Science.gov

Sample records for acid plga microspheres

  1. Phase separation behavior of fusidic acid and rifampicin in PLGA microspheres.

    PubMed

    Gilchrist, Samuel E; Rickard, Deborah L; Letchford, Kevin; Needham, David; Burt, Helen M

    2012-05-01

    The purpose of this study was to characterize the phase separation behavior of fusidic acid (FA) and rifampicin (RIF) in poly(d,l-lactic acid-co-glycolic acid) (PLGA) using a model microsphere formulation. To accomplish this, microspheres containing 20% FA with 0%, 5%, 10%, 20%, and 30% RIF and 20% RIF with 30%, 20% 10%, 5%, and 0% FA were prepared by solvent evaporation. Drug-polymer and drug-drug compatibility and miscibility were characterized using laser confocal microscopy, Raman spectroscopy, XRPD, DSC, and real-time video recordings of single-microsphere formation. The encapsulation of FA and RIF alone, or in combination, results in a liquid-liquid phase separation of solvent-and-drug-rich microdomains that are excluded from the polymer bulk during microsphere hardening, resulting in amorphous spherical drug-rich domains within the polymer bulk and on the microsphere surface. FA and RIF phase separate from PLGA at relative droplet volumes of 0.311 ± 0.014 and 0.194 ± 0.000, respectively, predictive of the incompatibility of each drug and PLGA. When coloaded, FA and RIF phase separate in a single event at the relative droplet volume 0.251 ± 0.002, intermediate between each of the monoloaded formulations and dependent on the relative contribution of FA or RIF. The release of FA and RIF from phase-separated microspheres was characterized exclusively by a burst release and was dependent on the phase exclusion of surface drug-rich domains. Phase separation results in coalescence of drug-rich microdroplets and polymer phase exclusion, and it is dependent on the compatibility between FA and RIF and PLGA. FA and RIF are mutually miscible in all proportions as an amorphous glass, and they phase separate from the polymer as such. These drug-rich domains were excluded to the surface of the microspheres, and subsequent release of both drugs from the microspheres was rapid and reflected this surface location.

  2. PLGA/alginate composite microspheres for hydrophilic protein delivery.

    PubMed

    Zhai, Peng; Chen, X B; Schreyer, David J

    2015-11-01

    Poly(lactic-co-glycolic acid) (PLGA) microspheres and PLGA/alginate composite microspheres were prepared by a novel double emulsion and solvent evaporation technique and loaded with bovine serum albumin (BSA) or rabbit anti-laminin antibody protein. The addition of alginate and the use of a surfactant during microsphere preparation increased the encapsulation efficiency and reduced the initial burst release of hydrophilic BSA. Confocal laser scanning microcopy (CLSM) of BSA-loaded PLGA/alginate composite microspheres showed that PLGA, alginate, and BSA were distributed throughout the depths of microspheres; no core/shell structure was observed. Scanning electron microscopy revealed that PLGA microspheres erode and degrade more quickly than PLGA/alginate composite microspheres. When loaded with anti-laminin antibody, the function of released antibody was well preserved in both PLGA and PLGA/alginate composite microspheres. The biocompatibility of PLGA and PLGA/alginate microspheres were examined using four types of cultured cell lines, representing different tissue types. Cell survival was variably affected by the inclusion of alginate in composite microspheres, possibly due to the sensitivity of different cell types to excess calcium that may be released from the calcium cross-linked alginate.

  3. Development of Risperidone PLGA Microspheres

    PubMed Central

    D'Souza, Susan; Faraj, Jabar A.; Giovagnoli, Stefano; DeLuca, Patrick P.

    2014-01-01

    The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug. PMID:24616812

  4. Hyaluronic acid as an internal phase additive to obtain ofloxacin/PLGA microsphere by double emulsion method.

    PubMed

    Wu, Gang; Chen, Long; Li, Hong; Wang, Ying-jun

    2014-01-01

    Hyaluronic acid (HA) was used as an internal phase additive to improve the loading efficiency of ofloxacin, a hydrophilic drug encapsulated by hydrophobic polylactic-co-glycolic acid (PLGA) materials, through a double emulsion (water-in-oil-in-water) solvent extraction/evaporation method. Results from laser distribution analysis show that polyelectrolyte additives have low impact on the average particle size and distribution of the microspheres. The negatively charged HA increases the drug loading efficiency as well as the amount of HA in microspheres. Burst release can be observed in the groups with the polyelectrolyte additives. The release rate decreases with the amount of HA inside the microspheres in all negatively charged polyelectrolyte-added microsphere groups.

  5. Preparing Poly (Lactic-co-Glycolic Acid) (PLGA) Microspheres Containing Lysozyme-Zinc Precipitate Using a Modified Double Emulsion Method

    PubMed Central

    Nafissi Varcheh, Nastaran; Luginbuehl, Vera; Aboofazeli, Reza; Peter Merkle, Hans

    2011-01-01

    Lysozyme, as a model protein, was precipitated through the formation of protein-Zn complex to micronize for subsequent encapsulation within poly (lactic-co-glycolic acid) (PLGA) microspheres. Various parameters, including pH, type and concentration of added salts and protein concentration, were modified to optimize the yield of protein complexation and precipitation. The resulting protein particles (lysozyme-Zn complex as a freshly prepared suspension or a freeze-dried solid) were then loaded into PLGA (Resomer® 503H) microspheres, using a double emulsion technique and microspheres encapsulation efficiency and their sizes were determined. It was observed that salt type could significantly influence the magnitude of protein complexation. At the same conditions, zinc chloride was found to be more successful in producing pelletizable lysozyme. Generally, higher concentrations of protein solution led also to the higher yields of complexation and at the optimum conditions, the percentage of pelletizable lysozyme reached to 80%. Taking advantage of this procedure, a modified technique for preparation of protein-loaded PLGA microspheres was established, although it is also expected that this technique increases the protein drugs stabilization during the encapsulation process. PMID:24250344

  6. RANKL delivery from calcium phosphate containing PLGA microspheres.

    PubMed

    Félix Lanao, Rosa P; Bosco, Ruggero; Leeuwenburgh, Sander C G; Kersten-Niessen, Monique J F; Wolke, Joop G C; van den Beucken, Jeroen J J P; Jansen, John A

    2013-11-01

    Ideally, bone substitute materials would undergo cell-mediated degradation during the remodeling process of the host bone tissue while being replaced by newly formed bone. In an attempt to exploit the capacity of Receptor Activator of Nuclear factor Kappa-B Ligand (RANKL) to stimulate osteoclast-like cells formation, this study explored different loading methods for RANKL in injectable calcium phosphate cement (CPC) and the effect on release and biological activity. RANKL was loaded via the liquid phase of CPC by adsorption onto or incorporation into poly(lactic-co-glycolic acid) (PLGA) microspheres with two different morphologies (i.e., hollow and dense), which were subsequently embedded in CPC. As controls nonembedded PLGA-microspheres were used as well as plain CPC scaffolds with RANKL adsorbed onto the surface. RANKL release and activity were evaluated by Reverse Phase High-Performance Liquid Chromatography (RP-HPLC) and osteoclast-like cells formation in cell culture experiments. Results indicated that sustained release of active RANKL can be achieved upon RANKL adsorption to PLGA microspheres, whereas inactive RANKL was released from CPC-PLGA formulations with RANKL incorporated within the microspheres or within the liquid phase of the CPC. These results demonstrate that effective loading of RANKL in injectable CPC is only possible via adsorption to PLGA microspheres, which are subsequently embedded within the CPC-matrix.

  7. The in vivo performance of CaP/PLGA composites with varied PLGA microsphere sizes and inorganic compositions.

    PubMed

    Hoekstra, Jan Willem M; Ma, Jinling; Plachokova, Adelina S; Bronkhorst, Ewald M; Bohner, Marc; Pan, Juli; Meijer, Gert J; Jansen, John A; van den Beucken, Jeroen J J P

    2013-07-01

    Enrichment of calcium phosphate (CaP) bone substitutes with poly(lactic-co-glycolic acid) (PLGA) microspheres to create porosity overcomes the problem of poor CaP degradation. The degradation of CaP-PLGA composites can be customized by changing the physical and chemical properties of PLGA and/or CaP. However, the effect of the size of dense (solid rather than hollow) PLGA microspheres in CaP has not previously been described. The present study aimed at determining the effect of different dense (i.e. solid) PLGA microsphere sizes (small (S) ~20μm vs. large (L) ~130μm) and of CaP composition (CaP with either anhydrous dicalcium phosphate (DCP) or calcium sulphate dihydrate (CSD)) on CaP scaffold biodegradability and subsequent bone in-growth. To this end mandibular defects in minipigs were filled with pre-set CaP-PLGA implants, with autologous bone being used as a control. After 4weeks the autologous bone group outperformed all CaP-PLGA groups in terms of the amount of bone present at the defect site. On the other hand, at 12weeks substantial bone formation was observed for all CaP-PLGA groups (ranging from 47±25% to 62±15%), showing equal amounts of bone compared with the autologous bone group (82±9%), except for CaP with DCP and large PLGA microspheres (47±25%). It was concluded that in the current study design the difference in PLGA microsphere size and CaP composition led to similar results with respect to scaffold degradation and subsequent bone in-growth. Further, after 12weeks all CaP-PLGA composites proved to be effective for bone substitution.

  8. Seeing is believing, PLGA microsphere degradation revealed in PLGA microsphere/PVA hydrogel composites.

    PubMed

    Gu, Bing; Sun, Xuanhao; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2016-04-28

    The aim of this study was to understand the polymer degradation and drug release mechanism from PLGA microspheres embedded in a PVA hydrogel. Two types of microspheres were prepared with different molecular weight PLGA polymers (approximately 25 and 7 kDa) to achieve different drug release profiles, with a 9-day lag phase and without a lag phase, respectively. The kinetics of water uptake into the microspheres coincided with the drug release profiles for both formulations. For the 25 kDa microspheres, minimal water uptake was observed in the early part of the lag phase followed by substantial water uptake at the later stages and in the drug release phase. For the 7 kDa microspheres, water uptake occurred simultaneously with drug release. Water uptake was approximately 2-3 times that of the initial microsphere weight for both formulations. The internal structure of the PLGA microspheres was evaluated using low temperature scanning electron microscopy (cryo-SEM). Burst drug release occurred followed by pore forming from the exterior to the core of both microspheres. A well-defined hydrogel/microsphere interface was observed. For the 25 kDa microspheres, internal pore formation and swelling occurred before the second drug release phase. The surface layer of the microspheres remained intact whereas swelling, and degradation of the core continued throughout the drug release period. In addition, microsphere swelling reduced glucose transport through the coatings in PBS media and this was considered to be a as a consequence of the increased thickness of the coatings. The combination of the swelling and microdialysis results provides a fresh understanding on the competing processes affecting molecular transport of bioanalytes (i.e. glucose) through these composite coatings during prolonged exposure in PBS. PMID:26965956

  9. Microspheres prepared with different co-polymers of poly(lactic-glycolic acid) (PLGA) or with chitosan cause distinct effects on macrophages.

    PubMed

    Bitencourt, Claudia da Silva; Silva, Letícia Bueno da; Pereira, Priscilla Aparecida Tartari; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-12-01

    Microencapsulation of bioactive molecules for modulating the immune response during infectious or inflammatory events is a promising approach, since microspheres (MS) protect these labile biomolecules against fast degradation, prolong the delivery over longer periods of time and, in many situations, target their delivery to site of action, avoiding toxic side effects. Little is known, however, about the influence of different polymers used to prepare MS on macrophages. This paper aims to address this issue by evaluating in vitro cytotoxicity, phagocytosis profile and cytokines release from alveolar macrophages (J-774.1) treated with MS prepared with chitosan, and four different co-polymers of PLGA [poly (lactic-co-glycolic acid)]. The five MS prepared presented similar diameter and zeta potential each other. Chitosan-MS showed to be cytotoxic to J-774.1 cells, in contrast to PLGA-MS, which were all innocuous to this cell linage. PLGA 5000-MS was more efficiently phagocytized by macrophages compared to the other MS tested. PLGA 5000-MS and 5002-MS induced significant production of TNF-α, while 5000-MS, 5004-MS and 7502-MS decreased spontaneous IL-6 release. Nevertheless, only PLGA 5002-MS induced significant NFkB/SEAP activation. These findings together show that MS prepared with distinct PLGA co-polymers are differently recognized by macrophages, depending on proportion of lactic and glycolic acid in polymeric chain, and on molecular weight of the co-polymer used. Selection of the most adequate polymer to prepare a microparticulate drug delivery system to modulate immunologic system may take into account, therefore, which kind of immunomodulatory response is more adequate for the required treatment.

  10. Improving Protein Stability and Controlling Protein Release by Adding Poly (Cyclohexane-1, 4-Diyl Acetone Dimethylene Ketal) to PLGA Microspheres.

    PubMed

    Wang, Chenhui; Yu, Changhui; Yu, Kongtong; Teng, Lesheng; Liu, Jiaxin; Wang, Xuesong; Sun, Fengying; Li, Youxin

    2015-01-01

    The use of biodegradable polymers such as PLGA to encapsulate therapeutic proteins for their controlled release has received tremendous interest. However, an acidic environment caused by PLGA degradation productions leads to protein incomplete release and chemical degradation. The aim of this study was to develop novel PCADK/PLGA microspheres to improve protein stability and release behavior. Bovine serum albumin (BSA) incubated in PCADK and PLGA degradation products was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), size exclusion chromatography (SEC-HPLC), circular dichroism (CD) and fluorescence spectroscopy. Blended microspheres of PCADK/PLGA were prepared in different ratios and the release behaviors of the microspheres and the protein stability were then measured. The degradation properties of the microspheres and the pH inside the microspheres were systematically investigated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) to examine the mechanism of autocatalytic degradation and protein stability. BSA was more stable in the presence of PCADK monomers than it was in the presence of PLGA monomers, revealing that PCADK is highly compatible with this protein. PCADK/PLGA microspheres were successfully prepared, and 2/8 was determined to be the optimal ratio. Further, 43% of the BSA formed water-insoluble aggregates in the presence of PCADK/PLGA microspheres, compared with 57% for the PLGA microspheres, demonstrating that the BSA encapsulated in PCADK/PLGA blended microspheres was more stable than in PLGA microspheres. The PCADK/PLGA blended microspheres improved protein stability and release behavior, providing a promising protein drug delivery system.

  11. Gamma Irradiation of Active Self-healing PLGA Microspheres for Efficient Aqueous Encapsulation of Vaccine Antigens

    PubMed Central

    Desai, Kashappa-Goud H.; Kadous, Samer; Schwendeman, Steven P.

    2013-01-01

    Purpose To investigate the effect of γ-irradiation of poly(lactic-co-glycolic acid) (PLGA)/Al(OH)3/0 or 5 wt% diethyl phthalate (DEP) microspheres for active self-healing encapsulation of vaccine antigens. Methods Microspheres were irradiated with 60Co at 2.5 and 1.8 MRad and 0.37 and 0.20 MRad/h. Encapsulation of tetanus toxoid (TT) was achieved by mixing Al(OH)3-PLGA microspheres with TT solution at 10-38°C. Electron paramagnetic resonance (EPR) spectroscopy was used to examine free radical formation. Glass transition temperature (Tg) and molecular weight of PLGA was measured by differential scanning calorimetry and gel permeation chromatography, respectively. Loading and release of TT were examined by modified Bradford, amino acid analysis, and ELISA assays. Results EPR spectroscopy results indicated absence of free radicals in PLGA microspheres after γ-irradiation. Antigen-sorbing capacity, encapsulation efficiency, and Tg of the polymer were also not adversely affected. When DEP-loaded microspheres were irradiated at 0.2 MRad/h, some PLGA pores healed during irradiation and PLGA healing during encapsulation was suppressed. The molecular weight of PLGA was slightly reduced when DEP-loaded microspheres were irradiated at the same dose rate. These trends were not observed at 0.37 MRad/h. Gamma irradiation slightly increased TT initial burst release. Apart from the slightly higher polymer molecular weight decline caused by higher irradiation dose in case of DEP-loaded microspheres, the small increase in total irradiation dose from 1.8 to 2.5 MRad had insignificant effect on the polymer and microspheres properties analyzed. Conclusion Gamma irradiation is a plausible approach to provide a terminally sterilized, self-healing encapsulation PLGA excipient for vaccine delivery. PMID:23515830

  12. Recombinant human bone morphogenetic protein-2 binding and incorporation in PLGA microsphere delivery systems.

    PubMed

    Schrier, J A; DeLuca, P P

    1999-01-01

    The objective of this research was to determine the binding capacity and kinetics, and total incorporation of recombinant human bone morphogenetic protein-2 (rhBMP-2) in microspheres made from hydrophilic and hydrophobic poly(lactide-co-glycolide) (PLGA). Polymers were characterized by molecular weight, polydispersity, and acid number. Microspheres were produced via a water-in-oil-in-water double emulsion system and characterized for bulk density, size, specific surface area, and porosity. Protein concentrations were determined by reversed phase HPLC. Protein was loaded by soaking microspheres in a buffered solution, pH 4.5, of rhBMP-2, decanting excess liquid, and vacuum drying the wetted particles. Total loading and binding were determined by comparing protein concentration remaining to non-microsphere containing samples. Polymer acid number was the dominant polymer feature affecting the binding. Higher acid values correlated with increased rhBMP-2 binding. The amount of non-bound incorporated rhBMP-2 linearly correlated with the concentration of protein used in binding. High rhBMP-2 concentrations inhibit binding to PLGA microspheres. Binding was also inhibited by increased lactide content in the PLGA polymer. The polymer characteristics controlling rhBMP-2 binding to PLGA microspheres are acid value foremost followed by molecular weight and lactide/glycolide ratio. The total amount of rhBMP-2 incorporated depends on the bound amount and on the amount of free protein present.

  13. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior

    PubMed Central

    Yao, Shenglian; Liu, Huiying; Yu, Shukui; Li, Yuanyuan; Wang, Xiumei; Wang, Luning

    2016-01-01

    The development of modern therapeutics has raised the requirement for controlled drug delivery system which is able to efficiently encapsulate bioactive agents and achieve their release at a desired rate satisfying the need of the practical system. In this study, two kind of aqueous model drugs with different molecule weight, Congo red and albumin from bovine serum (BSA) were nano-encapsulated in poly (dl-lactic-co-glycolic acid) (PLGA) microspheres by emulsion electrospray. In the preparation process, the aqueous phase of drugs was added into the PLGA chloroform solution to form the emulsion solution. The emulsion was then electrosprayed to fabricate drug-nanoencapsulated PLGA microspheres. The morphology of the PLGA microspheres was affected by the volume ratio of aqueous drug phase and organic PLGA phase (Vw/Vo) and the molecule weight of model drugs. Confocal laser scanning microcopy showed the nanodroplets of drug phase were scattered in the PLGA microspheres homogenously with different distribution patterns related to Vw/Vo. With the increase of the volume ratio of aqueous drug phase, the number of nanodroplets increased forming continuous phase gradually that could accelerate drug release rate. Moreover, BSA showed a slower release rate from PLGA microspheres comparing to Congo red, which indicated the drug release rate could be affected by not only Vw/Vo but also the molecule weight of model drug. In brief, the PLGA microspheres prepared using emulsion electrospray provided an efficient and simple system to achieve controlled drug release at a desired rate satisfying the need of the practices.

  14. Drug-nanoencapsulated PLGA microspheres prepared by emulsion electrospray with controlled release behavior

    PubMed Central

    Yao, Shenglian; Liu, Huiying; Yu, Shukui; Li, Yuanyuan; Wang, Xiumei; Wang, Luning

    2016-01-01

    The development of modern therapeutics has raised the requirement for controlled drug delivery system which is able to efficiently encapsulate bioactive agents and achieve their release at a desired rate satisfying the need of the practical system. In this study, two kind of aqueous model drugs with different molecule weight, Congo red and albumin from bovine serum (BSA) were nano-encapsulated in poly (dl-lactic-co-glycolic acid) (PLGA) microspheres by emulsion electrospray. In the preparation process, the aqueous phase of drugs was added into the PLGA chloroform solution to form the emulsion solution. The emulsion was then electrosprayed to fabricate drug-nanoencapsulated PLGA microspheres. The morphology of the PLGA microspheres was affected by the volume ratio of aqueous drug phase and organic PLGA phase (Vw/Vo) and the molecule weight of model drugs. Confocal laser scanning microcopy showed the nanodroplets of drug phase were scattered in the PLGA microspheres homogenously with different distribution patterns related to Vw/Vo. With the increase of the volume ratio of aqueous drug phase, the number of nanodroplets increased forming continuous phase gradually that could accelerate drug release rate. Moreover, BSA showed a slower release rate from PLGA microspheres comparing to Congo red, which indicated the drug release rate could be affected by not only Vw/Vo but also the molecule weight of model drug. In brief, the PLGA microspheres prepared using emulsion electrospray provided an efficient and simple system to achieve controlled drug release at a desired rate satisfying the need of the practices. PMID:27699061

  15. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions.

    PubMed

    Wei, Zengjiang; Wang, Chaoyang; Liu, Hao; Zou, Shengwen; Tong, Zhen

    2012-03-01

    This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase. The SiO(2) nanoparticle-coated PLGA microspheres were fabricated by the evaporation of CH(2)Cl(2) in situ, and then bare-PLGA microspheres were prepared by removal of the SiO(2) nanoparticles using HF aqueous solution. The two types of microspheres were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. Moreover, IBU was encapsulated into the hybrid beads by dispersing them in the CH(2)Cl(2) solution of PLGA in the fabrication process. The sustained release could be obtained due to the barrier of the polymeric matrix (PLGA). More over, the release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microspheres. The resulting microspheres may find applications as delivery vehicles for biomolecules, drugs, cosmetics and living cells. PMID:22088755

  16. Facile fabrication of biocompatible PLGA drug-carrying microspheres by O/W pickering emulsions.

    PubMed

    Wei, Zengjiang; Wang, Chaoyang; Liu, Hao; Zou, Shengwen; Tong, Zhen

    2012-03-01

    This study is focused on the preparation of Ibuprofen (IBU) loaded micrometer-sized poly(lactic-co-glycolic acid) (PLGA) microspheres and process variables on the size, drug loading and release during preparation of formulation. Silicon dioxide (SiO(2)) nanoparticle-coated PLGA microspheres were fabricated via a combined system of "Pickering-type" emulsion route and solvent volatilization method in the absence of any molecular surfactants. Stable oil-in-water emulsions were prepared using SiO(2) nanoparticles as a particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLGA as an oil phase. The SiO(2) nanoparticle-coated PLGA microspheres were fabricated by the evaporation of CH(2)Cl(2) in situ, and then bare-PLGA microspheres were prepared by removal of the SiO(2) nanoparticles using HF aqueous solution. The two types of microspheres were characterized in terms of size, component and morphology using scanning electronic microscope (SEM), Fourier-transform infrared, optical microscope, and so on. Moreover, IBU was encapsulated into the hybrid beads by dispersing them in the CH(2)Cl(2) solution of PLGA in the fabrication process. The sustained release could be obtained due to the barrier of the polymeric matrix (PLGA). More over, the release curves were nicely fitted by the Weibull equation and the release followed Fickian diffusion. The combined system of Pickering emulsion and solvent volatilization opens up a new route to fabricate a variety of microspheres. The resulting microspheres may find applications as delivery vehicles for biomolecules, drugs, cosmetics and living cells.

  17. Hollow superparamagnetic PLGA/Fe 3O 4 composite microspheres for lysozyme adsorption

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-01

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe3O4 composite microspheres composed of an inner cavity, PLGA inner shell and Fe3O4 outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe3O4 nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g-1) and high efficiency in lysozyme adsorption.

  18. Hollow superparamagnetic PLGA/Fe3O4 composite microspheres for lysozyme adsorption.

    PubMed

    Yang, Qi; Wu, Yao; Lan, Fang; Ma, Shaohua; Xie, Liqin; He, Bin; Gu, Zhongwei

    2014-02-28

    Uniform hollow superparamagnetic poly(lactic-co-glycolic acid) (PLGA)/Fe(3)O(4) composite microspheres composed of an inner cavity, PLGA inner shell and Fe(3)O(4) outer shell have been synthesized by a modified oil-in-water (O/W) emulsion-solvent evaporation method using Fe(3)O(4) nanoparticles as a particulate emulsifier. The obtained composite microspheres with an average diameter of 2.5 μm showed excellent monodispersity and stability in aqueous medium, strong magnetic responsiveness, high magnetite content (>68%), high saturation magnetization (58 emu g(-1)) and high efficiency in lysozyme adsorption. PMID:24492410

  19. Active self-healing encapsulation of vaccine antigens in PLGA microspheres

    PubMed Central

    Desai, Kashappa-Goud H.; Schwendeman, Steven P.

    2013-01-01

    Herein, we describe the detailed development of a simple and effective method to microencapsulate vaccine antigens in poly(lactic-co-glycolic acid) (PLGA) by simple mixing of preformed active self-microencapsulating (SM) PLGA microspheres in a low concentration aqueous antigen solution at modest temperature (10-38 °C). Co-encapsulating protein-sorbing vaccine adjuvants and polymer plasticizers were used to “actively” load the protein in the polymer pores and facilitate polymer self-healing at temperature > hydrated polymer glass transition temperature, respectively. The microsphere formulation parameters and loading conditions to provide optimal active self-healing microencapsulation of vaccine antigen in PLGA was investigated. Active self-healing encapsulation of two vaccine antigens, ovalbumin and tetanus toxoid (TT), in PLGA microspheres was adjusted by preparing blank microspheres containing different vaccine adjuvant (aluminum hydroxide (Al(OH)3) or calcium phosphate). Active loading of vaccine antigen in Al(OH)3-PLGA microspheres was found to: a) increase proportionally with an increasing loading of Al(OH)3 (0.88-3 wt%) and addition of porosigen, b) decrease when the inner Al(OH)3/trehalose phase to 1 mL outer oil phase and size of microspheres was respectively > 0.2 mL and 63 μm, and c) change negligibly by PLGA concentration and initial incubation (loading) temperature. Encapsulation of protein sorbing Al(OH)3 in PLGA microspheres resulted in suppression of self-healing of PLGA pores, which was then overcome by improving polymer chain mobility, which in turn was accomplished by coincorporating hydrophobic plasticizers in PLGA. Active self-healing microencapsulation of manufacturing process-labile TT in PLGA was found to: a) obviate micronization- and organic solvent-induced TT degradation, b) improve antigen loading (1.4-1.8 wt% TT) and encapsulation efficiency (~ 97%), c) provide nearly homogeneous distribution and stabilization of antigen in polymer

  20. Heuristic modeling of macromolecule release from PLGA microspheres

    PubMed Central

    Szlęk, Jakub; Pacławski, Adam; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander

    2013-01-01

    Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model. PMID:24348037

  1. Heuristic modeling of macromolecule release from PLGA microspheres.

    PubMed

    Szlęk, Jakub; Pacławski, Adam; Lau, Raymond; Jachowicz, Renata; Mendyk, Aleksander

    2013-01-01

    Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model.

  2. PLGA-Mesoporous Silicon Microspheres for the in Vivo Controlled Temporospatial Delivery of Proteins.

    PubMed

    Minardi, Silvia; Pandolfi, Laura; Taraballi, Francesca; De Rosa, Enrica; Yazdi, Iman K; Liu, Xeuwu; Ferrari, Mauro; Tasciotti, Ennio

    2015-08-01

    In regenerative medicine, the temporospatially controlled delivery of growth factors (GFs) is crucial to trigger the desired healing mechanisms in the target tissues. The uncontrolled release of GFs has been demonstrated to cause severe side effects in the surrounding tissues. The aim of this study was to optimize a translational approach for the fine temporal and spatial control over the release of proteins, in vivo. Hence, we proposed a newly developed multiscale composite microsphere based on a core consisting of the nanostructured silicon multistage vector (MSV) and a poly(dl-lactide-co-glycolide) acid (PLGA) outer shell. Both of the two components of the resulting composite microspheres (PLGA-MSV) can be independently tailored to achieve multiple release kinetics contributing to the control of the release profile of a reporter protein in vitro. The influence of MSV shape (hemispherical or discoidal) and size (1, 3, or 7 μm) on PLGA-MSV's morphology and size distribution was investigated. Second, the copolymer ratio of the PLGA used to fabricate the outer shell of PLGA-MSV was varied. The composites were fully characterized by optical microscopy, scanning electron microscopy, ζ potential, Fourier transform infrared spectroscopy, and thermogravimetric analysis-differential scanning calorimetry, and their release kinetics over 30 days. PLGA-MSV's biocompatibility was assessed in vitro with J774 macrophages. Finally, the formulation of PLGA-MSV was selected, which concurrently provided the most consistent microsphere size and allowed for a zero-order release kinetic. The selected PLGA-MSVs were injected in a subcutaneous model in mice, and the in vivo release of the reporter protein was followed over 2 weeks by intravital microscopy, to assess if the zero-order release was preserved. PLGA-MSV was able to retain the payload over 2 weeks, avoiding the initial burst release typical of most drug delivery systems. Finally, histological evaluation assessed the

  3. PLGA-Listeriolysin O microspheres: Opening the gate for cytosolic delivery of cancer antigens.

    PubMed

    Gilert, Ariel; Baruch, Limor; Bronshtein, Tomer; Machluf, Marcelle

    2016-04-01

    Strategies for cancer protein vaccination largely aim to activate the cellular arm of the immune system against cancer cells. This approach, however, is limited since protein vaccines mostly activate the system's humoral arm instead. One way to overcome this problem is to enhance the cross-presentation of such proteins by antigen-presenting cells, which may consequently lead to intense cellular response. Here we examined the ability of listeriolysin O (LLO) incorporated into poly-lactic-co-glycolic acid (PLGA) microspheres to modify the cytosolic delivery of low molecular weight peptides and enhance their cross-presentation. PLGA microspheres were produced in a size suitable for uptake by phagocytic cells. The peptide encapsulation and release kinetics were improved by adding NaCl to the preparation. PLGA microspheres loaded with the antigenic peptide and incorporated with LLO were readily up-taken by phagocytic cells, which exhibited an increase in the expression of peptide-MHC-CI complexes on the cell surface. Furthermore, this system enhanced the activation of a specific T hybridoma cell line, thus simulating cytotoxic T cells. These results establish, for the first time, a proof of concept for the use of PLGA microspheres incorporated with a pore-forming agent and the antigen peptide of choice as a unique cancer protein vaccination delivery platform.

  4. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres.

    PubMed

    Marquette, S; Peerboom, C; Yates, A; Denis, L; Langer, I; Amighi, K; Goole, J

    2014-08-15

    Antibodies (Abs) require the development of stable formulations and specific delivery strategies given their susceptibility to a variety of physical and chemical degradation pathways. In this study, the encapsulation of an antibody into polylactide-co-glycolide (PLGA) based microspheres was explored to obtain a controlled-release of the incorporated drug. In order to avoid stability issues, a solid-in-oil-in-water (s/o/w) method was preferred. The solid phase was made of anti-TNF alpha monoclonal antibody (MAb) spray-dried microparticles, and the PLGA microspheres were produced using two different polymers (i.e., Resomer(®) RG505 and Resomer(®) RG755S). The stability of the MAb incorporated into the microspheres was investigated under three conditions (5 ± 3°C, 25 ± 2°C/60% RH and 40 ± 2°C/75% RH) for 12 weeks. During this stability study, it was demonstrated that the MAb loaded PLGA microspheres were stable when stored at 5 ± 3°C and that the Resomer(®) RG755S, composed of 75%(w/w) lactic acid as PLGA, was preferred to preserve the stability of the system. Storage at temperatures higher than 5°C led to antibody stability issues such as aggregation, fragmentation and loss of activity. The release profiles were also altered. Physical ageing of the system associated with changes in the glass transition temperature and enthalpy of relaxation was noticed during the storage of the MAb loaded PLGA microspheres.

  5. Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres.

    PubMed

    Marquette, S; Peerboom, C; Yates, A; Denis, L; Langer, I; Amighi, K; Goole, J

    2014-08-15

    Antibodies (Abs) require the development of stable formulations and specific delivery strategies given their susceptibility to a variety of physical and chemical degradation pathways. In this study, the encapsulation of an antibody into polylactide-co-glycolide (PLGA) based microspheres was explored to obtain a controlled-release of the incorporated drug. In order to avoid stability issues, a solid-in-oil-in-water (s/o/w) method was preferred. The solid phase was made of anti-TNF alpha monoclonal antibody (MAb) spray-dried microparticles, and the PLGA microspheres were produced using two different polymers (i.e., Resomer(®) RG505 and Resomer(®) RG755S). The stability of the MAb incorporated into the microspheres was investigated under three conditions (5 ± 3°C, 25 ± 2°C/60% RH and 40 ± 2°C/75% RH) for 12 weeks. During this stability study, it was demonstrated that the MAb loaded PLGA microspheres were stable when stored at 5 ± 3°C and that the Resomer(®) RG755S, composed of 75%(w/w) lactic acid as PLGA, was preferred to preserve the stability of the system. Storage at temperatures higher than 5°C led to antibody stability issues such as aggregation, fragmentation and loss of activity. The release profiles were also altered. Physical ageing of the system associated with changes in the glass transition temperature and enthalpy of relaxation was noticed during the storage of the MAb loaded PLGA microspheres. PMID:24792974

  6. Release mechanisms of tacrolimus-loaded PLGA and PLA microspheres and immunosuppressive effects of the microspheres in a rat heart transplantation model.

    PubMed

    Kojima, Ryo; Yoshida, Takatsune; Tasaki, Hiroaki; Umejima, Hiroyuki; Maeda, Masashi; Higashi, Yasuyuki; Watanabe, Shunsuke; Oku, Naoto

    2015-08-15

    The objective of this study was to elucidate the release and absorption mechanisms of tacrolimus loaded into microspheres composed of poly(lactic-co-glycolic acid) (PLGA) and/or polylactic acid (PLA). Tacrolimus-loaded microspheres were prepared by the o/w emulsion solvent evaporation method. The entrapment efficiency correlated with the molecular weight of PLGA, and the glass transition temperature of PLGA microspheres was not decreased by the addition of tacrolimus. These results indicate that intermolecular interaction between tacrolimus and the polymer would affect the entrapment of tacrolimus in the microspheres. Tacrolimus was released with weight loss of the microspheres, and the dominant release mechanism of tacrolimus was considered to be erosion of the polymer rather than diffusion of the drug. The whole-blood concentration of tacrolimus in rats was maintained for at least 2 weeks after a single subcutaneous administration of the microspheres. The pharmacokinetic profile of tacrolimus following subcutaneous administration was similar to that following intramuscular administration, suggesting that the release and dissolution of tacrolimus, rather than the absorption of the dissolved tacrolimus, were rate-limiting steps. Graft-survival time in a heart transplantation rat model was prolonged by the administration of tacrolimus-loaded microspheres. The microsphere formulation of tacrolimus would be expected to precisely control the blood concentration while maintaining the immunosuppressive effect of the drug.

  7. Caffeic Acid-PLGA Conjugate to Design Protein Drug Delivery Systems Stable to Irradiation

    PubMed Central

    Selmin, Francesca; Puoci, Francesco; Parisi, Ortensia I.; Franzé, Silvia; Musazzi, Umberto M.; Cilurzo, Francesco

    2015-01-01

    This work reports the feasibility of caffeic acid grafted PLGA (g-CA-PLGA) to design biodegradable sterile microspheres for the delivery of proteins. Ovalbumin (OVA) was selected as model compound because of its sensitiveness of γ-radiation. The adopted grafting procedure allowed us to obtain a material with good free radical scavenging properties, without a significant modification of Mw and Tg of the starting PLGA (Mw PLGA = 26.3 ± 1.3 kDa vs. Mw g-CA-PLGA = 22.8 ± 0.7 kDa; Tg PLGA = 47.7 ± 0.8 °C vs. Tg g-CA-PLGA = 47.4 ± 0.2 °C). By using a W1/O/W2 technique, g-CA-PLGA improved the encapsulation efficiency (EE), suggesting that the presence of caffeic residues improved the compatibility between components (EEPLGA = 35.0% ± 0.7% vs. EEg-CA-PLGA = 95.6% ± 2.7%). Microspheres particle size distribution ranged from 15 to 50 µm. The zeta-potential values of placebo and loaded microspheres were −25 mV and −15 mV, respectively. The irradiation of g-CA-PLGA at the dose of 25 kGy caused a less than 1% variation of Mw and the degradation patterns of the non-irradiated and irradiated microspheres were superimposable. The OVA content in g-CA-PLGA microspheres decreased to a lower extent with respect to PLGA microspheres. These results suggest that g-CA-PLGA is a promising biodegradable material to microencapsulate biological drugs. PMID:25569163

  8. Pharmacokinetics and distributions of bevacizumab by intravitreal injection of bevacizumab-PLGA microspheres in rabbits

    PubMed Central

    Ye, Zhuo; Ji, Yan-Li; Ma, Xiang; Wen, Jian-Guo; Wei, Wei; Huang, Shu-Man

    2015-01-01

    AIM To investigate the pharmacokinetics and distributions of bevacizumab by intravitreal injection of prepared bevacizumab-poly (L-lactic-co-glycolic acid) (PLGA) microspheres in rabbits, to provide evidence for clinical application of this kind of bevacizumab sustained release dosage form. METHODS Bevacizumab was encapsulated into PLGA microsphere via the solid-in-oil-in-hydrophilic oil (S/O/hO) method. Fifteen healthy New Zealand albino-rabbits were used in experiments. The eyes of each rabbit received an intravitreal injection. The left eyes were injected with prepared bevacizumab-PLGA microspheres and the right eyes were injected with bevacizumab solution. After intravitreal injection, rabbits were randomly selected at days 3, 7, 14, 28 and 42 respectively, three animals each day. Then we used immunofluorescence staining to observe the distribution and duration of bevacizumab in rabbit eye tissues, and used the sandwich ELISA to quantify the concentration of free bevacizumab from the rabbit aqueous humor and vitreous after intravitreal injection. RESULTS The results show that the concentration of bevacizumab in vitreous and aqueous humor after administration of PLGA formulation was higher than that of bevacizumab solution. The T1/2 of intravitreal injection of bevacizumab-PLGA microspheres is 9.6d in vitreous and 10.2d in aqueous humor, and the T1/2 of intravitreal injection of soluble bevacizumab is 3.91d in vitreous and 4.1d in aqueous humor. There were statistical significant difference for comparison the results of the bevacizumab in vitreous and aqueous humor between the left and right eyes (P<0.05). The AUC0-t of the sustained release dosage form was 1-fold higher than that of the soluble form. The relative bioavailability was raised significantly. The immunofluorescence staining of PLGA-encapsulated bevacizumab (b-PLGA) in rabbit eye tissues was still observed up to 42d. It was longer than that of the soluble form. CONCLUSION The result of this study

  9. Phagostimulatory effect of uptake of PLGA microspheres loaded with rifampicin on alveolar macrophages.

    PubMed

    Hirota, Keiji; Hasegawa, Taizo; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi

    2011-10-15

    Our previous results on the phagocytic activity of alveolar macrophages (Mϕs) toward poly(lactic-co-glycolic) acid microspheres (PLGA MS) loaded with the anti-tuberculosis agent rifampicin (R-PLGA MS) suggest that the phagocytosis of R-PLGA MS enhances the phagocytic activity of Mϕ cells. To confirm this possibility, we examined the effect of phagocytosis of R-PLGA MS and polystyrene latex (PSL) MS on the phagocytic uptake of fluorescent PSL (F-PSL) MS by cells of the rat alveolar macrophage cell line NR8383 at 37°C. Phagocytic activity was examined in terms of the population of Mϕ cells that had phagocytosed MS (N(total)) and the total number of MS phagocytosed (n(total)) by counting the phagocytic Mϕ cells and the MS ingested in optical microscopic fields. Phagocytosis of R-PLGA MS enhanced about 1.5 times the values of N(total) and n(total) of the phagocytosis of F-PSL MS under the conditions where the phagocytosis of F-PSL MS did not attain the saturated level. In contrast, the phagocytosis of PSL MS did not enhance the phagocytic activity of Mϕ cells toward F-PSL MS. In conclusion, R-PLGA MS are favorable for drug delivery of anti-tuberculosis agents into alveolar Mϕs due to their ability to up-regulate the phagocytosis of MS. PMID:21700434

  10. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration.

  11. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach.

    PubMed

    Gu, Bing; Burgess, Diane J

    2015-11-10

    Hydrophobic drug release from poly (lactic-co-glycolic acid) (PLGA) microspheres typically exhibits a tri-phasic profile with a burst release phase followed by a lag phase and a secondary release phase. High burst release can be associated with adverse effects and the efficacy of the formulation cannot be ensured during a long lag phase. Accordingly, the development of a long-acting microsphere product requires optimization of all drug release phases. The purpose of the current study was to investigate whether a blend of low and high molecular weight polymers can be used to reduce the burst release and eliminate/minimize the lag phase. A single emulsion solvent evaporation method was used to prepare microspheres using blends of two PLGA polymers (PLGA5050 (25 kDa) and PLGA9010 (113 kDa)). A central composite design approach was applied to investigate the effect of formulation composition on dexamethasone release from these microspheres. Mathematical models obtained from this design of experiments study were utilized to generate a design space with maximized microsphere drug loading and reduced burst release. Specifically, a drug loading close to 15% can be achieved and a burst release less than 10% when a composition of 80% PLGA9010 and 90 mg of dexamethasone is used. In order to better describe the lag phase, a heat map was generated based on dexamethasone release from the PLGA microsphere/PVA hydrogel composite coatings. Using the heat map an optimized formulation with minimum lag phase was selected. The microspheres were also characterized for particle size/size distribution, thermal properties and morphology. The particle size was demonstrated to be related to the polymer concentration and the ratio of the two polymers but not to the dexamethasone concentration. PMID:26325309

  12. Design of Controlled Release PLGA Microspheres for Hydrophobic Fenretinide.

    PubMed

    Zhang, Ying; Wischke, Christian; Mittal, Sachin; Mitra, Amitava; Schwendeman, Steven P

    2016-08-01

    Fenretinide, a chemotherapeutic agent for cancer, is water-insoluble and has a very low oral bioavailability. Hence, the objective was to deliver it as an injectable depot and improve the drug solubility and release behavior from poly(lactide-co-glycolide) (PLGA) microspheres by incorporating nonionic surfactants with fenretinide. Enhancement of drug solubilization was observed with Brij 35 or 98, Tween 20, and Pluronic F127, but not Pluronic F68. Co-incorporation of Brij 98 with fenretinide significantly changed the microsphere morphology and improved the fenretinide release profile. The most optimal microsphere formulation, with 20% Brij 98 as excipient, showed an initial in vitro burst around 20% and a sustained release over 28 days in a solubilizing release medium at 37 °C. The effect of addition of MgCO3, drug loading, and polymer blending on the release of fenretinide from PLGA microspheres was also investigated and observed to enhance the drug release. Two sustained release formulations, one incorporating 20% Brij 98 and the other incorporating 3% MgCO3 in the oil phase, were selected for dosing in Sprague-Dawley rats and compared to a single injection of an equivalent dose of fenretinide drug suspension. These two formulations were chosen due to their high encapsulation efficiency, high cumulative release, and desirable in vitro release profile. The drug suspension resulted in a higher initial release in rats compared to the polymeric formulations, however, sustained release was also observed beyond 2 weeks, which may be attributed to the physiological disposition of the drug in vivo. The two PLGA based test formulations provided the desired low initial burst of fenretinide followed by 4 weeks of in vivo sustained release. PMID:27144450

  13. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

    PubMed

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei; Tao, Xiaojun; Zhang, Zhihua; Sun, Xiaomin; Zhang, Qiqing

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration.

  14. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair.

    PubMed

    Wang, Jianhua; Yang, Qiu; Cheng, Niangmei; Tao, Xiaojun; Zhang, Zhihua; Sun, Xiaomin; Zhang, Qiqing

    2016-04-01

    For cartilage repair, ideal scaffolds should mimic natural extracellular matrix (ECM) exhibiting excellent characteristics, such as biocompatibility, suitable porosity, and good cell affinity. This study aimed to prepare a collagen/silk fibroin composite scaffold incorporated with poly-lactic-co-glycolic acid (PLGA) microsphere that can be applied in repairing cartilage. To obtain optimum conditions for manufacturing a composite scaffold, a scaffold composed of different collagen-to-silk fibroin ratios was evaluated by determining porosity, water absorption, loss rate in hot water, and cell proliferation. Results suggested that the optimal ratio of collagen and silk fibroin composite scaffold was 7:3. The microstructure and morphological characteristics of the obtained scaffold were also examined through scanning electron microscopy and Fourier transform infrared spectroscopy. The results of in vitro fluorescence staining of bone marrow stromal cells revealed that collagen/silk fibroin composite scaffold enhanced cell proliferation without eliciting side effects. The prepared composite scaffold incorporated with PLGA microsphere was implanted in fully thick articular cartilage defects in rabbits. Collagen/silk fibroin composite scaffold with PLGA microspheres could enhance articular cartilage regeneration and integration between the repaired cartilage and the surrounding cartilage. Therefore, this composite will be a promising material for cartilage repair and regeneration. PMID:26838900

  15. Injectable and porous PLGA microspheres that form highly porous scaffolds at body temperature

    PubMed Central

    Qutachi, Omar; Vetsch, Jolanda R.; Gill, Daniel; Cox, Helen; Scurr, David J.; Hofmann, Sandra; Müller, Ralph; Quirk, Robin A.; Shakesheff, Kevin M.; Rahman, Cheryl V.

    2014-01-01

    Injectable scaffolds are of interest in the field of regenerative medicine because of their minimally invasive mode of delivery. For tissue repair applications, it is essential that such scaffolds have the mechanical properties, porosity and pore diameter to support the formation of new tissue. In the current study, porous poly(dl-lactic acid-co-glycolic acid) (PLGA) microspheres were fabricated with an average size of 84 ± 24 μm for use as injectable cell carriers. Treatment with ethanolic sodium hydroxide for 2 min was observed to increase surface porosity without causing the microsphere structure to disintegrate. This surface treatment also enabled the microspheres to fuse together at 37 °C to form scaffold structures. The average compressive strength of the scaffolds after 24 h at 37 °C was 0.9 ± 0.1 MPa, and the average Young’s modulus was 9.4 ± 1.2 MPa. Scaffold porosity levels were 81.6% on average, with a mean pore diameter of 54 ± 38 μm. This study demonstrates a method for fabricating porous PLGA microspheres that form solid porous scaffolds at body temperature, creating an injectable system capable of supporting NIH-3T3 cell attachment and proliferation in vitro. PMID:25152354

  16. Preparation and in vivo evaluation of PCADK/PLGA microspheres for improving stability and efficacy of rhGH.

    PubMed

    Wang, Chenhui; Yu, Changhui; Liu, Jiaxin; Teng, Lesheng; Sun, Fengying; Li, Youxin

    2015-11-30

    The goal of this research is to prepare poly(cyclohexane-1,4 diyl acetone dimethylene ketal) (PCADK)/poly(D,L-lactide-co-glycolide) (PLGA) blend microspheres loaded with recombinant human growth hormone (rhGH). The effect of PCADK degradation products on the structural integrity, secondary and tertiary structure and pharmacodynamics of rhGH was evaluated by native-polyacrylamide gel electrophoresis (Native-PAGE), size-exclusion high performance liquid chromatography (SEC-HPLC), circular dichroism (CD), fluorescence spectroscopy and in hypophysectomized rat models. Compared with PLGA degradation products, rhGH was found to be more stable in the presence of PCADK degradation products. PCADK/PLGA blend microspheres were then prepared and the morphology, encapsulation efficiency, release behavior and rhGH stability were investigated. PCADK/PLGA microspheres had regular shapes and smooth surfaces when the proportion of PCADK was less than 50%. The late-releasable amount of rhGH in PCADK/PLGA microspheres was greater than that in PLGA microspheres. In addition, the PCADK/PLGA microspheres showed larger AUC and improved therapeutic effects on rats than PLGA microspheres. Furthermore, the pH inside the microspheres was detected by CLSM to explain the improved rhGH stability in the PCADK/PLGA microspheres. In conclusion, PCADK/PLGA blend microspheres showed potential to improve rhGH stability and the efficacy of sustained-release of rhGH compared with PLGA microspheres.

  17. Mechanism of drug release from double-walled PDLLA(PLGA) microspheres

    PubMed Central

    Xu, Qingxing; Chin, Shi En; Wang, Chi-Hwa; Pack, Daniel W.

    2013-01-01

    The drug release and degradation behavior of two double-walled microsphere formulations consisting of a doxorubicin loaded poly(D,L-lactic-co-glycolic acid) (PLGA) core (~46 kDa) surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer (~55 and 116 kDa) were examined. It was postulated that different molecular weights of the shell layer could modulate the erosion of the outer coating and limit the occurrence of water penetration into the inner drug-loaded core on various time scales, and therefore control the drug release from the microspheres. For both microsphere formulations, the drug release profiles were observed to be similar. The degradation of the microspheres was monitored for a period of about nine weeks and analyzed using scanning electron microscopy, laser scanning confocal microscopy, and gel permeation chromatography. Interestingly, both microsphere formulations exhibited occurrence of bulk erosion of PDLLA on a similar time scale despite different PDLLA molecular weights forming the shell layer. The shell layer of the double-walled microspheres served as an effective diffusion barrier during the initial lag phase period and controlled the release rate of the hydrophilic drug independent of the molecular weight of the shell layer. PMID:23453059

  18. PLGA microsphere-mediated growth hormone release hormone expression induces intergenerational growth.

    PubMed

    Ren, Xiao-Hui; Zhang, Yong-Liang; Luo, Hu-Ying; Li, Hong-Yi; Liu, Song-Cai; Zhang, Ming-Jun; Ouyang, Song-Ying; Xi, Qian-Yun; Jiang, Qing-Yan

    2009-01-01

    To improve animal growth, growth hormone-releasing hormone (GHRH) expression vectors that maintain constant GHRH expression can be directly injected into muscles. To deliver the GHRH expression vectors, biodegradable microspheres have been used as a sustained release system. Although administering GHRH through microspheres is a common practice, the intergenerational effects of this delivery system are unknown. To investigate the intergenerational effects of polylactic-co-glycolic acid (PLGA) encapsulated plasmid-mediated GHRH supplements, pCMV-Rep-GHRH microspheres were injected into pregnant mice. Growth and expression of GHRH were measured in the offspring. RT-PCR and immunohistochemistry reveal GHRH expression 3-21 days post-injection. The proportion of GH-positive cells in the GHRH treated offspring was 48.2% higher than in the control group (P < 0.01). The GHRH treated offspring were 6.15% (P < 0.05) larger than the control offspring. At day 49 post-injection, IGF-I serum levels were significantly higher in the treatment group than in the control group. This study confirms that intramuscular expression of GHRH mediated by PLGA microspheres significantly enhances intergenerational growth.

  19. Electrospray synthesis and properties of hierarchically structured PLGA TIPS microspheres for use as controlled release technologies.

    PubMed

    Malik, Salman A; Ng, Wing H; Bowen, James; Tang, Justin; Gomez, Alessandro; Kenyon, Anthony J; Day, Richard M

    2016-04-01

    Microsphere-based controlled release technologies have been utilized for the long-term delivery of proteins, peptides and antibiotics, although their synthesis poses substantial challenges owing to formulation complexities, lack of scalability, and cost. To address these shortcomings, we used the electrospray process as a reproducible, synthesis technique to manufacture highly porous (>94%) microspheres while maintaining control over particle structure and size. Here we report a successful formulation recipe used to generate spherical poly(lactic-co-glycolic) acid (PLGA) microspheres using the electrospray (ES) coupled with a novel thermally induced phase separation (TIPS) process with a tailored Liquid Nitrogen (LN2) collection scheme. We show how size, shape and porosity of resulting microspheres can be controlled by judiciously varying electrospray processing parameters and we demonstrate examples in which the particle size (and porosity) affect release kinetics. The effect of electrospray treatment on the particles and their physicochemical properties are characterized by scanning electron microscopy, confocal Raman microscopy, thermogravimetric analysis and mercury intrusion porosimetry. The microspheres manufactured here have successfully demonstrated long-term delivery (i.e. 1week) of an active agent, enabling sustained release of a dye with minimal physical degradation and have verified the potential of scalable electrospray technologies for an innovative TIPS-based microsphere production protocol. PMID:26803601

  20. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection.

    PubMed

    Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.

  1. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection.

    PubMed

    Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  2. Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2011-01-01

    Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033

  3. Overexpression of GRF encapsulated in PLGA microspheres in animal skeletal muscle induces body weight gain.

    PubMed

    Zhang, Yong-liang; Ren, Xiao-hui; Liu, Song-cai; Dai, Jian-wei; Hao, Lin-lin; Jiang, Qing-yan

    2007-01-01

    Biodegradable nanospheres or microspheres have been widely used as a sustained release system for the delivery of bioagents. In the present study, injectable sustained-release growth hormone-releasing factor (GRF) (1-32) microspheres were prepared by a double emulsion-in liquid evaporation process using biodegradable polylactic-co-glycolic acid (PLGA) as the carrier. The entrapment efficiency was 89.79% and the mean particle size was 4.41 mum. The microspheres were injected into mouse tibialis muscle. After 30 days, mice injected with GRF (1-32) microspheres (group I) gained significantly more weight than any other treatment group, including mice injected with the naked plasmid (group II) (10.26 +/- 0.13 vs. 9.09 +/- 0.56; P < 0.05), a mixture of microspheres and plasmid (group III) (10.26 +/- 0.13 vs. 8.57 +/- 0.02; P < 0.05), or saline (IV) (10.26 +/- 0.13 vs. 6.47 +/- 0.26; P < 0.05). In addition, mice treated with the GRF (1-32) microspheres exhibited the highest expression levels of GRF as detected by PCR, RT-PCR, and ELISA (mean 2.56 +/- 0.40, P < 0.05, overall comparison of treatment with groups II, III, and IV). Additionally, rabbits were injected in the tibialis muscle with the same treatments described above. After 30 days, the group treated with GRF (1-32) microspheres gained the most weight. At day 30 postinjection, weight gain in group I was 63.93% higher than group II (plasmid) (877.10 +/- 24.42 vs. 535.05 +/- 26.38; P < 0.05), 108.59% higher than group III (blank MS) (877.10 +/- 24.42 vs. 420.50 +/- 19.39; P < 0.05), and 93.94% higher than group IV (saline) (877.10 +/- 24.42 vs. 452.25 +/- 27.38; P < 0.05). Furthermore, IGF-1 levels in the serum from GRF microsphere-treated group were elevated relative to all other groups. The present results suggest that encapsulation of GRF with PLGA increases GRF gene expression in muscle after local plasmid delivery, and stimulates significantly more weight gain than delivery of the naked plasmid alone.

  4. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion

    PubMed Central

    Hong, Xiaoyun; Wei, Liangming; Ma, Liuqing; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    An increasing number of drugs are needing improved formulations to optimize patient compliance because of their short half-lives in blood. Sustained-release formulations of drugs are often required for long-term efficacy, and microspheres are among the most popular ones. When drugs are encapsulated into microsphere formulations, different methods of preparation need to be used according to specific clinical requirements and the differing physicochemical characteristics of individual drugs. In this work, we developed a novel method for sustained-release drug delivery using a water-in-oil-in-hydrophilic oil-in-water (w/o/oh/w) emulsion to encapsulate a drug into poly(lactic-co-glycolic acid) (PLGA) microspheres. Different effects were achieved by varying the proportions and concentrations of hydrophilic oil and PLGA. Scanning electron and optical microscopic images showed the surfaces of the microspheres to be smooth and that their morphology was spherical. Microspheres prepared using the w/o/oh/w emulsion were able to load protein efficiently and had sustained-release properties. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future. PMID:23882140

  5. Novel preparation method for sustained-release PLGA microspheres using water-in-oil-in-hydrophilic-oil-in-water emulsion.

    PubMed

    Hong, Xiaoyun; Wei, Liangming; Ma, Liuqing; Chen, Yinghui; Liu, Zhenguo; Yuan, Weien

    2013-01-01

    An increasing number of drugs are needing improved formulations to optimize patient compliance because of their short half-lives in blood. Sustained-release formulations of drugs are often required for long-term efficacy, and microspheres are among the most popular ones. When drugs are encapsulated into microsphere formulations, different methods of preparation need to be used according to specific clinical requirements and the differing physicochemical characteristics of individual drugs. In this work, we developed a novel method for sustained-release drug delivery using a water-in-oil-in-hydrophilic oil-in-water (w/o/oh/w) emulsion to encapsulate a drug into poly(lactic-co-glycolic acid) (PLGA) microspheres. Different effects were achieved by varying the proportions and concentrations of hydrophilic oil and PLGA. Scanning electron and optical microscopic images showed the surfaces of the microspheres to be smooth and that their morphology was spherical. Microspheres prepared using the w/o/oh/w emulsion were able to load protein efficiently and had sustained-release properties. These results indicate that the above-mentioned method might be useful for developing sustained-release microsphere formulations in the future.

  6. Effect of Polymer Porosity on Aqueous Self-Healing Encapsulation of Proteins in PLGA Microspheres

    PubMed Central

    Reinhold, Samuel E.

    2014-01-01

    Self-healing (SH) poly(lactic-co-glycolic acid) (PLGA) microspheres are a unique class of functional biomaterials capable of microencapsulating process-sensitive proteins by simple mixing and heating the drug-free polymer in aqueous protein solution. Drug-free SH microspheres of PLGA 50/50 with percolating pore networks of varying porosity (ε = 0.49–73) encapsulate increasing lysozyme (~1–10% w/w) with increasing ε, with typically ~20–25% pores estimated assessible to entry by the enzyme from the external solution. Release kinetics of lysozyme under physiological conditions is continuous over > 2 weeks and most strongly influenced by ε and protein loading before reaching a lag phase until 28 days at the study completion. Recovered enzyme after release is typically predominantly monomeric and active. Formulations containing acid-neutralizing MgCO3 at >4.3% exhibit >97% monomeric and active protein after the release with full mass balance recovery. Hence, control of SH polymer ε is a key parameter to development of this new class of biomaterials. PMID:24285573

  7. Sustained delivery of rhBMP-2 via PLGA microspheres: cranial bone regeneration without heterotopic ossification or craniosynostosis

    PubMed Central

    Wink, Jason D.; Gerety, Patrick A.; Sherif, Rami D.; Lim, Youngshin; A.Clarke, Nadya; Rajapakse, Chamith S.; Nah, Hyun-Duck; Taylor, Jesse A.

    2014-01-01

    Background Commercially available recombinant human bone morphogenetic protein 2 (rhBMP2) has demonstrated efficacy in bone regeneration, but not without significant side effects. In this study, we utilize rhBMP2 encapsulated in PLGA microspheres (PLGA-rhBMP2) placed in a rabbit cranial defect model to test whether low-dose, sustained, delivery can effectively induce bone regeneration. Methods rhBMP2 was encapsulated in 15% poly (lactic-co-glycolic acid), using a double emulsion, solvent extraction/evaporation technique, and its release kinetics and bioactivity were tested. Two critical-size defects (10mm) were created in the calvarium of New Zealand White rabbits (5-7 mos of age, M/F) and filled with a collagen scaffold containing one of four groups: 1) no implant, 2) collagen scaffold only, 3) PLGA-rhBMP2(0.1ug/implant), or 4) free rhBMP2 (0.1ug/implant). After 6 weeks, the rabbits were sacrificed and defects were analyzed by μCT, histology, and finite element analysis. Results RhBMP2 delivered via bioactive PLGA microspheres resulted in higher volumes and surface area coverage of new bone than an equal dose of free rhBMP2 by μCT and histology (p=0.025, 0.025). FEA indicated that the mechanical competence using the regional elastic modulus did not differ with rhBMP2 exposure (p=0.70). PLGA-rhBMP2 did not demonstrate heterotopic ossification, craniosynostosis, or seroma formation. Conclusions Sustained delivery via PLGA microspheres can significantly reduce the rhBMP2 dose required for de novo bone formation. Optimization of the delivery system may be a key to reduce the risk for recently reported rhBMP2 related adverse effects. Level of Evidence Animal Study PMID:24622573

  8. Drug release behavior of poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA) prepared by direct polycondensation.

    PubMed

    Shi, Gang; Ding, Yuanyuan; Zhang, Xin; Wu, Luyan; He, Fei; Ni, Caihua

    2015-01-01

    Hydrophobically modified sodium alginate, poly (lactic-glycolic acid) grafting from sodium alginate (ALG-g-PLGA), was successfully synthesized through direct one-step polymerization of sodium alginate, glycolic acid, and lactic acid. ALG-g-PLGA self-assembled to colloidal nanoparticles and subsequently hydrogel microspheres were obtained by crosslinking ALG-g-PLGA nanoparticles in the solution of calcium chloride. The modified hydrogel microspheres could be used as the drug delivery vehicles for a hydrophobic ibuprofen. Compared with sodium alginate, ALG-g-PLGA demonstrated an improved drug loading rate, encapsulation efficiency, and prolonged release speed. The products, as novel and highly promising biomaterials, have potential applications.

  9. Design and evaluation of surface and adjuvant modified PLGA microspheres for uptake by dendritic cells to improve vaccine responses.

    PubMed

    Salvador, Aiala; Sandgren, Kerrie J; Liang, Frank; Thompson, Elizabeth A; Koup, Richard A; Pedraz, José Luis; Hernandez, Rosa Maria; Loré, Karin; Igartua, Manoli

    2015-12-30

    Designing strategies for targeting antigens to dendritic cells is a major goal in vaccinology. Here, PLGA (poly lactic-co-glycolic acid) microspheres and with several surface modifications that affect to their uptake by human blood primary dendritic cells and monocytes have been evaluated. Higher uptake was found by all the cell types when cationic microspheres (PLGA modified with polyethylene imine) were used. These cationic particles were in vivo evaluated in mice. In addition, MPLA(1) or poly(I:C)(2) and α-GalCer(3) were also encapsulated to address their adjuvant effect. All the microspheres were able to produce humoral immune responses, albeit they were higher for cationic microspheres. Moreover, surface charge seemed to have a role on biasing the immune response; cationic microspheres induced higher IFN-γ levels, indicative of Th1 activation, while unmodified ones mainly triggered IL4 and IL17A release, showing Th2 activation. Thus, we have shown here the potential and versatility of these MS, which may be tailored to needs.

