass transition temperature, in vitro drug release profile, and in vivo behavior. The SEP-AL microspheres were compared with conventional oil-in-water (O/W) emulsion solvent evaporation method using polyvinylalcohol (PVA) as an emulsifier (CP-PVA process). The microspheres were spherical in shape. DSC measurements showed that risperidone crystallinity was greatly reduced due to the homogeneous distribution of risperidone in PLGA microspheres. In vitro drug release profile from the microspheres showed a sigmoidal pattern of negligible initial burst up to 24h and minimal release (time-lag) for 7days. After the lag phase, slow release took a place up to 25days and then rapid release occurred sharply for 1 week. In vivo rat pharmacokinetic profile from the microspheres showed very low blood concentration level at the initial phase (up to 24h) followed by the latent phase up to 21days. At the 3rd week, main phase started and the blood concentration of the drug increased up to the 5th week, and then gradually decreased. The risperidone-loaded PLGA microspheres produced by SEP-AL process showed excellent controlled release characteristics for the effective treatment of schizophrenia patients. PMID:26899975

  17. In vivo biocompatibility of the PLGA microparticles in parotid gland

    PubMed Central

    Cantín, Mario; Miranda, Patricio; Suazo Galdames, Iván; Zavando, Daniela; Arenas, Patricia; Velásquez, Luis; Vilos, Cristian

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microparticles are used in various disorders for the controlled or sustained release of drugs, with the management of salivary gland pathologies possible using this technology. There is no record of the response to such microparticles in the glandular parenchyma. The purpose of this study was to assess the morphological changes in the parotid gland when injected with a single dose of PLGA microparticles. We used 12 adult female Sprague Dawley rats (Rattus norvegicus) that were injected into their right parotid gland with sterile vehicle solution (G1, n=4), 0.5 mg PLGA microparticles (G2, n=4), and 0.75 mg PLGA microparticles (G3, n=4); the microparticles were dissolved in a sterile vehicle solution. The intercalar and striated ducts lumen, the thickness of the acini and the histology aspect in terms of the parenchyma organization, cell morphology of acini and duct system, the presence of polymeric residues, and inflammatory response were determined at 14 days post-injection. The administration of the compound in a single dose modified some of the morphometric parameters of parenchyma (intercalar duct lumen and thickness of the glandular acini) but did not induce tissue inflammatory response, despite the visible presence of polymer waste. This suggests that PLGA microparticles are biocompatible with the parotid tissue, making it possible to use intraglandular controlled drug administration. PMID:24228103

  18. Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat

    PubMed Central

    Jiang, Chunhui; Kuang, Liangju; Merkel, Madeline P.; Yue, Feng; Cano-Vega, Mario Alberto; Narayanan, Naagarajan; Kuang, Shihuan; Deng, Meng

    2015-01-01

    Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide) (PLGA), a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity. PMID:26617571

  19. Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat.

    PubMed

    Jiang, Chunhui; Kuang, Liangju; Merkel, Madeline P; Yue, Feng; Cano-Vega, Mario Alberto; Narayanan, Naagarajan; Kuang, Shihuan; Deng, Meng

    2015-01-01

    Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide) (PLGA), a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity. PMID:26617571

  20. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma

    PubMed Central

    Xu, Qingxing; Leong, Jiayu; Chua, Qi Yi; Chi, Yu Tse; Chow, Pierce Kah-Hoe; Pack, Daniel W.; Wang, Chi-Hwa

    2013-01-01

    The therapeutic efficiency of combined chemotherapy and gene therapy on human hepatocellular carcinoma HepG2 cells was investigated using double-walled microspheres that consisted of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(L-lactic acid) (PLLA) shell layer and fabricated via the precision particle fabrication (PPF) technique. Here, double-walled microspheres were used to deliver doxorubicin (Dox) and/or chitosan-DNA nanoparticles containing the gene encoding the p53 tumor suppressor protein (chi-p53), loaded in the core and shell phases, respectively. Preliminary studies on chi-DNA nanoparticles were performed to optimize gene transfer to HepG2 cells. The transfection efficiency of chi-DNA nanoparticles was optimal at an N/P ratio of 7. In comparison to the 25-kDa branched polyethylenimine (PEI), chitosan showed no inherent toxicity towards the cells. Next, the therapeutic efficiencies of Dox and/or chi-p53 in microsphere formulations were compared to free drug(s) and evaluated in terms of growth inhibition, and cellular expression of tumor suppressor p53 and apoptotic caspase 3 proteins. Overall, the combined Dox and chi-p53 treatment exhibited enhanced cytotoxicity as compared to either Dox or chi-p53 treatments alone. Moreover, the antiproliferative effect was more substantial when cells were treated with microspheres than those treated with free drugs. High p53 expression was maintained during a five-day period, and was largely due to the controlled and sustained release of the microspheres. Moreover, increased activation of caspase 3 was observed, and was likely to have been facilitated by high levels of p53 expression. Overall, double-walled microspheres present a promising dual anticancer delivery system for combined chemotherapy and gene therapy. PMID:23578555

  1. Combined modality doxorubicin-based chemotherapy and chitosan-mediated p53 gene therapy using double-walled microspheres for treatment of human hepatocellular carcinoma.

    PubMed

    Xu, Qingxing; Leong, Jiayu; Chua, Qi Yi; Chi, Yu Tse; Chow, Pierce Kah-Hoe; Pack, Daniel W; Wang, Chi-Hwa

    2013-07-01

    The therapeutic efficiency of combined chemotherapy and gene therapy on human hepatocellular carcinoma HepG2 cells was investigated using double-walled microspheres that consisted of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(L-lactic acid) (PLLA) shell layer and fabricated via the precision particle fabrication (PPF) technique. Here, double-walled microspheres were used to deliver doxorubicin (Dox) and/or chitosan-DNA nanoparticles containing the gene encoding the p53 tumor suppressor protein (chi-p53), loaded in the core and shell phases, respectively. Preliminary studies on chi-DNA nanoparticles were performed to optimize gene transfer to HepG2 cells. The transfection efficiency of chi-DNA nanoparticles was optimal at an N/P ratio of 7. In comparison to the 25-kDa branched polyethylenimine (PEI), chitosan showed no inherent toxicity towards the cells. Next, the therapeutic efficiencies of Dox and/or chi-p53 in microsphere formulations were compared to free drug(s) and evaluated in terms of growth inhibition, and cellular expression of tumor suppressor p53 and apoptotic caspase 3 proteins. Overall, the combined Dox and chi-p53 treatment exhibited enhanced cytotoxicity as compared to either Dox or chi-p53 treatments alone. Moreover, the antiproliferative effect was more substantial when cells were treated with microspheres than those treated with free drugs. High p53 expression was maintained during a five-day period, and was largely due to the controlled and sustained release of the microspheres. Moreover, increased activation of caspase 3 was observed, and was likely to have been facilitated by high levels of p53 expression. Overall, double-walled microspheres present a promising dual anticancer delivery system for combined chemotherapy and gene therapy. PMID:23578555

  2. In vitro biocompatibility of polypyrrole/PLGA conductive nanofiber scaffold with cultured rat hepatocytes

    NASA Astrophysics Data System (ADS)

    Chu, Xue-Hui; Xu, Qian; Feng, Zhang-Qi; Xiao, Jiang-Qiang; Li, Qiang; Sun, Xi-Tai; Cao, Yang; Ding, Yi-Tao

    2014-09-01

    To intruduce conductive biomaterial into liver tissue engineering, a conductive nanofiber scaffold, polypyrrole/poly(lactic-co-glycolic)acid(PLGA), was designed and prepared via electro-spinning and oxidative polymerization. Effects of the scaffold on hepatocyte adhesion, viability and function were then investigated. SEM revealed pseudopodium formation and abundant extracellular matrix on the surface of PLGA membrane and polypyrrole/PLGA membrane. The adhesion rate, cellular activity, urea synthesis and albumin secretion of the hepatocytes cultured on polypyrrole/PLGA group were similar to those on the PLGA group, but were significantly higher than those on the control group. There were no significant differences in concentrations of LDH and TNF-α among three groups. These results suggested the potential application of this conductive nanofiber scaffold as a suitable substratum for hepatocyte culturing in liver tissue engineering.

  3. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration.

    PubMed

    Lih, Eugene; Park, Ki Wan; Chun, So Young; Kim, Hyuncheol; Kwon, Tae Gyun; Joung, Yoon Ki; Han, Dong Keun

    2016-08-24

    Chronic kidney disease is now recognized as a major health problem, but current therapies including dialysis and renal replacement have many limitations. Consequently, biodegradable scaffolds to help repairing injured tissue are emerging as a promising approach in the field of kidney tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) is a useful biomedical material, but its insufficient biocompatibility caused a reduction in cell behavior and function. In this work, we developed the kidney-derived extracellular matrix (ECM) incorporated PLGA scaffolds as a cell supporting material for kidney tissue regeneration. Biomimetic PLGA scaffolds (PLGA/ECM) with different ECM concentrations were prepared by an ice particle leaching method, and their physicochemical and mechanical properties were characterized through various analyses. The proliferation of renal cortical epithelial cells on the PLGA/ECM scaffolds increased with an increase in ECM concentrations (0.2, 1, 5, and 10%) in scaffolds. The PLGA scaffold containing 10% of ECM has been shown to be an effective matrix for the repair and reconstitution of glomerulus and blood vessels in partially nephrectomized mice in vivo, compared with only PLGA control. These results suggest that not only can the tissue-engineering techniques be an effective alternative method for treatment of kidney diseases, but also the ECM incorporated PLGA scaffolds could be promising materials for biomedical applications including tissue engineered scaffolds and biodegradable implants. PMID:27456613

  4. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  5. Facile fabrication of poly(L-lactic acid) microsphere-incorporated calcium alginate/hydroxyapatite porous scaffolds based on Pickering emulsion templates.

    PubMed

    Hu, Yang; Ma, Shanshan; Yang, Zhuohong; Zhou, Wuyi; Du, Zhengshan; Huang, Jian; Yi, Huan; Wang, Chaoyang

    2016-04-01

    In this study, we develop a facile one-pot approach to the fabrication of poly(L-lactic acid) (PLLA) microsphere-incorporated calcium alginate (ALG-Ca)/hydroxyapatite (HAp) porous scaffolds based on HAp nanoparticle-stabilized oil-in-water Pickering emulsion templates, which contain alginate in the aqueous phase and PLLA in the oil phase. The emulsion aqueous phase is solidified by in situ gelation of alginate with Ca(2+) released from HAp by decreasing pH with slow hydrolysis of d-gluconic acid δ-lactone (GDL) to produce emulsion droplet-incorporated gels, followed by freeze-drying to form porous scaffolds containing microspheres. The pore structure of porous scaffolds can be adjusted by varying the HAp or GDL concentration. The compressive tests show that the increase of HAp or GDL concentration is beneficial to improve the compressive property of porous scaffolds, while the excessive HAp can lead to the decrease in compressive property. Moreover, the swelling behavior studies display that the swelling ratios of porous scaffolds reduce with increasing HAp or GDL concentration. Furthermore, hydrophobic drug ibuprofen (IBU) and hydrophilic drug bovine serum albumin (BSA) are loaded into the microspheres and scaffold matrix, respectively. In vitro drug release results indicate that BSA has a rapid release while IBU has a sustained release in the dual drug-loaded scaffolds. In vitro cell culture experiments verify that mouse bone mesenchymal stem cells can proliferate on the porous scaffolds well, indicating the good biocompatibility of porous scaffolds. All these results demonstrate that the PLLA microsphere-incorporated ALG-Ca/HAp porous scaffolds have a promising potential for tissue engineering and drug delivery applications. PMID:26774574

  6. Molecularly imprinted polymer microspheres for solid-phase extraction of protocatechuic acid in Rhizoma homalomenae.

    PubMed

    Chen, Fang-Fang; Wang, Guo-Ying; Shi, Yan-Ping

    2011-10-01

    Molecularly imprinted polymers (MIPs) had been prepared by precipitation polymerization method using acrylamide as the functional monomer, ethylene glycol dimethacrylate as the cross-linker, acetonitrile as the porogen solvent and protocatechuic acid (PA), one of phenolic acids, as the template molecule. The MIPs were characterized by scanning electron microscopy and Fourier transform infrared, and their performance relative to non-imprinted polymers was assessed by equilibrium binding experiments. Six structurally similar phenolic acids, including p-hydroxybenzoic acid, gallic acid, salicylic acid, syringic acid, vanillic acid, ferulic acid were selected to assess the selectivity and recognition capability of the MIPs. The MIPs were applied to extract PA from the traditional Chinese medicines as a solid-phase extraction sorbent. The resultant cartridge showed that the MIPs have a good extraction performance and were able to selectively extract almost 82% of PA from the extract of Rhizoma homalomenae. Thus, the proposed molecularly imprinted-solid phase extraction-high performance liquid chromatography method can be successfully used to extract and analyse PA in traditional Chinese medicines. PMID:21809445

  7. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    PubMed Central

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differentiation of rat bone marrow–derived stromal cells. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized ECM by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG), collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface. PMID:26191526

  8. Poly(lactic-co-glycolic) Acid/Nanohydroxyapatite Scaffold Containing Chitosan Microspheres with Adrenomedullin Delivery for Modulation Activity of Osteoblasts and Vascular Endothelial Cells

    PubMed Central

    Li, Chunyan; Chen, Yingxin; Dong, Shujun; Chen, Xuesi; Zhou, Yanmin

    2013-01-01

    Adrenomedullin (ADM) is a bioactive regulatory peptide that affects migration and proliferation of diverse cell types, including endothelial cells, smooth muscle cells, and osteoblast-like cells. This study investigated the effects of sustained release of ADM on the modulation activity of osteoblasts and vascular endothelial cells in vitro. Chitosan microspheres (CMs) were developed for ADM delivery. Poly(lactic-co-glycolic) acid and nano-hydroxyapatite were used to prepare scaffolds containing microspheres with ADM. The CMs showed rough surface morphology and high porosity, and they were well-distributed. The scaffolds exhibited relatively uniform pore sizes with interconnected pores. The addition of CMs improved the mechanical properties of the scaffolds without affecting their high porosity. In vitro degradation tests indicated that the addition of CMs increased the water absorption of the scaffolds and inhibited pH decline of phosphate-buffered saline medium. The expression levels of osteogenic-related and angiogenic-related genes were determined in MG63 cells and in human umbilical vein endothelial cells cultured on the scaffolds, respectively. The expression levels of osteogenic-related and angiogenic-related proteins were also detected by western blot analysis. Their expression levels in cells were improved on the ADM delivery scaffolds at a certain time point. The in vitro evaluation suggests that the microsphere-scaffold system is suitable as a model for bone tissue engineering. PMID:23841075

  9. Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration.

    PubMed

    Tsaryk, Roman; Gloria, Antonio; Russo, Teresa; Anspach, Laura; De Santis, Roberto; Ghanaati, Shahram; Unger, Ronald E; Ambrosio, Luigi; Kirkpatrick, C James

    2015-07-01

    Intervertebral disc (IVD) degeneration is one of the main causes of low back pain. Current surgical treatments are complex and generally do not fully restore spine mobility. Development of injectable extracellular matrix-based hydrogels offers an opportunity for minimally invasive treatment of IVD degeneration. Here we analyze a specific formulation of collagen-low molecular weight hyaluronic acid (LMW HA) semi-interpenetrating network (semi-IPN) loaded with gelatin microspheres as a potential material for tissue engineering of the inner part of the IVD, the nucleus pulposus (NP). The material displayed a gel-like behavior, it was easily injectable as demonstrated by suitable tests and did not induce cytotoxicity or inflammation. Importantly, it supported the growth and chondrogenic differentiation potential of mesenchymal stem cells (MSC) and nasal chondrocytes (NC) in vitro and in vivo. These properties of the hydrogel were successfully combined with TGF-β3 delivery by gelatin microspheres, which promoted the chondrogenic phenotype. Altogether, collagen-LMW HA loaded with gelatin microspheres represents a good candidate material for NP tissue engineering as it combines important rheological, functional and biological features. PMID:25861947

  10. Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation.

    PubMed

    Fan, Min; Liao, Jinfeng; Guo, Gang; Ding, Qiuxia; Yang, Yi; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 micro m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vive study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation. PMID:24734511

  11. PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions

    PubMed Central

    Shin, Yong Cheol; Yang, Won Jun; Lee, Jong Ho; Oh, Jin-Woo; Kim, Tai Wan; Park, Jong-Chul; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-01-01

    This study concentrates on the development of biodegradable nanofiber membranes with controlled drug release to ensure reduced tissue adhesion and accelerated healing. Nanofibers of poly(lactic-co-glycolic acid) (PLGA) loaded with epigallocatechin-3-O-gallate (EGCG), the most bioactive polyphenolic compound in green tea, were electrospun. The physicochemical and biomechanical properties of EGCG-releasing PLGA (E-PLGA) nanofiber membranes were characterized by atomic force microscopy, EGCG release and degradation profiles, and tensile testing. In vitro antioxidant activity and hemocompatibility were evaluated by measuring scavenged reactive oxygen species levels and activated partial thromboplastin time, respectively. In vivo antiadhesion efficacy was examined on the rat peritonea with a surgical incision. The average fiber diameter of E-PLGA membranes was approximately 300–500 nm, which was almost similar to that of pure PLGA equivalents. E-PLGA membranes showed sustained EGCG release mediated by controlled diffusion and PLGA degradation over 28 days. EGCG did not adversely affect the tensile strength of PLGA membranes, whereas it significantly decreased the elastic modulus and increased the strain at break. E-PLGA membranes were significantly effective in both scavenging reactive oxygen species and extending activated partial thromboplastin time. Macroscopic observation after 1 week of surgical treatment revealed that the antiadhesion efficacy of E-PLGA nanofiber membranes was significantly superior to those of untreated controls and pure PLGA equivalents, which was comparable to that of a commercial tissue-adhesion barrier. In conclusion, the E-PLGA hybrid nanofiber can be exploited to craft strategies for the prevention of postsurgical adhesions. PMID:25187710

  12. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  13. Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum L.) stalks.

    PubMed

    Li, Qiang; Lei, Jiandu; Zhang, Rongyue; Li, Juan; Xing, Jianmin; Gao, Fei; Gong, Fangling; Yan, Xiaofeng; Wang, Dan; Su, Zhiguo; Ma, Guanghui

    2013-05-01

    Bio-waste cotton (Gossypium hirsutum L.) stalks were converted into succinic acid by simultaneous saccharification and fermentation (SSF) using Actinobacillus succinogenes 130Z. After 54 h SSF at 40 °C and pH 7.0, the production of succinic acid was 63 g/L, with 1.17 g/L/h productivity and 64% conversion yield. After SSF, a simple method for the decolorization and deproteinization of crude SSF broth was developed through adsorption tests of polystyrene (PSt) microspheres. Under optimized conditions (5% PSt loading (w/v), pH 4.0, 60 °C and adsorption time of 40 min), the ratios of decolorization, deproteinization and succinic acid loss ratios were 96.6, 84.5 and 4.1%, respectively. The method developed will provide a potential approach for large-scale production of succinic acid from the biomass waste. PMID:22985822

  14. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    PubMed Central

    Figueiredo, Marxa; Esenaliev, Rinat

    2012-01-01

    This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid) (PLGA) or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound) composed either of polymers (PLGA, polystyrene) or other contrast agent materials (Optison, SonoVue microbubbles). The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a) echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b) PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery. PMID:22506124

  15. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres

    PubMed Central

    Wang, Manli; Lu, Xiaolong; Yin, Xianzhen; Tong, Yajun; Peng, Weiwei; Wu, Li; Li, Haiyan; Yang, Yan; Gu, Jingkai; Xiao, Tiqiao; Chen, Min; Zhang, Jiwen

    2015-01-01

    The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation–based Fourier-transform infrared spectromicroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres. PMID:26579456

  16. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres.

    PubMed

    Wang, Manli; Lu, Xiaolong; Yin, Xianzhen; Tong, Yajun; Peng, Weiwei; Wu, Li; Li, Haiyan; Yang, Yan; Gu, Jingkai; Xiao, Tiqiao; Chen, Min; Zhang, Jiwen

    2015-05-01

    The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation-based Fourier-transform infrared spectromicroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres. PMID:26579456

  17. Preparation of core-shell structure Fe3 O4 @SiO2 superparamagnetic microspheres immoblized with iminodiacetic acid as immobilized metal ion affinity adsorbents for His-tag protein purification.

    PubMed

    Ni, Qian; Chen, Bing; Dong, Shaohua; Tian, Lei; Bai, Quan

    2016-04-01

    The core-shell structure Fe3 O4 /SiO2 magnetic microspheres were prepared by a sol-gel method, and immobiled with iminodiacetic acid (IDA) as metal ion affinity ligands for protein adsorption. The size, morphology, magnetic properties and surface modification of magnetic silica nanospheres were characterized by various modern analytical instruments. It was shown that the magnetic silica nanospheres exhibited superparamagnetism with saturation magnetization values of up to 58.1 emu/g. Three divalent metal ions, Cu(2+) , Ni(2+) and Zn(2+) , were chelated on the Fe3 O4 @SiO2 -IDA magnetic microspheres to adsorb lysozyme. The results indicated that Ni(2+) -chelating magnetic microspheres had the maximum adsorption capacity for lysozyme of 51.0 mg/g, adsorption equilibrium could be achieved within 60 min and the adsorbed protein could be easily eluted. Furthermore, the synthesized Fe3 O4 @SiO2 -IDA-Ni(2+) magnetic microspheres were successfully applied for selective enrichment lysozyme from egg white and His-tag recombinant Homer 1a from the inclusion extraction expressed in Escherichia coli. The result indicated that the magnetic microspheres showed unique characteristics of high selective separation behavior of protein mixture, low nonspecific adsorption, and easy handling. This demonstrates that the magnetic silica microspheres can be used efficiently in protein separation or purification and show great potential in the pretreatment of the biological sample. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26268650

  18. PLGA nanofibers improves the antitumoral effect of daunorubicin.

    PubMed

    Guimarães, Pedro P G; Oliveira, Michele F; Gomes, Alinne D M; Gontijo, Sávio M L; Cortés, Maria E; Campos, Paula P; Viana, Celso T R; Andrade, Silvia P; Sinisterra, Rubén D

    2015-12-01

    The objective of this study was to evaluate the in vivo anti-inflammatory angiogenesis activity and in vitro cytotoxicity on normal and cancer cell models of a drug delivery system consisting of poly(lactic-co-glycolic acid) nanofibers loaded with daunorubicin (PLGA-DNR) that were fabricated using an electrospinning process. The PLGA-DNR nanofibers were also characterized by thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM) and confocal fluorescence microscopy. In vitro release of DNR from the nanofibers and its corresponding mechanism were also evaluated. Sixty-five percent of the DNR was released in an initial burst over 8h, and by 1224 h, eighty-five percent of the DNR had been released. The Higuchi model yielded the best fit to the DNR release profile over the first 8h, and the corresponding data from 24 to 1224 h could be modeled using zero-order kinetics. The PLGA-DNR nanofibers exhibited a higher cytotoxicity to A431 cells than free DNR but a cytotoxicity similar to free DNR against fibroblast cells. A higher antiangiogenic effect of PLGA nanofibers was observed in the in vivo data when compared to free DNR, and no inflammatory potential was observed for the nanofibers. PMID:26402423

  19. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel

    PubMed Central

    2013-01-01

    Background Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. Methods PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. Results Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg). Conclusion In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may

  20. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.

    PubMed

    Brown, Andrew; Zaky, Samer; Ray, Herbert; Sfeir, Charles

    2015-01-01

    Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices. PMID:25234156

  1. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. PMID:26987445

  2. Current advances in research and clinical applications of PLGA-based nanotechnology

    PubMed Central

    Lü, Jian-Ming; Wang, Xinwen; Marin-Muller, Christian; Wang, Hao; Lin, Peter H; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases. PMID:19435455

  3. Measurement of PLGA-NP interaction with single smooth muscle cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Mondal, Argha; Homayoni, Homa; Nguyen, Kytai; Mohanty, Samarendra

    2012-10-01

    For intervention of cardiovascular diseases, biodegradable and biocompatible, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) are emerging as agents of choice for controlled and targeted drug delivery. Therefore development of PLGA-NP with optimal physico-chemical properties will allow efficient binding and thus delivery of drug to targeted cells under various patho-physiological conditions. The force kinetics and its dependence on size of the NPs will be crucial for designing the NPs. Since optical tweezers allow non-contact, highly sensitive force measurement with high spatial and temporal resolution, we utilized it for studying interaction forces between magnetic PLGA nanoparticles with smooth muscle cells (SMC). In order to investigate effect of size, interaction force for 200 to 1100nm PLGA NP was measured. For similar interaction duration, the force was found to be higher with increase in size. The rupture force was found to depend on time of interaction of SMC with NPs.

  4. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.

    PubMed

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-10-14

    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  5. Treating cutaneous squamous cell carcinoma using ALA PLGA nanoparticle-mediated photodynamic therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Wang, Xiuli; Zhao, Feng; Luan, Hansen

    2015-03-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted ALA delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Methods: UV-induced cutaneous SCCs were established in hairless mice. ALA loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NPs-induced protoporphyrin IX (PpIX) fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results: PLGA NPs could enhance PpIX production in SCC. ALA PLGA NP mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.

  6. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    PubMed Central

    2014-01-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC. PMID:25232295

  7. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    NASA Astrophysics Data System (ADS)

    Hu, Yun; Ehrich, Marion; Fuhrman, Kristel; Zhang, Chenming

    2014-08-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.

  8. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. PMID:27245478

  9. Facile preparation of superparamagnetic surface-imprinted microspheres using amino acid as template for specific capture of thymopentin

    NASA Astrophysics Data System (ADS)

    Guo, Longxia; Hu, Xiaoling; Guan, Ping; Du, Chunbao; Wang, Dan; Song, Dongmen; Gao, Xumian; Song, Renyuan

    2015-12-01

    Novel superparamagnetic surface-imprinted microspheres (SIMs) with molecularly imprinted shell layer were controllably synthesized via fragment imprinting and surface imprinting technique. The SIMs-Arg and SIMs-Lys microspheres were prepared by using L-arginine (L-Arg) and L-lysine (L-Lys) as pseudo-template molecule for specific rebinding to thymopentin (TP5), respectively. The characterization results revealed that both SIMs-Arg and SIMs-Lys were successfully prepared and possessed a high magnetic sensitivity. The rebinding-isotherm analyses of SIMs-Arg and SIMs-Lys showed that the Langmuir isotherm model was well fitted to the equilibrium data, indicating that only one kind of rebinding site was present in SIMs-Arg and SIMs-Lys. Besides, the kinetic properties of SIMs-Arg and SIMs-Lys both were well described by the pseudo-second-order kinetics model, which indicated that a chemical process may be the rate-limiting step in the rebinding process. Moreover, the magnetic imprinted microspheres were found to have a higher specificity for TP5 than that for immunostimulating peptide human (IPH). What is more, SIMs-Arg and SIMs-Lys were successfully applied for TP5 determination in urine. According to the maximum adsorption capacity, the imprinting factor and real sample experiment, it was noted that SIMs-Arg had better specific adsorption property for TP5 than SIMs-Lys.

  10. Ondansetron-loaded biodegradable microspheres as a nasal sustained delivery system: in vitro/in vivo studies.

    PubMed

    Gungor, Sevgi; Okyar, Alper; Erturk-Toker, Sidika; Baktir, Gul; Ozsoy, Yildiz

    2010-06-01

    The aim of this study was to prepare ondansetron-loaded biodegradable microspheres as a nasal delivery system. Microspheres were prepared with emulsification/spray-drying technique using poly(d,l-lactide) (PLA) and two different types of poly(d,l-lactide-co-glycolide) (PLGA). The effect of the type of organic solvent (dichloromethane (DCM) or a mixture of DCM and ethyl acetate) on the microsphere characteristics was also examined. The prepared microspheres were evaluated with respect to the morphological properties, particle size, zeta potential, drug loading efficiency, and in vitro drug release. The mean particle size (d(50)) of microsphere formulations was ranged from 11.67-25.54 μm, indicating suitable particle size for nasal administration. All microspheres had low drug loading efficiency in the range of 12.28-21.04%. The results indicated that particle size of microspheres were affected by both type of polymer and organic solvent, however drug loading efficiency of microspheres were affected by only the type of organic solvent used. All microspheres were negatively charged due to the polymers (PLA or PLGA) used. A prolonged in vitro drug release profile was observed for 96 h. Based on in vitro data, the selected microsphere formulation has been applied via nasal route to rats in vivo. Following nasal administration of ondansetron-loaded microsphere to rats, ondansetron plasma levels were within a range of 30-48 ng/mL during 96 h, indicating a sustained drug delivery pattern and relatively a constant plasma drug concentration level. The results suggested that biodegradable microspheres prepared with emulsification/spray-drying technique could be considered to deliver ondansetron via nasal route to obtain a prolonged release. PMID:22716466

  11. Synthesis and characterization of UPPE-PLGA-rhBMP2 scaffolds for bone regeneration.

    PubMed

    Tian, Zhichao; Zhu, Yuanli; Qiu, Jinjun; Guan, Hanfeng; Li, Liangyu; Zheng, Shouchao; Dong, Xuehai; Xiao, Jun

    2012-08-01

    A novel unsaturated polyphosphoester (UPPE) was devised in our previous research, which is a kind of promising scaffold for improving bone regeneration. However, the polymerization process of UPPE scaffolds was unfavorable, which may adversely affect the bioactivity of osteoinductive molecules added if necessary, such as recombinant human bone morphogenetic protein-2 (rhBMP2). The purpose of this study was to build a kind of optimal scaffold named UPPE-PLGA-rhBMP2 (UPB) and to investigate the bioactivity of rhBMP2 in this scaffold. Furthermore, the cytotoxicity and biocompatibility of UPB scaffold was assessed in vitro. A W1/O/W2 method was used to fabricate PLGA-rhBMP2 microspheres, and then the microspheres were added to UPPE for synthesizing UPB scaffold. The morphological characters of PLGA-rhBMP2 microspheres and UPB scaffolds were observed under the scanning electron microscopy and laser scanning confocal microscopy. The cumulative release of UPB scaffolds was detected by using ELISA. The cytotoxicity and biocompatibility of UPB scaffolds were evaluated through examining the adsorption and apoptosis of bone marrow stromal cells (bMSCs) seeded on the surface of UPB scaffolds. The bioactivity of rhBMP2 in UPB scaffolds was assessed through measuring the alkaline phosphates (ALP) activity in bMSCs seeded. The results showed that UPB scaffolds sequentially exhibited burst and sustained release of rhBMP2. The cytotoxicity was greatly reduced when the scaffolds were immersed in buffer solution for 2 h. bMSCs attached and grew on the surface of soaked UPB scaffolds, exerting well biocompatibility. The ALP activity of bMSCs seeded was significantly enhanced, indicating that the bioactivity of rhBMP2 remained and still took effect after the unfavorable polymerization process of scaffolds. It was concluded that UPB scaffolds have low cytotoxicity, good biocompatibility and preserve bioactivity of rhBMP2. UPB scaffolds are promising in improving bone regeneration. PMID

  12. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  13. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  14. Polymer microspheres carrying fluorescent DNA probes

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoyu; Dai, Zhao; Zhang, Jimei; Xu, Shichao; Wu, Chunrong; Zheng, Guo

    2010-07-01

    A polymer microspheres carried DNA probe, which was based on resonance energy transfer, was presented in this paper when CdTe quantum dots(QDs) were as energy donors, Au nanoparticles were as energy accepters and poly(4- vinylpyrindine-co-ethylene glycol dimethacrylate) microspheres were as carriers. Polymer microspheres with functional group on surfaces were prepared by distillation-precipitation polymerization when ethylene glycol dimethacrylate was as crosslinker in acetonitrile. CdTe QDs were prepared when 3-mercaptopropionic acid(MPA) was as the stabilizer in aqueous solution. Because of the hydrogen-bonding between the carboxyl groups of MPA on QDs and the pyrindine groups on the microspheres, the QDs were self-assembled onto the surfaces of microspheres. Then, the other parts of DNA probe were finished according to the classic method. The DNA detection results indicated that this novel fluorescent DNA probe system could recognize the existence of complementary target DNA or not.

  15. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  16. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth

    PubMed Central

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  17. Multifunctional Bi2S3/PLGA nanocapsule for combined HIFU/radiation therapy.

    PubMed

    Yao, Ming-hua; Ma, Ming; Chen, Yu; Jia, Xiao-qing; Xu, Guang; Xu, Hui-xiong; Chen, Hang-rong; Wu, Rong

    2014-09-01

    A multifunctional organic-inorganic hybrid nanocapsule based on Bi2S3-embedded poly (lactic-co-glycolic acid) (PLGA) nanocapsule has been elaborately designed to combine the merits of both polymeric shell structure and Bi2S3 nanoparticles. Hydrophobic Bi2S3 nanoparticles were successfully introduced into the PLGA nanocapsules via a facile and efficient water/oil/water (W/O/W) emulsion strategy. The elastic polymeric PLGA shell provides the excellent capability of ultrasound contrast imaging to the Bi2S3/PLGA. Meanwhile, the potential of these microcapsules to enhance the high intensity focused ultrasound (HIFU) therapy was demonstrated. Importantly, this research provided the first example of both in vitro and in vivo to demonstrate the radiosensitization effect of Bi2S3-embedded PLGA hybrid nanocapsules against prostate cancer under external X-ray irradiation. Thus, the successful integration of the Bi2S3 and PLGA nanocapsules provided an alternative strategy for the highly efficient ultrasound guided HIFU/RT synergistic therapy. PMID:24973300

  18. PLGA nanoparticle formulation of RK-33: an RNA helicase inhibitor against DDX3

    PubMed Central

    Bol, Guus Martinus; Khan, Raheela; van Voss, Marise Rosa Heerma; Tantravedi, Saritha; Korz, Dorian

    2016-01-01

    Background The DDX3 helicase inhibitor RK-33 is a newly developed anticancer agent that showed promising results in preclinical research (Bol et al. EMBO Mol Med, 7(5):648–649, 2015). However, due to the physicochemical and pharmacological characteristics of RK-33, we initiated development of alternative formulations of RK-33 by preparing sustained release nanoparticles that can be administered intravenously. Methods In this study, RK-33 was encapsulated in poly(lactic-co-glycolic acid) (PLGA), one of the most well-developed biodegradable polymers, using the emulsion solvent evaporation method. Results Hydrodynamic diameter of RK-33-PLGA nanoparticles was about 245 nm with a negative charge, and RK-33-PLGA nanoparticles had a payload of 1.4 % RK-33. RK-33 was released from the PLGA nanoparticles over 7 days (90 ± 5.7 % released by day 7) and exhibited cytotoxicity to human breast carcinoma MCF-7 cells in a time-dependent manner. Moreover, RK-33-PLGA nanoparticles were well tolerated, and systemic retention of RK-33 was markedly improved in normal mice. Conclusions PLGA nanoparticles have a potential as a parenteral formulation of RK-33. PMID:26330329

  19. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium.

    PubMed

    Khanal, Shalil; Adhikari, Udhab; Rijal, Nava P; Bhattarai, Shanta R; Sankar, Jagannathan; Bhattarai, Narayan

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390-420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications. PMID:27490577

  20. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls.

    PubMed

    Wang, Gou-Jen; Lin, Yan-Cheng; Hsu, Shan-Hui

    2010-10-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most commonly used biodegradable, biocompatible materials. Nanostructured PLGA has immense potential for application in tissue engineering. In this article we discuss a novel approach for the fabrication of PLGA microvessel scaffolds with nanostructured inner walls. In this novel nano-patterning approach, the thermal reflow technique is first adapted to fabricate a semi-cylindrical photoresist master mold. A thin film of titanium and a thin film of aluminum are sputtered in sequence on the semi-cylindrical microvessel network. Aluminum foil anodization is then executed to transform the aluminum thin film into a porous anodic aluminum oxide (AAO) film. During the casting process a PLGA solution is cast on the AAO film to build up semi-cylindrical PLGA microstructures with nanostructured inner walls after which inductive coupled plasma (ICP) is implemented to assist bonding of the two PLGA structures. The result is the building of a network of microchannels with nano-patterned inner walls. Bovine endothelial cells (BECs) are carefully cultured in the scaffold via semi-dynamic seeding for 7 days. Observations show that the BECs grew more separately in a nano-patterned microvessel scaffold than they did in a smooth surface scaffold. PMID:20532635

  1. Biomimetic Hybrid Nanofiber Sheets Composed of RGD Peptide-Decorated PLGA as Cell-Adhesive Substrates

    PubMed Central

    Shin, Yong Cheol; Lee, Jong Ho; Kim, Min Jeong; Park, Ji Hoon; Kim, Sung Eun; Kim, Jin Su; Oh, Jin-Woo; Han, Dong-Wook

    2015-01-01

    In biomedical applications, there is a need for tissue engineering scaffolds to promote and control cellular behaviors, including adhesion, proliferation and differentiation. In particular, the initial adhesion of cells has a great influence on those cellular behaviors. In this study, we concentrate on developing cell-adhesive substrates applicable for tissue engineering scaffolds. The hybrid nanofiber sheets were prepared by electrospinning poly(lactic-co-glycolic acid) (PLGA) and M13 phage, which was genetically modified to enhance cell adhesion thru expressing RGD peptides on their surface. The RGD peptide is a specific motif of extracellular matrix (ECM) for integrin receptors of cells. RGD peptide-decorated PLGA (RGD-PLGA) nanofiber sheets were characterized by scanning electron microscopy, immunofluorescence staining, contact angle measurement and differential scanning calorimetry. In addition, the initial adhesion and proliferation of four different types of mammalian cells were determined in order to evaluate the potential of RGD-PLGA nanofiber sheets as cell-adhesive substrates. Our results showed that the hybrid nanofiber sheets have a three-dimensional porous structure comparable to the native ECM. Furthermore, the initial adhesion and proliferation of cells were significantly enhanced on RGD-PLGA sheets. These results suggest that biomimetic RGD-PLGA nanofiber sheets can be promising cell-adhesive substrates for application as tissue engineering scaffolds. PMID:26034884

  2. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth.

    PubMed

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  3. Efficient Chemotherapy of Rat Glioblastoma Using Doxorubicin-Loaded PLGA Nanoparticles with Different Stabilizers

    PubMed Central

    Wohlfart, Stefanie; Khalansky, Alexander S.; Gelperina, Svetlana; Maksimenko, Olga; Bernreuther, Christian; Glatzel, Markus; Kreuter, Jörg

    2011-01-01

    Background Chemotherapy of glioblastoma is largely ineffective as the blood-brain barrier (BBB) prevents entry of most anticancer agents into the brain. For an efficient treatment of glioblastomas it is necessary to deliver anti-cancer drugs across the intact BBB. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated with poloxamer 188 hold great promise as drug carriers for brain delivery after their intravenous injection. In the present study the anti-tumour efficacy of the surfactant-coated doxorubicin-loaded PLGA nanoparticles against rat glioblastoma 101/8 was investigated using histological and immunohistochemical methods. Methodology The particles were prepared by a high-pressure solvent evaporation technique using 1% polyvinylalcohol (PLGA/PVA) or human serum albumin (PLGA/HSA) as stabilizers. Additionally, lecithin-containing PLGA/HSA particles (Dox-Lecithin-PLGA/HSA) were prepared. For evaluation of the antitumour efficacy the glioblastoma-bearing rats were treated intravenously with the doxorubicin-loaded nanoparticles coated with poloxamer 188 using the following treatment regimen: 3×2.5 mg/kg on day 2, 5 and 8 after tumour implantation; doxorubicin and poloxamer 188 solutions were used as controls. On day 18, the rats were sacrificed and the antitumour effect was determined by measurement of tumour size, necrotic areas, proliferation index, and expression of GFAP and VEGF as well as Isolectin B4, a marker for the vessel density. Conclusion The results reveal a considerable anti-tumour effect of the doxorubicin-loaded nanoparticles. The overall best results were observed for Dox-Lecithin-PLGA/HSA. These data demonstrate that the poloxamer 188-coated PLGA nanoparticles enable delivery of doxorubicin across the blood-brain barrier in the therapeutically effective concentrations. PMID:21573151

  4. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer. PMID:25937384

  5. Influence of the primary emulsification procedure on the characteristics of small protein-loaded PLGA microparticles for antigen delivery.

    PubMed

    Wischke, C; Borchert, H-H

    2006-06-01

    Microparticles prepared from poly(lactic-co-glycolic acid) (PLGA) using a W1/O/W2 double emulsion solvent evaporation method are suitable vehicles for the delivery of proteins to antigen presenting cells, e.g. dendritic cells. In this study, the influence of different techniques for the preparation of the primary W1/O emulsion was investigated with respect to the protein localization within the microparticles, morphological characteristics of these particles, protein burst release and the native state of the released protein. Bovine serum albumin bearing fluorescein isothiocyanate (FITC-BSA) was used as model protein. A static micromixer was applied for the preparation of the W1/O/W2 double emulsion. Employing a rotor-stator homogenizer (Ultra-Turrax) for primary emulsification, microcapsules with a high burst release were produced, because nearly all FITC-BSA was attached to the outside of the particle wall. Using a high pressure homogenizer or an ultrasonic procedure resulted in the formation of microspheres with homogeneous protein distribution and a reduced burst release. PMID:16854818

  6. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning.

    PubMed

    Almajhdi, Fahad N; Fouad, H; Khalil, Khalil Abdelrazek; Awad, Hanem M; Mohamed, Sahar H S; Elsarnagawy, T; Albarrag, Ahmed M; Al-Jassir, Fawzi F; Abdo, Hany S

    2014-04-01

    In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5-10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint. PMID:24375170

  7. Hybrid microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  8. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    PubMed

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds. PMID:27376895

  9. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  10. Preparation and In-vitro Evaluation of Controlled Release PLGA Microparticles Containing Triptoreline.

    PubMed

    Mahboubian, Alireza; Hashemein, Seyyed Kazem; Moghadam, Shadi; Atyabi, Fatemeh; Dinarvand, Rassoul

    2010-01-01

    Triptoreline is a potent agonist of luteinizing hormone-releasing hormone, currently used in the treatment of prostatic cancer where therapy may be required over months or years. Frequent injection of drug decreases patients' compliance. The present study describes the formulation of a sustained release microparticulate drug delivery system containing triptoreline acetate, using poly (D,L lactide-co-glycolide) (PLGA). Biodegradable microspheres were prepared using 50 : 50 PLGA by a water in-oil-in-water (w/o/w) double emulsion-solvent evaporation procedure and characterized for drug content and drug release rate using the a HPLC method, particle size distribution using the laser diffraction method, and surface morphology using scanning electron microscopy and drug release rate. Effect of critical process parameters and formulation variables; i.e. volume of inner water phase, addition of NaCl to the outer aqueous phase (W2), addition of different types and amounts of emulsifying agents on microsphere characteristics; were investigated. Microspheres prepared were spherical with a smooth surface, but addition of poloxamer to the first emulsion produced microspheres with large pores. Size of microparticles was dependent on the type, as well as the amount of co-encapsulated surfactants. Increasing the inner water phase volume resulted in larger particles with a lower encapsulation efficiency. Low concentrations of Span 20 decreased triptoreline release rate, whereas the addition of poloxamer or high concentrations of Span 20 increased the drug release rateit. In conclusion, by selecting an appropriate level of the investigated parameters, spherical microparticles with encapsulation efficiencies higher than 90% and a prolonged triptoreline release over 45 days were obtained. PMID:24381601

  11. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading

    PubMed Central

    Han, Felicity Y.; Thurecht, Kristofer J.; Whittaker, Andrew K.; Smith, Maree T.

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  12. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading.

    PubMed

    Han, Felicity Y; Thurecht, Kristofer J; Whittaker, Andrew K; Smith, Maree T

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  13. Pitch carbon microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Nelson, J. B.

    1977-01-01

    Petroleum pitch carbon microspheres were prepared by flash heating emulsified pitch and carbonizing the resulting microspheres in an inert atmosphere. Microsphere composites were obtained from a mixture of microspheres and tetraester precursor pyrrone powder. Scanning electron micrographs of the composite showed that it was an aggregate of microspheres bonded together by the pyrrone at the sphere contact points, with voids in and among the microspheres. Physical, thermal, and sorption properties of the composite are described. Composite applications could include use as a honeycomb filler in elevated-temperature load-bearing sandwich boards or in patient-treatment tables for radiation treatment of tumors.

  14. HDL-Mimetic PLGA Nanoparticle To Target Atherosclerosis Plaque Macrophages

    PubMed Central

    Sanchez-Gaytan, Brenda L.; Fay, Francois; Lobatto, Mark E.; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E. M.; van Rijs, Sarian M.; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J.; Langer, Robert; Fayad, Zahi A.; Mulder, Willem J M

    2015-01-01

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA–HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA–HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers. PMID:25650634

  15. NanoCipro Encapsulation in Monodisperse Large Porous PLGA Microparticles

    PubMed Central

    Arnold, Matthew M.; Gorman, Eric M.; Schieber, Loren J.; Munson, Eric J.; Berland, Cory

    2007-01-01

    Pulmonary drug delivery of controlled release formulations may provide an effective adjunct approach to orally delivered antibiotics for clearing persistent lung infections. Dry powder formulations for this indication should possess characteristics including; effective deposition to infected lung compartments, persistence at the infection site, and steady release of antibiotic. Large porous particles (∼10-15 μm) have demonstrated effective lung deposition and enhanced lung residence as a result of their large diameter and reduced clearance by macrophages in comparison to small microparticles (∼1-5 μm). In this report, Precision Particle Fabrication technology was used to create monodisperse large porous particles of poly(D,L-lactic-co-glycolic acid) (PLGA) utilizing oils as extractable porogens. After extraction, the resulting large porous PLGA particles exhibited a low density and a web-like or hollow interior depending on porogen concentration and type, respectively. Ciprofloxacin nanoparticles (nanoCipro) created by homogenization in dichloromethane, possessed a polymorph with a decreased melting temperature. Encapsulating nanoCipro in large porous PLGA particles resulted in a steady release of ciprofloxacin that was extended for larger particle diameters and for the solid particle morphology in comparison to large porous particles. The encapsulation efficiency of nanoCipro was quite low and factors impacting the entrapment of nanoparticles during particle formation were elucidated. A dry powder formulation with the potential to control particle deposition and sustain release to the lung was developed and insight to improve nanoparticle encapsulation is discussed. PMID:17604870

  16. Impact of PEG and PEG-b-PAGE modified PLGA on nanoparticle formation, protein loading and release.

    PubMed

    Rietscher, René; Czaplewska, Justyna A; Majdanski, Tobias C; Gottschaldt, Michael; Schubert, Ulrich S; Schneider, Marc; Lehr, Claus-Michael

    2016-03-16

    The effect of modifying the well-established pharmaceutical polymer PLGA by different PEG-containing block-copolymers on the preparation of ovalbumin (OVA) loaded PLGA nanoparticles (NPs) was studied. The used polymers contained poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG) and poly(allyl glycidyl ether) (PAGE) as building blocks. The double emulsion technique yielded spherical NPs in the size range from 170 to 220 nm (PDI<0.15) for all the differently modified polymers, allowing to directly compare protein loading of and release. PEGylation is usually believed to increase the hydrophilic character of produced particles, favoring encapsulation of hydrophilic substances. However, in this study simple PEGylation of PLGA had only a slight effect on protein release. In contrast, incorporating a PAGE block between the PEG and PLGA units, also eventually enabling active targeting introducing a reactive group, led to a significantly higher loading (+25%) and release rate (+100%), compared to PLGA and PEG-b-PLGA NPs. PMID:26784983

  17. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation.

    PubMed

    Li, Ching-Wen; Pan, Wei-Ting; Ju, Jyh-Cherng; Wang, Gou-Jen

    2016-01-01

    In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs). The 14.29% PLGA scaffolds fabricated using non-ground NaCl particles (NG-PLGA) and the 25% PLGA containing scaffolds fabricated using ground NaCl particles (G-PLGA) possessed minimum and maximum moisture content and bovine serum albumin (BSA) content properties, respectively. These two groups of scaffolds were used for future experiments in this study. Cell culture results demonstrated that the proposed porous scaffolds without growth factors were sufficient to induce mouse ESCs to differentiate into endothelial-like cells in the early culture stages, and combined with embedded ECCM could provide a long-term inducing system for ESC differentiation. PMID:27068738

  18. Enhanced photodynamic efficacy of PLGA-encapsulated 5-ALA nanoparticles in mice bearing Ehrlich ascites carcinoma

    NASA Astrophysics Data System (ADS)

    Shaker, Maryam N.; Ramadan, Heba S.; Mohamed, Moustafa M.; El khatib, Ahmed M.; Roston, Gamal D.

    2014-10-01

    Nanoparticles (NPs) fabricated from the biodegradable copolymer poly(lactic- co-glycolic acid) (PLGA) were investigated as a drug delivery system to enhance the photodynamic efficacy of 5-aminolevulinic acid (5-ALA) in mice bearing Ehrlich ascites carcinoma. The PLGA-encapsulated 5-ALA NPs were prepared using binary organic solvent diffusion method and characterized in terms of shape and particle size. The in vivo photodynamic efficiency in Ehrlich ascites-bearing mice was studied. The obtained particles were uniform in size with spherical shape of mean size of 249.5 nm as obtained by particle size analyzer and the in vitro release studies demonstrated a controlled release profile of 5-ALA. Tumor-bearing mice injected with PLGA-encapsulated 5-ALA NPs exhibited significantly smaller mean tumor volume, increased tumor growth delay compared with the control group and the group injected with free 5-ALA during the time course of the experiment. Histopathological examination of tumor from mice treated with PLGA-encapsulated 5-ALA NPs showed regression of tumor cells, in contrast to those obtained from mice treated with free 5-ALA. The results indicate that PLGA-encapsulated 5-ALA NPs are a successful delivery system for improving photodynamic activity in the target tissue.

  19. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    PubMed

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned. PMID:26749322

  20. Development of a porous PLGA-based scaffold for mastoid air cell regeneration

    PubMed Central

    Gould, Toby W. A.; Birchall, John P.; Mallick, Ali S.; Alliston, Tamara; Lustig, Lawrence R.; Shakesheff, Kevin M.

    2015-01-01

    Objective To develop a porous, biodegradable scaffold for mastoid air cell regeneration. Study Design In vitro development of a temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) (PLGA/PEG) scaffold tailored for this application. Methods Human mastoid bone microstructure and porosity was investigated using micro-computed tomography. PLGA/PEG-alginate scaffolds were developed and scaffold porosity was assessed. Human bone marrow mesenchymal stem cells (hBM-MSCs) were cultured on the scaffolds in vitro. Scaffolds were loaded with ciprofloxacin and release of ciprofloxacin over time in vitro was assessed. Results Porosity of human mastoid bone was measured at 83% with an average pore size of 1.3mm. PLGA/PEG-alginate scaffold porosity ranged from 43–78% depending on the alginate bead content. hBM-MSCs proliferate on the scaffolds in vitro, and release of ciprofloxacin from the scaffolds was demonstrated over 7–10 weeks. Conclusion The PLGA/PEG-alginate scaffolds developed in this study demonstrate similar structural features to human mastoid bone, support cell growth and display sustained antibiotic release. These scaffolds may be of potential clinical use in mastoid air cell regeneration. Further in vivo studies to assess the suitability of PLGA/PEG-alginate scaffolds for this application are required. PMID:23670365

  1. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system

    PubMed Central

    Wang, Hua; Liu, Jun; Tao, Shan; Chai, Guihong; Wang, Jianwei; Hu, Fu-Qiang; Yuan, Hong

    2015-01-01

    Purpose Nanoparticles (NPs) that target bone tissue were developed using poly(lactic-co-glycolic acid) (PLGA) copolymers and tetracycline (TC)-based bone-targeting moieties. These NPs are expected to enable the transport of drugs, such as simvastatin (SIM), for the treatment of osteoporosis. Methods The molecular structures of TC–PLGA were validated by 1H-NMR, and the SIM-loaded NPs were prepared using the solvent emulsification method. The surface properties, cytotoxicity, cellular uptake, cell mineralization, bone targeting potential, and animal pharmacodynamics of the TC–PLGA NPs were evaluated and compared to those of PLGA NPs. Results It was confirmed that the average particle size of the NPs was approximately 220 nm. In phosphate-buffered saline (PBS, pH 7.4), the SIM-loaded NPs exhibited a cumulative release of up to 80% within 72 hours. An in vitro cell evaluation indicated that the NPs had an excellent cellular uptake capacity and showed great biocompatibility with MC3T3-E1 cells, thereby reducing the cytotoxic effects of SIM. The cell mineralization assay showed that the SIM-loaded NPs induced osteogenic differentiation and mineralized nodule formation in MC3T3-E1 cells, thereby achieving the same effect as SIM. Preliminary findings from in vitro and in vivo bone affinity assays indicated that the TC–PLGA NPs may display increased bone-targeting efficiency compared to PLGA NPs lacking a TC moiety. The use of SIM-loaded TC–PLGA NPs in treating osteoporosis was tested through animal pharmacodynamics analyses performed in ovariectomized rats, and the results suggested that the SIM-loaded TC–PLGA NPs can improve the curative effects of SIM on the recovery of bone mineral density compared to either SIM-loaded PLGA NPs or SIM alone. Conclusion Bone-targeting NPs, which were based on the conjugation of TC to PLGA copolymers, have the ability to target bone. These NPs may be developed as a delivery system for hydrophobic drugs, and they are expected to

  2. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes. PMID:2235892

  3. Release of paclitaxel from polylactide-co-glycolide (PLGA) microparticles and discs under irradiation.

    PubMed

    Wang, J; Ng, C W; Win, K Y; Shoemakers, P; Lee, T K Y; Feng, S S; Wang, C H

    2003-01-01

    Paclitaxel is a promising anti-cancer drug as well as a radiosensitizer for chemotherapy and radiotherapy applications. Because of the poor solubility of paclitaxel in water and most pharmaceutical reagents, it is usually formulated with an adjuvant called Cremophor EL, which causes severe side effects. This work develops new dosage forms of paclitaxel for controlled release application, which do not require the adjuvant and, thus, can avoid its associated side effects. Paclitaxel was encapsulated into the PLGA matrix with various additives such as polyethylene glycol (PEG), isopropyl myristate (IPM) and d-alpha tocopheryl polyethylene glycol (Vitamin E TPGS). These additives were used to enhance the release rate of paclitaxel from the polymer matrix. Spray-drying and an hydraulic press were used to prepare paclitaxel-PLGA microspheres and discs. The microspheres and discs were given different irradiation doses to investigate their effects on the surface morphology (characterized by SEM, AFM and XPS) and in vitro release properties. There seems to be a small effect of the ionizing radiation on various formulations. Although the irradiation did not cause observable changes on the morphology of the polymer matrix, the release rate can be enhanced by a few per cent. It was found that PEG has the highest enhancement effect for release rate among all the additives investigated in this study. PMID:12881113

  4. Injectable PLGA/hydrocortisone formulation produced by continuous supercritical emulsion extraction.

    PubMed

    Falco, Nunzia; Reverchon, Ernesto; Della Porta, Giovanna

    2013-01-30

    The objective of the present study was to develop an anti-inflammatory prolonged action formulation for local injection in prefilled syringes. Hydrocortisone acetate (HA) was selected as a model corticosteroid drug to be incorporated in poly(lactic-co-glycolic) (PLGA) microspheres. The formulation was obtained by supercritical emulsion extraction in continuous operation layout (SEE-C) to test the process robustness for a continuous industrial production. PLGA/HA microspheres with mean sizes between 1 μm (SD±0.20) and 5 μm (SD±1.45) were obtained when operating at 80 bar and 38 °C with a L/G ratio of 0.1 in the counter-current tower. The produced microdevices showed excellent encapsulation efficiencies between 75% and 80%, depending on the emulsion formulations tested, and different sustained release in the range of 6-15 days. In dependence of the different emulsion (single or double) processed by SEE-C, different products can be obtained according to the therapeutic requests. SEE-C confirms to be an innovative and flexible technology for biopolymer microdevices production, coupling the efficiency of continuous operation to the easy process scalability. PMID:23124104

  5. Preparation and Characterization of Novel PBAE/PLGA Polymer Blend Microparticles for DNA Vaccine Delivery

    PubMed Central

    Balashanmugam, Meenashi Vanathi; Nagarethinam, Sivagurunathan; Jagani, Hitesh; Josyula, Venkata Rao; Alrohaimi, Abdulmohsen; Udupa, Nayanabhirama

    2014-01-01

    Context. Poly(beta-amino ester) (PBAE) with its pH sensitiveness and Poly(lactic-co-glycolic acid) (PLGA) with huge DNA cargo capacity in combination prove to be highly efficient as DNA delivery system. Objective. To study the effectiveness of novel synthesized PBAE polymer with PLGA blend at different ratios in DNA vaccine delivery. Methods. In the present study, multifunctional polymer blend microparticles using a combination of PLGA and novel PBAE polymers A1 (bis(3-(propionyloxy)propyl)3,3′-(propane-1,3-diyl-bis(methylazanediyl))dipropanoate) and A2 (bis(4-(propionyloxy)butyl)3,3′-(ethane-1,2-diyl-bis(isopropylazanediyl))dipropanoate) at different ratios (85 : 15, 75 : 25, and 50 : 50) were prepared by double emulsion solvent removal method. The microparticles were characterized for cytotoxicity, transfection efficiency, and DNA encapsulation efficiency. Result. It was evident from results that among the microparticles prepared with PLGA/PBAE blend the PLGA : PBAE at 85 : 15 ratio was found to be more effective combination than the microparticles prepared with PLGA alone in terms of transfection efficiency and better DNA integrity. Microparticles made of PLGA and PBAE A1 at 85 : 15 ratio, respectively, were found to be less toxic when compared with microparticles prepared with A2 polymer. Conclusion. The results encourage the use of the synthesized PBAE polymer in combination with PLGA as an effective gene delivery system. PMID:25401137

  6. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization.