  10. Porous silicon oxide-PLGA composite microspheres for sustained ocular delivery of daunorubicin

    PubMed Central

    Nan, Kaihui; Ma, Feiyan; Hou, Huiyuan; Freeman, William R.; Sailor, Michael J.; Cheng, Lingyun

    2014-01-01

    A water-soluble anthracycline antibiotic drug (daunorubicin, DNR) was loaded into oxidized porous silicon (pSiO2) microparticles and then encapsulated with a layer of polymer (poly lactide-co-glycolide, PLGA) to investigate their synergistic effects in control of DNR release. Similarly fabricated PLGA-DNR microspheres without pSiO2, and pSiO2 microparticles without PLGA were used as control particles. The composite microparticles synthesized by a solid-in-oil-in-water (S/O/W) emulsion method have mean diameters of 52.33±16.37 μm for PLGA-pSiO2_21/40-DNR and the mean diameter of 49.31±8.87 μm for PLGA-pSiO2_6/20-DNR. The mean size, 26.00±8 μm, of PLGA-DNR was significantly smaller, compared with the other two (p<0.0001). Optical microscopy revealed that PLGA-pSiO2-DNR microsphere contained multiple pSiO2 particles. In vitro release experiments determined that control PLGA-DNR microspheres completely released DNR within 38 days and control pSiO2-DNR microparticles (with no PLGA coating) released DNR within 14 days, while the PLGA-pSiO2-DNR microspheres released DNR for 74 days. Temporal release profiles of DNR from PLGA-pSiO2 composite particles indicated that both PLGA and pSiO2 contribute to the sustained release of the payload. The PLGA-pSiO2 composite displayed a more constant rate of DNR release than the pSiO2 control formulation, and it displayed a significantly slower release of DNR than either the PLGA or pSiO2 formulations. We conclude that this system may be useful in managing unwanted ocular proliferation when formulated with anti-proliferation compounds such as DNR. PMID:24793657

  11. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs).

    PubMed

    Lee, Young Sook; Lim, Kwang Suk; Oh, Jung-Eun; Yoon, A-Rum; Joo, Wan Seok; Kim, Hyun Soo; Yun, Chae-Ok; Kim, Sung Wan

    2015-05-10

    Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified water/oil/water (W1/O/W2) double emulsion solvent evaporation method was used for the construction of porous microspheres. PEI1.8k was blended with poly(lactic-co-glycolic acid) (PLGA) to enhance electrostatic cellular attachment to the microspheres. The porous PLGA/PEI1.8k (PPP) particles demonstrated an average particle size of 290μm and an average pore size of 14.3μm, providing a micro-carrier for the MSC delivery. PPP particles allowed for better attachment of rMSCs than non-porous PLGA/PEI1.8k (NPP) particles and non-porous (NP) and porous PLGA (PP) microspheres. rMSC successfully grew on the PPP particles for 2weeks in vitro. Next, PPP particles loaded with 3 different amounts of hMSC showed increased in vivo engraftment rates and maintained the stemness characteristics of hMSC compared with hMSCs-alone group in rats 2weeks after intramyocardial administration. These customized PPP particles for MSC delivery are a biodegradable and injectable scaffold that can be used for clinical applications. PMID:25575866

  12. Development of porous PLGA/PEI1.8k biodegradable microspheres for the delivery of mesenchymal stem cells (MSCs).

    PubMed

    Lee, Young Sook; Lim, Kwang Suk; Oh, Jung-Eun; Yoon, A-Rum; Joo, Wan Seok; Kim, Hyun Soo; Yun, Chae-Ok; Kim, Sung Wan

    2015-05-10

    Multipotent mesenchymal stem cells (MSCs) promise a therapeutic alternative for many debilitating and incurable diseases. However, one of the major limitations for the therapeutic application of human MSC (hMSC) is the lengthy ex vivo expansion time for preparing a sufficient amount of cells due to the low engraftment rate after transplantation. To solve this conundrum, a porous biodegradable polymeric microsphere was investigated as a potential scaffold for the delivery of MSCs. The modified water/oil/water (W1/O/W2) double emulsion solvent evaporation method was used for the construction of porous microspheres. PEI1.8k was blended with poly(lactic-co-glycolic acid) (PLGA) to enhance electrostatic cellular attachment to the microspheres. The porous PLGA/PEI1.8k (PPP) particles demonstrated an average particle size of 290μm and an average pore size of 14.3μm, providing a micro-carrier for the MSC delivery. PPP particles allowed for better attachment of rMSCs than non-porous PLGA/PEI1.8k (NPP) particles and non-porous (NP) and porous PLGA (PP) microspheres. rMSC successfully grew on the PPP particles for 2weeks in vitro. Next, PPP particles loaded with 3 different amounts of hMSC showed increased in vivo engraftment rates and maintained the stemness characteristics of hMSC compared with hMSCs-alone group in rats 2weeks after intramyocardial administration. These customized PPP particles for MSC delivery are a biodegradable and injectable scaffold that can be used for clinical applications.

  13. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability.

    PubMed

    Qi, Feng; Wu, Jie; Fan, Qingze; He, Fan; Tian, Guifang; Yang, Tingyuan; Ma, Guanghui; Su, Zhiguo

    2013-12-01

    Exenatide-loaded poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres hold great potential as a drug delivery system to treat type 2 diabetes mellitus (T2DM) because they can overcome the shortcoming of exenatide's short half-life and realize sustained efficacy. However, conventional preparation methods often lead to microspheres with a broad size distribution, which in turn would cause poor preparation repeatability, drug efficacy and so forth. In this study, we used Shirasu Porous Glass (SPG) premix membrane emulsification technique characterized with high trans-membrane flux and size controllability to prepare uniform-sized PLGA microspheres. By optimizing trans-membrane pressure and PVA concentration in external aqueous phase, uniform-sized PLGA microspheres with large size (around 20μm) were successfully obtained. To achieve high encapsulation efficiency (EE) and improve in vitro release behavior, we have carefully examined the process parameters. Our results show that using ultrasonication to form primary emulsion, microspheres with high EE were easily obtained, but the rate of in vitro release was very slow. Instead, high EE and appropriate in vitro release were achieved when homogenization with optimized time and speed were employed. Besides, we also systematically investigated the effect of formulations on loading efficiency (LE) as well as the relationship between the resultant size of the microspheres and pore size of the membrane. Finally, through RP-HPLC and CD spectra analysis, we have demonstrated that the bio-stability of exenatide in microspheres was preserved during the preparation process.

  14. Formulation and in vitro/in vivo evaluation of terbutaline sulphate incorporated in PLGA (25/75) and L-PLA microspheres.

    PubMed

    Selek, H; Sahin, S; Ercan, M T; Sargon, M; Hincal, A A; Kas, H S

    2003-01-01

    Terbutaline sulphate (TBS) is widely used in the treatment of bronchial asthma, chronic bronchitis and emphysema. Because of its short biological half life and dosing schedule, a long acting TBS formulation is required to improve patient compliance. The objective of this study was to develop a TBS containing biodegradable microsphere formulation. Poly(D,L-lactide-co-glycolide) (PLGA) and poly(L-lactic acid) (L-PLA) were chosen as matrix materials. A solvent evaporation method was used for preparation of microspheres. Surface morphology, particle size distribution and encapsulation efficiency were investigated. In vitro release studies were performed in pH 7.4 phosphate buffer. In vitro distribution of microspheres were studied in the Swiss albino male mice. All microspheres were spherical in shape and had a porous surface with mean diameters of 9-21 microm. The encapsulation efficiency was influenced by the polymer type, but not the molecular weight. About 90% of the initial amount was trapped in PLGA microspheres, and the remainder was on the surface. In the case of L-PLA, 50% of the total drug was associated with the surface of microspheres. The In vitro release pattern was biphasic characterized by an initial burst phase followed by a slower phase. The L-PLA microspheres released approximately 92% of the initial payload in 72 h. On the other hand, TBS release was increased with an increase in the molecular weight of PLGA. Biodistribution of L-PLA microspheres was characterized by an initially high uptake (35%) by the lungs. All these results suggest that L-PLA and PLGA microspheres have the potential to be used for passive lung targeting. PMID:12554379

  15. Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration.

    PubMed

    Fang, Jianjun; Zhang, Yun; Yan, Shifeng; Liu, Zhiwen; He, Shiming; Cui, Lei; Yin, Jingbo

    2014-01-01

    In this study a novel kind of porous poly(l-glutamic acid) (PLGA)/chitosan polyelectrolyte complex (PEC) microsphere was developed through electrostatic interaction between PLGA and chitosan. By adjusting the formula parameters chitosan microspheres with an average pore size of 47.5 ± 5.4 μm were first developed at a concentration of 2 wt.% and freeze temperature of -20 °C. For self-assembly of the PEC microspheres porous chitosan microspheres were then incubated in PLGA solution at 37 °C. Due to electrostatic interaction a large amount of PLGA (110.3 μg mg(-1)) was homogeneously absorbed within the chitosan microspheres. The developed PEC microspheres retained their original size, pore diameters and interconnected porous structure. Fourier transform infrared spectroscopy, thermal gravimetric analysis and zeta potential analysis revealed that the PEC microspheres were successfully prepared through electrostatic interaction. Compared with microspheres fabricated from chitosan, the porous PEC microspheres were shown to efficiently promote chondrocyte attachment and proliferation. After injection subcutaneously for 8 weeks PEC microspheres loaded with chondrocytes were found to produce significant more cartilaginous matrix than chitosan microspheres. These results indicate that these novel fabricated porous PLGA/chitosan PEC microspheres could be used as injectable cell carriers for cartilage tissue engineering. PMID:24025620

  16. Effect of different sintering methods on bioactivity and release of proteins from PLGA microspheres

    PubMed Central

    Dormer, Nathan H.; Gupta, Vineet; Scurto, Aaron M.; Berkland, Cory J.; Detamore, Michael S.

    2013-01-01

    Macromolecule release from poly(d,l-lactide-co-glycolide) (PLGA) microspheres has been well-characterized, and is a popular approach for delivering bioactive signals from tissue-engineered scaffolds. However, the effect of some processing solvents, sterilization, and mineral incorporation (when used in concert) on long-term release and bioactivity has seldom been addressed. Understanding these effects is of significant importance for microsphere-based scaffolds, given that these scaffolds are becoming increasingly more popular, yet growth factor activity following sintering and/or sterilization is heretofore unknown. The current study evaluated the 6-week release of transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-2 from PLGA and PLGA/hydroxyapatite (HAp) microspheres following exposure to ethanol (EtOH), dense phase carbon dioxide (CO2), or ethylene oxide (EtO). EtO was chosen based on its common use in scaffold sterilization, whereas EtOH and CO2 were chosen given their importance in sintering microspheres together to create scaffolds. Release supernatants were then used in an accelerated cell stimulation study with human bone marrow stromal cells (hBMSCs) with monitoring of gene expression for major chondrogenic and osteogenic markers. Results indicated that in microspheres without HAp, EtOH exposure led to the greatest amount of delivery, whilst those treated with CO2 delivered the least growth factor. In contrast, formulations with HAp released almost half as much protein, regardless of EtOH or CO2 exposure. Notably, EtO exposure was not found to significantly affect the amount of protein released. Cell stimulation studies demonstrated that eluted protein samples performed similarly to positive controls in PLGA-only formulations, and ambiguously in PLGA/HAp composites. In conclusion, the use of EtOH, subcritical CO2, and EtO in microsphere-based scaffolds may have only slight adverse effects, and possibly even desirable effects in some

  17. Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres.

    PubMed

    Bao, Min; Zhou, Qihui; Dong, Wen; Lou, Xiangxin; Zhang, Yanzhong

    2013-06-10

    Minimally invasive implants and/or scaffolds integrated with multiple functionalities are of interest in the clinical settings. In this paper, chitosan (CTS) functionalized poly(lactic-co-glycolic acid) (PLGA) microspheres containing a model payload, lysozyme (Lyz), were prepared by a water-in-oil-in-water emulsion method, from which cylindrical shaped rod (5 mm in diameter) was fabricated by sintering the composite microspheres in a mold. High-intensity focused ultrasound (HIFU) was then employed as a unique technique to enable shape memory and payload release effects of the three-dimensional (3-D) structure. It was found that incorporation of CTS into PLGA microspheres could regulate the transition temperature Ttrans of the microsphere from 45 to 50 °C and affect shape memory ratio of the fabricated cylindrical rod to some extent. Shape memory test and drug release assay proved that HIFU could modulate the shape recovery process and synchronize the release kinetics of the encapsulated Lyz in the rod in a switchable manner. Moreover, the two processes could be manipulated by varying the acoustic power and insonation duration. Mechanical tests of the microspheres-based rod before and after ultrasound irradiation revealed its compressive properties in the range of trabecular bone. Examination of the degradation behavior indicated that the introduction of CTS into the PLGA microspheres also alleviated acidic degradation characteristic of the PLGA-dominant cylindrical rod. With HIFU, this study thus demonstrated the desired capabilities of shape recovery and payload release effects integrated in one microspheres-based biodegradable cylindrical structure. PMID:23675980

  18. Gas-generating TPGS-PLGA microspheres loaded with nanoparticles (NIMPS) for co-delivery of minicircle DNA and anti-tumoral drugs.

    PubMed

    Gaspar, Vítor M; Moreira, André F; Costa, Elisabete C; Queiroz, João A; Sousa, Fani; Pichon, Chantal; Correia, Ilídio J

    2015-10-01

    Drug-DNA combination therapies are receiving an ever growing focus due to their potential for improving cancer treatment. However, such approaches are still limited by the lack of multipurpose delivery systems that encapsulate drugs and condense DNA simultaneously. In this study, we describe the successful formulation of gas-generating pH-responsive D-α-tocopherol PEG succinate-poly(D,L-lactic-co-glycolic acid) (TPGS-PLGA) hollow microspheres loaded with both Doxorubicin (Dox) and minicircle DNA (mcDNA) nanoparticles as a strategy to co-deliver these therapeutics. For this study mcDNA vectors were chosen due to their increased therapeutic efficiency in comparison to standard plasmid DNA. The results demonstrate that TPGS-PLGA microcarriers can encapsulate Dox and chitosan nanoparticles completely condense mcDNA. The loading of mcDNA-nanoparticles into microspheres was confirmed by 3D confocal microscopy and co-localization analysis. The resulting TPGS-PLGA-Dox-mcDNA nanoparticle-in-microsphere hybrid carriers exhibit a well-defined spherical shape and neutral surface charge. Microcarriers incubation in acidic pH produced a gas-mediated Dox release, corroborating the microcarriers stimuli-responsive character. Also, the dual-loaded TPGS-PLGA particles achieved 5.2-fold higher cellular internalization in comparison with non-pegylated microspheres. This increased intracellular concentration resulted in a higher cytotoxic effect. Successful transgene expression was obtained after nanoparticle-mcDNA co-delivery in the microspheres. Overall these findings support the concept of using nanoparticle-microsphere multipart systems to achieve efficient co-delivery of various drug-mcDNA combinations.

  19. In Vitro and In Vivo Evaluations of PLGA Microspheres Containing Nalmefene.

    PubMed

    Xie, Xiangyang; Lin, Wen; Xing, Chuanfeng; Yang, Yanfang; Chi, Qiang; Zhang, Hui; Li, Ying; Li, Zhiping; Yang, Yang; Yang, Zhenbo; Li, Mingyuang

    2015-01-01

    Poor patient compliance, untoward reactions and unstable blood drug levels after the bolus administration are impeding the pharmacotherapy for insobriety. A long-acting preparation may address these limitations. The aim of this paper was to further investigate the in vitro characteristics and in vivo performances of nalmefene microspheres. Nalmefene was blended with poly (lactide-co-glycolide) (PLGA) to prepare the target microspheres by an O/O emulsification solvent evaporation method. The prepared microspheres exhibited a controlled release profile of nalmefene in vitro over 4 weeks, which was well fitted with a first-order model. In vitro degradation study showed that the drug release in vitro was dominated by both drug diffusion and polymer degradation mechanisms. Pharmacokinetics study indicated that the prepared microspheres could provide a relatively constant of nalmefene plasma concentration for at least one month in rats. The in vivo pharmacokinetics profile was well correlated with the in vitro drug release. Pharmacodynamics studies revealed that the drug loaded microspheres could produce a long-acting antagonism efficacy on rats. These results demonstrated the promising application of injectable PLGA microspheres containing nalmefene for the long-term treatment of alcohol dependence.

  20. In Vitro and In Vivo Evaluations of PLGA Microspheres Containing Nalmefene

    PubMed Central

    Xie, Xiangyang; Lin, Wen; Xing, Chuanfeng; Yang, Yanfang; Chi, Qiang; Zhang, Hui; Li, Ying; Li, Zhiping; Yang, Yang; Yang, Zhenbo; Li, Mingyuang

    2015-01-01

    Poor patient compliance, untoward reactions and unstable blood drug levels after the bolus administration are impeding the pharmacotherapy for insobriety. A long-acting preparation may address these limitations. The aim of this paper was to further investigate the in vitro characteristics and in vivo performances of nalmefene microspheres. Nalmefene was blended with poly (lactide-co-glycolide) (PLGA) to prepare the target microspheres by an O/O emulsification solvent evaporation method. The prepared microspheres exhibited a controlled release profile of nalmefene in vitro over 4 weeks, which was well fitted with a first-order model. In vitro degradation study showed that the drug release in vitro was dominated by both drug diffusion and polymer degradation mechanisms. Pharmacokinetics study indicated that the prepared microspheres could provide a relatively constant of nalmefene plasma concentration for at least one month in rats. The in vivo pharmacokinetics profile was well correlated with the in vitro drug release. Pharmacodynamics studies revealed that the drug loaded microspheres could produce a long-acting antagonism efficacy on rats. These results demonstrated the promising application of injectable PLGA microspheres containing nalmefene for the long-term treatment of alcohol dependence. PMID:25938514

  1. Safety evaluation of poly(lactic-co-glycolic acid)/poly(lactic-acid) microspheres through intravitreal injection in rabbits.

    PubMed

    Rong, Xianfang; Yuan, Weien; Lu, Yi; Mo, Xiaofen

    2014-01-01

    Poly(lactic-co-glycolic acid) (PLGA) and/or poly(lactic-acid) (PLA) microspheres are important drug delivery systems. This study investigated eye biocompatibility and safety of PLGA/PLA microspheres through intravitreal injection in rabbits. Normal New Zealand rabbits were randomly selected and received intravitreal administration of different doses (low, medium, or high) of PLGA/PLA microspheres and erythropoietin-loaded PLGA/PLA microspheres. The animals were clinically examined and sacrificed at 1, 2, 4, 8, and 12 weeks postadministration, and retinal tissues were prepared for analysis. Retinal reactions to the microspheres were evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end staining and glial fibrillary acidic protein immunohistochemistry. Retinal structure changes were assessed by hematoxylin and eosin staining and transmission electron microscopy. Finally, retinal function influences were explored by the electroretinography test. Terminal deoxynucleotidyl transferase-mediated dUTP nick end staining revealed no apoptotic cells in the injected retinas; immunohistochemistry did not detect any increased glial fibrillary acidic protein expression. Hematoxylin and eosin staining and transmission electron microscopy revealed no micro- or ultrastructure changes in the retinas at different time points postintravitreal injection. The electroretinography test showed no significant influence of scotopic or photopic amplitudes. The results demonstrated that PLGA/PLA microspheres did not cause retinal histological changes or functional damage and were biocompatible and safe enough for intravitreal injection in rabbits for controlled drug delivery.

  2. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Moioli, Eduardo K; Hong, Liu; Guardado, Jesse; Clark, Paul A; Mao, Jeremy J

    2006-03-01

    Despite the widespread role of transforming growth factor-beta3 (TGFbeta3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFbeta3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFbeta3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was encapsulated in 50:50 PLGA microspheres and subjected to ethylene oxide (EO) gas, radio-frequency glow discharge (RFGD), or ultraviolet (UV) light. The release of bFGF was significantly attenuated by UV light, but not significantly altered by either EO or RFGD. To verify its bioactivity, TGFbeta3 (1.35 ng/mL) was control-released to the culture of human mesenchymal stem cells (hMSC) under induced osteogenic differentiation. Alkaline phosphatase staining intensity was markedly reduced 1 week after exposing hMSC-derived osteogenic cells to TGFbeta3. This was confirmed by lower alkaline phosphatase activity (2.25 +/- 0.57 mU/mL/ng DNA) than controls (TGFbeta3- free) at 5.8 +/- 0.9 mU/mL/ng DNA (p < 0.05). Control-released TGFbeta3 bioactivity was further confirmed by lack of significant differences in alkaline phosphatase upon direct addition of 1.35 ng/mL TGFbeta3 to cell culture (p > 0.05). These findings provide baseline data for potential uses of microencapsulated TGFbeta3 in wound healing and tissue-engineering applications.

  3. Sustained release of TGFbeta3 from PLGA microspheres and its effect on early osteogenic differentiation of human mesenchymal stem cells.

    PubMed

    Moioli, Eduardo K; Hong, Liu; Guardado, Jesse; Clark, Paul A; Mao, Jeremy J

    2006-03-01

    Despite the widespread role of transforming growth factor-beta3 (TGFbeta3) in wound healing and tissue regeneration, its long-term controlled release has not been demonstrated. Here, we report microencapsulation of TGFbeta3 in poly-d-l-lactic-co-glycolic acid (PLGA) microspheres and determine its bioactivity. The release profiles of PLGA-encapsulated TGFbeta3 with 50:50 and 75:25 PLA:PGA ratios differed throughout the experimental period. To compare sterilization modalities of microspheres, bFGF was encapsulated in 50:50 PLGA microspheres and subjected to ethylene oxide (EO) gas, radio-frequency glow discharge (RFGD), or ultraviolet (UV) light. The release of bFGF was significantly attenuated by UV light, but not significantly altered by either EO or RFGD. To verify its bioactivity, TGFbeta3 (1.35 ng/mL) was control-released to the culture of human mesenchymal stem cells (hMSC) under induced osteogenic differentiation. Alkaline phosphatase staining intensity was markedly reduced 1 week after exposing hMSC-derived osteogenic cells to TGFbeta3. This was confirmed by lower alkaline phosphatase activity (2.25 +/- 0.57 mU/mL/ng DNA) than controls (TGFbeta3- free) at 5.8 +/- 0.9 mU/mL/ng DNA (p < 0.05). Control-released TGFbeta3 bioactivity was further confirmed by lack of significant differences in alkaline phosphatase upon direct addition of 1.35 ng/mL TGFbeta3 to cell culture (p > 0.05). These findings provide baseline data for potential uses of microencapsulated TGFbeta3 in wound healing and tissue-engineering applications. PMID:16579687

  4. Effect of lecithin and MgCO3 as additives on the enzymatic activity of carbonic anhydrase encapsulated in poly(lactide-co-glycolide) (PLGA) microspheres.

    PubMed

    Sandor, Maryellen; Riechel, Alex; Kaplan, Ian; Mathiowitz, Edith

    2002-02-15

    A model enzyme, carbonic anhydrase, was encapsulated and released from poly(lactide-co-glycolide) (PLGA) microspheres (1-3 microm) made by a novel phase inversion technique. Lecithin was used as a surfactant in the encapsulation process and was incorporated in either the organic phase, aqueous phase, both phases, or not at all. Additional microspheres were also made with lecithin incorporated in the aqueous phase and a basic salt, MgCO3, in the polymeric phase. Released carbonic anhydrase, protein extracted from microspheres, or enzyme incubated with lecithin and PLGA were analyzed via HPLC and activity assay to determine the effect of these additives on protein integrity and activity. Lecithin in the aqueous phase appeared to increase the fraction of enzyme in monomeric form as well as its activity for both extracted protein and released protein as compared to the other formulations without MgCO3. Incubation of enzyme with PLGA degradation products indicated that the acidic environment within the microspheres aids in the irreversible inactivation of the encapsulated protein. Addition of MgCO3 further increased the amount of monomer in both the extracted and released protein by decreasing the amount of acid-induced cleavage and noncovalent aggregation, but still greatly decreased the activity of the enzyme. PMID:11960690

  5. Room-temperature attachment of PLGA microspheres to titanium surfaces for implant-based drug release

    NASA Astrophysics Data System (ADS)

    Xiao, Dongqin; Liu, Qing; Wang, Dongwei; Xie, Tao; Guo, Tailin; Duan, Ke; Weng, Jie

    2014-08-01

    Drug release from implant surfaces is an effective approach to impart biological activities, (e.g., antimicrobial and osteogenic properties) to bone implants. Coatings of polylactide-based polymer are a candidate for this purpose, but a continuous (fully covering) coating may be non-optimal for implant-bone fixation. This study reports a simple room-temperature method for attaching poly (lactide-co-glycolide) (PLGA) microspheres to titanium (Ti) surfaces. Microspheres were prepared with polyvinyl alcohol (PVA) or polyvinylpyrrolidone (PVP) as the emulsifier. Microspheres were attached to Ti discs by pipetting as a suspension onto the surfaces followed by vacuum drying. After immersion in shaking water bath for 14 d, a substantial proportion of the microspheres remained attached to the discs. In contrast, if the vacuum-drying procedure was omitted, only a small fraction of the microspheres remained attached to the discs after immersion for only 5 min. Microspheres containing triclosan (a broad-spectrum antibiotic) were attached by porous-surfaced Ti discs. In vitro experiments showed that the microsphere-carrying discs were able to kill Staphylococcus aureus and Escherichia Coli, and support the adhesion and growth of primary rat osteoblasts. This simple method may offer a flexible technique for bone implant-based drug release.

  6. Surface characterization by atomic force microscopy of sterilized PLGA microspheres.

    PubMed

    Dorati, Rossella; Patrini, Maddalena; Perugini, Paola; Pavanetto, Franca; Stella, Angiolino; Modena, Tiziana; Genta, Ida; Conti, Bice

    2006-03-01

    Atomic force microscopy (AFM) is recognized a suitable and powerful technique for surface and morphological analysis. Even if until now this technique has not been frequently used in the pharmaceutical field, it can contribute to an accurate morphologic characterization of microspheres and nanospheres. In this work, atomic force microscopy has been used to perform the surface characterization of sterilized microspheres. The aim is to investigate the morphologic modifications induced by gamma irradiation on poly(lactide-co-glycolide) microspheres loaded with ovalbumin and to compare the results obtained by AFM to those obtained by scanning electron microscopy (SEM). The results obtained show that, with respect to SEM, AFM can give some additional information regarding the modifications induced by gamma-irradiation on microspheres surface morphology. The significant changes in surface roughness after irradiation are indicative of damage due to gamma-irradiation. The unchanged surface roughness values calculated for microspheres containing PEG in their matrix, suggest that this polymer exerts a protective effect towards gamma-irradiation. PMID:16754370

  7. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.

  8. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. PMID:25809455

  9. Preparation, Characterization, In Vitro Release and Degradation of Cathelicidin-BF-30-PLGA Microspheres

    PubMed Central

    Li, Hongli; Yuan, Mingwei; Yuan, Minglong

    2014-01-01

    Cathelicidin-BF-30 (BF-30), a water-soluble peptide isolated from the snake venom of Bungarus fasciatus containing 30 amino acid residues, was incorporated in poly(D,L-lactide-co-glycolide) (PLGA) 75∶25 microspheres (MS) prepared by a water in oil in water W/O/W emulsification solvent extraction method. The aim of this work was to investigate the stability of BF-30 after encapsulation. D-trehalose was used as an excipient to stabilize the peptide. The MS obtained were mostly under 2 µm in size and the encapsulation efficiency was 88.50±1.29%. The secondary structure of the peptide released in vitro was determined to be nearly the same as the native peptide using Circular Dichroism (CD). The ability of BF-30 to inhibit the growth of Escherichia coli was also maintained. The cellular relative growth and hemolysis rates were 92.16±3.55% and 3.52±0.45% respectively. PMID:24963652

  10. Preparation, characterization, in vitro release and degradation of cathelicidin-BF-30-PLGA microspheres.

    PubMed

    Li, Lili; Wang, Qifeng; Li, Hongli; Yuan, Mingwei; Yuan, Minglong

    2014-01-01

    Cathelicidin-BF-30 (BF-30), a water-soluble peptide isolated from the snake venom of Bungarus fasciatus containing 30 amino acid residues, was incorporated in poly(D,L-lactide-co-glycolide) (PLGA) 75∶25 microspheres (MS) prepared by a water in oil in water W/O/W emulsification solvent extraction method. The aim of this work was to investigate the stability of BF-30 after encapsulation. D-trehalose was used as an excipient to stabilize the peptide. The MS obtained were mostly under 2 µm in size and the encapsulation efficiency was 88.50±1.29%. The secondary structure of the peptide released in vitro was determined to be nearly the same as the native peptide using Circular Dichroism (CD). The ability of BF-30 to inhibit the growth of Escherichia coli was also maintained. The cellular relative growth and hemolysis rates were 92.16±3.55% and 3.52±0.45% respectively. PMID:24963652

  11. Radiosterilisation of indomethacin PLGA/PEG-derivative microspheres: protective effects of low temperature during gamma-irradiation.

    PubMed

    Fernández-Carballido, Ana; Puebla, Patricia; Herrero-Vanrell, Rocío; Pastoriza, Pilar

    2006-04-26

    Currently, gamma-irradiation seems to be a good method for sterilising drug delivery systems made from biodegradable polymers. The gamma-irradiation of microspheres can cause several physicochemical changes in the polymeric matrix. These modifications are affected by the temperature, irradiation dose and nature of the encapsulated drug and additives. This study has aimed to evaluate the influence of temperature during the sterilisation process by gamma irradiation in indomethacin PLGA microspheres including a PEG-derivative. Microspheres were prepared by the solvent evaporation method from o/w emulsion and were then exposed to gamma-irradiation. A dose of 25 kGy was used to ensure effective sterilisation. Some microspheres were sterilised with dry ice protection that guaranteed a low temperature during the process whilst others were sterilised without such dry ice protection. The effects of gamma-irradiation on the characteristics of non-loaded PLGA/PEG-derivative and indomethacin loaded PLGA/PEG-derivative microspheres with and without protection were studied. Non-protected microspheres showed changes in their morphological surface, polymer glass transition temperature, molecular weight and release rate of indomethacin after sterilisation. However, microspheres sterilised with protection did not show significant differences after gamma-irradiation exposure. The sterilisation method was satisfactory when the indomethacin loaded microspheres including a PEG-derivative were exposed to gamma-irradiation at low temperature.

  12. Celecoxib-loaded PLGA/cyclodextrin microspheres: characterization and evaluation of anti-inflammatory activity on human chondrocyte cultures.

    PubMed

    Cannavà, Carmela; Tommasini, Silvana; Stancanelli, Rosanna; Cardile, Venera; Cilurzo, Felisa; Giannone, Ignazio; Puglisi, Giovanni; Ventura, Cinzia Anna

    2013-11-01

    PLGA microspheres were prepared as a sustained release system for the intra-articular administration of celecoxib (CCB). The microspheres were prepared in the presence of different concentrations of dimethyl-β-cyclodextrin (DM-β-Cyd), by the simple oil-in-water emulsion/evaporation solvent method. The microspheres were evaluated as to surface morphology, size and technological properties (such as encapsulation efficiency, drug loading capacity and drug release). Ex vivo studies on cultures of human chondrocytes were performed in order to evaluate the influence of the polymeric carriers on the pharmacological activity of CCB. All systems ranged from about 1 to 5 μm in size and had a high encapsulation efficiency percentage ranging from about 80% to 90% (w/w), except for CCB-loaded-PLGA microspheres containing the highest amount of DM-β-Cyd, in which a dramatic drop in the encapsulation efficiency was observed (about 54%, w/w). FIB images evidenced the fact that the microspheres had a porous structure in the presence of the highest amount of DM-β-Cyd. The macrocycle modulated the release profiles of CCB from the microspheres, producing in some cases a zero-order kinetic release. Ex vivo biological studies demonstrated that DM-β-Cyd improved the drug's anti-inflammatory activity. Thus, CCB-loaded PLGA/cyclodextrin microspheres may have a potential therapeutic application in the treatment of osteo- and rheumatoid arthritis.

  13. Bioadhesive fluorescent microspheres as visible carriers for local delivery of drugs. II: Uptake of insulin-loaded PCEFB/PLGA microspheres by the gastrointestinal tract.

    PubMed

    Li, Y; Jiang, H L; Jin, J F; Zhu, K J

    2004-01-01

    Uptake of novel inherently fluorescent microspheres composed of a luminescent polyanhydride, poly[p-(carboxyethylformamido)-benzoic anhydride] (PCEFB), and poly(lactide-co-glycolide) (PLGA) (2:1, weight ratio) by the gastrointestinal tract was evaluated by fluorescent microscopy. Oral efficiency of the incorporated insulin also was determined by measuring reduction of plasma glucose levels after feeding diabetic rats with a single dose of the microspheres. We found that PCEFB/PLGA microspheres could adhere to the intestinal epithelium and traverse the absorptive cells. A large number of the spheres were observed in spleen, whereas few were detected in liver within the evaluated period of time. Apparent reduction of the plasma glucose levels was observed over a span of 6 h postfeeding. The unique properties of the delivery system such as biodegradability, bioadhesivity, and inherently luminescent characteristics render it an ideal "visible" tracer for monitoring oral fate of polymeric microspheres. PMID:15736827

  14. Bioactivation of collagen matrices through sustained VEGF release from PLGA microspheres.

    PubMed

    Borselli, Cristina; Ungaro, Francesca; Oliviero, Olimpia; d'Angelo, Ivana; Quaglia, Fabiana; La Rotonda, Maria I; Netti, Paolo A

    2010-01-01

    The success of any tissue engineering implant relies upon prompt vascularization of the cellular construct and, hence, on the ability of the scaffold to broadcast specific activation of host endothelium and guide vessel ingrowth. Vascular endothelial growth factor (VEGF) is a potent angiogenic stimulator, and if released in a controlled manner it may enhance and guide scaffold vascularization. Therefore, the aim of this work was to realize a scaffold with integrated depots able to release VEGF in a controlled rate and assess the ability of this scaffold to promote angiogenesis. VEGF-loaded poly(lactide-co-glycolide) (PLGA) microspheres were produced and included in a collagen scaffold. The release of VEGF from microspheres was tailored to be sustained over several weeks and occurred at a rate of approximately 0.6 ng/day per mg of microspheres. It was found that collagen scaffolds bioactivated with VEGF-loaded microspheres strongly enhanced endothelial cell activation and vascular sprouting both in vitro and in vivo as compared with a collagen scaffold bioactivated with free VEGF. This report demonstrates that by finely tuning VEGF release rate within a polymeric scaffold, sprouting of angiogenic vessels can be guided within the scaffolds interstices as well as broadcasted from the host tissues. PMID:19165799

  15. Magnetic field activated drug release system based on magnetic PLGA microspheres for chemo-thermal therapy.

    PubMed

    Fang, Kun; Song, Lina; Gu, Zhuxiao; Yang, Fang; Zhang, Yu; Gu, Ning

    2015-12-01

    Controlled drug delivery systems have been extensively investigated for cancer therapy in order to obtain better specific targeting and therapeutic efficiency. Herein, we developed doxorubicin-loaded magnetic PLGA microspheres (DOX-MMS), in which DOX was encapsulated in the core and high contents (28.3 wt%) of γ-Fe2O3 nanoparticles (IOs) were electrostatically assembled on the surface of microsphere to ensure the high sensitivity to response of an external alternating current magnetic field (ACMF). The IOs in PLGA shell can both induce the heat effect and trigger shell permeability enhancement to release drugs when DOX-MMs was activated by ACMF. Results show that the cumulative drug release from DOX-MMs exposed to ACMF for 30 min (21.6%) was significantly higher (approximately 7 times higher) than that not exposed to ACMF (2.8%). The combination of hyperthermia and enhanced DOX release from DOX-MMS is beneficial for in vitro 4T1 breast cancer cell apoptosis as well as effective inhibition of tumor growth in 4T1 tumor xenografts. Therefore, the DOX-MMS can be optimized as powerful delivery system for efficient magnetic responsive drug release and chemo-thermal therapy.

  16. Bone regeneration using a freeze-dried 3D gradient-structured scaffold incorporating OIC-A006-loaded PLGA microspheres based on β-TCP/PLGA.

    PubMed

    Lin, Liulan; Gao, Haitao; Dong, Yangyang

    2015-01-01

    To reveal the latent capacity of the growth factor-like low-molecular-weight material OIC-A006 in tissue regeneration, it is essential to design a porous scaffold in order to concurrently accommodate cells and drug release in a controlled manner. Consequently, we fabricated poly (L-lactide-co-glycolide) (PLGA)-based microspheres with an OIC-A006-loaded gradient-structured β-TCP/PLGA scaffold by freeze-drying which could then be used for drug delivery and bone regeneration. The OIC-A006-loaded β-TCP/PLGA scaffold consisted of two parts which loaded different doses of OIC-A006 (6.25 μM, outside; 12.5 μM, inside). The porosity, compressive strength, SEM, degradation, and cumulative amount of drug release in vitro were characterized. Furthermore, we confirmed the incorporation of OIC-A006 into the PLGA-based microspheres within the scaffolds using UV-spectrophotometry, and the amount of drug remaining in the scaffold was maintained by 10 % for up to 28 days. The drug release was slower in the normal-structured drug-loaded scaffold. The OIC-A006 released action from the OIC-A006-loaded β-TCP/PLGA scaffold with ideal therapeutic prospects in tissue regeneration. In vitro cell culture results showed that this gradient-structured composite scaffold can induce the adhesion and proliferation of rat bone marrow stromal cells towards osteoblasts. These results showed that the newly developed OIC-A006-loaded scaffolds with gradient structure can be potentially applied to bone regeneration in clinical applications. PMID:25577209

  17. Cationic poly(lactic-co-glycolic acid) iron oxide microspheres for nucleic acid detection

    NASA Astrophysics Data System (ADS)

    Pandey, Chandra Mouli; Sharma, Aditya; Sumana, Gajjala; Tiwari, Ida; Malhotra, Bansi Dhar

    2013-04-01

    Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (ks) of 61.73 s-1. Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10-14 M and is found to retain about 81% of the initial activity after 9 cycles of use.Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the

  18. Liraglutide-loaded poly(lactic-co-glycolic acid) microspheres: Preparation and in vivo evaluation.

    PubMed

    Wu, Junzi; Williams, Gareth R; Branford-White, Christopher; Li, Heyu; Li, Yan; Zhu, Li-Min

    2016-09-20

    In this work, we sought to generate sustained-release injectable microspheres loaded with the GLP-1 analogue liraglutide. Using water-in-oil-in-water double emulsion methods, poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with liraglutide were prepared. The microspheres gave sustained drug release over 30days, with cumulative release of up to 90% reached in vitro. The microspheres were further studied in a rat model of diabetes, and their performance compared with a group given daily liraglutide injections. Reduced blood sugar levels were seen in the microsphere treatment groups, with the results being similar to those obtained with conventional injections between 10 and 25days after the commencement of treatment. After 5 and 30days of treatment, the microspheres seem a little slower to act than the injections. The pathology of the rats' spleen, heart, kidney and lungs was probed after the 30-day treatment period, and the results indicated that the microspheres were safe and had beneficial effects on the liver, reducing the occurrence of fatty deposits seen in untreated diabetic rats. Moreover, in terms of liver, renal and cardiac functions, and blood lipid and antioxidant levels, the microspheres were as effective as the injections. The expression of several proteases linked to the metabolism of aliphatic acids and homocysteine was promoted by the microsphere formulations. Inflammatory markers in the microsphere treatment groups were somewhat higher than the injection group, however. The liraglutide/PLGA microspheres prepared in this work are overall shown to be efficacious in a rat model of diabetes, and we thus believe they have strong potential for clinical use.

  19. A novel and simple preparative method for uniform-sized PLGA microspheres: Preliminary application in antitubercular drug delivery.

    PubMed

    Liu, Zhiqiang; Li, Xia; Xiu, Bingshui; Duan, Cuimi; Li, Jiangxue; Zhang, Xuhui; Yang, Xiqin; Dai, Wenhao; Johnson, Heather; Zhang, Heqiu; Feng, Xiaoyan

    2016-09-01

    Particle size has been demonstrated as a key parameter influencing the phagocytosis of drug-loaded PLGA microspheres (MS) by the target cells. However, the current preparative methods were either insufficient in controlling the homogeneity of the produced MS, or requires sophisticated and costly equipment. This study aimed to explore a simple and economical method for uniform PLGA MS preparation. Based on the heterogeneous emulsification of routine mechanical stirring, we designed an adjuvant strategy to enhance the homogeneity of MS. By using glass beads as adjutant, the dispersion produced during mechanical stirring was much more homogeneous in the solution. The particles produced were much smaller and the size distribution was much narrower as compared with those produced using the routine mechanical stirring method under the same condition. After enrichment by selective centrifugation, about 60% of the particles of similar size were obtained, providing further evidence for the efficiency of the novel method in controlling particle homogeneity. Further, the method was applied to prepare rifampicin-loaded PLGA MS of the optimized size for macrophage uptake. The functional evaluation showed that the prepared PLGA MS could efficiently deliver an antitubercular drug into macrophages and maintain a higher intracellular concentration by controlled release, suggesting the potential application of the method in PLGA MS-based drug delivery. Collectively, the study provided a simple and economical method for preparing uniform-sized PLGA MS with potential of widespread applications. PMID:27289309

  20. The pharmacokinetics and pharmacodynamics of lidocaine- loaded biodegradable poly(lactic-co-glycolic acid) microspheres.

    PubMed

    Liu, Jianming; Lv, Xin

    2014-01-01

    The purpose of this study was to develop novel lidocaine microspheres. Microspheres were prepared by the oil-in-water (o/w) emulsion technique using poly(D,L-lactide-co-glycolide acid) (PLGA) for the controlled delivery of lidocaine. The average diameter of lidocaine PLGA microspheres was 2.34±0.3 μm. The poly disperse index was 0.21±0.03, and the zeta potential was +0.34±0.02 mV. The encapsulation efficiency and drug loading of the prepared microspheres were 90.5%±4.3% and 11.2%±1.4%. In vitro release indicated that the lidocaine microspheres had a well-sustained release efficacy, and in vivo studies showed that the area under the curve of lidocaine in microspheres was 2.02-2.06-fold that of lidocaine injection (p<0.05). The pharmacodynamics results showed that lidocaine microspheres showed a significant release effect in rats, that the process to achieve efficacy was calm and lasting and that the analgesic effect had a significant dose-dependency.

  1. Stabilization and immune response of HBsAg encapsulated within poly(lactic-co-glycolic acid) microspheres using HSA as a stabilizer.

    PubMed

    Xu, Wenjuan; He, Jintian; Wu, Guanghao; Xiong, Fangfang; Du, Huijuan; Wang, Gaizhen

    2015-12-30

    The aim of this study was to prepare poly(lactic-co-glycolic acid) (PLGA) microspheres containing hepatitis B virus surface antigen (HBsAg) using human serum albumin (HSA) as a stabilizer. Lyophilization and emulsification of HBsAg solution with dichloromethane caused a considerable loss of HBsAg antigenicity. Thus, the effects of HSA and trehalose on HBsAg recovery during lyophilization and emulsification were investigated. Adding HSA to HBsAg solutions significantly improved antigen recovery to >90% during lyophilization and emulsification. The effects of co-encapsulated HSA on the characteristics of the PLGA microspheres and stability of HBsAg released from the microspheres were also investigated. The in vitro release test showed that HBsAg was released from the PLGA microspheres continuously over seventy days. A large amount of released HBsAg was inactive without co-encapsulation of HSA. On the contrary, with HSA co-encapsulation, the released HBsAg retained approximately 90% of its antigenicity. The single injection of the HBsAg-HSA-loaded PLGA microspheres in rats resulted in higher anti-HBsAg IgG and Th1 cytokine levels than the single injection of the HBsAg-loaded microspheres or two injections of the conventional aluminum-adjuvanted HBsAg vaccine. Based on these findings, the HBsAg-HSA-loaded PLGA microspheres could be an effective carrier for HBsAg and form a promising depot system.

  2. Controllable promotion of chondrocyte adhesion and growth on PVA hydrogels by controlled release of TGF-β1 from porous PLGA microspheres.

    PubMed

    Nie, Lei; Zhang, Guohua; Hou, Ruixia; Xu, Haiping; Li, Yaping; Fu, Jun

    2015-01-01

    Poly(vinyl alcohol) (PVA) hydrogels have been candidate materials for cartilage tissue engineering. However, the cell non-adhesive nature of PVA hydrogels has been a limit. In this paper, the cell adhesion and growth on PVA hydrogels were promoted by compositing with transform growth factor-β1 (TGF-β1) loaded porous poly(D,L-lactide-co-glycolide) (PLGA) microspheres. The porous microspheres were fabricated by a modified double emulsion method with bovine serum albumin (BSA) as porogen. The average pore size of microspheres was manipulated by changing the BSA/PLGA ratio. Such controllable porous structures effectively influenced the encapsulation efficiency (Eencaps) and release profile of TGF-β1. By compositing PVA hydrogels with such TGF-β1-loaded PLGA microspheres, chondrocyte adhesion and proliferation were significantly promoted in a controllable manner, as confirmed by fluorescent imaging and quantitative CCK-8 assay. That is, the chondrocyte proliferation was favored by using PLGA microspheres with high Eencaps of TGF-β1 or by increasing the PLGA microsphere content in the hydrogels. These results demonstrated a facile method to improve the cell adhesion and growth on the intrinsically cell non-adhesive PVA hydrogels, which may find applications in cartilage substitution.

  3. Stem cell differentiation-related protein-loaded PLGA microspheres as a novel platform micro-typed scaffold for chondrogenesis.

    PubMed

    Park, Ji Sun; Lim, Hye-Jin; Yi, Se Won; Park, Keun-Hong

    2016-01-01

    During cell differentiation for tissue regeneration, several factors, including growth factors and proteins, influence cascades in stem cells such as embryonic stem cells and mesenchymal stem cells (MSCs). In this study, transforming growth factor (TGF)-β3 and SOX9, which is an important protein in chondrocytes, were used to generate mature chondrocytes from human MSCs (hMSCs). For safe and effective delivery of bioactive molecules into hMSCs, biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) microspheres (MSs) were coated with TGF-β3 and loaded with SOX9. Instead of SOX9 protein, release of the model protein FITC-bovine serum albumin (BSA) from PLGA MS was evaluated in vitro and in vivo by confocal laser microscopy and Kodak imaging. The bioactivities of TGF-β3 and SOX9 were evaluated by assessing α-helical formation using circular dichroism. PLGA MS loaded with FITC-BSA easily entered hMSCs without causing cytotoxicity. To confirm that internalization of PLGA MSs harboring TGF-β3 and SOX9 induced chondrogenesis of hMSCs, we performed several molecular analyses. By analysis, the specific marker gene expression levels in hMSCs adhered onto PLGA MSs coated with TGF-β3 and loaded with SOX9 were more than 3-5 times that of the control group both in vitro and in vivo. This result revealed that PLGA MS uptake and subsequent release of SOX9 induced chondrogenesis of hMSCs was enhanced by coating PLGA MSs with TGF-β3. PMID:27586647

  4. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: State-of-the-art and challenges.

    PubMed

    Ramazani, Farshad; Chen, Weiluan; van Nostrum, Cornelis F; Storm, Gert; Kiessling, Fabian; Lammers, Twan; Hennink, Wim E; Kok, Robbert J

    2016-02-29

    Poly(lactide-co-glycolide) (PLGA) microspheres are efficient delivery systems for controlled release of low molecular weight drugs as well as therapeutic macromolecules. The most common microencapsulation methods are based on emulsification procedures, in which emulsified droplets of polymer and drug solidify into microspheres when the solvent is extracted from the polymeric phase. Although high encapsulation efficiencies have been reported for hydrophobic small molecules, encapsulation of hydrophilic and/or amphiphilic small molecules is challenging due to the partitioning of drug from the polymeric phase into the external phase before solidification of the particles. This review addresses formulation-related aspects for efficient encapsulation of small hydrophilic/amphiphilic molecules into PLGA microspheres using conventional emulsification methods (e.g., oil/water, water/oil/water, solid/oil/water, water/oil/oil) and highlights novel emulsification technologies such as microfluidics, membrane emulsification and other techniques including spray drying and inkjet printing. Collectively, these novel microencapsulation technologies afford production of this type of drug loaded microspheres in a robust and well controlled manner. PMID:26795193

  5. A mesoporous silicon/poly-(DL-lactic-co-glycolic) acid microsphere for long time anti-tuberculosis drug delivery.

    PubMed

    Xu, Weikang; Wei, Xinmiao; Wei, Kun; Cao, Xiaodong; Zhong, Shizhen

    2014-12-10

    In this study, drug delivery systems for controlling release of hydrophobic anti-tuberculosis (TB) drug-rifampicin (RIF) or hydrophilic anti-TB drug-isoniazid (INH) from mesoporous silica (MS) were fabricated. The drug was first filled into the mesopores of MS particles, and then the drug-laden MS constructs were incorporated into the bulk of poly-(DL-lactic-co-glycolic) acid (PLGA) microspheres. In comparison with mono-component construct (drug-laden MS and drug-laden PLGA), this multi-component system significantly improved the release time of RIF and INH. For drug-laden MS, about 100% INH was released after 15 h, and about 70% RIF was released after 50 h. For drug-laden PLGA, about 100% INH and RIF were released after 30 and 40 days, respectively. After 60 days, the total RIF and INH release from MS/PLGA had only reached around only 48% and 57%, respectively. This MS/PLGA system could significantly prolong RIF or INH release compared to MS and PLGA. CCK-8 assay demonstrated that this MS/PLGA system had no cytotoxicity. And there has not been study of documenting the controlled release of anti-TB drugs such as RIF or INH from MS/PLGA. Considering the long time release of RIF and INH from MS/PLGA, a new door to bone TB would be opened.

  6. [Studies on preparation by SPG membrane emulsification method and in vitro characterization of tetradrine-tashionone II(A)-PLGA composite microspheres].

    PubMed

    Lu, Jin; Zhang, Meng; Zhu, Hua-xu; Guo, Li-wei; Pan, Lin-mei; Fu, Ting-ming

    2015-03-01

    Tetradrine-tashionone II(A)-PLGA composite microspheres were prepared by the SPG membrane emulsification method, and the characterization of tetradrine-tashionone II(A) -PLGA composite microspheres were studied in this experiment. The results of IR, DSC and XRD showed that teradrine and tashionone II(A) in composite microspheres were highly dispersed in the PLGA with amorphous form. The results of tetradrine-tashionone II(A) -PLGA composite microspheres in vitro release experiment showed that the cumulative release amounts of tetradrine and tashionone II(A) were 6.44% and 3.60% in 24 h, and the cumulative release amounts of tetradrine and tashionone II(A) were 89.02% and 21.24% in 17 d. The process of drug in vitro release accorded with the model of Riger-Peppas. Tetradrine-tashionone II(A) -PLGA composite microspheres had slow-release effect, and it could significantly reduce the burst release, prolong the therapeutic time, decrease the dosage of drugs and provide a new idea and method to prepare traditional Chinese medicine compound. PMID:26226751

  7. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.

    PubMed

    Rong, Zi-Jie; Yang, Lian-Jun; Cai, Bao-Ta; Zhu, Li-Xin; Cao, Yan-Lin; Wu, Guo-Feng; Zhang, Zan-Jie

    2016-05-01

    To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic

  8. Porous nano-hydroxyapatite/collagen scaffold containing drug-loaded ADM-PLGA microspheres for bone cancer treatment.

    PubMed

    Rong, Zi-Jie; Yang, Lian-Jun; Cai, Bao-Ta; Zhu, Li-Xin; Cao, Yan-Lin; Wu, Guo-Feng; Zhang, Zan-Jie

    2016-05-01

    To develop adriamycin (ADM)-encapsulated poly(lactic-co-glycolic acid) (PLGA) nanoparticles in a porous nano-hydroxyapatite/collagen scaffold (ADM-PLGA-NHAC). To provide novel strategies for future treatment of osteosarcoma, the properties of the scaffold, including its in vitro extended-release properties, the inhibition effects of ADM-PLGA-NHAC on the osteosarcoma MG63 cells, and its bone repair capacity, were investigated in vivo and in vitro. The PLGA copolymer was utilized as a drug carrier to deliver ADM-PLGA nanoparticles (ADM-PLGA-NP). Porous nano-hydroxyapatite and collagen were used to materials to produce the porous nano-hydroxyapatite/collagen scaffold (NHAC), into which the ADM-PLGA-NP was loaded. The performance of the drug-carrying scaffold was assessed using multiple techniques, including scanning electron microscopy and in vitro extended release. The antineoplastic activities of scaffold extracts on the human osteosarcoma MG63 cell line were evaluated in vitro using the cell counting kit-8 (CCK8) method and live-dead cell staining. The bone repair ability of the scaffold was assessed based on the establishment of a femoral condyle defect model in rabbits. ADM-PLGA-NHAC and NHAC were implanted into the rat muscle bag for immune response experiments. A tumor-bearing nude mice model was created, and the TUNEL and HE staining results were observed under optical microscopy to evaluate the antineoplastic activity and toxic side effects of the scaffold. The composite scaffold demonstrated extraordinary extended-release properties, and its extracts also exhibited significant inhibition of the growth of osteosarcoma MG63 cells. In the bone repair experiment, no significant difference was observed between ADM-PLGA-NHAC and NHAC by itself. In the immune response experiments, ADM-PLGA-NHAC exhibited remarkable biocompatibility. The in vivo antitumor experiment revealed that the implantation of ADM-PLGA-NHAC in the tumor resulted in a improved antineoplastic

  9. Porous PLGA microspheres tailored for dual delivery of biomolecules via layer-by-layer assembly.

    PubMed

    Go, Dewi P; Palmer, Jason A; Mitchell, Geraldine M; Gras, Sally L; O'Connor, Andrea J

    2015-05-01

    Tissue engineering is a complex and dynamic process that requires varied biomolecular cues to promote optimal tissue growth. Consequently, the development of delivery systems capable of sequestering more than one biomolecule with controllable release profiles is a key step in the advancement of this field. This study develops multilayered polyelectrolyte films incorporating alpha-melanocyte stimulating hormone (α-MSH), an anti-inflammatory molecule, and basic fibroblast growth factor (bFGF). The layers were successfully formed on macroporous poly lactic-co-glycolic acid microspheres produced using a combined inkjet and thermally induced phase separation technique. Release profiles could be varied by altering layer properties including the number of layers and concentrations of layering molecules. α-MSH and bFGF were released in a sustained manner and the bioactivity of α-MSH was shown to be preserved using an activated macrophage cell assay in vitro. The system performance was also tested in vivo subcutaneously in rats. The multilayered microspheres reduced the inflammatory response induced by a carrageenan stimulus 6 weeks after implantation compared to the non-layered microspheres without the anti-inflammatory and growth factors, demonstrating the potential of such multilayered constructs for the controlled delivery of bioactive molecules.

  10. Protective effect of recombinant staphylococcal enterotoxin A entrapped in polylactic-co-glycolic acid microspheres against Staphylococcus aureus infection.

    PubMed

    Chen, Liben; Li, Shuang; Wang, Zhengfang; Chang, Ruilong; Su, Jingliang; Han, Bo

    2012-03-19

    Staphylococcus aureus is an important cause of nosocomial and community-acquired infections in humans and animals, as well as the cause of mastitis in dairy cattle. Vaccines aimed at preventing S. aureus infection in bovine mastitis have been studied for many years, but have so far been unsuccessful due to the complexity of the bacteria, and the lack of suitable vaccine delivery vehicles. The current study developed an Escherichia coli protein expression system that produced a recombinant staphylococcal enterotoxin A (rSEA) encapsulated into biodegradable microparticles generated by polylactic-co-glycolic acid (PLGA) dissolved in methylene chloride and stabilized with polyvinyl acetate. Antigen loading and surface properties of the microparticles were investigated to optimize particle preparation protocols. The prepared PLGA-rSEA microspheres had a diameter of approximately 5 μm with a smooth and regular surface. The immunogenicity of the PLGA-rSEA vaccine was assessed using mice as an animal model and showed that the vaccine induced a strong humoral immune response and increased the percent survival of challenged mice and bacterial clearance. Histological analysis showed moderate impairment caused by the pathogen upon challenge afforded by immunization with PLGA-rSEA microspheres. Antibody titer in the sera of mice immunized with PLGA-rSEA microparticles was higher than in vaccinated mice with rSEA. In conclusion, the PLGA-rSEA microparticle vaccine developed here could potentially be used as a vaccine against enterotoxigenic S. aureus.

  11. PEG-derivative effectively modifies the characteristics of indomethacin-PLGA microspheres destined to intra-articular administration.

    PubMed

    Puebla, Patricia; Pastoriza, Pilar; Barcia, Emilia; Fernández-Carballido, Ana

    2005-11-01

    The aim of this study was to obtain biodegradable indomethacin microspheres for intra-articular administration in rheumatoid arthritis, where angiogenic processes are involved. Indomethacin concentrations to achieve an anti-angiogenic effect would be five-times higher than an anti-inflammatory. Microspheres were prepared by solvent evaporation using PLGA. Indomethacin is a poor water-soluble drug with it being possible that dissolved and non-dissolved drug co-exist within the polymeric matrix resulting in rapid release. To control this release, an oil-PEG-derivative was incorporated, producing changes in morphology, crystallinity and indomethacin release. To minimize the amount of microspheres administered, a two-factor five-level central rotable composite 2(2)+star design was employed with two independent variables: indomethacin percentage and PEG-derivative percentage. The optimum formulation showed mean encapsulation efficiency of 94.3+/-2.2% and released 7.99+/-0.25 microg indomethacin/day/mg microspheres for 21 days. A dose of 20-50 mg of this formulation could be appropriate to achieve both anti-angiogenic and anti-inflammatory effects. Preliminary cytotoxicity studies performed in rat splenocytes showed an adequate cell viability.

  12. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect.

  13. Multifunctional PLGA particles containing poly(l-glutamic acid)-capped silver nanoparticles and ascorbic acid with simultaneous antioxidative and prolonged antimicrobial activity.

    PubMed

    Stevanović, Magdalena; Bračko, Ines; Milenković, Marina; Filipović, Nenad; Nunić, Jana; Filipič, Metka; Uskoković, Dragan P

    2014-01-01

    A water-soluble antioxidant (ascorbic acid, vitamin C) was encapsulated together with poly(l-glutamic acid)-capped silver nanoparticles (AgNpPGA) within a poly(lactide-co-glycolide) (PLGA) polymeric matrix and their synergistic effects were studied. The PLGA/AgNpPGA/ascorbic acid particles synthesized by a physicochemical method with solvent/non-solvent systems are spherical, have a mean diameter of 775 nm and a narrow size distribution with a polydispersity index of 0.158. The encapsulation efficiency of AgNpPGA/ascorbic acid within PLGA was determined to be >90%. The entire amount of encapsulated ascorbic acid was released in 68 days, and the entire amount of AgNpPGAs was released in 87 days of degradation. The influence of PLGA/AgNpPGA/ascorbic acid on cell viability, generation of reactive oxygen species (ROS) in HepG2 cells, as well as antimicrobial activity against seven different pathogens was investigated. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated good biocompatibility of these PLGA/AgNpPGA/ascorbic acid particles. We measured the kinetics of ROS formation in HepG2 cells by a DCFH-DA assay, and found that PLGA/AgNpPGA/ascorbic acid caused a significant decrease in DCF fluorescence intensity, which was 2-fold lower than that in control cells after a 5h exposure. This indicates that the PLGA/AgNpPGA/ascorbic acid microspheres either act as scavengers of intracellular ROS and/or reduce their formation. Also, the results of antimicrobial activity of PLGA/AgNpPGA/ascorbic acid obtained by the broth microdilution method showed superior and extended activity of these particles. The samples were characterized using Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, zeta potential and particle size analysis. This paper presents a new approach to the treatment of infection that at the same time offers a very pronounced antioxidant effect. PMID:23988864

  14. Characterization of the release profile of doxycycline by PLGA microspheres adjunct to non-surgical periodontal therapy.

    PubMed

    Moura, Lucas Alves; Ribeiro, Fernanda Vieira; Aiello, Talita Bianchi; Duek, Eliana Ap De Rezende; Sallum, Enilson Antonio; Nociti Junior, Francisco Humberto; Casati, Márcio Zaffalon; Sallum, Antonio Wilson

    2015-01-01

    The aim of this pilot study was to assess the release of locally delivered doxycycline by poly (l-lactide-co-glycolide) (PLGA) microspheres in the periodontal pocket of patients with chronic periodontitis, treated by non-surgical periodontal therapy. Nineteen sites of non-adjacent teeth of four different patients were evaluated. Five milligram of PLGA microspheres loaded with 16 doxycycline hyclate (DOX) was administered per periodontal site. To quantify DOX released into the periodontal pocket, gingival crevicular fluid (GCF) was collected from the sites on days 2, 5, 7, 10, 15, and 20 after DOX application, and high-performance liquid chromatography was performed. Data were statistically assessed by ANOVA/Tukey test. At days 2, 5, and 7, the DOX concentration was stably sustained (23.33 ± 1.38, 23.4 ± 1.82, and 22.75 ± 1.33 μg/mL, respectively), with no significant differences over these assessment times (p > 0.05). At days 10 and 15, a tendency was observed toward a decrease in DOX concentration (21.74 ± 0.91 and 20.53 ± 4.88 μg/mL, respectively), but a significant decrease in GCF drug concentration (19.69 ± 4.70 μg/mL) was observed only on day 20. The DOX delivery system developed demonstrated a successful sustained release after local administration, as an adjunct to non-surgical periodontal therapy. PMID:25917501

  15. β-methasone-containing biodegradable poly(lactide-co-glycolide) acid microspheres for intraarticular injection: effect of formulation parameters on characteristics and in vitro release.

    PubMed

    Song, Xia; Song, San-Kong; Zhao, Pei; Wei, Li-Ming; Jiao, Hai-Sheng

    2013-01-01

    A sustained drug release system based on the injectable poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with β-methasone was prepared for localized treatment of rheumatic arthritis. The microscopy and structure of microspheres were characterized by scanning electron microscope (SEM) and Fourier transform infrared (FTIR). The effects of various formulation parameters on the properties of microspheres and in vitro release pattern of β-methasone were also investigated. The results demonstrated that increase in drug/polymer ratio led to increased particle size as well as drug release rate. Increase in PLGA concentration led to increased particle size, but decreased burst release. The drug encapsulation efficiency increased sharply by increasing polyvinyl alcohol (PVA) concentration in the aqueous phase from 1.5 to 2.0%. β-methasone release rate decreased considerately with decreasing OP (organic phase)/AP (aqueous phase) volume ratio. Stirring rate had significantly influence on the particle size and encapsulation efficiency. Independent of formulation parameters, β-methasone was slowly released from the PLGA microspheres over 11 days. The drug release profile of high drug loaded microspheres agree with Higuchi equation with a release mechanism of diffusion and erosion, that of middle drug loaded microspheres best agreed with Hixcon-Crowell equation and controlled by diffusion and erosion as well. The low drug loaded microspheres well fitted to logarithm normal distribution equation with mechanism of purely Fickian diffusion.