    PubMed

    Parumasivam, Thaigarajan; Leung, Sharon S Y; Quan, Diana Huynh; Triccas, Jamie A; Britton, Warwick J; Chan, Hak-Kim

    2016-06-10

    Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake. PMID:27049049

  7. Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics.

    PubMed

    Zhou, Xing; Zhao, Yang; Chen, Siyu; Han, Songling; Xu, Xiaoqiu; Guo, Jiawei; Liu, Mengyu; Che, Ling; Li, Xiaohui; Zhang, Jianxiang

    2016-08-01

    Targeted delivery of therapeutics to the intestine is preferred for the management of many diseases due to its diverse advantages. Currently, there are still challenges in creating cost-effective and translational pH-responsive microspheres for intestinal delivery of various hydrophobic drugs. Herein we report a multiple noncovalent interactions-mediated assembly strategy in which carboxyl-bearing compounds (CBCs) are guest molecules, while poly(N-isopropylacrylamide) (PNIPAm) serves as a host polymer. Formation of microparticles and therapeutic packaging can be achieved simultaneously by this assembly approach, leading to well-shaped microspheres with extremely higher drug loading capacity as compared to microspheres based on two FDA-approved materials of poly(d,l-lactide-co-glycolide) (PLGA) and an enteric coating polymer EudragitS 100 (S100). Also, carboxyl-deficient hydrophobic drugs can be effectively entrapped. These assembled microspheres, with excellent reconstitution capability as well as desirable scalability, could selectively release drug molecules under intestinal conditions. By significantly enhancing drug dissolution/release in the intestine, these pH-responsive assemblies may notably improve the oral bioavailability of loaded therapeutics. Moreover, the assembled microspheres possessed superior therapeutic performance in rodent models of inflammation and tumor over the control microspheres derived from PLGA and S100. Therapy with newly developed microspheres did not cause undesirable side effects. Furthermore, in vivo evaluation in mice revealed the carrier material PNIPAm was safe for oral delivery at doses as high as 10 g/kg. Collectively, our findings demonstrated that this type of pH-responsive microsphere may function as superior and translational intestine-directed delivery systems for a diverse array of therapeutics. PMID:27398635

  8. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays. PMID:26972467

  9. Cartilage Regeneration of Adipose-Derived Stem Cells in the TGF-β1-Immobilized PLGA-Gelatin Scaffold.

    PubMed

    Yin, Feng; Cai, Junfeng; Zen, Wen; Wei, Yanhui; Zhou, Wei; Yuan, Feng; Singh, Shree Ram; Wei, Yiyong

    2015-06-01

    Articular cartilage has restricted self-regenerative capacity; therefore, treatment of cartilage lesions is a great challenge in the field of orthopedics. In the present study, we evaluate the enhancing effect of a transforming growth factor-beta 1 (TGF-β1)-immobilized scaffold, fabricated by incorporating TGF-β1-loaded gelatin microspheres into PLGA framework, on the differentiation of adipose-derived stem cells (ASCs) into chondrocytes. Significant increase in cell proliferation was observed in the TGF-β1-immobilized PLGA-gelatin scaffold, as compared with the ASC-seeded non-TGF-β1-immobilized PLGA-gelatin scaffold. When chondrogenic differentiation of ASCs was evaluated for both constructs, sulfated glycosaminoglycan (sGAG) content was significantly higher in the TGF-β1-immobilized scaffold. This study showed that ASCs containing the TGF-β1-immobilized scaffold better promoted cartilage regeneration in defective articular cartilage, which is assessed by histological observation. Based on the above results, we conclude that TGF-β1-immobilized PLGA-gelatin scaffold seeded with ASCs considerably enhances the quality of the tissue-engineered cartilage, therefore, advancing the field of cartilage tissue engineering. PMID:25267436

  10. microsphere assemblies

    NASA Astrophysics Data System (ADS)

    Peña-Flores, Jesús I.; Palomec-Garfias, Abraham F.; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-09-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases.

  11. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    SciTech Connect

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  12. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Liu, Yang; Luo, Rifang; Chen, Si; Li, Xin; Yuan, Shuheng; Wang, Jin; Huang, Nan

    2015-02-01

    Drug-eluting stents (DESs) have been an important breakthrough for interventional cardiology applications since 2002. Though successful in reducing restenosis, some adverse clinical problems still emerged, which were mostly caused by the bare-metal stents and non-biodegradable polymer coatings, associated with the delayed endothelialization process. In this study, dexamethasone-loaded poly (lactic-co-glycolic acid) (PLGA) coatings were developed to explore the potential application of dexamethasone-eluting stents. Dexamethasone-eluting PLGA stents were prepared using ultrasonic atomization spray method. For other tests like stability and cytocompatibility and hemocompatibility tests, dexamethasone loaded coatings were deposited on 316L SS wafers. Fourier transform-infrared spectroscopy (FT-IR) results demonstrated that there was no chemical reaction between PLGA and dexamethasone. The balloon expansion experiment and surface morphology observation suggested that the stent coatings were smooth and uniform, and could also withstand the compressive and tensile strains imparted without cracking after stent expansion. The drug release behavior in vitro indicated that dexamethasone existed burst release within 1 day, but it presented linear release characteristics after 6 days. In vitro platelets adhesion, activation test and APTT test were also done, which showed that after blending dexamethasone into PLGA, the hemocompatibility was improved. Besides, dexamethasone and dexamethasone-loaded PLGA coatings could significantly inhibit the attachment and proliferation of smooth muscle cells.

  13. Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds.

    PubMed

    Rediguieri, Carolina Fracalossi; de Jesus Andreoli Pinto, Terezinha; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; do Nascimento Pedrosa, Tatiana; Maria-Engler, Silvya Stuchi; De Bank, Paul A

    2016-04-01

    The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects. PMID:26757850

  14. Biodegradable polymer (PLGA) coatings featuring cinnamaldehyde and carvacrol mitigate biofilm formation.

    PubMed

    Zodrow, Katherine R; Schiffman, Jessica D; Elimelech, Menachem

    2012-10-01

    Biofilm-associated infections are one of the leading causes of death in the United States. Although infections may be treated with antibiotics, the overuse of antibiotics has led to the spread of antibiotic resistance. Many natural antimicrobial compounds derived from edible plants are safe for human use and target bacteria nonspecifically. Therefore, they may impair biofilm formation with less evolutionary pressure on pathogens. Here, we explore the use of two natural antimicrobial compounds, cinnamaldehyde (CA, from cinnamon) and carvacrol (CARV, from oregano), for biofilm prevention. We have fabricated and characterized films that incorporate CA and CARV into the biodegradable, FDA-approved polymer poly(lactic-co-glycolic acid), PLGA. The addition of CA and CARV to PLGA films not only adds antimicrobial activity but also changes the surface properties of the films, making them more hydrophilic and therefore more resistant to bacterial attachment. An addition of 0.1% CA to a PLGA film significantly impairs biofilm development by Staphylococcus aureus, and 0.1% CARV in PLGA significantly decreases biofilm formation by both Escherichia coli and S. aureus. Pseudomonas aeruginosa, which is less susceptible to CA and CARV, was not affected by the addition of 0.1% CA or CARV to the PLGA coatings; however, P. aeruginosa biofilm was significantly reduced by 1.0% CA. These results indicate that both CA and CARV could potentially be used in low concentrations as natural additives in polymer coatings for indwelling devices to delay colonization by bacteria. PMID:22937881

  15. Microsphere size influences the foreign body reaction.

    PubMed

    Zandstra, J; Hiemstra, C; Petersen, A H; Zuidema, J; van Beuge, M M; Rodriguez, S; Lathuile, A A; Veldhuis, G J; Steendam, R; Bank, R A; Popa, E R

    2014-01-01

    Biodegradable poly-(DL-lactide-co-glycolide) (PLGA) microspheres (MSP) are attractive candidate vehicles for site-specific or systemic sustained release of therapeutic compounds. This release may be altered by the host's foreign body reaction (FBR), which is dependent on the characteristics of the implant, e.g. chemistry, shape or size. In this study, we focused on the characterisation of the influence of MSP size on the FBR. To this end we injected monodisperse MSP of defined size (small 5.8 µm, coefficient of variance (CV) 14 % and large 29.8 µm, CV 4 %) and polydisperse MSP (average diameter 34.1 µm, CV 51 %) under the skin of rats. MSP implants were retrieved at day 7, 14 and 28 after transplantation. The FBR was studied in terms of macrophage infiltration, implant encapsulation, vascularisation and extracellular matrix deposition. Although PLGA MSP of all different sizes demonstrated excellent in vitro and in vivo biocompatibility, significant differences were found in the characteristics of the FBR. Small MSP were phagocytosed, while large MSP were not. Large MSP occasionally elicited giant cell formation, which was not observed after implantation of small MSP. Cellular and macrophage influx and collagen deposition were increased in small MSP implants compared to large MSP. We conclude that the MSP size influences the FBR and thus might influence clinical outcome when using MSP as a drug delivery device. We propose that a rational choice of MSP size can aid in optimising the therapeutic efficacy of microsphere-based therapies in vivo. PMID:25350249

  16. Characterization of ciclosporin A loaded poly (D,L lactide-co-glycolide) microspheres using modulated temperature differential scanning calorimetry.

    PubMed

    Passerini, N; Craig, D Q M

    2002-07-01

    The aim of this study was to investigate the physical structure of poly (D,L lactide-co-glycolide) (PLGA) microspheres loaded with ciclosporin A in terms of the amorphous properties of the individual components and the phase separation characteristics of the binary systems. Microspheres were prepared using a standard oil-in-water emulsion technique. The thermal properties of the PLGA, ciclosporin A and loaded spheres were investigated using modulated temperature differential scanning calorimetry (MTDSC) using a TA Instruments MTDSC 2920, with scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and high-performance liquid chromatography used as supportive techniques. MTDSC indicated a glass transition for ciclosporin A in the reversing heat flow signal at 107 degrees C, supported by temperature cycling studies, while XRD showed clear evidence for diffraction peaks, thereby indicating that the material as received is semi-crystalline. The unloaded PLGA spheres showed a glass transition (Tg) at 43 degrees C, with no reduction in Tg being observed on loading the peptide up to 50%, w/w. Similarly, no evidence for diffraction peaks were seen for the drug-loaded systems, although the glass transition corresponding to the peptide was observed for the loaded microspheres, suggesting that the drug is present as a separate amorphous phase. Similarly, SEM studies showed the appearance of distinct "islands" on the surface of the spheres that are suggested to correspond to the drug phase, with the size of the islands increasing with drug loading. Evidence is therefore presented that ciclosporin A may exist in a range of solid states, with the degree of crystallinity being altered by processing. In addition, there appears to be little or no miscibility between the drug and PLGA using the manufacturing protocol employed here. These findings may have implications for the choice of manufacturing protocol, the release of peptide drugs from PLGA microspheres and the

  17. Stabilization of layer-by-layer engineered multilayered hollow microspheres.

    PubMed

    Liu, Peng

    2014-05-01

    Polymer multilayered hollow microspheres prepared by layer-by-layer (LbL) self-assembly attract more and more interest due to their unique application, especially as drug delivery system (DDS). Unfortunately, the multilayered hollow microspheres assembled via weak linkages could fuse and/or aggregate in high ionic strength media or strong acidic or basic media. This severely restricts the practical applications of the multilayered hollow microspheres as DDS in human physiological medium. In the present work, the progress in stabilization of the multilayered hollow microspheres is reviewed, with emphasis on the assembling process and their crosslinking mechanism. PMID:24321861

  18. Effects of Microemulsion Preparation Conditions on Drug Encapsulation Efficiency of PLGA Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ng, Set Hui; Ooi, Ing Hong

    2011-12-01

    Emulsion solvent evaporation technique is widely used to prepare nanoparticles of many organic polymer drug carriers. The mechanism of nanoparticle generation by this technique involves oil-in-water (O/W) microemulsion formation followed by solvent evaporation. Various microemulsion preparation conditions can affect the encapsulation efficiency of drug in the nanoparticulate carrier. In this study, emulsifying speed, emulsifying temperature, and organic-to-aqueous phase ratio were varied and the resulting encapsulation efficiency of a model drug in Poly(Lactide-co-Glycolide) (PLGA) nanoparticles was determined. The organic phase containing PLGA and a model drug dissolved in chloroform was first dispersed in an aqueous solution containing 0.5 %(w/v) Poly(vinyl alcohol) (PVA), which was then homogenized at high speeds. The resulting O/W microemulsion was subsequently subjected to stirring at room temperature for four hours during which the solvent diffused and evaporated gradually. The fine white suspension was centrifuged and freeze-dried. The model drug loading in the PLGA nanoparticles was determined using UV spectrophotometry. Results showed that the encapsulation efficiency of a model drug, salicylic acid, ranged from 8.5% to 17% depending on the microemulsion preparation conditions. Under the same temperature (15 °C) and homogenization speed (19000 rpm) conditions studied, a relatively high organic-to-aqueous phase ratio (1:5) provided salicylic acid loaded PLGA nanoparticles with significantly higher drug encapsulation efficiency. In addition, under all microemulsion preparation conditions, PLGA nanoparticles obtained after solvent evaporation and freeze drying were spherical and aggregation between the nanoparticles was not observed under a high power microscope. This indicates that PLGA nanoparticles with desirable amount of drug and with anticipated size and shape can be realized by controlling emulsification process conditions.

  19. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects. PMID:26143263

  20. Lactosylated PLGA nanoparticles containing ϵ-polylysine for the sustained release and liver-targeted delivery of the negatively charged proteins.

    PubMed

    Zhou, Ping; An, Tong; Zhao, Chuan; Li, Yuan; Li, Rongshan; Yang, Rui; Wang, Yinsong; Gao, Xiujun

    2015-01-30

    The acidic internal pH environment, initial burst release and lack of targeting property are main limitations of poly(lactide-co-glycolide) (PLGA) nanoparticles for carrying proteins. In this study, ϵ-polylysine (ϵ-PL) was used as an anti-acidic agent and a protein protectant to prepare PLGA nanoparticles for the protein delivery. To obtain the liver-targeting capability, lactosylated PLGA (Lac-PLGA) was synthesized by conjugation of lactose acid to PLGA at both ends, and then used to prepare nanoparticles containing ϵ-PL by the nanoprecipitation method. Bovine serumal bumin (BSA), a negatively charged protein, was efficiently loaded into Lac-PLGA/ϵ-PL nanoparticles and exhibited significant decreased burst release in vitro, sustained release in the blood and increased liver distribution in mice after intravenous injections. The enhanced stability of BSA was due to its electrical interaction with ϵ-PL and the neutralized internal environment of nanoparticles. In conclusion, Lac-PLGA/ϵ-PL nanoparticle system can be used as a promising carrier for the negatively charged proteins. PMID:25510599

  1. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague

    PubMed Central

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2014-01-01

    Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764±3,124) to 7 weeks (126,468±19,176) after vaccination. These findings strongly suggest that F1-antigen loaded

  2. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague.

    PubMed

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2014-01-01

    Yersinia pestis F1 antigen-loaded poly(DL-lactide-co-glycolide)/polyethylene glycol (PEG) (PLGA/PEG) microspheres were produced using a water-in-oil-in-water emulsion/solvent extraction technique and assayed for their percent yield, entrapment efficiency, surface morphology, particle size, zeta potential, in vitro release properties, and in vivo animal protect efficacy. The Y. pestis F1 antigen-loaded microspheres (mean particle size 3.8 μm) exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (38.1%), and presented a controlled in vitro release profile with a low initial burst (18.5%), then continued to release Y. pestis F1 antigen over 70 days. The distribution (%) of Y. pestis F1 on the microspheres surface, outer layer, and core was 3.1%, 28.9%, and 60.7%, respectively. A steady release rate was noticed to be 0.55 μg Y. pestis F1 antigen/mg microspheres/day of Y. pestis F1 antigen release maintained for 42 days. The cumulative release amount at the 1st, 28th, and 42nd days was 8.2, 26.7, and 31.0 μg Y. pestis F1 antigen/mg microspheres, respectively. The 100 times median lethal dose 50% (LD50) of Y. pestis Yokohama-R strain by intraperitoneal injection challenge in mice test, in which mice received one dose of 40 μg F1 antigen content of PLGA/PEG microspheres, F1 antigen in Al(OH)3, and in comparison with F1 antigen in Al(OH)3 vaccine in two doses, was evaluated after given by subcutaneous immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with one dose of F1 antigen-loaded PLGA/PEG microspheres, and two doses of F1 antigen in Al(OH)3 vaccine (100%). In vivo vaccination studies also demonstrated that F1 vaccines microspheres had a protective ability; its steady-state IgG immune protection in mice plasma dramatic increased from 2 weeks (18,764 ± 3,124) to 7 weeks (126,468 ± 19,176) after vaccination. These findings strongly suggest that F1-antigen

  3. Poly(acrylic acid)-modified Fe3O4 microspheres for magnetic-targeted and pH-triggered anticancer drug delivery.

    PubMed

    Kang, Xiao-Jiao; Dai, Yun-Lu; Ma, Ping-An; Yang, Dong-Mei; Li, Chun-Xia; Hou, Zhi-Yao; Cheng, Zi-Yong; Lin, Jun

    2012-12-01

    Monodisperse poly(acrylic acid)-modified Fe(3)O(4) (PAA@Fe(3)O(4)) hybrid microspheres with dual responses (magnetic field and pH) were successfully fabricated. The PAA polymer was encapsulated into the inner cavity of Fe(3)O(4) hollow spheres by a vacuum-casting route and photo-initiated polymerization. TEM images show that the samples consist of monodisperse porous spheres with a diameter around 200 nm. The Fe(3)O(4) spheres, after modification with the PAA polymer, still possess enough space to hold guest molecules. We selected doxorubicin (DOX) as a model drug to investigate the drug loading and release behavior of as-prepared composites. The release of DOX molecules was strongly dependent on the pH value due to the unique property of PAA. The HeLa cell-uptake process of DOX-loaded PAA@Fe(3)O(4) was observed by confocal laser scanning microscopy (CLSM). After being incubated with HeLa cells under magnet magnetically guided conditions, the cytotoxtic effects of DOX-loaded PAA@Fe(3)O(4) increased. These results indicate that pH-responsive magnetic PAA@Fe(3)O(4) spheres have the potential to be used as anticancer drug carriers. PMID:23080514

  4. The effect of cross-linking on the microstructure, mechanical properties and biocompatibility of electrospun polycaprolactone-gelatin/PLGA-gelatin/PLGA-chitosan hybrid composite

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi-Hiep; Lee, Byong-Taek

    2012-06-01

    In this study, multilayered scaffolds composed of polycaprolactone (PCL)-gelatin/poly(lactic-co-glycolic acid) (PLGA)-gelatin/PLGA-chitosan artificial blood vessels were fabricated using a double-ejection electrospinning system. The mixed fibers from individual materials were observed by scanning electron microscopy. The effects of the cross-linking process on the microstructure, mechanical properties and biocompatibility of the fibers were examined. The tensile stress and liquid strength of the cross-linked artificial blood vessels were 2.3 MPa and 340 mmHg, respectively, and were significantly higher than for the non-cross-linked vessel (2.0 MPa and 120 mmHg). The biocompatibility of the cross-linked artificial blood vessel scaffold was examined using the MTT assay and by evaluating cell attachment and cell proliferation. The cross-linked PCL-gelatin/PLGA-gelatin/PLGA-chitosan artificial blood vessel scaffold displayed excellent flexibility, was able to withstand high pressures and promoted cell growth; thus, this novel material holds great promise for eventual use in artificial blood vessels.

  5. pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.

    PubMed

    Hild, Nora; Tawakoli, Pune N; Halter, Jonas G; Sauer, Bärbel; Buchalla, Wolfgang; Stark, Wendelin J; Mohn, Dirk

    2013-11-01

    Biomaterials made of biodegradable poly(α-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications. PMID:23816650

  6. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model

    PubMed Central

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  7. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model.

    PubMed

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  8. PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2014-03-01

    Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.

  9. Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect

    PubMed Central

    Venkatesh, D. Nagasamy; Baskaran, Mahendran; Karri, Veera Venkata Satyanarayana Reddy; Mannemala, Sai Sandeep; Radhakrishna, Kollipara; Goti, Sandip

    2015-01-01

    Nelfinavir mesylate (NFV) is an anti-viral drug, used in the treatment of Acquired Immunodeficiency Syndrome (AIDS). Poor oral bioavailability and shorter half-life (3.5–5 h) remain a major clinical limitation of NFV leading to unpredictable drug bioavailability and frequent dosing. In this context, the objective of the present study was to formulate NFV loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which can increase the solubility and oral bioavailability along with sustained release of the drug. NFV loaded PLGA-NPs were prepared by nanoprecipitation method using PLGA and Poloxomer 407. The prepared NPs were evaluated for particle size, zeta potential, morphology, drug content, entrapment efficiency (EE) and in vitro dissolution studies. Oral bioavailability studies were carried out in New Zealand rabbits by administering developed NFV PLGA-NPs and pure drug suspension. PLGA-NPs prepared by using 1:4 ratio of drug and PLGA, with a stirring rate of 1500 rpm for 4 h. The prepared NPs were in the size of 185 ± 0.83 nm with a zeta potential of 28.7 ± 0.09 mV. The developed NPs were found to be spherical with uniform size distribution. The drug content and EE of the optimized formulation were found to be 36 ± 0.19% and 72 ± 0.47% respectively. After oral administration of NFV PLGA-NPs, the relative bioavailability was enhanced about 4.94 fold compared to NFV suspension as a control. The results describe an effective strategy for oral delivery of NFV loaded PLGA NPs that helps in enhancing bioavailability and reduce the frequency of dosing. PMID:26702262

  10. Biodegradable polylactide microspheres enhance specific immune response induced by Hepatitis B surface antigen

    PubMed Central

    Qiu, Shaohui; Wei, Qiang; Liang, Zhenglun; Ma, Guanghui; Wang, Lianyan; An, Wenqi; Ma, Xiaowei; Fang, Xin; He, Peng; Li, Hemin; Hu, Zhongyu

    2014-01-01

    Hepatitis B (HB) infection caused by Hepatitis B virus (HBV) is the most common liver disease in the world. HB vaccine, when administered in conjunction with alum adjuvants, induces Th2 immunity that confers protection against HBV. However, currently available vaccine formulations and adjuvants do not elicit adequate Th1 and CTL responses that are important for prevention of maternal transmission of the virus. Microspheres synthesized from poly (D, L-lactide-co-glycolide) (PLGA) or poly (D, L-lactide) (PLA) polymers have been considered as promising tools for in vivo delivery of antigens and drugs. Here we describe PLA microspheres synthesized by premix membrane emulsification method and their application in formulating a new microsphere based HB vaccine. To evaluate the immunogenicity of this microsphere vaccine, BALB/c mice were immunized with microsphere vaccine and a series of immunological assays were conducted. Results of Enzyme-linked ImmunoSpot (ELISPOT) assays revealed that the number of interferon-gamma (IFN-γ)-producing splenocytes and CD8+ T cells increased significantly in the microsphere vaccine group. Microsphere vaccine group showed enhanced specific cell lysis when compared with HB surface antigen (HBsAg) only group in 51Cr cytotoxicity assays. Moreover, microsphere vaccine elicited a comparable level of antibody production as that of HB vaccine administered with alum adjuvant. We show that phagocytosis of HBsAg by dendritic cells is more pronounced in microsphere vaccine group when compared with other control groups. These results clearly demonstrate the potential of using PLA microspheres as effective HB vaccine adjuvants for an enhanced Th1 immune response. PMID:25424942

  11. Biodegradable polylactide microspheres enhance specific immune response induced by Hepatitis B surface antigen.

    PubMed

    Qiu, Shaohui; Wei, Qiang; Liang, Zhenglun; Ma, Guanghui; Wang, Lianyan; An, Wenqi; Ma, Xiaowei; Fang, Xin; He, Peng; Li, Hemin; Hu, Zhongyu

    2014-01-01

    Hepatitis B (HB) infection caused by Hepatitis B virus (HBV) is the most common liver disease in the world. HB vaccine, when administered in conjunction with alum adjuvants, induces Th2 immunity that confers protection against HBV. However, currently available vaccine formulations and adjuvants do not elicit adequate Th1 and CTL responses that are important for prevention of maternal transmission of the virus. Microspheres synthesized from poly (D, L-lactide-co-glycolide) (PLGA) or poly (D, L-lactide) (PLA) polymers have been considered as promising tools for in vivo delivery of antigens and drugs. Here we describe PLA microspheres synthesized by premix membrane emulsification method and their application in formulating a new microsphere based HB vaccine. To evaluate the immunogenicity of this microsphere vaccine, BALB/c mice were immunized with microsphere vaccine and a series of immunological assays were conducted. Results of Enzyme-linked ImmunoSpot (ELISPOT) assays revealed that the number of interferon-gamma (IFN-γ)-producing splenocytes and CD8(+) T cells increased significantly in the microsphere vaccine group. Microsphere vaccine group showed enhanced specific cell lysis when compared with HB surface antigen (HBsAg) only group in (51)Cr cytotoxicity assays. Moreover, microsphere vaccine elicited a comparable level of antibody production as that of HB vaccine administered with alum adjuvant. We show that phagocytosis of HBsAg by dendritic cells is more pronounced in microsphere vaccine group when compared with other control groups. These results clearly demonstrate the potential of using PLA microspheres as effective HB vaccine adjuvants for an enhanced Th1 immune response. PMID:25424942

  12. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies.

    PubMed

    Alcalá-Alcalá, Sergio; Benítez-Cardoza, Claudia G; Lima-Muñoz, Enrique J; Piñón-Segundo, Elizabeth; Quintanar-Guerrero, David

    2015-07-15

    This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release. PMID:25936624

  13. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma

    PubMed Central

    Xiao, Xiaojun; Zeng, Xiaowei; Zhang, Xinxin; Ma, Li; Liu, Xiaoyu; Yu, Haiqiong; Mei, Lin; Liu, Zhigang

    2013-01-01

    Background Pollen allergy is the most common allergic disease. However, tropical pollens, such as those of Palmae, have seldom been investigated compared with the specific immunotherapy studies done on hyperallergenic birch, olive, and ragweed pollens. Although poly(lactic-co-glycolic acid) (PLGA) has been extensively applied as a biodegradable polymer in medical devices, it has rarely been utilized as a vaccine adjuvant to prevent and treat allergic disease. In this study, we investigated the immunotherapeutic effects of recombinant Caryota mitis profilin (rCmP)-loaded PLGA nanoparticles and the underlying mechanisms involved. Methods A mouse model of allergenic asthma was established for specific immunotherapy using rCmP-loaded PLGA nanoparticles as the adjuvant. The model was evaluated by determining airway hyperresponsiveness and levels of serum-specific antibodies (IgE, IgG, and IgG2a) and cytokines, and observing histologic sections of lung tissue. Results The rCmP-loaded PLGA nanoparticles effectively inhibited generation of specific IgE and secretion of the Th2 cytokine interleukin-4, facilitated generation of specific IgG2a and secretion of the Th1 cytokine interferon-gamma, converted the Th2 response to Th1, and evidently alleviated allergic symptoms. Conclusion PLGA functions more appropriately as a specific immunotherapy adjuvant for allergen vaccines than does conventional Al(OH)3 due to its superior efficacy, longer potency, and markedly fewer side effects. The rCmP-loaded PLGA nanoparticles developed herein offer a promising avenue for specific immunotherapy in allergic asthma. PMID:24376349

  14. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres

    PubMed Central

    Yan, Ling; Jiang, Dian-Ming; Cao, Zhi-Dong; Wu, Jun; Wang, Xin; Wang, Zheng-Long; Li, Ya-Jun; Yi, Yong-Fen

    2015-01-01

    Purpose The purpose of this study was to investigate the curative effect of bone-like hydroxyapatite/poly amino acid (BHA/PAA) as a carrier for poly(lactic-co-glycolic acid)-coated rifapentine microsphere (RPM) in the treatment of rabbit chronic osteomyelitis induced by Staphylococcus aureus. Methods RPM was prepared through an oil-in-water emulsion solvent evaporation method, and RPM was combined with BHA/PAA to obtain drug-loaded, slow-releasing materials. Twenty-six New Zealand white rabbits were induced to establish the animal model of chronic osteomyelitis. After debridement, the animals were randomly divided into three groups (n=8): the experimental group (with RPM-loaded BHA/PAA), the control group (with BHA/PAA), and the blank group. The RPM-loaded BHA/PAA was evaluated for antibacterial activity, dynamics of drug release, and osteogenic ability through in vitro and in vivo experiments. Results In vitro, RPM-loaded BHA/PAA released the antibiotics slowly, inhibiting the bacterial growth of S. aureus for up to 5 weeks. In vivo, at week 4, the bacterial colony count was significantly lower in the experimental group than in the control and blank groups (P<0.01). At week 12, the chronic osteomyelitis was cured and the bone defect was repaired in the experimental group, whereas the infection and bone defect persisted in the control and blank groups. Conclusion In vitro and in vivo experiments demonstrated that RPM-loaded BHA/PAA effectively cured S. aureus-induced chronic osteomyelitis. Therefore, BHA/PAA has potential value as a slow-releasing material in clinical setting. Further investigation is needed to determine the optimal dosage for loading rifapentine. PMID:26213463

  15. Metallic coating of microspheres

    SciTech Connect

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  16. Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration.

    PubMed

    Zhang, Ershuai; Zhu, Chuanshun; Yang, Jun; Sun, Hong; Zhang, Xiaomin; Li, Suhua; Wang, Yonglan; Sun, Lu; Yao, Fanglian

    2016-01-01

    With the aim to explore a membrane system with appropriate degradation rate and excellent cell-occlusiveness for guided tissue regeneration (GTR), a series of poly(D, L-lactic acid) (PDLLA)/poly(D, L-lactic-co-glycolic acid) (PLGA) (100/0, 70/30, 50/50, 30/70, 0/100, w/w) composite membranes were fabricated via electrospinning. The fabricated membranes were evaluated by morphological characterization, water contact angle measurement and tensile test. In vitro degradation was characterized in terms of the weight loss and the morphological change. Moreover, in vitro cytologic research revealed that PDLLA/PLGA composite membranes could efficiently inhibit the infiltration of 293 T cells. Finally, subcutaneous implant test on SD rat in vivo showed that PDLLA/PLGA (70/30, 50/50) composite membranes could function well as a physical barrier to prevent cellular infiltration within 13 weeks. These results suggested that electrospun PDLLA/PLGA (50/50) composite membranes could serve as a promising barrier membrane for guided tissue regeneration due to suitable biodegradability, preferable mechanical properties and excellent cellular shielding effects. PMID:26478312

  17. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers.

    PubMed

    Xiong, Yi; Zhu, Ji-Xiang; Fang, Zheng-Yu; Zeng, Cheng-Guang; Zhang, Chao; Qi, Guo-Long; Li, Man-Hui; Zhang, Wei; Quan, Da-Ping; Wan, Jun

    2012-01-01

    Biomaterials and neurotrophic factors represent promising guidance for neural repair. In this study, we combined poly-(lactic acid-co-glycolic acid) (PLGA) conduits and neurotrophin-3 (NT-3) to generate NT-3-loaded PLGA carriers in vitro. Bioactive NT-3 was released stably and constantly from PLGA conduits for up to 4 weeks. Neural stem cells (NSCs) and Schwann cells (SCs) were coseeded into an NT-releasing scaffold system and cultured for 14 days. Immunoreactivity against Map2 showed that most of the grafted cells (>80%) were differentiated toward neurons. Double-immunostaining for synaptogenesis and myelination revealed the formation of synaptic structures and myelin sheaths in the coculture, which was also observed under electron microscope. Furthermore, under depolarizing conditions, these synapses were excitable and capable of releasing synaptic vesicles labeled with FM1-43 or FM4-64. Taken together, coseeding NSCs and SCs into NT-3-loaded PLGA carriers increased the differentiation of NSCs into neurons, developed synaptic connections, exhibited synaptic activities, and myelination of neurites by the accompanying SCs. These results provide an experimental basis that supports transplantation of functional neural construction in spinal cord injury. PMID:22619535

  18. Designed Stem Cell Aggregates: Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles (Adv. Healthcare Mater. 15/2016).

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    E-cadherin-modified poly(lactic-co-glycolic acid) (hE-cad-PLGA) microparticles were fabricated and then mediated the 3D cell aggregates of human mesenchymal stem cells (MSCs) on page 1949 by Jun Yang and co-workers. The hE-cad-Fc matrix and the PLGA microparticles synergistically regulate the proliferation and bioactive factors secretions of MSCs by activating EGFR, AKT and ERK1/2 signaling pathways. The hE-cad-PLGA microparticles offer a novel route to expand multipotent stem cell-based clinical applications. PMID:27511954

  19. Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples.

    PubMed

    Zhang, Wenmin; Yan, Zhiming; Gao, Jia; Tong, Ping; Liu, Wei; Zhang, Lan

    2015-06-26

    Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres were synthesized and characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry, nitrogen adsorption porosimetry and zeta potential analyzer. The synthesized Fe3O4@SiO2@UiO-66 microspheres were first used for magnetic solid-phase extraction (MSPE) of domoic acid (DA) in shellfish samples. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a fast, simple and sensitive method for the determination of DA was established successfully. Under the optimized conditions, the developed method showed short analysis time, good linearity (r(2) = 0.9990), low limit of detection (1.45 pg mL(-1); S/N = 3:1), low limit of quantification (4.82 pg mL(-1); S/N = 10:1), and good extraction repeatability (RSD ≤ 5.0%; n = 5). Real shellfish samples were processed using the developed method, and trace level of DA was detected. The results demonstrate that Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres are the promising sorbents for rapid and efficient extraction of polar analytes from complex biological samples. PMID:25997847

  20. Peptide/protein vaccine delivery system based on PLGA particles.

    PubMed

    Allahyari, Mojgan; Mohit, Elham

    2016-03-01

    Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted. PMID:26513024

  1. Surface Wrinkling on Polydimethylsiloxane Microspheres via Wet Surface Chemical Oxidation

    PubMed Central

    Yin, Jian; Han, Xue; Cao, Yanping; Lu, Conghua

    2014-01-01

    Here we introduce a simple low-cost yet robust method to realize spontaneously wrinkled morphologies on spherical surfaces. It is based on surface chemical oxidation of aqueous-phase-synthesized polydimethylsiloxane (PDMS) microspheres in the mixed H2SO4/HNO3/H2O solution. Consequently, curvature and overstress-sensitive wrinkles including dimples and labyrinth patterns are successfully induced on the resulting oxidized PDMS microspheres. A power-law dependence of the wrinkling wavelength on the microsphere radius exists. The effects of experimental parameters on these tunable spherical wrinkles have been systematically investigated, when the microspheres are pre-deposited on a substrate. These parameters include the radius and modulus of microspheres, the mixed acid solution composition, the oxidation duration, and the water washing post-treatment. Meanwhile, the complicated chemical oxidation process has also been well studied by in-situ optical observation via the microsphere system, which represents an intractable issue in a planar system. Furthermore, we realize surface wrinkled topographies on the whole microspheres at a large scale, when microspheres are directly dispersed in the mixed acid solution for surface oxidation. These results indicate that the introduced wet surface chemical oxidation has the great potential to apply to other complicated curved surfaces for large-scale generation of well-defined wrinkling patterns, which endow the solids with desired physical properties. PMID:25028198

  2. RhBMP-2 microspheres-loaded chitosan/collagen scaffold enhanced osseointegration: an experiment in dog.

    PubMed

    Shi, Shanshan; Cheng, Xiangrong; Wang, Jiawei; Zhang, Wei; Peng, Lin; Zhang, Yufeng

    2009-01-01

    The purpose of this study is to develop a novel recombinant human bone morphogenetic protein-2 (rhBMP-2) sustained release scaffold for dental implant osseointegration, and to evaluate the effect of this scaffold on promoting bone formation. RhBMP-2 was encapsulated in the poly-D,L-lactide-co-glycolide (PLGA) biodegradable microspheres, which were subsequently dispersed in a chitosan/collagen composite scaffold. This rhBMP-2 microspheres-loaded scaffold (S-MB) was compared with a chitosan/collagen scaffold without microspheres that directly encapsulated rhBMP-2 (S-B) in vitro and in vivo. The microstructure of the new scaffold was examined with scanning electron microscopy. The release profile of rhBMP-2 in vitro was measured at interval periods. The effect of rhBMP-2 encapsulated scaffolds on enhancing bone formation through implantation in dogs' mandibles was identified by histological examination of the regenerated bone after 4 weeks of implantation. Due to PLGA microspheres being loaded, the S-MB exhibited lower values at porosity and swelling rate, as well as a higher effective release dose than that of the S-B. Bone density, bone-implant contact, and bone-fill values measured from dog experiments demonstrated that the S-MB induced bone regeneration more quickly and was timely substituted by new bone. It was concluded that this sustained carrier scaffold based on microspheres was more effective to induce implant osseointegration. PMID:18667455

  3. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  4. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  5. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-D,L-lactide-co-glycolide (PLGA) nanoparticles.

    PubMed

    Nguyen, Hanh Thuy; Tran, Tuan Hiep; Kim, Jong Oh; Yong, Chul Soon; Nguyen, Chien Ngoc

    2015-01-01

    Artesunate (ART)-a well-known anti-malarial agent is also known to have potential anti-proliferative activities but its instability, poor aqueous solubility, and lack of relevant studies have limited its application as an effective anti-cancer drug. To overcome these problems, ART was loaded in poly (lactic-co-glycolic) acid (PLGA) nanoparticles using oil/water emulsion evaporation method. PLGA nanoparticles with small particle size and high entrapment efficiency were obtained. The PLGA nanoparticles were optimized by evaluating the effects of several formulation parameters on physicochemical properties of nanoparticles. The in vitro cytotoxicity of blank PLGA, free ART, and ART-PLGA on 3 human cancer cell lines viz. A549, SCC-7, and MCF-7 was conducted using MTT assay. The particles showed nanometric size (~170 nm), large entrapment efficiency (up to 83.4%), and excellent stability (evaluated for 1 month) after lyophilization with 5% mannitol. ART was dispersed inside particle core allowing a sustained release up to 48 h. The in vitro cytotoxicity results demonstrated strong activity of ART against cancer cell lines. The ART-PLGA formulation significantly reduced cell viability than the free ART. The formulation of ART loaded PLGA nanoparticles supported a potential application of ART as an anticancer agent. PMID:24968925

  6. Stimulation of healing within a rabbit calvarial defect by a PCL/PLGA scaffold blended with TCP using solid freeform fabrication technology.

    PubMed

    Shim, Jin-Hyung; Moon, Tae-Sung; Yun, Mi-Jung; Jeon, Young-Chan; Jeong, Chang-Mo; Cho, Dong-Woo; Huh, Jung-Bo

    2012-12-01

    The purpose of this study was to investigate the healing capacity within an 8-mm rabbit calvarial defect using a polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA) scaffold blended with tri-calcium phosphate (TCP) that was constructed using solid freeform fabrication (SFF) technology. The PCL/PLGA/TCP scaffold showed a 37 % higher compressive strength and rougher surface than the PCL/PLGA scaffold. In animal experiments, new bone formation was analyzed using microcomputed tomography (micro-CT) and histological and histometric analyses. The PCL/PLGA/TCP groups had significantly greater neo-tissue areas as compared with the control groups at 4 and 8 weeks (P < 0.05). The PCL/PLGA/TCP group had significantly greater bone density as compared with the control and PCL/PLGA groups at 4 and 8 weeks (P < 0.005). The results of this study suggest that the PCL/PLGA/TCP scaffold fabricated using SFF technology is useful for recovering and enhancing new bone formation in bony defects in rabbits. PMID:22960800

  7. Evaluation of Orntide microspheres in a rat animal model and correlation to in vitro release profiles.

    PubMed

    Kostanski, J W; Dani, B A; Reynolds, G A; Bowers, C Y; DeLuca, P P

    2000-01-01

    Orntide acetate, a novel luteinizing hormone-releasing hormone (LHRH) antagonist, was prepared and evaluated in vivo in 30-day and 120-day sustained delivery formulations using a rat animal model. Orntide poly(d,l-lactide-co-glycolide) (PLGA) and poly(d,l- lactide) (PLA) microspheres were prepared by a dispersion method and administered subcutaneously in a liquid vehicle to rats at 2.2 mg Orntide/kg of body weight (30-day forms) or 8.8 mg Orntide/kg (120-day forms). Serum levels of Orntide and testosterone were monitored by radioimmunoassays, and a dose-response study at 4 doses (3, 2.25, 1.5, and 1.75 mg Orntide/kg) was conducted to determine the effective dose of Orntide. Microspheres with diameters between 3.9 and 14 micron were prepared. The onset and duration of testosterone suppression varied for different microsphere formulations and were influenced both by polymer properties and by microsphere characteristics. Microspheres prepared with 50:50 and 75:25 copolymers effectively sustained peptide release for 14 to 28 days, whereas an 85:15 copolymer and the PLA microspheres extended the pharmacological response for more than 120 days. Increase in drug load generally accelerated peptide release from the microspheres, resulting in higher initial serum levels of Orntide and shorter duration of the release. In general, apparent release was faster in vivo than under in vitro conditions. Orntide microspheres effectively suppressed testosterone in rats, providing rapid onset of release and extended periods of chemical castration. Testosterone suppression occurred immediately after microsphere administration without the initial elevation seen with LHRH superagonists. PMID:14727892

  8. Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review.

    PubMed

    Zhou, Huan; Lawrence, Joseph G; Bhaduri, Sarit B

    2012-07-01

    For several decades, composites made of polylactic acid-calcium phosphates (PLA-CaP) and polylactic acid-co-glycolic acid-calcium phosphates (PLGA-CaP) have seen widespread uses in orthopedic applications. This paper reviews the fabrication aspects of these composites, following the ubiquitous materials science approach by studying "processing-structure-property" correlations. Various fabrication processes such as microencapsulation, phase separation, electrospinning, supercritical gas foaming, etc., are reviewed, with specific examples of their applications in fabricating these composites. The effect of the incorporation of CaP materials on the mechanical and biological performance of PLA/PLGA is addressed. In addition, this paper describes the state of the art on challenges and innovations concerning CaP dispersion, incorporation of biomolecules/stem cells and long-term degradation of the composites. PMID:22342596

  9. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    SciTech Connect

    Zhou, Xiaoliang; Yan, Zhengguang Han, Xiaodong

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.

  10. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration.

    PubMed

    Ranjbar-Mohammadi, Marziyeh; Zamani, M; Prabhakaran, M P; Bahrami, S Hajir; Ramakrishna, S

    2016-01-01

    Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core-shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core-shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases. PMID:26478340

  11. Effect of blending HA-g-PLLA on xanthohumol-loaded PLGA fiber membrane.

    PubMed

    Qiao, Tiankui; Jiang, Suchen; Song, Ping; Song, Xiaofeng; Liu, Qimin; Wang, Lijuan; Chen, Xuesi

    2016-10-01

    Electropsun poly (lactide-co-glycolide) (PLGA) fiber membrane loaded xanthohumol (XN) has been developed using a co-solvent system of chloroform and dimethylformamide. To enhance its biological functionality as bone tissue engineering scaffolds, 5wt% hydroxyapatite grafted poly (l-lactic acid) (HA-g-PLLA) is blended into the spinning solution. The purpose of the present work is to disclose the effect of blending HA-g-PLLA on the corresponding properties of the medicated fiber membrane including morphology, thermodynamics, wettability, drug release, mechanics as well as cytotoxicity. XN and HA-g-PLLA can be well blended with PLGA to make fibers. Blending HA-g-PLLA not only turns amorphous XN/PLGA fiber membrane into crystal structure, but also changes the membranous wettability. Various medicated membranes exhibit the sustained release profiles. Drug release rate of the ternary membrane with HA-g-PLLA is slower compared to the binary XN/PLGA, and for the ternary membrane, the drug release accelerates with increasing XN content. A model is proposed to account for the drug release process. Tensile testing shows that at 10% of XN, the comprehensive mechanics of the ternary is preferable to the binary. At the same time, these fiber membranes are no cytotoxicity. PMID:27343844

  12. Study of Antimicrobial Effects of Clarithromycin Loaded PLGA Nanoparticles against Clinical Strains of Helicobacter pylori.

    PubMed

    Lotfipour, F; Valizadeh, H; Milani, M; Bahrami, N; Ghotaslou, R

    2016-01-01

    Clarithromycin (CLR) formulation was prepared as PLGA nanoparticles in order to enhance the therapeutic effects using the distinctive features of a nanoparticulate delivery system. CLR loaded PLGA nanoparticles were prepared by Quasi Emulsion Solvent Diffusion (QESD) method using Poly lactic-co-Glycolic Acid (PLGA) as a biodegradable polymer. Antibacterial activity of the prepared formulations was evaluated against clinical strains of Helicobacter pylori, isolated from gastric biopsies of patients with gastritis, duodenal ulcer, peptic ulcer, and gastroesophageal reflux disease undergoing endoscopy, by using agar dilution method.Spherical nanoparticles with relatively narrow size distribution (between 200 and 800 nm) in the size range of 305 ± 138, 344 ± 148 and 362 ± 110 nm were achieved for F22, F23 and F23 respectively. CLR encapsulation percentages were measured to be 57.4 ± 4.3 to 80.2 ± 4.0%. CLR loaded PLGA nanoparticles showed equal or enhanced eradication effect against H. pylori strains according to the declined MIC values in comparison with the untreated CLR.In conclusion, the prepared CLR nanoformulation showed appropriate physicochemical properties and improved activity against H. pylori that could be a suitable candidate for oral preparations. PMID:25919643

  13. Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery.

    PubMed

    Rauta, Pradipta Ranjan; Das, Niladri Mohan; Nayak, Debasis; Ashe, Sarbani; Nayak, Bismita

    2016-08-01

    Clindamycin hydrochloride (CLH) is a clinically important oral antibiotic with wide spectrum of antimicrobial activity that includes gram-positive aerobes (staphylococci, streptococci etc.), most anaerobic bacteria, Chlamydia and certain protozoa. The current study was focused to develop a stabilised clindamycin encapsulated poly lactic acid (PLA)/poly (D,L-lactide-co-glycolide) (PLGA) nano-formulation with better drug bioavailability at molecular level. Various nanoparticle (NPs) formulations of PLA and PLGA loaded with CLH were prepared by solvent evaporation method varying drug: polymer concentration (1:20, 1:10 and 1:5) and characterised (size, encapsulation efficiency, drug loading, scanning electron microscope, differential scanning calorimetry [DSC] and Fourier transform infrared [FTIR] studies). The ratio 1:10 was found to be optimal for a monodispersed and stable nano formulation for both the polymers. NP formulations demonstrated a significant controlled release profile extended up to 144 h (both CLH-PLA and CLH-PLGA). The thermal behaviour (DSC) studies confirmed the molecular dispersion of the drug within the system. The FTIR studies revealed the intactness as well as unaltered structure of drug. The CLH-PLA NPs showed enhanced antimicrobial activity against two pathogenic bacteria Streptococcus faecalis and Bacillus cereus. The results notably suggest that encapsulation of CLH into PLA/PLGA significantly increases the bioavailability of the drug and due to this enhanced drug activity; it can be widely applied for number of therapies. PMID:27463797

  14. Tracking the effect of microspheres size on the drug release from a microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot in vitro and in vivo.

    PubMed

    Lin, Xia; Wang, Jing; Xu, Yuhong; Tang, Xing; Chen, Jian; Zhang, Yu; Zhang, Yan; Yang, Ziyi

    2016-09-01

    The effects of particle size of microspheres on the drug release from a microsphere/sucrose acetate isobutyrate (SAIB) hybrid depot (m-SAIB) was investigated to develop a long-term sustained release drug delivery system with low burst release both in vitro and in vivo. A model drug, risperidone, was first encapsulated into PLGA microspheres with different particle sizes using conventional emulsification and membrane emulsification methods. The m-SAIB was prepared by dispersing the risperidone-microspheres in the SAIB depot. The drug release from m-SAIB was double controlled by the drug diffusion from the microspheres into SAIB matrix and the drug diffusion from the SAIB matrix into the medium. Large microspheres (18.95 ± 18.88 µm) prepared by the conventional homogenization method exhibited porous interior structure, which contributed to the increased drug diffusion rate from microspheres into SAIB matrix. Consequently, m-SAIB containing such microspheres showed rapid initial drug release (Cmax = 110.1 ±54.2 ng/ml) and subsequent slow drug release (Cs(4-54d)= 2.7 ± 0.8 ng/ml) in vivo. Small microspheres (5.91 ± 2.24 µm) showed dense interior structure with a decreased drug diffusion rate from microspheres into SAIB matrix. The initial drug release from the corresponding m-SAIB was significantly decreased (Cmax = 40.9 ± 13.7 ng/ml), whereas the drug release rate from 4 to 54 d was increased (Cs(4-54d)=4.1 ± 1.0 ng/ml). By further decreasing the size of microspheres to 3.38 ± 0.70 µm, the drug diffusion surface area was increased, which subsequently increased the drug release from the m-SAIB. These results demonstrate that drug release from the m-SAIB can be tailored by varying the size of microspheres to reduce the in vivo burst release of SAIB system alone. PMID:26790718

  15. Polymer-functionalised microspheres for immunosensing applications

    NASA Astrophysics Data System (ADS)

    Soria, S.; Baldini, F.; Berneschi, S.; Brenci, M.; Cosi, F.; Giannetti, A.; Nunzi conti, G.; Pelli, S.; Righini, G. C.; Tiribilli, B.

    2010-02-01

    Homogeneous polymeric thin layers have been used as functionalising agents on silica microresonators in view of immunosensing applications. We have characterised the microspheres functionalised with poly-L-lactic acid and Eudragit® L100, as an alternative to the commonly used silanes. It is shown that after polymeric functionalization the quality factor of the silica microspheres remains around 107, and that the Q factor is still about 3x105 after chemical activation and covalent binding of immunogammaglobulin. This functionalising process of the microresonator constitutes a promising step towards the achievement of a highly sensitive immunosensor.

  16. Guided bone regeneration by poly(lactic-co-glycolic acid) grafted hyaluronic acid bi-layer films for periodontal barrier applications.

    PubMed

    Park, Jung Kyu; Yeom, Junseok; Oh, Eun Ju; Reddy, Mallikarjuna; Kim, Jong Young; Cho, Dong-Woo; Lim, Hyun Pil; Kim, Nam Sook; Park, Sang Won; Shin, Hong-In; Yang, Dong Jun; Park, Kwang Bum; Hahn, Sei Kwang

    2009-11-01

    A novel protocol for the synthesis of biocompatible and degradation controlled poly(lactic-co-glycolic acid) grafted hyaluronic acid (HA-PLGA) was successfully developed for periodontal barrier applications. HA was chemically modified with adipic acid dihydrazide (ADH) in the mixed solvent of water and ethanol, which resulted in a high degree of HA modification up to 85 mol.%. The stability of HA-ADH to enzymatic degradation by hyaluronidase increased with ADH content in HA-ADH. When the ADH content in HA-ADH was higher than 80 mol.%, HA-ADH became soluble in dimethyl sulfoxide and could be grafted to the activated PLGA with N,N'-dicyclohexyl carbodiimide and N-hydroxysuccinimide. The resulting HA-PLGA was used for the preparation of biphasic periodontal barrier membranes in chloroform. According to in vitro hydrolytic degradation tests in phosphate buffered saline, HA-PLGA/PLGA blend film with a weight ratio of 1/2 degraded relatively slowly compared to PLGA film and HA coated PLGA film. Four different samples of a control, OSSIX(TM) membrane, PLGA film, and HA-PLGA/PLGA film were assessed as periodontal barrier membranes for the calvarial critical size bone defects in SD rats. Histological and histomorphometric analyses revealed that HA-PLGA/PLGA film resulted in the most effective bone regeneration compared to other samples with a regenerated bone area of 63.1% covering the bone defect area. PMID:19477304

  17. Microsphere Insulation Panels

    NASA Technical Reports Server (NTRS)

    Mohling, R.; Allen, M.; Baumgartner, R.