  16. Synergistic Effect of Mesoporous Silica and Hydroxyapatite in Loaded Poly(DL-lactic-co-glycolic acid) Microspheres on the Regeneration of Bone Defects.

    PubMed

    He, Shu; Lin, Kai-Feng; Fan, Jun-Jun; Hu, Gang; Dong, Xin; Zhao, Yi-Nan; Song, Yue; Guo, Zhong-Shang; Bi, Long; Liu, Jian

    2016-01-01

    A microsphere composite made of poly(DL-lactic-co-glycolic acid) (PLGA), mesoporous silica nanoparticle (MSN), and nanohydroxyapatite (nHA) (PLGA-MSN/nHA) was prepared and evaluated as bone tissue engineering materials. The objective of this study was to investigate the synergistic effect of MSN/nHA on biocompatibility as well as its potential ability for bone formation. First, we found that this PLGA-MSN/nHA composite performed good characteristics on microstructure, mechanical strength, and wettability. By cell culture experiments, the adhesion and proliferation rate of the cells seeded on PLGA-MSN/nHA composite was higher than those of the controls and high levels of osteogenetic factors such as ALP and Runx-2 were detected by reverse transcriptase polymerase chain reaction. Finally, this PLGA-MSN/nHA composite was implanted into the femur bone defect in a rabbit model, and its ability to induce bone regeneration was observed by histological examinations. Twelve weeks after implantation, the bone defects had significantly more formation of mature bone and less residual materials than in the controls. These results demonstrate that this PLGA-MSN/nHA composite, introducing both MSN and nHA into PLGA microspheres, can improve the biocompatibility and osteoinductivity of composite in vitro and in vivo and had potential application in bone regeneration.

  17. Synergistic Effect of Mesoporous Silica and Hydroxyapatite in Loaded Poly(DL-lactic-co-glycolic acid) Microspheres on the Regeneration of Bone Defects

    PubMed Central

    Lin, Kai-Feng; Fan, Jun-Jun; Hu, Gang; Dong, Xin; Zhao, Yi-Nan; Song, Yue; Guo, Zhong-Shang

    2016-01-01

    A microsphere composite made of poly(DL-lactic-co-glycolic acid) (PLGA), mesoporous silica nanoparticle (MSN), and nanohydroxyapatite (nHA) (PLGA-MSN/nHA) was prepared and evaluated as bone tissue engineering materials. The objective of this study was to investigate the synergistic effect of MSN/nHA on biocompatibility as well as its potential ability for bone formation. First, we found that this PLGA-MSN/nHA composite performed good characteristics on microstructure, mechanical strength, and wettability. By cell culture experiments, the adhesion and proliferation rate of the cells seeded on PLGA-MSN/nHA composite was higher than those of the controls and high levels of osteogenetic factors such as ALP and Runx-2 were detected by reverse transcriptase polymerase chain reaction. Finally, this PLGA-MSN/nHA composite was implanted into the femur bone defect in a rabbit model, and its ability to induce bone regeneration was observed by histological examinations. Twelve weeks after implantation, the bone defects had significantly more formation of mature bone and less residual materials than in the controls. These results demonstrate that this PLGA-MSN/nHA composite, introducing both MSN and nHA into PLGA microspheres, can improve the biocompatibility and osteoinductivity of composite in vitro and in vivo and had potential application in bone regeneration. PMID:27652269

  18. Synergistic Effect of Mesoporous Silica and Hydroxyapatite in Loaded Poly(DL-lactic-co-glycolic acid) Microspheres on the Regeneration of Bone Defects.

    PubMed

    He, Shu; Lin, Kai-Feng; Fan, Jun-Jun; Hu, Gang; Dong, Xin; Zhao, Yi-Nan; Song, Yue; Guo, Zhong-Shang; Bi, Long; Liu, Jian

    2016-01-01

    A microsphere composite made of poly(DL-lactic-co-glycolic acid) (PLGA), mesoporous silica nanoparticle (MSN), and nanohydroxyapatite (nHA) (PLGA-MSN/nHA) was prepared and evaluated as bone tissue engineering materials. The objective of this study was to investigate the synergistic effect of MSN/nHA on biocompatibility as well as its potential ability for bone formation. First, we found that this PLGA-MSN/nHA composite performed good characteristics on microstructure, mechanical strength, and wettability. By cell culture experiments, the adhesion and proliferation rate of the cells seeded on PLGA-MSN/nHA composite was higher than those of the controls and high levels of osteogenetic factors such as ALP and Runx-2 were detected by reverse transcriptase polymerase chain reaction. Finally, this PLGA-MSN/nHA composite was implanted into the femur bone defect in a rabbit model, and its ability to induce bone regeneration was observed by histological examinations. Twelve weeks after implantation, the bone defects had significantly more formation of mature bone and less residual materials than in the controls. These results demonstrate that this PLGA-MSN/nHA composite, introducing both MSN and nHA into PLGA microspheres, can improve the biocompatibility and osteoinductivity of composite in vitro and in vivo and had potential application in bone regeneration. PMID:27652269

  19. Synergistic Effect of Mesoporous Silica and Hydroxyapatite in Loaded Poly(DL-lactic-co-glycolic acid) Microspheres on the Regeneration of Bone Defects

    PubMed Central

    Lin, Kai-Feng; Fan, Jun-Jun; Hu, Gang; Dong, Xin; Zhao, Yi-Nan; Song, Yue; Guo, Zhong-Shang

    2016-01-01

    A microsphere composite made of poly(DL-lactic-co-glycolic acid) (PLGA), mesoporous silica nanoparticle (MSN), and nanohydroxyapatite (nHA) (PLGA-MSN/nHA) was prepared and evaluated as bone tissue engineering materials. The objective of this study was to investigate the synergistic effect of MSN/nHA on biocompatibility as well as its potential ability for bone formation. First, we found that this PLGA-MSN/nHA composite performed good characteristics on microstructure, mechanical strength, and wettability. By cell culture experiments, the adhesion and proliferation rate of the cells seeded on PLGA-MSN/nHA composite was higher than those of the controls and high levels of osteogenetic factors such as ALP and Runx-2 were detected by reverse transcriptase polymerase chain reaction. Finally, this PLGA-MSN/nHA composite was implanted into the femur bone defect in a rabbit model, and its ability to induce bone regeneration was observed by histological examinations. Twelve weeks after implantation, the bone defects had significantly more formation of mature bone and less residual materials than in the controls. These results demonstrate that this PLGA-MSN/nHA composite, introducing both MSN and nHA into PLGA microspheres, can improve the biocompatibility and osteoinductivity of composite in vitro and in vivo and had potential application in bone regeneration.

  20. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles.

    PubMed

    Malinovskaja-Gomez, K; Labouta, H I; Schneider, M; Hirvonen, J; Laaksonen, T

    2016-06-30

    The objective of this study was to test in vitro a drug delivery system that combines nanoencapsulation and iontophoresis for the transdermal delivery of lipophilic model drug using poly(lactic-co-glycolic acid) (PLGA) as the carrier polymer. Negatively charged fluorescent nanoparticles loaded with negatively charged flufenamic acid were prepared. The colloidal properties of the particles were stable under iontophoretic current (constant, pulsed and alternating) profiles and in contact with skin barrier. The release of the drug from the particles was not affected by iontophoresis and remained always limited (≈50%), leading to significantly lower transdermal fluxes across human epidermis and full thickness porcine skin compared to respective free drug formulation. From nanoparticles, pulsed current profile resulted in comparable or higher fluxes compared to constant current profile although fluorescence imaging was not able to confirm deeper distribution of nanoparticles in skin. Based on our results, there is no clear advantage with respect to drug permeation from nanoencapsulating flufenamic acid into PLGA nanoparticles compared to free drug formulation, either in passive or iontophoretic delivery regimens. However, pulsed current iontophoresis could be an effective alternative instead of traditional constant current iontophoresis to enhance transdermal permeation of drugs from nanoencapsulated formulations.

  1. Transdermal iontophoresis of flufenamic acid loaded PLGA nanoparticles.

    PubMed

    Malinovskaja-Gomez, K; Labouta, H I; Schneider, M; Hirvonen, J; Laaksonen, T

    2016-06-30

    The objective of this study was to test in vitro a drug delivery system that combines nanoencapsulation and iontophoresis for the transdermal delivery of lipophilic model drug using poly(lactic-co-glycolic acid) (PLGA) as the carrier polymer. Negatively charged fluorescent nanoparticles loaded with negatively charged flufenamic acid were prepared. The colloidal properties of the particles were stable under iontophoretic current (constant, pulsed and alternating) profiles and in contact with skin barrier. The release of the drug from the particles was not affected by iontophoresis and remained always limited (≈50%), leading to significantly lower transdermal fluxes across human epidermis and full thickness porcine skin compared to respective free drug formulation. From nanoparticles, pulsed current profile resulted in comparable or higher fluxes compared to constant current profile although fluorescence imaging was not able to confirm deeper distribution of nanoparticles in skin. Based on our results, there is no clear advantage with respect to drug permeation from nanoencapsulating flufenamic acid into PLGA nanoparticles compared to free drug formulation, either in passive or iontophoretic delivery regimens. However, pulsed current iontophoresis could be an effective alternative instead of traditional constant current iontophoresis to enhance transdermal permeation of drugs from nanoencapsulated formulations. PMID:27131608

  2. Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease.

    PubMed

    Herrmann, Valerie L; Hartmayer, Carmen; Planz, Oliver; Groettrup, Marcus

    2015-10-28

    Current influenza virus vaccines aim to elicit antibodies directed toward viral surface glycoproteins, which however are prone to antigenic drift. Cytotoxic T lymphocytes (CTLs) can exhibit heterosubtypic immunity against most influenza A viruses. In our study, we encapsulated the highly conserved, immunodominant, HLA-A*0201 restricted epitope from the influenza virus matrix protein M158-66 together with TLR ligands in biodegradable poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Subcutaneous immunization of transgenic mice expressing chimeric HLA-A*0201 molecules with these microspheres induced a strong and sustained CTL response which sufficed to prevent replication of a recombinant vaccinia virus expressing the influenza A virus (IAV) matrix protein but not the replication of IAV in the lung. However, subcutaneous priming followed by intranasal boosting with M158-66 bearing PLGA microspheres was able to induce vigorous CTL responses both in the lung and spleen of mice which interfered with IAV replication, weight loss, and infection-related death. Taken together, vaccination with well-defined and highly conserved IAV-derived CTL epitopes encapsulated into clinically compatible PLGA microspheres contribute to the control of influenza A virus infections. The promptitude and broad reactivity of the CTL response may help to attenuate pandemic outbreaks of influenza viruses. PMID:26276509

  3. Cytotoxic T cell vaccination with PLGA microspheres interferes with influenza A virus replication in the lung and suppresses the infectious disease.

    PubMed

    Herrmann, Valerie L; Hartmayer, Carmen; Planz, Oliver; Groettrup, Marcus

    2015-10-28

    Current influenza virus vaccines aim to elicit antibodies directed toward viral surface glycoproteins, which however are prone to antigenic drift. Cytotoxic T lymphocytes (CTLs) can exhibit heterosubtypic immunity against most influenza A viruses. In our study, we encapsulated the highly conserved, immunodominant, HLA-A*0201 restricted epitope from the influenza virus matrix protein M158-66 together with TLR ligands in biodegradable poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Subcutaneous immunization of transgenic mice expressing chimeric HLA-A*0201 molecules with these microspheres induced a strong and sustained CTL response which sufficed to prevent replication of a recombinant vaccinia virus expressing the influenza A virus (IAV) matrix protein but not the replication of IAV in the lung. However, subcutaneous priming followed by intranasal boosting with M158-66 bearing PLGA microspheres was able to induce vigorous CTL responses both in the lung and spleen of mice which interfered with IAV replication, weight loss, and infection-related death. Taken together, vaccination with well-defined and highly conserved IAV-derived CTL epitopes encapsulated into clinically compatible PLGA microspheres contribute to the control of influenza A virus infections. The promptitude and broad reactivity of the CTL response may help to attenuate pandemic outbreaks of influenza viruses.

  4. On-demand one-step synthesis of monodisperse functional polymeric microspheres with droplet microfluidics.

    PubMed

    Yu, Xu; Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2015-04-01

    A simple and robust method for one-step synthesis of monodisperse functional polymeric microspheres was established by generation of reversed microemulsion droplets in aqueous phase inside microfluidic chips and controlled evaporation of the organic solvent. Using this method, water-soluble nanomaterials can be easily encapsulated into biodegradable Poly(D,L-lactic-co-glycolic acid) (PLGA) to form functional microspheres. By controlling the flow rate of microemulsion phase, PLGA polymeric microspheres with narrow size distribution and diameters in the range of ∼50-100 μm were obtained. As a demonstration of the versatility of the approach, high-quality fluorescent CdTe:Zn(2+) quantum dots (QDs) of various emission spectra, superparamagnetic Fe3O4 nanoparticles, and water-soluble carbon nanotubes (CNTs) were used to synthesize fluorescent PLGA@QDs, magnetic PLGA@Fe3O4, and PLGA@CNTs polymeric microspheres, respectively. In order to show specific applications, the PLGA@Fe3O4 were modified with polydopamine (PDA), and then the silver nanoparticles grew on the surfaces of the PLGA@Fe3O4@PDA polymeric microspheres by reducting the Ag(+) to Ag(0). The as-prepared PLGA@Fe3O4@PDA-Ag microspheres showed a highly efficient catalytic reduction of the 4-nitrophenol, a highly toxic substance. The monodisperse uniform functional PLGA polymeric microspheres can potentially be critically important for multiple biomedical applications.

  5. Engineering vascularized soft tissue flaps in an animal model using human adipose-derived stem cells and VEGF+PLGA/PEG microspheres on a collagen-chitosan scaffold with a flow-through vascular pedicle.

    PubMed

    Zhang, Qixu; Hubenak, Justin; Iyyanki, Tejaswi; Alred, Erik; Turza, Kristin C; Davis, Greg; Chang, Edward I; Branch-Brooks, Cynthia D; Beahm, Elisabeth K; Butler, Charles E

    2015-12-01

    Insufficient neovascularization is associated with high levels of resorption and necrosis in autologous and engineered fat grafts. We tested the hypothesis that incorporating angiogenic growth factor into a scaffold-stem cell construct and implanting this construct around a vascular pedicle improves neovascularization and adipogenesis for engineering soft tissue flaps. Poly(lactic-co-glycolic-acid/polyethylene glycol (PLGA/PEG) microspheres containing vascular endothelial growth factor (VEGF) were impregnated into collagen-chitosan scaffolds seeded with human adipose-derived stem cells (hASCs). This setup was analyzed in vitro and then implanted into isolated chambers around a discrete vascular pedicle in nude rats. Engineered tissue samples within the chambers were harvested and analyzed for differences in vascularization and adipose tissue growth. In vitro testing showed that the collagen-chitosan scaffold provided a supportive environment for hASC integration and proliferation. PLGA/PEG microspheres with slow-release VEGF had no negative effect on cell survival in collagen-chitosan scaffolds. In vivo, the system resulted in a statistically significant increase in neovascularization that in turn led to a significant increase in adipose tissue persistence after 8 weeks versus control constructs. These data indicate that our model-hASCs integrated with a collagen-chitosan scaffold incorporated with VEGF-containing PLGA/PEG microspheres supported by a predominant vascular vessel inside a chamber-provides a promising, clinically translatable platform for engineering vascularized soft tissue flap. The engineered adipose tissue with a vascular pedicle could conceivably be transferred as a vascularized soft tissue pedicle flap or free flap to a recipient site for the repair of soft-tissue defects.

  6. Protein complexed with chondroitin sulfate in poly(lactide-co-glycolide) microspheres.

    PubMed

    Lee, Eun Seong; Park, Keun-Hong; Kang, Dongmin; Park, In Suh; Min, Hyo Young; Lee, Don Haeng; Kim, Sungwon; Kim, Jong Ho; Na, Kun

    2007-06-01

    Chondroitin sulfate (CsA) is an acidic mucopolysaccharide, which is able to form ionic complexes with positively charged proteins. In this study, a protein-CsA complex was constructed to nano-sized particles. Zeta potential measurements revealed that a CsA-to-protein fraction of greater than 0.1 results in a neutralization of the positive charge on lysozyme (Lys). Based on this preliminary study, we have prepared poly(lactide-co-glycolide) (PLGA) microspheres harboring Lys/CsA complexes via the multi-emulsion method. Protein stability in the PLGA microspheres was preserved during both microsphere preparation and protein release. The profiles of Lys release from the PLGA microspheres evidenced nearly zero-order kinetics, depending on the quantity of CsA. An in vivo fluorescent image of experimental mouse tissue showed that the PLGA microspheres with the Lys/CsA complex had released the entirety of their Lys without no residual amount after 23 days, but microspheres without the complex harbored a great deal of residual Lys, which is attributable to its degradation by acidic PLGA degradates. The tissue reaction evidenced by the PLGA microspheres stabilized with CsA showed minimal foreign body reaction and little configuration of immune cells including neutrophils and macrophages, but the reactions of the PLGA microspheres without CsA were characterized by a relatively elevated inflammation. These results show that CsA is a viable candidate for long-acting micro-particular protein delivery. PMID:17337049

  7. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-07-08

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation.

  8. Repair of rat cranial bone defect by using bone morphogenetic protein-2-related peptide combined with microspheres composed of polylactic acid/polyglycolic acid copolymer and chitosan.

    PubMed

    Li, Jingfeng; Jin, Lin; Wang, Mingbo; Zhu, Shaobo; Xu, Shuyun

    2015-08-01

    The effects of the transplanted bone morphogenetic protein-2 (BMP2) -related peptide P24 and rhBMP2 combined with poly(lactic-co-glycolic acid) (PLGA)/chitosan (CS) microspheres were investigated in promoting the repair of rat cranial bone defect. Forty white rats were selected and equally divided into four groups (group A: 1 μg of rhBMP2/PLGA/CS composite; group B: 3 mg of P24/PLGA/CS composite; group C: 0.5 μg of rhBMP2 + 1.5 mg of P24/PLGA/CS composite; group D: blank PLGA/CS material), and rat cranial bone defect models with a diameter of 5 mm were established. The materials were transplanted to the cranial bone defects. The animals were sacrificed on weeks 6 and 12 post-operation. Radiographic examinations (x-ray imaging and 3D CT scanning) and histological evaluations were performed. The repaired areas of cranial bone defects were measured, and the osteogenetic abilities of various materials were compared. Cranial histology, imaging, and repaired area measurements showed that the osteogenetic effects at two time points (weeks 6 and 12) in group C were better than those in groups A and B. The effects in groups A and B were similar. Group D achieved the worst repair effect of cranial bone defects, where a large number of fibrous connective tissues were observed. The PLGA/CS composite microspheres loaded with rhBMP2 and P24 had optimal concrescence and could mutually increase their osteogenesis capability. rhBMP2 + P24/PLGA/CS composite is a novel material for bone defect repair with stable activity to induce bone formation. PMID:26154695

  9. Selective delivery of rifampicin incorporated into poly(DL-lactic-co-glycolic) acid microspheres after phagocytotic uptake by alveolar macrophages, and the killing effect against intracellular Mycobacterium bovis Calmette-Guérin.

    PubMed

    Yoshida, Aya; Matumoto, Makoto; Hshizume, Hiroyuki; Oba, Yoshiro; Tomishige, Tatuo; Inagawa, Hiroyuki; Kohchi, Chie; Hino, Mami; Ito, Fuminori; Tomoda, Keishiro; Nakajima, Takehisa; Makino, Kimiko; Terada, Hiroshi; Hori, Hitoshi; Soma, Gen-Ichiro

    2006-08-01

    Macrophages and their phagocytotic abilities play a dominant role for defense against infected organisms. However, Mycobacterium tuberculosis can survive in the phagosomes of macrophages. In this study, the effective delivery of a drug and the killing effect of tubercle bacilli within macrophages were investigated utilizing the phagocytotic uptake of rifampicin (RFP) that had been incorporated into poly(DL-lactic-co-glycolic) acid (PLGA) microspheres. The microspheres were composed of PLGA that had a monomer ratio (lactic acid/glycolic acid) of either 50/50 or 75/25. They had molecular weights from 5000 to 20,000, and diameters of 1.5, 3.5, 6.2 and 8.9 microm. The most significant factor for phagocytotic activity of macrophages was the diameter of the microspheres. By contrast, molecular weight and monomer ratio of PLGA did not influence phagocytosis. The amount of RFP delivered into cells was also investigated. RFP-PLGA microspheres composed of PLGA with a molecular weight of 20,000 and monomer ratio of 75/25 showed the highest amount of delivery (4 microg/1 x 10(6) cells). Fourteen days after infection, the survival rate of treated intracellular bacilli was 1% when compared with untreated cells. There was almost no killing effect of free RFP (4 or 15 microg/ml) on intracellular bacilli. In vivo efficacy of RFP-PLGA was also examined in rats infected with M. tuberculosis Kurono. Intratracheal administration of RFP-PLGA microspheres was shown to be superior to free RFP for killing of intracellular bacilli and preventing granuloma formation in some lobes. These results suggest that phagocytotic activity could be part of a new drug delivery system that selectively targeted macrophages.

  10. HPLC-UV method development and validation for the quantification of ropinirole in new PLGA multiparticulate systems: Microspheres and nanoparticles.

    PubMed

    Fuster, J; Negro, S; Salama, A; Fernández-Carballido, A; Marcianes, P; Boeva, L; Barcia, E

    2015-08-01

    A simple HPLC-UV method was developed and validated for the quantitation of RP free base encapsulated into two new multiparticulate systems (microparticles and nanoparticles), as well as for the quantification of RP hydrochloride when given as a loading dose together with the new delivery system developed. HPLC separation was achieved using a C18 Kromasil column (250 mm × 4 mm) with a mobile phase composed of acetonitrile-phosphate buffer solution (55:45, v/v) adjusted at pH 6.0 and containing 0.3% triethanolamine. Flow rate was set at 1.0 mL min(-1). The UV detector was operated at 245 nm. The method allowed for the simultaneous determination of both RP and RP-HCl. The method was linear within the range 2.5-50 μg mL(-1) for both RP and RP-HCl. The limits of detection (LOD) and quantitation (LOQ) found were 0.8 μg mL(-1) and 2.4 μg mL(-1) for RP, and 0.3 μg mL(-1) and 0.9 μg mL(-1) for RP-HCl. The method was found to be simple, rapid, specific, precise, accurate, and reproducible. The method was successfully applied to the determination of the encapsulation efficiency of RP in the multiparticulate systems developed, being 85.03 ± 3.77% and 51.12 ± 3.50%, for RP-loaded PLGA microspheres and RP-loaded PLGA nanoparticles, respectively.

  11. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications.

    PubMed

    Ghorbani, Farnaz; Nojehdehian, Hanieh; Zamanian, Ali

    2016-12-01

    Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation.

  12. Physicochemical and mechanical properties of freeze cast hydroxyapatite-gelatin scaffolds with dexamethasone loaded PLGA microspheres for hard tissue engineering applications.

    PubMed

    Ghorbani, Farnaz; Nojehdehian, Hanieh; Zamanian, Ali

    2016-12-01

    Hydroxyapatite (HA)-gelatin scaffolds incorporated with dexamethasone-loaded polylactic-co-glycolic acid (PLGA) microspheres were synthesized by freeze casting technique. Scanning electron microscopy (SEM) micrographs demonstrated a unidirectional microstructure and a decrease in the pore size as a function of temperature gradient. Higher amounts of HA resulted in a decrease in the pore size. According to the results, at lower cooling rates, the formation of a lamellar structure decreased the mechanical strength, but at the same time, enhanced the swelling ratio, biodegradation rate and drug release level. On the other hand, higher weight ratios of HA increased the compressive strength, and reduced the swelling ratio, biodegradation rate and drug release level. The results obtained by furrier transform infrared spectroscopy (FTIR) and bioactivity analysis illustrated that the interactions of the materials support the apatite formation in the simulated body fluid (SBF) solution. Based on the obtained results, the synthesized composite scaffolds have the necessary mechanical and physicochemical features to support the regeneration of defects and to maintain their stability during the neo-tissue formation. PMID:27612706

  13. Doxorubicin-loaded poly(lactic-co-glycolic acid) microspheres prepared using the solid-in-oil-in-water method for the transarterial chemoembolization of a liver tumor.

    PubMed

    Choi, Jin Woo; Park, Ju-Hwan; Baek, Song Yi; Kim, Dae-Duk; Kim, Hyo-Cheol; Cho, Hyun-Jong

    2015-08-01

    Doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (MSs) were fabricated using the solid-in-oil-in-water (S/O/W) emulsification method for transarterial chemoembolization (TACE) of a liver tumor. DOX-loaded PLGA MSs with a mean diameter of 26 μm and a spherical shape were prepared. The biodegradation of PLGA MSs was observed in serum using a scanning electron microscope (SEM). Drug release from the PLGA MSs was accelerated at an acidic pH (pH 5.5) compared to a normal physiological pH (pH 7.4). According to the results of a pharmacokinetic study in rats, the area under the curve (AUC) value of a drug, which indicates the systemic exposure extent of the drug, of the PLGA MSs group was 29.9% of that of a hepatic arterial injection (HAI) group. The DOX concentration ratio for liver tumors compared to normal livers was significantly higher in the PLGA MSs group than that of the HAI group (p<0.05). After the TACE procedure was performed with DOX-PLGA MSs in a rat hepatoma model, the mean size increment of tumor in DOX-PLGA MSs group was found to be lower than that of the HAI group, and the viable portion of the DOX-PLGA MSs group was less than the other groups (p<0.05). All these findings suggested that the developed DOX-loaded PLGA MSs fabricated with the S/O/W method can be used as a promising drug delivery system in TACE for liver tumors.

  14. PLGA microspheres for the delivery of a novel subunit TB vaccine.

    PubMed

    Kirby, Daniel J; Rosenkrands, Ida; Agger, Else M; Andersen, Peter; Coombes, Allan G A; Perrie, Yvonne

    2008-05-01

    Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 microm range (1.50 +/- 0.13 microm), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.

  15. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration.

    PubMed

    Rodríguez Villanueva, Javier; Bravo-Osuna, Irene; Herrero-Vanrell, Rocío; Molina Martínez, Irene Teresa; Guzmán Navarro, Manuel

    2016-09-20

    Successful therapy for chronic diseases affecting the posterior segment of the eye requires sustained drug concentrations at the site of action for extended periods of time. To achieve this, it is necessary to use high systemic doses or frequent intraocular injections, both associated with serious adverse effects. In order to avoid these complications and improve patient's quality of life, an experimental study has been conducted on the preparation of a new generation of biodegradable poly(D,L-lactide-co-glycolide) (50:50) (PLGA) polymer microspheres (MSs) loaded with Dxm, vitamin E and/or human serum albumin (HSA). Particles were prepared according to a S/O/W encapsulation method and the 20-40μm fraction was selected. This narrow size distribution is suitable for minimally invasive intravitreal injection by small calibre needles. Characterisation of the MSs showed high Dxm loading and encapsulation efficiency (> 90%) without a strong interaction with the polymer matrix, as revealed by DSC analysis. MSs drug release studies indicated a small burst effect (lower than 5%) during the first five hours and subsequently, drug release was sustained for at least 30days, led by diffusion and erosion mechanisms. Dxm release rate was modulated when solid state HSA was incorporated into MSs formulation. SDS-PAGE analysis showed that the protein maintained its integrity during the encapsulation process, as well as for the release study. MSs presented good tolerance and lack of cytotoxicity in macrophages and HeLa cultured cells. After 12months of storage under standard refrigerated conditions (4±1°C), MSs retained appropriate physical and chemical properties and analogous drug release kinetics. Therefore, we conclude that these microspheres are promising pharmaceutical systems for intraocular administration, allowing controlled release of the drug.

  16. Optimising the controlled release of dexamethasone from a new generation of PLGA-based microspheres intended for intravitreal administration.

    PubMed

    Rodríguez Villanueva, Javier; Bravo-Osuna, Irene; Herrero-Vanrell, Rocío; Molina Martínez, Irene Teresa; Guzmán Navarro, Manuel

    2016-09-20

    Successful therapy for chronic diseases affecting the posterior segment of the eye requires sustained drug concentrations at the site of action for extended periods of time. To achieve this, it is necessary to use high systemic doses or frequent intraocular injections, both associated with serious adverse effects. In order to avoid these complications and improve patient's quality of life, an experimental study has been conducted on the preparation of a new generation of biodegradable poly(D,L-lactide-co-glycolide) (50:50) (PLGA) polymer microspheres (MSs) loaded with Dxm, vitamin E and/or human serum albumin (HSA). Particles were prepared according to a S/O/W encapsulation method and the 20-40μm fraction was selected. This narrow size distribution is suitable for minimally invasive intravitreal injection by small calibre needles. Characterisation of the MSs showed high Dxm loading and encapsulation efficiency (> 90%) without a strong interaction with the polymer matrix, as revealed by DSC analysis. MSs drug release studies indicated a small burst effect (lower than 5%) during the first five hours and subsequently, drug release was sustained for at least 30days, led by diffusion and erosion mechanisms. Dxm release rate was modulated when solid state HSA was incorporated into MSs formulation. SDS-PAGE analysis showed that the protein maintained its integrity during the encapsulation process, as well as for the release study. MSs presented good tolerance and lack of cytotoxicity in macrophages and HeLa cultured cells. After 12months of storage under standard refrigerated conditions (4±1°C), MSs retained appropriate physical and chemical properties and analogous drug release kinetics. Therefore, we conclude that these microspheres are promising pharmaceutical systems for intraocular administration, allowing controlled release of the drug. PMID:26987610

  17. Effect of gamma-sterilization process on PLGA microspheres loaded with insulin-like growth factor-I (IGF-I).

    PubMed

    Carrascosa, C; Espejo, L; Torrado, S; Torrado, J J

    2003-10-01

    The influence of gamma-sterilization on the physicochemical properties of a controlled release formulation for the insulin-like growth factor-I (IGF-I) was investigated in this study. Recombinant human insulin-like growth factor-I (rhIGF-I) was efficiently entrapped in poly (D,L-lactide-co-glycolide) (PLGA) microspheres by water-in-oil-in-water (W/O/W) solvent evaporation technique. Microspheres were irradiated at a dose of 25kGy and evaluated by means of scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The stability of the released protein was investigated by circular dichroism (CD) and sodium dodecyl sulfate polyacrilamide gel electrophoresis (SDS-PAGE). No difference was noticed in microsphere size and morphology before and after irradiation. Drug loading remains essentially the same after the sterilization process. However, rhIGF-I aggregation was detected by electrophoresis. In addition, subtle changes in DSC pattern were noticed for irradiated microspheres. In vitro drug release from irradiated microspheres was also affected, showing an increased burst effect. From this results it can be concluded that gamma-sterilization process causes changes in the properties of rhIGF-I loaded microspheres. PMID:14621336

  18. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres

    PubMed Central

    Wright, Bernice; Parmar, Nina; Bozec, Laurent; Aguayo, Sebastian D

    2015-01-01

    Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min–24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features

  19. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres.

    PubMed

    Wright, Bernice; Parmar, Nina; Bozec, Laurent; Aguayo, Sebastian D; Day, Richard M

    2015-08-01

    Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min-24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features

  20. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier

    PubMed Central

    Makadia, Hirenkumar K.; Siegel, Steven J.

    2011-01-01

    In past two decades poly lactic-co-glycolic acid (PLGA) has been among the most attractive polymeric candidates used to fabricate devices for drug delivery and tissue engineering applications. PLGA is biocompatible and biodegradable, exhibits a wide range of erosion times, has tunable mechanical properties and most importantly, is a FDA approved polymer. In particular, PLGA has been extensively studied for the development of devices for controlled delivery of small molecule drugs, proteins and other macromolecules in commercial use and in research. This manuscript describes the various fabrication techniques for these devices and the factors affecting their degradation and drug release. PMID:22577513

  1. Fish collagen-based scaffold containing PLGA microspheres for controlled growth factor delivery in skin tissue engineering.

    PubMed

    Cao, Huan; Chen, Ming-Mao; Liu, Yan; Liu, Yuan-Yuan; Huang, Yu-Qing; Wang, Jian-Hua; Chen, Jing-Di; Zhang, Qi-Qing

    2015-12-01

    To design a scaffold controlled release system for skin tissue engineering, fish collagen/chitosan/chondroitin sulfate scaffolds were fabricated by freeze-drying and incorporated with bFGF-loaded PLGA microspheres (MPs). SEM showed that the scaffolds exhibited an interconnected porous structure, and the spherical MPs were uniformly distributed into the scaffolds. The higher swelling and degradation rate of scaffolds/MPs could lead to a higher diffusion rate of MPs from the scaffolds, causing an increase in the protein release. The release rate of proteins could be adjusted by the size of MPs and the ratio of collagen to chitosan of scaffolds. Circular dichroism spectroscopy and MTT of bFGF after release indicated that the released bFGF retained its structural integrity and bioactivity during preparation. Cell proliferation and in vivo evaluation results suggested that the scaffolds/MPs had a good biocompatibility and an ability to promote fibroblast cell proliferation and skin tissue regeneration. These results demonstrated that this scaffold/MP controlled release system has the potential for skin tissue engineering.

  2. Protocell-like Microspheres from Thermal Polyaspartic Acid

    NASA Astrophysics Data System (ADS)

    Bahn, Peter R.; Pappelis, Aristotel; Bozzola, John

    2006-12-01

    One of the most prominent amino acids to appear in monomer-generating origin-of-life experiments is aspartic acid. Hugo Schiff found in 1897 that aspartic acid polymerizes when heated to form polyaspartylimide which hydrolyzes in basic aqueous solution to form thermal polyaspartic acid which is a branched polypeptide. We recently reported at the ISSOL 2005 Conference that commercially made thermal polyaspartic acid forms microspheres when heated in boiling water and allowed to cool. In a new experiment we heated aspartic acid at 180°C for up to 100 h to form thermal polyaspartylimide which when heated in boiling water without addition of base hydrolyzed to form thermal polyaspartic acid which upon cooling formed microspheres. Thermal polyaspartic acid microspheres appear protocell-like in the sense of being prebiotically plausible lattices or containers that could eventually have been filled with just the right additions of primordial proteins, nucleic acids, lipids, and metabolites so as to constitute protocells capable of undergoing further chemical and biological evolution. Thermal polyaspartic acid microspheres are extremely simple models of protocells that are more amenable to precise quantitative experimental investigation than the proteinoid microspheres of Sidney W. Fox. We present here scanning electron microscope images of such thermal polyaspartic acid microspheres. Figure 1 shows thermal polyaspartic acid microspheres from l-aspartic acid heated at 180°C for 50 h, at a magnification of 3,500×. Figure 2 shows thermal polyaspartic acid microspheres from the same sample at a magnification of 7,000×. The thermal polyaspartic acid microspheres have a diameter of approximately 1 μm These images were viewed with a Hitachi S2460N scanning electron microscope at 20 kV acceleration voltage. [Figure not available: see fulltext.][Figure not available: see fulltext.

  3. Sustained release poly (lactic-co-glycolic acid) microspheres of bone morphogenetic protein 2 plasmid/calcium phosphate to promote in vitro bone formation and in vivo ectopic osteogenesis

    PubMed Central

    Qiao, Chunyan; Zhang, Kai; Sun, Bin; Liu, Jinzhong; Song, Jiyu; Hu, Yue; Yang, Shihui; Sun, Hongchen; Yang, Bai

    2015-01-01

    Bone regeneration often requires continuous stimulation to promote local bone formation. In the present study, calcium phosphate (CaPi) was used to promote transfection of human bone morphogenetic protein 2 (BMP-2) cDNA plasmid, and poly (lactic-co-glycolic acid) (PLGA) was used to prepare microspheres of pBMP-2/CaPi (i.e., PLGA@pBMP-2/CaPi) using W/O/W double emulsion solvent evaporation method. We showed that PLGA@pBMP-2/CaPi microspheres were spherical with smooth surface, and the particle size ranged from 0.5 to 35 μm. Encapsulation efficiency was up to 30~50%. The release of BMP-2 cDNA from microspheres continued more than 30 days and constituted, less than 7.5% of total plasmid amount within the first 24 h. Real-time PCR results showed that co-culturing of PLGA@pBMP-2/CaPi with bone marrow-derived mesenchymal stem cells (BMSCs) increased calcium deposition and gene expressions of alkaline phosphatase (ALP), runt-related transcription factor 2 (RUNX2), SP7, and collagen type I (COLL I) in a time-dependent manner. Finally, X-ray analysis demonstrated that in vivo delivery of PLGA@pBMP-2/CaPi microspheres into the tibialis anterior muscles of rats promoted the generation of osteoblasts, bone tissue, and bone structure. The findings suggested that PLGA@pBMP-2/CaPi microspheres can promote ectopic osteogenesis in non-bone tissues, with strong prospects in promoting bone regeneration. PMID:26885257

  4. Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration.

    PubMed

    Jamuna-Thevi, Kalitheertha; Saarani, Nur Najiha; Abdul Kadir, Mohamed Rafiq; Hermawan, Hendra

    2014-10-01

    This paper discusses the successful fabrication of a novel triple-layered poly(lactic-co-glycolic acid) (PLGA)-based composite membrane using only a single step that combines the techniques of solvent casting and thermally induced phase separation/solvent leaching. The resulting graded membrane consists of a small pore size layer-1 containing 10 wt% non-stoichiometric nanoapatite (NAp)+1-3 wt% lauric acid (LA) for fibroblastic cell and bacterial inhibition, an intermediate layer-2 with 20-50 wt% NAp+1 wt% LA, and a large pore size layer-3 containing 30-100 wt% NAp without LA to allow bone cell growth. The synergic effects of 10-30 wt% NAp and 1 wt% LA in the membrane demonstrated higher tensile strength (0.61 MPa) and a more elastic behavior (16.1% elongation at break) in 3 wt% LA added membrane compared with the pure PLGA (0.49 MPa, 9.1%). The addition of LA resulted in a remarkable plasticizing effect on PLGA at 3 wt% due to weak intermolecular interactions in PLGA. The pure and composite PLGA membranes had good cell viability toward human skin fibroblast, regardless of LA and NAp contents. PMID:25175212

  5. Textiles with gallic acid microspheres: in vitro release characteristics.

    PubMed

    Martí, Meritxell; Martínez, Vanessa; Carreras, Núria; Alonso, Cristina; Lis, Manuel José; Parra, José Luis; Coderch, Luisa

    2014-01-01

    Abstract The aim of this study was to demonstrate the skin penetration of an antioxidant, gallic acid (GA), encapsulated in poly-ε-caprolactone (PCL) microspheres and applied onto textile fabrics, by a specific in vitro percutaneous absorption methodology. Two techniques (particle size distribution and FTIR) were used to characterise the microspheres obtained. The amount of GA-loaded microspheres present in the biofunctional textiles was established before their use as a textile drug delivery system. More absorption and desorption of microspheres with GA for the polyamide fabric were found in comparison with cotton fabric. The percutaneous absorption results indicated that the skin penetration of GA released from PCL-microspheres that were applied directly to the skin was higher than when GA was embedded within biofunctional textiles, in conclusion, an interesting reservoir effect may be promoted when biofunctional textiles were used.

  6. Effects of lactic acid and glycolic acid on human osteoblasts: a way to understand PLGA involvement in PLGA/calcium phosphate composite failure.

    PubMed

    Meyer, Florent; Wardale, John; Best, Serena; Cameron, Ruth; Rushton, Neil; Brooks, Roger

    2012-06-01

    The use of degradable composite materials in orthopedics remains a field of intense research due to their ability to support new bone formation and degrade in a controlled manner, broadening their use for orthopedic applications. Poly (lactide-co-glycolide) acid (PLGA), a degradable biopolymer, is now a popular material for different orthopedic applications and is proposed for use in tissue engineering scaffolds either alone or combined with bioactive ceramics. Interference screws composed of calcium phosphates and PLGA are readily available in the market. However, some reports highlight problems of screw migration or aseptic cyst formation following screw degradation. In order to understand these phenomena and to help to improve implant formulation, we have evaluated the effects of PLGA degradation products: lactic acid and glycolic acid on human osteoblasts in vitro. Cell proliferation, differentiation, and matrix mineralization, important for bone healing were studied. It was found that the toxicity of polymer degradation products under buffering conditions was limited to high concentrations. However, non-toxic concentrations led to a decrease in cell proliferation, rapid cell differentiation, and mineralization failure. Calcium, whilst stimulating cell proliferation was not able to overcome the negative effects of high concentrations of lactic and glycolic acids on osteoblasts. These effects help to explain recently reported clinical failures of calcium phosphate/PLGA composites, but further in vitro analyses are needed to mimic the dynamic situation which occurs in the body by, for example, culture of osteoblasts with materials that have been pre-degraded to different extents and thus be able to relate these findings to the degradation studies that have been performed previously.

  7. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly (lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study.

    PubMed

    Yasunami, Noriyuki; Ayukawa, Yasunori; Furuhashi, Akihiro; Atsuta, Ikiru; Rakhmatia, Yunia Dwi; Moriyama, Yasuko; Masuzaki, Tomohiro; Koyano, Kiyoshi

    2016-02-01

    Antihyperlipidemic drug statins reportedly promote both bone formation and soft tissue healing. We examined the effect of sustained-release, fluvastatin-impregnated poly(lactic-co-glycolic acid) (PLGA) microspheres on the promotion of bone and gingival healing at an extraction socket in vivo, and the effect of fluvastatin on epithelial cells and fibroblasts in vitro. The maxillary right first molar was extracted in rats, then one of the following was immediately injected, as a single dose, into the gingivobuccal fold: control (no administration), PLGA microspheres without a statin (active control), or PLGA microspheres containing 20 or 40 μg kg(-1) of fluvastatin. At days 1, 3, 7, 14, and 28 after injection, bone and soft tissue healing were histologically evaluated. Cell proliferation was measured under the effect of fluvastatin at dosages of 0, 0.01, 0.1, 1.0, 10, and 50 μM. Cell migration and morphology were observed at dosages of 0 and 0.1 μM. Following tooth extraction, the statin significantly enhanced bone volume and density, connective tissue volume, and epithelial wound healing. In the in vitro study, it promoted significant proliferation and migration of epithelial cells and fibroblasts. A single dose of topically administered fluvastatin-impregnated PLGA microspheres promoted bone and soft tissue healing at the extraction site. PMID:26694986

  8. Acceleration of hard and soft tissue healing in the oral cavity by a single transmucosal injection of fluvastatin-impregnated poly (lactic-co-glycolic acid) microspheres. An in vitro and rodent in vivo study.

    PubMed

    Yasunami, Noriyuki; Ayukawa, Yasunori; Furuhashi, Akihiro; Atsuta, Ikiru; Rakhmatia, Yunia Dwi; Moriyama, Yasuko; Masuzaki, Tomohiro; Koyano, Kiyoshi

    2015-12-23

    Antihyperlipidemic drug statins reportedly promote both bone formation and soft tissue healing. We examined the effect of sustained-release, fluvastatin-impregnated poly(lactic-co-glycolic acid) (PLGA) microspheres on the promotion of bone and gingival healing at an extraction socket in vivo, and the effect of fluvastatin on epithelial cells and fibroblasts in vitro. The maxillary right first molar was extracted in rats, then one of the following was immediately injected, as a single dose, into the gingivobuccal fold: control (no administration), PLGA microspheres without a statin (active control), or PLGA microspheres containing 20 or 40 μg kg(-1) of fluvastatin. At days 1, 3, 7, 14, and 28 after injection, bone and soft tissue healing were histologically evaluated. Cell proliferation was measured under the effect of fluvastatin at dosages of 0, 0.01, 0.1, 1.0, 10, and 50 μM. Cell migration and morphology were observed at dosages of 0 and 0.1 μM. Following tooth extraction, the statin significantly enhanced bone volume and density, connective tissue volume, and epithelial wound healing. In the in vitro study, it promoted significant proliferation and migration of epithelial cells and fibroblasts. A single dose of topically administered fluvastatin-impregnated PLGA microspheres promoted bone and soft tissue healing at the extraction site.

  9. Preparation of High-Payload, Prolonged-Release Biodegradable Poly(lactic-co-glycolic acid)-Based Tacrolimus Microspheres Using the Single-Jet Electrospray Method.

    PubMed

    Pathak, Shiva; Gupta, Biki; Poudel, Bijay Kumar; Tran, Tuan Hiep; Regmi, Shobha; Pham, Tung Thanh; Thapa, Raj Kumar; Kim, Min-Soo; Yong, Chul Soon; Kim, Jong Oh; Jeong, Jee-Heon

    2016-01-01

    Tacrolimus-loaded poly(lactic-co-glycolic acid) microspheres (TAC-PLGA-M) can be administered for the long-term survival of transplanted organs due to their immunosuppressive activity. The purpose of our study was to optimize the parameters of the electrospray method, and to prepare TAC-PLGA-M with a high payload and desirable release properties. TAC-PLGA-M were prepared using the electrospray method. In vitro characterization and evaluation were performed using scanning electron microscopy, X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy. Drug-loading efficiency was greater than 80% in all formulations with a maximum loading capacity of 16.81±0.37%. XRD and DSC studies suggested that the drug was incorporated in an amorphous state or was molecularly dispersed in the microspheres. The in vitro release study showed prolonged release patterns. TAC-PLGA-M with enhanced drug loading and prolonged-release patterns were successfully prepared using the electrospray method. PMID:26833445

  10. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens. PMID:27285778

  11. A novel strategy for the preparation of porous microspheres and its application in peptide drug loading.

    PubMed

    Wei, Yi; Wang, Yuxia; Zhang, Huixia; Zhou, Weiqing; Ma, Guanghui

    2016-09-15

    A new strategy is developed to prepare porous microspheres with narrow size distribution for peptides controlled release, involving a fabrication of porous microspheres without any porogens followed by a pore closing process. Amphiphilic polymers with different hydrophobic segments (poly(monomethoxypolyethylene glycol-co-d,l-lactide) (mPEG-PLA), poly(monomethoxypolyethylene glycol-co-d,l-lactic-co-glycolic acid) (mPEG-PLGA)) are employed as microspheres matrix to prepare porous microspheres based on a double emulsion-premix membrane emulsification technique combined with a solvent evaporation method. Both microspheres possess narrow size distribution and porous surface, which are mainly caused by (a) hydrophilic polyethylene glycol (PEG) segments absorbing water molecules followed by a water evaporation process and (b) local explosion of microspheres due to fast evaporation of dichloromethane (MC). Importantly, mPEG-PLGA microspheres have a honeycomb like structure while mPEG-PLA microspheres have a solid structure internally, illustrating that the different hydrophobic segments could modulate the affinity between solvent and matrix polymer and influence the phase separation rate of microspheres matrix. Long term release patterns are demonstrated with pore-closed microspheres, which are prepared from mPEG-PLGA microspheres loading salmon calcitonin (SCT). These results suggest that it is potential to construct porous microspheres for drug sustained release using permanent geometric templates as new porogens.

  12. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor. PMID:26876867

  13. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles.

    PubMed

    Giarra, Simona; Serri, Carla; Russo, Luisa; Zeppetelli, Stefania; De Rosa, Giuseppe; Borzacchiello, Assunta; Biondi, Marco; Ambrosio, Luigi; Mayol, Laura

    2016-04-20

    The arrangement of tumor targeting hyaluronic acid (HA) moieties on irinotecan (IRIN)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) has been directed by means of a gradient of lipophilicity between the oil and water phases of the emulsion used to produce the NPs. PLGA constitutes the NP bulk while HA is superficially exposed, with amphiphilic poloxamers acting as a bridge between PLGA and HA. Differential scanning calorimetry, zeta potential analyses and ELISA tests were employed to support the hypothesis of polymer assembly in NP formulations. The presence of flexible HA chains on NP surface enhances NP size stability over time due to an increased electrostatic repulsion between NPs and a higher degree of hydration of the device surface. IRIN in vitro release kinetics can be sustained up to 7-13 days. In vitro biologic studies indicated that HA-containing NPs were more toxic than bare PLGA NPs against CD44-overexpressing breast carcinoma cells (HS578T), therefore indicating their ability to target CD44 receptor.

  14. Glycolic acid-catalyzed deamidation of asparagine residues in degrading PLGA matrices: a computational study.

    PubMed

    Manabe, Noriyoshi; Kirikoshi, Ryota; Takahashi, Ohgi

    2015-03-31

    Poly(lactic-co-glycolic acid) (PLGA) is a strong candidate for being a drug carrier in drug delivery systems because of its biocompatibility and biodegradability. However, in degrading PLGA matrices, the encapsulated peptide and protein drugs can undergo various degradation reactions, including deamidation at asparagine (Asn) residues to give a succinimide species, which may affect their potency and/or safety. Here, we show computationally that glycolic acid (GA) in its undissociated form, which can exist in high concentration in degrading PLGA matrices, can catalyze the succinimide formation from Asn residues by acting as a proton-transfer mediator. A two-step mechanism was studied by quantum-chemical calculations using Ace-Asn-Nme (Ace = acetyl, Nme = NHCH3) as a model compound. The first step is cyclization (intramolecular addition) to form a tetrahedral intermediate, and the second step is elimination of ammonia from the intermediate. Both steps involve an extensive bond reorganization mediated by a GA molecule, and the first step was predicted to be rate-determining. The present findings are expected to be useful in the design of more effective and safe PLGA devices.

  15. Novel Simvastatin-Loaded Nanoparticles Based on Cholic Acid-Core Star-Shaped PLGA for Breast Cancer Treatment.

    PubMed

    Wu, Yanping; Wang, Zhongyuan; Liu, Gan; Zeng, Xiaowei; Wang, Xusheng; Gao, Yongfeng; Jiang, Lijuan; Shi, Xiaojun; Tao, Wei; Huang, Laiqiang; Mei, Lin

    2015-07-01

    A novel nanocarrier system of cholic acid (CA) core, star-shaped polymer consisting of poly(D,L-lactide-co-glycolide) (PLGA) was developed for sustained and controlled delivery of simvastatin for chemotherapy of breast adenocarcinoma. The star-shaped polymer CA-PLGA with three branch arms was synthesized successfully through the core-first approach. The simvastatin-loaded star-shaped CA-PLGA nanoparticles were prepared through a modified nanoprecipitation method. The data showed that the fluorescence star-shaped CA-PLGA nanoparticles could be internalized into MDA-MB-231 and MDA-MB-468 human breast cancer cells. The simvastatin-loaded star-shaped CA-PLGA nanoparticles achieved significantly higher level of cytotoxicity than pristine simvastatin and simvastatin-loaded linear PLGA nanoparticles. Moreover, the expression of the cell cycle protein cyclin D1 was dramatically inhibited by simvastatin in both cells, with simvastatin-loaded star-shaped CA-PLGA nanoparticles having the greatest effect. MDA-MB-231 xenograft tumor model on BALB/c nude mice showed that simvastatin-loaded star-shaped CA-PLGA nanoformulations could effectively inhibit the growth of tumor over a longer period of time than pristine simvastatin and simvastatin-loaded linear PLGA nanoformulations at the same dose. In agreement with these, the nuclear expression of proliferation marker Ki-67 in simvastatin-loaded star-shaped CA-PLGA nanoparticles group was reduced to a most extent among four groups through tumor frozen section immunohistochemistry. In conclusion, the star-shaped CA-PLGA polymers could serve as a novel polymeric nanocarrier for breast cancer chemotherapy.

  16. [Relation between drug release and the drug status within curcumin-loaded microsphere].

    PubMed

    Chen, De; Liu, Yi; Fan, Kai-yan; Xie, Yi-qiao; Yu, An-an; Xia, Zi-hua; Yang, Fan

    2016-01-01

    To study the relation between drug release and the drug status within curcumin-loaded microsphere, SPG (shirasu porous glass) membrane emulsification was used to prepare the curcumin-PLGA (polylactic-co-glycolic acid) microspheres with three levels of drug loading respectively, and the in vitro release was studied with high-performance liquid chromatography (HPLC). The morphology of microspheres was observed with scanning electron microscopy (SEM), and the drug status was studied with X-ray diffraction (XRD), differential scanning calorimetry (DSC) and infrared analysis (IR). The drug loading of microspheres was (5.85 ± 0.21)%, (11.71 ± 0.39)%, (15.41 ± 0.40)%, respectively. No chemical connection was found between curcumin and PLGA. According to the results of XRD, curcumin dispersed in PLGA as amorphous form within the microspheres of the lowest drug loading, while (2.12 ± 0.64)% and (5.66 ± 0.07)% curcumin crystals was detected in the other two kinds of microspheres, respectively, indicating that the drug status was different within three kinds of microspheres. In the data analysis, we found that PLGA had a limited capacity of dissolving curcumin. When the drug loading exceeded the limit, the excess curcumin would exist in the form of crystals in microspheres independently. Meanwhile, this factor contributes to the difference in drug release behavior of the three groups of microspheres. PMID:27405176

  17. New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres

    PubMed Central

    Robinson, Rebecca; Bertram, James P.; Reiter, Jill L.; Lavik, Erin B.

    2015-01-01

    Inhibition of the epidermal growth factor receptor (EGFR) has been shown to reduce tumor growth and metastases and promote axon regeneration in the central nervous system. Current strategies for inhibiting EGFR include the administration of reversible or irreversible small-molecule tyrosine kinase inhibitors (TKIs). However, to be effective in vivo constant and sustained delivery is required. This study explored the feasibility of encapsulating the tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) in poly(lactic-co-glycolic acid) (PLGA) microspheres to achieve sustained delivery of the TKI. We characterized microspheres prepared using three different emulsion methods: solid-in-oil-in-water, oil-in-water, and oil-in-water with co-solvent. Addition of a co-solvent increased the loading and release of AG1478, and significantly (P<0.001) decreased the size of the microspheres which facilitates administration of the spheres. On average, sustained delivery of AG1478 from microspheres was achieved for six months. However, the addition of a co-solvent prolonged release for over nine months (266 days). In addition, AG1478 retained its bioactivity upon delivery, and inhibited EGFR in both immortalized rat fibroblasts and in EGFR-amplified human carcinoma cells. These results demonstrate that AG1478 can be encapsulated in PLGA and retain bioactivity; thereby providing a new platform for controlled administration of EGFR TKIs. PMID:20055747

  18. Influence of PEI as a Core Modifying Agent on PLGA Microspheres of PGE1, A Pulmonary Selective Vasodilator

    PubMed Central

    Gupta, Vivek; Ahsan, Fakhrul

    2011-01-01

    This study tests the hypothesis that large porous poly (lactic-co-glycolic acid) (PLGA) microparticles modified with polyethyleneimine (PEI) are viable carriers for pulmonary delivery of prostaglandin E1 (PGE1) used in the treatment of pulmonary arterial hypertension (PAH), a pulmonary vascular disorder. The particles were prepared by a double-emulsion solvent evaporation method with PEI-25 kDa in the internal aqueous phase to produce an osmotic pressure gradient. Polyvinyl alcohol (PVA) was used for external coating of the particles. The particles were examined for morphology, size, aerodynamic diameter, surface area, pore volume and in-vitro release profiles. Particles with optimal properties for inhalation were tested for in-vivo pulmonary absorption, metabolic stability in rat lung homogenates, and acute toxicity in rat bronchoalveolar lavage fluid and respiratory epithelial cells, Calu-3. The micromeritic data indicated that the PEI-modified particles of PGE1 are optimal for inhalation. Incorporation of PEI in the formulations resulted in an increased entrapment efficiency–83.26±3.04% for particles with 1% PVA and 95.48±0.46% for particles with 2% PVA. The amount of cumulative drug released into the simulated interstitial lung fluid was between 50.8±0.76% and 55.36±0.06%. A remarkable extension of the circulation half-life up to 6.0–6.5 hours was observed when the formulations were administered via the lungs. The metabolic stability and toxicity studies showed that the optimized formulations were stable at physiological conditions and relatively safe to the lungs and respiratory epithelium. Overall, this study demonstrates that large porous inhalable polymeric microparticles can be a feasible option for non-invasive and controlled release of PGE1 for treatment of PAH. PMID:21530623

  19. Modified composite microspheres of hydroxyapatite and poly(lactide-co-glycolide) as an injectable scaffold

    NASA Astrophysics Data System (ADS)

    Hu, Xixue; Shen, Hong; Yang, Fei; Liang, Xinjie; Wang, Shenguo; Wu, Decheng

    2014-02-01

    The compound of hydroxyapatite-poly(lactide-co-glycolide) (HA-PLGA) was prepared by ionic bond between HA and PLGA. HA-PLGA was more stable than the simple physical blend of hydroxyapatite and poly(lactide-co-glycolide) (HA/PLGA). The surface of HA-PLGA microsphere fabricated by an emulsion-solvent evaporation method was rougher than that of HA/PLGA microspheres. Moreover, surface HA content of HA-PLGA microspheres was more than that of HA/PLGA microspheres. In vitro mouse OCT-1 osteoblast-like cell culture results showed that the HA-PLGA microspheres clearly promoted osteoblast attachment, proliferation and alkaline phosphatase activity. It was considered that surface rich HA component and rough surface of HA-PLGA microsphere enhanced cell growth and differentiation. The good cell affinity of the HA-PLGA microspheres indicated that they could be used as an injectable scaffold for bone tissue engineering.

  20. The effect of AZD2171- or sTRAIL/Apo2L-loaded polylactic-co-glycolic acid microspheres on a subcutaneous glioblastoma model.

    PubMed

    Shivinsky, Anna; Bronshtein, Tomer; Haber, Tom; Machluf, Marcelle

    2015-08-01

    Studies with AZD2171-a new anti-angiogenic inhibitor of tyrosine kinases associated with VEGF signaling-have shown great promise for treating glioblastoma. Unfortunately, AZD2171 success is limited by low permeability through the blood-brain barrier. Due to AZD2171's short half-life and high toxicity, its local administration will require multiple intracranial procedures, making this approach clinically unfeasible. In this study, we investigated the potential of the highly hydrophobic AZD2171, released from modified polylactic-co-glycolic acid microspheres (PLGA-MS), to treat glioblastoma. To further demonstrate the versatile loading capacity of this system, the same PLGA formulation, which was found optimal for the loading and release of AZD2171, was tested with sTRAIL/Apo2L-a biologic drug that is very different than AZD2171 in its molecular weight, solubility, and charge. AZD2171 released from PLGA-MS was at least effective as the free drug in inhibiting endothelial growth and proliferation (in vitro), and, surprisingly, had a profound cytotoxic effect also towards in vitro cultured glioblastoma cell-lines (U87 and A172). Complete tumor inhibition was achieved following a single treatment with AZD2171-loaded PLGA-MS (6 (mg)/kg) administered locally adjacent to human U87 glioma tumors inoculated subcutaneously in nude mice. This improved effect, compared to other therapeutic approaches involving AZD2171, was shown to affect both tumor vasculature and the glioma cells. sTRAIL-loaded microspheres, administered at very low doses (0.3 (mg)/kg), led to 35 % inhibition of tumor growth in 2 weeks. Collectively, our results provide pre-clinical evidence for the potential of PLGA formulations of AZD2171 and sTRAIL to serve as an effective treatment for glioblastoma.

  1. IL-1ra delivered from poly(lactic-co-glycolic acid) microspheres attenuates IL-1β-mediated degradation of nucleus pulposus in vitro

    PubMed Central

    2012-01-01

    Introduction Inflammation plays a key role in the progression of intervertebral disc degeneration, a condition strongly implicated as a cause of lower back pain. The objective of this study was to investigate the therapeutic potential of poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with interleukin-1 receptor antagonist (IL-1ra) for sustained attenuation of interleukin-1 beta (IL-1β) mediated degradative changes in the nucleus pulposus (NP), using an in vitro model. Methods IL-1ra was encapsulated in PLGA microspheres and release kinetics were determined over 35 days. NP agarose constructs were cultured to functional maturity and treated with combinations of IL-1β and media conditioned with IL-1ra released from microspheres at intervals for up to 20 days. Construct mechanical properties, glycosaminoglycan content, nitrite production and mRNA expression of catabolic mediators were compared to properties for untreated constructs using unpaired Student's t-tests. Results IL-1ra release kinetics were characterized by an initial burst release reducing to a linear release over the first 10 days. IL-1ra released from microspheres attenuated the degradative effects of IL-1β as defined by mechanical properties, glycosaminoglycans (GAG) content, nitric oxide production and mRNA expression of inflammatory mediators for 7 days, and continued to limit functional degradation for up to 20 days. Conclusions In this study, we successfully demonstrated that IL-1ra microspheres can attenuate the degradative effects of IL-1β on the NP for extended periods. This therapeutic strategy may be appropriate for treating early-stage, cytokine-mediated disc degeneration. Ongoing studies are focusing on testing IL-1ra microspheres in an in vivo model of disc degeneration, as a prelude to clinical translation. PMID:22863285

  2. Combination of chondroitinase ABC, glial cell line-derived neurotrophic factor and Nogo A antibody delayed-release microspheres promotes the functional recovery of spinal cord injury.

    PubMed

    Zhang, Yu; Gu, Zuchao; Qiu, Guixing; Song, Yueming

    2013-11-01

    Spinal cord injury (SCI) is one of the most devastating injuries for patients. Glial cell line-derived neurotrophic factor (GDNF) is an important neurotrophic factor for the regeneration of the spinal neuraxial bundle, but GDNF would degrade rapidly if the protein was injected into the site of injury; thus, it cannot exert its fullest effects. Therefore, we introduced a delivery system of GDNF, poly(lactide-co-glycolic acid) (PLGA) delayed-release microspheres, in the current study and observed the effect of PLGA-GDNF and the combination of PLGA-GDNF and another 2 agents PLGA-chondroitinase ABC (ChABC) and PLGA-Nogo A antibody in the treatment of SCI rats. Our results showed that PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres could elevate the locomotor scores of SCI rats. The effect of PLGA-GDNF was much better than that of GDNF. The cortical somatosensory evoked potential was also improved by PLGA-GDNF and the combination of chABC, GDNF, and Nogo A antibody microspheres. Our results suggest that PLGA delayed-release microsphere may be a useful and effective tool in delivering protein agents into the injury sites of patients with SCI. This novel combination therapy may provide a new idea in promoting the functional recovery of the damaged spinal cord.

  3. [Study on preparation process of artesunate polylactic acid microspheres].

    PubMed

    Pan, Xu-Wang; Wang, Wei; Fang, Hong-Ying; Wang, Fu-Gen; Cai, Zhao-Bin

    2013-12-01

    This study aims to investigate the preparation process and in vitro release behavior of artesunate polylactic acid microspheres, in order to prepare an artesunate polylactic acid (PLA) administration method suitable for hepatic arterial embolization. With PLA as the material and polyvinyl alcohol (PVA) as the emulsifier, O/W emulsion/solvent evaporation method was adopted to prepare artesunate polylactic acid microspheres, and optimize the preparation process. With drug loading capacity, encapsulation efficiency and particle size as indexes, a single factor analysis was made on PLA concentration, PVA concentration, drug loading ratio and stirring velocity. Through an orthogonal experiment, the optimal processing conditions were determined as follows: PLA concentration was 9. 0% , PVA concentration was 0. 9% , drug loading ratio was 1:2 and stirring velocity was 1 000 r x min(-1). According to the verification of the optimal process, microsphere size, drug loading and entrapment rate of artesunate polylactic acid microspheres were (101.7 +/- 0.37) microm, (30.8 +/- 0.84)%, (53.6 +/- 0.62)%, respectively. The results showed that the optimal process was so reasonable and stable that it could lay foundation for further studies.

  4. Preparation and in vitro characterization of vascular endothelial growth factor (VEGF)-loaded poly(D,L-lactic-co-glycolic acid) microspheres using a double emulsion/solvent evaporation technique.

    PubMed

    Karal-Yılmaz, Okşan; Serhatlı, Müge; Baysal, Kemal; Baysal, Bahattin M

    2011-01-01

    Biodegradable Poly(lactic-co-glycolic acid; PLGA), microspheres encapsulating the angiogenic protein recombinant human vascular endothelial growth factor (rhVEGF) were formed to achieve VEGF release in a sustained manner. These microspheres are a promising delivery system which can be used for therapeutic angiogenesis. The PLGA microspheres incorporating two different initial loading amounts of rhVEGF have been prepared by a modified water-in-oil-in-water (w/o/w) double emulsion/solvent evaporation technique. The microspheres have been characterized by particle size distribution, environmental scanning electron microscopy (ESEM), light microscopy, encapsulation efficiency and their degradation was studied in vitro. The rhVEGF released from microspheres was quantified by the competitive enzyme-linked immunosorbent assay (ELISA) and human umbilical vein endothelial cell (HUVEC) proliferation assay was used to assess biological activity of the released VEGF. The microspheres were spherical with diameters of 10-60 µm and the encapsulation efficiency was between 46% and 60%. The release kinetics of rhVEGF was studied for two different amounts: 5 µg VEGF (V5) and 50 µg VEGF (V50) per 500 mg starting polymer. The total protein (VEGF:BSA) release increased up to 4 weeks for two rhVEGF concentrations. The ELISA results showed that the burst release for V5 and V50 microspheres were 4 and 27 ng/mL, respectively. For V5, the microspheres showed an initial burst release, followed by a higher steady-state release until 14 days. VEGF release increased up to 2 weeks for V50 microsphere. HUVEC proliferation assay showed that endothelial cells responded to bioactive VEGF by proliferating and migrating.

  5. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.

    PubMed

    He, Shu; Lin, Kai-Feng; Sun, Zhen; Song, Yue; Zhao, Yi-Nan; Wang, Zheng; Bi, Long; Liu, Jian

    2016-07-01

    The aim of the current study was to prepare microsphere-based composite scaffolds made of nano-hydroxyapatite (nHA)/poly (DL-lactic-co-glycolic acid) (PLGA) at different ratios and evaluate the effects of nHA on the characteristics of scaffolds for tissue engineering application. First, microsphere-based composite scaffolds made of two ratios of nHA/PLGA (nHA/PLGA = 20/80 and nHA/PLGA = 50/50) were prepared. Then, the effects of nHA on the wettability, mechanical strength, and degradation of scaffolds were investigated. Second, the biocompatibility and osteoinductivity were evaluated and compared by co-culture of scaffolds with bone marrow stromal stem cells (BMSCs). The results showed that the adhesion, proliferation, and osteogenic differentiation of BMSCs with nHA/PLGA (50/50) were better than those with nHA/PLGA (20/80). Finally, we implanted the scaffolds into femur bone defects in a rabbit model, then the capacity of guiding bone regeneration as well as the in vivo degradation were observed by micro-CT and histological examinations. After 4 weeks' implantation, there was no significant difference on the repair of bone defects. However, after 8 and 12 weeks' implantation, the nHA/PLGA (20/80) exhibited better bone formation than nHA/PLGA (50/50). These results suggested that a proper concentration of nHA in the nHA/PLGA composite should be taken into account when the composite scaffolds were prepared, which plays an important role in the biocompatibility, degradation rate and osteoconductivity.

  6. PLGA-PEG-PLGA microspheres as a delivery vehicle for antisense oligonucleotides to CTGF: Implications on post-surgical peritoneal adhesion prevention

    NASA Astrophysics Data System (ADS)

    Azeke, John Imuetinyan-Jesu, Jr.

    , while both cytokines are over-expressed within the first day following injury, CTGF protein levels could not be correlated with observed adhesion development. In addition, we synthesized linear triblock copolymers of polyethylene glycol (PEG) and poly(D,L-lactide-co-glycolide) (PLGA), two of the most widely studied biodegradable polymers in use today. Bulk gels and microparticles of the copolymers were then evaluated for gelling behavior, temperature stability, and drug loading and release kinetics in order assess their suitability as potential carriers of antisense therapeutics. A novel approach to affecting the antisense oligonucleotide release kinetics by varying the relative concentrations of co-encapsulated cationic lipid transfection agents was also presented.

  7. Formulation and evaluation of poly(lactic-co-glycolic acid) microspheres loaded with an altered collagen type II peptide for the treatment of rheumatoid arthritis.

    PubMed

    He, Jintian; Li, Huiqi; Liu, Chao; Wang, Gaizhen; Ge, Lan; Ma, Shufen; Huang, Lijing; Yan, Shaofeng; Xu, Xiaohong

    2015-01-01

    The aim of this research was to evaluate the potential of water-in-oil-in-water (w/o/w) and solid-in-oil-in-water (s/o/w) emulsification techniques to prepare the altered collagen type II peptide AP268-270 (ACTP)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres to make ACTP more convenient as an rheumatoid arthritis treatment. Microspheres produced by the s/o/w method had higher drug encapsulation efficiency (69.7-79.8%) than those prepared by the w/o/w method (21.8-39.3%). In vitro drug release was influenced by the microencapsulation technique, molecular weight, and composition of the polymer. After intramuscular injection of the optimal formulation to Lewis rats, the concentration of ACTP peptide in serum reached its maximum level on day 3 and then remained nearly stable for approximately 4 weeks. In a collagen-induced arthritis rat model, a single intramuscular injection of ACTP-loaded PLGA microspheres had comparable efficacy to the intravenous injection of ACTP peptide solution once every other day.

  8. Size influences the cytotoxicity of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles.

    PubMed

    Xiong, Sijing; George, Saji; Yu, Haiyang; Damoiseaux, Robert; France, Bryan; Ng, Kee Woei; Loo, Joachim Say-Chye

    2013-06-01

    The aim of this study is to uncover the size influence of poly (lactic-co-glycolic acid) (PLGA) and titanium dioxide (TiO(2)) nanoparticles on their potential cytotoxicity. PLGA and TiO(2) nanoparticles of three different sizes were thoroughly characterized before in vitro cytotoxic tests which included viability, generation of reactive oxygen species (ROS), mitochondrial depolarization, integrity of plasma membrane, intracellular calcium influx and cytokine release. Size-dependent cytotoxic effect was observed in both RAW264.7 cells and BEAS-2B cells after cells were incubated with PLGA or TiO(2) nanoparticles for 24 h. Although PLGA nanoparticles did not trigger significantly lethal toxicity up to a concentration of 300 μg/ml, the TNF-α release after the stimulation of PLGA nanoparticles should not be ignored especially in clinical applications. Relatively more toxic TiO(2) nanoparticles triggered cell death, ROS generation, mitochondrial depolarization, plasma membrane damage, intracellular calcium concentration increase and size-dependent TNF-α release, especially at a concentration higher than 100 μg/ml. These cytotoxic effects could be due to the size-dependent interaction between nanoparticles and biomolecules, as smaller particles tend to adsorb more biomolecules. In summary, we demonstrated that the ability of protein adsorption could be an important paradigm to predict the in vitro cytotoxicity of nanoparticles, especially for low toxic nanomaterials such as PLGA and TiO(2) nanoparticles. PMID:22983807

  9. Microspheres

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Vital information on a person's physical condition can be obtained by identifying and counting the population of T-cells and B-cells, lymphocytes of the same shape and size that help the immune system protect the body from the invasion of disease. The late Dr. Alan Rembaum developed a method for identifying the cells. The method involved tagging the T-cells and B-cells with microspheres of different fluorescent color. Microspheres, which have fluorescent dye embedded in them, are chemically treated so that they can link with antibodies. With the help of a complex antibody/antigen reaction, the microspheres bind themselves to specific 'targets,' in this case the T-cells or B-cells. Each group of cells can then be analyzed by a photoelectronic instrument at different wavelengths emitted by the fluorescent dyes. Same concept was applied to the separation of cancer cells from normal cells. Microspheres were also used to conduct many other research projects. Under a patent license Magsphere, Inc. is producing a wide spectrum of microspheres on a large scale and selling them worldwide for various applications.

  10. Encapsulation of simvastatin in PLGA microspheres loaded into hydrogel loaded BCP porous spongy scaffold as a controlled drug delivery system for bone tissue regeneration.

    PubMed

    Nath, Subrata D; Linh, Nguyen T B; Sadiasa, Alexander; Lee, Byong T

    2014-04-01

    The main objective of this study was to fabricate a controlled drug delivery which is simultaneously effective for bone regeneration. We have encapsulated simvastatin, which enhances osteoblastic activity, in the poly (lactic-co-glycolic acid) microspheres. Loading of these microspheres inside the spongy scaffold of biphasic calcium phosphate with the help of Gelatin (Gel) hydrogel controls the delivery of the drug, and ensures a more favorable drug release profile. As a result, some significant benefits have been achieved, such as higher mechanical strength, excellent biocompatibility in in vitro experiments. For determining the characteristics of the composite scaffold, several analysis, such as scanning electron microscope, EDX, X-ray diffraction, FT-IR, and porosity were carried out. The in vitro drug release profile clearly indicates that simvastatin release from the microsphere was more controlled and prolonged after loading in the scaffold. Biocompatibility was certainly higher for the final composite scaffold compared to drug unloaded scaffold, as assessed through MTT assay and Confocal imaging with MC3T3-E1 pre-osteoblast cells. Cell attachment and proliferation were certainly higher in the presence of drug loaded microspheres. Bone remodeling gene and protein expression were observed by real-time polymerase chain reaction and Western blot respectively. Simvastatin loaded scaffold exhibited the best results in every determination which was carried out.

  11. Sustained release of calcium hydroxide from poly(DL-lactide-co-glycolide) acid microspheres for apexification.

    PubMed

    Cerda-Cristerna, Bernardino Isaac; Breceda-Leija, Alejandro; Méndez-González, Verónica; Chavarría-Bolaños, Daniel; Flores-Reyes, Héctor; Garrocho-Rangel, Arturo; Komabayashi, Takashi; Wadajkar, Aniket S; Pozos-Guillén, Amaury J

    2016-09-01

    Calcium hydroxide (CH) loaded poly(DL-lactide-co-glycolide) acid (PLGA) microspheres (MS) might be used for apexification requiring a sustained release of Ca(2+). The aim of this study was to formulate and characterize CH-PLGA-MS. The CH-loaded MS were prepared by either oil-in-water (O/W) or water-in-oil/in-water (W/O/W) emulsion solvent evaporation technique. MS produced by the O/W technique exhibited a larger diameter (18.63 ± 7.23 μm) than the MS produced by the W/O/W technique (15.25 ± 7.37 μm) (Mann-Whitney U test P < 0.001). The CH encapsulation efficiency (E e) and Ca(2+) release were calculated from data obtained by absorption techniques. Ca(2+) release profile was evaluated for 30 days. To know the E e, the CH-loaded MS were dissolved in 1 M NaOH to release all its content and a Ca(2+) colorimetric marker was added to this solution. The reagent marked the Ca(2+) in blue color, which was then measured by a UV-Vis system (650 nm). The percentage of E e was calculated on the basis of the theoretical loading. The E e of the O/W-produced MS was higher (24 %) than the corresponding percentage of the W/O/W-produced MS (11 %). O/W- and W/O/W-produced MS released slower and lower Ca(2+) than a control CH paste with polyethylene glycol 400 (Kruskal-Wallis test). O/W-produced MS released higher Ca(2+) than W/O/W-produced MS (statistically significant differences; P < 0.05). In conclusion, the CH-PLGA-MS were successfully formulated; the technique of formulation influenced the size, encapsulation efficiency and release profile. The MS were better sustained release system than the CH paste.

  12. Preparation and Antibacterial Activity Evaluation of 18-β-glycyrrhetinic Acid Loaded PLGA Nanoparticles

    PubMed Central

    Darvishi, Behrad; Manoochehri, Saeed; Kamalinia, Golnaz; Samadi, Nasrin; Amini, Mohsen; Mostafavi, Seyyed Hossein; Maghazei, Shahab; Atyabi, Fatemeh; Dinarvand, Rassoul

    2015-01-01

    The aim of the present study was to formulate poly (lactide-co-glycolide) (PLGA) nanoparticles loaded with 18-β-glycyrrhetinic acid (GLA) with appropriate physicochemical properties and antimicrobial activity. GLA loaded PLGA nanoparticles were prepared with different drug to polymer ratios, acetone contents and sonication times and the antibacterial activity of the developed nanoparticles was examined against different gram-negative and gram-positive bacteria. The antibacterial effect was studied using serial dilution technique to determine the minimum inhibitory concentration of nanoparticles. Results demonstrated that physicochemical properties of nanoparticles were affected by the above mentioned parameters where nanoscale size particles ranging from 175 to 212 nm were achieved. The highest encapsulation efficiency (53.2 ± 2.4%) was obtained when the ratio of drug to polymer was 1:4. Zeta potential of the developed nanoparticles was fairly negative (-11±1.5). In-vitro release profile of nanoparticles showed two phases: an initial phase of burst release for 10 h followed by a slow release pattern up to the end. The antimicrobial results revealed that the nanoparticles were more effective than pure GLA against P. aeuroginosa, S. aureus and S. epidermidis. This improvement in antibacterial activity of GLA loaded nanoparticles when compared to pure GLA may be related to higher nanoparticles penetration into infected cells and a higher amount of GLA delivery in its site of action. Herein, it was shown that GLA loaded PLGA nanoparticles displayed appropriate physicochemical properties as well as an improved antimicrobial effect. PMID:25901144

  13. Functionalized PLGA-doped zirconium oxide ceramics for bone tissue regeneration.

    PubMed

    Lupu-Haber, Yael; Pinkas, Oded; Boehm, Stefanie; Scheper, Thomas; Kasper, Cornelia; Machluf, Marcelle

    2013-12-01

    Bone tissue engineering is an alternative approach to bone grafts. In our study we aim to develop a composite scaffold for bone regeneration made of doped zirconium oxide (ZrO2) conjugated with poly(lactic-co-glycolic acid) (PLGA) particles for the delivery of growth factors. In this composite, the PLGA microspheres are designed to release a crucial growth factor for bone formation, bone morphogenetic protein-2 (BMP2). We found that by changing the polymer's molecular weight and composition, we could control microsphere loading, release and size. The BMP2 released from PLGA microspheres retained its biological activity and increased osteoblastic marker expression in human mesenchymal stem cells (hMSCs). Uncapped PLGA microspheres were conjugated to ZrO2 scaffolds using carbodiimide chemistry, and the composite scaffold was shown to support hMSCs growth. We also demonstrated that human umbilical vein endothelial cells (HUVECs) can be co-cultured with hMSCs on the ZrO2 scaffold for future vascularization of the scaffold. The ZrO2 composite scaffold could serve as a bone substitute for bone grafting applications with the added ability of releasing different growth factors needed for bone regeneration.

  14. Production and characterization of 166Ho polylactic acid microspheres.

    PubMed

    Yavari, Kamal; Yeganeh, Ehsan; Abolghasemi, Hossein

    2016-01-01

    Microsphere and particle technology with selective transport of radiation represents a new generation of therapeutics. Poly-L-lactic acid (PLLA) microspheres loaded with holmium-166 acetylacetonate ((166)Ho-PLLA-MS) are novel microdevices. In this research, (165)HoAcAc-PLLA microparticles were prepared by the solvent evaporation technique. Microspheres were irradiated at Tehran Research Reactor. The diameter and surface morphologies were characterized by particle sizer and scanning electron microscopy before and after irradiation. The complex stability, radiochemical purity, and in vivo biodistribiotion were checked in the final solution up to 3 days. In this study, (166)Ho-PLLA spherical particles with a smooth surface and diameter of 20-40 µm were obtained, which were stable in vitro and in vivo studies. Neutron irradiation did not damage the particles. The ease with which the PLLA spheres could be made in the optimal size range for later irradiation and their ability to retain the (166)Ho provided good evidence for their potential use in radioembolization.

  15. An Overview of Poly(lactic-co-glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering

    PubMed Central

    Gentile, Piergiorgio; Chiono, Valeria; Carmagnola, Irene; Hatton, Paul V.

    2014-01-01

    Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function. PMID:24590126

  16. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release.

    PubMed

    Huang, Xiaozhou; Li, Na; Wang, Dajiang; Luo, Yuyan; Wu, Ziyu; Guo, Zhefei; Jin, Qixing; Liu, Zhuying; Huang, Yafei; Zhang, Yongming; Wu, Chuanbin

    2015-08-10

    The objective of this study was to investigate the use of transmission hard X-ray nano-computed-tomography (nano-CT) for characterization of the pore structure and drug distribution in poly (lactic-co-glycolic acid) (PLGA) microspheres encapsulating bovine serum albumin and to study the correlation between drug distribution and burst release. The PLGA microspheres were fabricated using a double-emulsion method. The results of pore structure analysis accessed with nano-CT were compared with those acquired by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Surface pore interconnectivity and surface protein interconnectivity were obtained using combined nano-CT and pixel analysis. The correlation between surface protein interconnectivity with the initial burst release across various tested formulations was also analyzed. The size, shape, and distribution of the pores and protein could be clearly observed in the whole microsphere using nano-CT, whereas only the sectional information was observed using SEM or CLSM. Interconnected pores and surface connected pores could be clearly distinguished in nano-CT, which enables the quantitative analysis of surface pore interconnectivity and surface protein interconnectivity. The surface protein interconnectivity in different formulations correlated well with the burst release at 5-10h. Nano-CT provided a nondestructive, high-resolution, and three-dimensional analysis method to characterize the porous microsphere.

  17. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  18. Humidity-dependent compression-induced glass transition of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA).

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You-Yeon

    2015-07-28

    Constant rate compression isotherms of the air-water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA) show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not fully understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air-water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods. We observed that the mechanical and structural responses of the Langmuir PLGA films are significantly dependent on the rate of film compression; the glass transition was induced in the PLGA film only at fast compression rates. Surprisingly, we found that this deformation rate dependence is also dependent on the humidity of the environment. With water acting as a plasticizer for the PLGA material, the diffusion of water molecules through the PLGA film seems to be the key factor in the determination of the glass transformation properties and thus the mechanical response of the PLGA film against lateral compression. Based on our combined results, we hypothesize the following mechanism for the compression-induced glass transformation of the Langmuir PLGA film; (1) initially, a humidified/non-glassy PLGA film is formed in the full surface-coverage region (where the surface pressure shows a plateau) during compression; (2) further compression leads to the collapse of the PLGA chains and the formation of new surfaces on the air side of the film, and this newly formed top layer of the PLGA film is transiently glassy in character because the water evaporation rate

  19. In vitro and in vivo evaluation of mucoadhesive microspheres prepared for the gastrointestinal tract using polyglycerol esters of fatty acids and a poly(acrylic acid) derivative.

    PubMed

    Akiyama, Y; Nagahara, N; Kashihara, T; Hirai, S; Toguchi, H

    1995-03-01

    Two types of polyglycerol ester of fatty acid (PGEF)-based microspheres were prepared: Carbopol 934P (CP)-coated microspheres (CPC-microspheres) and CP-dispersion microspheres (CPD-microspheres). Comparative studies on mucoadhesion were done with these microspheres and PGEF-based microspheres without CP (PGEF-microspheres). In an in vitro adhesion test, the CPD-microspheres adhered strongly to mucosa prepared from rat stomach and small intestine because each CP particle in the CPD-microsphere was hydrated and swelled with part of it remaining within the microsphere and part extending to the surface serving to anchor the microsphere to the mucus layer. The gastrointestinal transit patterns after administration of the CPD-microspheres and PGEF-microspheres to fasted rats were fitted to a model in which the microspheres are emptied from the stomach monoexponentially with a lag time and then transit through the small intestine at zero-order. Parameters obtained by curve fitting confirmed that the gastrointestinal transit time of the CPD-microspheres was prolonged compared with that of the PGEF-microspheres. MRT in the gastrointestinal tract was also prolonged after administration of the CPD-microspheres compared with that following the administration of the PGEF-microspheres.

  20. Cellular uptake, antioxidant and antiproliferative activity of entrapped α-tocopherol and γ-tocotrienol in poly (lactic-co-glycolic) acid (PLGA) and chitosan covered PLGA nanoparticles (PLGA-Chi).

    PubMed

    Alqahtani, Saeed; Simon, Lacey; Astete, Carlos E; Alayoubi, Alaadin; Sylvester, Paul W; Nazzal, Sami; Shen, Yixiao; Xu, Zhimin; Kaddoumi, Amal; Sabliov, Cristina M

    2015-05-01

    The aim of this study was to formulate and characterize α-tocopherol (α-T) and tocotrienol-rich fraction (TRF) entrapped in poly (lactide-co-glycolide) (PLGA) and chitosan covered PLGA (PLGA-Chi) based nanoparticles. The resultant nanoparticles were characterized and the effect of nanoparticles entrapment on the cellular uptake, antioxidant, and antiproliferative activity of α-T and TRF were tested. In vitro uptake studies in Caco2 cells showed that PLGA and PLGA-Chi nanoparticles displayed a greater enhancement in the cellular uptake of α-T and TRF when compared with the control without causing toxicity to the cells (p<0.0001). Furthermore, the cellular internalization of both PLGA and PLGA-Chi nanoparticles labeled with FITC was investigated by fluorescence microscopy; both types of nanoparticles were able to get internalized into the cells with reasonable amounts. However, PLGA-Chi nanoparticles showed significantly higher (3.5-fold) cellular uptake compared to PLGA nanoparticles. The antioxidant activity studies demonstrated that entrapment of α-T and TRF in PLGA and PLGA-Chi nanoparticles exhibited greater ability in inhibiting cholesterol oxidation at 48 h compared to the control. In vitro antiproliferative studies confirmed marked cytotoxicity of TRF on MCF-7 and MDA-MB-231 cell lines when delivered by PLGA and PLGA-Chi nanoparticles after 48 h incubation compared to control. In summary, PLGA and PLGA-Chi nanoparticles may be considered as an attractive and promising approach to enhance the bioavailability and activity of poorly water soluble compounds such as α-tocopherol and tocotrienols.

  1. Mycobacterium hsp65 DNA entrapped into TDM-loaded PLGA microspheres induces protection in mice against Leishmania (Leishmania) major infection.

    PubMed

    Coelho, Eduardo Antonio Ferraz; Tavares, Carlos Alberto Pereira; Lima, Karla de Melo; Silva, Célio Lopes; Rodrigues, José Maciel; Fernandes, Ana Paula

    2006-05-01

    Heat shock proteins (HSPs) are highly conserved among different organisms. A mycobacterial HSP65 DNA vaccine was previously shown to have prophylactic and immunotherapeutic effects against Mycobacterium tuberculosis infection in mice. Here, BALB/c mice were immunized with mycobacterial DNA-hsp65 or with DNA-hsp65 and trehalose dymicolate (TDM), both carried by biodegradable microspheres (MHSP/TDM), and challenged with Leishmania (Leishmania) major. MHSP/TDM conferred protection against L. major infection, as indicated by a significant reduction of edema and parasite loads in infected tissues. Although high levels of interferon-gamma and low levels of interleukin (IL)-4 and IL-10 were detected in mice immunized with DNA-hsp65 or MHSP/TDM, only animals immunized with MHSP/TDM displayed a consistent Th1 immune response, i.e., significantly higher levels of anti-soluble Leishmania antigen (SLA) immunoglobulin G (IgG)2a and low anti-SLA IgG1 antibodies. These findings indicate that encapsulated MHSP/TDM is more immunogenic than naked hsp65 DNA, and has great potential to improve vaccine effectiveness against leishmaniasis and tuberculosis. PMID:16432754

  2. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer. PMID:27287553

  3. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer.

  4. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer.

    PubMed

    Zeng, Xiaowei; Tao, Wei; Mei, Lin; Huang, Laiqiang; Tan, Chunyan; Feng, Si-Shen

    2013-08-01

    We developed a system of nanoparticles (NPs) of cholic acid functionalized, star-shaped block copolymer consisting of PLGA and vitamin E TPGS for sustained and controlled delivery of docetaxel for treatment of cervical cancer, which demonstrated superior in vitro and in vivo performance in comparison with the drug-loaded PLGA NPs and the linear PLGA-b-TPGS copolymer NPs. The star-shaped block copolymer CA-PLGA-b-TPGS of three branch arms was synthesized through the core-first approach and characterized by (1)H NMR, GPC and TGA. The drug- or coumarin 6-loaded NPs were prepared by a modified nanoprecipitation technique and then characterized in terms of size and size distribution, surface morphology and surface charge, drug encapsulation efficiency, in vitro release profile and physical state of the encapsulated drug. The CA-PLGA-b-TPGS NPs were found to have the highest cellular uptake efficiency, the highest antitumor efficacy compared with PLGA-b-TPGS NPs and PLGA NPs. The results suggest that such a star-shaped copolymer CA-PLGA-b-TPGS could be used as a new molecular biomaterial for drug delivery of high efficiency.

  5. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers

    NASA Astrophysics Data System (ADS)

    Cao, Long-Bin; Zeng, Sha; Zhao, Wei

    2016-06-01

    In the present study, a highly stable luteinizing-hormone-releasing hormone (LHRH)-conjugated PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles were developed for the successful treatment of prostate cancers. We have demonstrated that a unique combination of targeted drug delivery and controlled drug release is effective against prostate cancer therapy. The docetaxel (DTX)/PLGA-LHRH micelles possessed a uniform spherical shape with an average diameter of ~170 nm. The micelles exhibited a controlled drug release for up to 96 h which can minimize the non-specific systemic spread of toxic drugs during circulation while maximizing the efficiency of tumor-targeted drug delivery. The LHRH-conjugated micelles showed enhanced cellular uptake and exhibited significantly higher cytotoxicity against LNCaP cancer cells. We have showed that PLGA-LHRH induced greater caspase-3 activity indicating its superior apoptosis potential. Consistently, LHRH-conjugated micelles induced threefold and twofold higher G2/M phase arrest than compared to free DTX or PLGA NP-treated groups. Overall, results indicate that use of LHRH-conjugated nanocarriers may potentially be an effective nanocarrier to effectively treat prostate cancer.

  6. Highly Stable PEGylated Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles for the Effective Delivery of Docetaxel in Prostate Cancers.

    PubMed

    Cao, Long-Bin; Zeng, Sha; Zhao, Wei

    2016-12-01

    In the present study, a highly stable luteinizing-hormone-releasing hormone (LHRH)-conjugated PEGylated poly(lactic-co-glycolic acid) (PLGA) nanoparticles were developed for the successful treatment of prostate cancers. We have demonstrated that a unique combination of targeted drug delivery and controlled drug release is effective against prostate cancer therapy. The docetaxel (DTX)/PLGA-LHRH micelles possessed a uniform spherical shape with an average diameter of ~170 nm. The micelles exhibited a controlled drug release for up to 96 h which can minimize the non-specific systemic spread of toxic drugs during circulation while maximizing the efficiency of tumor-targeted drug delivery. The LHRH-conjugated micelles showed enhanced cellular uptake and exhibited significantly higher cytotoxicity against LNCaP cancer cells. We have showed that PLGA-LHRH induced greater caspase-3 activity indicating its superior apoptosis potential. Consistently, LHRH-conjugated micelles induced threefold and twofold higher G2/M phase arrest than compared to free DTX or PLGA NP-treated groups. Overall, results indicate that use of LHRH-conjugated nanocarriers may potentially be an effective nanocarrier to effectively treat prostate cancer.

  7. One-step fabrication of inorganic/organic hybrid microspheres with tunable surface texture for controlled drug release application.

    PubMed

    Dong, Hua; Tang, Guannan; Ma, Ting; Cao, Xiaodong

    2016-01-01

    In this paper, we report one-step fabrication of poly(lactide-co-glycolic acid)/titanium oxide (PLGA/TiO2) hybrid microspheres with tunable surface texture via droplet-based microfluidics. Surface texture of microspheres can be continuously tuned by changing the mass ratio between titanium tetraisopropoxide (TTIP) and PLGA in the dispersed phase. The fast hydrolysis of TTIP on the droplet surface can generate a thin shell membrane, resulting in a wrinkled surface after extraction of organic solvent. In vitro drug release monitoring of tanshinone IIA-loaded PLGA/TiO2 hybrid microsphere reveals that surface texture can affect the drug release rate to a large extent without sacrificing the drug encapsulation efficiency. Our finding might benefit the sustained drug delivery where variable drug release rate and high drug encapsulation efficiency are both required. PMID:26610930

  8. New Perspective in the Formulation and Characterization of Didodecyldimethylammonium Bromide (DMAB) Stabilized Poly(Lactic-co-Glycolic Acid) (PLGA) Nanoparticles

    PubMed Central

    Gossmann, Rebecca; Langer, Klaus; Mulac, Dennis

    2015-01-01

    Over the last few decades the establishment of nanoparticles as suitable drug carriers with the transport of drugs across biological barriers such as the gastrointestinal barrier moved into the focus of many research groups. Besides drug transport such carrier systems are well suited for the protection of drugs against enzymatic and chemical degradation. The preparation of biocompatible and biodegradable nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) is intensively described in literature, while especially nanoparticles with cationic properties show a promising increased cellular uptake. This is due to the electrostatic interaction between the cationic surface and the negatively charged lipid membrane of the cells. Even though several studies achieved the successful preparation of nanoparticles stabilized with the cationic surfactants such as didodecyldimethylammonium bromide (DMAB), in most cases insufficient attention was paid to a precise analytical characterization of the nanoparticle system. The aim of the present work was to overcome this deficit by presenting a new perspective in the formulation and characterization of DMAB-stabilized PLGA nanoparticles. Therefore these nanoparticles were carefully examined with regard to particle diameter, zeta potential, the effect of variation in stabilizer concentration, residual DMAB content, and electrolyte stability. Without any steric stabilization, the DMAB-modified nanoparticles were sensitive to typical electrolyte concentrations of biological environments due to compression of the electrical double layer in conjunction with a decrease in zeta potential. To handle this problem, the present study proposed two modifications to enable electrolyte stability. Both polyvinyl alcohol (PVA) and polyethylene glycol (PEG) modified DMAB-PLGA-nanoparticles were stable during electrolyte addition. Furthermore, in contrast to unmodified DMAB-PLGA-nanoparticles and free DMAB, such modifications led to a lower

  9. Preparation of magnetic polylactic acid microspheres and investigation of its releasing property for loading curcumin

    NASA Astrophysics Data System (ADS)

    Li, Fengxia; Li, Xiaoli; Li, Bin

    2011-11-01

    In order to obtain a targeting drug carrier system, magnetic polylactic acid (PLA) microspheres loading curcumin were synthesized by the classical oil-in-water emulsion solvent-evaporation method. In the Fourier transform infrared spectra of microspheres, the present functional groups of PLA were all kept invariably. The morphology and size distribution of magnetic microspheres were observed with scanning electron microscopy and dynamic light scattering, respectively. The results showed that the microspheres were regularly spherical and the surface was smooth with a diameter of 0.55-0.75 μm. Magnetic Fe 3O 4 was loaded in PLA microspheres and the content of magnetic particles was 12 wt% through thermogravimetric analysis. The magnetic property of prepared microspheres was measured by vibrating sample magnetometer. The results showed that the magnetic microspheres exhibited typical superparamagnetic behavior and the saturated magnetization was 14.38 emu/g. Through analysis of differential scanning calorimetry, the curcumin was in an amorphous state in the magnetic microspheres. The drug loading, encapsulation efficiency and releasing properties of curcumin in vitro were also investigated by ultraviolet-visible spectrum analysis. The results showed that the drug loading and encapsulation efficiency were 8.0% and 24.2%, respectively. And curcumin was obviously slowly released because the cumulative release percentage of magnetic microspheres in the phosphate buffer (pH=7.4) solution was only 49.01% in 72 h, and the basic release of curcumin finished in 120 h.

  10. Preparation and investigation the release behaviour of wax microspheres loaded with salicylic acid.

    PubMed

    Gifani, Aida; Taghizadeh, Mojtaba; Seifkordi, Ali A; Ardjmand, Mehdi

    2009-09-01

    Salicylic acid-beeswax microspheres were prepared by melt dispersion technique. The effects of formulation parameters on the microscopic characteristic, drug loading and cumulative amount of released drug were investigated by experimental design. Results showed that all of the microparticles were spherical with porous surfaces. The average size of microspheres was 24-48 microm, the drug content was in the range of 22-45% and the encapsulation efficiency was 46-93%. Drug loading was influenced by emulsification speed as a main factor. All the microspheres had a burst release initially. The emulsifier concentration did not have a significant effect on drug release. The release behaviour of microspheres conformed best to Korsmeyer-Peppas semi-empirical model and the release of SA from beeswax microspheres was Fickian (n < 0.45).

  11. Preparation, characterization, and in vitro testing of poly(lactide-co-glycolide) and dextran magnetic microspheres for in vivo applications

    NASA Astrophysics Data System (ADS)

    Leamy, Patrick J.

    Many research groups are investigating degradable magnetic particles for magnetic resonance imaging (MRI) contrast agents and as carriers for magnetic drug guidance. These particles are composite materials with a degradable polymer matrix and iron oxide nanoparticles for magnetic properties. The degradable polymer matrix acts to provide colloidal stability and, for drug delivery applications, provides a reservoir for the storage and release of drugs. Natural polymers, like albumin and dextran, which degrade by the action of enzymes; have been used for the polymer matrix. Iron oxide nanoparticles are used for magnetic properties since they can be digested in vivo and have low toxicities. Polylactic acid (PLA) and its copolymers with polyglycolic acid (PLGA) are versatile polymers that degrade by simple hydrolysis without the aid of enzymes. Microspheres are easily formed using the solvent extraction/evaporation method and a wide range of drugs can be encapsulated in them. Magnetic PLGA microspheres suitable for applications were synthesized for the first time in this dissertation. This was accomplished by coating iron oxide nanoparticles with oleic acid to make them dispersible in the organic solvents used in the extraction/evaporation microsphere preparation method. In addition to the magnetic PLGA microspheres, a novel all-aqueous method for preparing crosslinked dextran magnetic microspheres was developed in this dissertation. This method uses free radical polymerization for crosslinking and does not require the use of flammable and harmful solvents. For efficient MRI contrast and magnetic drug guidance, maximized iron oxide content of microspheres is desirable. The two different microsphere preparation methods were optimized for iron oxide content. The effect of iron oxide content on microsphere size and morphology was studied. In addition, an in vitro circulation model was used to evaluate the ability of magnetic microspheres to be guided at physiologic blood

  12. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres.

    PubMed

    Shen, Jie; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J

    2015-11-28

    The objective of the present study was to determine whether an in vitro-in vivo correlation (IVIVC) can be established for polymeric microspheres that are equivalent in formulation composition but prepared with different manufacturing processes. Risperidone was chosen as a model therapeutic and poly(lactic-co-glycolic acid) (PLGA) with similar molecular weight as that used in the commercial product Risperdal® Consta® was used to prepare risperidone microspheres. Various manufacturing processes were investigated to produce the risperidone microspheres with similar drug loading (approx. 37%) but distinctly different physicochemical properties (e.g. porosity, particle size and particle size distribution). In vitro release of the risperidone microspheres was investigated using different release testing methods (such as sample-and-separate and USP apparatus 4). In vivo pharmacokinetic profiles of the risperidone microsphere formulations following intramuscular administration were determined using a rabbit model. Furthermore, the obtained pharmacokinetic profiles were deconvoluted using the Loo-Riegelman method and the calculated in vivo release was compared with the in vitro release of these microspheres. Level A IVIVCs were established and validated for the compositionally equivalent risperidone microspheres based on the in vitro release data obtained using USP apparatus 4. The developed IVIVCs demonstrated good predictability and were robust. These results showed that the developed USP apparatus 4 method was capable of discriminating PLGA microspheres that are equivalent in formulation composition but with manufacturing differences and predicting their in vivo performance in the investigated animal model.

  13. Process and formulation variables in the preparation of injectable and biodegradable magnetic microspheres

    PubMed Central

    Zhao, Hong; Gagnon, Jeffrey; Häfeli, Urs O

    2007-01-01

    The aim of this study was to prepare biodegradable sustained release magnetite microspheres sized between 1 to 2 μm. The microspheres with or without magnetic materials were prepared by a W/O/W double emulsion solvent evaporation technique using poly(lactide-co-glycolide) (PLGA) as the biodegradable matrix forming polymer. Effects of manufacturing and formulation variables on particle size were investigated with non-magnetic microspheres. Microsphere size could be controlled by modification of homogenization speed, PLGA concentration in the oil phase, oil phase volume, solvent composition, and polyvinyl alcohol (PVA) concentration in the outer water phase. Most influential were the agitation velocity and all parameters that influence the kinematic viscosity of oil and outer water phase, specifically the type and concentration of the oil phase. The magnetic component yielding homogeneous magnetic microspheres consisted of magnetite nanoparticles of 8 nm diameter stabilized with a polyethylene glycole/polyacrylic acid (PEG/PAA) coating and a saturation magnetization of 47.8 emu/g. Non-magnetic and magnetic microspheres had very similar size, morphology, and size distribution, as shown by scanning electron microscopy. The optimized conditions yielded microspheres with 13.7 weight% of magnetite and an average diameter of 1.37 μm. Such biodegradable magnetic microspheres seem appropriate for vascular administration followed by magnetic drug targeting. PMID:17407608

  14. A Biomimetic Approach to Active Self-Microencapsulation of Proteins in PLGA

    PubMed Central

    Shah, Ronak B.; Schwendeman, Steven P.

    2014-01-01

    A biomimetic approach to organic solvent-free microencapsulation of proteins based on the self-healing capacity of poly (DL)-lactic-co-glycolic acid (PLGA) microspheres containing glycosaminoglycan-like biopolymers (BPs), was examined. To screen BPs, aqueous solutions of BP [high molecular weight dextran sulfate (HDS), low molecular weight dextran sulfate (LDS), chondroitin sulfate (CS), heparin (HP), hyaluronic acid (HA), chitosan (CH)] and model protein lysozyme (LYZ) were combined in different molar and mass ratios, at 37 °C and pH 7. The BP-PLGA microspheres (20–63 µm) were prepared by a double water-oil-water emulsion method with a range of BP content, and trehalose and MgCO3 to control microclimate pH and to create percolating pores for protein. Biomimetic active self-encapsulation (ASE) of proteins [LYZ, vascular endothelial growth factor165 (VEGF) and fibroblast growth factor (FgF-20)] was accomplished by incubating blank BP-PLGA microspheres in low concentration protein solutions at ~24 °C, for 48 h. Pore closure was induced at 42.5 °C under mild agitation for 42 h. Formulation parameters of BP-PLGA microspheres and loading conditions were studied to optimize protein loading and subsequent release. LDS and HP were found to bind >95% LYZ at BP:LYZ >0.125 w/w, whereas HDS and CS bound > 80% LYZ at BP:LYZ of 0.25–1 and < 0.33, respectively. HA-PLGA microspheres were found to be not ideal for obtaining high protein loading (>2% w/w of LYZ). Sulfated BP-PLGA microspheres were capable of loading LYZ (~2–7 % w/w), VEGF (~ 4% w/w), and FgF-20 (~2% w/w) with high efficiency. Protein loading was found to be dependent on the loading solution concentration, with higher protein loading obtained at higher loading solution concentration within the range investigated. Loading also increased with content of sulfated BP in microspheres. Release kinetics of proteins was evaluated in-vitro with complete release media replacement. Rate and extent of release were

  15. Improved insulin loading in poly(lactic-co-glycolic) acid (PLGA) nanoparticles upon self-assembly with lipids.

    PubMed

    García-Díaz, María; Foged, Camilla; Nielsen, Hanne Mørck

    2015-03-30

    Polymeric nanoparticles are widely investigated as drug delivery systems for oral administration. However, the hydrophobic nature of many polymers hampers effective loading of the particles with hydrophilic macromolecules such as insulin. Thus, the aim of this work was to improve the loading of insulin into poly(lactic-co-glycolic) acid (PLGA) nanoparticles by pre-assembly with amphiphilic lipids. Insulin was complexed with soybean phosphatidylcholine or sodium caprate by self-assembly and subsequently loaded into PLGA nanoparticles by using the double emulsion-solvent evaporation technique. The nanoparticles were characterized in terms of size, zeta potential, insulin encapsulation efficiency and loading capacity. Upon pre-assembly with lipids, there was an increased distribution of insulin into the organic phase of the emulsion, eventually resulting in significantly enhanced encapsulation efficiencies (90% as compared to 24% in the absence of lipids). Importantly, the insulin loading capacity was increased up to 20% by using the lipid-insulin complexes. The results further showed that a main fraction of the lipid was incorporated into the nanoparticles and remained associated to the polymer during release studies in buffers, whereas insulin was released in a non-complexed form as a burst of approximately 80% of the loaded insulin. In conclusion, the protein load in PLGA nanoparticles can be significantly increased by employing self-assembled protein-lipid complexes.

  16. In vitro drug release behavior, mechanism and antimicrobial activity of rifampicin loaded low molecular weight PLGA-PEG-PLGA triblock copolymeric nanospheres.

    PubMed

    Gajendiran, M; Divakar, S; Raaman, N; Balasubramanian, S

    2013-12-01

    Poly (lactic-co-glycolic acid) (PLGA (92:8)) and a series of PLGA-PEG-PLGA tri block copolymers were synthesized by direct melt polycondensation. The copolymers were characterized by FTIR, and 1HNMR spectroscopic techniques, viscosity, gel permeation chromatography (GPC) and powder x-ray diffraction (XRD). The rifampicin (RIF) loaded polymeric nanospheres (NPs) were prepared by ultrasonication-W/O emulsification technique. The NPs have been characterized by field emission scanning electron microscopy (FESEM), TEM, powder X-ray diffraction (XRD), UVvisible spectroscopy and DLS measurements. The drug loaded triblock copolymeric NPs have five folds higher drug content and drug loading efficiency than that of PLGA microspheres (MPs). The in vitro drug release study shows that the drug loaded NPs showed an initial burst release after that sustained release up to 72 h. All the triblock copolymeric NPs follow anomalous drug diffusion mechanism while the PLGA MPs follow non-Fickian super case-II mechanism up to 12 h. The overall in-vitro release follows second order polynomial kinetics up to 72 h. The antimicrobial activity of the RIF loaded polymer NPs was compared with that of pure RIF and tetracycline (TA). The RIF loaded triblock copolymeric NPs inhibited the bacterial growth more effectively than the pure RIF and TA.

  17. Preparation and properties of BSA-loaded microspheres based on multi-(amino acid) copolymer for protein delivery.

    PubMed

    Chen, Xingtao; Lv, Guoyu; Zhang, Jue; Tang, Songchao; Yan, Yonggang; Wu, Zhaoying; Su, Jiacan; Wei, Jie

    2014-01-01

    A multi-(amino acid) copolymer (MAC) based on ω-aminocaproic acid, γ-aminobutyric acid, L-alanine, L-lysine, L-glutamate, and hydroxyproline was synthetized, and MAC microspheres encapsulating bovine serum albumin (BSA) were prepared by a double-emulsion solvent extraction method. The experimental results show that various preparation parameters including surfactant ratio of Tween 80 to Span 80, surfactant concentration, benzyl alcohol in the external water phase, and polymer concentration had obvious effects on the particle size, morphology, and encapsulation efficiency of the BSA-loaded microspheres. The sizes of BSA-loaded microspheres ranged from 60.2 μm to 79.7 μm, showing different degrees of porous structure. The encapsulation efficiency of BSA-loaded microspheres also ranged from 38.8% to 50.8%. BSA release from microspheres showed the classic biphasic profile, which was governed by diffusion and polymer erosion. The initial burst release of BSA from microspheres at the first week followed by constant slow release for the next 7 weeks were observed. BSA-loaded microspheres could degrade gradually in phosphate buffered saline buffer with pH value maintained at around 7.1 during 8 weeks incubation, suggesting that microsphere degradation did not cause a dramatic pH drop in phosphate buffered saline buffer because no acidic degradation products were released from the microspheres. Therefore, the MAC microspheres might have great potential as carriers for protein delivery.

  18. Electrospun aligned PLGA and PLGA/gelatin nanofibers embedded with silica nanoparticles for tissue engineering.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Ghaedi, Kamran; Salehi, Hossein; Arpanaei, Ayyoob

    2015-08-01

    Aligned poly lactic-co-glycolic acid (PLGA) and PLGA/gelatin nanofibrous scaffolds embedded with mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. The mean diameters of nanofibers were 641±24 nm for the pure PLGA scaffolds vs 418±85 nm and 267±58 nm for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively. The contact angle measurement results (102°±6.7 for the pure PLGA scaffold vs 81°±6.8 and 18°±8.7 for the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds, respectively) revealed enhanced hydrophilicity of scaffolds upon incorporation of gelatin and MSNPs. Besides, embedding the scaffolds with MSNPs resulted in improved tensile mechanical properties. Cultivation of PC12 cells on the scaffolds demonstrated that introduction of MSNPs into PLGA and PLGA/gelatin matrices leads to the improved cell attachment and proliferation as well as long cellular processes. DAPI staining results indicated that cell proliferations on the PLGA/10 wt% MSNPs and the PLGA/gelatin/10 wt% MSNPs scaffolds were strikingly (nearly 2.5 and 3 folds, respectively) higher than that on the aligned pure PLGA scaffolds. These results suggest superior properties of silica nanoparticles-incorporated PLGA/gelatin eletrospun nanofibrous scaffolds for the stem cell culture and tissue engineering applications.

  19. Bacterial protease triggered release of biocides from microspheres with an oily core.

    PubMed

    Craig, Marina; Amiri, Mona; Holmberg, Krister

    2015-03-01

    This study deals with controlled release of drugs to a Staphylococcus aureus infected site from microspheres with an oily core and a polymeric shell. The intended use of the microspheres is for chronic wounds and the microspheres may be administered in the form of a wash liquid or incorporated in a gel. Chronic wounds often carry infection, and the use of microspheres with drug release triggered by the bacterial infection is therefore of interest. A lipophilic drug or a model of the drug was dissolved in an oil and the oil phase was dispersed into an o/w emulsion. A nanofilm shell was then assembled around the oil droplets with the layer-by-layer technique using the two biodegradable polypeptides anionic poly-L-glutamic acid (PLGA) and cationic poly-L-lysine (PLL). Since S. aureus exudes proteases such as glutamyl endopeptidase (V8) during colonization and infection, its substrate specificity was key when assembling the nanofilm. Since V8 is known to be substrate specific to the Glu-X bond, PLGA was chosen as the terminating layer of the nanofilm. Crosslinking the nanofilm after assembly lead to increased stability of the microspheres. It was shown that in a non-infectious environment, i.e. when a human wound enzyme, HNE (human neutrophile elastase), was present, the microspheres remained intact. The staphylococcal protease V8, on the other hand, readily catalyzed degradation of the microspheres, thus releasing the drug when triggered by the infectious environment.

  20. Adsorption of monomers on microspherical structures of thermal heterocomplex molecules from amino ACIDS

    NASA Astrophysics Data System (ADS)

    Honda, Hajime; Sakurazawa, Shigeru; Dekikimura, H.; Imai, Eiichi; Matsuno, Koichiro

    1995-10-01

    The surface of a microspherical structure formed in the aqueous suspension of thermal heterocomplex molecules made by heating aspartic acid and proline can adsorb basic amino acids such as histidine, lysine and arginine. It can also adsorb adenine, cytosine, adenosine and cytidine. Electrostatic interactions acting between those monomers to be adsorbed and the adsorbing surface are responsible for the adsorption.

  1. PLGA-microencapsulation protects Salmonella typhi outer membrane proteins from acidic degradation and increases their mucosal immunogenicity.

    PubMed

    Carreño, Juan Manuel; Perez-Shibayama, Christian; Gil-Cruz, Cristina; Printz, Andrea; Pastelin, Rodolfo; Isibasi, Armando; Chariatte, Dominic; Tanoue, Yutaka; Lopez-Macias, Constantino; Gander, Bruno; Ludewig, Burkhard

    2016-07-29

    Salmonella (S.) enterica infections are an important global health problem with more than 20 million individuals suffering from enteric fever annually and more than 200,000 lethal cases per year. Although enteric fever can be treated appropriately with antibiotics, an increasing number of antibiotic resistant Salmonella strains is detected. While two vaccines against typhoid fever are currently on the market, their availability in subtropical endemic areas is limited because these products need to be kept in uninterrupted cold chains. Hence, the development of a thermally stable vaccine that induces mucosal immune responses would greatly improve human health in endemic areas. Here, we have combined the high structural stability of Salmonella typhi outer membrane proteins (porins) with their microencapsulation into poly(lactic-co-glycolic acid) (PLGA) to generate an orally applicable vaccine. Encapsulated porins were protected from acidic degradation and exhibited enhanced immunogenicity following oral administration. In particular, the vaccine elicited strong S. typhi-specific B cell responses in Peyer's patches and mesenteric lymph nodes. In sum, PLGA microencapsulation substantially improved the efficacy of oral vaccination against S. typhi. PMID:27372155

  2. Poly(ethylene glycol) methacrylate hydrolyzable microspheres for transient vascular embolization.

    PubMed

    Louguet, Stéphanie; Verret, Valentin; Bédouet, Laurent; Servais, Emeline; Pascale, Florentina; Wassef, Michel; Labarre, Denis; Laurent, Alexandre; Moine, Laurence

    2014-03-01

    Poly(ethylene glycol) methacrylate (PEGMA) hydrolyzable microspheres intended for biomedical applications were readily prepared from poly(lactide-co-glycolide) (PLGA)-poly(ethylene glycol) (PEG)-PLGA crosslinker and PEGMA as a monomer using a suspension polymerization process. Additional co-monomers, methacrylic acid and 2-methylene-1,3-dioxepane (MDO), were incorporated into the initial formulation to improve the properties of the microspheres. All synthesized microspheres were spherical in shape, calibrated in the 300-500 μm range, swelled in phosphate-buffered saline (PBS) and easily injectable through a microcatheter. Hydrolytic degradation experiments performed in PBS at 37 °C showed that all of the formulations tested were totally degraded in less than 2 days. The resulting degradation products were a mixture of low-molecular-weight compounds (PEG, lactic and glycolic acids) and water-soluble polymethacrylate chains having molecular weights below the threshold for renal filtration of 50 kg mol(-1) for the microspheres containing MDO. Both the microspheres and the degradation products were determined to exhibit minimal cytotoxicity against L929 fibroblasts. Additionally, in vivo implantation in a subcutaneous rabbit model supported the in vitro results of a rapid degradation rate of microspheres and provided only a mild and transient inflammatory reaction comparable to that of the control group. PMID:24321348

  3. Enhanced Cellular Cytotoxicity and Antibacterial Activity of 18-β-Glycyrrhetinic Acid by Albumin-conjugated PLGA Nanoparticles.

    PubMed

    Darvishi, B; Manoochehri, S; Esfandyari-Manesh, M; Samadi, N; Amini, M; Atyabi, F; Dinarvand, R

    2015-12-01

    The aim of the present work was to encapsulate 18-β-Glycyrrhetinic acid (GLA) in albumin conjugated poly(lactide-co-glycolide) (PLGA) nanoparticles by a modified nanoprecipitation method. Nanoparticles (NPs) were prepared by different drug to polymer ratios, human serum albumin (HSA) content, dithiothreitol (as producer of free thiol groups) content, and acetone (as non-solvent in nanoprecipitation). NPs with a size ranging from 126 to 174 nm were achieved. The highest entrapment efficiency (89.4±4.2%) was achieved when the ratio of drug to polymer was 1:4. The zeta potential of NPs was fairly negative (-8 to -12). Fourier transform infrared spectroscopy and differential scanning calorimetry proved the conjugation of HSA to PLGA NPs. In vitro release profile of NPs showed 2 phases: an initial burst for 4 h (34-49%) followed by a slow release pattern up to the end. The antibacterial effects of NPs against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa were studied by microdilution method. The GLA-loaded NPs showed more antibacterial effect than pure GLA (2-4 times). The anticancer MTT test revealed that GLA-loaded NPs were approximately 9 times more effective than pure GLA in Hep G2 cells. PMID:25607747

  4. Acid-Sensitive Sheddable PEGylated PLGA Nanoparticles Increase the Delivery of TNF-α siRNA in Chronic Inflammation Sites.

    PubMed

    Aldayel, Abdulaziz M; Naguib, Youssef W; O'Mary, Hannah L; Li, Xu; Niu, Mengmeng; Ruwona, Tinashe B; Cui, Zhengrong

    2016-01-01

    There has been growing interest in utilizing small interfering RNA (siRNA) specific to pro-inflammatory cytokines, such as tumor necrosis factor-α ( TNF-α), in chronic inflammation therapy. However, delivery systems that can increase the distribution of the siRNA in chronic inflammation sites after intravenous administration are needed. Herein we report that innovative functionalization of the surface of siRNA-incorporated poly (lactic-co-glycolic) acid (PLGA) nanoparticles significantly increases the delivery of the siRNA in the chronic inflammation sites in a mouse model. The TNF-α siRNA incorporated PLGA nanoparticles were prepared by the standard double emulsion method, but using stearoyl-hydrazone-polyethylene glycol 2000, a unique acid-sensitive surface active agent, as the emulsifying agent, which renders (i) the nanoparticles PEGylated and (ii) the PEGylation sheddable in low pH environment such as that in chronic inflammation sites. In a mouse model of lipopolysaccharide-induced chronic inflammation, the acid-sensitive sheddable PEGylated PLGA nanoparticles showed significantly higher accumulation or distribution in chronic inflammation sites than PLGA nanoparticles prepared with an acid-insensitive emulsifying agent (i.e., stearoyl-amide-polyethylene glycol 2000) and significantly increased the distribution of the TNF-α siRNA incorporated into the nanoparticles in inflamed mouse foot. PMID:27434685

  5. Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite.

    PubMed

    Shinto, Hiroyuki; Hirata, Takuya; Fukasawa, Tomonori; Fujii, Syuji; Maeda, Hayata; Okada, Masahiro; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2013-08-01

    We have measured the interaction forces between a murine melanoma cell and a poly(l-lactic acid) (PLLA) microsphere coated with/without hydroxyapatite (HAp) nanoparticles (i.e., an HAp/PLLA or a bare PLLA microsphere) in a serum-free culture medium, using atomic force microscopy (AFM) with colloid probe technique, in order to investigate how the HAp-nanoparticle coating as well as interfacial serum proteins influence the cell-microsphere adhesion. The cell adhesion force of the HAp/PLLA microspheres was 1.4-fold stronger than that of the bare PLLA microspheres. When the microspheres were pretreated with a culture medium supplemented with 10% fetal bovine serum, the cell adhesion force of the HAp/PLLA microspheres was increased by a factor of 2.1; in contrast, no change was observed in the cell adhesion force of the bare PLLA microspheres before/after the pretreatment. Indeed, the cell adhesion force of the HAp/PLLA was 2.8-fold larger than that of the bare PLLA after the pretreatment. Additionally, we have investigated the effect of interfacial serum proteins on the zeta potentials of these microspheres. On the basis of the obtained results, possible mechanism of cell adhesion to the HAp/PLLA and bare PLLA microspheres in the presence/absence of the interfacial serum proteins is discussed.

  6. Effect of interfacial serum proteins on melanoma cell adhesion to biodegradable poly(l-lactic acid) microspheres coated with hydroxyapatite.

    PubMed

    Shinto, Hiroyuki; Hirata, Takuya; Fukasawa, Tomonori; Fujii, Syuji; Maeda, Hayata; Okada, Masahiro; Nakamura, Yoshinobu; Furuzono, Tsutomu

    2013-08-01

    We have measured the interaction forces between a murine melanoma cell and a poly(l-lactic acid) (PLLA) microsphere coated with/without hydroxyapatite (HAp) nanoparticles (i.e., an HAp/PLLA or a bare PLLA microsphere) in a serum-free culture medium, using atomic force microscopy (AFM) with colloid probe technique, in order to investigate how the HAp-nanoparticle coating as well as interfacial serum proteins influence the cell-microsphere adhesion. The cell adhesion force of the HAp/PLLA microspheres was 1.4-fold stronger than that of the bare PLLA microspheres. When the microspheres were pretreated with a culture medium supplemented with 10% fetal bovine serum, the cell adhesion force of the HAp/PLLA microspheres was increased by a factor of 2.1; in contrast, no change was observed in the cell adhesion force of the bare PLLA microspheres before/after the pretreatment. Indeed, the cell adhesion force of the HAp/PLLA was 2.8-fold larger than that of the bare PLLA after the pretreatment. Additionally, we have investigated the effect of interfacial serum proteins on the zeta potentials of these microspheres. On the basis of the obtained results, possible mechanism of cell adhesion to the HAp/PLLA and bare PLLA microspheres in the presence/absence of the interfacial serum proteins is discussed. PMID:23524077

  7. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres

    PubMed Central

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W.; Wang, Chi-Hwa

    2013-01-01

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres. PMID:24347672

  8. Coaxial electrohydrodynamic atomization process for production of polymeric composite microspheres.

    PubMed

    Xu, Qingxing; Qin, Hao; Yin, Zhenyuan; Hua, Jinsong; Pack, Daniel W; Wang, Chi-Hwa

    2013-12-18

    Polymeric composite microspheres consisting of a poly(D,L-lactic-co-glycolic acid) (PLGA) core surrounded by a poly(D,L-lactic acid) (PDLLA) shell layer were successfully fabricated by coaxial electrohydrodynamic atomization (CEHDA) process. Process conditions, including nozzle voltage and polymer solution flow rates, as well as solution parameters, such as polymer concentrations, were investigated to ensure the formation of composite microspheres with a doxorubicin-loaded PLGA core surrounded by a relatively drug-free PDLLA shell layer. Various microsphere formulations were fabricated and characterized in terms of their drug distribution, encapsulation efficiency and in vitro release. Numerical simulation of CEHDA process was performed based on a computational fluid dynamics (CFD) model in Fluent by employing the process conditions and fluid properties used in the experiments. The simulation results were compared with the experimental work to illustrate the capability of the CFD model to predict the production of consistent compound droplets, and hence, the expected core-shell structured microspheres.

  9. Controlled and Extended Release of a Model Protein from a Microsphere-Hydrogel Drug Delivery System.

    PubMed

    Osswald, Christian R; Kang-Mieler, Jennifer J

    2015-11-01

    In extended ocular drug delivery applications, it is necessary to exert control over the release characteristics of the drug. Design considerations must be made to limit the initial burst (IB) and ensure complete release of drug from the drug delivery system (DDS). In this study, ovalbumin was used as a model protein to explore the effects on release of polymer formulation and fabrication technique in poly(lactic-co-glycolic acid) (PLGA) microspheres. Furthermore, the effect on release of suspending these microspheres in an injectable, thermo-responsive poly(N-isopropylacrylamide)-based hydrogel was determined. To characterize release, ovalbumin was radiolabeled with iodine-125. Regardless of polymer formulation or fabrication technique, pulsatile release was achieved with a second burst occurring after ~70 days for microspheres alone. Suspending PLGA 75:25 microspheres within hydrogel reduced the IB by ~75%, delayed the second burst by 28 days, and extended release out to ~200 days with steadier, consistent release throughout compared to microspheres alone. The combined microsphere-hydrogel DDS remains injectable through small-gauge needles and may have many applications, namely ocular drug delivery to the posterior segment.

  10. Preparation of monodisperse aqueous microspheres containing high concentration of l-ascorbic acid by microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Monodisperse aqueous microspheres containing high concentrations of l-ascorbic acid with different concentrations of sodium alginate (Na-ALG) and magnesium sulfate (MgSO4) were prepared by using microchannel emulsification (MCE). The continuous phase was water-saturated decane containing a 5% (w/w) hydrophobic emulsifier. The flow rate of the continuous phase was maintained at 10 mL h(-1), whereas the pressure applied to the disperse phase was varied between 3 and 25 kPa. The disperse phase optimized for successfully generating aqueous microspheres included 2% (w/w) Na-ALG and 1% (w/w) MgSO4. At a higher MgSO4 concentration, the generated microspheres resulted in coalescence and subsequent bursting. At a lower MgSO4 concentration, unstable and polydisperse microspheres were obtained. The aqueous microspheres generated from the MCs under optimized conditions had a mean particle diameter (dav) of 14-16 µm and a coefficient of variation (CV) of less than 8% at the disperse phase pressures of 5-15 kPa.

  11. In vitro and in vivo characterization of biodegradable enoxacin microspheres.

    PubMed

    Abazinge, M; Jackson, T; Yang, Q; Owusu-Ababio, G

    2000-03-01

    The in vitro release and plasma concentration profiles of sustained release enoxacin microspheres intended for the treatment of bone and systemic infections due to sensitive strains of bacteria were investigated. Microspheres of enoxacin were prepared by using poly(glycolic acid-co-DL-lactic acid) (PLGA) by the emulsion solvent evaporation technique and characterized by in vitro release in an incubator, and in vivo release in the rat subcutaneous model. The microspheres were spherical in nature, and particle size range had a significant influence on the in vitro release. The enoxacin plasma concentration 2 h after the administration of treatments was two-fold higher in animals who received the free drug compared with those who received microspheres of size range 125-250 microm. The plasma of animals who received the free drug was depleted of enoxacin by the end of the first day. However, the plasma concentration of enoxacin in the animals who received microspheres was sustained above 0.5 microg/ml for about 8 days. The results show that biodegradable microspheres of enoxacin can be prepared which release the antibiotic in vivo for days following a subcutaneous administration. This should provide a means for the sustained treatment of infections due to sensitive strains of bacteria.