    2006-01-01

    Microsphere insulation panels (MIPs) have been developed as lightweight, longlasting replacements for the foam and vacuum-jacketed systems heretofore used for thermally insulating cryogenic vessels and transfer ducts. The microsphere core material of a typical MIP consists of hollow glass bubbles, which have a combination of advantageous mechanical, chemical, and thermal-insulation properties heretofore available only separately in different materials. In particular, a core filling of glass microspheres has high crush strength and low density, is noncombustible, and performs well in soft vacuum.

  18. Phosphotungstic acid anchored to amino-functionalized core-shell magnetic mesoporous silica microspheres: a magnetically recoverable nanocomposite with enhanced photocatalytic activity.

    PubMed

    Zhao, Liang; Chi, Yue; Yuan, Qing; Li, Nan; Yan, Wenfu; Li, Xiaotian

    2013-01-15

    H(3)PW(12)O(40) was successfully anchored to the surface of amino-functionalized Fe(3)O(4)@SiO(2)@meso-SiO(2) microspheres by means of chemical bonding to aminosilane groups, aiming to remove unwanted organic compounds from aqueous media. The resultant multifunctional microspheres were thoroughly characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, infrared spectroscopy, inductively coupled plasma, and N(2) adsorption-desorption. The as-prepared microspheres possess unique properties including high magnetization (46.8 emu g(-1)), large BET surface area (135 m(2) g(-1)), and highly open mesopores (~5.0 nm), and H(3)PW(12)O(40) loading is calculated to be ~16.8%; and as a result, the as-prepared microspheres exhibit enhanced performance in degrading dyes under UV irradiation compared with pure H(3)PW(12)O(40). Additionally, the photocatalyst can be easily recycled using an external magnetic field without losing the photocatalytic activity. PMID:23083769

  19. Positive Charge of “Sticky” Peptides and Proteins Impedes Release From Negatively Charged PLGA Matrices

    PubMed Central

    Balmert, Stephen C.; Zmolek, Andrew C.; Glowacki, Andrew J.; Knab, Timothy D.; Rothstein, Sam N.; Wokpetah, Joseph M.; Fedorchak, Morgan V.; Little, Steven R.

    2015-01-01

    The influence of electrostatic interactions and/or acylation on release of charged (“sticky”) agents from biodegradable polymer matrices was systematically characterized. We hypothesized that release of peptides with positive charge would be hindered from negatively charged poly(lactic-co-glycolic acid) (PLGA) microparticles. Thus, we investigated release of peptides with different degrees of positive charge from several PLGA microparticle formulations, with different molecular weights and/or end groups (acid- or ester-terminated). Indeed, release studies revealed distinct inverse correlations between the amount of positive charge on peptides and their release rates from each PLGA microparticle formulation. Furthermore, we examined the case of peptides with net charge that changes from negative to positive within the pH range observed in degrading microparticles. These charge changing peptides displayed counterintuitive release kinetics, initially releasing faster from slower degrading (less acidic) microparticles, and releasing slower from the faster degrading (more acidic) microparticles. Importantly, trends between agent charge and release rates for model peptides also translated to larger, therapeutically relevant proteins and oligonucleotides. The results of these studies may improve future design of controlled release systems for numerous therapeutic biomolecules exhibiting positive charge, ultimately reducing time-consuming and costly trial and error iterations of such formulations. PMID:26085928

  20. Aptamer-modified PLGA nanoparticle delivery of triplex forming oligonucleotide for targeted prostate cancer therapy.

    PubMed

    Jiao, J; Zou, Q; Zou, M H; Guo, R M; Zhu, S; Zhang, Y

    2016-01-01

    Presented study aimed to prepare A10 aptamer-modified poly (D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with triplex forming oligonucleotides(TFO) for targeted prostate cancer therapy. We first synthesized a PLGA-PEG-Apt copolymer. The PLGA-PEG-Apt nanoparticles (NP-Apt) were loaded with TFO using double emulsion solvent evaporation method. Carboxy-fluorescein labeled TFO-NP-Apt, TFO-NP and TFO were prepared for cellular uptake experiments. Cell counting kit-8 (CCK-8) test was used to determine the ability of TFO-NP-Apt to inhibit LNCaP cell proliferation. RT-PCR and Western blot was conducted to analyze AR gene expressing. Then, a mouse model of prostate cancer was used to evaluate the anti-cancer effect of TFO-NP-Apt in vivo. We confirmed that the PLGA-PEG-Apt conjugation was successful. The TFO encapsulation efficiency and drug loading percentage were 46.1± 3.6% and 40.8±5.3%, respectively. TFO-NP-Apt showed a more efficient cellular uptake than TFO-NP or TFO in LNCaP cells. TFO-NP-Apt was significantly more cytotoxic than TFO-NP and TFO in the CCK-8 test (p<0.001). TFO-NP-Apt silenced the AR gene better than unconjugated Apt, naked TFO, NP or saline. TFO-NP-Apt were more effective than TFO-NP, naked TFO, NP and saline at inhibiting prostate cancer growth in vivo (p<0.05). Aptamer-modified TFO-loaded PLGA nanoparticles may prove useful in targeted therapy for advanced prostate cancer. PMID:27268920

  1. Immunotoxicity and genotoxicity testing of PLGA-PEO nanoparticles in human blood cell model.

    PubMed

    Tulinska, Jana; Kazimirova, Alena; Kuricova, Miroslava; Barancokova, Magdalena; Liskova, Aurelia; Neubauerova, Eva; Drlickova, Martina; Ciampor, Fedor; Vavra, Ivo; Bilanicova, Dagmar; Pojana, Giulio; Staruchova, Marta; Horvathova, Mira; Jahnova, Eva; Volkovova, Katarina; Bartusova, Maria; Cagalinec, Michal; Dusinska, Maria

    2015-05-01

    A human blood cell model for immunotoxicity and genotoxicity testing was used to measure the response to polylactic-co-glycolic acid (PLGA-PEO) nanoparticle (NP) (0.12, 3, 15 and 75 μg/cm(2) exposure in fresh peripheral whole blood cultures/isolated peripheral blood mononuclear cell cultures from human volunteers (n = 9-13). PLGA-PEO NPs were not toxic up to dose 3 μg/cm(2); dose of 75 μg/cm(2) displays significant decrease in [(3)H]-thymidine incorporation into DNA of proliferating cells after 4 h (70% of control) and 48 h (84%) exposure to NPs. In non-cytotoxic concentrations, in vitro assessment of the immunotoxic effects displayed moderate but significant suppression of proliferative activity of T-lymphocytes and T-dependent B-cell response in cultures stimulated with PWM > CON A, and no changes in PHA cultures. Decrease in proliferative function was the most significant in T-cells stimulated with CD3 antigen (up to 84%). Cytotoxicity of natural killer cells was suppressed moderately (92%) but significantly in middle-dosed cultures (4 h exposure). On the other hand, in low PLGA-PEO NPs dosed cultures, significant stimulation of phagocytic activity of granulocytes (119%) > monocytes (117%) and respiratory burst of phagocytes (122%) was recorded. Genotoxicity assessment revealed no increase in the number of micronucleated binucleated cells and no induction of SBs or oxidised DNA bases in PLGA-PEO-treated cells. To conclude on immuno- and genotoxicity of PLGA-PEO NPs, more experiments with various particle size, charge and composition need to be done. PMID:23859252

  2. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite. PMID:20507712

  3. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles

    SciTech Connect

    Semete, B.; Booysen, L.I.J.; Kalombo, L.; Venter, J.D.; Katata, L.; Ramalapa, B.; Verschoor, J.A.; Swai, H.

    2010-12-01

    Nanoparticulate drug delivery systems offer great promise in addressing challenges of drug toxicity, poor bioavailability and non-specificity for a number of drugs. Much progress has been reported for nano drug delivery systems for intravenous administration, however very little is known about the effects of orally administered nanoparticles. Furthermore, the development of nanoparticulate systems necessitates a thorough understanding of the biological response post exposure. This study aimed to elucidate the in vivo uptake of chitosan and polyethylene glycol (PEG) coated Poly, DL, lactic-co-glycolic Acid (PLGA) nanoparticles and the immunological response within 24 h of oral and peritoneal administration. These PLGA nanoparticles were administered orally and peritoneally to female Balb/C mice, they were taken up by macrophages of the peritoneum. When these particles were fluorescently labelled, intracellular localisation was observed. The expression of pro-inflammatory cytokines IL-2, IL-6, IL-12p70 and TNF-{alpha} in plasma and peritoneal lavage was found to remain at low concentration in PLGA nanoparticles treated mice as well as ZnO nanoparticles during the 24 hour period. However, these were significantly increased in lipopolysaccharide (LPS) treated mice. Of these pro-inflammatory cytokines, IL-6 and IL-12p70 were produced at the highest concentration in the positive control group. The anti-inflammatory cytokines IL-10 and chemokines INF-{gamma}, IL-4, IL-5 remained at normal levels in PLGA treated mice. IL-10 and INF-{gamma} were significantly increased in LPS treated mice. MCP-1 was found to be significantly produced in all groups in the first hours, except the saline treated mice. These results provide the first report to detail the induction of cytokine production by PLGA nanoparticles engineered for oral applications.

  4. Nile Red Loaded PLGA Nanoparticles Surface Modified with Gd-DTPA for Potential Dual-Modal Imaging.

    PubMed

    Li, Qinqin; Li, Chenglin; Tong, Weijun

    2016-06-01

    Here, a novel poly(lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) for magnetic resonance (MR) and fluorescence imaging was developed for cell imaging. PLGA NPs loaded with fluorescent dye Nile red (NR) and surface-coated with poly(ethyleneimine) (PEI) were produced in a single step nanoprecipitation process. Diethylenetriamine pentaacetic dianhydride (DTPA) was conjugated to PLGA/NR@PEI NPs through amidation reaction between -COOH of DTPA and -NH2 of PEI, which can chelate gadolinium (Gd3+) as an MR imaging contrast agent. The PLGA/NR@PEI-DTPA-Gd NPs exhibited a uniform particle size of -200 nm and were stable in culture medium. These NPs had a high T relaxivity (R1) of 28.36 mM(-1)S(-1). They did not introduce serious cytotoxicity against A549 lung cancer cells. Furthermore, fluorescence and MR imaging studies on A549 lung cancer cells in vitro revealed that PLGA/NR@PEI-DTPA-Gd NPs can serve as an efficient fluorescence/MR dual-modality imaging nanoprobe. PMID:27427598

  5. RGD peptide-displaying M13 bacteriophage/PLGA nanofibers as cell-adhesive matrices for smooth muscle cells

    NASA Astrophysics Data System (ADS)

    Shin, Yong Cheol; Lee, Jong Ho; Jin, Oh Seong; Lee, Eun Ji; Jin, Lin Hua; Kim, Chang-Seok; Hong, Suck Won; Han, Dong-Wook; Kim, Chuntae; Oh, Jin-Woo

    2015-01-01

    Extracellular matrices (ECMs) are network structures that play an essential role in regulating cellular growth and differentiation. In this study, novel nanofibrous matrices were fabricated by electrospinning M13 bacteriophage and poly(lactic- co-glycolic acid) (PLGA) and were shown to be structurally and functionally similar to natural ECMs. A genetically-engineered M13 bacteriophage was constructed to display Arg-Gly-Asp (RGD) peptides on its surface. The physicochemical properties of RGD peptide-displaying M13 bacteriophage (RGD-M13 phage)/PLGA nanofibers were characterized by using scanning electron microscopy and Fourier-transform infrared spectroscopy. We used immunofluorescence staining to confirm that M13 bacteriophages were homogenously distributed in RGD-M13 phage/PLGA matrices. Furthermore, RGD-M13 phage/PLGA nanofibrous matrices, having excellent biocompatibility, can enhance the behaviors of vascular smooth muscle cells. This result suggests that RGD-M13 phage/PLGA nanofibrous matrices have potentials to serve as tissue engineering scaffolds.

  6. Effects of gatifloxaine content in gatifloxacine-loaded PLGA and β-tricalcium phosphate composites on efficacy in treating osteomyelitis.

    PubMed

    Kimishima, Kaori; Matsuno, Tomonori; Makiishi, Jun; Tamazawa, Gaku; Sogo, Yu; Ito, Atsuo; Satoh, Tazuko

    2016-01-01

    Composites of gatifloxacin (GFLX)-loaded poly (lactic-co-glycolic) acid (PLGA) and β-tricalcium phosphate (βTCP) containing 0, 1, and 10 wt % GFLX (0, 1, and 10 wt % GFLX composites), and GFLX-loaded PLGA containing 1, 5, and 10 wt % GFLX (1, 5, and 10wt % GFLX-PLGA) as controls were fabricated and characterized in vitro and in vivo. On in vitro evaluation, the 10 wt % GFLX composite released GFLX over at least 28 days in Hanks' balanced solution and exhibited clinically sufficient bactericidal activities against Streptococcus milleri and Bacteroides fragilis from 1 h to 10 days. The 0, 1, and 10 wt % GFLX composites and 10 wt % GFLX-PLGA were implanted in bone defects created by debridement of osteomyelitis lesions induced by S. milleri and B. fragilis in the mandible of rabbits (n = 5). Four weeks after implantation of the 10 wt % GFLX composite, inflammation in the debrided area disappeared in all the rabbits, while inflammation remained in all the rabbits after implantation of the 0 wt % GFLX composite and 10 wt % GFLX-PLGA, and in three rabbits after implantation of the 1 wt % GFLX composite. Bone formation appears to be less intense for the 10 wt % GFLX composite than for the 1 wt % GFLX composite probably owing to the rapid degradation of the 10 wt % GFLX composite. These findings show that the GFLX composite is effective for the local treatment of osteomyelitis. PMID:25533357

  7. A mechanistic model for drug release in PLGA biodegradable stent coatings coupled with polymer degradation and erosion.

    PubMed

    Zhu, Xiaoxiang; Braatz, Richard D

    2015-07-01

    Biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) coating for applications in drug-eluting stents has been receiving increasing interest as a result of its unique properties compared with biodurable polymers in delivering drug for reducing stents-related side effects. In this work, a mathematical model for describing the PLGA degradation and erosion and coupled drug release from PLGA stent coating is developed and validated. An analytical expression is derived for PLGA mass loss that predicts multiple experimental studies in the literature. An analytical model for the change of the number-average degree of polymerization [or molecular weight (MW)] is also derived. The drug transport model incorporates simultaneous drug diffusion through both the polymer solid and the liquid-filled pores in the coating, where an effective drug diffusivity model is derived taking into account factors including polymer MW change, stent coating porosity change, and drug partitioning between solid and aqueous phases. The model is used to describe in vitro sirolimus release from PLGA stent coating, and demonstrates the significance of simultaneous sirolimus release via diffusion through both polymer solid and pore space. The proposed model is compared to existing drug transport models, and the impact of model parameters, limitations and possible extensions of the model are also discussed. PMID:25345656

  8. Superparamagnetic folate-immobilized dye labeled microspheres for oral cancer screening

    NASA Astrophysics Data System (ADS)

    Liesenfeld, Bernd

    A design concept is presented and developed for a screening test for oral cancer. The application is based on generating specific binding between microspheres and receptors known to be expressed specifically on malignant cells. Quantification of the test is derived from a ratiometric determination of test microspheres immobilized with folate against control microspheres. Microspheres were suspension copolymerized polymethyl methacrylate and aminoethyl methacrylate, and were doped with superparamagnetic iron oxide to permit magnetic separation of microspheres from testing suspension. Magnetic separation was demonstrated. Specific binding was provided by folic acid that was immobilized on the microsphere surface by carbodiimide chemistry. Microsphere labeling was performed by covalent bonding of fluorophores to monomers prior to polymerization, permitting spatial imaging of microspheres by fluorescence microscopy. Testing of specific binding of folate to tumorous cell lines was performed using cell lines known to overexpress folate receptors. Cell lines used included NCI-H23 human lung adenocarcinoma, with controls provided by normal human dermal fibroblasts. It was found that the folate-immobilized microspheres were preferentially retained by the tumourous cell line, relative to control microspheres (p = 0.0074). There was no significant difference between the retention of folate-immobilized microspheres by the cancerous cell line as compared to the control cell line (p = 0.90) as determined by pooled data. Testing of specific binding to relevant tissue was performed using excised oral cancer tissue that had been frozen and sectioned onto slides. It was found that the folate immobilized microspheres were retained by the cancerous tissue at a higher rate than the control microspheres (p = 0.037). Controls performed with normal tissue shows that the folate-immobilized microspheres were retained by normal tissue at a higher rate than the cancerous tissue. Both cell

  9. Thermodynamic Insights and Conceptual Design of Skin-Sensitive Chitosan Coated Ceramide/PLGA Nanodrug for Regeneration of Stratum Corneum on Atopic Dermatitis

    PubMed Central

    Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Chul; Jung, Moon Hee; Yu, Sun Il; Yeon, Seung Ju; Min, Seul Ki; Kwon, Yeo Seon; Hwang, Jin Ha; Shin, Hwa Sung

    2015-01-01

    Atopic dermatitis (AD) is a complex skin disease primarily characterized by psoriasis of the stratum corneum. AD drugs have usually been used in acidic and hydrophilic solvents to supply moisture and prevent lipid defects. Ceramide is a typical treatment agent to regenerate the stratum corneum and relieve symptoms of AD. However, ceramide has limitation on direct use for skin because of its low dispersion properties in hydrophilic phase and side effects at excessive treatment. In this study, ceramide imbedded PLGA nanoparticles were developed with chitosan coating (Chi-PLGA/Cer) to overcome this problem. The chitosan coating enhanced initial adherence to the skin and prevented the initial burst of ceramide, but was degraded by the weakly acidic nature of skin, resulting in controlled release of ceramide with additional driving force of the squeezed PLGA nanoparticles. Additionally, the coating kinetics of chitosan were controlled by manipulating the reaction conditions and then mathematically modeled. The Chi-PLGA/Cer was not found to be cytotoxic and ceramide release was controlled by pH, temperature, and chitosan coating. Finally, Chi-PLGA/Cer was demonstrated to be effective at stratum corneum regeneration in a rat AD model. Overall, the results presented herein indicated that Chi-PLGA/Cer is a novel nanodrug for treatment of AD. PMID:26666701

  10. Organic aerogel microspheres

    DOEpatents

    Mayer, Steven T.; Kong, Fung-Ming; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  11. Organic aerogel microspheres

    DOEpatents

    Mayer, S.T.; Kong, F.M.; Pekala, R.W.; Kaschmitter, J.L.

    1999-06-01

    Organic aerogel microspheres are disclosed which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonstick gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.

  12. Calcium phosphate cement scaffolds with PLGA fibers.

    PubMed

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. PMID:23827539

  13. The influence of magnesium stearate on the characteristics of mucoadhesive microspheres.

    PubMed

    Bogataj, M; Mrhar, A; Grabnar, I; Rajtman, Z; Bukovec, P; Srcic, S; Urleb, U

    2000-01-01

    Microspheres containing the mucoadhesive polymer chitosan hydrochloride, with matrix polymer Eudragit RS, pipemidic acid as a model drug and agglomeration preventing agent magnesium stearate were prepared by the solvent evaporation method. The amount of magnesium stearate was varied and the following methods were used for microsphere evaluation: sieve analysis, drug content and dissolution determination, scanning electron microscopy, x-ray diffractometry, DSC and FTIR spectroscopy. The results showed that average particle size decreased with increasing amount of magnesium stearate used for microsphere preparation. This is probably a consequence of stabilization of the emulsion droplets with magnesium stearate. Higher pipemidic acid content in the microspheres was observed in larger particle size fractions and when higher amounts of magnesium stearate were used. It was also found that these two parameters significantly influenced the dissolution rate. The important reason for the differences in drug content in microspheres of different particle sizes is the diffusion of pipemidic acid from the acetone droplets in liquid paraffin during the preparation procedure. The physical state of pipemidic acid changed from crystalline to mostly amorphous with its incorporation in microspheres, as shown by x-ray diffractometry and differential scanning calorimetry. No differences were observed in the physical state of pipemidic acid and in microsphere shape and surface between different size fractions of microspheres, prepared with different amounts of magnesium stearate. Additionally, no correlation between the physical state of the drug in different microspheres and their biopharmaceutical properties was found. PMID:10898089

  14. Experimental Embolization of Rabbit Renal Arteries to Compare the Effects of Poly L-Lactic Acid Microspheres With and Without Epirubicin Release Against Intraarterial Injection of Epirubicin

    SciTech Connect

    Fujiwara, Kazuhisa; Hayakawa, Katsumi; Nagata, Yasushi; Hiraoka, Masahiro; Nakamura, Tatsuo; Shimizu, Yoshihiko; Ikada, Yoshito

    2000-03-15

    Purpose: We performed a basic investigation using white rabbits of the sustained release and embolizing effects of poly L-lactic acid microspheres (PLA) to determine their usefulness for chemoembolization.Methods: Fifteen male Japanese white rabbits were used. Sustained release of an embolizing material, EPI-PLA was accomplished with 1 mg of PLA containing 0.03 mg of epirubicin hydrochloride (EPI). Embolization with 50 mg of PLA (total dose of EPI 1.5 mg) was performed after the renal artery of the rabbits was selected (Chemo-TAE group). A group in which a bolus of 1.5 mg EPI alone was injected through the renal artery (TAI group) was established as a control group. Furthermore, a group in which embolization was performed with 50 mg of PLA alone (TAE group) was also established. These three groups, each consisting of five rabbits, were compared.Results: Blood EPI levels were serially measured. The blood EPI level in the TAI group rapidly reached a peak more than 30 min after injection, then decreased to almost zero 24 hr after injection. In the Chemo-TAE group, the blood EPI level was transiently increased 30 min after embolization, but remained low thereafter until 24 hr after embolization. EPI levels in kidney tissue isolated 24 hr after embolization were measured. In the Chemo-TAE group, the tissue EPI level was significantly higher than that in the TAI group. When isolated kidneys were macroscopically and histologically examined, atrophy of the entire embolized kidney, as well as infarction and necrosis in the renal cortex, were observed in both the TAE group and the Chemo-TAE group. However, there were no such findings in the TAI group. The area of the infarction in the renal cortex did not significantly differ between the Chemo-TAE group and the TAE group; however, there was vascular injury in the Chemo-TAE group and none in the TAE group.Conclusion: It was demonstrated that EPI-PLA, a chemoembolizing material, maintained high local concentrations of the

  15. Experimental embolization of rabbit renal arteries to compare the effects of poly L-lactic acid microspheres with and without epirubicin release against ntraarterial injection of epirubicin

    SciTech Connect

    Fujiwara, Kazuhisa; Hayakawa, Katsumi; Nagata, Yasushi; Hiraoka, Masahiro; Nakamura, Tatsuo; Shimizu, Yoshihiko; Ikada, Yoshito

    2000-05-15

    Purpose: We performed a basic investigation using white rabbits of the sustained release and embolizing effects of poly L-lactic acid microspheres (PLA) to determine their usefulness for chemoembolization.Methods: Fifteen male Japanese white rabbits were used. Sustained release of an embolizing material, EPI-PLA was accomplished with l m g of PLA containing 0.03 mg of epirubicin hydrochloride (EPI). Embolization with 50 mg of PLA (total dose of EPI l.5 mg) was performed after the renal artery of the rabbits was selected (Chemo-TAE group). A group in which a bolus of 1.5 mg EPI alone was injected through the renal artery (TAI group) was established as a control group. Furthermore, a group in which embolization was performed with 50 mg of PLA alone (TAE group) was also established. These three groups, each consisting of five rabbits, were compared.Results: Blood EPI levels were serially measured. The blood EPI level in the TAI group rapidly reached a peak more than 30 min after injection, then decreased to almost zero 24 hr after injection. In the Chemo-TAE group, the blood EPI level was transiently increased 30 min after embolization, but remained low thereafter until 24 hr after embolization. EPI levels in kidney tissue isolated 24 hr after embolization were measured. In the Chemo-TAE group, the tissue EPI level was significantly higher than that in the TAI group. When isolated kidneys were macroscopically and histologically examined, atrophy of the entire embolized kidney, as well as infarction and necrosis in the renal cortex, were observed in both the TAE group and the Chemo-TAE group. However, there were no such findings in the TAI group. The area of the infarction in the renal cortex did not significantly differ between the Chemo-TAE group and the TAE group; however, there was vascular injury in the Chemo-TAE group and none in the TAE group.Conclusion: It was demonstrated that EPI-PLA, a chemo-embolizing material, maintained high local concentrations of the

  16. Drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy.

    PubMed

    Floyd, J Alaina; Galperin, Anna; Ratner, Buddy D

    2016-02-01

    The grim prognosis for patients diagnosed with malignant gliomas necessitates the development of new therapeutic strategies for localized and sustained drug delivery to combat tumor drug resistance and regrowth. Here we introduce drug encapsulated aerosolized microspheres as a biodegradable, intelligent glioma therapy (DREAM BIG therapy). DREAM BIG therapy is envisioned to deliver three chemotherapeutics, temporally staged over one year, via a bioadhesive, biodegradable spray directly to the brain surgical site after tumor excision. In this proof-of-principle article exploring key components of the DREAM BIG therapy prototype, rhodamine B (RB) encapsulated poly(lactic-co-glycolic acid) and immunoglobulin G (IgG) encapsulated poly(lactic acid) microspheres were formulated and characterized. The encapsulation efficiency of RB and IgG and the release kinetics of the model drugs from the microspheres were elucidated in addition to the release kinetics of RB from poly(lactic-co-glycolic acid) microspheres formulated in a degradable poly(N-isopropylacrylamide) solution. The successful aerosolized application onto brain tissue ex-vivo demonstrated the conformal adhesion of the RB encapsulated poly(lactic-co-glycolic acid) microspheres to the convoluted brain surface mediated by the thermoresponsive carrier, poly(N-isopropylacrylamide). These preliminary results suggest the potential of the DREAM BIG therapy for future use with multiple chemotherapeutics and microsphere types to combat gliomas at a localized site. PMID:26238392

  17. Microencapsulation of Streptococcus equi antigens in biodegradable microspheres and preliminary immunisation studies.

    PubMed

    Azevedo, Ana F; Galhardas, Jorge; Cunha, António; Cruz, Patrícia; Gonçalves, Lídia M D; Almeida, António J

    2006-10-01

    Streptococcus equi subspecies equi is the causative agent of strangles, a bacterial infection of the respiratory tract of equidae. Current strategies to prevent strangles rely on antimicrobial therapy or immunisation with inactivated bacteria, S. equi bacterin, or M-like protein (SeM) extract. The aim of this work was to investigate whether immunisation with whole killed S. equi or a bacterial lysate entrapped in poly(lactide-co-glycolide) (PLGA) microspheres might induce protective immunity to mice. Animals were treated with a dose of antigen equivalent to 25 microg of SeM. For intranasal route animals were primed on days 1, 2 and 3 and were boosted on day 29. For intramuscular route, primary immunisation was carried out with a single injection on day 1 and animals were boosted on day 29. On day 43 animals were submitted to a challenge with a virulent strain of S. equi. Vaccination with antigen-containing microspheres induced higher serum antibody levels in mice treated by the intranasal route, whereas intramuscular immunisation did not reveal any difference between control and treatment groups. Microencapsulated antigens achieved to fully protect mice against experimental infection irrespective of the route of administration used. Following intranasal or intramuscular administration soluble antigen failed to protect mice against challenge. These studies indicate that PLGA microspheres are a potential carrier system for the delivery of S. equi antigens. PMID:16846728

  18. Polymeric microspheres as protein transduction reagents.

    PubMed

    Nagel, David; Behrendt, Jonathan M; Chimonides, Gwen F; Torr, Elizabeth E; Devitt, Andrew; Sutherland, Andrew J; Hine, Anna V

    2014-06-01

    nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake. PMID:24692642

  19. ENCAPSULATION OF PALLADIUM IN POROUS WALL HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Heung, L; George Wicks, G; Ray Schumacher, R

    2008-04-09

    A new encapsulation method was investigated in an attempt to develop an improved palladium packing material for hydrogen isotope separation. Porous wall hollow glass microspheres (PWHGMs) were produced by using a flame former, heat treating and acid leaching. The PWHGMs were then filled with palladium salt using a soak-and-dry process. The palladium salt was reduced at high temperature to leave palladium inside the microspheres.

  20. Method for sizing hollow microspheres

    DOEpatents

    Farnum, E.H.; Fries, R.J.

    1975-10-29

    Hollow Microspheres may be effectively sized by placing them beneath a screen stack completely immersed in an ultrasonic bath containing a liquid having a density at which the microspheres float and ultrasonically agitating the bath.

  1. Thermogelling Biodegradable Polymers with Hydrophilic Backbones: PEG-g-PLGA

    SciTech Connect

    Jeong, Byeongmoon; Kibbey, Merinda R.; Birnbaum, Jerome C.; Won, You-Yeong; Gutowska, Anna

    2000-10-31

    The aqueous solutions of poly(ethylene glycol)grafted with poly(lactic acid-co-glycolic acid) flow freely at room temperature but form gels at higher temperature. The existence of micelles in water at low polymer concentration was confirmed by Cro-transmission electron microscopy and dye solubilization studies. The micellar diameter and critical micelle concentration are about 9 nm and 0.47 wt.% respectively. The critical gel concentration, above which a gel phase appears was 16 wt.% and sol-to-gel transition temperature was slightly affected by the concentration in the range of 16 {approx} 25 wt.%. At sol-to-gel transition, viscosity increased abruptly and C-NMR showed molecular motion of hydrophilic poly(lactic acid-co-glycolic acid) side-chains increased. The hydrogel of PEG-g-PLGA with hydrophilic backbones was transparent during degradation and remained a gel for one week, suggesting a promising material for short-term drug delivery.

  2. Construction and evaluation of Fe₃O₄-based PLGA nanoparticles carrying rtPA used in the detection of thrombosis and in targeted thrombolysis.

    PubMed

    Zhou, Jun; Guo, Dajing; Zhang, Yu; Wu, Wei; Ran, Haitao; Wang, Zhigang

    2014-04-23

    Thrombotic disease is extremely harmful to human health, but early detection and treatment can help improve prognoses and reduce mortality. To date, few studies have used MR molecular imaging in the early detection of thrombi and in the dynamic monitoring of the thrombolytic efficiency. In this article, we construct Fe3O4-based poly(lactic-co-glycolic acid) (PLGA) nanoparticles to use in the detection of thrombi and in targeted thrombolysis using MRI monitoring. Cyclic arginine-glycine-aspartic peptide (cRGD) was grafted onto the chitosan (CS) surface to synthesize a CS-cRGD film using carbodiimide-mediated amide bond formation. A double emulsion solvent evaporation method (water in oil in water [W/O/W]) was used to construct Fe3O4-based PLGA nanoparticles carrying recombinant tissue plasminogen activator (rtPA) (Fe3O4-PLGA-rtPA/CS-cRGD). Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles were constructed using the same W/O/W method. The results showed that the Fe3O4-based nanoparticles were constructed successfully and have a regular shape, a relatively uniform size, a high carrier rate of Fe3O4 and encapsulation efficiency of rtPA, and a relatively high activity of released rtPA. Transmission electron microscope (TEM) images revealed that the iron oxide particles were relatively uniformly distributed in the nano-spherical shell. The Fe3O4-based nanoparticles could be imaged using a clinical MRI scanner, and there were no significant differences in the transverse relaxation rate (R2*) or in the signal-to-noise ratio (SNR) values between the Fe3O4-based nanoparticles and an Fe3O4 solution with the same concentration of Fe3O4. In vitro and in vivo experiments confirmed that the Fe3O4-PLGA-rtPA/CS-cRGD nanoparticles specifically accumulated on the edge of the thrombus and that they had a significant effect on the thrombolysis compared with the Fe3O4-PLGA, Fe3O4-PLGA-rtPA, and Fe3O4-PLGA-rtPA/CS nanoparticles and with free rtPA solution. These results

  3. Graphene oxide-stimulated myogenic differentiation of C2C12 cells on PLGA/RGD peptide nanofiber matrices

    NASA Astrophysics Data System (ADS)

    Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.

    2015-07-01

    During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.

  4. Effects of designed PLLA and 50:50PLGA scaffold architectures on bone formation in vivo

    PubMed Central

    Saito, Eiji; Liao, Elly E.; Hu, Wei-Wen; Krebsbach, Paul H.; Hollister, Scott J.

    2015-01-01

    Biodegradable porous scaffolds have been investigated as an alternative approach to current metal, ceramic, and polymer bone graft substitutes for lost or damaged bone tissues. Although there have been many studies investigating the effects of scaffold architecture on bone formation, many of these scaffolds were fabricated using conventional methods, such as salt leaching and phase separation, and were constructed without designed architecture. To study the effects of both designed architecture and material on bone formation, we designed and fabricated three types of porous scaffold architecture from two biodegradable materials, poly (L-lactic acid) (PLLA) and 50:50Poly (lactic-co-glycolic acid) (PLGA) using image based design and indirect solid freeform fabrication techniques, seeded them with bone morphogenic protein-7 transduced human gingival fibroblasts and implanted them subcutaneously into mice for 4 and 8 weeks. Micro-computed tomography data confirmed that the fabricated porous scaffolds replicated the designed architectures. Histological analysis revealed that the 50:50PLGA scaffolds degraded and did not maintain their architecture after 4 weeks. The PLLA scaffolds maintained their architecture at both time points and showed improved bone ingrowth which followed the internal architecture of the scaffolds. Mechanical properties of both PLLA and 50:50PLGA scaffolds decreased, but PLLA scaffolds maintained greater mechanical properties than 50:50PLGA after implantation. The increase of mineralized tissue helped to support mechanical properties of bone tissue and scaffold constructs from 4 to 8 weeks. The results indicated the importance of choice of scaffold materials and computationally designed scaffolds to control tissue formation and mechanical properties for desired bone tissue regeneration. PMID:22162220

  5. Removal of chloroform from biodegradable therapeutic microspheres by radiolysis.

    PubMed

    Zielhuis, S W; Nijsen, J F W; Dorland, L; Krijger, G C; van Het Schip, A D; Hennink, W E

    2006-06-01

    Radioactive holmium-166 loaded poly(l-lactic acid) microspheres are promising systems for the treatment of liver malignancies. These microspheres are loaded with holmium acetylacetonate (HoAcAc) and prepared by a solvent evaporation method using chloroform. After preparation the microspheres (Ho-PLLA-MS) are activated by neutron irradiation in a nuclear reactor. It was observed that relatively large amounts of residual chloroform (1000-6000 ppm) remained in the microspheres before neutron irradiation. Since it is known that chloroform is susceptible for high-energy radiation, we investigated whether neutron and gamma irradiation could result in the removal of residual chloroform in HoAcAc-loaded and placebo PLLA-MS by radiolysis. To investigate this, microspheres with relatively high and low amounts of residual chloroform were subjected to irradiation. The effect of irradiation on the residual chloroform levels as well as other microsphere characteristics (morphology, size, crystallinity, molecular weight of PLLA and degradation products) were evaluated. No chloroform in the microspheres could be detected after neutron irradiation. This was also seen for gamma irradiation at a dose of 200 kGy phosgene, which can be formed as the result of radiolysis of chloroform, was not detected with gas chromatography-mass spectrometry (GC-MS). A precipitation titration showed that radiolysis of chloroform resulted in the formation of chloride. Gel permeation chromatography and differential scanning calorimetry showed a decrease in molecular weight of PLLA and crystallinity, respectively. However, no differences were observed between irradiated microsphere samples with high and low initial amounts of chloroform. In conclusion, this study demonstrates that neutron and gamma irradiation results in the removal of residual chloroform in PLLA-microspheres. PMID:16549282

  6. Effects of aldehydes and methods of cross-linking on properties of calcium alginate microspheres prepared by emulsification.

    PubMed

    Chan, Lai Wah; Heng, Paul W S

    2002-03-01

    Calcium alginate microspheres were prepared by an emulsification method and cross-linked with various aldehydes using different methods. Methanal and pentanedial produced low aggregation of microspheres while octanal and octadecanal produced the opposite effect. The latter two aldehydes displaced very little calcium ions from the alginate microspheres, indicating that the aggregation was due to the tackiness imparted by the aldehydes to the microsphere surface. Higuchi's model was not applicable to the drug release from microspheres in this study. The microspheres treated with methanal or pentanedial showed comparable dissolution T75% values which were significantly higher than that of the control. In contrast, octanal and octadecanal produced microspheres with lower dissolution T75% values. The drug contents of the microspheres treated with aldehydes were significantly lower than that of the control. There was insignificant interaction between the aldehydes and the drug. However, the aldehydes were found to impart acidity to the aqueous solution to varying extents, resulting in varying drug loss from the microspheres. The properties of the microspheres were also markedly affected by the method of incorporating the aldehyde. Soaking the microspheres in methanal solution produced microspheres with marked aggregation and low drug content. PMID:11808537

  7. Abiogenic photophosphorylation of ADP to ATP sensitized by flavoproteinoid microspheres.

    PubMed

    Kolesnikov, Michael P; Telegina, Taisiya A; Lyudnikova, Tamara A; Kritsky, Mikhail S

    2008-06-01

    A model for abiogenic photophosphorylation of ADP by orthophosphate to yield ATP was studied. The model is based on the photochemical activity of flavoproteinoid microspheres that are formed by aggregation in an aqueous medium of products of thermal condensation of a glutamic acid, glycine and lysine mixture (8:3:1) and contain, along with amino acid polymers (proteinoids), abiogenic isoalloxazine (flavin) pigments. Irradiation of aqueous suspensions of microspheres with blue visible light or ultraviolet in the presence of ADP and orthophosphate resulted in ATP formation. The yield of ATP in aerated suspensions was 10-20% per one mol of starting ADP. Deaeration reduced the photophosphorylating activity of microspheres five to 10 times. Treatment of aerated microsphere suspensions with superoxide dismutase during irradiation partially suppressed ATP formation. Deaerated microspheres restored completely their photophosphorylating activity after addition of hydrogen peroxide to the suspension. The photophosphorylating activity of deaerated suspensions of flavoproteinoid microspheres was also recovered by introduction of Fe3+-cytochrome c, an electron acceptor alternative to oxygen. On the basis of the results obtained, a chemical mechanism of phosphorylation is proposed in which the free radical form of reduced flavin sensitizer (F1H*) and ADP are involved. PMID:18386156

  8. Method for preparing hollow metal oxide microsphere

    DOEpatents

    Schmitt, C.R.

    1974-02-12

    Hollow refractory metal oxide microspheres are prepared by impregnating resinous microspheres with a metallic compound, drying the impregnated microspheres, heating the microspheres slowly to carbonize the resin, and igniting the microspheres to remove the carbon and to produce the metal oxide. Zirconium oxide is given as an example. (Official Gazette)

  9. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials.

    PubMed

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-12-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature. PMID:26925862

  10. Raspberry-like PS/CdTe/Silica Microspheres for Fluorescent Superhydrophobic Materials

    NASA Astrophysics Data System (ADS)

    Chang, Jinghui; Zang, Linlin; Wang, Cheng; Sun, Liguo; Chang, Qing

    2016-02-01

    Superhydrophobic particulate films were fabricated via deposition of raspberry-like fluorescent PS/CdTe/silica microspheres on clean glass substrates and surface modification. Particularly, the fluorescent microspheres were prepared by a kind of modified strategy, namely introducing poly (acrylic acid)-functionalized polystyrene microspheres and thiol-stabilized CdTe quantum dots into a hydrolysis reaction of tetraethoxysilane simultaneously. And through adjusting the reaction parameters, the polystyrene spheres with two particle sizes and three colors of CdTe quantum dots aqueous solution were obtained. Consequently, raspberry-like microspheres consist of polystyrene cores and the composite shells of CdTe quantum dots and silica. These microspheres possess a fluorescent characteristic and form a hierarchical dual roughness which was conductive to superhydrophobicity, and the hydrophobic tests also showed the contact angles of water droplets on the surface of the raspberry-like microspheres which were over 160° at room temperature.

  11. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-03-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI.

  12. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications

    PubMed Central

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R.

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0–87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  13. Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications.

    PubMed

    Li, Wei; Jan Zaloga; Ding, Yaping; Liu, Yufang; Janko, Christina; Pischetsrieder, Monika; Alexiou, Christoph; Boccaccini, Aldo R

    2016-01-01

    The promising potential of magnetic polymer microspheres in various biomedical applications has been frequently reported. However, the surface hydrophilicity of superparamagnetic iron oxide nanoparticles (SPIONs) usually leads to poor or even failed encapsulation of SPIONs in hydrophobic polymer microspheres using the emulsion method. In this study, the stability of SPIONs in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) solution was significantly increased after surface modification with lauric acid. As a result, magnetic PHBV microspheres with high encapsulation efficiencies (71.0-87.4%) were prepared using emulsion-solvent extraction/evaporation method. Magnetic resonance imaging (MRI) showed significant contrast for the magnetic PHBV microspheres. The toxicity of these magnetic PHBV microspheres towards human T-lymphoma suspension cells and adherent colon carcinoma HT-29 cells was investigated using flow cytometry, and they were shown to be non-toxic in a broad concentration range. A model drug, tetracycline hydrochloride, was used to demonstrate the drug delivery capability and to investigate the drug release behavior of the magnetic PHBV microspheres. The drug was successfully loaded into the microspheres using lauric acid-coated SPIONs as drug carrier, and was released from the microspheres in a diffusion controlled manner. The developed magnetic PHBV microspheres are promising candidates for biomedical applications such as targeted drug delivery and MRI. PMID:27005428

  14. Hyaluronic acid/poly(lactic-co-glycolic acid) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate as skin tissue engineering scaffolds.

    PubMed

    Lee, Eun Ji; Lee, Jong Ho; Jin, Linhua; Jin, Oh Seong; Shin, Yong Cheol; Sang, Jin Oh; Lee, Jaebeom; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-11-01

    In this study, hyaluronic acid (HA)/poly(lactic-co-glycolic acid, PLGA) core/shell fiber meshes loaded with epigallocatechin-3-O-gallate (EGCG) (HA/PLGA-E) for application to tissue engineering scaffolds for skin regeneration were prepared via coaxial electrospinning. Physicochemical properties of HA/PLGA-E core/shell fiber meshes were characterized by SEM, Raman spectroscopy, contact angle, EGCG release profiling and in vitro degradation. Biomechanical properties of HA/PLGA-E meshes were also investigated by a tensile strength test. SEM images showed that HA/PLGA-E fiber meshes had a three-dimensional interconnected pore structure with an average fiber diameter of about 1270 nm. Raman spectra revealed that EGCG was uniformly dispersed in the PLGA shell of meshes. HA/PLGA-E meshes showed sustained EGCG release patterns by controlled diffusion and PLGA degradation over 4 weeks. EGCG loading did not adversely affect the tensile strength and elastic modulus of HA/PLGA meshes, while increased their hydrophilicity and surface energy. Attachment of human dermal fibroblasts on HA/PLGA-E meshes was appreciably increased and their proliferation was steadily retained during the culture period. These results suggest that HA/PLGA-E core/shell fiber meshes can be potentially used as scaffolds supporting skin regeneration. PMID:25958546

  15. Surface characteristics of PLA and PLGA films

    NASA Astrophysics Data System (ADS)

    Paragkumar N, Thanki; Edith, Dellacherie; Six, Jean-Luc

    2006-12-01

    Surface segregation and restructuring in polylactides (poly( D, L-lactide) and poly( L-lactide)) and poly( D,L-lactide-co-glycolide) (PLGA) films of various thicknesses were investigated using both attenuated total reflection FTIR (ATR-FTIR) and contact angle relaxation measurements. In case of poly( D,L-lactide) (DLPLA), it was observed that the surface segregation and the surface restructuring of methyl side groups are influenced by the polymer film thickness. This result has been confirmed by X-ray photoelectron spectroscopy (XPS). In the same way, PLGA thick films were also characterized by an extensive surface segregation of methyl side groups. Finally, surface restructuring was investigated by dynamic contact angle measurements and it was observed when film surface comes into contact with water. In parallel, we also found that poly( L-lactide) (PLLA) thin and clear films with thickness ˜15 μm undergo conformational changes on the surface upon solvent treatment with certain solvents. The solvent treated surface of PLLA becomes hazy and milky white and its hydrophobicity increases compared to untreated surface. FTIR spectroscopic analysis indicated that polymer chains at the surface undergo certain conformational changes upon solvent treatment. These changes are identified as the restricted motions of C-O-C segments and more intense and specific vibrations of methyl side groups. During solvent treatment, the change in water contact angle and FTIR spectrum of PLLA is well correlated.

  16. A PLGA-encapsulated chimeric protein protects against adherence and toxicity of enterotoxigenic Escherichia coli.

    PubMed

    Nazarian, Shahram; Gargari, Seyed Latif Mousavi; Rasooli, Iraj; Hasannia, Sadegh; Pirooznia, Nazanin

    2014-01-01

    Enterotoxigenic Escherichia coli (ETEC) are the most common cause of diarrhea among children. Colonization factors and enterotoxins are the major ETEC candidate vaccines. Since protection against ETEC mostly occurs by induction of IgA antibodies, much effort is focused on the development of oral vaccines. In this study oral immunogenicity of a poly(lactic-co-glycolic acid) (PLGA) encapsulated chimeric protein containing CfaB, CstH, CotA and LTB (Heat-labile B subunit) was investigated. The protein was encapsulated in PLGA by double emulsion method and nanoparticles were characterized physicochemically. Immunogenicity was assessed by evaluating IgG1, IgG2 and IgA titers after BALB/c mice vaccination. Non aggregated nanoparticles had a spherical shape with an average particle size of 252.7±23 nm and 91.96±4.4% of encapsulation efficiency. Western blotting showed maintenance of the molecular weight and antigenicity of the released protein. Oral immunization of mice induced serum IgG and fecal IgA antibody responses. Immunization induced protection against ETEC binding to Caco-2 cells. The effect of LT toxin on fluid accumulation in ileal loops was neutralized by inhibition of enterotoxin binding to GM1-ganglosides. Delivery of the chimeric protein in PLGA elicited both systemic and mucosal immune responses. The findings could be exploited to development of oral multi-component ETEC prophylactic measures. PMID:23906742

  17. Gelsolin Amyloidogenesis Is Effectively Modulated by Curcumin and Emetine Conjugated PLGA Nanoparticles

    PubMed Central

    Goel, Surbhi; Kundu, Bishwajit; Mishra, Prashant; Fnu, Ashish

    2015-01-01

    Small molecule based therapeutic intervention of amyloids has been limited by their low solubility and poor pharmacokinetic characteristics. We report here, the use of water soluble poly lactic-co-glycolic acid (PLGA)-encapsulated curcumin and emetine nanoparticles (Cm-NPs and Em-NPs, respectively), as potential modulators of gelsolin amyloidogenesis. Using the amyloid-specific dye Thioflavin T (ThT) as an indicator along with electron microscopic imaging we show that the presence of Cm-NPs augmented amyloid formation in gelsolin by skipping the pre-fibrillar assemblies, while Em-NPs induced non-fibrillar aggregates. These two types of aggregates differed in their morphologies, surface hydrophobicity and secondary structural signatures, confirming that they followed distinct pathways. In spite of differences, both these aggregates displayed reduced toxicity against SH-SY5Y human neuroblastoma cells as compared to control gelsolin amyloids. We conclude that the cytotoxicity of gelsolin amyloids can be reduced by either stalling or accelerating its fibrillation process. In addition, Cm-NPs increased the fibrillar bulk while Em-NPs defibrillated the pre-formed gelsolin amyloids. Moreover, amyloid modulation happened at a much lower concentration and at a faster rate by the PLGA encapsulated compounds as compared to their free forms. Thus, besides improving pharmacokinetic and biocompatible properties of curcumin and emetine, PLGA conjugation elevates the therapeutic potential of both small molecules against amyloid fibrillation and toxicity. PMID:25996685

  18. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying.

    PubMed

    Wan, Feng; Yang, Mingshi

    2016-02-10

    Currently, most of the approved protein and peptide-based medicines are delivered via conventional parenteral injection (intramuscular, subcutaneous or intravenous). A frequent dosing regimen is often necessary because of their short plasma half-lives, causing poor patient compliance (e.g. pain, abscess, etc.), side effects owing to typical peak-valley plasma concentration time profiles, and increased costs. Among many sustained-release formulations poly lactic-co-glycolic acid (PLGA)-based depot microparticle systems may represent one of the most promising approaches to provide protein and peptide drugs with a steady pharmacokinetic/pharmacodynamic profile maintained for a long period. However, the development of PLGA-based microparticle systems is still impeded by lack of easy, fast, effective manufacturing technologies. The aim of this paper is to review recent advances in spray drying, a one-step, continuous microencapsulation process, for manufacturing of PLGA-based depot microparticle systems with a focus on the recent efforts on understanding of the role of nozzle design in the microencapsulation of proteins/peptides, and the effect of critical solvent properties and process parameters on the critical quality attributes of the spray-dried microparticles. PMID:26688034

  19. Release of gentamicin sulphate from biodegradable PLGA-implants produced by hot melt extrusion.

    PubMed

    Gosau, M; Müller, B W

    2010-07-01

    For a long-term local treatment of osteomyelitis biodegradable poly(lactic-co-glycolic acid) (PLGA) implants loaded with gentamicin sulphate (GS) were prepared, analysed and compared to the marketed product Septopal (Biomet, Darmstadt, Germany), which consists of polymethylmethacrylate (PMMA) beads loaded with the same active ingredient. The implants were manufactured by hot melt extrusion with a twin screw extruder. In order to decrease the processing temperature and to improve the drug release behaviour, polyethylene glycol 400 (PEG 400) was added as plasticizer in different concentrations. The glass transition temperature of PLGA measured by differential scanning calorimetry declined in the same manner as the extrusion temperature with increasing PEG 400 concentration. The extrudates of all batches exhibited good encapsulation efficiency between 85% and 115% of the specified content. The behaviour of the implants during exposure to a release medium were characterised by scanning electron microscopy, gravimetric analysis and finally in vitro drug release studies. The results suggest that drug liberation is not affected by the addition of PEG 400, and depends on the drug-PLGA ratio only. Extrudates with 25% GS showed a release pattern with an initially higher drug release followed by a zero order kinetic for about four weeks and showed release profiles equivalent to Septopal. PMID:20662316

  20. PLGA nanoparticles as a platform for vitamin D-based cancer therapy

    PubMed Central

    Ramalho, Maria J; Loureiro, Joana A; Gomes, Bárbara; Frasco, Manuela F; Coelho, Manuel A N

    2015-01-01

    Summary Poly(lactic-co-glycolic acid) (PLGA) nanoparticles were studied as drug delivery vehicles for calcitriol, the active form of vitamin D3. In vitro effects of calcitriol encapsulated in PLGA nanoparticles were evaluated with respect to free calcitriol on human pancreatic cell lines, S2-013 and hTERT-HPNE, and the lung cancer cell line A549. Encapsulated calcitriol retained its biological activity, reducing the cell growth. Cytotoxicity assays demonstrated that encapsulation of calcitriol enhanced its inhibitory effect on cell growth at a concentration of 2.4 μM for the S2-013 cells (91%) and for A549 cells (70%) comparared to the free calcitriol results. At this concentration the inhibitory effect on nontumor cells (hTERT-HPNE) decreased to 65%. This study highlights the ability of PLGA nanoparticles to deliver vitamin D3 into cancer cells, with major effects regarding cancer cell cycle arrest and major changes in the cell morphological features. PMID:26199834

  1. Development of PLGA-coated β-TCP scaffolds containing VEGF for bone tissue engineering.

    PubMed

    Khojasteh, Arash; Fahimipour, Farahnaz; Eslaminejad, Mohamadreza Baghaban; Jafarian, Mohammad; Jahangir, Shahrbanoo; Bastami, Farshid; Tahriri, Mohammadreza; Karkhaneh, Akbar; Tayebi, Lobat

    2016-12-01

    Bone tissue engineering is sought to apply strategies for bone defects healing without limitations and short-comings of using either bone autografts or allografts and xenografts. The aim of this study was to fabricate a thin layer poly(lactic-co-glycolic) acid (PLGA) coated beta-tricalcium phosphate (β-TCP) scaffold with sustained release of vascular endothelial growth factor (VEGF). PLGA coating increased compressive strength of the β-TCP scaffolds significantly. For in vitro evaluations, canine mesenchymal stem cells (cMSCs) and canine endothelial progenitor cells (cEPCs) were isolated and characterized. Cell proliferation and attachment were demonstrated and the rate of cells proliferation on the VEGF released scaffold was significantly more than compared to the scaffolds with no VEGF loading. A significant increase in expression of COL1 and RUNX2 was indicated in the scaffolds loaded with VEGF and MSCs compared to the other groups. Consequently, PLGA coated β-TCP scaffold with sustained and localized release of VEGF showed favourable results for bone regeneration in vitro, and this scaffold has the potential to use as a drug delivery device in the future. PMID:27612772

  2. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol.

    PubMed

    Sanna, Vanna; Roggio, Anna Maria; Pala, Nicolino; Marceddu, Salvatore; Lubinu, Giuseppe; Mariani, Alberto; Sechi, Mario

    2015-01-01

    The polyphenols as nutraceutical and therapeutic agents are gaining growing interest for their beneficial effects and potential in human health. In order to protect their scaffolds and functionality, and to improve the bioavailability, the microencapsulation can represent a promising strategy. This study reports on the formulation of the natural resveratrol (RSV) into microcapsules (MCs) prepared by using different concentrations of chitosan (CS) and poly(D,L-lactic-co-glycolic acid) (PLGA) as polymeric matrix. MCs were prepared by W/O/W double emulsion method and characterized in terms of morphology, size, encapsulation efficiency, physicochemical and thermal properties. RSV release behavior from MCs was evaluated under simulated gastrointestinal fluids, and the long term stability was monitored at different storage conditions. MCs resulted to have spherical shape and different morphology, with size ranging from 11 to 20 μm, and encapsulation efficiencies of 40-52%, depending on the CS concentration. Moreover, MCs containing CS exhibited a significant lower release of RSV than those containing only PLGA. Furthermore, all tested formulations were able to ensure a good retention and stability of encapsulated RSV until 6 months. In summary, CS/PLGA MCs can be proposed as an attractive delivery system to control the release and long term protection of RSV. PMID:25220789

  3. Encapsulation-free controlled release: Electrostatic adsorption eliminates the need for protein encapsulation in PLGA nanoparticles

    PubMed Central

    Pakulska, Malgosia M.; Elliott Donaghue, Irja; Obermeyer, Jaclyn M.; Tuladhar, Anup; McLaughlin, Christopher K.; Shendruk, Tyler N.; Shoichet, Molly S.