  12. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres—Focus on Feature Selection

    PubMed Central

    Zawbaa, Hossam M.; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  13. In vitro evaluation and intra-articular administration of biodegradable microspheres containing naproxen sodium.

    PubMed

    Bozdağ, S; Caliş, S; Kaş, H S; Ercan, M T; Peksoy, I; Hincal, A A

    2001-01-01

    The dispersion of non-steroidal antiinflammatory drugs (NSAIDs) into biodegradable polymeric matrices have been accepted as a good approach for obtaining a therapeutic effect in a predetermined period of time meanwhile minimizing the side effects of NSAIDs. In the present study, it was aimed to prepare Naproxen Sodium (NS), (a NSAID) loaded microsphere formulation using natural Bovine Serum Albumin (BSA) and synthetic biodegradable polymers such as poly(lactide-co-glycolic acid) (PLGA) (50:50 MW 34,000 and 88,000 Da) for intra-articular administration, and to study the retention of the drug at the site of injection in the knee joint. NS incorporated microspheres were evaluated in vitro for particle size (the mean particle size; for BSA microspheres, 10.0 +/- 0.3 microm, for PLGA microspheres, 9.0 +/- 0.2 and 5.0 +/- 0.1 microm for MW 34,000 and 88,000 Da, respectively), yield value, drug loading, surface morphology and drug release. For in vivo studies, monoarticular arthritis was induced in the left knee joints of rabbits by using ovalbumin and Freund's Complete Adjuvant as antigen and adjuvant. A certain time (4 days) is allowed for the formation of arthritis in the knee joints, then the NS loaded microspheres were injected directly into the articular cavity. At specific time points, gamma scintigrams were obtained to determine the residence time of the microspheres in knee joints, in order to determine the most suitable formulation. This study indicated that PLGA, a synthetic polymer, is more promising than the natural type BSA microspheres for an effective cure of mono-articular arthritis in rabbits.

  14. Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method.

    PubMed

    Kang, Jian; Wu, Fei; Cai, Yunpeng; Xu, Mingxin; He, Mu; Yuan, Weien

    2014-10-01

    A novel method has been developed to protect Recombinant Human Growth Hormone (rhGH) in poly (lactic-co-glycolic acid) (PLGA) microspheres using an aqueous phase/aqueous phase emulsion and S/O/W multi-emulsion method. This method develops a novel rhGH sustained-release system, which is based on the combination of rhGH-loaded dextran microparticles and PLGA microspheres. The process to fabricate rhGH-loaded dextran microparticles involves an aqueous phase/aqueous phase emulsion system formed at the reduced temperature. RhGH was first dissolved in water together with dextran and polyethylene glycol, followed by stirring at the speed of 2000 rpm for 20-30s at 0°C, and then a freezing process could enable the dextran phase to separate from the continuous PEG phase and rhGH could preferentially be loaded with dextran. The sample after freezing and phase separation was then lyophilized to powder and washed with dichloromethane to remove the PEG. Once loaded in the dextran microparticles (1-4 μm in diameter), rhGH gained resistance to interface tensions and was encapsulated into PLGA microspheres without aggregation thereafter. RhGH released from PLGA microspheres was in a sustained manner with minimal burst and maximally reduced incomplete release in vitro. Single subcutaneous injection of rhGH-loaded PLGA microspheres to rats resulted in a stable plasma concentration for 30 days avoiding the drug concentration fluctuations after multiple injections of protein solutions. In a hypophysectomized rat model, the IGF-1 and bodyweight results showed that there were higher than the levels obtained for the sustained release formulation by W/O/W for 40 days. These results suggest that the microsphere delivery system had the potential to be an injectable depot for sustained-release of the biocompatible protein of rhGH.

  15. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine–loaded microspheres against dengue 2 virus

    PubMed Central

    Huang, Shih-Shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2013-01-01

    Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine–loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein–loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein–loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein–loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine

  16. Evaluation of protective efficacy using a nonstructural protein NS1 in DNA vaccine-loaded microspheres against dengue 2 virus.

    PubMed

    Huang, Shih-shiung; Li, I-Hsun; Hong, Po-da; Yeh, Ming-kung

    2013-01-01

    Dengue virus results in dengue fever or severe dengue hemorrhagic fever/dengue shock syndrome in humans. The purpose of this work was to develop an effective antidengue virus delivery system, by designing poly (dl-lactic-co-glycolic) acid/polyethylene glycol (PLGA/PEG) microspheres using a double-emulsion solvent extraction method, for vaccination therapy based on locally and continuously sustained biological activity. Nonstructural protein 1 (NS1) in deoxyribonucleic acid (DNA) vaccine-loaded PLGA/PEG microspheres exhibited a high loading capacity (4.5% w/w), yield (85.2%), and entrapment efficiency (39%), the mean particle size 4.8 μm, and a controlled in vitro release profile with a low initial burst (18.5%), lag time (4 days), and continued released protein over 70 days. The distribution of protein on the microspheres surface, outer layer, and core were 3.0%, 28.5%, and 60.7%, respectively. A release rate was noticed to be 1.07 μg protein/mg microspheres/day of protein release, maintained for 42 days. The cumulative release amount at Days 1, 28, and 42 was 18.5, 53.7, and 62.66 μg protein/mg microspheres, respectively. The dengue virus challenge in mice test, in which mice received one dose of 20 μg NS1 protein content of microspheres, in comparison with NS1 protein in Al(OH)3 or PBS solution, was evaluated after intramuscular immunization of BALB/c mice. The study results show that the greatest survival was observed in the group of mice immunized with NS1 protein-loaded PLGA/PEG microspheres (100%). In vivo vaccination studies also demonstrated that NS1 protein-loaded PLGA/PEG microspheres had a protective ability; its steady-state immune protection in rat plasma changed from 4,443 ± 1,384 pg/mL to 10,697 ± 3,197 pg/mL, which was 2.5-fold higher than that observed for dengue virus in Al(OH)3 at 21 days. These findings strongly suggest that NS1 protein-loaded PLGA/PEG microspheres offer a new therapeutic strategy in optimizing the vaccine incorporation

  17. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  18. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury.

    PubMed

    Zhao, Qun; Li, Zhi-Yue; Zhang, Ze-Peng; Mo, Zhou-Yun; Chen, Shi-Jie; Xiang, Si-Yu; Zhang, Qing-Shan; Xue, Min

    2015-09-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury.

  19. Down-regulation of Th2 immune responses by sublingual administration of poly (lactic-co-glycolic) acid (PLGA)-encapsulated allergen in BALB/c mice.

    PubMed

    Salari, Farhad; Varasteh, Abdol-Reza; Vahedi, Fatemeh; Hashemi, Maryam; Sankian, Mojtaba

    2015-12-01

    The goal of this study was to investigate whether poly (lactic-co-glycolic) acid (PLGA) nanoparticles could enhance sublingual immunotherapy (SLIT) efficacy. BALB/c mice sensitized to rChe a 3 were treated sublingually either with soluble rChe a 3 (100μg/dose) or PLGA-encapsulated rChe a 3 (5, 25, or 50μg/dose). SLIT with PLGA-encapsulated rChe a 3 (equivalent to 25 and 50μg rChe a 3 per dose) led to significantly increased antigen-specific IgG2a, along with no effect on allergen-specific IgE and IgG1 antibody levels. In addition, interleukin 4 (IL-4) levels in restimulated splenocytes were significantly less, while interferon-γ (IFN-γ), interleukin-10 (IL-10), and transforming growth factor-β (TGF-β) levels, as well as Foxp3 expression, were significantly greater than in the control groups. Our findings suggest that PLGA nanoparticle-based vaccination may help rational development of sublingual immunotherapy through reduction of the needed allergen doses and also significantly enhanced systemic T regulatory (Treg) and T helper 1 (Th1) immune responses.

  20. Fusidic acid and rifampicin co-loaded PLGA nanofibers for the prevention of orthopedic implant associated infections.

    PubMed

    Gilchrist, Samuel E; Lange, Dirk; Letchford, Kevin; Bach, Horacio; Fazli, Ladan; Burt, Helen M

    2013-08-28

    Implant-associated infections following invasive orthopedic surgery are a major clinical problem, and are one of the primary causes of joint failure following total joint arthroplasty. Current strategies using perioperative antibiotics have been met with little clinical success and have resulted in various systemic toxicities and the promotion of antibiotic resistant microorganisms. Here we report the development of a biodegradable localized delivery system using poly(D,L-lactic acid-co-glycolic acid) (PLGA) for the combinatorial release of fusidic acid (FA) (or its sodium salt; SF) and rifampicin (RIF) using electrospinning. The drug-loaded formulations showed good antibiotic encapsulation (~75%-100%), and a biphasic drug release profile. All dual-loaded formulations showed direct antimicrobial activity in vitro against Staphylococcus epidermidis, and two strains of methicillin-resistant Staphylococcus aureus (MRSA). Furthermore, lead formulations containing 10% (w/w) FA/SF and 5% (w/w) RIF were able to prevent the adherence of MRSA to a titanium implant in an in vivo rodent model of subcutaneous implant-associated infection.

  1. Sustained-release delivery of octreotide from biodegradable polymeric microspheres.

    PubMed

    Rhee, Yun-Seok; Sohn, MinJi; Woo, Byung H; Thanoo, B C; DeLuca, Patrick P; Mansour, Heidi M

    2011-12-01

    The study reports on the drug release behavior of a potent synthetic somatostatin analogue, octreotide acetate, from biocompatible and biodegradable microspheres composed of poly-lactic-co-glycolic acid (PLGA) following a single intramuscular depot injection. The serum octreotide levels of three Oakwood Laboratories formulations and one Sandostatin LAR(®) formulation were compared. Three formulations of octreotide acetate-loaded PLGA microspheres were prepared by a solvent extraction and evaporation procedure using PLGA polymers with different molecular weights. The in vivo drug release study was conducted in male Sprague-Dawley rats. Blood samples were taken at predetermined time points for up to 70 days. Drug serum concentrations were quantified using a radioimmunoassay procedure consisting of radiolabeled octreotide. The three octreotide PLGA microsphere formulations and Sandostatin LAR(®) all showed a two-phase drug release profile (i.e., bimodal). The peak serum drug concentration of octreotide was reached in 30 min for all formulations followed by a decline after 6 h. Following this initial burst and decline, a second-release phase occurred after 3 days. This second-release phase exhibited sustained-release behavior, as the drug serum levels were discernible between days 7 and 42. Using pharmacokinetic computer simulations, it was estimated that the steady-state octreotide serum drug levels would be predicted to fall in the range of 40-130 pg/10 μL and 20-100 pg/10 μL following repeat dosing of the Oakwood formulations and Sandostatin LAR(®) every 28 days and every 42 days at a dose of 3 mg/rat, respectively.

  2. Effect of linoleic acid sustained-release microspheres on Microcystis aeruginosa antioxidant enzymes activity and microcystins production and release.

    PubMed

    Ni, Lixiao; Jie, Xiaoting; Wang, Peifang; Li, Shiyin; Wang, Guoxiang; Li, Yiping; Li, Yong; Acharya, Kumud

    2015-02-01

    The objective of this work was to identify the optimal dose range for good anti-algal effect of linoleic acid (LA) sustained-release microspheres and investigate their impact on the antioxidant enzymes (super oxide dismutase, Catalase and Peroxidase) activity changes of Microcystis aeruginosa, as well as the production and release of microcystins (MCs). Based on measured changes in algal cell density and inhibitory ratio (IR), the optimal dose of LA microspheres was 0.3 g L(-1) with over 90% of IR in this study. The Chlorophyll a content and antioxidant enzymes activity in the LA microspheres group decreased markedly until beyond the minimal detection limit after 16 d and 9 d, respectively. In addition, LA microspheres demonstrated no significant impact on the extracellular release of MCs during the culturing period. The amount of intracellular microcystin-LR (MC-LR) per 10(6) algal cells in LA microspheres group was highest among all groups during the whole experimental process. Under the sustained stress of LA released from LA microspheres, the LA microspheres could decrease the production and release of algal toxins. There was no increase in the total amount of MC-LR in the algal cell culture medium. These indicated that LA sustained-release microspheres represent a high degree of ecological safety and their practical applications for the treatment of water undergoing algal blooms need further study.

  3. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1987-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  4. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1986-01-01

    Microspheres of acrolein homopolymers and copolymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  5. Polyacrolein microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor)

    1983-01-01

    Microspheres of acrolein homopolymers and co-polymer with hydrophillic comonomers such as methacrylic acid and/or hydroxyethylmethacrylate are prepared by cobalt gamma irradiation of dilute aqueous solutions of the monomers in presence of suspending agents, especially alkyl sulfates such as sodium dodecyl sulfate. Amine or hydroxyl modification is achieved by forming adducts with diamines or alkanol amines. Carboxyl modification is effected by oxidation with peroxides. Pharmaceuticals or other aldehyde reactive materials can be coupled to the microspheres. The microspheres directly form antibody adducts without agglomeration.

  6. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair.

  7. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.

    PubMed

    Miao, Guohou; Chen, Xiaofeng; Dong, Hua; Fang, Liming; Mao, Cong; Li, Yuli; Li, Zhengmao; Hu, Qing

    2013-10-01

    Acid-catalyzed mesoporous bioactive glass microspheres (MBGMs-A) and acid-alkali co-catalyzed mesoporous bioactive glass microspheres (MBGMs-B) were successfully synthesized via combination of sol-gel and water-in-oil (W/O) micro-emulsion methods. The structural, morphological and textural properties of mesoporous bioactive glass microspheres (MBGMs) were characterized by various techniques. Results show that both MBGMs-A and MBGMs-B exhibit regularly spherical shape but with different internal porous structures, i.e., a dense microstructure for MBGMs-A and internally porous structure for MBGMs-B. (29)Si NMR data reveal that MGBMs have low polymerization degree of silica network. The in vitro bioactivity tests indicate that the apatite formation rate of MBGMs-B was faster than that of MBGMs-A after soaking in simulated body fluid (SBF) solution. Furthermore, the two kinds of MBGMs have similar storage capacity of alendronate (AL), and the release behaviors of AL could be controlled due to their unique porous structure. In conclusion, the microspheres are shown to be promising candidates as bone-related drug carriers and filling materials of composite scaffold for bone repair. PMID:23910338

  8. Production of microspheres with surface amino groups from blends of Poly(Lactide-co-glycolide) and Poly(epsilon-CBZ-L-lysine) and use for encapsulation.

    PubMed

    Zheng, J; Hornsby, P J

    1999-01-01

    Microspheres were formed from blends of the biodegradable polymer poly(DL-lactic-co-glycolic acid) (PLGA) together with poly(epsilon-CBZ-L-lysine) (PCBZL) by a double-emulsification/solvent evaporation technique. The size of the microspheres formed by this method was dependent both on the total concentration of the polymers and on the ratio of PLGA to PCBZL. The use of the microspheres for encapsulation was demonstrated by the inclusion of a solution of Texas Red fluorescent dye. Lysine epsilon-amino groups on the surface of the microspheres were deprotected by acid hydrolysis or lithium/liquid ammonia reduction. Acid hydrolysis damaged the surface of the microspheres as assessed by scanning electron microscopy, whereas deprotection by lithium/ammonia produced less damage and allowed the retention of encapsulated dye solution. The surface lysine groups made available on the surface of the microspheres could be used to covalently link a variety of biologically active molecules to alter their in vivo properties and allow targeting to specific cell types.

  9. Application of Raman microscopy to biodegradable double-walled microspheres.

    PubMed

    Widjaja, Effendi; Lee, Wei Li; Loo, Say Chye Joachim

    2010-02-15

    Raman mapping measurements were performed on the cross section of the ternary-phase biodegradable double-walled microsphere (DWMS) of poly(D,L-lactide-co-glycolide) (50:50) (PLGA), poly(L-lactide) (PLLA), and poly(epsilon-caprolactone) (PCL), which was fabricated by a one-step solvent evaporation method. The collected Raman spectra were subjected to a band-target entropy minimization (BTEM) algorithm in order to reconstruct the pure component spectra of the species observed in this sample. Seven pure component spectral estimates were recovered, and their spatial distributions within DWMS were determined. The first three spectral estimates were identified as PLLA, PLGA 50:50, and PCL, which were the main components in DWMS. The last four spectral estimates were identified as semicrystalline polyglycolic acid (PGA), dichloromethane (DCM), copper-phthalocyanine blue, and calcite, which were the minor components in DWMS. PGA was the decomposition product of PLGA. DCM was the solvent used in DWMS fabrication. Copper-phthalocyanine blue and calcite were the unexpected contaminants. The current result showed that combined Raman microscopy and BTEM analysis can provide a sensitive characterization tool to DWMS, as it can give more specific information on the chemical species present as well as the spatial distributions. This novel analytical method for microsphere characterization can serve as a complementary tool to other more established analytical techniques, such as scanning electron microscopy and optical microscopy.

  10. Formulation of salicylate-based poly(anhydride-ester) microspheres for short- and long-term salicylic acid delivery

    PubMed Central

    Rosario-Meléndez, Roselin; Ouimet, Michelle A.; Uhrich, Kathryn E.

    2013-01-01

    The formulation of salicylate-based poly(anhydride-ester) (PAE) microspheres was optimized by altering polymer concentration and homogenization speed to improve the overall morphology. The microspheres were prepared using three salicylate-based PAEs with different chemical compositions comprised of either a heteroatomic, linear aliphatic, or branched aliphatic moiety. These PAEs broadened the range of complete salicylic acid release to now include days, weeks and months. The molecular weight (Mw), polydispersity index (PDI) and glass transition temperature (Tg) of the formulated polymers were compared to the unformulated polymers. In general, the Mw and PDI exhibited decreased and increased values, respectively, after formulation, whereas the Tg changes did not follow a specific trend. Microsphere size and morphology were determined using scanning electron microscopy. These microspheres exhibited smooth surfaces, no aggregation, and size distributions ranging from 2-34 m in diameter. In vitro release studies of the chemically incorporated salicylic acid displayed widely tunable release profiles. PMID:23420391

  11. Development of lovastatin-loaded poly(lactic acid) microspheres for sustained oral delivery: in vitro and ex vivo evaluation

    PubMed Central

    Guan, Qigang; Chen, Wei; Hu, Xianming

    2015-01-01

    Background A novel lovastatin (LVT)-loaded poly(lactic acid) microsphere suitable for oral administration was developed in this study, and in vitro and in vivo characteristics were evaluated. Methods The designed microspheres were obtained by an improved emulsion-solvent evaporation method. The morphological examination, particle size, encapsulation ratio, drug loading, and in vitro release were characterized. Pharmacokinetics studies were used to show that microspheres possess more advantages than the conventional formulations. Results By using the emulsion-solvent evaporation method, it was simple to prepare microspheres and easy to scale up production. The morphology of formed microspheres showed a spherical shape with a smooth surface, without any particle aggregation. Mean size of the microspheres was 2.65±0.69 μm; the encapsulation efficiency was 92.5%±3.6%, and drug loading was 16.7%±2.1%. In vitro release indicated that the LVT microspheres had a well-sustained release efficacy, and ex vivo studies showed that after LVT was loaded to microspheres, the area under the plasma concentration-time curve from zero to the last measurable plasma concentration point and the extrapolation to time infinity increased significantly, which represented 2.63-fold and 2.49-fold increases, respectively, compared to suspensions. The rate of ex vivo clearance was significantly reduced. Conclusion This research proved that poly(lactic acid) microspheres can significantly prolong the drug circulation time in vivo and can also significantly increase the relative bioavailability of the drug. PMID:25709403

  12. Reaction kinetics of photocatalytic degradation of sulfosalicylic acid using TiO2 microspheres.

    PubMed

    Wang, Chuan; Zhang, Xianghua; Liu, Hong; Li, Xiangzhong; Li, Wenzhao; Xu, Hengyong

    2009-04-30

    The photocatalytic (PC) degradation kinetics of sulfosalicylic acid (SSA) at different pH using TiO2 microspheres were elucidated by modeling. The resultant model had special consideration of adsorption and pH. The adsorption isotherms showed that the LC/MS(2)-identified intermediates were weakly adsorbed on the TiO2 microspheres, thus their adsorption was neglected in the modeling. By contrast, the SSA was significantly adsorbed, thus its adsorption retained as an item in the model. Consequently, a non-first-order model was obtained. Through the modeling, it was elucidated that the reaction rate increased non-linearly with the SSA adsorption equilibrium constant. Meanwhile, it was elucidated that a pH increase favored the hydroxyl radical production to accelerate the SSA degradation, while impeded the SSA adsorption to slower it, hence a neutral pH caused the fastest SSA degradation. PMID:18762374

  13. Protective colloids and polylactic acid co-affecting the polymorphic crystal forms and crystallinity of indomethacin encapsulated in microspheres.

    PubMed

    Lin, S Y; Chen, K S; Teng, H H

    1999-01-01

    The co-effect of protective colloids and polylactic acid (PLA) on the polymorphic crystal forms and crystallinity of indomethacin (IMC) in IMC-loaded PLA microspheres was investigated with differential scanning calorimetry, infrared spectroscopy and x-ray diffractometry, to evaluate the polymorphic crystal forms and crystallinity of IMC encapsulated in PLA microspheres. The surfactant, sodium dodecyl sulphate (SDS), was also used as a dispersing agent. The results indicate that the polymorphism and crystallinity of IMC encapsulated in IMC-loaded PLA microspheres was dependent on the type of protective colloid and PLA used. The amorphous state and alpha-form of IMC were found in the IMC-loaded PLA microspheres prepared using polysaccharide (pectin or beta-cyclodextrin) as a protective colloid or SDS as a dispersing agent. However, the amorphous and methylene chloride solvate of IMC seemed to exist in the IMC-loaded PLA microspheres prepared with the proteins (gelatin or albumin), synthetic cellulose derivative (methyl cellulose or hydroxylpropyl methylcellulose) or the synthetic nonionic polymer (polyvinyl alcohol, polyvinyl pyrrolidone or biosoluble polymer) as a protective colloid. PLA was found to express a certain crystallinity in microspheres and not be affected by the protective colloids, but it played a more important role in influencing the crystallization of IMC during microencapsulation than the protective colloids. No interaction occurred in the physical mixture of IMC and PLA, nor in the IMC-loaded PLA microspheres.

  14. Combination of immune stimulating adjuvants with poly(lactide-co-glycolide) microspheres enhances the immune response of vaccines.

    PubMed

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa M; Pedraz, José Luis

    2012-01-11

    The development of vaccines that generate mixed humoral and cellular immune responses is a challenge in vaccinology. Poly(lactide-co-glycolide) microspheres are vaccine adjuvants which possess the advantage of allowing the coencapsulation of other adjuvants in addition to the antigen. Thus, we can stimulate the immune system from different ways and resemble the effects of a natural infection. In this study, we have coencapsulated BSA with monophosphoryl lipid A, polyinosinic-polycytidylic acid, α-galactosylceramide and alginate into PLGA microspheres. All the microspheres have developed a higher humoral immune response, in terms of release of total IgG, in comparison to the administration of soluble antigen. In addition, they triggered a more balanced IgG1/IgG2a response. The combination of MPLA and α-galactosylceramide within the microspheres developed the higher cellular response, confirming that combination of adjuvants with different action mechanisms is a good strategy to increase vaccines' immunogenicity.

  15. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors

    PubMed Central

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm3) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects. PMID:27398152

  16. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors.

    PubMed

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm(3)) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects.

  17. Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors.

    PubMed

    Tee, Boon Ching; Desai, Kashappa Goud H; Kennedy, Kelly S; Sonnichsen, Brittany; Kim, Do-Gyoon; Fields, Henry W; Mallery, Susan R; Schwendeman, Steven P; Sun, Zongyang

    2016-01-01

    Cell and growth factor-based tissue engineering has shown great potentials for skeletal regeneration. This study tested its feasibility in reconstructing large mandibular defects and compared the efficacy of varied construction materials and sealing methods. Bilateral mandibular critical-size (5-cm(3)) defects were created on six 4-month-old domestic pigs, and grafted with β-tricalcium phosphate (βTCP) only (Group-A), βTCP with autologous bone marrow-derived mesenchymal stem cells (BM-MSCs) (Group-B), and βTCP with BM-MSCs and biodegradable poly(lactic-co-glycolic acid) (PLGA) microspheres containing bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) (Group-C). The buccal sides of Groups-B/-C were either sealed by fibrin sealant or by a biodegradable PLGA barrier membrane before soft-tissue closure. Computed tomography (CT), microCT and histology analyses were performed 12 weeks postoperatively. In vitro data demonstrated that BM-MSCs, with MSC properties confirmed, remained vital after integration with βTCP; and PLGA microspheres exhibited an initial burst followed by slow and continuous release of growth factors over a period of 28 days. In vivo data demonstrated that Group-B/-C sites had significantly greater gap obliteration, higher tissue mineral densities and more residual βTCP granules (p<0.05, Kruskal-Wallis tests). Qualitatively, Group-B/-C defect sites had started remodeling while Group-A sites were mainly forming new bone to bridge the gaps. Furthermore, βTCP degradation was not mediated by macrophages or osteoclasts, and was significantly slowed down by sealing the defects with barrier membrane. Combined, these data present a promising formulation composed of βTCP granules, autologous MSCs, controlled-release growth factors and biodegradable PLGA barrier membrane for the reconstruction of critical-size mandibular defects. PMID:27398152

  18. Interfacial Fast Release Layer in Monodisperse Poly (lactic-co-glycolic acid) Microspheres Accelerates the Drug Release.

    PubMed

    Wu, Jun; Zhao, Xiaoli; Yeung, Kelvin W K; To, Michael K T

    2016-01-01

    Understanding microstructural evolutions of drug delivery devices during drug release process is essential for revealing the drug release mechanisms and controlling the drug release profiles. In this study, monodisperse poly (lactic-co-glycolic acid) microspheres in different diameters were fabricated by microfluidics in order to find out the relationships between the microstructural evolutions and the drug release profiles. It was found that poly (lactic-co-glycolic acid) microspheres underwent significant size expansion which took place from the periphery to the center, resulting in the formation of interfacial fast release layers. At the same time, inner pores were created and the diffusion rate was increased so that the early stage drug release was accelerated. Due to the different expansion rates, small poly (lactic-co-glycolic acid) microspheres tendered to follow homogeneous drug release while large poly (lactic-co-glycolic acid) microspheres tendered to follow heterogeneous drug release. This study suggests that the size expansion and the occurrence of interfacial fast release layer were important mechanisms for early stage drug release of poly (lactic-co-glycolic acid) microspheres.

  19. Tunable delivery of niflumic acid from resorbable embolization microspheres for uterine fibroid embolization.

    PubMed

    Bédouet, Laurent; Moine, Laurence; Servais, Emeline; Beilvert, Anne; Labarre, Denis; Laurent, Alexandre

    2016-09-10

    Uterine arteries embolization (UAE) is a recent technique that aims, by means of particles injected percutaneously, to stifle fibroids (leiomyomas). This treatment is non-invasive, compared with uterine ablation, but generates pelvic pain for a few days. A strategy to reduce the post-embolization pain would be to use calibrated embolization microspheres preloaded with a non-steroidal inflammatory drug (NSAID). In this study, we first compared four drugs, all active at low concentration on cyclooxygenase-2, i.e. ketoprofen, sodium diclofenac, flurbiprofen and niflumic acid (NFA), for their capacity to be loaded on resorbable embolization microspheres (REM) 500-700μm. NFA had the highest capacity of loading (5mg/mL) on resorbable microspheres. Then, we evaluated in vitro the NFA release profiles from REM having various degradation times of one, two or five days. NFA release was biphasic, with an initial burst (about 60% of the loading) followed by a sustained release that correlated significantly to REM's hydrolysis (rho=0.761, p<0.0001). For each group of beads, the size distribution was not modified by the loading of NFA and their delivery through microcatheter was not impaired by the drug. NFA eluted from REM inhibited the synthesis of prostaglandin E2 from rabbit uterus explants. In summary, NFA is loadable on REM in significant amount and its delivery can be tuned according to the degradation rate of REM to provide an antalgic effect for a few days after UAE. PMID:27374196

  20. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  1. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods.

    PubMed

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-15

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml(-1) concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  2. Comparative evaluation of antibacterial activity of caffeic acid phenethyl ester and PLGA nanoparticle formulation by different methods

    NASA Astrophysics Data System (ADS)

    Arasoglu, Tülin; Derman, Serap; Mansuroglu, Banu

    2016-01-01

    The aim of the present study was to evaluate the antimicrobial activity of nanoparticle and free formulations of the CAPE compound using different methods and comparing the results in the literature for the first time. In parallel with this purpose, encapsulation of CAPE with the PLGA nanoparticle system (CAPE-PLGA-NPs) and characterization of nanoparticles were carried out. Afterwards, antimicrobial activity of free CAPE and CAPE-PLGA-NPs was determined using agar well diffusion, disk diffusion, broth microdilution and reduction percentage methods. P. aeroginosa, E. coli, S. aureus and methicillin-resistant S. aureus (MRSA) were chosen as model bacteria since they have different cell wall structures. CAPE-PLGA-NPs within the range of 214.0 ± 8.80 nm particle size and with an encapsulation efficiency of 91.59 ± 4.97% were prepared using the oil-in-water (o-w) single-emulsion solvent evaporation method. The microbiological results indicated that free CAPE did not have any antimicrobial activity in any of the applied methods whereas CAPE-PLGA-NPs had significant antimicrobial activity in both broth dilution and reduction percentage methods. CAPE-PLGA-NPs showed moderate antimicrobial activity against S. aureus and MRSA strains particularly in hourly measurements at 30.63 and 61.25 μg ml-1 concentrations (both p < 0.05), whereas they failed to show antimicrobial activity against Gram-negative bacteria (P. aeroginosa and E. coli, p > 0.05). In the reduction percentage method, in which the highest results of antimicrobial activity were obtained, it was observed that the antimicrobial effect on S. aureus was more long-standing (3 days) and higher in reduction percentage (over 90%). The appearance of antibacterial activity of CAPE-PLGA-NPs may be related to higher penetration into cells due to low solubility of free CAPE in the aqueous medium. Additionally, the biocompatible and biodegradable PLGA nanoparticles could be an alternative to solvents such as ethanol

  3. Preparation, characterization and in vitro release study of BSA-loaded double-walled glucose-poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Mohamed, Farahidah; Doolaanea, Abd Almonem; Kamaruzzaman, Yunus B

    2016-09-01

    The aim of this study was to prepare a model protein, bovine serum albumin (BSA) loaded double-walled microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA) and a moderate-degrading carboxyl-terminated PLGA polymers to reduce the initial burst release and to eliminate the lag phase from the release profile of PLGA microspheres. The double-walled microspheres were prepared using a modified water-in-oil-in-oil-in-water (w/o/o/w) method and single-polymer microspheres were prepared using a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The particle size, morphology, encapsulation efficiency, thermal properties, in vitro drug release and structural integrity of BSA were evaluated in this study. Double-walled microspheres prepared with Glu-PLGA and PLGA polymers with a mass ratio of 1:1 were non-porous, smooth-surfaced, and spherical in shape. A significant reduction of initial burst release was achieved for the double-walled microspheres compared to single-polymer microspheres. In addition, microspheres prepared using Glu-PLGA and PLGA polymers in a mass ratio of 1:1 exhibited continuous BSA release after the small initial burst without any lag phase. It can be concluded that the double-walled microspheres made of Glu-PLGA and PLGA polymers in a mass ratio of 1:1 can be a potential delivery system for pharmaceutical proteins.

  4. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis.

    PubMed

    Lin, Ts-Ting; Gao, Dong-Yu; Liu, Ya-Chi; Sung, Yun-Chieh; Wan, Dehui; Liu, Jia-Yu; Chiang, Tsaiyu; Wang, Liying; Chen, Yunching

    2016-01-10

    Sorafenib is a tyrosine kinase inhibitor that has recently been shown to be a potential antifibrotic agent. However, a narrow therapeutic window limits the clinical use and therapeutic efficacy of sorafenib. Herein, we have developed and optimized nanoparticle (NP) formulations prepared from a mixture of poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers with poly(lactic-co-glycolic acid) (PLGA) for the systemic delivery of sorafenib into the fibrotic livers of CCl4-induced fibrosis mouse models. We characterized and compared the pharmaceutical and biological properties of two different PLGA nanoparticles (NPs)--PEG-PLGA NPs (PEG-PLGA/PLGA=10/0) and PEG-PLGA/PLGA NPs (PEG-PLGA/PLGA=5/5). Increasing the PLGA content in the PEG-PLGA/PLGA mixture led to increases in the particle size and drug encapsulation efficacy and a decrease in the drug release rate. Both PEG-PLGA and PEG-PLGA/PLGA NPs significantly prolonged the blood circulation of the cargo and increased the uptake by the fibrotic livers. The systemic administration of PEG-PLGA or PEG-PLGA/PLGA NPs containing sorafenib twice per week for a period of 4 weeks efficiently ameliorated liver fibrosis, as indicated by decreased α-smooth muscle actin (α-SMA) content and collagen production in the livers of CCl4-treated mice. Furthermore, sorafenib-loaded PLGA NPs significantly shrank the abnormal blood vessels and decreased microvascular density (MVD), leading to vessel normalization in the fibrotic livers. In conclusion, our results reflect the clinical potential of sorafenib-loaded PLGA NPs for the prevention and treatment of liver fibrosis.

  5. pH-independent controlled-release microspheres using polyglycerol esters of fatty acids.

    PubMed

    Akiyama, Y; Yoshioka, M; Horibe, H; Hirai, S; Kitamori, N; Toguchi, H

    1994-11-01

    The release of a drug having low solubility in a certain pH range from controlled-release microspheres using tetraglycerol pentastearate and tetraglycerol monostearate in combination as the matrix base showed pH dependence. Trepibutone, an acidic drug having lower solubility in an acidic medium, was released pH-independently from the microspheres which incorporated magnesium oxide, a solid base. It might have resulted from the pH inside the matrix being kept in an optimum range for drug release due to the incorporation of a solid base. On the other hand, the addition of water soluble acidic or basic excipients was ineffective to achieve pH-independent release. For papaverine, a basic drug, pH-independent drug-release characteristics could be achieved by adding Eudragit L100-55, an enteric polymer. It is thought that the enteric polymer increased the pores for drug release by dissolving in a higher pH range, where the solubility of papaverine is low, and thereby made the release pH-independent. Further, selecting a polyglycerol ester of a fatty acid with an appropriate hydrophile-lipophile balance as the matrix could yield a drug with the desired release rate at any pH.

  6. Accuracy of Motor Axon Regeneration Across Autograft, Single Lumen, and Multichannel Poly(lactic-co-glycolic Acid) (PLGA) Nerve Tubes

    PubMed Central

    de Ruiter, Godard C.; Spinner, Robert J.; Malessy, Martijn J. A.; Moore, Michael J.; Sorenson, Eric J.; Currier, Bradford L.; Yaszemski, Michael J.; Windebank, Anthony J.

    2012-01-01

    Objective Accuracy of motor axon regeneration becomes an important issue in the development of a nerve tube for motor nerve repair. Dispersion of regeneration across the nerve tube may lead to misdirection and polyinnervation. In this study, we present a series of methods to investigate the accuracy of regeneration, which we used to compare regeneration across autografts and single lumen poly(lactic-co-glycolic acid) (PLGA) nerve tubes. We also present the concept of the multichannel nerve tube that may limit dispersion by separately guiding groups of regenerating axons. Methods Simultaneous tracing of the tibial and peroneal nerves with fast blue (FB) and diamidino yellow (DY), 8 weeks after repair of a 1-cm nerve gap in the rat sciatic nerve, was performed to determine the percentage of double-projecting motoneurons. Sequential tracing of the peroneal nerve with DY 1 week before and FB 8 weeks after repair was performed to determine the percentage of correctly directed peroneal motoneurons. Results In the cases in which there was successful regeneration across single lumen nerve tubes, more motoneurons had double projections to both the tibial and peroneal nerve branches after single lumen nerve tube repair (21.4%) than after autograft repair (5.9%). After multichannel nerve tube repair, this percentage was slightly reduced (16.9%), although not significantly. The direction of regeneration was nonspecific after all types of repair. Conclusion Retrograde tracing techniques provide new insights into the process of regeneration across nerve tubes. The methods and data presented in this study can be used as a basis in the development of a nerve tube for motor nerve repair. PMID:18728579

  7. Comparing microspheres with different internal phase of polyelectrolyte as local drug delivery system for bone tuberculosis therapy.

    PubMed

    Wu, Gang; Chen, Long; Li, Hong; Deng, Chun-Ling; Chen, Xiao-Feng

    2014-01-01

    We use hydrophobic poly(lactic-co-glycolic) acid (PLGA) to encapsulate hydrophilic ofloxacin to form drug loading microspheres. Hyaluronic acid (HA) and polylysine (Pls) were used as internal phase additives to see their influences on the drug loading and releasing. Double emulsion (water-in-oil-in-water) solvent extraction/evaporation method was used for the purpose. Particle size analysis display that the polyelectrolytes have low impact on the microsphere average size and distribution. Scanning electron microscope (SEM) pictures show the wrinkled surface resulted by the internal microcavity of the microspheres. Microspheres with HA inside have higher drug loading amounts than microspheres with Pls inside. The loading drug amounts of the microspheres increase with the HA amounts inside, while decreasing with the Pls amounts inside. All the polyelectrolytes adding groups have burst release observed in experiments. The microspheres with Pls internal phase have faster release rate than the HA groups. Among the same polyelectrolyte internal phase groups, the release rate increases with the amounts increasing when Pls is inside, while it decreases with the amounts increasing when HA is inside.

  8. Preparation of porous microsphere-scaffolds by electrohydrodynamic forming and thermally induced phase separation.

    PubMed

    Ghanbar, Hanif; Luo, C J; Bakhshi, Poonam; Day, Richard; Edirisinghe, Mohan

    2013-07-01

    The availability of forming technologies able to mass produce porous polymeric microspheres with diameters ranging from 150 to 300 μm is significant for some biomedical applications where tissue augmentation is required. Moreover, appropriate assembly of microspheres into scaffolds is an important challenge to enable direct usage of the as-formed structures in treatments. This work reports the production of poly (glycolic-co-lactic acid) and poly (ε-caprolactone) microspheres under ambient conditions using one-step electrohydrodynamic jetting (traditionally known as atomisation) and thermally induced phase separation (TIPS). To ensure robust production for practical uses, this work presents 12 comprehensive parametric mode mappings of the diameter distribution profiles of the microspheres obtained over a broad range of key processing parameters and correlating of this with the material parameters of 5 different polymer solutions of various concentrations. Poly (glycolic-co-lactic acid) (PLGA) in Dimethyl carbonate (DMC), a low toxicity solvent with moderate conductivity and low dielectric constant, generated microspheres within the targeted diameter range of 150-300 μm. The fabrication of the microspheres suitable for formation of the scaffold structure is achieved by changing the collection method from distilled water to liquid nitrogen and lyophilisation in a freeze dryer. PMID:23623059

  9. Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.

    PubMed

    Roy, Abhijit; Jhunjhunwala, Siddharth; Bayer, Emily; Fedorchak, Morgan; Little, Steve R; Kumta, Prashant N

    2016-02-01

    Calcium phosphate based cements (CPCs) are frequently used as bone void fillers for non-load bearing segmental bone defects due to their clinically relevant handling characteristics and ability to promote natural bone growth. Macroporous CPC scaffolds with interconnected pores are preferred for their ability to degrade faster and enable accelerated bone regeneration. Herein, a composite CPC scaffold is developed using newly developed resorbable calcium phosphate cement (ReCaPP) formulation containing degradable microspheres of bio-compatible poly (lactic-co-glycolic acid) (PLGA) serving as porogen. The present study is aimed at characterizing the effect of in-vitro degradation of PLGA microspheres on the physical, chemical and structural characteristics of the composite cements. The porosity measurements results reveal the formation of highly interconnected macroporous scaffolds after degradation of PLGA microspheres. The in-vitro characterizations also suggest that the degradation by products of PLGA reduces the pH of the local environment thereby increasing the dissolution rate of the cement. In addition, the in-vitro vancomycin release from the composite CPC scaffold suggests that the drug association with the composite scaffolds can be tuned to achieve control release kinetics. Further, the study demonstrates control release lasting for longer than 10weeks from the composite cements in which vancomycin is encapsulated in PLGA microspheres.

  10. Boronic acid-functionalized core-shell-shell magnetic composite microspheres for the selective enrichment of glycoprotein.

    PubMed

    Pan, Miaorong; Sun, Yangfei; Zheng, Jin; Yang, Wuli

    2013-09-11

    In this work, core-shell-shell-structured boronic acid-functionalized magnetic composite microspheres Fe3O4@SiO2@poly (methyl methacrylate-co-4-vinylphenylbornoic acid) (Fe3O4@SiO2@P(MMA-co-VPBA)) with a uniform size and fine morphology were synthesized. Here, Fe3O4 magnetic particles were prepared by a solvothermal reaction, whereas the Fe3O4@SiO2 microspheres with a core-shell structure were obtained by a sol-gel process. 3-(Trimethoxysilyl) propyl methacrylate (MPS)-modified Fe3O4@SiO2 was used as the seed in the emulsion polymerization of MMA and VPBA to form the core-shell-shell-structured magnetic composite microspheres. As the boronic acid groups on the surface of Fe3O4@SiO2@P(MMA-co-VPBA) could form tight yet reversible covalent bonds with the cis-1,2-diols groups of glycoproteins, the magnetic composite microspheres were applied to enrich a standard glycoprotein, horseradish peroxidase (HRP), and the results demonstrated that the composite microspheres have a higher affinity for the glycoproteins in the presence of the nonglycoprotein bovine serum albumin (BSA) over HRP. Additionally, different monomer mole ratios of MMA/VPBA were studied, and the results implied that using MMA as the major monomer could reduce the amount of VPBA with a similar glycoprotein enrichment efficiency but a lower cost. PMID:23924282

  11. Possibility for the development of cosmetics with PLGA nanospheres.

    PubMed

    Ito, Fuminori; Takahashi, Tadahito; Kanamura, Kiyoshi; Kawakami, Hiroyoshi

    2013-05-01

    The optimized preparation of Poly-(lactide-co-glycolic acid) (PLGA) nanospheres containing ubiquinone (UQ) for cosmetic products was pursued. By investigating various conditions for the preparation of UQ/PLGA nanospheres such as the molecular weight of PLGA, PLGA concentration, and UQ concentration, UQ/PLGA nanospheres with increased stability and slower drug release at a higher drug loading efficiency were prepared. Permeation tests on the prepared nanospheres using iontophoresis via electric dermal administration on membrane filters (200 nm pore size) and hairless mouse skin samples were also carried out. After iontophoresis, the nanospheres choked the membrane filter and remained on the horny layer of the hairless mouse skin, even after washing. Therefore, the prepared UQ/PLGA nanospheres and the established iontophoresis technique with the PLGA nanospheres in the present study can be applied to the future development of cosmetics. PMID:22725249

  12. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.

    PubMed

    Kim, Hyun Chang; Lee, Hoyoung; Khetan, Jawahar; Won, You-Yeon

    2015-12-29

    Air-water interfacial monolayers of poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) exhibit an exponential increase in surface pressure under high monolayer compression. In order to understand the molecular origin of this behavior, a combined experimental and theoretical investigation (including surface pressure-area isotherm, X-ray reflectivity (XR) and interfacial rheological measurements, and a self-consistent field (SCF) theoretical analysis) was performed on air-water monolayers formed by a PLGA-PEG diblock copolymer and also by a nonglassy analogue of this diblock copolymer, poly((D,L-lactic acid-ran-glycolic acid-ran-caprolactone)-block-ethylene glycol) (PLGACL-PEG). The combined results of this study show that the two mechanisms, i.e., the glass transition of the collapsed PLGA film and the lateral repulsion of the PEG brush chains that occur simultaneously under lateral compression of the monolayer, are both responsible for the observed PLGA-PEG isotherm behavior. Upon cessation of compression, the high surface pressure of the PLGA-PEG monolayer typically relaxes over time with a stretched exponential decay, suggesting that in this diblock copolymer situation, the hydrophobic domain formed by the PLGA blocks undergoes glass transition in the high lateral compression state, analogously to the PLGA homopolymer monolayer. In the high PEG grafting density regime, the contribution of the PEG brush chains to the high monolayer surface pressure is significantly lower than what is predicted by the SCF model because of the many-body attraction among PEG segments (referred to in the literature as the "n-cluster" effects). The end-grafted PEG chains were found to be protein resistant even under the influence of the "n-cluster" effects.

  13. A method to tune the shape of protein-encapsulated polymeric microspheres

    NASA Astrophysics Data System (ADS)

    Alteriis, Renato De; Vecchione, Raffaele; Attanasio, Chiara; Gregorio, Maria De; Porzio, Massimiliano; Battista, Edmondo; Netti, Paolo A.

    2015-07-01

    Protein encapsulation technologies of polymeric microspheres currently in use have been optimized to effectively protect their “protein cargo” from inactivation occurring in biological environments, preserving its bioactivity during release up to several weeks. The scenario of protein delivery would greatly benefit by strategies enabling the production of non-spherical particles. Herein we report an easy and effective stamp-based method to produce poly-lactic-glycolic-acid (PLGA) microparticles encapsulating Vascular Endothelial Growth Factor (VEGF) of different shapes. We demonstrate that PLGA microspheres can be deformed at room temperature exploiting solvent/non-solvent plasticization in order to preserve the properties of the starting microspheres. This gentle method allows the production of shaped particles that provide a prolonged release of VEGF in active form, as verified by an angiogenic assay. The retention of the biological activity of an extremely labile molecule, i.e. VEGF, lets us hypothesize that a wide variety of drug and protein encapsulated polymeric microspheres can be processed using this method.

  14. Functionalized antibiofilm thin coatings based on PLA-PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE

    NASA Astrophysics Data System (ADS)

    Grumezescu, Valentina; Socol, Gabriel; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Ficai, Anton; Truşcǎ, Roxana; Bleotu, Coralia; Balaure, Paul Cǎtǎlin; Cristescu, Rodica; Chifiriuc, Mariana Carmen

    2014-05-01

    We report the fabrication of thin coatings of PLA-PVA microspheres loaded with usnic acid by matrix assisted pulsed laser evaporation (MAPLE) onto Ti substrate. The obtained coatings have been physico-chemically characterized by scanning electron microscopy (SEM) and infrared microscopy (IRM). In vitro biological assays have been performed in order to evaluate the influence of fabricated microsphere thin coatings on the Staphylococcus aureus biofilm development as well as their biocompatibility. SEM micrographs have revealed a uniform morphology of thin coatings, while IRM investigations have proved both the homogeneity and functional groups integrity of prepared thin coatings. The obtained microsphere-based thin coatings have proved to be efficient vehicles for usnic acid natural compound with antibiofilm activity, as demonstrated by the inhibitory activity on S. aureus mature biofilm development, opening new perspectives for the prevention and therapy associated to biofilm related infections.

  15. Lead recovery and glass microspheres synthesis from waste CRT funnel glasses through carbon thermal reduction enhanced acid leaching process.

    PubMed

    Mingfei, Xing; Yaping, Wang; Jun, Li; Hua, Xu

    2016-03-15

    In this study, a novel process for detoxification and reutilization of waste cathode ray tube (CRT) funnel glass was developed by carbon thermal reduction enhanced acid leaching process. The key to this process is removal of lead from the CRT funnel glass and synchronous preparation of glass microspheres. Carbon powder was used as an isolation agent and a reducing agent. Under the isolation of the carbon powder, the funnel glass powder was sintered into glass microspheres. In thermal reduction, PbO in the funnel glass was first reduced to elemental Pb by carbon monoxide and then located on the surface of glass microspheres which can be removed easily by acid leaching. Experimental results showed that temperature, carbon adding amount and holding time were the major parameters that controlled lead removal rate. The maximum lead removal rate was 94.80% and glass microspheres that measured 0.73-14.74μm were obtained successfully by setting the temperature, carbon adding amount and holding time at 1200°C, 10% and 30min, respectively. The prepared glass microspheres may be used as fillers in polymer materials and abrasive materials, among others. Accordingly, this study proposed a practical and economical process for detoxification and recycling of waste lead-containing glass. PMID:26642446

  16. Polymeric microspheres

    DOEpatents

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  17. Long-term toxicity of holmium-loaded poly(L-lactic acid) microspheres in rats.

    PubMed

    Zielhuis, Sander W; Nijsen, J Frank W; Seppenwoolde, Jan-Henry; Bakker, Chris J G; Krijger, Gerard C; Dullens, Hub F J; Zonnenberg, Bernard A; van Rijk, Peter P; Hennink, Wim E; van het Schip, Alfred D

    2007-11-01

    The aim of this study was to get insight into the toxic effects of holmium-166-loaded poly(L-lactic acid) microspheres (Ho-PLLA-MS) which have very interesting features for treatment of liver malignancies. Acute, mid- and long-term effects were studied in healthy Wistar rats by evaluating clinical, biochemical and tissue response. Rats were divided into four treatment groups: sham, decayed neutron-irradiated Ho-PLLA-MS, non-irradiated Ho-PLLA-MS and PLLA-MS. After implantation of the microspheres into the liver of the rats, the animals were monitored (body weight, temperature and liver enzymes) for a period of 14-18 months. Some of the rats that received previously neutron-irradiated Ho-PLLA-MS were periodically scanned with magnetic resonance imaging (MRI) to see if holmium was released from the microspheres. After sacrifice, the liver tissue was histologically evaluated. Bone tissue was subjected to neutron-activation analysis in order to examine whether accumulation of released holmium in the bone had occurred. No measurable clinical and biochemical toxic effects were observed in any of the treatment groups. Furthermore, histological analyses of liver tissue samples only showed signs of a slight chronic inflammation and no significant differences in the tissue reaction between rats of the different treatment groups could be observed. The non-irradiated PLLA-MS and Ho-PLLA-MS stayed intact during the study. In contrast, 14 months after administration, the neutron-irradiated Ho-PLLA-MS was not completely spherical anymore, indicating that degradation had started. However, the holmium loading had not been released as was illustrated with MRI and affirmed by neutron-activation analysis of bone tissue. In conclusion, neutron-irradiated Ho-PLLA-MS does not provoke any toxic reaction and can be applied safely in vivo.

  18. Hemocompatibility of folic-acid-conjugated amphiphilic PEG-PLGA copolymer nanoparticles for co-delivery of cisplatin and paclitaxel: treatment effects for non-small-cell lung cancer.

    PubMed

    He, Zelai; Shi, Zengfang; Sun, Wenjie; Ma, Jing; Xia, Junyong; Zhang, Xiangyu; Chen, Wenjun; Huang, Jingwen

    2016-06-01

    In this study, we used folic-acid-modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) to encapsulate cisplatin and paclitaxel (separately or together), and evaluated their antitumor effects against lung cancer; this study was conducted in order to investigate the antitumor effects of the co-delivery of cisplatin and paclitaxel by a targeted drug delivery system. Blood compatibility assays and complement activation tests revealed that FA-PEG-PLGA nanoparticles did not induce blood hemolysis, blood clotting, or complement activation. The results also indicated that FA-PEG-PLGA nanoparticles had no biotoxic effects, the drug delivery system allowed controlled release of the cargo molecules, and the co-delivery of cisplatin and paclitaxel efficiently induces cancer cell apoptosis and cell cycle retardation. In addition, co-delivery of cisplatin and paclitaxel showed the ability to suppress xenograft lung cancer growth and prolong the survival time of xenografted mice. These results implied that FA-PEG-PLGA nanoparticles can function as effective carriers of cisplatin and paclitaxel, and that co-delivery of cisplatin and paclitaxel by FA-PEG-PLGA nanoparticles results in more effective antitumor effects than the combination of free-drugs or single-drug-loaded nanoparticles. PMID:26695149

  19. Folic acid-conjugated pH/temperature/redox multi-stimuli responsive polymer microspheres for delivery of anti-cancer drug.

    PubMed

    Li, Rongrong; Feng, Fuli; Wang, Yinsong; Yang, Xiaoying; Yang, Xinlin; Yang, Victor C

    2014-09-01

    The folic acid (FA)-conjugated pH/temperature/redox multi-stimuli responsive poly(methacrylic acid-co-N,N-bis(acryloyl)cystamine/poly(N-isopropylacrylamide-co-glycidyl methacrylate-co-N,N-bis(acryloyl)cystamine) microspheres were prepared by a two-stage distillation-precipitation polymerization with subsequent surface modification with FA. The microspheres were characterized by transmission electron microscopy, dynamical light scattering, Fourier-transform infrared spectra, UV-vis spectra and elemental analysis. The degradation of the functional microspheres could be triggered by a reductive reagent, such as glutathione, due to presence of BAC crosslinker. The drug-loaded microspheres exhibited a pH/temperature/redox multi-stimuli responsive drug release character for doxorubicin hydrochloride as a model anti-cancer drug, which was efficiently loaded into the microspheres with a high loading capacity of 208.0% and an encapsulation efficiency of 85.4%. In vitro drug delivery study indicated that the FA-conjugated microspheres could deliver Dox into MCF-7 cells more efficiently than the microspheres without functionalization of FA. Furthermore, WST-1 assay showed that the microspheres had no obvious toxicity to MCF-7 cells even at a high concentration of 2000 μg mL(-1). The resultant microsphere may be a promising vector for delivery of anti-cancer drugs as it exhibits a low cytotoxicity and degradability, precise molecular targeting property and multi-stimuli responsively controlled drug release. PMID:24935187

  20. Humidity-dependent compression-induced glass transition of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)

    SciTech Connect

    Kim, Hyun Chang; Lee, Hoyoung; Jung, Hyunjung; Choi, Yun -Hwa; Meron, Mati; Lin, Binhua; Bang, Joona; Won, You -Yeon

    2015-08-26

    Constant rate compression isotherms of the air–water interfacial Langmuir films of poly(D,L-lactic acid-ran-glycolic acid) (PLGA)show a distinct feature of an exponential increase in surface pressure in the high surface polymer concentration regime. We have previously demonstrated that this abrupt increase in surface pressure is linked to the glass transition of the polymer film, but the detailed mechanism of this process is not understood. In order to obtain a molecular-level understanding of this behavior, we performed extensive characterizations of the surface mechanical, structural and rheological properties of Langmuir PLGA films at the air–water interface, using combined experimental techniques including the Langmuir film balance, X-ray reflectivity and double-wall-ring interfacial rheometry methods.

  1. Development of a 5-fluorouracil-loaded PLGA microsphere delivery system by a solid-in-oil-in-hydrophilic oil (S/O/hO) novel method for the treatment of tumors.

    PubMed

    Lin, Qing; Cai, Yunpeng; Yuan, Minglu; Ma, Lin; Qiu, Mingfeng; Su, Jing

    2014-12-01

    Tumor treatment requires a long-term regimen of chemotherapy, and both surgical tumor resection and radiation therapy are also used. The present study aimed to develop a novel method for 5-fluorouracil (5-FU)-loaded microspheres which enhance the therapeutic effects of chemotherapy, the quality of life of patients and reduce chemotherapy systemic side-effects. The preparation of a 5-FU microsphere delivery system by a solid-in-oil-in-hydrophilic oil (S/O/hO) novel method was carried out and then in vitro and in vivo evaluation of the 5-FU-microsphere delivery system was conducted. The 5-FU microsphere delivery system prepared had sustained-release function and achieved local treatment efficacy for tumors. The encapsulation efficiency of the 5-FU microsphere delivery system was >90% [better than the fabrication method using water-in-oil-in-water (W/O/W)]. The drug release profile from the 5-FU-loaded sustained-release microsphere delivery system matched the pseudo zero-order equation for 30 days in vitro. The plasma concentration of 5-FU was higher than the water solution by subcutaneous injection. The tumor growth rate of rabbits using the 5-FU microsphere delivery system was much lower than the rate in rabbit using a subcutaneous injection of 5-FU water solution. The 5-FU-loaded sustained-release microspheres using the novel method (S/O/hO) is a potential and effective method with which to inhibit tumor growth.

  2. Preparation of Lung-Targeting, Emodin-Loaded Polylactic Acid Microspheres and Their Properties

    PubMed Central

    Chen, Xiaohong; Yang, Zifeng; Sun, Renshan; Mo, Ziyao; Jin, Guangyao; Wei, Fenghuan; Hu, Jianmin; Guan, Wenda; Zhong, Nanshan

    2014-01-01

    Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has been identified to have the potential to improve lung fibrosis and lung cancer. To avoid the liver and kidney toxicities and the fast metabolism of emodin, emodin-loaded polylactic acid microspheres (ED-PLA-MS) were prepared and their characteristics were studied. ED-PLA-MS were prepared by the organic phase dispersion-solvent diffusion method. By applying an orthogonal design, our results indicated that the optimal formulation was 12 mg/mL PLA, 0.5% gelatin, and an organic phase:glycerol ratio of 1:20. Using the optimal experimental conditions, the drug loading and encapsulation efficiencies were (19.0 ± 1.8)% and (62.2 ± 2.6)%, respectively. The average particle size was 9.7 ± 0.7 μm. In vitro studies indicated that the ED-PLA-MS demonstrated a well-sustained release efficacy. The microspheres delivered emodin, primarily to the lungs of mice, upon intravenous injection. It was also detected by microscopy that partial lung inflammation was observed in lung tissues and no pathological changes were found in other tissues of the ED-PLA-MS-treated animals. These results suggested that ED-PLA-MS are of potential value in treating lung diseases in animals. PMID:24733070

  3. Gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres for gadolinium neutron-capture therapy.

    PubMed

    Saha, Tapan Kumar; Ichikawa, Hideki; Fukumori, Yoshinobu

    2006-12-11

    In order to provide a suitable device that would contain water-soluble drugs, highly water-soluble gadolinium diethylenetriaminopentaacetic acid-loaded chitosan microspheres (CMS-Gd-DTPA) were prepared by the emulsion method using glutaraldehyde as a cross-linker and Span 80 as a surfactant for gadolinium neutron-capture therapy of cancer. The gadolinium content and the mass median diameter of CMS-Gd-DTPA were estimated. The size and morphology of the CMS-Gd-DTPA were strongly influenced by the initial applied weight ratio of Gd-DTPA:chitosan. FTIR spectra showed that the electrostatic interaction between chitosan and Gd-DTPA accelerated the formation of gadolinium-enriched chitosan microspheres. Sufficient amounts of glutaraldehyde and Span 80 were necessary for producing discrete CMS-Gd-DTPA. The CMS-Gd-DTPA having a mass median diameter 11.7microm and 11.6% of gadolinium could be used in Gd-NCT following intratumoral injection. PMID:17045253

  4. Designing improved poly lactic-co-glycolic acid microspheres for a malarial vaccine: incorporation of alginate and polyinosinic-polycytidilic acid.

    PubMed

    Salvador, Aiala; Igartua, Manoli; Hernández, Rosa María; Pedraz, José Luis

    2014-01-01

    Vaccination using proteins and peptides is currently gaining importance. One of the major drawbacks of this approach is the lack of an efficient immune response when the antigens are administered without adjuvants. In this study, we have taken the advantage of a combined adjuvant system in order to improve the immunogenicity of the SPf66 malarial antigen. For that purpose, we have combined poly (lactic-co-glycolic) acid microspheres, alginate, and polyinosinic polycytidilic acid. Our results show that microspheres can enhance the IgG production obtained with Freund's complete adjuvant. We have attributed this improvement to the presence of polyinosinic polycytidilic acid, since formulations comprising this adjuvant overcame the immune response from the others. In addition, our microspheres produced both IgG1 and IgG2a, leading to mixed Th1/Th2 activation, optimal for malaria vaccination. In conclusion, we have designed a preliminary formulation with a high potential for the treatment of malaria.

  5. Facile one-pot preparation and functionalization of luminescent chitosan-poly(methacrylic acid) microspheres based on polymer monomer pairs

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Wang, Changchun; Mao, Weiyong; Yang, Wuli; Liu, Changjia; Chen, Jiyao

    2008-08-01

    In this paper, we present a facile and robust approach to synthesize multifunctional organic/inorganic composite microspheres with chitosan-poly(methacrylic acid) (CS-PMAA) shells and cadmium tellurium/iron oxide nanoparticle cores. Due to the strong electrostatic interaction between the negatively charged nanoparticles and the protonated CS polymers, the CS/nanoparticle complexes were utilized as templates for the subsequent polymerization of methacrylic acid. The resulting composite microspheres with luminescence and magnetic properties have regular morphologies and narrow size distributions. In contrast to previous reports, this route was based on a one-pot strategy without the aid of surfactants, organic solvent, or polymerizable ligands in aqueous solution. The encapsulated CdTe semiconductor nanocrystals inside the microspheres exhibited strong and stable photoluminescence properties in the pH range 5.0-11.0. When the pH was adjusted below 4, the photoluminescence decreased sharply and even quenched completely. However, the weakened fluorescence emission could be recovered to some degree upon an increase of pH above 5. Additionally, when both Fe3O4 and CdTe nanoparticles were encapsulated within CS-PMAA microspheres, the magnetic content of the microspheres could be efficiently controlled by tuning the feeding molar ratio of MAA monomers and glucosamine units of CS. From the preliminary attempts, it was found that the multifunctional microspheres as imaging agents could improve the rate and extent of cellular uptake under short-term exposure to an applied magnetic field, and so exhibit a great potential as bioactive molecule carriers.

  6. Flow-through ultrasonic emulsification combined with static micromixing for aseptic production of microspheres by solvent extraction.

    PubMed

    Freitas, Sergio; Rudolf, Beat; Merkle, Hans P; Gander, Bruno

    2005-10-01

    Final sterilisation of drug-loaded polymeric microspheres is problematic as dry heat or steam sterilisation are not applicable, and gamma-irradiation may result in radiolytic scission of the polymer chains, and potentially damage the bioactive compound. Therefore, aseptic production is the method of choice to obtain a sterile product. A novel process for the production of microspheres is introduced based on the principle of double emulsion-solvent extraction. The process uses a flow-through ultrasonic cell for the preparation of the primary emulsion, in combination with a static micromixer for the production of the double emulsion. Because of its small scale, the equipment is readily accommodated in a laminar air-flow cabinet or an isolator. Thanks to the low technical complexity and easy handling of the process, only minimal manual interventions is required. Finally, the possibility for in-place cleaning and sterilisation makes the equipment and process well suited for aseptic microsphere preparation. Microspheres were prepared from poly(lactic-co-glycolic acid) (PLGA), and bovine serum albumin (BSA) served as model protein for microencapsulation. The BSA-in-PLGA (w/o) emulsions produced by the ultrasonic flow-through cell exhibited mean droplet sizes of <700 nm. Further processing into microspheres of 15-40 microm mean diameter resulted in approx. 70% BSA encapsulation efficiency. Batch-to-batch reproducibility was excellent. Microsphere batches produced under aseptic conditions to assure product sterility exhibited no microbial contamination when examined by a simplified sterility test. The presented technology offers great potential for aseptic microsphere production for batch-sizes suitable, e.g. for clinical investigations. Complete validation of product sterility would, however, demand more extended tests. PMID:16009542

  7. Development of prilling process for biodegradable microspheres through experimental designs.

    PubMed

    Fabien, Violet; Minh-Quan, Le; Michelle, Sergent; Guillaume, Bastiat; Van-Thanh, Tran; Marie-Claire, Venier-Julienne

    2016-02-10

    The prilling process proposes a microparticle formulation easily transferable to the pharmaceutical production, leading to monodispersed and highly controllable microspheres. PLGA microspheres were used for carrying an encapsulated protein and adhered stem cells on its surface, proposing a tool for regeneration therapy against injured tissue. This work focused on the development of the production of PLGA microspheres by the prilling process without toxic solvent. The required production quality needed a complete optimization of the process. Seventeen parameters were studied through experimental designs and led to an acceptable production. The key parameters and mechanisms of formation were highlighted. PMID:26656302

  8. Synthesis of uniform poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) microspheres using a microfluidic chip for comparison.

    PubMed

    Yang, Chih-Hui; Huang, Keng-Shiang; Grumezescu, Alexandru Mihai; Wang, Chih-Yu; Tzeng, Shian-Chiuan; Chen, Szu-Yu; Lin, Yu-Hsin; Lin, Yung-Sheng

    2014-02-01

    Applications of poly(l-lactide) (PLA) and poly(d,l-lactide-co-glycolide) (PLGA) microspheres are widely used in the biomedical and pharmaceutical fields. The effects of PLA/PLGA on microsphere properties when using conventional particulate preparation methods are not easily defined due to the uncontrollable particle size and size distribution. This study was aimed to synthesize uniform PLA and PLGA microspheres using a phenol formaldehyde resin-based microfluidic chip, which has the advantage of being solvent-resistant, flexible, and is readily disassembled for cleaning. The proposed chip can rapidly fabricate reproducible PLA and PLGA microspheres. Uniform emulsion droplets can be achieved by hydrodynamic flow focusing. After solvent evaporation, the free-flowing PLA and PLGA microspheres have a high level of morphological uniformity and size, allowing for a clear comparison of material effects. The results indicate that the sizes of the PLA and PLGA microspheres for the various flow rates of dispersed/continuous phases are very similar. The PLA/PLGA materials do not have a significant effect on particle size, but the particle surface indicates a different morphology. The result of the cytotoxicity evaluation shows no difference between PLA and PLGA and ensures the biocompatibility of both prepared PLA and PLGA microspheres for biomedical and pharmaceutical applications in the future. PMID:23857679

  9. A short term quality control tool for biodegradable microspheres.

    PubMed

    D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P

    2014-06-01

    Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C. PMID:24519488

  10. A short term quality control tool for biodegradable microspheres.

    PubMed

    D'Souza, Susan; Faraj, Jabar A; Dorati, Rossella; DeLuca, Patrick P

    2014-06-01

    Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.

  11. Mandelic acid chiral separation utilizing a two-phase partitioning bioreactor built by polysulfone microspheres and immobilized enzymes.

    PubMed

    Wang, Xinyu; Cui, Yanjun; Chen, Xia; Zhu, Hao; Zhu, Weiwei; Li, Yanfeng

    2015-03-01

    A novel two-phase partitioning bioreactor (TPPB) modified by polysulfone (PSF) microspheres and immobilized enzyme (novozym-435) was formed, and the resulting TPPB was applied into mandelic acid chiral separation. The PSF microspheres containing n-hexanol (named PSF/hexanol microspheres) was prepared by using the phase inversion method, which was used as the organic phase. Meanwhile, the immobilized enzyme novozym-435 was used as a biocatalyst. The water phase was composed of the phosphate buffer solution (PBS). (R, S)-Methyl mandelate was selected as the substrate to study enzymatic properties. Different reaction factors have been researched, such as pH, reaction time, temperature and the quantity of biocatalyst and PSF/hexanol microspheres added in. Finally, (S)-mandelic acid was obtained with an 80 % optical purity after 24 h in the two-phase partitioning bioreactor. The enantiomeric excess (eep) values were very low in the water phase, in which the highest eep value was only 46 %. The eep of the two-phase partitioning bioreactor had been enhanced more obviously than that catalyzed in the water phase.

  12. Magnetically directed poly(lactic acid) [sup 90]Y-microspheres: Novel agents for targeted intracavitary radiotherapy

    SciTech Connect

    Haefeli, U.O.; Sweeney, S.M.; Beresford, B.A.; Sim, E.H.; Macklis, R.M. . Joint Center for Radiation Therapy)

    1994-08-01

    High energy [beta]-emitting radioisotopes like Yttrium-90 have a radiotoxic range of about one centimeter. For cancer treatment they must be brought near the tumor cells and kept there for as long as they are radioactive. The authors developed as carriers for the ionic form of [sup 90]Y a matrix-type polymeric drug delivery system, poly(lactic acid) (PLA) microspheres. This radiopharmaceutical could be selectively delivered to the target site after incorporating 10% Fe[sub 3]O[sub 4] which made the magnetic microspheres (MMS) responsive to an external magnetic field. Furthermore, MMS are biodegradable and slowly hydrolyze into physiologic lactic acid after the radioactivity is completely decayed. Previously prepared 10--40 [mu]m MMS were radiochemically loaded to high specific activity with [sup 90]Y at a pH of 5.7. Stability studies showed that approximately 95% of added [sup 90]Y is retained within the PLA matrix after 28 days (> 10 half-lives) at 37 C in serum, and electron microscopy showed that the microspheres retained their characteristic morphologic appearance for the same time period. Cytotoxicity studies with SK-N-SH neuroblastoma cells growing in monolayer showed that the radiocytotoxicity of the microspheres could be directed magnetically to either kill or spare specific cell populations, thus making them of great interest for targeted intracavitary tumor therapy. The authors are currently optimizing this system for use in the treatment of neoplastic meningitis.

  13. Culturing primary human osteoblasts on electrospun poly(lactic-co-glycolic acid) and poly(lactic-co-glycolic acid)/nanohydroxyapatite scaffolds for bone tissue engineering.

    PubMed

    Li, Mengmeng; Liu, Wenwen; Sun, Jiashu; Xianyu, Yunlei; Wang, Jidong; Zhang, Wei; Zheng, Wenfu; Huang, Deyong; Di, Shiyu; Long, Yun-Ze; Jiang, Xingyu

    2013-07-10

    In this work, we fabricated polymeric fibrous scaffolds for bone tissue engineering using primary human osteoblasts (HOB) as the model cell. By employing one simple approach, electrospinning, we produced poly(lactic-co-glycolic acid) (PLGA) scaffolds with different topographies including microspheres, beaded fibers, and uniform fibers, as well as the PLGA/nanohydroxyapatite (nano-HA) composite scaffold. The bone-bonding ability of electrospun scaffolds was investigated by using simulated body fluid (SBF) solution, and the nano-HA in PLGA/nano-HA composite scaffold can significantly enhance the formation of the bonelike apatites. Furthermore, we carried out in vitro experiments to test the performance of electrospun scaffolds by utilizing both mouse preosteoblast cell line (MC 3T3 E1) and HOB. Results including cell viability, alkaline phosphatase (ALP) activity, and osteocalcin concentration demonstrated that the PLGA/nano-HA fibers can promote the proliferation of HOB efficiently, indicating that it is a promising scaffold for human bone repair.

  14. Tuning the degradation rate of calcium phosphate cements by incorporating mixtures of polylactic-co-glycolic acid microspheres and glucono-delta-lactone microparticles.

    PubMed

    Sariibrahimoglu, Kemal; An, Jie; van Oirschot, Bart A J A; Nijhuis, Arnold W G; Eman, Rhandy M; Alblas, Jacqueline; Wolke, Joop G C; van den Beucken, Jeroen J J P; Leeuwenburgh, Sander C G; Jansen, John A

    2014-11-01

    Calcium phosphate cements (CPCs) are frequently used as synthetic bone graft materials in view of their excellent osteocompatibility and clinical handling behavior. Hydroxyapatite-forming CPCs, however, degrade at very low rates, thereby limiting complete bone regeneration. The current study has investigated whether degradation of apatite-forming cements can be tuned by incorporating acid-producing slow-resorbing poly(D,L-lactic-co-glycolic) acid (PLGA) porogens, fast-resorbing glucono-delta-lactone (GDL) porogens, or mixtures thereof. The physicochemical, mechanical, and degradation characteristics of these CPC formulations were systematically analyzed upon soaking in phosphate-buffered saline (PBS). In parallel, various CPC formulations were implanted intramuscularly and orthotopically on top of the transverse process of goats followed by analysis of the soft tissue response and bone ingrowth after 12 weeks. In vitro degradation of GDL was almost completed after 2 weeks, as evidenced by characterization of the release of gluconic acid, while PLGA-containing CPCs released glycolic acid throughout the entire study (12 weeks), resulting in a decrease in compression strength of CPC. Extensive in vitro degradation of the CPC matrix was observed upon simultaneous incorporation of 30% PLGA-10% GDL. Histomorphometrical evaluation of the intramuscularly implanted samples revealed that all CPCs exhibited degradation, accompanied by an increase in capsule thickness. In the in vivo goat transverse process model, incorporation of 43% PLGA, 30% PLGA-5% GDL, and 30% PLGA-10% GDL in CPC significantly increased bone formation and resulted in higher bone height compared with both 10% GDL and 20% GDL-containing CPC samples.

  15. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Doolaanea, Abd Almonen

    2016-06-01

    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.

  16. Preparation, characterization, and in vitro release studies of insulin-loaded double-walled poly(lactide-co-glycolide) microspheres.

    PubMed

    Ansary, Rezaul H; Rahman, Mokhlesur M; Awang, Mohamed B; Katas, Haliza; Hadi, Hazrina; Doolaanea, Abd Almonen

    2016-06-01

    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin. PMID:26817478

  17. The osteogenic response of mesenchymal stem cells to an injectable PLGA bone regeneration system.

    PubMed

    Curran, Judith M; Fawcett, Sandra; Hamilton, Lloyd; Rhodes, Nicholas P; Rahman, Cheryl V; Alexander, Morgan; Shakesheff, Kevin; Hunt, John A

    2013-12-01

    The enrichment of substrates/surfaces with selected functional groups, methyl (-CH3), allyl amine (-NH2), allyl alcohol (-OH) and acrylic acid (-COOH), can be used to trigger mesenchymal stem (MSC) cell differentiation into specified lineages, minimising the need for exogenous biological supplementation. We present the successful translation of this research phenomenon to an injectable two phase injectable PLGA system, utilising plasma techniques, for the repair of bone defects. Modified microspheres were characterised using water contact angel (WCA), X-ray Photon Spectroscopy (XPS) and scanning electron microscopy (SEM). When cultured in contact with MSCs in vitro, the ability of the modified particles, within the 2 phase system, to induce differentiation was characterised using quantitative assays for cell viability and histological analysis for key markers of differentiation throughout the entirety of the three dimensional scaffold. Biological analysis proved that selected modified microspheres have the ability to induce MSC osteogenic (-NH2 modified scaffolds) and chondrogenic (-OH modified scaffolds) differentiation throughout the entirety of the formed scaffold. Therefore optimised plasma modification of microspheres is an effective tool for the production of injectable systems for the repair of bone and cartilage defects. PMID:24044995

  18. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture. PMID:25265058

  19. Synthesis and characterisation of multifunctional alginate microspheres via the in situ formation of ZnO quantum dots and the graft of 4-(1-pyrenyl) butyric acid to sodium alginate.

    PubMed

    Luo, Guilin; Wang, Jianxin; Wang, Yingying; Feng, Bo; Weng, Jie

    2015-01-01

    Growth factor-loaded fluorescent alginate microspheres, which can realise sustained growth factor release and fluorescence imaging, were synthesised by in situ formation of ZnO quantum dots (QDs) and covalent graft of 4-(1-pyrenyl) butyric acid (PBA). BSA was chosen as a growth factor model protein to study the release kinetic of growth factors from alginate microspheres. The microsphere size and fluorescent properties were also investigated. Investigations of cell culture were used for evaluating biocompatibility of BSA-loaded fluorescent microspheres and fluorescence imaging property of ZnO QDs and PBA-grafted sodium alginate from the microspheres. The results show that they have good fluorescent property either to microspheres or to cells and fluorescent microspheres have good biocompatibility and property in sustained release of growth factors. The obtained microspheres will be expected to realise the imaging of cells and materials and also the release of growth factor in tissue engineering or in cell culture.

  20. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration.

    PubMed

    Gupta, Vineet; Lyne, Dina V; Barragan, Marilyn; Berkland, Cory J; Detamore, Michael S

    2016-07-01

    Bioceramic mixtures of tricalcium phosphate (TCP) and hydroxyapatite (HAp) are widely used for bone regeneration because of their excellent cytocompatibility, osteoconduction, and osteoinduction. Therefore, we hypothesized that incorporation of a mixture of TCP and HAp in microsphere-based scaffolds would enhance osteogenesis of rat bone marrow stromal cells (rBMSCs) compared to a positive control of scaffolds with encapsulated bone-morphogenic protein-2 (BMP-2). Poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds encapsulating TCP and HAp mixtures in two different ratios (7:3 and 1:1) were fabricated with the same net ceramic content (30 wt%) to evaluate how incorporation of these ceramic mixtures would affect the osteogenesis in rBMSCs. Encapsulation of TCP/HAp mixtures impacted microsphere morphologies and the compressive moduli of the scaffolds. Additionally, TCP/HAp mixtures enhanced the end-point secretion of extracellular matrix components relevant to bone tissue compared to the "blank" (PLGA-only) microsphere-based scaffolds as evidenced by the biochemical, gene expression, histology, and immunohistochemical characterization. Moreover, the TCP/HAp mixture groups even surpassed the BMP-2 positive control group in some instances in terms of matrix synthesis and gene expression. Lastly, gene expression data suggested that the rBMSCs responded differently to different TCP/HAp ratios presented to them. Altogether, it can be concluded that TCP/HAp mixtures stimulated the differentiation of rBMSCs toward an osteoblastic phenotype, and therefore may be beneficial in gradient microsphere-based scaffolds for osteochondral regeneration. PMID:27272903

  1. Comparative evaluation of polymeric and waxy microspheres for combined colon delivery of ascorbic acid and ketoprofen.

    PubMed

    Maestrelli, F; Zerrouk, N; Cirri, M; Mura, P

    2015-05-15

    The goal of this work was to combine the ketoprofen anti-inflammatory effect with the ascorbic acid antioxidant properties for a more efficient treatment of colonic pathologies. With this aim, microspheres (MS) based on both waxy materials (ceresine, Precirol(®) and Compritol(®)) or hydrophilic biopolymers (pectine, alginate and chitosan) loaded with the two drugs were developed, physicochemically characterized and compared in terms of entrapment efficiency, in vitro release profiles, potential toxicity and drug permeation properties across the Caco-2 cell line. Waxy MS revealed an high encapsulation efficiency of ketoprofen but a not detectable entrapment of ascorbic acid, while polymeric MS showed a good entrapment efficiency of both drugs. All MS need a gastro-resistant coating, to avoid any premature release of the drugs. Ketoprofen release rate from polymeric matrices was clearly higher than from the waxy ones. In contrast, the ASC release rate was higher, due to its high hydro-solubility. Cytotoxicity studies revealed the safety of all the formulations. Transport studies showed that the ketoprofen apparent permeability increased, when formulated with the different MS. In conclusion, only polymeric MS enabled an efficient double encapsulation of both the hydrophilic and lipophilic drugs, and, in addition, presented higher drug release rate and stronger enhancer properties.

  2. Copolymeric hexyl acrylate-methacrylic acid microspheres - surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2016-10-01

    Copolymeric acrylate microspheres were prepared from hexyl acrylate using different amounts of methacrylic acid, resulting in a series of microspheres of gradually changing properties. The distribution of carboxyl groups - between surface and bulk of microspheres was evaluated. Bulk reactive carboxyl groups were determined using reverse coulometric titration with H(+) ions, following hydroxide ions have been generated and allowed to react with microspheres in the first step. It was found that the number of reactive carboxyl groups available in copolymeric microspheres is lower compared to number of methacrylic acid units used for polymerization process. Moreover, there is correlation between the number of groups introduced and found to be reactive in microspheres. On the other hand, the number of surface reactive groups was proportional to the number of groups introduced in course of polymerization. Thus, the surface reactive groups can be used as reagent, in novel heterogeneous microtitration procedure, in which a constant number of microspheres of different carboxyl groups contents is introduced to the sample to react with the analyte. The applicability of novel proposed method was tested on the example of Ni(2+) determination. PMID:27474305

  3. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects.

    PubMed

    Fu, Yin-Chih; Wang, Yan-Hsiung; Chen, Chung-Hwan; Wang, Chih-Kuang; Wang, Gwo-Jaw; Ho, Mei-Ling

    2015-01-01

    Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid) microspheres (SIM/PLGA) that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS) bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration of bone in the clinical setting. PMID:26664114

  4. Combination of calcium sulfate and simvastatin-controlled release microspheres enhances bone repair in critical-sized rat calvarial bone defects

    PubMed Central

    Fu, Yin-Chih; Wang, Yan-Hsiung; Chen, Chung-Hwan; Wang, Chih-Kuang; Wang, Gwo-Jaw; Ho, Mei-Ling

    2015-01-01

    Most allogenic bone graft substitutes have only osteoconductive properties. Developing new strategies to improve the osteoinductive activity of bone graft substitutes is both critical and practical for clinical application. Previously, we developed novel simvastatin-encapsulating poly(lactic-co-glycolic acid) microspheres (SIM/PLGA) that slowly release simvastatin and enhance fracture healing. In this study, we combined SIM/PLGA with a rapidly absorbable calcium sulfate (CS) bone substitute and studied the effect on bone healing in critical-sized calvarial bone defects in a rat model. The cytotoxicity and cytocompatibility of this combination was tested in vitro using lactate dehydrogenase leakage and a cell attachment assay, respectively. Combination treatment with SIM/PLGA and the CS bone substitute had no cytotoxic effect on bone marrow stem cells. Compared with the control, cell adhesion was substantially enhanced following combination treatment with SIM/PLGA and the CS bone substitute. In vivo, implantation of the combination bone substitute promoted healing of critical-sized calvarial bone defects in rats; furthermore, production of bone morphogenetic protein-2 and neovascularization were enhanced in the area of the defect. In summary, the combination of SIM/PLGA and a CS bone substitute has osteoconductive and osteoinductive properties, indicating that it could be used for regeneration of bone in the clinical setting. PMID:26664114

  5. Investigating the use of porous, hollow glass microspheres in positive lead acid battery plates

    NASA Astrophysics Data System (ADS)

    Sorge, Matthew; Bean, Thomas; Woodland, Travis; Canning, John; Cheng, I. Frank; Edwards, Dean B.

    2014-11-01

    Porous, hollow, glass microspheres (PHGMs) can be used to increase porosity in lead acid battery electrodes to improve the battery's power and energy performance at higher discharge rates. As reported in this paper, the PHGM additives did improve electrolyte storage and porosity in the electrodes. However, the nonconductive PHGMs do reduce the critical volume fraction (CVF) of the electrodes as predicted from conductivity models. The increase in electrode performance due to increased porosity may therefore be partially offset by the drop in capacity due to a lower critical volume fraction. Empirical equations are developed that relate the CFV and porosity of an electrode to the amount, size, and porosity of the additives in that electrode. The porosity estimates made from the empirical equations compare favorably with the experimental data from plates fabricated with these additives. The performance of electrodes with additives is estimated from computer models using the electrode's CVF and porosity as provided by the equations. Tests were performed on plates having volume loadings of PHGMs from 11% to 44% of total solids in positive electrodes to determine their effect on active material utilizations. The results from these discharge tests are reported and compared with theoretical models.

  6. Controlled release of thyrotropin releasing hormone from microspheres: evaluation of release profiles and pharmacokinetics after subcutaneous administration.

    PubMed

    Heya, T; Mikura, Y; Nagai, A; Miura, Y; Futo, T; Tomida, Y; Shimizu, H; Toguchi, H

    1994-06-01

    The drug-release kinetics of thyrotropin releasing hormone (TRH) containing copoly(dl-lactic/glycolic acid) (PLGA) microspheres were evaluated both in vitro and in vivo. The drug was encapsulated in PLGA using an in-water drying method through a water in oil in water emulsion. The drug release from the PLGA microspheres in vitro correlated well with that in vivo, and pseudo-zero-order release kinetics were observed. The pharmacokinetics of TRH following administration of this controlled-release parenteral dosage form have been also examined in rats. Following a transient increase in the plasma level due to an initial burst, steady-state plasma levels were observed. The duration of drug release estimated from the plasma level was comparable with the results in the in vitro and in vivo release studies. The steady-state plasma levels correlated well with the levels predicted from the pharmacokinetic parameters following a single subcutaneous or intravenous injection of TRH solution. The results of this study confirm the previously reported in vivo sustained release of TRH achieved with this drug-delivery system. PMID:9120809

  7. Uniform magnetic core/shell microspheres functionalized with Ni2+-iminodiacetic acid for one step purification and immobilization of his-tagged enzymes.

    PubMed

    Zhang, Yuting; Yang, Yongkun; Ma, Wanfu; Guo, Jia; Lin, Yao; Wang, Changchun

    2013-04-10

    A facile approach has been developed to synthesize Fe3O4/PMG (poly (N,N'-methylenebisacrylamide-co-glycidyl methacrylate)) core/shell microspheres using distillation-precipitation polymerization. Treating PMG shell with iminodiacetic acid (IDA) and Ni2+ yields composite microspheres of Fe3O4/PMG/IDA-Ni2+. The Ni2+ ions loaded on the surface of microspheres provide abundant docking sites for immobilization of histidine-tagged proteins. The high saturation magnetization of Fe3O4/PMG (23 emu/g), determined by vibrating sample magnetometer (VSM), allows an easy separation of the microspheres from solution under an external magnetic field. The composite microspheres were used to purify two His-tagged cellulolytic enzymes (Cel48F and Cel9G) directly from crude cell lysates with high binding affinity, capacity, and specificity. The microspheres can be recycled for many times without significant loss of binding capacity to enzymes. The immobilized enzymes on the surface of microspheres well retain their biological activities in degradation of cellulose. These materials show great potential in the biomedical and biotechnological applications that require low-cost purification of recombinant proteins and instant enzyme immobilization at an industrial scale. PMID:23470159

  8. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolysis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  9. Metabolism of proteinoid microspheres

    NASA Technical Reports Server (NTRS)

    Nakashima, T.; Fox, S. W. (Principal Investigator)

    1987-01-01

    The literature of metabolism in proteinoids and proteinoid microspheres is reviewed and criticized from a biochemical and experimental point of view. Closely related literature is also reviewed in order to understand the function of proteinoids and proteinoid microspheres. Proteinoids or proteinoid microspheres have many activities. Esterolyis, decarboxylation, amination, deamination, and oxidoreduction are catabolic enzyme activities. The formation of ATP, peptides or oligonucleotides is synthetic enzyme activities. Additional activities are hormonal and inhibitory. Selective formation of peptides is an activity of nucleoproteinoid microspheres; these are a model for ribosomes. Mechanisms of peptide and oligonucleotide syntheses from amino acids and nucleotide triphosphate by proteinoid microspheres are tentatively proposed as an integrative consequence of reviewing the literature.

  10. Incorporation of mesoporous silica nanoparticles into random electrospun PLGA and PLGA/gelatin nanofibrous scaffolds enhances mechanical and cell proliferation properties.

    PubMed

    Mehrasa, Mohammad; Asadollahi, Mohammad Ali; Nasri-Nasrabadi, Bijan; Ghaedi, Kamran; Salehi, Hossein; Dolatshahi-Pirouz, Alireza; Arpanaei, Ayyoob

    2016-09-01

    Poly(lactic-co-glycolic acid) (PLGA) and PLGA/gelatin random nanofibrous scaffolds embedded with different amounts of mesoporous silica nanoparticles (MSNPs) were fabricated using electrospinning method. To evaluate the effects of nanoparticles on the scaffolds, physical, chemical, and mechanical properties as well as in vitro degradation behavior of scaffolds were investigated. The mean diameters of nanofibers were 974±68nm for the pure PLGA scaffolds vs 832±70, 764±80, and 486±64 for the PLGA/gelatin, PLGA/10wt% MSNPs, and the PLGA/gelatin/10wt% MSNPs scaffolds, respectively. The results suggested that the incorporation of gelatin and MSNPs into PLGA-based scaffolds enhances the hydrophilicity of scaffolds due to an increase of hydrophilic functional groups on the surface of nanofibers. With porosity examination, it was concluded that the incorporation of MSNPs and gelatin decrease the porosity of scaffolds. Nanoparticles also improved the tensile mechanical properties of scaffolds. Using in vitro degradation analysis, it was shown that the addition of nanoparticles to the nanofibers matrix increases the weight loss percentage of PLGA-based samples, whereas it decreases the weight loss percentage in the PLGA/gelatin composites. Cultivation of rat pheochromocytoma cell line (PC12), as precursor cells of dopaminergic neural cells, on the scaffolds demonstrated that the introduction of MSNPs into PLGA and PLGA/gelatin matrix leads to improved cell attachment and proliferation and enhances cellular processes. PMID:27207035

  11. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  12. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer.

    PubMed

    He, Zelai; Huang, Jingwen; Xu, Yuanyuan; Zhang, Xiangyu; Teng, Yanwei; Huang, Can; Wu, Yufeng; Zhang, Xi; Zhang, Huijun; Sun, Wenjie

    2015-12-01

    An amphiphilic copolymer, folic acid (FA) modified poly(ethylene glycol)-poly(lactic-co-glycolic acid) (FA-PEG-PLGA) was prepared and explored as a nanometer carrier for the co-delivery of cisplatin (cis-diaminodichloroplatinum, CDDP) and paclitaxel (PTX). CDDP and PTX were encapsulated inside the hydrophobic inner core and chelated to the middle shell, respectively. PEG provided the outer corona for prolonged circulation. An in vitro release profile of the CDDP + PTX-encapsulated nanoparticles revealed that the PTX chelation cross-link prevented an initial burst release of CDDP. After an incubation period of 24 hours, the CDDP+PTX-encapsulated nanoparticles exhibited a highly synergistic effect for the inhibition of A549 (FA receptor negative) and M109 (FA receptor positive) lung cancer cell line proliferation. Pharmacokinetic experiment and distribution research shows that nanoparticles have longer circulation time in the blood and can prolong the treatment times of chemotherapeutic drugs. For the in vivo treatment of A549 cells xeno-graft lung tumor, the CDDP+PTX-encapsulated nanoparticles displayed an obvious tumor inhibiting effect with an 89.96% tumor suppression rate (TSR). This TSR was significantly higher than that of free chemotherapy drug combination or nanoparticles with a single drug. For M109 cells xeno-graft tumor, the TSR was 95.03%. In vitro and in vivo experiments have all shown that the CDDP+PTX-encapsulated nanoparticles have better targeting and antitumor effects in M109 cells than CDDP+PTX-loaded PEG-PLGA nanoparticles (p < 0.05). In addition, more importantly, the enhanced anti-tumor efficacy of the CDDP+PTX-encapsulated nanoparticles came with reduced side-effects. No obvious body weight loss or functional changes occurred within blood components, liver, or kidneys during the treatment of A549 and M109 tumor-bearing mice with the CDDP+PTX-encapsulated nanoparticles. Thus, the FA modified amphiphilic copolymer-based combination of CDDP and

  13. Preparation and Analysis of Co-precipitated, Biodegradable Poly-(Lactide-co-Glycolide) and Polyethylene Glycol Microspheres Prepared by Spray Drying

    NASA Astrophysics Data System (ADS)

    Javiya, Curie

    Biodegradable poly-(d,l-lactide-co-glycolide) (PLGA) based microspheres are commonly used for numerous clinical applications. PEG is a widely used polymer due to its hydrophilic, biocompatible, and nontoxic nature. In this study, different blends of PLGA/PEG microspheres were prepared using a spray drying technique. The microspheres were spherical with maximum yield found to be 60.3% and average particle size in the range of 2.4 to 3.1 microm. Under the spray drying processing conditions, the polymers showed full miscibility slightly below 15% w/w and partial miscibility up to 20% w/w of PEG in the blended microspheres. At higher temperatures, PLGA and PEG were miscible in all proportions used for the blended microspheres. Blending 10% w/w PEG in PLGA membranes showed significant reduction in attachment of macrophages compared to PLGA membranes. The in-vitro response of macrophage towards the miscible blends of PLGA/PEG microspheres was further characterized. Results showed some reduction in macrophage viability and activation, however, significant effects with PLGA/PEG microspheres were not observed.

  14. Toward accelerated bone regeneration by altering poly(D,L-lactic-co-glycolic) acid porogen content in calcium phosphate cement.

    PubMed

    van Houdt, C I A; Preethanath, R S; van Oirschot, B A J A; Zwarts, P H W; Ulrich, D J O; Anil, S; Jansen, J A; van den Beucken, J J J P

    2016-02-01

    This work aimed to compare in vitro degradation of dense PLGA microspheres and milled PLGA particles as porogens within CPC, considering that the manufacturing of milled PLGA is more cost-effective when compared with PLGA microspheres. Additionally, we aimed to examine the effect of porogen amount within CPC/PLGA on degradation and bone formation. Our in vitro results showed no differences between both forms of PLGA particles (as porogens in CPC; spherical for microspheres, irregular for milled) regarding morphology, porosity, and degradation. Using milled PLGA as porogens within CPC/PLGA, we evaluated the effect of porogen amount on degradation and bone forming capacity in vivo. Titanium landmarks surrounded by CPC/PLGA with 30 and 50 wt % PLGA, were implanted in forty femoral bone defects of twenty male Wistar rats. Histomorphometrical results showed a significant temporal decrease in the amount of CPC, for both formulas, and confirmed that 50 wt % PLGA degrades faster than 30 wt%, and allows for a 1.5-fold higher amount of newly formed bone. Taken together, this study demonstrated that (i) milled PLGA particles perform equal to PLGA microspheres, and (ii) tuning of the PLGA content in CPC/PLGA is a feasible approach to leverage material degradation and bone formation.

  15. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment. PMID:26618263

  16. Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres.

    PubMed

    Tao, Xue; Li, Kun; Yan, Han; Yang, Hu; Li, Aimin

    2016-02-01

    In this current work, the magnetic composite microsphere containing glutamine modified chitosan and silica coated Fe3O4 nanoparticles (CS-Gln-MCM) has been successfully prepared and extensively characterized, which is a kind of biodegradable materials. CS-Gln-MCM shows enhanced removal efficiency for both acid green 25 (AG25), an amphoteric dye, and mercury ions (Hg(2+)) from water in the respective while measured pH range compared with chitosan magnetic composite microsphere (CS-MCM) without modification. It is due to the fact that the grafted amino acid provides a variety of additional adsorption active sites and diverse adsorption mechanisms are involved. In AG25 and Hg(2+) aqueous mixture, the modified adsorbents bear preferential adsorption for AG25 over Hg(2+) in strong acidic solutions ascribed to multiple interactions between AG25 and CS-Gln-MCM, such as hydrogen bonding and electrostatic interactions. While, in weak acidic conditions, an efficient simultaneous removal is observed for different adsorption effects involved in aforementioned two pollutants. Besides, CS-Gln-MCM illuminates not only short equilibrium time for adsorption of each pollutant less than 20.0 min but also rapid magnetic separation from water and efficient regeneration after saturated adsorption. Therefore, CS-Gln-MCM bears great application potentials in water treatment.

  17. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.

    PubMed

    Bittner, B; Mäder, K; Kroll, C; Borchert, H H; Kissel, T

    1999-05-01

    produced hydrophilic spin adducts of PBN and monomeric radicals of lactic or glycolic acid. These degradation products were not detected by EPR. This result is confirmed by the observation that possible diamagnetic reaction products of low molecular weight, consisting of TEMPOL and lactide or glycolide monomers, could not be detected by GC-MS. While an irradiation dose-dependent decrease in molecular weight of PLGA could be verified in agreement with the literature, TCH content of the microspheres was not affected by the exposure to gamma-rays. It can be concluded that EPR spectroscopy in combination with GPC, DSC, and HPLC allows a detailed characterization of the impact of gamma-sterilization on biodegradable parenteral drug delivery systems. PMID:10210719

  18. p-Aminophenylacetic acid-mediated synthesis of monodispersed titanium oxide hybrid microspheres in ethanol solution.

    PubMed

    Zhang, Hongye; Xie, Yun; Liu, Zhimin; Tao, Ranting; Sun, Zhenyu; Ding, Kunlun; An, Guimin

    2009-10-15

    Monodispersed TiO2 hybrid microspheres were prepared via the hydrolysis of titanium isopropoxide (TTIP) in ethanol solution containing p-aminophenylacetic acid (APA). The effects of the APA:TTIP molar ratio, water content, reaction time and reaction temperature on the morphology of the resultant spheres were investigated. The products were characterized by scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction. It was demonstrated that the diameters of the resultant TiO2 spheres could be tuned in the range of 380-800 nm by changing the APA:TTIP molar ratio (1:3 to 3:1) and water content (1-3 v/v%) in the reaction medium, and that increasing the APA:TTIP molar ratio led to larger TiO2 hybrid spheres while increasing the water content decreased their size. The loading content of APA in the hybrid spheres could reach 20 wt.% as they were prepared with the APA:TTIP ratio of 3:1. The possible formation mechanism of the hybrid spheres was also investigated. It was found that APA slowed down the hydrolysis rate of the titanium precursor so that resulted in the formation of the TiO2 spheres. In addition, the APA present in TiO2 spheres acted as a reducing agent to in situ convert HAuCl4 into metallic Au on the surface of the TiO2 spheres. The catalytic activity of the resultant Au/APA-TiO2 composite was examined using transfer hydrogenation of phenylacetone with 2-propanol, and it was indicated that the catalyst displayed high efficiency for this reaction. PMID:19616218

  19. Hyaluronic acid-decorated dual responsive nanoparticles of Pluronic F127, PLGA, and chitosan for targeted co-delivery of doxorubicin and irinotecan to eliminate cancer stem-like cells.

    PubMed

    Wang, Hai; Agarwal, Pranay; Zhao, Shuting; Xu, Ronald X; Yu, Jianhua; Lu, Xiongbin; He, Xiaoming

    2015-12-01

    Dual responsive nanoparticles are developed for co-delivery of multiple anticancer drugs to target the drug resistance mechanisms of cancer stem-like cells (CSCs). The nanoparticles consist of four polymers approved by the Food and Drug Administration (FDA) for medical use: Poly(d,l-lactide-co-glycolide) (PLGA), Pluronic F127 (PF127), chitosan, and hyaluronic acid (HA). By combining PLGA and PF127 together, more stable and uniform-sized nanoparticles can be obtained than using PLGA or PF127 alone. The HA is used for not only actively targeting CSCs to reduce their drug resistance due to dormancy (i.e., slow metabolism), but also replacing the commonly used poly(vinyl alcohol) as a stabilizing agent to synthesize the nanoparticles using the double-emulsion approach and to allow for acidic pH-triggered drug release and thermal responsiveness. Besides minimizing drug efflux from CSCs, the nanoparticles encapsulated with doxorubicin hydrochloride (DOX, hydrophilic) and irinotecan (CPT, hydrophobic) to inhibit the activity of topoisomerases II and I, respectively, can fight against the CSC drug resistance associated with their enhanced DNA repair and anti-apoptosis. Ultimately, the two drugs-laden nanoparticles can be used to efficiently destroy the CSCs both in vitro and in vivo with up to ∼500 times of enhancement compared to the simple mixture of the two drugs.

  20. Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F-18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography

    PubMed Central

    2015-01-01

    The avidin–biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidin-modified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [18F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [18F]-fluorobenzylamide-poly(ethylene glycol)4-biotin ([18F]NPB4) was prepared with high purity and specific activity. The attachment of the [18F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain. PMID:25322194

  1. Poly(L-lactic acid) microspheres containing neutron-activatable holmium-165: a study of the physical characteristics of microspheres before and after irradiation in a nuclear reactor.

    PubMed

    Mumper, R J; Jay, M

    1992-01-01

    The solvent evaporation technique was employed to prepare poly(L-lactic acid) (PLA) microspheres with 165Ho acetylacetonate (Ho-AcAc). Particle size, percentage Ho-165, percent residual solvent, and retentive ability of the spheres were found to be strongly affected by preparatory conditions. Differential scanning calorimetry (DSC) thermograms suggested that the Ho-AcAc existed in the PLA matrix as a molecular dispersion. High neutron flux irradiations of the PLA spheres in a nuclear reactor produced Ho-166, a therapeutic radionuclide that emits high-energy negatrons (Emax = 1.84 MeV; half-life = 26.9 hr). The gamma radiation dose (53-75 Mrad) from the core of the reactor provided an overkill of all bioburdens in the PLA spheres. Gel permeation chromatography (GPC) analysis showed that these irradiations caused a reduction in PLA molecular weight. Infrared spectra, 13C NMR spectra, 1H NMR spectra, and DSC thermograms further confirmed the presence of lower molecular weight PLA but proved the overall maintenance of PLA structure.

  2. Functionalization of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds via surface heparinization for bone tissue engineering.

    PubMed

    Jiang, Tao; Khan, Yusuf; Nair, Lakshmi S; Abdel-Fattah, Wafa I; Laurencin, Cato T

    2010-06-01

    Scaffolds exhibiting biological recognition and specificity play an important role in tissue engineering and regenerative medicine. The bioactivity of scaffolds in turn influences, directs, or manipulates cellular responses. In this study, chitosan/poly(lactic acid-co-glycolic acid) (chitosan/PLAGA) sintered microsphere scaffolds were functionalized via heparin immobilization. Heparin was successfully immobilized on chitosan/PLAGA scaffolds with controllable loading efficiency. Mechanical testing showed that heparinization of chitosan/PLAGA scaffolds did not significantly alter the mechanical properties and porous structures. In addition, the heparinized chitosan/PLAGA scaffolds possessed a compressive modulus of 403.98 +/- 19.53 MPa and a compressive strength of 9.83 +/- 0.94 MPa, which are in the range of human trabecular bone. Furthermore, the heparinized chitosan/PLAGA scaffolds had an interconnected porous structure with a total pore volume of 30.93 +/- 0.90% and a median pore size of 172.33 +/- 5.89 mum. The effect of immobilized heparin on osteoblast-like MC3T3-E1 cell growth was investigated. MC3T3-E1 cells proliferated three dimensionally throughout the porous structure of the scaffolds. Heparinized chitosan/PLAGA scaffolds with low heparin loading (1.7 microg/scaffold) were shown to be capable of stimulating MC3T3-E1 cell proliferation by MTS assay and cell differentiation as evidenced by elevated osteocalcin expression when compared with nonheparinized chitosan/PLAGA scaffold and chitosan/PLAGA scaffold with high heparin loading (14.1 microg/scaffold). This study demonstrated the potential of functionalizing chitosan/PLAGA scaffolds via heparinization with improved cell functions for bone tissue engineering applications. PMID:19777575

  3. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  4. Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications.

    PubMed

    Ajalloueian, Fatemeh; Tavanai, Hossein; Hilborn, Jöns; Donzel-Gargand, Olivier; Leifer, Klaus; Wickham, Abeni; Arpanaei, Ayyoob

    2014-01-01

    Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction. PMID:24689041

  5. Emulsion Electrospinning as an Approach to Fabricate PLGA/Chitosan Nanofibers for Biomedical Applications

    PubMed Central

    Tavanai, Hossein; Hilborn, Jöns; Donzel-Gargand, Olivier; Leifer, Klaus; Arpanaei, Ayyoob

    2014-01-01

    Novel nanofibers from blends of polylactic-co-glycolic acid (PLGA) and chitosan have been produced through an emulsion electrospinning process. The spinning solution employed polyvinyl alcohol (PVA) as the emulsifier. PVA was extracted from the electrospun nanofibers, resulting in a final scaffold consisting of a blend of PLGA and chitosan. The fraction of chitosan in the final electrospun mat was adjusted from 0 to 33%. Analyses by scanning and transmission electron microscopy show uniform nanofibers with homogenous distribution of PLGA and chitosan in their cross section. Infrared spectroscopy verifies that electrospun mats contain both PLGA and chitosan. Moreover, contact angle measurements show that the electrospun PLGA/chitosan mats are more hydrophilic than electrospun mats of pure PLGA. Tensile strengths of 4.94 MPa and 4.21 MPa for PLGA/chitosan in dry and wet conditions, respectively, illustrate that the polyblend mats of PLGA/chitosan are strong enough for many biomedical applications. Cell culture studies suggest that PLGA/chitosan nanofibers promote fibroblast attachment and proliferation compared to PLGA membranes. It can be assumed that the nanofibrous composite scaffold of PLGA/chitosan could be potentially used for skin tissue reconstruction. PMID:24689041

  6. CO2-assisted high pressure homogenization: a solvent-free process for polymeric microspheres and drug-polymer composites.

    PubMed

    Kluge, Johannes; Mazzotti, Marco

    2012-10-15

    The study explores the enabling role of near-critical CO(2) as a reversible plasticizer in the high pressure homogenization of polymer particles, aiming at their comminution as well as at the formation of drug-polymer composites. First, the effect of near-critical CO(2) on the homogenization of aqueous suspensions of poly lactic-co-glycolic acid (PLGA) was investigated. Applying a pressure drop of 900 bar and up to 150 passes across the homogenizer, it was found that particles processed in the presence of CO(2) were generally of microspherical morphology and at all times significantly smaller than those obtained in the absence of a plasticizer. The smallest particles, exhibiting a median x(50) of 1.3 μm, were obtained by adding a small quantity of ethyl acetate, which exerts on PLGA an additional plasticizing effect during the homogenization step. Further, the study concerns the possibility of forming drug-polymer composites through simultaneous high pressure homogenization of the two relevant solids, and particularly the effect of near-critical CO(2) on this process. Therefore, PLGA was homogenized together with crystalline S-ketoprofen (S-KET), a non-steroidal anti-inflammatory drug, at a drug to polymer ratio of 1:10, a pressure drop of 900 bar and up to 150 passes across the homogenizer. When the process was carried out in the presence of CO(2), an impregnation efficiency of 91% has been reached, corresponding to 8.3 wt.% of S-KET in PLGA; moreover, composite particles were of microspherical morphology and significantly smaller than those obtained in the absence of CO(2). The formation of drug-polymer composites through simultaneous homogenization of the two materials is thus greatly enhanced by the presence of CO(2), which increases the efficiency for both homogenization and impregnation.

  7. Gamma irradiation effects and EPR investigation on poly(lactide-co-glycolide) microspheres containing bupivacaine.

    PubMed

    Montanari, L; Cilurzo, F; Conti, B; Genta, I; Groppo, A; Valvo, L; Faucitano, A; Buttafava, A

    2002-06-01

    The effects of gamma radiation on the stability of microspheres made of a polylactide-co-glycolide 50:50 copolymer (PLGA) and loaded with 40% bupivacaine (BU) were studied. The radiolysis mechanisms of BU and BU-loaded microspheres were investigated by using electronic paramagnetic resonance (EPR) analysis. Microspheres were prepared by means of a spray drying method. Gamma Irradiation was carried out in the open, at the dose of 25 kGy, by using a 60Co source. The stability of BU-loaded microspheres was evaluated over a 1-year period on the basis of drug content and dissolution profile. Non-irradiated microspheres were stable over the whole period under consideration. Immediately after irradiation the amount of BU released after 24 h from irradiated microspheres increased from 17 to 25%; in the following 3 months of storage it increased to about 35%, and then it kept constant for 1 year. Radicals generated by BU irradiation were identified by EPR analysis; the sensitivity to gamma radiation of BU was about four times lower than that of PLGA. Furthermore, the EPR spectra of loaded microspheres showed that the relative abundance of BU radicals plus PLGA radicals was proportionate to the electronic fractions of the components; this implies that no spin transfer BU/PLGA had occurred during gamma irradiation. PMID:12088056

  8. Electrospinning Growth Factor Releasing Microspheres into Fibrous Scaffolds

    PubMed Central

    Whitehead, Tonya J.; Sundararaghavan, Harini G.

    2014-01-01

    This procedure describes a method to fabricate a multifaceted substrate to direct nerve cell growth. This system incorporates mechanical, topographical, adhesive and chemical signals. Mechanical properties are controlled by the type of material used to fabricate the electrospun fibers. In this protocol we use 30% methacrylated Hyaluronic Acid (HA), which has a tensile modulus of ~500 Pa, to produce a soft fibrous scaffold. Electrospinning on to a rotating mandrel produces aligned fibers to create a topographical cue. Adhesion is achieved by coating the scaffold with fibronectin. The primary challenge addressed herein is providing a chemical signal throughout the depth of the scaffold for extended periods. This procedure describes fabricating poly(lactic-co-glycolic acid) (PLGA) microspheres that contain Nerve Growth Factor (NGF) and directly impregnating the scaffold with these microspheres during the electrospinning process. Due to the harsh production environment, including high sheer forces and electrical charges, protein viability is measured after production. The system provides protein release for over 60 days and has been shown to promote primary nerve cell growth. PMID:25178038

  9. Engineering a freestanding biomimetic cardiac patch using biodegradable poly(lactic-co-glycolic acid) (PLGA) and human embryonic stem cell-derived ventricular cardiomyocytes (hESC-VCMs).

    PubMed

    Chen, Yin; Wang, Junping; Shen, Bo; Chan, Camie W Y; Wang, Chaoyi; Zhao, Yihua; Chan, Ho N; Tian, Qian; Chen, Yangfan; Yao, Chunlei; Hsing, I-Ming; Li, Ronald A; Wu, Hongkai

    2015-03-01

    Microgrooved thin PLGA film (≈30 μm) is successfully fabricated on a Teflon mold, which could be readily peeled off and is used for the construction of a biomimetic cardiac patch. The contraction of it is studied with optical mapping on transmembrane action potential. Our results suggest that steady-state contraction could be easily established on it under regular electrical stimuli. Besides, the biomimetic cardiac patch recapitulates the anisotropic electrophysiological feature of native cardiac tissue and is much more refractory to premature stimuli than the random one constructed with non-grooved PLGA film, as proved by the reduced incidence of arrhythmia. Considering the good biocompatibility of PLGA as demonstrated in our study and the biodegradability of it, our biomimetic cardiac patch may find applications in the treatment of myocardial infarction. Moreover, the Teflon mold could be applied in the fabrication of various scaffolds with fine features for other tissues.

  10. Optical characterization and feasibility study of multifunctional polylactic-co-glycolic acid (PLGA) nanoparticles designed for photo-thermal optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Xie, Hui; Smith, Jeffrey W.; McCarty, Owen

    2011-06-01

    Nanoparticles with plasmon-resonance absorption in the near-IR (NIR) optical range are of great interest in optical coherence tomography (OCT) for contrast enhancement and diagnostic interventions in molecular imaging. In this study, we characterized the optical properties of multifunctional NIR dye-loaded PLGA nanoparticles (approved by the U.S. Food and Drug Administration) to assess the feasibility of using contrast agent for photo-thermal OCT (PT-OCT) imaging. Tissue phantoms containing NIR dye-doped PLGA nanoparticles were prepared in 2% agarose solution. To study the feasibility of detecting the particles using PT-OCT, imaging was performed with a custom built PT-OCT system, and specific contrast was obtained with the prepared tissue mimicking phantoms. The excellent photo-thermal properties in combination with the positive tissue phantom results qualify the feasibility of dye-loaded PLGA particles as promising candidate for PT-OCT imaging applications.

  11. Raloxifene-/raloxifene-poly(ethylene glycol) conjugate-loaded microspheres: A novel strategy for drug delivery to bone forming cells.

    PubMed

    Kavas, Ayşegül; Keskin, Dilek; Altunbaş, Korhan; Tezcaner, Ayşen

    2016-08-20

    Raloxifene (Ral)- or Ral-poly(ethylene glycol) (PEG) conjugate-loaded microspheres were prepared with poly(ε-caprolactone) (PCL) alone or with the blend of PCL and poly(D,L-lactide-co-glycolide) (PLGA) to provide controlled and sustained Ral release systems. Benefits of these formulations were evaluated on bone regeneration. Ral-loaded PCL microspheres had the highest encapsulation efficiency (70.7±5.0%) among all groups owing to high hydrophobic natures of both Ral and PCL. Cumulative amount of Ral released from Ral-PEG (1:2) conjugate-loaded PCL:PLGA (1:1) microspheres (26.9±8.8%) after 60days was significantly higher relative to other microsphere groups. This finding can be ascribed to two factors: i) Ral-PEG conjugation, resulting in increased water-solubility of Ral and increased degradation rates of PCL and PLGA with enhanced water penetration into the polymer matrix, and ii) usage of PLGA besides PCL in the carrier composition to benefit from less hydrophobic and faster degradable nature of PLGA in comparison to PCL. In vitro cytotoxicity studies performed using adipose-derived mesenchymal stem cells (ASCs) demonstrated that all microspheres were non-toxic. Evaluation of intensities of Alizarin red S staining conducted after 7 and 14days of incubation of ASCs in the release media of the different microsphere groups was performed with Image J analysis software. At day 7, it was observed that the matrix deposited by the cells cultivated in the release medium of Ral-PEG (1:2) conjugate-loaded PCL:PLGA (1:1) microspheres had significantly higher mineral content (26.78±6.23%) than that of the matrix deposited by the cells cultivated in the release media of the other microsphere groups except Ral-loaded PCL:PLGA (1:1) microsphere group. At day 14, Ral release from Ral-PEG (1:2) conjugate-loaded PCL:PLGA (1:1) microsphere group resulted with significantly higher mineralization of the matrix (32.31±1.85%) deposited by ASCs in comparison to all other microsphere

  12. Highly selective enrichment of baicalin in rat plasma by boronic acid-functionalized core-shell magnetic microspheres: Validation and application to a pharmacokinetic study.

    PubMed

    Huang, Taomin; Xiong, Ya; Chen, Nianzu; Wang, Donglei; Lai, Yonghua; Deng, Chunhui

    2016-01-15

    To the best of our knowledge, this study is the first to successfully apply a novel, highly selective enrichment technique based on boronic acid-functionalized core-shell magnetic microspheres (BA-Fe3O4@SiO2-Au@mSiO2) with a large surface area and uniform pore size, to determine the baicalin concentration in rat plasma by HPLC. By taking advantage of the special interaction between boronic acid and baicalin under alkaline conditions, as well as the microspheres' size exclusion ability, baicalin was selectively extracted from protein-rich biosamples, such as plasma, without any other pretreatment procedure except for a 10-min vortexing step. BA-Fe3O4@SiO2-Au@mSiO2 microsphere-adsorbed baicalin was straightforwardly and rapidly isolated from the matrix using a magnet. Baicalin was subsequently eluted from the microspheres under acidic conditions for 2min for further HPLC analysis. The extraction conditions, such as the amount of microspheres added, adsorption time, adsorption pH, and elution time and pH, were also determined. Furthermore, method validation, including the linear range, detection limit, precision, accuracy, and recovery, were determined. This newly developed method based on BA-Fe3O4@SiO2-Au@mSiO2 microspheres is a simple, accurate, selective, and green analytical preparatory technique for analyzing baicalin in rat plasma. This study will be further novel research on the analysis of complex plasma samples and the pharmacokinetics of drugs similar to baicalin.

  13. [Transport of PLGA nanoparticles across Caco-2/HT29-MTX co-cultured cells].

    PubMed

    Wen, Zhen; Li, Gang; Lin, Dong-Hai; Wang, Jun-Teng; Qin, Li-Fang; Guo, Gui-Ping

    2013-12-01

    The present study is to establish Caco-2/HT29-MTX co-cultured cells and investigate the transport capability of PLGA nanoparticles with different surface chemical properties across Caco-2/HT29-MTX co-cultured cells. PLGA-NPs, mPEG-PLGA-NPs and chitosan coated PLGA-NPs were prepared by nanoprecipitation method using poly(lactic-co-glycolic acid) as carrier material with surface modified by methoxy poly(ethylene glycol) and chitosan. The particle size and zeta potential of nanoparticles were measured by dynamic light scattering. Coumarin 6 was used as a fluorescent marker in the transport of nanoparticles investigated by confocal laser scanning microscopy. The transport of furanodiene (FDE) loaded nanoparticles was quantitively determined by high performance liquid chromatography. Colchicine and nocodazole were used in the transport study to explore the involved endocytosis mechanisms of nanoparticles. Distribution of the tight junction proteins ZO-1 was also analyzed by immunofluorescence staining. The results showed that the nanoparticles dispersed uniformly. The zeta potential of PLGA-NPs was negative, the mPEG-PLGA-NPs was close to neutral and the CS-PLGA-NPs was positive. The entrapment efficiency of FDE in all nanoparticles was higher than 75%. The transport capability of mPEG-PLGA-NPs across Caco-2/HT29-MTX co-cultured cells was higher than that of PLGA-NPs and CS-PLGA-NPs. Colchicine and nocodazole could significantly decrease the transport amount of nanoparticles. mPEG-PLGA-NPs could obviously reduce the distribution of ZO-1 protein than PLGA-NPs and CS-PLGA-NPs. The transport mechanism of PLGA-NPs and mPEG-PLGA-NPs were indicated to be a combination of endocytosis and paracellular way, while CS-PLGA-NPs mainly relied on the endocytosis way. PEG coating could shield the surface charge and enhance the hydrophilicity of PLGA nanoparticles, which leads mPEG-PLGA-NPs to possess higher anti-adhesion activity. As a result, mPEG-PLGA-NPs could penetrate the mucus

  14. Neutron activation of holmium poly(L-lactic acid) microspheres for hepatic arterial radio-embolization: a validation study.

    PubMed

    Vente, M A D; Nijsen, J F W; de Roos, R; van Steenbergen, M J; Kaaijk, C N J; Koster-Ammerlaan, M J J; de Leege, P F A; Hennink, W E; van Het Schip, A D; Krijger, G C

    2009-08-01

    Poly(L-lactic acid) microspheres loaded with holmium-166 acetylacetonate (166Ho-PLLA-MS) are a novel microdevice for intra-arterial radio-embolization in patients with unresectable liver malignancies. The neutron activation in a nuclear reactor, in particular the gamma heating, damages the 166Ho-PLLA-MS. The degree of damage is dependent on the irradiation characteristics and irradiation time in a particular reactor facility. The aim of this study was to standardize and objectively validate the activation procedure in a particular reactor. The methods included light- and scanning electron microscopy (SEM), particle size analysis, differential scanning calorimetry, viscometry, thermal neutron flux measurements and energy deposition calculations. Seven hours-neutron irradiation results in sufficient specific activity of the 166Ho-PLLA-MS while structural integrity is preserved. Neutron flux measurements and energy deposition calculations are required in the screening of other nuclear reactors. For the evaluation of microsphere quality, light microscopy, SEM and particle size analysis are appropriate techniques.

  15. Preparation and characterization of polylactic acid microspheres containing water-soluble dyes using a novel w/o/w emulsion solvent evaporation method.

    PubMed

    Uchida, T; Yoshida, K; Goto, S

    1996-01-01

    Polylactic acid (PLA) microspheres containing soluble dyes as water-soluble model compounds were prepared using the water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. Addition of electrolytes such as NaCl or CaCl2 into the external aqueous phase significantly improved brilliant blue (BB) entrapment efficiency compared to the case of no additives. NaCl was the most effective for obtaining high entrapment efficiency (80-90% of theoretical BB content). The average diameter of the obtained microspheres was in the region of 10-20 microns in all cases. PLA microspheres containing 5 and 10% (w/w) BB exhibited the so-called burst release. The release rate decreased with decrease in the internal aqueous droplet volume in the preparation process. In particular, with PLA microspheres containing 5% (w/w) BB, those prepared with the smallest internal droplet volume (63 microliter), the initial burst release was reduced significantly, and 50% (w/w) of the loaded BB remained in the microspheres for 7 days. PMID:8999126

  16. PLGA-based nanoparticles as cancer drug delivery systems.

    PubMed

    Sadat Tabatabaei Mirakabad, Fatemeh; Nejati-Koshki, Kazem; Akbarzadeh, Abolfazl; Yamchi, Mohammad Rahmati; Milani, Mortaza; Zarghami, Nosratollah; Zeighamian, Vahideh; Rahimzadeh, Amirbahman; Alimohammadi, Somayeh; Hanifehpour, Younes; Joo, Sang Woo

    2014-01-01

    Poly (lactic-co-glycolic acid) (PLGA) is one of the most effective biodegradable polymeric nanoparticles (NPs). It has been approved by the US FDA to use in drug delivery systems due to controlled and sustained- release properties, low toxicity, and biocompatibility with tissue and cells. In the present review, the structure and properties of PLGA copolymers synthesized by ring-opening polymerization of DL-lactide and glicolide were characterized using 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared spectroscopy and differential scanning calorimetry. Methods of preparation and characterization, various surface modifications, encapsulation of diverse anticancer drugs, active or passive tumor targeting and different release mechanisms of PLGA nanoparticles are discussed. Increasing experience in the application of PLGA nanoparticles has provided a promising future for use of these nanoparticles in cancer treatment, with high efficacy and few side effects. PMID:24568455

  17. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    PubMed

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property.

  18. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid

    PubMed Central

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L−1 accompanied by a detection limit of 0.30 mmol·L−1 (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  19. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid.

    PubMed

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-01-01

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L(-1) accompanied by a detection limit of 0.30 mmol·L(-1) (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors. PMID:26703621

  20. Application of Carbon-Microsphere-Modified Electrodes for Electrochemistry of Hemoglobin and Electrocatalytic Sensing of Trichloroacetic Acid.

    PubMed

    Wang, Wen-Cheng; Yan, Li-Jun; Shi, Fan; Niu, Xue-Liang; Huang, Guo-Lei; Zheng, Cai-Juan; Sun, Wei

    2015-12-23

    By using the hydrothermal method, carbon microspheres (CMS) were fabricated and used for electrode modification. The characteristics of CMS were investigated using various techniques. The biocompatible sensing platform was built by immobilizing hemoglobin (Hb) on the micrometer-sized CMS-modified electrode with a layer of chitosan membrane. On the cyclic voltammogram, a couple of quasi-reversible cathodic and anodic peaks appeared, showing that direct electrochemistry of Hb with the working electrode was achieved. The catalytic reduction peak currents of the bioelectrode to trichloroacetic acid was established in the linear range of 2.0~70.0 mmol·L(-1) accompanied by a detection limit of 0.30 mmol·L(-1) (3σ). The modified electrode displayed favorable sensitivity, good reproducibility and stability, which suggests that CMS is promising for fabricating third-generation bioelectrochemical sensors.

  1. Release and pharmacokinetics of near-infrared labeled albumin from monodisperse poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcapsular renal injection.

    PubMed

    Kazazi-Hyseni, F; van Vuuren, S H; van der Giezen, D M; Pieters, E H; Ramazani, F; Rodriguez, S; Veldhuis, G J; Goldschmeding, R; van Nostrum, C F; Hennink, W E; Kok, R J

    2015-08-01

    Subcapsular renal injection is a novel administration method for local delivery of therapeutics for the treatment of kidney related diseases. The aim of this study was to investigate the feasibility of polymeric microspheres for sustained release of protein therapeutics in the kidney and study the subsequent redistribution of the released protein. For this purpose, monodisperse poly(d,l-lactic-co-hydroxymethyl glycolic acid) (PLHMGA) microspheres (40 μm in diameter) loaded with near-infrared dye-labeled bovine serum albumin (NIR-BSA) were prepared by a membrane emulsification method. Rats were injected with either free NIR-BSA or with NIR-BSA loaded microspheres (NIR-BSA-ms) and the pharmacokinetics of the released NIR-BSA was studied for 3 weeks by ex vivo imaging of organs and blood. Quantitative release data were obtained from kidney homogenates and possible metabolism of the protein was investigated by SDS-PAGE analysis of the samples. The ex vivo images showed a rapid decrease of the NIR signal within 24h in kidneys injected with free NIR-BSA, while, importantly, the signal of the labeled protein was still visible at day 21 in kidneys injected with NIR-BSA-ms. SDS-PAGE analysis of the kidney homogenates showed that intact NIR-BSA was released from the microspheres. The locally released NIR-BSA drained to the systemic circulation and subsequently accumulated in the liver, where it was degraded and excreted renally. The in vivo release of NIR-BSA was calculated after extracting the protein from the remaining microspheres in kidney homogenates. The in vivo release rate was faster (89 ± 4% of the loading in 2 weeks) compared to the in vitro release of NIR-BSA (38 ± 1% in 2 weeks). In conclusion, PLHMGA microspheres injected under the kidney capsule provide a local depot from which a formulated protein is released over a prolonged time-period.