    2016-01-01

    Encapsulation of therapeutic molecules within polymer particles is a well-established method for achieving controlled release, yet challenges such as low loading, poor encapsulation efficiency, and loss of protein activity limit clinical translation. Despite this, the paradigm for the use of polymer particles in drug delivery has remained essentially unchanged for several decades. By taking advantage of the adsorption of protein therapeutics to poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we demonstrate controlled release without encapsulation. In fact, we obtain identical, burst-free, extended-release profiles for three different protein therapeutics with and without encapsulation in PLGA nanoparticles embedded within a hydrogel. Using both positively and negatively charged proteins, we show that short-range electrostatic interactions between the proteins and the PLGA nanoparticles are the underlying mechanism for controlled release. Moreover, we demonstrate tunable release by modifying nanoparticle concentration, nanoparticle size, or environmental pH. These new insights obviate the need for encapsulation and offer promising, translatable strategies for a more effective delivery of therapeutic biomolecules. PMID:27386554

  4. Polymeric Microspheres as Protein Transduction Reagents*

    PubMed Central

    Nagel, David; Behrendt, Jonathan M.; Chimonides, Gwen F.; Torr, Elizabeth E.; Devitt, Andrew; Sutherland, Andrew J.; Hine, Anna V.

    2014-01-01

    to nucleic acids, and offers a useful alternative to commercial protein transfection reagents such as Chariot™. We also provide clear immunostaining evidence to resolve residual controversy surrounding FACS-based assessment of microsphere uptake. PMID:24692642

  5. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  6. Doped zinc oxide microspheres

    DOEpatents

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  7. Doped zinc oxide microspheres

    DOEpatents

    Arnold, W.D. Jr.; Bond, W.D.; Lauf, R.J.

    1993-12-14

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel. 4 figures.

  8. Fusion microsphere targets

    SciTech Connect

    Koo, J.C.

    1980-07-28

    It was shown that a microsphere within the structure limitations is hydrodynamically stable. To insure its perfect formation, the initial chemical compositions must have a blowing capability, more important, the resultant liquid compositions must also have sufficient surface tension and low viscosity.

  9. Microsphere insulation systems

    NASA Technical Reports Server (NTRS)

    Allen, Mark S. (Inventor); Willen, Gary S. (Inventor); Mohling, Robert A. (Inventor)

    2005-01-01

    A new insulation system is provided that contains microspheres. This insulation system can be used to provide insulated panels and clamshells, and to insulate annular spaces around objects used to transfer, store, or transport cryogens and other temperature-sensitive materials. This insulation system provides better performance with reduced maintenance than current insulation systems.

  10. Polyvinyl pyridine microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)

    1979-01-01

    Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.

  11. Vitamin E-Oligo(methyl diglycol l-glutamate) as a Biocompatible and Functional Surfactant for Facile Preparation of Active Tumor-Targeting PLGA Nanoparticles.

    PubMed

    Wu, Jintian; Zhang, Jian; Deng, Chao; Meng, Fenghua; Zhong, Zhiyuan

    2016-07-11

    Poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles have attracted an enormous interest for controlled drug delivery. Their clinical applications are, however, partly hindered by lack of biocompatible, biodegradable and functional surfactants. Here, we designed and developed a novel biocompatible surfactant based on amphiphilic vitamin E-oligo(methyl diglycol l-glutamate) (VEOEG) for facile fabrication of robust and tumor-targeting PLGA-based nanomedicines. VEOEG was prepared with controlled Mn of 1.7-2.6 kg/mol and low molecular weight distribution (Đ = 1.04-1.16) via polymerization of methyl diglycol l-glutamate N-carboxyanhydride using vitamin E-ethylenediamine derivative (VE-NH2) as an initiator. VEOEG had a hydrophile-lipophile balance data of 13.8-16.1 and critical micellar concentration of 189.3-203.8 mg/L depending on lengths of oligopeptide. Using VEOEG as a surfactant, PLGA nanoparticles could be obtained via nanoprecipitation method with a small and uniform hydrodynamic size of 135 nm and positive surface charge of +26.6 mV, in accordance with presence of amino groups at the surface. The resulting PLGA nanoparticles could be readily coated with hyaluronic acid (HA) to form highly stable, small-sized (143 nm), monodisperse, and negatively charged nanoparticles (HA-PLGA NPs). Notably, paclitaxel-loaded HA-PLGA NPs (PTX-HA-PLGA NPs) exhibited better antitumor effects in CD44-positive MCF-7 breast tumor cells than Taxol (a clinical paclitaxel formulation). The in vivo pharmacokinetics assay in nude mice displayed that PTX-HA-PLGA NPs possessed a long plasma half-life of 3.14 h. The in vivo biodistribution studies revealed that PTX-HA-PLGA NPs had a high tumor PTX level of 8.4% ID/g, about 6 times better than that of Taxol. Interestingly, therapeutic studies showed that PTX-HA-PLGA NPs caused significantly more effective tumor growth inhibition, better survival rate and lower adverse effect than Taxol. VEOEG has emerged as a versatile and functional

  12. Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds.

    PubMed

    Liu, Haixia; Wang, Ran; Chu, Henry K; Sun, Dong

    2015-09-01

    A novel biodegradable and conductive composite consisting of magnesium (Mg), polypyrrole-block-ploycaprolactone (PPy-PCL), and poly(lactic-co-glycolic acid) (PLGA) is synthesized in a core-shell-skeleton manner for tissue engineering applications. Mg particles in the composite are first coated with a conductive nanostructured PPy-PCL layer for corrosion resistance via the UV-induced photopolymerization method. PLGA matrix is then added to tailor the biodegradability of the resultant composite. Composites with different composition ratios are examined through experiments, and their material properties are characterized. The in vitro experiments on culture of 293FT-GFP cells show that the composites are suitable for cell growth and culture. Biodegradability of the composite is also evaluated. By adding PLGA matrix to the composite, the degrading time of the composite can last for more than eight weeks, hence providing a longer period for tissue formation as compared to Mg composites or alloys. The findings of this research will offer a new opportunity to utilize a conductive, nanostructured-coated Mg/PLGA composite as the scaffold material for implants and tissue regeneration. PMID:25690806

  13. Magnetic hyperthermia efficiency and 1H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles

    NASA Astrophysics Data System (ADS)

    Ruggiero, Maria R.; Geninatti Crich, Simonetta; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-01

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar 1H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15–20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications.

  14. Magnetic hyperthermia efficiency and (1)H-NMR relaxation properties of iron oxide/paclitaxel-loaded PLGA nanoparticles.

    PubMed

    Ruggiero, Maria R; Crich, Simonetta Geninatti; Sieni, Elisabetta; Sgarbossa, Paolo; Forzan, Michele; Cavallari, Eleonora; Stefania, Rachele; Dughiero, Fabrizio; Aime, Silvio

    2016-07-15

    Magnetic iron oxide nanoparticles (Fe-NPs) can be exploited in biomedicine as agents for magnetic fluid hyperthermia (MFH) treatments and as contrast enhancers in magnetic resonance imaging. New, oleate-covered, iron oxide particles have been prepared either by co-precipitation or thermal decomposition methods and incorporated into poly(lactic-co-glycolic acid) nanoparticles (PLGA-Fe-NPs) to improve their biocompatibility and in vivo stability. Moreover, the PLGA-Fe-NPs have been loaded with paclitaxel to pursue an MFH-triggered drug release. Remarkably, it has been found that the nanoparticle formulations are characterized by peculiar (1)H nuclear magnetic relaxation dispersion (NMRD) profiles that directly correlate with their heating potential when exposed to an alternating magnetic field. By prolonging the magnetic field exposure to 30 min, a significant drug release was observed for PLGA-Fe-NPs in the case of the larger-sized magnetic nanoparticles. Furthermore, the immobilization of lipophilic Fe-NPs in PLGA-NPs also made it possible to maintain Néel relaxation as the dominant relaxation contribution in the presence of large iron oxide cores (diameters of 15-20 nm), with the advantage of preserving their efficiency when they are entrapped in the intracellular environment. The results reported herein show that NMRD profiles are a useful tool for anticipating the heating capabilities of Fe-NPs designed for MFH applications. PMID:27265726

  15. Effects of surface functionalization of PLGA membranes for guided bone regeneration on proliferation and behavior of osteoblasts.

    PubMed

    Chen, Gang; Xia, Yang; Lu, Xiaoli; Zhou, Xuefeng; Zhang, Feimin; Gu, Ning

    2013-01-01

    Covalent immobilization of bioactive compounds onto modified poly lactic-co-glycolic acid (PLGA) surfaces is being rapidly developed in tissue engineering, but the compounds and the grafting procedure require optimization. Here, PLGA membranes were grafted with various ratios of collagen/chitosan (COL/CHI) composites after modification by polydopamine and then analyzed using attenuated total reflectance Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and a contact angle meter. Mechanical properties of the membranes were examined by tensile testing. Proliferation of osteoblastic cell line MC3T3-E1 cultured on the membranes was examined by MTT (3-(4, 5-dimethylthiozole-2-yl)-2, 5-diphenyltetrazolium bromide) and flow cytometric analysis. Effects on cell behavior, including cytotaxis, adhesion, and migration, were further investigated by continuous time-lapse imaging for 8 h. The COL/CHI composites were successfully immobilized onto PLGA surfaces. PLGA mainly contributed the mechanical properties, while COL/CHI played a major role in bioactivity. COL facilitated cell adhesion and spread, but the addition of CHI decreased both. A critical ratio of COL/CHI (2:1) above which the addition of CHI only slightly impacted cell proliferation was found. The results should be useful for combining versatile materials from different origins to construct guided bone regeneration membranes and to further optimize the ratio of COL/CHI composites. PMID:22807128

  16. Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications

    PubMed Central

    Kang, Yunqing; Scully, Allison; Young, Daniel A; Kim, Sungwoo; Tsao, Helen; Sen, Milan; Yang, Yunzhi

    2011-01-01

    Porous β-tricalcium phosphate (β-TCP) has been used for bone repair and replacement in clinics due to its excellent biocompatibility, osteoconductivity, and biodegradability. However, the application of β-TCP has been limited by its brittleness. Here, we demonstrated that an interconnected porous β-TCP scaffold infiltrated with a thin layer of poly (lactic-co-glycolic acid) (PLGA) polymer showed improved mechanical performance compared to an uncoated β-TCP scaffold while retaining its excellent interconnectivity and biocompatibility. The infiltration of PLGA significantly increased the compressive strength of β-TCP scaffolds from 2.90 MPa to 4.19 MPa, bending strength from 1.46 MPa to 2.41 MPa, and toughness from 0.17 MPa to 1.44 MPa, while retaining an interconnected porous structure with a porosity of 80.65%. These remarkable improvements in the mechanical properties of PLGA-coated β-TCP scaffolds are due to the combination of the systematic coating of struts, interpenetrating structural characteristics, and crack bridging. The in vitro biological evaluation demonstrated that rat bone marrow stromal cells (rBMSCs) adhered well, proliferated, and expressed alkaline phosphatase (ALP) activity on both the PLGA-coated β-TCP and the β-TCP. These results suggest a new strategy for fabricating interconnected macroporous scaffolds with significantly enhanced mechanical strength for potential load-bearing bone tissue regeneration. PMID:21892228

  17. Improved drug loading and antibacterial activity of minocycline-loaded PLGA nanoparticles prepared by solid/oil/water ion pairing method

    PubMed Central

    Kashi, Tahereh Sadat Jafarzadeh; Eskandarion, Solmaz; Esfandyari-Manesh, Mehdi; Marashi, Seyyed Mahmoud Amin; Samadi, Nasrin; Fatemi, Seyyed Mostafa; Atyabi, Fatemeh; Eshraghi, Saeed; Dinarvand, Rassoul

    2012-01-01

    Background Low drug entrapment efficiency of hydrophilic drugs into poly(lactic-co-glycolic acid) (PLGA) nanoparticles is a major drawback. The objective of this work was to investigate different methods of producing PLGA nanoparticles containing minocycline, a drug suitable for periodontal infections. Methods Different methods, such as single and double solvent evaporation emulsion, ion pairing, and nanoprecipitation were used to prepare both PLGA and PEGylated PLGA nanoparticles. The resulting nanoparticles were analyzed for their morphology, particle size and size distribution, drug loading and entrapment efficiency, thermal properties, and antibacterial activity. Results The nanoparticles prepared in this study were spherical, with an average particle size of 85–424 nm. The entrapment efficiency of the nanoparticles prepared using different methods was as follows: solid/oil/water ion pairing (29.9%) > oil/oil (5.5%) > water/oil/water (4.7%) > modified oil/water (4.1%) > nano precipitation (0.8%). Addition of dextran sulfate as an ion pairing agent, acting as an ionic spacer between PEGylated PLGA and minocycline, decreased the water solubility of minocycline, hence increasing the drug entrapment efficiency. Entrapment efficiency was also increased when low molecular weight PLGA and high molecular weight dextran sulfate was used. Drug release studies performed in phosphate buffer at pH 7.4 indicated slow release of minocycline from 3 days to several weeks. On antibacterial analysis, the minimum inhibitory concentration and minimum bactericidal concentration of nanoparticles was at least two times lower than that of the free drug. Conclusion Novel minocycline-PEGylated PLGA nanoparticles prepared by the ion pairing method had the best drug loading and entrapment efficiency compared with other prepared nanoparticles. They also showed higher in vitro antibacterial activity than the free drug. PMID:22275837

  18. Co-delivery of chemotherapeutic drugs with vitamin E TPGS by porous PLGA nanoparticles for enhanced chemotherapy against multi-drug resistance.

    PubMed

    Zhu, Huijun; Chen, Hongbo; Zeng, Xiaowei; Wang, Zhongyuan; Zhang, Xudong; Wu, Yanping; Gao, Yongfeng; Zhang, Jinxie; Liu, Kewei; Liu, Ranyi; Cai, Lintao; Mei, Lin; Feng, Si-Shen

    2014-02-01

    We report a strategy to make use of poly(lactic-co-glycolic acid) nanoparticle (PLGA NPs) for co-delivery of docetaxel (DTX) as a model anticancer drug together with vitamin E TPGS. The latter plays a dual role as a pore-forming agent in the nanoparticles that may result in smaller particle size, higher drug encapsulation efficiency and faster drug release, and also as a bioactive agent that could inhibit P-glycoprotein to overcome multi-drug resistance of the cancer cells, The DTX-loaded PLGA NPs of 0, 10, 20 and 40% TPGS were prepared by the nanoprecipitation method and then characterized for their size and size distribution, surface morphology, physical status and encapsulation efficiency of the drug in the NPs. All four NPs were found of size ranged 100-120 nm and EE ranged 85-95% at drug loading level around 10%. The in vitro evaluation showed that the 48 h IC50 values of the free DTX and the DTX-loaded PLGA NPs of 0, 10, 20% TPGS were 2.619 and 0.474, 0.040, 0.009 μg/mL respectively, which means that the PLGA NPs formulation could be 5.57 fold effective than the free DTX and that the DTX-loaded PLGA NPs of 10 or 20% TPGS further be 11.85 and 52.7 fold effective than the DTX-loaded PLGA NPs of no TPGS (therefore, 66.0 and 284 fold effective than the free DTX). Xenograft tumor model and immunohistological staining analysis further confirmed the advantages of the strategy of co-delivery of anticancer drugs with TPGS by PLGA NPs. PMID:24360574

  19. Porous microsphere and its applications

    PubMed Central

    Cai, Yunpeng; Chen, Yinghui; Hong, Xiaoyun; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    Porous microspheres have drawn great attention in the last two decades for their potential applications in many fields, such as carriers for drugs, absorption and desorption of substances, pulmonary drug delivery, and tissue regeneration. The application of porous microspheres has become a feasible way to address existing problems. In this essay, we give a brief introduction of the porous microsphere, its characteristics, preparation methods, applications, and a brief summary of existing problems and research tendencies. PMID:23515359

  20. A 12-week intramuscular toxicity study of risperidone-loaded microspheres in Beagle dogs.

    PubMed

    Tian, J; Wang, W; Ye, L; Cen, X; Guan, X; Zhang, J; Yu, P; Du, G; Liu, W; Li, Y

    2014-05-01

    Long-acting formulations of antipsychotics are important treatment options to increase the compliance of schizophrenic patients. Risperidone, a 5-HT2 and dopaminergic D2 receptor antagonist, was developed as long-acting sustained-release microspheres with poly(lactide-co-glycolide) (PLGA) as a drug carrier for the treatment of schizophrenia. In the present study, the main objective is to determine the nonclinical safety profile of risperidone-loaded microspheres (RM) in Beagle dogs after intramuscular administration for 3 months, once in 2 weeks, followed by 8-week recovery phase. No animal death was found and no special toxicological findings were observed. The findings, such as hypoactivity, ptosis, increased heart rate, and elevated serum and pituitary prolactin levels, were observed and related to the pharmacological effects of risperidone. The changes in the reproductive system (uterus, ovary, vagina, cervix, and mammary gland) were considered secondary to the prolactin elevation, and the congestion of spleen was related to risperidone. The foreign body granulomas at injection sites might be caused by PLGA. At the end of recovery phase, the above changes mostly recovered to normal, and on administering 3 mg/kg dose level once in 2 weeks on Beagle dogs showed no observed adverse effect. Taken together, RM had exhibited the acceptable safety. PMID:23925946

  1. Influence of storage temperature and moisture on the performance of microsphere/hydrogel composites.

    PubMed

    Wang, Yan; Burgess, Diane J

    2013-09-15

    The current study involved investigation of the effect of storage temperature and moisture on the performance of poly(lactide-co-glycolide) (PLGA) microsphere/poly(vinyl-alcohol) (PVA) hydrogel composites. Physical aging occurred in composites stored at 25°C due to structural relaxation. The glass transition temperature (Tg) and enthalpy of relaxation of the composites increased leading to a slower cumulative % release. The Tg of composites incubated at 40°C, 75% RH decreased significantly due to the plasticization effect of absorbed water, whereas no change was observed in the Tg of microspheres alone; indicating that the hydrogel component enhanced water absorption. PLGA degradation occurred leading to significantly faster dexamethasone release following incubation at 40°C, 75% RH for 1 month. No significant change was observed in the in vitro release profiles of composites after 6 months storage at 25°C, 60% RH, however, release was accelerated following 12 months storage. Accordingly, exposure of the composites to ambient temperature/moisture during storage, shipping or handling may cause physical aging, plasticization, and degradation and hence, their performance may be affected. The extent to which the performance of the composite is affected by storage temperature and moisture is a net effect of physical aging and moisture induced plasticization/hydrolytic degradation. PMID:23811131

  2. Functional magnetic microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Landel, Robert F. (Inventor)

    1981-01-01

    Functional magnetic particles are formed by dissolving a mucopolysaccharide such as chitosan in acidified aqueous solution containing a mixture of ferrous chloride and ferric chloride. As the pH of the solution is raised magnetite is formed in situ in the solution by raising the pH. The dissolved chitosan is a polyelectrolyte and forms micelles surrounding the granules at pH of 8-9. The chitosan precipitates on the granules to form microspheres containing the magnetic granules. On addition of the microspheres to waste aqueous streams containing dissolved ions, the hydroxyl and amine functionality of the chitosan forms chelates binding heavy metal cations such as lead, copper, and mercury and the chelates in turn bind anions such as nitrate, fluoride, phosphate and borate.

  3. Coacervate-like microspheres from lysine-rich proteinoid

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1975-01-01

    Microspheres form isothermally from lysine-rich proteinoid when the ionic strength of the solution is increased with NaCl or other salts. Studies with different monovalent anions and with polymers of different amino acid composition indicate that charge neutralization and hydrophobic bonding contribute to microsphere formation. The particles also form in sea water, especially if heated or made slightly alkaline. The microspheres differ from those made from acidic proteinoid but resemble coacervate droplets in some ways (isothermal formation, limited stability, stabilization by quinone, uptake of dyes). Because the constituent lysine-rich proteinoid is of simulated prebiotic origin, the study is interpreted to add emphasis to and suggest an evolutionary continuity for coacervation phenomena.

  4. Mechanistic Studies on the Self-Assembly of PLGA Patchy Particles and Their Potential Applications in Biomedical Imaging.

    PubMed

    Salvador-Morales, C; Brahmbhatt, Binal; Márquez-Miranda, V; Araya-Duran, I; Canan, J; Gonzalez-Nilo, F; Vilos, C; Cebral, J; Mut, F; Lohner, R; Leong, B; Sundaresan, G; Zweit, J

    2016-08-01

    Currently, several challenges prevent poly(lactic-co-glycolic acid) (PLGA) particles from reaching clinical settings. Among these is a lack of understanding of the molecular mechanisms involved in the formation of these particles. We have been studying in depth the formation of patchy polymeric particles. These particles are made of PLGA and lipid-polymer functional groups. They have unique patch-core-shell structural features: hollow or solid hydrophobic cores and a patchy surface. Previously, we identified the shear stress as the most important parameter in a patchy particle's formation. Here, we investigated in detail the role of shear stress in the patchy particle's internal and external structure using an integrative experimental and computational approach. By cross-sectioning the multipatch particles, we found lipid-based structures embedded in the entire PLGA matrix, which represents a unique finding in the PLGA field. By developing novel computational fluid dynamics and molecular dynamics simulations, we found that the shear stress determines the internal structure of the patchy particles. Equally important, we discovered that these particles emit a photoacoustic (PA) signal in the optical clinical imaging window. Our results show that particles with multiple patches emit a higher PA signal than single-patch particles. This phenomenon most likely is due to the fact that multipatchy particles absorb more heat than single-patchy particles as shown by differential scanning calorimetry analysis. Furthermore, we demonstrated the use of patchy polymeric particles as photoacoustic molecular probes both in vitro and in vivo studies. The fundamental studies described here will help us to design more effective PLGA carriers for a number of medical applications as well as to accelerate their medical translation. PMID:27468612

  5. Exploring the dark side of MTT viability assay of cells cultured onto electrospun PLGA-based composite nanofibrous scaffolding materials.

    PubMed

    Qi, Ruiling; Shen, Mingwu; Cao, Xueyan; Guo, Rui; Tian, Xuejiao; Yu, Jianyong; Shi, Xiangyang

    2011-07-21

    One major method used to evaluate the biocompatibility of porous tissue engineering scaffolding materials is MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The MTT cell viability assay is based on the absorbance of the dissolved MTT formazan crystals formed in living cells, which is proportional to the number of viable cells. Due to the strong dye sorption capability of porous scaffolding materials, we propose that the cell viability determined from the MTT assay is likely to give a false negative result. In this study, we aim to explore the effect of the adsorption of MTT formazan on the accuracy of the viability assay of cells cultured onto porous electrospun poly(lactic-co-glycolic acid) (PLGA) nanofibers, HNTs (halloysite nanotubes)/PLGA, and CNTs (multiwalled carbon nanotubes)/PLGA composite nanofibrous mats. The morphology of electrospun nanofibers and L929 mouse fibroblasts cultured onto the nanofibrous scaffolds were observed using scanning electron microscopy. The viability of cells proliferated for 3 days was evaluated through the MTT assay. In the meantime, the adsorption of MTT formazan onto the same electrospun nanofibers was evaluated and the standard concentration-absorbance curve was obtained in order to quantify the contribution of the adsorbed MTT formazan during the MTT cell viability assay. We show that the PLGA, and the HNTs- or CNTs-doped PLGA nanofibers display appreciable MTT formazan dye sorption, corresponding to 35.6-50.2% deviation from the real cell viability assay data. The better dye sorption capability of the nanofibers leads to further deviation from the real cell viability. Our study gives a general insight into accurate MTT cytotoxicity assessment of various porous tissue engineering scaffolding materials, and may be applicable to other colorimetric assays for analyzing the biological properties of porous scaffolding materials. PMID:21647502

  6. The use of BMP-2 coupled – Nanosilver-PLGA composite grafts to induce bone repair in grossly infected segmental defects

    PubMed Central

    Zheng, Zhong; Yin, Wei; Zara, Janette N.; Li, Weiming; Kwak, Jinny; Mamidi, Rachna; Lee, Min; Siu, Ronald K.; Ngo, Richard; Wang, Joyce; Carpenter, Doug; Zhang, Xinli; Wu, Benjamin; Ting, Kang; Soo, Chia

    2010-01-01

    Healing of contaminated/infected bone defects is a significant clinical challenge. Prevalence of multi-antibiotic resistant organisms has renewed interest in the use of antiseptic silver as an effective, but less toxic antimicrobial with decreased potential for bacterial resistance. In this study, we demonstrated that metallic nanosilver particles (with a size of 20–40 nm)-poly(lactic-co-glycolic acid) (PLGA) composite grafts have strong antibacterial properties. In addition, nanosilver particles-PLGA composite grafts did not inhibit adherence, proliferation, alkaline phosphatase activity, or mineralization of ongrowth MC3T3-E1 pre-osteoblasts compared to PLGA controls. Furthermore, nanosilver particles did not affect the osteoinductivity of bone morphogenetic protein 2 (BMP-2). Infected femoral defects implanted with BMP-2 coupled 2.0% nanosilver particles-PLGA composite grafts healed in 12 weeks without evidence of residual bacteria. In contrast, BMP-2 coupled PLGA control grafts failed to heal in the presence of continued bacterial colonies. Our results indicate that nanosilver of defined particle size is bactericidal without discernable in vitro and in vivo cytotoxicity or negative effects on BMP-2 osteoinductivity, making it an ideal antimicrobial for bone regeneration in infected wounds. PMID:20864167

  7. Trading polymeric microspheres: exchanging DNA molecules via microsphere interaction.

    PubMed

    Morimoto, Nobuyuki; Muramatsu, Kanna; Nomura, Shin-ichiro M; Suzuki, Makoto

    2015-04-01

    A new class of artificial molecular transport system is constructed by polymeric microspheres. The microspheres are prepared by self-assembly of poly(ethylene glycol)-block-poly(3-dimethyl(methacryloyloxyethyl)ammonium propane sulfonate), PEG-b-PDMAPS, by intermolecular dipole-dipole interaction of sulfobetaine side chains in water. Below the upper critical solution temperature (UCST) of PEG-b-PDMAPS, the microspheres (∼1μm) interact with other microspheres by partial and transit fusion. In order to apply the interaction between microspheres, a 3'-TAMRA-labeled single-stranded DNA oligomer (ssDNA) is encapsulated into a PEG-b-PDMAPS microsphere by thermal treatment. The exchange of ssDNA between microspheres is confirmed by fluorescence resonance energy transfer (FRET) quenching derived from double-stranded formation with complementary 5'-BHQ-2-labeled ssDNA encapsulated in PEG-b-PDMAPS microspheres. The exchange rate of ssDNA is controllable by tuning the composition of the polymer. The contact-dependent transport of molecules can be applied in the areas of microreactors, sensor devices, etc. PMID:25731098

  8. Stem Cells Grown in Osteogenic Medium on PLGA, PLGA/HA, and Titanium Scaffolds for Surgical Applications

    PubMed Central

    Asti, Annalia; Gastaldi, Giulia; Dorati, Rossella; Saino, Enrica; Conti, Bice; Visai, Livia; Benazzo, Francesco

    2010-01-01

    Pluripotent adipose tissue-derived stem cells (hASCs) can differentiate into various mesodermal cell types such as osteoblasts, chondroblasts, and myoblasts. We isolated hASCs from subcutaneous adipose tissue during orthopaedic surgery and induced the osteogenic differentiation for 28 days on three different synthetic scaffolds such as polylactide-co-glycolide (PLGA), polylactide-co-glycolide/hydroxyapatite (PLGA/HA), and trabecular titanium scaffolds (Ti6Al4V). Pore size can influence certain criteria such as cell attachment, infiltration, and vascularization. The aim of this study was to investigate the performance of PLGA and PLGA/HA scaffolds with a higher porosity, ranging between 75% and 84%, with respect to Ti scaffolds but with smaller pore size, seeded with hASCs to develop a model that could be used in the treatment of bone defects and fractures. Osteogenesis was assessed by ELISA quantitation of extracellular matrix protein expression, von Kossa staining, X-ray microanalysis, and scanning electron microscopy. The higher amount of protein matrix on the Ti scaffold with respect to PLGA and PLGA/HA leads to the conclusion that not only the type of material but the structure significantly affects cell proliferation. PMID:21234383

  9. Thermal property and assessment of biocompatibility of poly(lactic-co-glycolic) acid/graphene nanocomposites

    SciTech Connect

    Adhikari, Ananta R.; Rusakova, Irene; Chu, Wei-Kan; Haleh, Ardebili; Luisi, Jonathan; Panova, Neli I.; Laezza, Fernanda

    2014-02-07

    Polymer-matrix nanocomposites based on Poly(lactic-co-glycolic) acid (PLGA) and Graphene platelets (GNPs) were studied. GNPs, nanomaterials with a 2D flat surface, were chosen with or without chemical modification in PLGA/GNP nanocomposites and their microstructure, thermal property, and their compatibility as scaffolds for cell growth were investigated. PLGA/GNP nanocomposites (0, 1, and 5 wt. % of GNPs) were prepared using a solution based technique. Transmission electron microscopy, X-ray diffraction, Differential scanning calorimeter, and Thermogravimetric analyzer were used to analyze morphology and thermal properties. This work demonstrated the role of GNPs flat surface to provide a favorable platform resulting in an enhanced PLGA crystallization. Functionalized GNPs suppress both the thermal stability and the crystallization of PLGA. Finally, to determine the potential usefulness of these scaffolds for biomedical applications, mammalian cells were cultured on various PLGA/GNP nanocomposites (0, 1, and 5 wt. % GNPs). 1 wt. % PLGA/GNP nanocomposites showed better biocompatibility for cell growth with/without graphenes functionalization compared to pure PLGA and 5 wt. % PLGA/GNP. The function of GNPs in PLGA/GNPs (1 wt. %) composites is to provide a stage for PLGA crystallization where cell growth is favored. These results provide strong evidence for a new class of materials that could be important for biomedical applications.