  2. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C). PMID:25469674

  3. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  4. Systemic delivery to central nervous system by engineered PLGA nanoparticles

    PubMed Central

    Cai, Qiang; Wang, Long; Deng, Gang; Liu, Junhui; Chen, Qianxue; Chen, Zhibiao

    2016-01-01

    Neurological disorders are an important global public health problem, but pharmaceutical treatments are limited due to drug access to the central nervous system being restricted by the blood-brain barrier (BBB). Poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) are one of the most promising drug and gene delivery systems for crossing the BBB. While these systems offer great promise, PLGA NPs also have some intrinsic drawbacks and require further engineering for clinical and research applications. Multiple strategies have been developed for using PLGA NPs to deliver compounds across the BBB. We classify these strategies into three categories according to the adaptations made to the PLGA NPs (1) to facilitate travel from the injection site (pre-transcytosis strategies); (2) to enhance passage across the brain endothelial cells (BBB transcytosis strategies) and (3) to achieve targeting of the impaired nervous system cells (post-transcytosis strategies). PLGA NPs modified according to these three strategies are denoted first, second, and third generation NPs, respectively. We believe that fusing these three strategies to engineer multifunctional PLGA NPs is the only way to achieve translational applications. PMID:27158367

  5. Synthesis and characterization of magnetite/PLGA/chitosan nanoparticles

    NASA Astrophysics Data System (ADS)

    Ibarra, Jaime; Melendres, Julio; Almada, Mario; Burboa, María G.; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2015-09-01

    In this work, we report the synthesis and characterization of a new hybrid nanoparticles system performed by magnetite nanoparticles, loaded in a PLGA matrix, and stabilized by different concentrations of chitosan. Magnetite nanoparticles were hydrophobized with oleic acid and entrapped in a PLGA matrix by the emulsion solvent evaporation method, after that, magnetite/PLGA/chitosan nanoparticles were obtained by adding dropwise magnetite/PLGA nanoparticles in chitosan solutions. Magnetite/PLGA nanoparticles produced with different molar ratios did not show significant differences in size and the 3:1 molar ratio showed best spherical shapes as well as uniform particle size. Isothermal titration calorimetry studies demonstrated that the first stage of PLGA-chitosan interaction is mostly regulated by electrostatic forces. Based on a single set of identical sites model, we obtained for the average number of binding sites a value of 3.4, which can be considered as the number of chitosan chains per nanoparticle. This value was confirmed by using a model based on the DLVO theory and fitting zeta potential measurements of magnetite/PLGA/chitosan nanoparticles. From the adjusted parameters, we found that an average number of chitosan molecules of 3.6 per nanoparticle are attached onto the surface of the PLGA matrix. Finally, we evaluated the effect of surface charge of nanoparticles on a membrane model of endothelial cells performed by a mixture of three phospholipids at the air-water interface. Different isotherms and adsorption curves show that cationic surface of charged nanoparticles strongly interact with the phospholipids mixture and these results can be the basis of future experiments to understand the nanoparticles- cell membrane interaction.

  6. Bone Regeneration from PLGA Micro-Nanoparticles.

    PubMed

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed. PMID:26509156

  7. Bone Regeneration from PLGA Micro-Nanoparticles

    PubMed Central

    Ortega-Oller, Inmaculada; Padial-Molina, Miguel; Galindo-Moreno, Pablo; O'Valle, Francisco; Jódar-Reyes, Ana Belén; Peula-García, Jose Manuel

    2015-01-01

    Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed. PMID:26509156

  8. Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules

    PubMed Central

    Carpenedo, Richard L.; Bratt-Leal, Andrés M.; Marklein, Ross A.; Seaman, Scott A.; Bowen, Nathan J.; McDonald, John F.; McDevitt, Todd C.

    2010-01-01

    Cell specification and tissue formation during embryonic development are precisely controlled by the local concentration and temporal presentation of morphogenic factors. Similarly, pluripotent embryonic stem cells can be induced to differentiate in vitro into specific phenotypes in response to morphogen treatment. Embryonic stem cells (ESCs) are commonly differentiated as 3D spheroids referred to as embryoid bodies (EBs); however, differentiation of cells within EBs is typically heterogeneous and disordered. In this study, we demonstrate that in contrast to soluble morphogen treatment, delivery of morphogenic factors directly within EB microenvironments in a spatiotemporally controlled manner using polymer microspheres yields homogeneous, synchronous and organized ESC differentiation. Degradable PLGA microspheres releasing retinoic acid were incorporated directly within EBs and induced the formation of cystic spheroids uniquely resembling the phenotype and structure of early streak mouse embryos (E6.75), with an exterior of FOXA2+ visceral endoderm enveloping an epiblast-like layer of OCT4+ cells. These results demonstrate that controlled morphogen presentation to stem cells using degradable microspheres more efficiently directs cell differentiation and tissue formation than simple soluble delivery methods and presents a unique route to study the spatiotemporal effects of morphogenic factors on embryonic developmental processes in vitro. PMID:19162317

  9. Monodisperse aqueous microspheres encapsulating high concentration of l-ascorbic acid: insights of preparation and stability evaluation from straight-through microchannel emulsification.

    PubMed

    Khalid, Nauman; Kobayashi, Isao; Neves, Marcos A; Uemura, Kunihiko; Nakajima, Mitsutoshi; Nabetani, Hiroshi

    2015-01-01

    Stabilization of l-ascorbic acid (l-AA) is a challenging task for food and pharmaceutical industries. The study was conducted to prepare monodisperse aqueous microspheres containing enhanced concentrations of l-AA by using microchannel emulsification (MCE). The asymmetric straight-through microchannel (MC) array used here constitutes 11 × 104 μm microslots connected to a 10 μm circular microholes. 5-30% (w/w) l-AA was added to a Milli-Q water solution containing 2% (w/w) sodium alginate and 1% (w/w) magnesium sulfate, while the continuous phase constitutes 5% (w/w) tetraglycerol condensed ricinoleate in water-saturated decane. Monodisperse aqueous microspheres with average diameters (dav) of 18.7-20.7 μm and coefficients of variation (CVs) below 6% were successfully prepared via MCE regardless of the l-AA concentrations applied. The collected microspheres were physically stable in terms of their dav and CV for >10 days of storage at 40°C. The aqueous microspheres exhibited l-AA encapsulation efficiency exceeding 70% during the storage.

  10. Sustained release of risperidone from biodegradable microspheres prepared by in-situ suspension-evaporation process.

    PubMed

    An, Taekun; Choi, Juhyuen; Kim, Aram; Lee, Jin Ho; Nam, Yoonjin; Park, Junsung; Sun, Bo kyung; Suh, Hearan; Kim, Cherng-ju; Hwang, Sung-Joo

    2016-04-30

    Risperidone-loaded poly (D,L-lactide-co-glycolide) (PLGA) microspheres were prepared with a suspension-evaporation process with an aqueous suspension containing an in situ-formed aluminum hydroxide inorganic gel (SEP-AL process) and evaluated for encapsulation efficiency, particle size, surface morphology, glass transition temperature, in vitro drug release profile, and in vivo behavior. The SEP-AL microspheres were compared with conventional oil-in-water (O/W) emulsion solvent evaporation method using polyvinylalcohol (PVA) as an emulsifier (CP-PVA process). The microspheres were spherical in shape. DSC measurements showed that risperidone crystallinity was greatly reduced due to the homogeneous distribution of risperidone in PLGA microspheres. In vitro drug release profile from the microspheres showed a sigmoidal pattern of negligible initial burst up to 24h and minimal release (time-lag) for 7 days. After the lag phase, slow release took a place up to 25 days and then rapid release occurred sharply for 1 week. In vivo rat pharmacokinetic profile from the microspheres showed very low blood concentration level at the initial phase (up to 24h) followed by the latent phase up to 21 days. At the 3rd week, main phase started and the blood concentration of the drug increased up to the 5th week, and then gradually decreased. The risperidone-loaded PLGA microspheres produced by SEP-AL process showed excellent controlled release characteristics for the effective treatment of schizophrenia patients. PMID:26899975

  11. Polyacrylic acid brushes grafted from P(St-AA)/Fe3O4 composite microspheres via ARGET-ATRP in aqueous solution for protein immobilization.

    PubMed

    Xie, Liqin; Lan, Fang; Li, Wenliao; Liu, Ziyao; Ma, Shaohua; Yang, Qi; Wu, Yao; Gu, Zhongwei

    2014-11-01

    Recently, the atom transfer radical polymerization (ATRP) of acrylic monomers in many reaction systems has been successfully accomplished. However, its application in aqueous solution is still a challenging task. In this work, polyacrylic acid (PAA) brushes with tunable length were directly grafted from P(St-AA)/Fe3O4 composite microspheres in aqueous solution via an improved method, activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP). This reaction was carried out in environment-friendly solvent. As well, this method overcame the sensitivity of the catalyst. Due to the strong coordination interaction of carboxyl groups, PAA brushes were employed for immobilizing gold nanoparticles, which were prepared via the in situ reduction of chloroauric acid. The PAA brushes modified magnetic composite microspheres decorating with gold nanoparticles were efficient for specific immobilization and separation of bovine serum albumin (BSA) from aqueous solution under the external magnetic field.

  12. Biodegradable Polymeric Microsphere-Based Drug Delivery for Inductive Browning of Fat.

    PubMed

    Jiang, Chunhui; Kuang, Liangju; Merkel, Madeline P; Yue, Feng; Cano-Vega, Mario Alberto; Narayanan, Naagarajan; Kuang, Shihuan; Deng, Meng

    2015-01-01

    Brown and beige adipocytes are potent therapeutic agents to increase energy expenditure and reduce risks of obesity and its affiliated metabolic symptoms. One strategy to increase beige adipocyte content is through inhibition of the evolutionarily conserved Notch signaling pathway. However, systemic delivery of Notch inhibitors is associated with off-target effects and multiple dosages of application further faces technical and translational challenges. Here, we report the development of a biodegradable polymeric microsphere-based drug delivery system for sustained, local release of a Notch inhibitor, DBZ. The microsphere-based delivery system was fabricated and optimized using an emulsion/solvent evaporation technique to encapsulate DBZ into poly(lactide-co-glycolide) (PLGA), a commonly used biodegradable polymer for controlled drug release. Release studies revealed the ability of PLGA microspheres to release DBZ in a sustained manner. Co-culture of white adipocytes with and without DBZ-loaded PLGA microspheres demonstrated that the released DBZ retained its bioactivity, and effectively inhibited Notch and promoted browning of white adipocytes. Injection of these DBZ-loaded PLGA microspheres into mouse inguinal white adipose tissue depots resulted in browning in vivo. Our results provide the encouraging proof-of-principle evidence for the application of biodegradable polymers as a controlled release platform for delivery of browning factors, and pave the way for development of new translational therapeutic strategies for treatment of obesity.

  13. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production. PMID:27311588

  14. Preparation of ellagic acid molecularly imprinted polymeric microspheres based on distillation-precipitation polymerization for the efficient purification of a crude extract.

    PubMed

    Zhang, Hua; Zhao, Shangge; Zhang, Lu; Han, Bo; Yao, Xincheng; Chen, Wen; Hu, Yanli

    2016-08-01

    Molecularly imprinted polymeric microspheres with a high recognition ability toward the template molecule, ellagic acid, were synthesized based on distillation-precipitation polymerization. The as-obtained polymers were characterized by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Static, dynamic, and selective binding tests were adopted to study the binding properties and the molecular recognition ability of the prepared polymers for ellagic acid. The results indicated that the maximum static adsorption capacity of the prepared polymers toward ellagic acid was 37.07 mg/g and the adsorption equilibrium time was about 100 min when the concentration of ellagic acid was 40 mg/mL. Molecularly imprinted polymeric microspheres were also highly selective toward ellagic acid compared with its analogue quercetin. It was found that the content of ellagic acid in the pomegranate peel extract was enhanced from 23 to 86% after such molecularly imprinted solid-phase extraction process. This work provides an efficient way for effective separation and enrichment of ellagic acid from complex matrix, which is especially valuable in industrial production.

  15. Understanding greater cardiomyocyte functions on aligned compared to random carbon nanofibers in PLGA

    PubMed Central

    Asiri, Abdullah M; Marwani, Hadi M; Khan, Sher Bahadar; Webster, Thomas J

    2015-01-01

    Previous studies have demonstrated greater cardiomyocyte density on carbon nanofibers (CNFs) aligned (compared to randomly oriented) in poly(lactic-co-glycolic acid) (PLGA) composites. Although such studies demonstrated a closer mimicking of anisotropic electrical and mechanical properties for such aligned (compared to randomly oriented) CNFs in PLGA composites, the objective of the present in vitro study was to elucidate a deeper mechanistic understanding of how cardiomyocyte densities recognize such materials to respond more favorably. Results showed lower wettability (greater hydrophobicity) of CNFs embedded in PLGA compared to pure PLGA, thus providing evidence of selectively lower wettability in aligned CNF regions. Furthermore, the results correlated these changes in hydrophobicity with increased adsorption of fibronectin, laminin, and vitronectin (all proteins known to increase cardiomyocyte adhesion and functions) on CNFs in PLGA compared to pure PLGA, thus providing evidence of selective initial protein adsorption cues on such CNF regions to promote cardiomyocyte adhesion and growth. Lastly, results of the present in vitro study further confirmed increased cardiomyocyte functions by demonstrating greater expression of important cardiomyocyte biomarkers (such as Troponin-T, Connexin-43, and α-sarcomeric actin) when CNFs were aligned compared to randomly oriented in PLGA. In summary, this study provided evidence that cardiomyocyte functions are improved on CNFs aligned in PLGA compared to randomly oriented in PLGA since CNFs are more hydrophobic than PLGA and attract the adsorption of key proteins (fibronectin, laminin, and vironectin) that are known to promote cardiomyocyte adhesion and expression of important cardiomyocyte functions. Thus, future studies should use this knowledge to further design improved CNF:PLGA composites for numerous cardiovascular applications. PMID:25565806

  16. Preparation of biodegradable microspheres of testosterone with poly(D,L-lactide-co-glycolide) and test of drug release in vitro.

    PubMed

    Shen, Z R; Zhu, J H; Ma, Z; Wang, F; Wang, Z Y

    2000-01-01

    Biodegradable microspheres formulation of testosterone (T) can be used as a new physiological approach for androgen replacement in hypogonadal men. In this study, poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing T were prepared by a solvent-evaporation/solvent-diffusion process and the drug release tests of the microspheres were carried out in vitro. T/PLGA microspheres with good yield, desired size and satisfied drug loading were obtained. A significant testosterone sustained release was shown in the drug release tests in vitro. Since PLGA microspheres preparations are normally sterilized by colbat-60 irradiation, the effects of 25 kGy colbat-60 irradiation on physicochemical properties and in vitro drug release profile of T/PLGA microsphere were investigated. The results showed that the irradiation didn't have any effects on the physicochemical properties of T. Though about one-third decrease in molecular weight of PLGA was caused by the irradiation, no significant changes were observed on the drug release profile in vitro. PMID:10676577

  17. HDL-mimetic PLGA nanoparticle to target atherosclerosis plaque macrophages.

    PubMed

    Sanchez-Gaytan, Brenda L; Fay, Francois; Lobatto, Mark E; Tang, Jun; Ouimet, Mireille; Kim, YongTae; van der Staay, Susanne E M; van Rijs, Sarian M; Priem, Bram; Zhang, Liangfang; Fisher, Edward A; Moore, Kathryn J; Langer, Robert; Fayad, Zahi A; Mulder, Willem J M

    2015-03-18

    High-density lipoprotein (HDL) is a natural nanoparticle that exhibits an intrinsic affinity for atherosclerotic plaque macrophages. Its natural targeting capability as well as the option to incorporate lipophilic payloads, e.g., imaging or therapeutic components, in both the hydrophobic core and the phospholipid corona make the HDL platform an attractive nanocarrier. To realize controlled release properties, we developed a hybrid polymer/HDL nanoparticle composed of a lipid/apolipoprotein coating that encapsulates a poly(lactic-co-glycolic acid) (PLGA) core. This novel HDL-like nanoparticle (PLGA-HDL) displayed natural HDL characteristics, including preferential uptake by macrophages and a good cholesterol efflux capacity, combined with a typical PLGA nanoparticle slow release profile. In vivo studies carried out with an ApoE knockout mouse model of atherosclerosis showed clear accumulation of PLGA-HDL nanoparticles in atherosclerotic plaques, which colocalized with plaque macrophages. This biomimetic platform integrates the targeting capacity of HDL biomimetic nanoparticles with the characteristic versatility of PLGA-based nanocarriers.

  18. In vivo biocompatibility of the PLGA microparticles in parotid gland

    PubMed Central

    Cantín, Mario; Miranda, Patricio; Suazo Galdames, Iván; Zavando, Daniela; Arenas, Patricia; Velásquez, Luis; Vilos, Cristian

    2013-01-01

    Poly(lactic-co-glycolic acid) (PLGA) microparticles are used in various disorders for the controlled or sustained release of drugs, with the management of salivary gland pathologies possible using this technology. There is no record of the response to such microparticles in the glandular parenchyma. The purpose of this study was to assess the morphological changes in the parotid gland when injected with a single dose of PLGA microparticles. We used 12 adult female Sprague Dawley rats (Rattus norvegicus) that were injected into their right parotid gland with sterile vehicle solution (G1, n=4), 0.5 mg PLGA microparticles (G2, n=4), and 0.75 mg PLGA microparticles (G3, n=4); the microparticles were dissolved in a sterile vehicle solution. The intercalar and striated ducts lumen, the thickness of the acini and the histology aspect in terms of the parenchyma organization, cell morphology of acini and duct system, the presence of polymeric residues, and inflammatory response were determined at 14 days post-injection. The administration of the compound in a single dose modified some of the morphometric parameters of parenchyma (intercalar duct lumen and thickness of the glandular acini) but did not induce tissue inflammatory response, despite the visible presence of polymer waste. This suggests that PLGA microparticles are biocompatible with the parotid tissue, making it possible to use intraglandular controlled drug administration. PMID:24228103

  19. In vitro biocompatibility of polypyrrole/PLGA conductive nanofiber scaffold with cultured rat hepatocytes

    NASA Astrophysics Data System (ADS)

    Chu, Xue-Hui; Xu, Qian; Feng, Zhang-Qi; Xiao, Jiang-Qiang; Li, Qiang; Sun, Xi-Tai; Cao, Yang; Ding, Yi-Tao

    2014-09-01

    To intruduce conductive biomaterial into liver tissue engineering, a conductive nanofiber scaffold, polypyrrole/poly(lactic-co-glycolic)acid(PLGA), was designed and prepared via electro-spinning and oxidative polymerization. Effects of the scaffold on hepatocyte adhesion, viability and function were then investigated. SEM revealed pseudopodium formation and abundant extracellular matrix on the surface of PLGA membrane and polypyrrole/PLGA membrane. The adhesion rate, cellular activity, urea synthesis and albumin secretion of the hepatocytes cultured on polypyrrole/PLGA group were similar to those on the PLGA group, but were significantly higher than those on the control group. There were no significant differences in concentrations of LDH and TNF-α among three groups. These results suggested the potential application of this conductive nanofiber scaffold as a suitable substratum for hepatocyte culturing in liver tissue engineering.

  20. Dual release of dexamethasone and TGF-β3 from polymeric microspheres for stem cell matrix accumulation in a rat disc degeneration model.

    PubMed

    Liang, Cheng-zhen; Li, Hao; Tao, Yi-qing; Peng, Li-hua; Gao, Jian-qing; Wu, Jing-jun; Li, Fang-cai; Hua, Jian-ming; Chen, Qi-xin

    2013-12-01

    Low back pain is frequently caused by nucleus pulposus (NP) degeneration. Tissue engineering is a powerful therapeutic strategy which could restore the normal biomechanical motion of the human spine. Previously we reported that a new nanostructured three-dimensional poly(lactide-co-glycolide) (PLGA) microsphere, which is loaded with dexamethasone and growth factor embedded heparin/poly(l-lysine) nanoparticles via a layer-by-layer system, was an effective cell carrier in vitro for NP tissue engineering. This study aimed to investigate whether the implantation of adipose-derived stem cell (ADSC)-seeded PLGA microspheres into the rat intervertebral disc could regenerate the degenerated disc. Changes in disc height by plain radiograph, T2-weighted signal intensity in magnetic resonance imaging (MRI), histology, immunohistochemistry and matrix-associated gene expression were evaluated in normal controls (NCs) (without operations), a degeneration control (DC) group (with needle puncture, injected only with Dulbecco's modified Eagle's medium), a PLGA microspheres (PMs) treatment group (with needle puncture, PLGA microspheres only injection), and PLGA microspheres loaded with ADSCs treatment (PMA) group (with needle puncture, PLGA microspheres loaded with ADSC injection) for a 24-week period. The results showed that at 24 weeks post-transplantation, the PM and PMA groups regained disc height values of ∼63% and 76% and MRI signal intensities of ∼47% and 76%, respectively, compared to the NC group. Biochemistry, immunohistochemistry and gene expression analysis also indicated the restoration of proteoglycan accumulation in the discs of the PM and PMA groups. However, there was almost no restoration of proteoglycan accumulation in the discs of the DC group compared with the PM and PMA groups. Taken together, these data suggest that ADSC-seeded PLGA microspheres could partly regenerate the degenerated disc in vivo after implantation into the rat degenerative intervertebral

  1. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer.

  2. Biomimetic Porous PLGA Scaffolds Incorporating Decellularized Extracellular Matrix for Kidney Tissue Regeneration.

    PubMed

    Lih, Eugene; Park, Ki Wan; Chun, So Young; Kim, Hyuncheol; Kwon, Tae Gyun; Joung, Yoon Ki; Han, Dong Keun

    2016-08-24

    Chronic kidney disease is now recognized as a major health problem, but current therapies including dialysis and renal replacement have many limitations. Consequently, biodegradable scaffolds to help repairing injured tissue are emerging as a promising approach in the field of kidney tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) is a useful biomedical material, but its insufficient biocompatibility caused a reduction in cell behavior and function. In this work, we developed the kidney-derived extracellular matrix (ECM) incorporated PLGA scaffolds as a cell supporting material for kidney tissue regeneration. Biomimetic PLGA scaffolds (PLGA/ECM) with different ECM concentrations were prepared by an ice particle leaching method, and their physicochemical and mechanical properties were characterized through various analyses. The proliferation of renal cortical epithelial cells on the PLGA/ECM scaffolds increased with an increase in ECM concentrations (0.2, 1, 5, and 10%) in scaffolds. The PLGA scaffold containing 10% of ECM has been shown to be an effective matrix for the repair and reconstitution of glomerulus and blood vessels in partially nephrectomized mice in vivo, compared with only PLGA control. These results suggest that not only can the tissue-engineering techniques be an effective alternative method for treatment of kidney diseases, but also the ECM incorporated PLGA scaffolds could be promising materials for biomedical applications including tissue engineered scaffolds and biodegradable implants. PMID:27456613

  3. PLGA nanoparticles loaded with host defense peptide LL37 promote wound healing.

    PubMed

    Chereddy, Kiran Kumar; Her, Charles-Henry; Comune, Michela; Moia, Claudia; Lopes, Alessandra; Porporato, Paolo E; Vanacker, Julie; Lam, Martin C; Steinstraesser, Lars; Sonveaux, Pierre; Zhu, Huijun; Ferreira, Lino S; Vandermeulen, Gaëlle; Préat, Véronique

    2014-11-28

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Poly (lactic-co-glycolic acid) (PLGA) supplies lactate that accelerates neovascularization and promotes wound healing. LL37 is an endogenous human host defense peptide that modulates wound healing and angiogenesis and fights infection. Hence, we hypothesized that the administration of LL37 encapsulated in PLGA nanoparticles (PLGA-LL37 NP) promotes wound closure due to the sustained release of both LL37 and lactate. In full thickness excisional wounds, the treatment with PLGA-LL37 NP significantly accelerated wound healing compared to PLGA or LL37 administration alone. PLGA-LL37 NP-treated wounds displayed advanced granulation tissue formation by significant higher collagen deposition, re-epithelialized and neovascularized composition. PLGA-LL37 NP improved angiogenesis, significantly up-regulated IL-6 and VEGFa expression, and modulated the inflammatory wound response. In vitro, PLGA-LL37 NP induced enhanced cell migration but had no effect on the metabolism and proliferation of keratinocytes. It displayed antimicrobial activity on Escherichia coli. In conclusion, we developed a biodegradable drug delivery system that accelerated healing processes due to the combined effects of lactate and LL37 released from the nanoparticles.

  4. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    PubMed Central

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differentiation of rat bone marrow–derived stromal cells. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized ECM by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG), collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface. PMID:26191526

  5. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate.

    PubMed

    Gupta, Vineet; Mohan, Neethu; Berkland, Cory J; Detamore, Michael S

    2015-01-01

    Extracellular matrix (ECM) components, such as chondroitin sulfate (CS) and tricalcium phosphate, serve as raw materials, and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical, and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(d,l-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds would enhance differentiation of rat bone marrow-derived stromal cells. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized ECM by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG), collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface. PMID:26191526

  6. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying.

    PubMed

    Bohr, Adam; Kristensen, Jakob; Stride, Eleanor; Dyas, Mark; Edirisinghe, Mohan

    2011-06-30

    Micro- and nanoparticle formulations are widely used to improve the bioavailability of low solubility drugs. In this study, electrospraying is introduced as a method for producing drug-loaded microspheres at ambient conditions. PLGA microspheres containing celecoxib, a low solubility drug, were prepared with the objective of producing near-monodisperse microspheres with the drug in a stable amorphous form. We found that it is possible to produce near-monodisperse celecoxib-loaded PLGA microspheres at different polymer:drug ratios. The microspheres produced were in the size range 1-5 μm depending on the polymer:drug ratio and had smooth surfaces. Thermal analysis further indicates that celecoxib is present in an amorphous form inside the microspheres. Drug dissolution studies showed an initial burst release followed by a period of sustained release with the dissolution curve depending on the polymer:drug ratio. Electrospraying is thus a promising method for producing amorphous microspheres of low solubility drugs such as celecoxib. The microsphere properties may be further optimized to achieve an appropriate dissolution profile with the aim of increasing oral bioavailability of low solubility drugs.

  7. Synthesis of hydrophilic intra-articular microspheres conjugated to ibuprofen and evaluation of anti-inflammatory activity on articular explants.

    PubMed

    Bédouet, Laurent; Moine, Laurence; Pascale, Florentina; Nguyen, Van-Nga; Labarre, Denis; Laurent, Alexandre

    2014-01-01

    The main limitation of current microspheres for intra-articular delivery of non-steroidal anti-inflammatory drugs (NSAIDs) is a significant initial burst release, which prevents a long-term drug delivery. In order to get a sustained delivery of NSAIDs without burst, hydrogel degradable microspheres were prepared by co-polymerization of a methacrylic derivative of ibuprofen with oligo(ethylene-glycol) methacrylate and poly(PLGA-PEG) dimethacrylate as degradable crosslinker. Microspheres (40-100 μm) gave a low yield of ibuprofen release in saline buffer (≈2% after 3 months). Mass spectrometry analysis confirmed that intact ibuprofen was regenerated indicating that ester hydrolysis occurred at the carboxylic acid position of ibuprofen. Dialysis of release medium followed by alkaline hydrolysis show that in saline buffer ester hydrolysis occurred at other positions in the polymer matrix leading to the release of water-soluble polymers (>6-8000 Da) conjugated with ibuprofen showing that degradation and drug release are simultaneous. By considering the free and conjugated ibuprofen, 13% of the drug is released in 3 months. In vitro, ibuprofen-loaded MS inhibited the synthesis of prostaglandin E2 in articular cartilage and capsule explants challenged with lipopolysaccharides. Covalent attachment of ibuprofen to PEG-hydrogel MS suppresses the burst release and allows a slow drug delivery for months and the cyclooxygenase-inhibition property of regenerated ibuprofen is preserved.

  8. Collagen-low molecular weight hyaluronic acid semi-interpenetrating network loaded with gelatin microspheres for cell and growth factor delivery for nucleus pulposus regeneration.

    PubMed

    Tsaryk, Roman; Gloria, Antonio; Russo, Teresa; Anspach, Laura; De Santis, Roberto; Ghanaati, Shahram; Unger, Ronald E; Ambrosio, Luigi; Kirkpatrick, C James

    2015-07-01

    Intervertebral disc (IVD) degeneration is one of the main causes of low back pain. Current surgical treatments are complex and generally do not fully restore spine mobility. Development of injectable extracellular matrix-based hydrogels offers an opportunity for minimally invasive treatment of IVD degeneration. Here we analyze a specific formulation of collagen-low molecular weight hyaluronic acid (LMW HA) semi-interpenetrating network (semi-IPN) loaded with gelatin microspheres as a potential material for tissue engineering of the inner part of the IVD, the nucleus pulposus (NP). The material displayed a gel-like behavior, it was easily injectable as demonstrated by suitable tests and did not induce cytotoxicity or inflammation. Importantly, it supported the growth and chondrogenic differentiation potential of mesenchymal stem cells (MSC) and nasal chondrocytes (NC) in vitro and in vivo. These properties of the hydrogel were successfully combined with TGF-β3 delivery by gelatin microspheres, which promoted the chondrogenic phenotype. Altogether, collagen-LMW HA loaded with gelatin microspheres represents a good candidate material for NP tissue engineering as it combines important rheological, functional and biological features.

  9. Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation.

    PubMed

    Fan, Min; Liao, Jinfeng; Guo, Gang; Ding, Qiuxia; Yang, Yi; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 micro m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vive study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation. PMID:24734511

  10. Dexamethasone-loaded poly(D, L-lactic acid) microspheres/poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) micelles composite for skin augmentation.

    PubMed

    Fan, Min; Liao, Jinfeng; Guo, Gang; Ding, Qiuxia; Yang, Yi; Luo, Feng; Qian, Zhiyong

    2014-04-01

    Soft tissue augmentation using various injectable fillers has gained popularity as more patients seek esthetic improvement through minimally invasive procedures requiring little or no recovery time. The currently available injectable skin fillers can be divided into three categories. With careful assessment, stimulatory fillers are the most ideal fillers. In this study, dexamethasone-loaded poly(D, L-lactic acid) (PLA) microspheres of approximately 90 micro m suspended in poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG, PECE) micelles were prepared as stimulatory filler for skin augmentation. The biodegradable PECE copolymer can form nano-sized micelles in water, which instantly turns into a non-flowing gel at body temperature due to micellar aggregation. The PECE micelles (making up 90% of composite) served as vehicle for subcutaneous injection were metabolized within 44 days. At the same time, the dexamethasone-loaded PLA microspheres (10% of composite) merely served as stimulus for connective tissue formation. Dexamethasone-loaded PLA microspheres/PECE micelles composite presented great hemocompatibility in vitro. It was demonstrated in the in vive study that the composite was biodegradable, biocompatible, nontoxic and nonmigratory. Histopathological studies indicated that the composite could stimulate collagen regeneration. Furthermore, granuloma, the main complication of the stimulatory fillers, did not appear when the composite was injected into the back of SD rats, because of the dexamethasone controlled release from the composite. All results suggested that dexamethasone-loaded PLA microspheres/PECE micelles composite may be an efficient and promising biomaterial for skin augmentation.

  11. Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum L.) stalks.

    PubMed

    Li, Qiang; Lei, Jiandu; Zhang, Rongyue; Li, Juan; Xing, Jianmin; Gao, Fei; Gong, Fangling; Yan, Xiaofeng; Wang, Dan; Su, Zhiguo; Ma, Guanghui

    2013-05-01

    Bio-waste cotton (Gossypium hirsutum L.) stalks were converted into succinic acid by simultaneous saccharification and fermentation (SSF) using Actinobacillus succinogenes 130Z. After 54 h SSF at 40 °C and pH 7.0, the production of succinic acid was 63 g/L, with 1.17 g/L/h productivity and 64% conversion yield. After SSF, a simple method for the decolorization and deproteinization of crude SSF broth was developed through adsorption tests of polystyrene (PSt) microspheres. Under optimized conditions (5% PSt loading (w/v), pH 4.0, 60 °C and adsorption time of 40 min), the ratios of decolorization, deproteinization and succinic acid loss ratios were 96.6, 84.5 and 4.1%, respectively. The method developed will provide a potential approach for large-scale production of succinic acid from the biomass waste. PMID:22985822

  12. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres.

    PubMed

    Wang, Manli; Lu, Xiaolong; Yin, Xianzhen; Tong, Yajun; Peng, Weiwei; Wu, Li; Li, Haiyan; Yang, Yan; Gu, Jingkai; Xiao, Tiqiao; Chen, Min; Zhang, Jiwen

    2015-05-01

    The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation-based Fourier-transform infrared spectromicroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres. PMID:26579456

  13. Synchrotron radiation-based Fourier-transform infrared spectromicroscopy for characterization of the protein/peptide distribution in single microspheres

    PubMed Central

    Wang, Manli; Lu, Xiaolong; Yin, Xianzhen; Tong, Yajun; Peng, Weiwei; Wu, Li; Li, Haiyan; Yang, Yan; Gu, Jingkai; Xiao, Tiqiao; Chen, Min; Zhang, Jiwen

    2015-01-01

    The present study establishes a visualization method for the measurement of the distribution and localization of protein/peptide constituents within a single poly-lactide-co-glycolide (PLGA) microsphere using synchrotron radiation–based Fourier-transform infrared spectromicroscopy (SR-FTIR). The representative infrared wavenumbers specific for protein/peptide (Exenatide) and excipient (PLGA) were identified and chemical maps at the single microsphere level were generated by measuring and plotting the intensity of these specific bands. For quantitative analysis of the distribution within microspheres, Matlab software was used to transform the map file into a 3D matrix and the matrix values specific for the drug and excipient were extracted. Comparison of the normalized SR-FTIR maps of PLGA and Exenatide indicated that PLGA was uniformly distributed, while Exenatide was relatively non-uniformly distributed in the microspheres. In conclusion, SR-FTIR is a rapid, nondestructive and sensitive detection technology to provide the distribution of chemical constituents and functional groups in microparticles and microspheres. PMID:26579456

  14. Near infrared spectroscopic (NIRS) analysis of drug-loading rate and particle size of risperidone microspheres by improved chemometric model.

    PubMed

    Song, Jia; Xie, Jing; Li, Chenliang; Lu, Jia-Hui; Meng, Qing-Fan; Yang, Zhaogang; Lee, Robert J; Wang, Di; Teng, Le-Sheng

    2014-09-10

    Microspheres have been developed as drug carriers in controlled drug delivery systems for years. In our present study, near infrared spectroscopy (NIRS) is applied to analyze the particle size and drug loading rate in risperidone poly(d,l-lactide-co-glycolide) (PLGA) microspheres. Various batches of risperidone PLGA microspheres were designed and prepared successfully. The particle size and drug-loading rate of all the samples were determined by a laser diffraction particle size analyzer and high performance liquid chromatography (HPLC) system. Monte Carlo algorithm combined with partial least squares (MCPLS) method was applied to identify the outliers and choose the numbers of calibration set. Furthermore, a series of preprocessing methods were performed to remove signal noise in NIR spectra. Moving window PLS and radical basis function neural network (RBFNN) methods were employed to establish calibration model. Our data demonstrated that PLS-developed model was only suitable for drug loading analysis in risperidone PLGA microspheres. Comparatively, RBFNN-based predictive models possess better fitting quality, predictive effect, and stability for both drug loading rate and particle size analysis. The correlation coefficients of calibration set (Rc(2)) were 0.935 and 0.880, respectively. The performance of optimum RBFNN models was confirmed by independent verification test with 15 samples. Collectively, our method is successfully performed to monitor drug-loading rate and particle size during risperidone PLGA microspheres preparation.

  15. PLGA nanofiber membranes loaded with epigallocatechin-3-O-gallate are beneficial to prevention of postsurgical adhesions

    PubMed Central

    Shin, Yong Cheol; Yang, Won Jun; Lee, Jong Ho; Oh, Jin-Woo; Kim, Tai Wan; Park, Jong-Chul; Hyon, Suong-Hyu; Han, Dong-Wook

    2014-01-01

    This study concentrates on the development of biodegradable nanofiber membranes with controlled drug release to ensure reduced tissue adhesion and accelerated healing. Nanofibers of poly(lactic-co-glycolic acid) (PLGA) loaded with epigallocatechin-3-O-gallate (EGCG), the most bioactive polyphenolic compound in green tea, were electrospun. The physicochemical and biomechanical properties of EGCG-releasing PLGA (E-PLGA) nanofiber membranes were characterized by atomic force microscopy, EGCG release and degradation profiles, and tensile testing. In vitro antioxidant activity and hemocompatibility were evaluated by measuring scavenged reactive oxygen species levels and activated partial thromboplastin time, respectively. In vivo antiadhesion efficacy was examined on the rat peritonea with a surgical incision. The average fiber diameter of E-PLGA membranes was approximately 300–500 nm, which was almost similar to that of pure PLGA equivalents. E-PLGA membranes showed sustained EGCG release mediated by controlled diffusion and PLGA degradation over 28 days. EGCG did not adversely affect the tensile strength of PLGA membranes, whereas it significantly decreased the elastic modulus and increased the strain at break. E-PLGA membranes were significantly effective in both scavenging reactive oxygen species and extending activated partial thromboplastin time. Macroscopic observation after 1 week of surgical treatment revealed that the antiadhesion efficacy of E-PLGA nanofiber membranes was significantly superior to those of untreated controls and pure PLGA equivalents, which was comparable to that of a commercial tissue-adhesion barrier. In conclusion, the E-PLGA hybrid nanofiber can be exploited to craft strategies for the prevention of postsurgical adhesions. PMID:25187710

  16. Assessment of PLGA-PEG-PLGA Copolymer Hydrogel for Sustained Drug Delivery in the Ear

    PubMed Central

    Feng, Liang; Ward, Jonette A.; Li, S. Kevin; Tolia, Gaurav; Hao, Jinsong; Choo, Daniel I.

    2014-01-01

    Temperature sensitive copolymer systems were previously studied using modified diffusion cells in vitro for intratympanic injection, and the PLGA-PEG-PLGA copolymer systems were found to provide sustained drug delivery for several days. The objectives of the present study were to assess the safety of PLGA-PEG-PLGA copolymers in intratympanic injection in guinea pigs in vivo and to determine the effects of additives glycerol and poloxamer in PLGA-PEG-PLGA upon drug release in the diffusion cells in vitro for sustained inner ear drug delivery. In the experiments, the safety of PLGA-PEG-PLGA copolymers to inner ear was evaluated using auditory brainstem response (ABR). The effects of the additives upon drug release from PLGA-PEG-PLGA hydrogel were investigated in the modified Franz diffusion cells in vitro with cidofovir as the model drug. The phase transition temperatures of the PLGA-PEG-PLGA copolymers in the presence of the additives were also determined. In the ABR safety study, the PLGA-PEG-PLGA copolymer alone did not affect hearing when delivered at 0.05-mL dose but caused hearing loss after 0.1-mL injection. In the drug release study, the incorporation of the bioadhesive additive, poloxamer, in the PLGA-PEG-PLGA formulations was found to decrease the rate of drug release whereas the increase in the concentration of the humectant additive, glycerol, provided the opposite effect. In summary, the PLGA-PEG-PLGA copolymer did not show toxicity to the inner ear at the 0.05-mL dose and could provide sustained release that could be controlled by using the additives for inner ear applications. PMID:24438444

  17. The effect of simvastatin-loaded polymeric microspheres in a critical size bone defect in the rabbit calvaria.

    PubMed

    Naito, Yoshihito; Terukina, Takayuki; Galli, Silvia; Kozai, Yusuke; Vandeweghe, Stefan; Tagami, Tatsuaki; Ozeki, Tetsuya; Ichikawa, Tetsuo; Coelho, Paulo G; Jimbo, Ryo

    2014-01-30

    The present study describes the development of a microsphere capsule based on polylactide-co-glycolide (PLGA) loaded with simvastatin that was subsequently incorporated into synthetic bone cement. The osteogenic effect of simvastatin-loaded bone cement was in a critical sized defect in vivo to test the hypothesis the biologic response would be different depending on the dosage of simvastatin applied to bone cement. Our results showed that simvastatin loaded PLGA microspheres can be successfully obtained through O/W emulsion/solvent evaporation method with appropriate morphologic characteristics and high encapsulation efficiency for incorporation in bone cements. The biodegradable characteristic of the microspheres successfully presented a slow release and the duration of the release lasted for more than 1 month. The in vivo experiment revealed that the microspheres containing simvastatin significantly enhanced bone formation in the rabbit calvaria critical size defect.

  18. The potential of using biodegradable microspheres in retinal diseases and other intraocular pathologies.

    PubMed

    Herrero-Vanrell, Rocío; Bravo-Osuna, Irene; Andrés-Guerrero, Vanessa; Vicario-de-la-Torre, Marta; Molina-Martínez, Irene Teresa

    2014-09-01

    Pathologies affecting the posterior segment of the eye are one of the major causes of blindness in developed countries and are becoming more prevalent due to the increase in society longevity. Successful therapy of diseases affecting the back of the eye requires effective concentrations of the active substance maintained during a long period of time in the intraocular target site. Treatment of vitreoretinal diseases often include repeated intravitreous injections that are associated with adverse effects. Local administration of biodegradable microspheres offers an excellent alternative to multiple administrations, as they are able to deliver the therapeutic molecule in a controlled fashion. Furthermore, injection of microparticles is performed without the need for surgical procedures. As most of the retinal diseases are multifactorial, microspheres result especially promising because they can be loaded with more than one active substance and complemented with the inclusion of additives with pharmacological properties. Personalized therapy can be easily achieved by changing the amount of administered microspheres. Contrary to non-biodegradable devices, biodegradable PLA and PLGA microspheres disappear from the site of administration after delivering the drug. Furthermore, microspheres prepared from these mentioned biomaterials are well tolerated after periocular and intravitreal injections in animals and humans. After injection, PLA and PLGA microspheres suffer aggregation behaving like an implant. Biodegradable microspheres are potential tools in regenerative medicine for retinal repair. According to the reported results, presumably a variety of microparticulate formulations for different ophthalmic therapeutic uses will be available in the clinical practice in the near future.

  19. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    PubMed Central

    Figueiredo, Marxa; Esenaliev, Rinat

    2012-01-01

    This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid) (PLGA) or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound) composed either of polymers (PLGA, polystyrene) or other contrast agent materials (Optison, SonoVue microbubbles). The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a) echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b) PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery. PMID:22506124

  20. Glass microspheres

    SciTech Connect

    Day, D.E.; Ehrhardt, G.J.

    1988-12-06

    This patent describes a glass microsphere having a diameter of about 54 micrometers or less and adapted for radiation therapy of a mammal. The glass consists of essentially an yttrium oxide-aluminosilicate glass composition lying substantially within a quadrilateral region of the ternary composition diagram of the yttria-alumina-silica system, the quadrilateral region being defined by its four corners having the following combination of weight proportions of the components: 20% silica, 10% alumina, 70% yttria; 70% silica, 10% alumina, 20% yttria; 70% silica, 20% alumina, 10% yttria; and 20% silica, 45% alumina, 35% yttria, the glass having a chemical durability such that subsequent to irradiation and administration of the microsphere to the mammal, the mircosphere will not release a significant amount of yttrium-90 into the mammal's system.

  1. Bone induction by biomimetic PLGA-(PEG-ASP)n copolymer loaded with a novel synthetic BMP-2-related peptide in vitro and in vivo.

    PubMed

    Lin, Zhen-Yu; Duan, Zhi-Xia; Guo, Xiao-Dong; Li, Jing-Feng; Lu, Hong-Wei; Zheng, Qi-Xin; Quan, Da-Ping; Yang, Shu-Hua

    2010-06-01

    BMP-2 is one of the most important growth factors of bone regeneration. Polylactide-co-glycolic acid (PLGA), which is used as a biodegradable scaffold for delivering therapeutic agents, has been intensively investigated. In previous studies, we synthesized a novel BMP-2-related peptide (designated P24) and found that it could enhance the osteoblastic differentiation of bone marrow stromal cells (BMSCs). The objective of this study was to construct a biomimetic composite by incorporating P24 into a modified PLGA-(PEG-ASP)n copolymer to promote bone formation. In vitro, our results demonstrated that PLGA-(PEG-ASP)n scaffolds were shown to be an efficient system for sustained release of P24. Significantly more BMSCs attached to the P24/PLGA-(PEG-ASP)n and PLGA-(PEG-ASP)n membranes than to PLGA, and the cells in the two groups subsequently proliferated more vigorously than those in the PLGA group. The expression of osteogenic markers in P24/PLGA-(PEG-ASP)n group was stronger than that in the PLGA-(PEG-ASP)n and PLGA groups. Radiographic and histological examination, Western blotting and RT-PCR showed that P24/PLGA-(PEG-ASP)n scaffold could induce more effective ectopic bone formation in vivo, as compared with PLGA-(PEG-ASP)n or gelatin sponge alone. It is concluded that the PLGA-(PEG-ASP)n copolymer is a good P24 carrier and can serve as a good scaffold for controlled release of P24. This novel P24/PLGA-(PEG-ASP)n composite promises to be an excellent biomaterial for inducing bone regeneration.

  2. Microspheres Assembled from Chitosan-Graft-Poly(lactic acid) Micelle-Like Core-Shell Nanospheres for Distinctly Controlled Release of Hydrophobic and Hydrophilic Biomolecules.

    PubMed

    Niu, Xufeng; Liu, Zhongning; Hu, Jiang; Rambhia, Kunal J; Fan, Yubo; Ma, Peter X

    2016-07-01

    To simultaneously control inflammation and facilitate dentin regeneration, a copolymeric micelle-in-microsphere platform is developed in this study, aiming to simultaneously release a hydrophobic drug to suppress inflammation and a hydrophilic biomolecule to enhance odontogenic differentiation of dental pulp stem cells in a distinctly controlled fashion. A series of chitosan-graft-poly(lactic acid) copolymers is synthesized with varying lactic acid and chitosan weight ratios, self-assembled into nanoscale micelle-like core-shell structures in an aqueous system, and subsequently crosslinked into microspheres through electrostatic interaction with sodium tripolyphosphate. A hydrophobic biomolecule either coumarin-6 or fluocinolone acetonide (FA) is encapsulated into the hydrophobic cores of the micelles, while a hydrophilic biomolecule either bovine serum albumin or bone morphogenetic protein 2 (BMP-2) is entrapped in the hydrophilic shells and the interspaces among the micelles. Both hydrophobic and hydrophilic biomolecules are delivered with distinct and tunable release patterns. Delivery of FA and BMP-2 simultaneously suppresses inflammation and enhances odontogenesis, resulting in significantly enhanced mineralized tissue regeneration. This result also demonstrates the potential for this novel delivery system to deliver multiple therapeutics and to achieve synergistic effects. PMID:26987445

  3. Synthesis of caffeic acid molecularly imprinted polymer microspheres and high-performance liquid chromatography evaluation of their sorption properties.

    PubMed

    Valero-Navarro, Angel; Gómez-Romero, María; Fernández-Sánchez, Jorge F; Cormack, Peter A G; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto

    2011-10-14

    In the current work, a molecularly imprinted polymer (MIP) has been synthesised and used to enable the extraction of a naturally-occurring antioxidant from complex media. More specifically, we describe the first example of a caffeic acid (CA) MIP which has been synthesised in the form of well-defined polymer microspheres, and its use for the extraction of CA from fruit juice sample. The CA MIP was synthesised by precipitation polymerisation using 4-vinylpyridine as functional monomer, divinylbenzene-80 as crosslinker and acetonitrile:toluene (75/25, v/v) as porogen. The particle sizing and morphological characterisation of the polymers was carried out by means of scanning electron microscopy (narrow particle size distribution; ∼5 and 1.5 μm particle diameters for the MIP and NIP [non-imprinted polymer], respectively) and nitrogen sorption porosimetry (specific surface areas of 340 and 350 m(2)g(-1), and specific pore volumes of 0.17 and 0.19 cm(3)g(-1) for the MIP and NIP, respectively). The polymers were evaluated further by batch rebinding experiments, and from the derived isotherms their binding capacity and binding strength were determined (number of binding sites (N(K))=0.6 and 0.3 mmol g(-1) for the MIP and NIP, respectively, and apparent average adsorption constant (K(N))=10.0 and 1.6L mmol(-1) for the MIP and NIP, respectively). To evaluate the molecular recognition character of the MIP it was packed into a stainless steel column (50 mm × 4.6 mm i.d.) and evaluated as an HPLC-stationary phase. The mobile phase composition, flow rate, and the elution profile were then optimised in order to improve the peak shape without negatively affecting the imprinting factor (IF). Very interesting, promising properties were revealed. The imprinting factor (IF) under the optimised conditions was 11.9. Finally, when the imprinted LC column was used for the selective recognition of CA over eight related compounds, very good selectivity was obtained. This outcome enabled

  4. PLGA nanoparticles improve the oral bioavailability of curcumin in rats: characterizations and mechanisms.

    PubMed

    Xie, Xiaoxia; Tao, Qing; Zou, Yina; Zhang, Fengyi; Guo, Miao; Wang, Ying; Wang, Hui; Zhou, Qian; Yu, Shuqin

    2011-09-14

    The overall goal of this paper was to develop poly(lactic-co-glycolic acid) nanoparticles (PLGA-NPs) of curcumin (CUR), named CUR-PLGA-NPs, and to study the effect and mechanisms enhancing the oral bioavailability of CUR. CUR-PLGA-NPs were prepared according to a solid-in-oil-in-water (s/o/w) solvent evaporation method and exhibited a smooth and spherical shape with diameters of about 200 nm. Characterization of CUR-PLGA-NPs showed CUR was successfully encapsulated on the PLGA polymer. The entrapment efficiency and loading rate of CUR were 91.96 and 5.75%, respectively. CUR-PLGA-NPs showed about 640-fold in water solubility relative to that of n-CUR. A sustained CUR release to a total of approximately 77% was discovered from CUR-PLGA-NPs in artificial intestinal juice, but only about 48% in artificial gastric juice. After oral administration of CUR-PLGA-NPs, the relative bioavailability was 5.6-fold and had a longer half-life compared with that of native curcumin. The results showed that the effect in improving oral bioavailability of CUR may be associated with improved water solubility, higher release rate in the intestinal juice, enhanced absorption by improved permeability, inhibition of P-glycoprotein (P-gp)-mediated efflux, and increased residence time in the intestinal cavity. Thus, encapsulating hydrophobic drugs on PLGA polymer is a promising method for sustained and controlled drug delivery with improved bioavailability of Biopharmaceutics Classification System (BCS) class IV, such as CUR. PMID:21797282

  5. The comparison of different daidzein-PLGA nanoparticles in increasing its oral bioavailability

    PubMed Central

    Ma, Yiran; Zhao, Xinyi; Li, Jian; Shen, Qi

    2012-01-01

    The aim of this research was to increase the oral bioavailability of daidzein by the formulations of poly(lactic-co-glycolic) acid (PLGA) nanoparticles loaded with daidzein. Amongst the various traditional and novel techniques of preparing daidzein-loaded PLGA nanoparticles, daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were selected. The average drug entrapment efficiency, particle size, and zeta potential of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles were 81.9% ± 5%, 309.2 ± 14.0 nm, −32.14 ± 2.53 mV and 83.2% ± 7.2%, 323.2 ± 4.8 nm, −18.73 ± 1.68 mV, respectively. The morphological characterization of nanoparticles was observed with scanning electron microscopy by stereological method and the physicochemical state of nanoparticles was valued by differential scanning calorimetry. The in vitro drug-release profile of both nanoparticle formulations fitted the Weibull dynamic equation. Pharmacokinetic studies demonstrated that after oral administration of daidzein-loaded phospholipid complexes PLGA nanoparticles and daidzein-loaded cyclodextrin inclusion complexes PLGA nanoparticles to rats at a dose of 10 mg/kg, relative bioavailability was enhanced about 5.57- and 8.85-fold, respectively, compared to daidzein suspension as control. These results describe an effective strategy for oral delivery of daidzein-loaded PLGA nanoparticles and might provide a fresh approach to enhancing the bioavailability of drugs with poor lipophilic and poor hydrophilic properties. PMID:22346351

  6. Porous magnesium/PLGA composite scaffolds for enhanced bone regeneration following tooth extraction.

    PubMed

    Brown, Andrew; Zaky, Samer; Ray, Herbert; Sfeir, Charles

    2015-01-01

    Sixty percent of implant-supported dental prostheses require bone grafting to enhance bone quantity and quality prior to implant placement. We have developed a metallic magnesium particle/PLGA composite scaffold to overcome the limitations of currently used dental bone grafting materials. This is the first report of porous metallic magnesium/PLGA scaffolds synthesized using a solvent casting, salt leaching method. We found that incorporation of varying amounts of magnesium into the PLGA scaffolds increased the compressive strength and modulus, as well as provided a porous structure suitable for cell infiltration, as measured by mercury intrusion porosimetry. Additionally, combining basic-degrading magnesium with acidic-degrading PLGA led to an overall pH buffering effect and long-term release of magnesium over the course of a 10-week degradation assay, as measured with inductively coupled plasma-atomic emission spectroscopy. Using an indirect proliferation assay adapted from ISO 10993:5, it was found that extracts of medium from degrading magnesium/PLGA scaffolds increased bone marrow stromal cell proliferation in vitro, a phenomenon observed by other groups investigating magnesium's impact on cells. Finally, magnesium/PLGA scaffold biocompatibility was assessed in a canine socket preservation model. Micro-computed tomography and histological analysis showed the magnesium/PLGA scaffolds to be safer and more effective at preserving bone height than empty controls. Three-dimensional magnesium/PLGA composite scaffolds show promise for dental socket preservation and also, potentially, orthopedic bone regeneration. These scaffolds could decrease inflammation observed with clinically used PLGA devices, as well as enhance osteogenesis, as observed with previously studied magnesium devices.

  7. Surface modification of PLGA nanoparticles via human serum albumin conjugation for controlled delivery of docetaxel

    PubMed Central

    2013-01-01

    Background Poly lactic-co-glycolic acid (PLGA) based nanoparticles are considered to be a promising drug carrier in tumor targeting but suffer from the high level of opsonization by reticuloendothelial system due to their hydrophobic structure. As a result surface modification of these nanoparticles has been widely studied as an essential step in their development. Among various surface modifications, human serum albumin (HSA) possesses advantages including small size, hydrophilic surface and accumulation in leaky vasculature of tumors through passive targeting and a probable active transport into tumor tissues. Methods PLGA nanoparticles of docetaxel were prepared by emulsification evaporation method and were surface conjugated with human serum albumin. Fourier transform infrared spectrum was used to confirm the conjugation reaction where nuclear magnetic resonance was utilized for conjugation ratio determination. In addition, transmission electron microscopy showed two different contrast media in conjugated nanoparticles. Furthermore, cytotoxicity of free docetaxel, unconjugated and conjugated PLGA nanoparticles was studied in HepG2 cells. Results Size, zeta potential and drug loading of PLGA nanoparticles were about 199 nm, −11.07 mV, and 4%, respectively where size, zeta potential and drug loading of conjugated nanoparticles were found to be 204 nm, −5.6 mV and 3.6% respectively. Conjugated nanoparticles represented a three-phasic release pattern with a 20% burst effect for docetaxel on the first day. Cytotoxicity experiment showed that the IC50 of HSA conjugated PLGA nanoparticles (5.4 μg) was significantly lower than both free docetaxel (20.2 μg) and unconjugated PLGA nanoparticles (6.2 μg). Conclusion In conclusion surface modification of PLGA nanoparticles through HSA conjugation results in more cytotoxicity against tumor cell lines compared with free docetaxel and unconjugated PLGA nanoparticles. Albumin conjugated PLGA nanoparticles may

  8. Physicochemical characterization of camptothecin membrane binding properties and polymeric microsphere formulations

    NASA Astrophysics Data System (ADS)

    Selvi, Bilge

    acidic media CPT-loaded microspheres were prepared in a 10 N HCl-methylene chloride mixture using the H-series of poly(D,L-lactide-co-glycolide) (H-PLGA). The system was then compared with a standard microsphere formation method and the results were evaluated with respect to particle morphology and drug release profile. Rough surface of the particles were obtained from the preparation method where a 10 N HCl solution was used. The release pattern of CPT was biphasic comprising a first burst effect followed by zero order release for all the formulations. However, the release of the drug was slightly faster from the microspheres formed with the modified method compared to the standard. Until now clinical application of CPT has been highly restricted by the insolubility and instability of the drug in its active lactone form, resulting in less antitumor potency and poor bioavailability. The pH-dependent release of the CPT-loaded microspheres was also compared and faster initial release (burst phase) was found at neutral pH, whereas at low pH the release was zero order for all the formulations. The results indicate that the stabilization and sustained release of CPT from H-PLGA microspheres might reduce local toxicity while simultaneously prolonging efficiency, suggesting new perspectives in CPT chemotherapy.

  9. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, R.M.

    A method and apparatus is disclosed for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  10. Microradiographic microsphere manipulator

    DOEpatents

    Singleton, Russell M.

    1980-01-01

    A method and apparatus for radiographic characterization of small hollow spherical members (microspheres), constructed of either optically transparent or opaque materials. The apparatus involves a microsphere manipulator which holds a batch of microspheres between two parallel thin plastic films for contact microradiographic characterization or projection microradiography thereof. One plastic film is translated to relative to and parallel to the other to roll the microspheres through any desired angle to allow different views of the microspheres.

  11. Measurement of PLGA-NP interaction with single smooth muscle cells using optical tweezers

    NASA Astrophysics Data System (ADS)

    Gu, Ling; Mondal, Argha; Homayoni, Homa; Nguyen, Kytai; Mohanty, Samarendra

    2012-10-01

    For intervention of cardiovascular diseases, biodegradable and biocompatible, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NP) are emerging as agents of choice for controlled and targeted drug delivery. Therefore development of PLGA-NP with optimal physico-chemical properties will allow efficient binding and thus delivery of drug to targeted cells under various patho-physiological conditions. The force kinetics and its dependence on size of the NPs will be crucial for designing the NPs. Since optical tweezers allow non-contact, highly sensitive force measurement with high spatial and temporal resolution, we utilized it for studying interaction forces between magnetic PLGA nanoparticles with smooth muscle cells (SMC). In order to investigate effect of size, interaction force for 200 to 1100nm PLGA NP was measured. For similar interaction duration, the force was found to be higher with increase in size. The rupture force was found to depend on time of interaction of SMC with NPs.

  12. Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis.

    PubMed

    Chung, Ming-Fan; Chia, Wei-Tso; Liu, Hung-Yi; Hsiao, Chun-Wen; Hsiao, Hsu-Chan; Yang, Chih-Man; Sung, Hsing-Wen

    2014-11-01

    In the conventional treatment of osteomyelitis, the penetration of antibiotics into the infected bone is commonly poor. To ensure that the local antibiotic concentration is adequate, this work develops an injectable calcium phosphate (CP) cement in which is embedded pH-responsive hollow microspheres (HMs) that can control the release of a drug according to the local pH. The HMs are fabricated using a microfluidic device, with a shell of poly(D,L-lactic-co-glycolic acid) (PLGA) and an aqueous core that contains vancomycin (Van) and NaHCO3. At neutral pH, the CP/HM cement elutes a negligible concentration of the drug. In an acidic environment, the NaHCO3 that is encapsulated in the HMs reacts with the acid rapidly to generate CO2 bubbles, disrupting the PLGA shells and thereby releasing Van locally in excess of a therapeutic threshold. The feasibility of using this CP/HM cement to treat osteomyelitis is studied using a rabbit model. Analytical results reveal that the CP/HM cement provides highly effective local antibacterial activity. Histological examination further verifies the efficacy of the treatment by the CP/HM cement. The above findings suggest that the CP/HM cement is a highly efficient system for the local delivery of antibiotics in the treatment of osteomyelitis.

  13. Inflammation-induced drug release by using a pH-responsive gas-generating hollow-microsphere system for the treatment of osteomyelitis.

    PubMed

    Chung, Ming-Fan; Chia, Wei-Tso; Liu, Hung-Yi; Hsiao, Chun-Wen; Hsiao, Hsu-Chan; Yang, Chih-Man; Sung, Hsing-Wen

    2014-11-01

    In the conventional treatment of osteomyelitis, the penetration of antibiotics into the infected bone is commonly poor. To ensure that the local antibiotic concentration is adequate, this work develops an injectable calcium phosphate (CP) cement in which is embedded pH-responsive hollow microspheres (HMs) that can control the release of a drug according to the local pH. The HMs are fabricated using a microfluidic device, with a shell of poly(D,L-lactic-co-glycolic acid) (PLGA) and an aqueous core that contains vancomycin (Van) and NaHCO3. At neutral pH, the CP/HM cement elutes a negligible concentration of the drug. In an acidic environment, the NaHCO3 that is encapsulated in the HMs reacts with the acid rapidly to generate CO2 bubbles, disrupting the PLGA shells and thereby releasing Van locally in excess of a therapeutic threshold. The feasibility of using this CP/HM cement to treat osteomyelitis is studied using a rabbit model. Analytical results reveal that the CP/HM cement provides highly effective local antibacterial activity. Histological examination further verifies the efficacy of the treatment by the CP/HM cement. The above findings suggest that the CP/HM cement is a highly efficient system for the local delivery of antibiotics in the treatment of osteomyelitis. PMID:24789379

  14. Evaluations of therapeutic efficacy of intravitreal injected polylactic-glycolic acid microspheres loaded with triamcinolone acetonide on a rabbit model of uveitis.

    PubMed

    Li, Wenchang; He, Bing; Dai, Wenbing; Zhang, Qiang; Liu, Yuling

    2014-06-01

    Conventional treatments of uveitis are not ideal because of the short period of therapeutic efficacy. In the present study, biodegradable polylactic-glycolic acid microspheres loaded with triamcinolone acetonide (TA) were prepared to achieve sustained drug release and their therapeutic efficacy was investigated on a rabbit model of uveitis. TA-loaded microspheres (TA-MS) were prepared by the solvent evaporation method and characterized for encapsulation efficiency, particle size, morphology and in vitro release. The therapeutic efficacy was studied on the rabbit experimental uveitis model based on scoring of the inflammation, aqueous leukocyte counting, aqueous protein determination and histological examination. The TA-MS exhibited smooth and intact surfaces with an average diameter of 50.87 μm. The drug-loading coefficient and encapsulation efficiency were 15.2 ± 0.6 % and 91.24 ± 3.77 %, respectively. The drug release from TA-MS lasted up to 87 days, but only 46 days for TA suspension. The change in surface morphology also showed sustained drug release from TA-MS. TA-MS exhibited improved therapeutic efficacy in lipopolysaccharide -induced uveitis compared to TA suspension, especially in regard to the inhibition of inflammation. The TA-MS had a longer-term therapeutic effect on intraocular inflammation in LPS-induced uveitis in rabbits compared to TA suspension. The results suggested that TA-MS can be developed as a potential sustained-release system for the treatment of uveitis.

  15. Spray-dried chitosan microspheres containing 8-hydroxyquinoline -5 sulphonic acid as a new adsorbent for Cd(II) and Zn(II) ions.