  10. Encapsulation of immunoglobulin G by solid-in-oil-in-water: effect of process parameters on microsphere properties.

    PubMed

    Marquette, Sarah; Peerboom, Claude; Yates, Andrew; Denis, Laurence; Goole, Jonathan; Amighi, Karim

    2014-04-01

    Antibodies (Abs) are prone to a variety of physical and chemical degradation pathways, which require the development of stable formulations and specific delivery strategies. In this study, injectable biodegradable and biocompatible polymeric particles were employed for controlled-release dosage forms and the encapsulation of antibodies into polylactide-co-glycolide (PLGA) based microspheres was explored. In order to avoid stability issues which are commonly described when water-in-oil (w/o) emulsion is used, a solid-in-oil-in-water (s/o/w) method was developed and optimized. The solid phase was made of IgG microparticles and the s/o/w process was evaluated as an encapsulation method using a model Ab molecule (polyclonal bovine immunoglobulin G (IgG)). The methylene chloride (MC) commonly used for an encapsulation process was replaced by ethyl acetate (EtAc), which was considered as a more suitable organic solvent in terms of both environmental and human safety. The effects of several processes and formulation factors were evaluated on IgG:PLGA microsphere properties such as: particle size distribution, drug loading, IgG stability, and encapsulation efficiency (EE%). Several formulations and processing parameters were also statistically identified as critical to get reproducible process (e.g. the PLGA concentration, the volume of the external phase, the emulsification rate, and the quantity of IgG microparticles). The optimized encapsulation method has shown a drug loading of up to 6% (w/w) and an encapsulation efficiency of up to 60% (w/w) while preserving the integrity of the encapsulated antibody. The produced microspheres were characterized by a d(0.9) lower than 110 μm and showed burst effect lower than 50% (w/w). PMID:24184674

  11. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates

    PubMed Central

    Park, Jason; Mattessich, Thomas; Jay, Steven M.; Agawu, Atu; Saltzman, W. Mark; Fahmy, Tarek M.

    2013-01-01

    Biodegradable polymeric nanoparticles are widely recognized as efficacious drug delivery vehicles, yet the rational engineering of nanoparticle surfaces in order to improve biodistribution, reduce clearance, and/or improve targeting remains a significant challenge. We have previously demonstrated that an amphiphilic conjugate of avidin and palmitic acid can be used to modify poly(lactic-co-glycolic acid) (PLGA) particle surfaces to display functional avidin groups, allowing for the facile attachment of biotinylated ligands for targeting or steric stabilization. Here, we hypothesized that the incorporation, density, and stability of surface-presented avidin could be modulated through varying the lipophilicity of its fatty acid conjugate partner. We tested this hypothesis by generating a set of novel conjugates incorporating avidin and common fatty acids. We found that conjugation to linoleic acid resulted in a ∼60% increase in the incorporation of avidin on the nanoparticle surface compared to avidin–palmitic acid, which exhibited the highest avidin incorporation in previous studies. Further, the linoleic acid–avidin conjugate yielded nanoparticles with enhanced ability to bind biotinylated ligands compared to the previous method; nanoparticles modified with avidin–linoleic acid bound ∼170% more biotin–HRP than those made with avidin–palmitic acid and ∼1300% more than particles made without conjugated avidin. Most critically, increased ligand density on anti-CD4-targeted nanoparticles formulated with the linoleic acid–avidin conjugate resulted in a 5% increase in binding of CD4+ T cells. Thus we conclude that the novel avidin–linoleic acid conjugate facilitates enhanced ligand density on PLGA nanoparticles, resulting in functional enhancement of cellular targeting. PMID:21723893

  12. Metal containing polymeric functional microspheres

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Rembaum, Alan (Inventor); Molday, Robert S. (Inventor)

    1979-01-01

    Polymeric functional microspheres containing metal or metal compounds are formed by addition polymerization of a covalently bondable olefinic monomer such as hydroxyethylmethacrylate in the presence of finely divided metal or metal oxide particles, such as iron, gold, platinum or magnetite, which are embedded in the resulting microspheres. The microspheres can be covalently bonded to chemotherapeutic agents, antibodies, or other proteins providing a means for labeling or separating labeled cells. Labeled cells or microspheres can be concentrated at a specific body location such as in the vicinity of a malignant tumor by applying a magnetic field to the location and then introducing the magnetically attractable microspheres or cells into the circulatory system of the subject. Labeled cells can be separated from a cell mixture by applying a predetermined magnetic field to a tube in which the mixture is flowing. After collection of the labeled cells, the magnetic field is discontinued and the labeled sub-cell population recovered.

  13. Immunofluorescence detection methods using microspheres

    NASA Astrophysics Data System (ADS)

    Szurdoki, Ferenc; Michael, Karri L.; Agrawal, Divya; Taylor, Laura C.; Schultz, Sandra L.; Walt, David R.

    1999-01-01

    Microsphere-based immunoassays were devised for compounds of agricultural and biomedical interest (e.g., digoxin, theophylline, and zearalenone). Commercially available microspheres with surface functional groups for chemical derivatization were used as solid carriers. After immobilizing the target substances, the surface of the haptenized microspheres was blocked by a protein to reduce aspecific binding. Competitive immunoassays were performed using the functionalized microspheres and antibodies labeled with horseradish peroxidase. Immunofluorescence signal amplification was achieved by enzyme-catalyzed reporter deposition (CARD). An epifluorescence microscope, a CCD camera interfaced with a computer, and microscopy image analysis software were employed for quantitative detection of fluorescent light emitted from individual microspheres. Integration of several such immunoassays and application of an optical encoding method enabled multianalyte determination. These immunoassays can also be utilized in an immunosensor array format. This immunoarray format could facilitate miniaturization and automation of multianalyte immunoassays.

  14. Optical tweezers based measurement of PLGA-NP interaction with prostate cancer cells

    NASA Astrophysics Data System (ADS)

    Blesener, Thea; Mondal, Argha; Menon, Jyothi U.; Nguyen, Kytai T.; Mohanty, Samarendra

    2013-02-01

    In order to quantify the binding capacities of polymeric, biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), conjugated with either R11 peptides or Folic Acid, the strength by detach from prostate cancer cells (PCCs) was measured via optical tweezers based measurements. Specific nanoparticle drug delivery eliminates the previously used diffuse, full-body application of potent cancer drugs by localizing drug delivery to malignant cells. Precise monitoring of NP position in the trap near the PCC membrane using a fluorescence imaging based method enabled calibration of the trap stiffness and subsequent force measurements. By defining the force with which the many diverse conjugates and coatings of different types of NPs bind the vast array of cancer cell types, chemotherapeutic drugs can be delivered in a specific manner with the optimal particle and corresponding conjugates. Further, and most significantly, the rupture force measurements will reveal whether or not targeted nanoparticles can overcome the force of blood attempting to pull the particle from designated cells. Our preliminary study revealed that the binding between PLGA-NPs and prostate cancer cells is enhanced by coating with folic acid or R11 peptides. These conjugates increase the force required to detach the particle thus allowing particles to overcome drag force of the blood in prostate capillary systems.

  15. Janus nanogels of PEGylated Taxol and PLGA-PEG-PLGA copolymer for cancer therapy

    NASA Astrophysics Data System (ADS)

    Wei, Jun; Wang, Huaimin; Zhu, Meifeng; Ding, Dan; Li, Dongxia; Yin, Zhinan; Wang, Lianyong; Yang, Zhimou

    2013-09-01

    Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy.Nanogels are promising carriers for the delivery of anti-cancer drugs for cancer therapy. We report in this study on a Janus nanogel system formed by mixing a prodrug of Taxol (PEGylated Taxol) and a copolymer of PLGA-PEG-PLGA. The Janus nanogels have good stability over months in aqueous solutions and the freeze-dried powder of nanogels can be re-dispersed instantly in aqueous solutions. The Janus nanogels show an enhanced inhibition effect on tumor growth in a mice breast cancer model probably due to the enhanced uptake of the nano-sized materials by the EPR effect. What is more, the nanogels can also serve as physical carriers to co-deliver other anti-cancer drugs such as doxorubicin to further improve the anti-cancer efficacy. The results obtained from H&E staining and TUNEL assay also support the observation of tumor growth inhibition. These results suggest the potential of this novel delivery system for cancer therapy. Electronic supplementary information (ESI) available: Synthesis and characterization of compounds, dynamic time sweep, H

  16. Polysaccharide-based aerogel microspheres for oral drug delivery.

    PubMed

    García-González, C A; Jin, M; Gerth, J; Alvarez-Lorenzo, C; Smirnova, I

    2015-03-01

    Polysaccharide-based aerogels in the form of microspheres were investigated as carriers of poorly water soluble drugs for oral administration. These bio-based carriers may combine the biocompatibility of polysaccharides and the enhanced drug loading capacity of dry aerogels. Aerogel microspheres from starch, pectin and alginate were loaded with ketoprofen (anti-inflammatory drug) and benzoic acid (used in the management of urea cycle disorders) via supercritical CO2-assisted adsorption. Amount of drug loaded depended on the aerogel matrix structure and composition and reached values up to 1.0×10(-3) and 1.7×10(-3) g/m(2) for ketoprofen and benzoic acid in starch microspheres. After impregnation, drugs were in the amorphous state in the aerogel microspheres. Release behavior was evaluated in different pH media (pH 1.2 and 6.8). Controlled drug release from pectin and alginate aerogel microspheres fitted Gallagher-Corrigan release model (R(2)>0.99 in both cases), with different relative contribution of erosion and diffusion mechanisms depending on the matrix composition. Release from starch aerogel microspheres was driven by dissolution, fitting the first-order kinetics due to the rigid starch aerogel structure, and showed different release rate constant (k1) depending on the drug (0.075 and 0.160 min(-1) for ketoprofen and benzoic acid, respectively). Overall, the results point out the possibilities of tuning drug loading and release by carefully choosing the polysaccharide used to prepare the aerogels. PMID:25498702

  17. Chalcogenide glass microsphere laser.

    PubMed

    Elliott, Gregor R; Murugan, G Senthil; Wilkinson, James S; Zervas, Michalis N; Hewak, Daniel W

    2010-12-01

    Laser action has been demonstrated in chalcogenide glass microsphere. A sub millimeter neodymium-doped gallium lanthanum sulphide glass sphere was pumped at 808 nm with a laser diode and single and multimode laser action demonstrated at wavelengths between 1075 and 1086 nm. The gallium lanthanum sulphide family of glass offer higher thermal stability compared to other chalcogenide glasses, and this, along with an optimized Q-factor for the microcavity allowed laser action to be achieved. When varying the pump power, changes in the output spectrum suggest nonlinear and/or thermal effects have a strong effect on laser action. PMID:21165022

  18. Photonic crystal microspheres

    NASA Astrophysics Data System (ADS)

    Zhokhov, A. A.; Masalov, V. M.; Sukhinina, N. S.; Matveev, D. V.; Dolganov, P. V.; Dolganov, V. K.; Emelchenko, G. A.

    2015-11-01

    Spherical samples of photonic crystals formed by colloidal SiO2 nanoparticles were synthesized. Synthesis of microspheres from 160 nm, 200 nm and 430 nm diameter colloidal nanoparticles was performed over a wide size range, from 5 μm to 50 μm. The mechanism of formation of void microparticles exceeding 50 μm is discussed. The spectral measurements verified the association of the spectra with the peaks of selective reflection from the cubic lattice planes. The microparticle morphology is characterized by scanning electron microscopy (SEM).

  19. Photoprotective efficiency of PLGA-curcumin nanoparticles versus curcumin through the involvement of ERK/AKT pathway under ambient UV-R exposure in HaCaT cell line.

    PubMed

    Chopra, Deepti; Ray, Lipika; Dwivedi, Ashish; Tiwari, Shashi Kant; Singh, Jyoti; Singh, Krishna P; Kushwaha, Hari Narayan; Jahan, Sadaf; Pandey, Ankita; Gupta, Shailendra K; Chaturvedi, Rajnish Kumar; Pant, Aditya Bhushan; Ray, Ratan Singh; Gupta, Kailash Chand

    2016-04-01

    Curcumin (Cur) has been demonstrated to have wide pharmacological window including anti-oxidant and anti-inflammatory properties. However, phototoxicity under sunlight exposure and poor biological availability limits its applicability. We have synthesized biodegradable and non-toxic polymer-poly (lactic-co-glycolic) acid (PLGA) encapsulated formulation of curcumin (PLGA-Cur-NPs) of 150 nm size range. Photochemically free curcumin generates ROS, lipid peroxidation and induces significant UVA and UVB mediated impaired mitochondrial functions leading to apoptosis/necrosis and cell injury in two different origin cell lines viz., mouse fibroblasts-NIH-3T3 and human keratinocytes-HaCaT as compared to PLGA-Cur-NPs. Molecular docking studies suggested that intact curcumin from nanoparticles, bind with BAX in BIM SAHB site and attenuate it to undergo apoptosis while upregulating anti-apoptotic genes like BCL2. Real time studies and western blot analysis with specific phosphorylation inhibitor of ERK1 and AKT1/2/3 confirm the involvement of ERK/AKT signaling molecules to trigger the survival cascade in case of PLGA-Cur-NPs. Our finding demonstrates that low level sustained release of curcumin from PLGA-Cur-NPs could be a promising way to protect the adverse biological interactions of photo-degradation products of curcumin upon the exposure of UVA and UVB. Hence, the applicability of PLGA-Cur-NPs could be suggested as prolonged radical scavenging ingredient in curcumin containing products. PMID:26803409

  20. Eudragit-coated dextran microspheres of 5-fluorouracil for site-specific delivery to colon.

    PubMed

    Rai, Gopal; Yadav, Awesh K; Jain, Narendra K; Agrawal, Govind P

    2016-01-01

    Objective of the present investigation was to prepare and evaluate the potential of enteric coated dextran microspheres for colon targeting of 5-fluorouracil (5-FU). Dextran microspheres were prepared by emulsification-crosslinking method and the formulation variables studied included different molecular weights of dextran, drug:polymer ratio, volume of crosslinking agent, stirring speed and time. Enteric coating (Eudragit S-100) of dextran microspheres was performed by oil-in-oil solvent evaporation method using different coat:core ratios (4:1 or 8:1). Uncoated and coated dextran microspheres were characterized by particle size, surface morphology, entrapment efficiency, DSC, in vitro drug release in the presence of dextranase and 2% rat cecal contents. The release study of 5-FU from coated dextran microspheres was pH dependent. No release was observed at acidic pH; however, the drug was released quickly where Eudragit starts solublizing there was continuous release of drug from the microspheres. Organ distribution study was suggested that coated dextran microspheres retard the release of drug in gastric and intestinal pH environment and released of drug from microspheres in colon due to the degradation of dextran by colonic enzymes. PMID:24845476

  1. Protein adsorption using novel carboxymethyl-curdlan microspheres.

    PubMed

    Rafigh, Sayyid Mahdi; Vaziri Yazdi, Ali; Safekordi, Ali Akbar; Heydari Nasab, Amir; Ardjmand, Mehdi; Naderi, Fereshteh; Mozafari, Hamid

    2016-06-01

    Carboxymethyl-curdlan as a water soluble curdlan derivative, was synthesized in an aqueous alkaline medium using monochloroacetic acid. Novel carboxymethyl-curdlan (CC) microspheres were prepared by the method of W/O/W emulsion. The chemical and morphological structures of CC microspheres were investigated by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and particle size analysis. The CC microspheres were spherical, free flowing, non-aggregated and uniform mono-disperse with diameter of 260μm. The prepared CC microspheres were applied to adsorbing Bovine serum albumin (BSA) as model protein. Factors influencing the adsorption of BSA such as solution pH, temperature, initial BSA concentration and ionic strength were examined by batch experiments. The maximum adsorption capacity was calculated as 168mg/g under optimal conditions including BSA initial concentration (4mg/mL), pH (4.7), adsorption time (9h) and temperature (35°C). The adsorption isotherm followed the Langmuir model and the adsorption kinetics fitted the pseudo-second-order model. In addition, the CC microspheres can be also regenerated and re-used. PMID:26964526

  2. Evaluation of the growth and osteogenic differentiation of ASCs cultured with PL and seeded on PLGA scaffolds.

    PubMed

    Awidi, Abdalla; Ababneh, Nidaa; Alkilani, Hussein; Salah, Bariqa; Nazzal, Shymaa; Zoghool, Maisaa; Shomaf, Maha

    2015-02-01

    Scaffold serves as an important component of tissue engineering, which facilitates cell attachment, proliferation and differentiation of cultured cells. In this study we aimed to use platelet lysates as a substitute for FBS in culturing and proliferation of human adipose tissue-derived stromal cells (ASCs), which constitute a promising source for cell therapy. We characterized ASCs in the presence of PL, and then we seeded them onto poly(lactic-co-glycolic acid) (PLGA) scaffolds, osteogenic media was used to induce their proliferation and osteogenic differentiation. Gene expression analysis revealed higher expression of osteogenic related genes, immunohistochemical staining showed proper cell attachment, growth and collagen matrix formation with the ability to induce vascularization. In conclusion, expansion of ASCs in PL-supplemented medium could promote cell proliferation and osteogenic differentiation of cells seeded on PLGA scaffolds, therefore it could be considered as a suitable and effective substitute for FBS to be used in clinical applications. PMID:25644098

  3. Degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid nanocomposite in simulated body fluid

    SciTech Connect

    Liuyun, Jiang; Chengdong, Xiong; Lixin, Jiang; Lijuan, Xu

    2013-10-15

    Graphical abstract: In this manuscript, we initiated a systematic study to investigate the effect of HA on thermal properties, inner structure, reduction of mechanical strength, surface morphology and the surface deposit of n-HA/PLGA composite with respect to the soaking time. The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA composite, which can accelerate the degradation of n-HA/PLGA composite and endow it with bioactivity, after n-HA was detached from PLGA during the degradation, so that n-HA/PLGA composite may have a more promising prospect of the clinical application than pure PLGA as bone fracture internal fixation materials, and the results would be of reference significance to predict the in vivo degradation and biological properties. - Highlights: • Effect of n-HA on degradation behavior of n-HA/PLGA composite was investigated. • Degradation behaviors of n-HA/PLGA and PLGA were carried out in SBF for 6 months. • Viscosity, thermal properties, inner structure and bending strength were tested. • n-HA can accelerate the degradation and endows it with bioactivity. - Abstract: To investigate the effect of hydroxyapatite(HA) on the degradation behavior of hydroxyapatite/poly(lactic-co-glycolic) acid (HA/PLGA) nanocomposite, the degradation experiment of n-HA/PLGA composite and pure PLGA were carried out by soaking in simulated body fluid(SBF) at 37 °C for 1, 2, 4 and 6 months. The change of intrinsic viscosity, thermal properties, inner structure, bending strength reduction, surface morphology and the surface deposit of n-HA/PLGA composite and pure PLGA with respect to the soaking time were investigated by means of UbbeloHde Viscometer, differential scanning calorimeter (DSC), scanning electron microscope(SEM), electromechanical universal tester, a conventional camera and X-ray diffraction (XRD). The results showed that n-HA played an important role in improving the degradation behavior of n-HA/PLGA

  4. PLGA/gelatin hybrid nanofibrous scaffolds encapsulating EGF for skin regeneration.

    PubMed

    Norouzi, Mohammad; Shabani, Iman; Ahvaz, Hana H; Soleimani, Masoud

    2015-07-01

    The novel strategies of skin regenerative treatment are aimed at the development of biologically responsive scaffolds capable of delivering multiple bioactive agents and cells to the target tissues. In this study, nanofibers of poly(lactic-co-glycolic acid) (PLGA) and gelatin were electrospun and the effect of parameters viz polymer concentration, acid concentration, flow rate and voltage on the morphology of the fibers were investigated. PLGA nanofibers encapsulating epidermal growth factor were also prepared through emulsion electrospinning. The core-sheath structure of the nanofibers was verified by transmission electron microscopy. The hemostatic attributes and the biocompatibility of the scaffolds for human fibroblast cell were scrutinized. Furthermore, gene expression of collagen type I and type III by the cells on the scaffolds was quantified using real-time reverse transcriptase polymerase chain reaction. The results indicated desirable bioactivity and hemostasis of the scaffolds with the capability of encapsulation and controlled release of the protein which can be served as skin tissue engineering scaffolds and wound dressings. PMID:25345387

  5. Chitosan/siRNA nanoparticles encapsulated in PLGA nanofibers for siRNA delivery.

    PubMed

    Chen, Menglin; Gao, Shan; Dong, Mingdong; Song, Jie; Yang, Chuanxu; Howard, Kenneth Alan; Kjems, Jørgen; Besenbacher, Flemming

    2012-06-26

    Composite nanofibers of biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) encapsulating chitosan/siRNA nanoparticles (NPs) were prepared by electrospinning. Acidic/alkaline hydrolysis and a bulk/surface degradation mechanism were investigated in order to achieve an optimized release profile for prolonged and efficient gene silencing. Thermo-controlled AFM in situ imaging not only revealed the integrity of the encapsulated chitosan/siRNA polyplex but also shed light on the decreasing T(g) of PLGA on the fiber surfaces during release. A triphasic release profile based on bulk erosion was obtained at pH 7.4, while a triphasic release profile involving both surface erosion and bulk erosion was obtained at pH 5.5. A short alkaline pretreatment provided a homogeneous hydrolysis and consequently a nearly zero-order release profile. The interesting release profile was further investigated for siRNA transfection, where the encapsulated chitosan/siRNA NPs exhibited up to 50% EGFP gene silencing activity after 48 h post-transfection on H1299 cells. PMID:22621383

  6. Dry powders based on PLGA nanoparticles for pulmonary delivery of antibiotics: modulation of encapsulation efficiency, release rate and lung deposition pattern by hydrophilic polymers.

    PubMed

    Ungaro, Francesca; d'Angelo, Ivana; Coletta, Ciro; d'Emmanuele di Villa Bianca, Roberta; Sorrentino, Raffaella; Perfetto, Brunella; Tufano, Maria Antonietta; Miro, Agnese; La Rotonda, Maria Immacolata; Quaglia, Fabiana

    2012-01-10

    Although few experimental studies have been handled so far to exploit the potential of poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) in the production of dry powders for antibiotic inhalation, there has been no comprehensive study on the role played by NP composition. In this work, we try to shed light on this aspect by designing and developing a pulmonary delivery system for antibiotics, such as tobramycin (Tb), based on PLGA NPs embedded in an inert microcarrier made of lactose, referred to as nano-embedded micro-particles (NEM). At nanosize level, helper hydrophilic polymers were used to impart the desired surface, bulk and release properties to PLGA NPs prepared by a modified emulsion-solvent diffusion technique. Results showed that poly(vinyl alcohol) (PVA) and chitosan (CS) are essential to optimise the size and modulate the surface properties of Tb-loaded PLGA NPs, whereas the use of alginate (Alg) allows efficient Tb entrapment within NPs and its release up to one month. Optimized formulations display good in vitro antimicrobial activity against P. aeruginosa planktonic cells. Furthermore, spray-drying of the NPs with lactose yielded NEM with peculiar but promising flow and aerosolization properties, while preserving the peculiar NP features. Nonetheless, in vivo biodistribution studies showed that PVA-modified Alg/PLGA NPs reached the deep lung, while CS-modified NPs were found in great amounts in the upper airways, lining lung epithelial surfaces. In conclusion, PLGA NP composition appears to play a crucial role in determining not only the technological features of NPs but, once processed in the form of NEM, also their in vitro/in vivo deposition pattern. PMID:21864595

  7. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs

    PubMed Central

    Hiremath, Jagadish; Kang, Kyung-il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B.; Jiang, X.; Lee, Chang Won; Renukaradhya, Gourapura J.

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human influenza viruses were entrapped in PLGA-NPs. Influenza antibody-free pigs were vaccinated with PLGA-NPs peptides cocktail vaccine twice with or without an adjuvant, Mycobacterium vaccae whole cell lysate, intranasally as mist. Vaccinated pigs were challenged with a virulent heterologous zoonotic SwIV H1N1, and one week later euthanized and the lung samples were analyzed for the specific immune response and viral load. Clinically, pigs vaccinated with PLGA-NP peptides vaccine had no fever and flu symptoms, and the replicating challenged SwIV was undetectable in the bronchoalveolar lavage fluid. Immunologically, PLGA-NP peptides vaccination (without adjuvant) significantly increased the frequency of antigen-specific IFNγ secreting CD4 and CD8 T cells response in the lung lymphocytes, despite not boosting the antibody response both at pre- and post-challenge. In summary, our data indicated that nanoparticle-mediated delivery of conserved H1N1 influenza peptides induced the virus specific T cell response in the lungs and reduced the challenged heterologous virus load in the airways of pigs. PMID:27093541

  8. Entrapment of H1N1 Influenza Virus Derived Conserved Peptides in PLGA Nanoparticles Enhances T Cell Response and Vaccine Efficacy in Pigs.

    PubMed

    Hiremath, Jagadish; Kang, Kyung-Il; Xia, Ming; Elaish, Mohamed; Binjawadagi, Basavaraj; Ouyang, Kang; Dhakal, Santosh; Arcos, Jesus; Torrelles, Jordi B; Jiang, X; Lee, Chang Won; Renukaradhya, Gourapura J

    2016-01-01

    Pigs are believed to be one of the important sources of emerging human and swine influenza viruses (SwIV). Influenza virus conserved peptides have the potential to elicit cross-protective immune response, but without the help of potent adjuvant and delivery system they are poorly immunogenic. Biodegradable polylactic-co-glycolic acid (PLGA) nanoparticle (PLGA-NP) based vaccine delivery system enhances cross-presentation of antigens by the professional antigen presenting cells. In this study, Norovirus P particle containing SwIV M2e (extracellular domain of the matrix protein 2) chimera and highly conserved two each of H1N1 peptides of pandemic 2009 and classical human