    PubMed

    Vitali, Luciano; Laranjeira, Mauro C M; Gonçalves, Norberto S; Fávere, Valfredo T

    2008-03-01

    In the present study, a new chelating adsorbent was prepared from chitosan microspheres cross-linked with glutaraldehyde by spray drying using 8-hydroxyquinoline -5 sulphonic acid as chelant agent (CTS-SX-CL). Microspheres of the new adsorbent were characterized by Raman spectroscopy, scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDX). The effect of pH, contact time and concentration of metallic ions in solution were evaluated on the adsorption behavior of Cd(II) and Zn(II) by CTS-SX-CL. Adsorption was maximum for both Cd(II) and Zn(II) at pH 8.0. Adsorption kinetic curves were obtained and could be fit by the pseudo second-order adsorption model. An analysis of equilibrium adsorption data using the Langmuir isotherm model indicated that the maximum adsorption capacity of CTS-SX-CL was higher than that of CTS-CL for both ions investigated. The adsorption capacity increased 74% for Cd(II).

  16. Treating cutaneous squamous cell carcinoma using ALA PLGA nanoparticle-mediated photodynamic therapy in a mouse model

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Tu, Qingfeng; Wang, Hongwei; Zhang, Haiyan; Wang, Peiru; Zhang, Linglin; Huang, Zheng; Wang, Xiuli; Zhao, Feng; Luan, Hansen

    2015-03-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still difficult. The aim of this study was to evaluate the effectiveness of nanoparticle (NP)-assisted ALA delivery for topical photodynamic therapy (PDT) of cutaneous SCC. Methods: UV-induced cutaneous SCCs were established in hairless mice. ALA loaded polylactic-co-glycolic acid (PLGA) NPs were prepared and characterized. The kinetics of ALA PLGA NPs-induced protoporphyrin IX (PpIX) fluorescence in SCCs, therapeutic efficacy of ALA NP-mediated PDT, and immune responses were examined. Results: PLGA NPs could enhance PpIX production in SCC. ALA PLGA NP mediated topical PDT was more effective than free ALA of the same concentration in treating cutaneous SCC. Conclusion: PLGA NPs provide a promising strategy for delivering ALA in topical PDT of cutaneous SCC.

  17. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    PubMed Central

    2014-01-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC. PMID:25232295

  18. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters

    NASA Astrophysics Data System (ADS)

    Hu, Yun; Ehrich, Marion; Fuhrman, Kristel; Zhang, Chenming

    2014-08-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.

  19. Hybrid microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Richard C. K. (Inventor)

    1985-01-01

    Substrates, particularly inert synthetic organic resin beads (10) or sheet (12) such as polystyrene are coated with a covalently bound layer (24) of polyacrolein by irradiation a solution (14) of acrolein or other aldehyde with high intensity radiation. Individual microspheres (22) are formed which attach to the surface to form the aldehyde containing layer (24). The aldehyde groups can be converted to other functional groups by reaction with materials such as hydroxylamine. Adducts of proteins such as antibodies or enzymes can be formed by direct reaction with the surface aldehyde groups.

  20. Enhanced Biological Functions of Human Mesenchymal Stem-Cell Aggregates Incorporating E-Cadherin-Modified PLGA Microparticles.

    PubMed

    Zhang, Yan; Mao, Hongli; Gao, Chao; Li, Suhua; Shuai, Qizhi; Xu, Jianbin; Xu, Ke; Cao, Lei; Lang, Ren; Gu, Zhongwei; Akaike, Toshihiro; Yang, Jun

    2016-08-01

    Mesenchymal stem cells (MSCs) have emerged as a promising source of multipotent cells for various cell-based therapies due to their unique properties, and formation of 3D MSC aggregates has been explored as a potential strategy to enhance therapeutic efficacy. In this study, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human E-cadherin fusion protein (hE-cad-PLGA microparticles) have been fabricated and integrated with human MSCs to form 3D cell aggregates. The results show that, compared with the plain PLGA, the hE-cad-PLGA microparticles distribute within the aggregates more evenly and further result in a more significant improvement of cellular proliferation and secretion of a series of bioactive factors due to the synergistic effects from the bioactive E-cadherin fragments and the PLGA microparticles. Meanwhile, the hE-cad-PLGA microparticles incorporated in the aggregates upregulate the phosphorylation of epidermal growth factor receptors and activate the AKT and ERK1/2 signaling pathways in the MSCs. Additionally, the E-cadherin/β-catenin cellular membrane complex in the MSCs is markedly stimulated by the hE-cad-PLGA microparticles. Therefore, engineering 3D cell aggregates with hE-cad-PLGA microparticles can be a promising method for ex vivo multipotent stem-cell expansion with enhanced biological functions and may offer a novel route to expand multipotent stem-cell-based clinical applications. PMID:27245478

  1. Effects of Stirring and Fluid Perfusion on the In Vitro Degradation of Calcium Phosphate Cement/PLGA Composites.

    PubMed

    An, Jie; Leeuwenburgh, Sander C G; Wolke, Joop G C; Jansen, John A

    2015-11-01

    In vitro degradation rates of calcium phosphate bioceramics are investigated using a large variation of soaking protocols that do not all match the dynamic conditions of the perfused physiological environment. Therefore, we studied the effect of stirring and fluid perfusion on the in vitro degradation rate of apatitic calcium phosphate cements (CPC) containing poly(lactic-co-glycolic acid) (PLGA) microspheres. The composites were soaked in phosphate-buffered saline up to 6 weeks under unstirred, stirred, or perfused conditions followed by analysis of mass loss, compression strength, porosity, crystal phase composition, and morphology of the cement composites. The results showed that fluid perfusion reduced the decrease in pH and corresponding degradation rates, while nonperfused soaking conditions (i.e., stirred and unstirred conditions) resulted into more extensive acidification, the rate of which increased with stirring. After 2 weeks, the formation of a secondary brushite phase was observed for cement composites soaked under nonperfused (i.e., stirred and unstirred) conditions, whereas this phase was not detected in cements soaked under perfused conditions. The degradation rate of cement composites decreased in the order unstirred>stirred>perfused, as evidenced by quantification of mass loss, compression strength, and pore morphology. To summarize, we have demonstrated that soaking conditions strongly affected the in vitro degradation process of CPCs. As a consequence, it can be concluded that the experimental design of current in vitro degradation studies does not allow for correlation to (pre-)clinical studies.

  2. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres.

    PubMed

    Liang, Rongcai; Li, Xiang; Shi, Yanan; Wang, Aiping; Sun, Kaoxiang; Liu, Wanhui; Li, Youxin

    2013-09-15

    Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative humidities (RH) as well as in solutions of different pH for 20 days. The stability of exenatide was monitored using HPLC and HPLC-MS analysis. The alteration of exenatide conformation caused by water was investigated by FT-IR spectroscopy. Exenatide and glycolide were incubated in DMSO-water solutions to verify the effect of exenatide conformation state on the peptide acylation. Exenatide was relatively stable in microspheres at lower RH, and the absorbed water could act as a plasticizer and thus promote the peptide acylation by PLGA. However, when the microspheres were incubated at 100% RH, the excessively absorbed water could cause conformation recovery of exenatide and play an inhibitory effect on acylation. The formation of acylated exenatide incubated in acetate buffer saline of pH 6.0 was more than that of pH 4.5 and 3.0. Stability studies of exenatide in glycolide solutions showed that exenatide in nonnative monomer state was easier to be acylated by eletrophiles than that in aggregation state. PMID:23872225

  3. Effect of water on exenatide acylation in poly(lactide-co-glycolide) microspheres.

    PubMed

    Liang, Rongcai; Li, Xiang; Shi, Yanan; Wang, Aiping; Sun, Kaoxiang; Liu, Wanhui; Li, Youxin

    2013-09-15

    Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative humidities (RH) as well as in solutions of different pH for 20 days. The stability of exenatide was monitored using HPLC and HPLC-MS analysis. The alteration of exenatide conformation caused by water was investigated by FT-IR spectroscopy. Exenatide and glycolide were incubated in DMSO-water solutions to verify the effect of exenatide conformation state on the peptide acylation. Exenatide was relatively stable in microspheres at lower RH, and the absorbed water could act as a plasticizer and thus promote the peptide acylation by PLGA. However, when the microspheres were incubated at 100% RH, the excessively absorbed water could cause conformation recovery of exenatide and play an inhibitory effect on acylation. The formation of acylated exenatide incubated in acetate buffer saline of pH 6.0 was more than that of pH 4.5 and 3.0. Stability studies of exenatide in glycolide solutions showed that exenatide in nonnative monomer state was easier to be acylated by eletrophiles than that in aggregation state.

  4. An EPR and ENDOR study of gamma- and beta-radiation sterilization in poly (lactide-co-glycolide) polymers and microspheres.

    PubMed

    Bushell, James A; Claybourn, Mike; Williams, Helen E; Murphy, Damien M

    2005-12-10

    EPR/ENDOR spectroscopy was used to characterise the free radicals generated in a series of PLGA raw polymers and microspheres (with lactide:glycolide compositions of (75:25), (65:35) and (50:50)) after exposure to gamma (gamma-) and electron beam (beta-) irradiation at room temperature. Both sets of irradiated samples produced analogous EPR spectra, indicating that the type and distribution of free radicals generated by gamma-irradiation are similar to those generated by beta-irradiation. The radicals were identified by EPR simulations as the chain scission species -(CHO-(approximately 27% abundance),-C(CH(3))O- ( approximately 23% abundance) and the terminal-C(CH(3))-OR fragment (approximately 50% abundance), and these assignments were supported by the ENDOR analysis. The latter two radical species were demonstrated to originate from the lactide component of the PLGA polymer. Overall systematically higher radical concentrations were found as the lactide content of the PLGA raw polymer and microspheres increases (ie., 75:25 > 65:35 > 50:50) for both gamma- and beta-irradiation. However, while the relative concentrations of free radicals was similar in the raw polymer samples after exposure to gamma- or beta-irradiation, a substantial difference was found for the microsphere samples; an approximate doubling of the radical content was found in the gamma-irradiated PLGA microspheres compared to the identical beta-irradiated microspheres. PMID:16290120

  5. Chemical composition of plasma treated polyimide microspheres

    NASA Astrophysics Data System (ADS)

    Gawdzik, Barbara; Sobiesiak, Magdalena

    2003-05-01

    Synthetic carbon microspheres for chromatography were obtained from porous copolymer of 4,4'-bis(maleimidodiphenyl)methane (BM) and divinylbenzene (DVB) using arc discharge argon plasma treatment. Chemical structure of the obtained material was determined by elemental analysis, scanning electron microscopy with X-ray detector, acid and base titrations, and atomic absorption spectroscopy. The results suggest that the carbon microspheres contain copper coming from the plasma reactor electrodes. To remove it two complexion agents were used: EDTA and 20% HNO 3. Copper can be removed from the surface using these methods. The other amount was permanently built into internal structure of the microspheres.

  6. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium

    PubMed Central

    Khanal, Shalil; Adhikari, Udhab; Rijal, Nava P.; Bhattarai, Shanta R.; Sankar, Jagannathan; Bhattarai, Narayan

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390–420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications. PMID:27490577

  7. In vivo study of ALA PLGA nanoparticles-mediated PDT for treating cutaneous squamous cell carcinoma

    NASA Astrophysics Data System (ADS)

    Wang, Xiaojie; Shi, Lei; Huang, Zheng; Wang, Xiuli

    2014-09-01

    Background: Squamous cell carcinoma (SCC) is a common skin cancer and its treatment is still a challenge. Although topical photodynamic therapy (PDT) is effective for treating in situ and superficial SCC, the effectiveness of topical ALA delivery to thick SCC can be limited by its bioavailability. Polylactic-co-glycolic acid nanopartieles (PLGA NPs) might provide a promising ALA delivery strategy. The aim of this study was to evaluate the efficacy of ALA PLGA NPs PDT for the treatment of cutaneous SCC in a mouse model. Methods: ALA loaded PLGA NPs were prepared and characterized. The therapeutic efficacy of ALA PLGA NP mediated PDT in treating UV-induced cutaneous SCC in the mice model were examined. Results: In vivo study showed that ALA PLGA NPs PDT were more effective than free ALA of the same concentration in treating mouse cutaneous SCC. Conclusion: ALA PLGA NPs provides a promising strategy for delivering ALA and treating cutaneous SCC.

  8. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth.

    PubMed

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  9. Mapping force of interaction between PLGA nanoparticle with cell membrane using optical tweezers

    NASA Astrophysics Data System (ADS)

    Chhajed, Suyash; Gu, Ling; Homayoni, Homa; Nguyen, Kytai; Mohanty, Samarendra

    2011-03-01

    Drug delivery using magnetic (Fe 3 O4) Poly Lactic-co-Glycolic Acid (PLGA) nanoparticles is finding increasing usage in therapeutic applications due to its biodegradability, biocompatibility and targeted localization. Since optical tweezers allow non-contact, highly sensitive force measurement, we utilized optical tweezers for studying interaction forces between the Fe 3 O4 -PLGA nanoparticles with prostate cancer PC3 cells. Presence of Fe 3 O4 within the PLGA shell allowed efficient trapping of these nanoparticles in near-IR optical tweezers. The conglomerated PLGA nanoparticles could be dispersed by use of the optical tweezers. Calibration of trapping stiffness as a function of laser beam power was carried out using equipartition theorem method, where the mean square displacement was measured with high precision using time-lapse fluorescence imaging of the nanoparticles. After the trapped PLGA nanoparticle was brought in close vicinity of the PC3 cell membrane, displacement of the nanoparticle from trap center was measured as a function of time. In short time scale (30 sec) , whiletheforceofinteractionwaswithin 0.2 pN , theforceincreasedbeyond 1 pNatlongertimescales (~ 10 min). We will present the results of the time-varying force of interactions between PLGA nanoparticles with PC3 cells using optical tweezers.

  10. Altered responses of chondrocytes to nanophase PLGA/nanophase titania composites.

    PubMed

    Savaiano, Jennifer K; Webster, Thomas J

    2004-01-01

    Chondrocyte (cartilage-synthesizing cells) cell density and synthesis of select intracellular proteins by chondrocytes were investigated on novel nanophase poly-lactic/glycolic acid (PLGA) and titania composites in the present in vitro study. Nanophase PLGA films were created by chemically treating conventional (or micron-structured) PLGA films with 10N NaOH for 1h. Titania particle dimensions in ceramic compacts were controlled by utilizing either conventional (i.e., micron) or nanometer grain size titania. Composites of either conventional or nanophase PLGA with either conventional or nanophase titania at 70/30wt% were also created. Compared to surfaces with a conventional or micron topography, results provided the first evidence of stagnant confluent cell densities on nanostructured surfaces at time points between 1 and 7 days. Moreover, compared to surfaces with a conventional topography, increased chondrocyte intracellular synthesis of alkaline phosphatase and chondrocyte expressed protein-68 (proteins that have been correlated with the functions of chondrocytes) were observed on nanophase PLGA/nanophase titania composites. The present study, thus, provided the first evidence of different chondrocyte responses to nanostructured PLGA/nanophase titania composites; in light of other reports demonstrating increased functions of bone cells on the same materials, such data indicates that further investigation of these materials at the bone-cartilage interface should be conducted.

  11. BMP-2 Grafted nHA/PLGA Hybrid Nanofiber Scaffold Stimulates Osteoblastic Cells Growth

    PubMed Central

    Haider, Adnan; Kim, Sukyoung; Huh, Man-Woo; Kang, Inn-Kyu

    2015-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/degenerated tissues or organs. Natural bone is a hierarchical structure, comprised of various cells having specific functions that are regulated by sophisticated mechanisms. However, the regulation of the normal functions in damaged or injured cells is disrupted. In order to address this problem, we attempted to artificially generate a scaffold for mimicking the characteristics of the extracellular matrix at the nanoscale level to trigger osteoblastic cell growth. For this purpose, we have chemically grafted bone morphogenetic protein (BMP-2) onto the surface of L-glutamic acid modified hydroxyapatite incorporated into the PLGA nanofiber matrix. After extensive characterization using various spectroscopic techniques, the BMP-g-nHA/PLGA hybrid nanofiber scaffolds were subjected to various in vitro cytocompatibility tests. The results indicated that BMP-2 on BMP-g-nHA/PLGA hybrid nanofiber scaffolds greatly stimulated osteoblastic cells growth, contrary to the nHA/PLGA and pristine PLGA nanofiber scaffold, which are used as control. These results suggest that BMP-g-nHA/PLGA hybrid nanofiber scaffold can be used as a nanodrug carrier for the controlled and targeted delivery of BMP-2, which will open new possibilities for enhancing bone tissue regeneration and will help in the treatment of various bone-related diseases in the future. PMID:26539477

  12. pH-Responsive PLGA Nanoparticle for Controlled Payload Delivery of Diclofenac Sodium.

    PubMed

    Khanal, Shalil; Adhikari, Udhab; Rijal, Nava P; Bhattarai, Shanta R; Sankar, Jagannathan; Bhattarai, Narayan

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) based nanoparticles have gained increasing attention in delivery applications due to their capability for controlled drug release characteristics, biocompatibility, and tunable mechanical, as well as degradation, properties. However, thorough study is always required while evaluating potential toxicity of the particles from dose dumping, inconsistent release and drug-polymer interactions. In this research, we developed PLGA nanoparticles modified by chitosan (CS), a cationic and pH responsive polysaccharide that bears repetitive amine groups in its backbone. We used a model drug, diclofenac sodium (DS), a nonsteroidal anti-inflammatory drug (NSAID), to study the drug loading and release characteristics. PLGA nanoparticles were synthesized by double-emulsion solvent evaporation technique. The nanoparticles were evaluated based on their particle size, surface charge, entrapment efficacy, and effect of pH in drug release profile. About 390-420 nm of average diameters and uniform morphology of the particles were confirmed by scanning electron microscope (SEM) imaging and dynamic light scattering (DLS) measurement. Chitosan coating over PLGA surface was confirmed by FTIR and DLS. Drug entrapment efficacy was up to 52%. Chitosan coated PLGA showed a pH responsive drug release in in vitro. The release was about 45% more at pH 5.5 than at pH 7.4. The results of our study indicated the development of chitosan coating over PLGA nanoparticle for pH dependent controlled release DS drug for therapeutic applications. PMID:27490577

  13. [Experimental research on the prevention of rabbit postoperative abdominal cavity adhesion with PLGA membrane].

    PubMed

    Pang, Xiubing; Pan, Yongming; Hua, Fei; Sun, Chaoying; Chen, Liang; Chen, Fangming; Zhu, Keyan; Xu, Jianqin; Chen, Minli

    2015-02-01

    The aim of this paper is to explore the prevention of rabbit postoperative abdominal cavity adhesion with poly (lactic-co-glycotic acid) (PLGA) membrane and the mechanism of this prevention function. Sixty-six Japanese white rabbits were randomly divided into normal control group, model control group and PLGA membrane group. The rabbits were treated with multifactor methods to establish the postoperative abdominal cavity adhesion models except for those in the normal control group. PLGA membrane was used to cover the wounds of rabbits in the PLGA membrane group and nothing covered the wounds of rabbits in the model control group. The hematologic parameters, liver and kidney functions and fibrinogen contents were detected at different time. The rabbit were sacrificed 1, 2, 4, 6, 12 weeks after the operations, respectively. The adhesions were graded blindly, and Masson staining and immunohistochemistry methods were used to observe the proliferation of collagen fiber and the expression of transforming growth factor β1 (TGF-β1) on the cecal tissues, respectively. The grade of abdominal cavity adhesion showed that the PLGA membrane-treated group was significant lower than that in the model control group, and it has no influence on liver and kidney function and hematologic parameters. But the fibrinogen content and the number of white blood cell in the PLGA membrane group were significant lower than those of model control group 1 week and 2 weeks after operation, respectively. The density of collagen fiber and optical density of TGF-β1 in the PLGA membrane group were significant lower than those of model control group. The results demonstrated that PLGA membrane could be effective in preventing the abdominal adhesions in rabbits, and it was mostly involved in the reducing of fibrinogen exudation, and inhibited the proliferation of collagen fiber and over-expression of TGF-β1.

  14. Surface modification of PLGA nanoparticles by carbopol to enhance mucoadhesion and cell internalization.

    PubMed

    Surassmo, Suvimol; Saengkrit, Nattika; Ruktanonchai, Uracha Rungsardthong; Suktham, Kunat; Woramongkolchai, Noppawan; Wutikhun, Tuksadon; Puttipipatkhachorn, Satit

    2015-06-01

    Mucoadhesive poly (lactic-co-glycolic acid) (PLGA) nanoparticles having a modified shell-matrix derived from polyvinyl alcohol (PVA) and Carbopol (CP), a biodegradable polymer coating, to improve the adhesion and cell transfection properties were developed. The optimum formulations utilized a CP concentration in the range of 0.05-0.2%w/v, and were formed using modified emulsion-solvent evaporation technique. The resulting CP-PLGA nanoparticles were characterized in terms of their physical and chemical properties. The absorbed CP on the PLGA shell-matrix was found to affect the particle size and surface charge, with 0.05% CP giving rise to smooth spherical particles (0.05CP-PLGA) with the smallest size (285.90 nm), and strong negative surface charge (-25.70 mV). The introduction of CP results in an enhancement of the mucoadhesion between CP-PLGA nanoparticles and mucin particles. In vitro cell internalization studies highlighted the potential of 0.05CP-PLGA nanoparticles for transfection into SiHa cells, with uptake being time dependent. Additionally, cytotoxicity studies of CP-PLGA nanoparticles against SiHa cancer cells indicated that low concentrations of the nanoparticles were non-toxic to cells (cell viability >80%). From the various formulations studied, 0.05CP-PLGA nanoparticles proved to be the optimum model carrier having the required mucoadhesive profile and could be an alternative therapeutic efficacy carrier for targeted mucosal drug delivery systems with biodegradable polymer. PMID:25937384

  15. In-vitro anticancer and antimicrobial activities of PLGA/silver nanofiber composites prepared by electrospinning.

    PubMed

    Almajhdi, Fahad N; Fouad, H; Khalil, Khalil Abdelrazek; Awad, Hanem M; Mohamed, Sahar H S; Elsarnagawy, T; Albarrag, Ahmed M; Al-Jassir, Fawzi F; Abdo, Hany S

    2014-04-01

    In the present work, a series of 0, 1 and 7 wt% silver nano-particles (Ag NPs) incorporated poly lactic-co-glycolic acid (PLGA) nano-fibers were synthesized by the electrospinning process. The PLGA/Ag nano-fibers sheets were characterized using SEM, TEM and DSC analyses. The three synthesized PLGA/silver nano-fiber composites were screened for anticancer activity against liver cancer cell line using MTT and LDH assays. The anticancer activity of PLGA nano-fibers showed a remarkable improvement due to increasing the concentration of the Ag NPs. In addition to the given result, PLGA nano-fibers did not show any cytotoxic effect. However, PLGA nano-fibers that contain 1 % nano silver showed anticancer activity of 8.8 %, through increasing the concentration of the nano silver to 7 % onto PLGA nano-fibers, the anticancer activity was enhanced to a 67.6 %. Furthermore, the antibacterial activities of these three nano-fibers, against the five bacteria strains namely; E.coli o157:H7 ATCC 51659, Staphylococcus aureus ATCC 13565, Bacillus cereus EMCC 1080, Listeria monocytogenes EMCC 1875 and Salmonella typhimurium ATCC25566 using the disc diffusion method, were evaluated. Sample with an enhanced inhibitory effect was PLGA/Ag NPs (7 %) which inhibited all strains (inhibition zone diameter 10 mm); PLGA/Ag NPs (1 %) sample inhibited only one strain (B. cereus) with zone diameter 8 mm. The PLGA nano-fiber sample has not shown any antimicrobial activity. Based on the anticancer as well as the antimicrobial results in this study, it can be postulated that: PLGA nanofibers containing 7 % nano silver are suitable as anticancer- and antibiotic-drug delivery systems, as they will increase the anticancer as well as the antibiotic drug potency without cytotoxicity effect on the normal cells. These findings also suggest that Ag NPs, of the size (5-10 nm) evaluated in the present study, are appropriate for therapeutic application from a safety standpoint.

  16. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    PubMed

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  17. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  18. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    PubMed

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds. PMID:27376895

  19. [Preparation and evaluation of risperidone-loaded microsphere/sucrose acetate isobutyrate in situ forming complex depot with double diffusion barriers].

    PubMed

    Lin, Xia; Tang, Xing; Xu, Yu-hong; Zhang, Yu; Zhang, Yan; He, Hai-bing

    2015-06-01

    In the present study, a risperidone loaded microsphere/sucrose acetate isobutyrate (SAIB) in situ forming complex depot was designed to reduce the burst release of SAIB in situ forming depot and to continuously release risperidone for a long-term period without lagime. The model drug risperidone (Ris) was first encapsulated into microspheres and then the Ris-microspheres were embedded into SAIB depot to reduce the amount of dissolved drug in the depot. The effects of different types of microsphere matrix, including chitosan and poly(lactide-coglycolide) (PLGA), matrix/Ris ratios in microspheres and morphology of microspheres on the drug release behavior of complex depot were investigated. In comparison with the Ris-loaded SAIB depot (Ris-SAIB), the complex depot containing chitosan microspheres (in which chitosan/Ris = 1 : 1, w/w) (Ris-Cm-SAIB) decreased the burst release from 12.16% to 5.80%. However, increased drug release rate after 4 days was observed in Ris-Cm-SAIB, which was caused by the high penetration of the medium to Ris-Cm-SAIB due to the hydrophilie of chitosan. By encapsulation of risperidone in PLGA microspheres, most drugs can be prevented from dissolving in the depot and meanwhile the hydrophobic PLGA can reduce the media penetration effect on the depot. The complex depot containing PLGA microspheres (in which PLGA/ drug=4 : 2, w/w) (Ris-Pm-SAIB) showed a significant effectiveness on reducing the burst release both in vitro and in vivo whereby only 0.64% drug was released on the first day in vitro and a low AUC0-4d value [(105.2± 24.4) ng.mL-1.d] was detected over the first 4 days in vivo. In addition, drug release from Ris-Pm-SAIB can be modified by varying the morphology of microspheres. The porous PLGA microspheres could be prepared by adding medium chain triglyceride (MCT) in the organic phase which served as pore agents during the preparation of PLGA microspheres. The complex depot containing porous PLGA microspheres (which were prepared by

  20. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes. PMID:2235892

  1. Influence of average molecular weights of poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 on phase separation and in vitro drug release from microspheres.

    PubMed

    Ruiz, J M; Busnel, J P; Benoît, J P

    1990-09-01

    The phase separation of fractionated poly(DL-lactic acid-co-glycolic acid) copolymers 50/50 was determined by silicone oil addition. Polymer fractionation by preparative size exclusion chromatography afforded five different microsphere batches. Average molecular weight determined the existence, width, and displacement of the "stability window" inside the phase diagrams, and also microsphere characteristics such as core loading and amount released over 6 hr. Further, the gyration and hydrodynamic radii were measured by light scattering. It is concluded that the polymer-solvent affinity is largely modified by the variation of average molecular weights owing to different levels of solubility. The lower the average molecular weight is, the better methylene chloride serves as a solvent for the coating material. However, a paradoxical effect due to an increase in free carboxyl and hydroxyl groups is noticed for polymers of 18,130 and 31,030 SEC (size exclusion chromatography) Mw. For microencapsulation, polymers having an intermediate molecular weight (47,250) were the most appropriate in terms of core loading and release purposes.

  2. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading.

    PubMed

    Han, Felicity Y; Thurecht, Kristofer J; Whittaker, Andrew K; Smith, Maree T

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  3. Bioerodable PLGA-Based Microparticles for Producing Sustained-Release Drug Formulations and Strategies for Improving Drug Loading

    PubMed Central

    Han, Felicity Y.; Thurecht, Kristofer J.; Whittaker, Andrew K.; Smith, Maree T.

    2016-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is the most widely used biomaterial for microencapsulation and prolonged delivery of therapeutic drugs, proteins and antigens. PLGA has excellent biodegradability and biocompatibility and is generally recognized as safe by international regulatory agencies including the United States Food and Drug Administration and the European Medicines Agency. The physicochemical properties of PLGA may be varied systematically by changing the ratio of lactic acid to glycolic acid. This in turn alters the release rate of microencapsulated therapeutic molecules from PLGA microparticle formulations. The obstacles hindering more widespread use of PLGA for producing sustained-release formulations for clinical use include low drug loading, particularly of hydrophilic small molecules, high initial burst release and/or poor formulation stability. In this review, we address strategies aimed at overcoming these challenges. These include use of low-temperature double-emulsion methods to increase drug-loading by producing PLGA particles with a small volume for the inner water phase and a suitable pH of the external phase. Newer strategies for producing PLGA particles with high drug loading and the desired sustained-release profiles include fabrication of multi-layered microparticles, nanoparticles-in-microparticles, use of hydrogel templates, as well as coaxial electrospray, microfluidics, and supercritical carbon dioxide methods. Another recent strategy with promise for producing particles with well-controlled and reproducible sustained-release profiles involves complexation of PLGA with additives such as polyethylene glycol, poly(ortho esters), chitosan, alginate, caffeic acid, hyaluronic acid, and silicon dioxide. PMID:27445821

  4. Self-Assembly of pH-Responsive Microspheres for Intestinal Delivery of Diverse Lipophilic Therapeutics.

    PubMed

    Zhou, Xing; Zhao, Yang; Chen, Siyu; Han, Songling; Xu, Xiaoqiu; Guo, Jiawei; Liu, Mengyu; Che, Ling; Li, Xiaohui; Zhang, Jianxiang

    2016-08-01

    Targeted delivery of therapeutics to the intestine is preferred for the management of many diseases due to its diverse advantages. Currently, there are still challenges in creating cost-effective and translational pH-responsive microspheres for intestinal delivery of various hydrophobic drugs. Herein we report a multiple noncovalent interactions-mediated assembly strategy in which carboxyl-bearing compounds (CBCs) are guest molecules, while poly(N-isopropylacrylamide) (PNIPAm) serves as a host polymer. Formation of microparticles and therapeutic packaging can be achieved simultaneously by this assembly approach, leading to well-shaped microspheres with extremely higher drug loading capacity as compared to microspheres based on two FDA-approved materials of poly(d,l-lactide-co-glycolide) (PLGA) and an enteric coating polymer EudragitS 100 (S100). Also, carboxyl-deficient hydrophobic drugs can be effectively entrapped. These assembled microspheres, with excellent reconstitution capability as well as desirable scalability, could selectively release drug molecules under intestinal conditions. By significantly enhancing drug dissolution/release in the intestine, these pH-responsive assemblies may notably improve the oral bioavailability of loaded therapeutics. Moreover, the assembled microspheres possessed superior therapeutic performance in rodent models of inflammation and tumor over the control microspheres derived from PLGA and S100. Therapy with newly developed microspheres did not cause undesirable side effects. Furthermore, in vivo evaluation in mice revealed the carrier material PNIPAm was safe for oral delivery at doses as high as 10 g/kg. Collectively, our findings demonstrated that this type of pH-responsive microsphere may function as superior and translational intestine-directed delivery systems for a diverse array of therapeutics. PMID:27398635

  5. Formulation and characterization of microspheres loaded with imatinib for sustained delivery.

    PubMed

    Ramazani, F; Chen, W; Van Nostrum, C F; Storm, G; Kiessling, F; Lammers, T; Hennink, W E; Kok, R J

    2015-03-30

    The aim of this study was the development of imatinib-loaded poly(d,l-lactide-co-glycolide) (PLGA) microspheres with high loading efficiency which can afford continuous release of imatinib over a prolonged period of time. Imatinib mesylate loaded PLGA microspheres with a size of 6-20 μm were prepared by a double emulsion (W1/O/W2) method using dichloromethane as volatile solvent. It was found that the microspheres were spherical with a non-porous surface; imatinib loading efficiency (LE) was highly dependent on the pH of the external water phase (W2). By increasing the pH of W2 phase above the highest pKa of imatinib (pKa 8.1), at which imatinib is mainly uncharged, the LE increased from 10% to 90% (pH 5.0 versus pH 9.0). Conversely, only 4% of its counter ion, mesylate, was retained in the microspheres at the same condition (pH 9.0). Since mesylate is highly water soluble, it is unlikely that it partitions into the organic phase. We demonstrated, using differential scanning calorimetry (DSC), that imatinib was molecularly dispersed in the polymeric matrix at loadings up to 8.0%. At higher drug loading, imatinib partially crystallized in the matrix. Imatinib microspheres released their cargo during three months by a combination of diffusion through the polymer matrix and polymer erosion. In conclusion, we have formulated imatinib microspheres with high LE and LC. Although we started with a double emulsion of imatinib mesylate, the obtained microspheres contained imatinib base which was mainly molecularly dispersed in the polymer matrix. These microspheres release imatinib over a 3-month period which is of interest for local treatment of cancer.

  6. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays.

  7. Influence of irradiation sterilization on poly(lactide-co-glycolide) microspheres containing anti-inflammatory drugs.

    PubMed

    Caliş, Sema; Bozdag, Sibel; Kaş, H Süheyla; Tunçay, Melike; Hincal, A Atilla

    2002-01-01

    Gamma-irradiation is finding increasing use in the sterilization of pharmaceutical products. However, irradiation might also affect the performance of drug delivery systems. In this study, the influence of gamma-irradiation on the physicochemical properties of two commonly used non-steroidal anti-inflammatory drugs (NSAIDs) [naproxen sodium (NS) and diclofenac sodium (DS)] was investigated. The drugs were incorporated in poly(lactide-co-glycolide) (PLGA, 50:50; molecular weight 34000 or 88000 Da) microspheres. The biodegradable microspheres were irradiated at doses of 5, 15, 25 kGy using a 60Co source. Drug loading of irradiated and non-irradiated microspheres with both 34000 and 88000 Da polymers were essentially the same. A significant difference was noticed in the particle sizes of the irradiated as compared to the non-irradiated formulations. Notably, in release studies, the amount of active substance released from PLGA microspheres showed an increase with increasing irradiation dose. In DSC, the glass transition temperatures (Tg) of microspheres exhibited a slow increase with irradiation dose. PMID:11902646

  8. Gamma irradiation effects on stability of poly(lactide-co-glycolide) microspheres containing clonazepam.

    PubMed

    Montanari, L; Cilurzo, F; Valvo, L; Faucitano, A; Buttafava, A; Groppo, A; Genta, I; Conti, B

    2001-08-10

    This work was aimed at evaluating the effects of gamma irradiation on the stability of microspheres made of a poly(lactide-co-glycolide) copolymer (PLGA) and loaded with 15% w/w of clonazepam (CLO). The influence of CLO on PLGA radiolysis mechanisms and the identification of possible irradiation markers were also investigated. Microspheres were prepared by means of a spray-drying method. gamma Irradiation was carried out either under vacuum or in air, at a dose of 25 kGy, by using a 60Co source. The stability of CLO loaded microspheres was evaluated over a 6-month period on the basis of drug content and dissolution profile. Radiolysis mechanisms were investigated by using electronic paramagnetic resonance (EPR) analysis. The microspheres irradiated under vacuum were stable over the considered period of time. After irradiation in air, CLO release rate increased by approximately 10%, and did not change further in the following period of storage. The EPR analysis showed some radicals arising from both the polymeric matrix and the active ingredient. Polymer/CLO spin transfer reactions suggest that CLO had a radio-stabilising effect on the polymeric matrix. In the loaded microspheres, the intensity in time of the CLO radical signal is sufficient for its possible use as irradiation marker. PMID:11489319

  9. Biodegradable, Tethered Lipid Bilayer-Microsphere Systems with Membrane-Integrated α-Helical Peptide Anchors.

    PubMed

    Fried, Eric S; Luchan, Joshua; Gilchrist, M Lane

    2016-04-12

    Supported lipid bilayers (SLBs) are ideally suited for the study of biomembrane-biomembrane interactions and for the biomimicry of cell-to-cell communication, allowing for surface ligand displays that contain laterally mobile elements. However, the SLB paradigm does not include three-dimensionality and biocompatibility. As a way to bypass these limitations, we have developed a biodegradable form of microsphere SLBs, also known as proteolipobeads (PLBs), using PLGA microspheres. Microspheres were synthesized using solvent evaporation and size selected with fluorescence activated cell sorting (FACS). Biomembranes were covalently tethered upon fusion to microsphere supports via short-chain PEG spacers connecting membrane-integrated α-helical peptides and the microsphere surface, affecting membrane diffusivity and mobility as indicated by confocal FRAP analysis. Membrane heterogeneities, which are attributed to PLGA hydrophobicity and rough surface topography, are curtailed by the addition of PEG tethers. This method allows for the presentation of tethered, laterally mobile biomembranes in three dimensions with functionally embedded attachment peptides for mobile ligand displays. PMID:26972467

  10. microsphere assemblies

    NASA Astrophysics Data System (ADS)

    Peña-Flores, Jesús I.; Palomec-Garfias, Abraham F.; Márquez-Beltrán, César; Sánchez-Mora, Enrique; Gómez-Barojas, Estela; Pérez-Rodríguez, Felipe

    2014-09-01

    The effect of Fe ion concentration on the morphological, structural, and optical properties of TiO2 films supported on silica (SiO2) opals has been studied. TiO2:Fe2O3 films were prepared by the sol-gel method in combination with a vertical dip coating procedure; precursor solutions of Ti and Fe were deposited on a monolayer of SiO2 opals previously deposited on a glass substrate by the same procedure. After the dip coating process has been carried out, the samples were thermally treated to obtain the TiO2:Fe2O3/SiO2 composites at the Fe ion concentrations of 1, 3, and 5 wt%. Scanning electron microscopy (SEM) micrographs show the formation of colloidal silica microspheres of about 50 nm diameter autoensembled in a hexagonal close-packed fashion. Although the X-ray diffractograms show no significant effect of Fe ion concentration on the crystal structure of TiO2, the μ-Raman and reflectance spectra do show that the intensity of a phonon vibration mode and the energy bandgap of TiO2 decrease as the Fe+3 ion concentration increases.

  11. Impact of PEG and PEG-b-PAGE modified PLGA on nanoparticle formation, protein loading and release.

    PubMed

    Rietscher, René; Czaplewska, Justyna A; Majdanski, Tobias C; Gottschaldt, Michael; Schubert, Ulrich S; Schneider, Marc; Lehr, Claus-Michael

    2016-03-16

    The effect of modifying the well-established pharmaceutical polymer PLGA by different PEG-containing block-copolymers on the preparation of ovalbumin (OVA) loaded PLGA nanoparticles (NPs) was studied. The used polymers contained poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG) and poly(allyl glycidyl ether) (PAGE) as building blocks. The double emulsion technique yielded spherical NPs in the size range from 170 to 220 nm (PDI<0.15) for all the differently modified polymers, allowing to directly compare protein loading of and release. PEGylation is usually believed to increase the hydrophilic character of produced particles, favoring encapsulation of hydrophilic substances. However, in this study simple PEGylation of PLGA had only a slight effect on protein release. In contrast, incorporating a PAGE block between the PEG and PLGA units, also eventually enabling active targeting introducing a reactive group, led to a significantly higher loading (+25%) and release rate (+100%), compared to PLGA and PEG-b-PLGA NPs. PMID:26784983

  12. An endothelial cultured condition medium embedded porous PLGA scaffold for the enhancement of mouse embryonic stem cell differentiation.

    PubMed

    Li, Ching-Wen; Pan, Wei-Ting; Ju, Jyh-Cherng; Wang, Gou-Jen

    2016-04-01

    In this study, we have developed a microporous poly(lactic-co-glycolic acid) (PLGA) scaffold that combines a continuous release property and a three-dimensional (3D) scaffolding technique for the precise and efficient formation of endothelial cell lineage from embryonic stem cells (ESCs). Eight PLGA scaffolds (14.29%, 16.67%, 20% and 25% concentrations of PLGA solutions) mixed with two crystal sizes of sodium chloride (NaCl) were fabricated by leaching. Then, vascular endothelial cell conditioned medium (ECCM) mixed with gelatin was embedded into the scaffold for culturing of mouse embryonic stem cells (mESCs). The 14.29% PLGA scaffolds fabricated using non-ground NaCl particles (NG-PLGA) and the 25% PLGA containing scaffolds fabricated using ground NaCl particles (G-PLGA) possessed minimum and maximum moisture content and bovine serum albumin (BSA) content properties, respectively. These two groups of scaffolds were used for future experiments in this study. Cell culture results demonstrated that the proposed porous scaffolds without growth factors were sufficient to induce mouse ESCs to differentiate into endothelial-like cells in the early culture stages, and combined with embedded ECCM could provide a long-term inducing system for ESC differentiation. PMID:27068738

  13. Poly(lactide-co-glycolide) microspheres containing bupivacaine: comparison between gamma and beta irradiation effects.

    PubMed

    Montanari, L; Cilurzo, F; Selmin, F; Conti, B; Genta, I; Poletti, G; Orsini, F; Valvo, L

    2003-07-31

    The beta- and gamma-irradiation effects on stability of microspheres made of poly(lactide-co-glycolide) 50:50 copolymer (PLGA) containing bupivacaine (BU) were studied. Microspheres containing 10, 25, and 40% w/w, respectively, of BU were prepared by spray drying and irradiated in air with beta- and gamma-irradiation at a dose of 25 kGy. Morphology (atomic force microscopy, particle-size analysis), physico-chemical characteristics (DSC and FT-IR spectroscopy), drug content and in vitro dissolution profile of microspheres were all determined; the stability of irradiated microspheres was evaluated over a 9-month period. The decrease of BU content in gamma-irradiated microspheres was almost always constant independent of the amount of BU per sample, therefore it was in inverse proportion to drug loading (range between 5 and 15%). BU release rate increased immediately after irradiation and increased slightly until 90 days of storage. As far as beta-irradiated microspheres are concerned, BU content decreased in a significant way (approximately 3%) only in microspheres containing 10% w/w of BU. Immediately after irradiation, drug release rate in beta-irradiated microspheres increased less than in the corresponding gamma-irradiated microspheres, and it did not change further over the following storage period. BU-loaded microspheres have been shown to be more stable against beta- than gamma-irradiation. AFM revealed that the surface roughness of the irradiated microspheres increases depending on irradiation. As such, if a parameter is quantifiable, it is proposed as a marker of degradation due to ionizing radiation. PMID:12880695

  14. PLGA based drug delivery systems: Promising carriers for wound healing activity.

    PubMed

    Chereddy, Kiran Kumar; Vandermeulen, Gaëlle; Préat, Véronique

    2016-03-01

    Wound treatment remains one of the most prevalent and economically burdensome healthcare issues in the world. Current treatment options are limited and require repeated administrations which led to the development of new therapeutics to satisfy the unmet clinical needs. Many potent wound healing agents were discovered but most of them are fragile and/or sensitive to in vivo conditions. Poly(lactic-co-glycolic acid) (PLGA) is a widely used biodegradable polymer approved by food and drug administration and European medicines agency as an excipient for parenteral administrations. It is a well-established drug delivery system in various medical applications. The aim of the current review is to elaborate the applications of PLGA based drug delivery systems carrying different wound healing agents and also present PLGA itself as a wound healing promoter. PLGA carriers encapsulating drugs such as antibiotics, anti-inflammatory drugs, proteins/peptides, and nucleic acids targeting various phases/signaling cycles of wound healing, are discussed with examples. The combined therapeutic effects of PLGA and a loaded drug on wound healing are also mentioned.

  15. The influence of spray-drying parameters on phase behavior, drug distribution, and in vitro release of injectable microspheres for sustained release.

    PubMed

    Meeus, Joke; Lenaerts, Maité; Scurr, David J; Amssoms, Katie; Davies, Martyn C; Roberts, Clive J; Van Den Mooter, Guy

    2015-04-01

    For ternary solid dispersions, it is indispensable to characterize their structure, phase behavior, and the spatial distribution of the dispersed drug as this might influence the release profile and/or stability of these formulations. This study shows how formulation (feed concentration) and process (feed rate, inlet air temperature, and atomizing air pressure) parameters can influence the characteristics of ternary spray-dried solid dispersions. The microspheres considered here consist of a poly(lactic-co-glycolic acid) (PLGA) surface layer and an underlying polyvinylpyrrolidone (PVP) phase. A poorly soluble active pharmaceutical ingredient (API) was molecularly dispersed in this matrix. Differences were observed in component miscibility, phase heterogeneity, particle size, morphology, as well as API surface coverage for selected spray-drying parameters. Observed differences are likely because of changes in the droplet generation, evaporation, and thus particle formation processes. However, varying particle characteristics did not influence the drug release of the formulations studied, indicating the robustness of this approach to produce particles of consistent drug release characteristics. This is likely because of the fact that the release is dominated by diffusion from the PVP layer through pores in the PLGA surface layer and that observed differences in the latter have no influence on the release.

  16. Microsphere size influences the foreign body reaction.

    PubMed

    Zandstra, J; Hiemstra, C; Petersen, A H; Zuidema, J; van Beuge, M M; Rodriguez, S; Lathuile, A A; Veldhuis, G J; Steendam, R; Bank, R A; Popa, E R

    2014-01-01

    Biodegradable poly-(DL-lactide-co-glycolide) (PLGA) microspheres (MSP) are attractive candidate vehicles for site-specific or systemic sustained release of therapeutic compounds. This release may be altered by the host's foreign body reaction (FBR), which is dependent on the characteristics of the implant, e.g. chemistry, shape or size. In this study, we focused on the characterisation of the influence of MSP size on the FBR. To this end we injected monodisperse MSP of defined size (small 5.8 µm, coefficient of variance (CV) 14 % and large 29.8 µm, CV 4 %) and polydisperse MSP (average diameter 34.1 µm, CV 51 %) under the skin of rats. MSP implants were retrieved at day 7, 14 and 28 after transplantation. The FBR was studied in terms of macrophage infiltration, implant encapsulation, vascularisation and extracellular matrix deposition. Although PLGA MSP of all different sizes demonstrated excellent in vitro and in vivo biocompatibility, significant differences were found in the characteristics of the FBR. Small MSP were phagocytosed, while large MSP were not. Large MSP occasionally elicited giant cell formation, which was not observed after implantation of small MSP. Cellular and macrophage influx and collagen deposition were increased in small MSP implants compared to large MSP. We conclude that the MSP size influences the FBR and thus might influence clinical outcome when using MSP as a drug delivery device. We propose that a rational choice of MSP size can aid in optimising the therapeutic efficacy of microsphere-based therapies in vivo. PMID:25350249

  17. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    SciTech Connect

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  18. Rifapentine-loaded PLGA microparticles for tuberculosis inhaled therapy: Preparation and in vitro aerosol characterization.

    PubMed

    Parumasivam, Thaigarajan; Leung, Sharon S Y; Quan, Diana Huynh; Triccas, Jamie A; Britton, Warwick J; Chan, Hak-Kim

    2016-06-10

    Inhaled delivery of drugs incorporated into poly (lactic-co-glycolic acid) (PLGA) microparticles allows a sustained lung concentration and encourages phagocytosis by alveolar macrophages that harboring Mycobacterium tuberculosis. However, limited data are available on the effects of physicochemical properties of PLGA, including the monomer ratio (lactide:glycide) and molecular weight (MW) on the aerosol performance, macrophage uptake, and toxicity profile. The present study aims to address this knowledge gap, using PLGAs with monomer ratios of 50:50, 75:25 and 85:15, MW ranged 24 - 240kDa and an anti-tuberculosis (TB) drug, rifapentine. The PLGA-rifapentine powders were produced through a solution spray drying technique. The particles were spherical with a smooth surface and a volume median diameter around 2μm (span ~2). When the powders were dispersed using an Osmohaler(®) at 100L/min for 2.4s, the fine particle fraction (FPFtotal, wt.% particles in aerosol <5μm relative to the total recovered drug mass) was ranged between 52 and 57%, with no significant difference between the formulations. This result suggests that the monomer ratio and MW are not crucial parameters for the aerosol performance of PLGA. The phagocytosis analysis was performed using Thp-1 monocyte-derived macrophages. The highest rate of uptake was observed in PLGA 85:15 followed by 75:25 and 50:50 with about 90%, 80% and 70%, respectively phagocytosis over 4h of exposure. Furthermore, the cytotoxicity analysis on Thp-1 and human lung adenocarcinoma epithelial cells demonstrated that PLGA concentration up to 1.5mg/mL, regardless of the monomer composition and MW, were non-toxic. In conclusion, the monomer ratio and MW are not crucial in determining the aerosol performance and cytotoxicity profile of PLGA however, the particles with high lactide composition have a superior tendency for macrophage uptake. PMID:27049049

  19. Coacervate droplets, proteinoid microspheres, and the genetic apparatus

    NASA Technical Reports Server (NTRS)

    Fox, S. W.

    1974-01-01

    Differences between typical coacervate droplets and typical proteinoid microspheres are examined. It is pointed out that coacervate droplets are produced from polymers obtained from contemporary organisms. The microspheres considered are aggregates of proteinoid formed from monomeric amino acids under geologically relevant conditions. Aspects regarding the primordial sequence are discussed along with the origin of the genetic apparatus and the genetic code.

  20. PLGA, PLGA-TMC and TMC-TPP Nanoparticles Differentially Modulate the Outcome of Nasal Vaccination by Inducing Tolerance or Enhancing Humoral Immunity

    PubMed Central

    Keijzer, Chantal; Slütter, Bram; van der Zee, Ruurd; Jiskoot, Wim; van Eden, Willem; Broere, Femke

    2011-01-01

    Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4+ T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4+ T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases. PMID:22073184

  1. PLGA, PLGA-TMC and TMC-TPP nanoparticles differentially modulate the outcome of nasal vaccination by inducing tolerance or enhancing humoral immunity.

    PubMed

    Keijzer, Chantal; Slütter, Bram; van der Zee, Ruurd; Jiskoot, Wim; van Eden, Willem; Broere, Femke

    2011-01-01

    Development of vaccines in autoimmune diseases has received wide attention over the last decade. However, many vaccines showed limited clinical efficacy. To enhance vaccine efficacy in infectious diseases, biocompatible and biodegradable polymeric nanoparticles have gained interest as antigen delivery systems. We investigated in mice whether antigen-encapsulated PLGA (poly-lactic-co-glycolic acid), PLGA-TMC (N-trimethyl chitosan) or TMC-TPP (tri-polyphosphate) nanoparticles can also be used to modulate the immunological outcome after nasal vaccination. These three nanoparticles enhanced the antigen presentation by dendritic cells, as shown by increased in vitro and in vivo CD4(+) T-cell proliferation. However, only nasal PLGA nanoparticles were found to induce an immunoregulatory response as shown by enhanced Foxp3 expression in the nasopharynx associated lymphoid tissue and cervical lymph nodes. Nasal administration of OVA-containing PLGA particle resulted in functional suppression of an OVA-specific Th-1 mediated delayed-type hypersensitivity reaction, while TMC-TPP nanoparticles induced humoral immunity, which coincided with the enhanced generation of OVA-specific B-cells in the cervical lymph nodes. Intranasal treatment with Hsp70-mB29a peptide-loaded PLGA nanoparticles suppressed proteoglycan-induced arthritis, leading to a significant reduction of disease. We have uncovered a role for PLGA nanoparticles to enhance CD4(+) T-cell mediated immunomodulation after nasal application. The exploitation of this differential regulation of nanoparticles to modulate nasal immune responses can lead to innovative vaccine development for prophylactic or therapeutic vaccination in infectious or autoimmune diseases.

  2. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats

    PubMed Central

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2–8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P < 0.01), significantly more NF-positive and serotonergic fibers, and more MBP-positive mature oligodendrocytes. Animals receiving angiogenic microspheres also suffered significantly less loss of white matter volume. At 10 weeks after injury, open field tests showed that animals that received angiogenic microspheres scored significantly higher on the Basso-Beattie-Bresnahan scale than control animals (P < 0.01). Our results suggest that biodegradable, biocompatible PLGA microspheres can release angiogenic factors in a sustained fashion into sites of spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  3. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats.

    PubMed

    Yu, Shukui; Yao, Shenglian; Wen, Yujun; Wang, Ying; Wang, Hao; Xu, Qunyuan

    2016-01-01

    This study examined sustained co-delivery of vascular endothelial growth factor (VEGF), angiopoietin-1 and basic fibroblast growth factor (bFGF) encapsulated in angiogenic microspheres. These spheres were delivered to sites of spinal cord contusion injury in rats, and their ability to induce vessel formation, neural regeneration and improve hindlimb motor function was assessed. At 2-8 weeks after spinal cord injury, ELISA-determined levels of VEGF, angiopoietin-1, and bFGF were significantly higher in spinal cord tissues in rats that received angiogenic microspheres than in those that received empty microspheres. Sites of injury in animals that received angiogenic microspheres also contained greater numbers of isolectin B4-binding vessels and cells positive for nestin or β III-tubulin (P < 0.01), significantly more NF-positive and serotonergic fibers, and more MBP-positive mature oligodendrocytes. Animals receiving angiogenic microspheres also suffered significantly less loss of white matter volume. At 10 weeks after injury, open field tests showed that animals that received angiogenic microspheres scored significantly higher on the Basso-Beattie-Bresnahan scale than control animals (P < 0.01). Our results suggest that biodegradable, biocompatible PLGA microspheres can release angiogenic factors in a sustained fashion into sites of spinal cord injury and markedly stimulate angiogenesis and neurogenesis, accelerating recovery of neurologic function. PMID:27641997

  4. Prostaglandin D2-loaded microspheres effectively activate macrophage effector functions.

    PubMed

    Pereira, Priscilla Aparecida Tartari; Bitencourt, Claudia da Silva; dos Santos, Daiane Fernanda; Nicolete, Roberto; Gelfuso, Guilherme Martins; Faccioli, Lúcia Helena

    2015-10-12

    Biodegradable lactic-co-glycolic acid (PLGA) microspheres (MS) improve the stability of biomolecules stability and allow enable their sustained release. Lipid mediators represent a strategy for improving host defense; however, most of these mediators, such as prostaglandin D2 (PGD2), have low water solubility and are unstable. The present study aimed to develop and characterize MS loaded with PGD2 (PGD2-MS) to obtain an innovative tool to activate macrophages. PGD2-MS were prepared using an oil-in-water emulsion solvent extraction-evaporation process, and the size, zeta potential, surface morphology and encapsulation efficiency were determined. It was also evaluated in vitro the phagocytic index, NF-κB activation, as well as nitric oxide and cytokine production by alveolar macrophages (AMs) in response to PGD2-MS. PGD2-MS were spherical with a diameter of 5.0±3.3 μm and regular surface, zeta potential of -13.4±5.6 mV, and 36% of encapsulation efficiency, with 16-26% release of entrapped PGD2 at 4 and 48 h, respectively. PGD2-MS were more efficiently internalized by AMs than unloaded-MS, and activated NF-κB more than free PGD2. Moreover, PGD2-MS stimulated the production of nitric oxide, TNF-α, IL-1β, and TGF-β, more than free PGD2, indicating that microencapsulation increased the activating effect of PGD2 on cells. In LPS-pre-treated AMs, PGD2-MS decreased the release of IL-6 but increased the production of nitric oxide and IL-1β. These results show that the morphological characteristics of PGD2-MS facilitated interaction with, and activation of phagocytic cells; moreover, PGD2-MS retained the biological activities of PGD2 to trigger effector mechanisms in AMs. It is suggested that PGD2-MS represent a strategy for therapeutic intervention in the lungs of immunocompromised subjects.

  5. Antibacterial activity of clarithromycin loaded PLGA nanoparticles.

    PubMed

    Valizadeh, H; Mohammadi, G; Ehyaei, R; Milani, M; Azhdarzadeh, M; Zakeri-Milani, P; Lotfipour, F

    2012-01-01

    Novel drug delivery systems such as nanoparticles (NPs) have been proved to enhance the effectiveness of many drugs. Clarithromycin is a broad spectrum macrolide antibiotic, used in many infectious conditions like upper and lower respiratory tract infections, and skin and other soft tissue infections. This paper describes the preparation and enhanced in vitro antibacterial activities of clarithromycin loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles. A modified quasi-emulsion solvent diffusion (MQESD) method was used to prepare clarithromycin (CLR) NPs. The antibacterial activity of the NPs was evaluated using the agar well diffusion method against Escherichia coli (PTCC 1330), Haemophilus influenzae (PTCC 1623), Salmonella typhi (PTCC 1609), Staphylococcus aureus (PTCC 1112) and Streptococcus pneumoniae (PTCC 1240). The inhibition zone diameters related to each nano formulation were compared with those for untreated CLR at the same concentrations. The results indicated that the mean inhibition zone diameters of NPs against all the bacteria tested were significantly higher than those of untreated CLR, particularly in the case of S. aureus. The increased potency of CLR NPs may be related to some physicochemical properties of NPs like modified surface characteristics, lower drug degradation, and increased drug adsorption and uptake.

  6. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Liu, Yang; Luo, Rifang; Chen, Si; Li, Xin; Yuan, Shuheng; Wang, Jin; Huang, Nan

    2015-02-01

    Drug-eluting stents (DESs) have been an important breakthrough for interventional cardiology applications since 2002. Though successful in reducing restenosis, some adverse clinical problems still emerged, which were mostly caused by the bare-metal stents and non-biodegradable polymer coatings, associated with the delayed endothelialization process. In this study, dexamethasone-loaded poly (lactic-co-glycolic acid) (PLGA) coatings were developed to explore the potential application of dexamethasone-eluting stents. Dexamethasone-eluting PLGA stents were prepared using ultrasonic atomization spray method. For other tests like stability and cytocompatibility and hemocompatibility tests, dexamethasone loaded coatings were deposited on 316L SS wafers. Fourier transform-infrared spectroscopy (FT-IR) results demonstrated that there was no chemical reaction between PLGA and dexamethasone. The balloon expansion experiment and surface morphology observation suggested that the stent coatings were smooth and uniform, and could also withstand the compressive and tensile strains imparted without cracking after stent expansion. The drug release behavior in vitro indicated that dexamethasone existed burst release within 1 day, but it presented linear release characteristics after 6 days. In vitro platelets adhesion, activation test and APTT test were also done, which showed that after blending dexamethasone into PLGA, the hemocompatibility was improved. Besides, dexamethasone and dexamethasone-loaded PLGA coatings could significantly inhibit the attachment and proliferation of smooth muscle cells.

  7. Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation

    PubMed Central

    Amjadi, Issa; Rabiee, Mohammad; Hosseini, Motahare-Sadat

    2013-01-01

    Attempts have been made to prepare nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) and doxorubicin. Biological evaluation and physio-chemical characterizations were performed to elucidate the effects of initial drug loading and polymer composition on nanoparticle properties and its antitumor activity. PLGA nanoparticles were formulated by sonication method. Lactide/glycolide ratio and doxorubicin amounts have been tailored. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) were employed to identify the presence of doxorubicin within nanospheres. The in vitro release studies were performed to determine the initial ant net release rates over 24 h and 20 days, respectively. Furthermore, cytotoxicity assay was measured to evaluate therapeutic potency of doxorubicin-loaded nanoparticles. Spectroscopy and thermal results showed that doxorubicin was loaded into the particles successfully. It was observed that lactide/glycolide content of PLGA nanoparticles containing doxorubicin has more prominent role in tuning particle characteristics. Doxorubicin release profiles from PLGA 75 nanospheres demonstrated that the cumulative release rate increased slightly and higher initial burst was detected in comparison to PLGA 50 nanoparticles. MTT data revealed doxorubicin induced antitumor activity was enhanced by encapsulation process, and increasing drug loading and glycolide portion. The results led to the conclusion that by controlling the drug loading and the polymer hydrophilicity, we can adjust the drug targeting and blood clearance, which may play a more prominent role for application in chemotherapy. PMID:24523742

  8. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    PubMed

    Kim, In Ae; Rhee, Sang-Hoon

    2010-01-01

    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  9. Ozone Gas as a Benign Sterilization Treatment for PLGA Nanofiber Scaffolds.

    PubMed

    Rediguieri, Carolina Fracalossi; Pinto, Terezinha de Jesus Andreoli; Bou-Chacra, Nadia Araci; Galante, Raquel; de Araújo, Gabriel Lima Barros; Pedrosa, Tatiana do Nascimento; Maria-Engler, Silvya Stuchi; De Bank, Paul A

    2016-04-01

    The use of electrospun nanofibers for tissue engineering and regenerative medicine applications is a growing trend as they provide improved support for cell proliferation and survival due, in part, to their morphology mimicking that of the extracellular matrix. Sterilization is a critical step in the fabrication process of implantable biomaterial scaffolds for clinical use, but many of the existing methods used to date can negatively affect scaffold properties and performance. Poly(lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer for 3D scaffolds and can be significantly affected by current sterilization techniques. The aim of this study was to investigate pulsed ozone gas as an alternative method for sterilizing PLGA nanofibers. The morphology, mechanical properties, physicochemical properties, and response of cells to PLGA nanofiber scaffolds were assessed following different degrees of ozone gas sterilization. This treatment killed Geobacillus stearothermophilus spores, the most common biological indicator used for validation of sterilization processes. In addition, the method preserved all of the characteristics of nonsterilized PLGA nanofibers at all degrees of sterilization tested. These findings suggest that ozone gas can be applied as an alternative method for sterilizing electrospun PLGA nanofiber scaffolds without detrimental effects. PMID:26757850

  10. Drug Distribution in Microspheres Enhances Their Anti-Inflammatory Properties in the Gottingen Minipig.

    PubMed

    Kastellorizios, Michail; Tipnis, Namita; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2015-09-01

    The foreign body reaction (FBR), one of the body's defense mechanisms against foreign materials, results in loss of implant biocompatibility. A popular strategy to prevent FBR is the constant release of dexamethasone in the tissue surrounding the implant. However, FBR prevention has not been sufficiently studied in large animal models, which offer a better representation of the human subcutaneous tissue physiology. Accordingly, a long-term strategy to prevent FBR to subcutaneous implants in a large animal model is necessary to translate the existing research for clinical applications. Here, a poly(lactic-co-glycolic) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composite coating for one-month prevention of FBR in Gottingen minipigs was developed. A modified PLGA microsphere formulation process is presented, that utilizes coprecipitation of dexamethasone and PLGA. Traditional methods result in heterogeneous distribution of large drug crystals in the microsphere matrix, which in turn results in low drug loading since the drug crystal size is close to that of the microspheres. The modified microsphere preparation method showed homogeneous distribution of dexamethasone, which in turn gave rise to increased drug loading, low burst release, and minimal lag phase. Elimination of the lag phase was dictated from previous work that compared FBR between rats and minipigs. The ability of the coatings to improve implant biocompatibility was successfully tested in vivo via histological examination of explanted tissue from the area surrounding the implants. The biocompatible coatings presented here are suitable for miniaturized implantable devices, such as biosensors, that require constant communication with the local microenvironment.

  11. Drug Distribution in Microspheres Enhances Their Anti-Inflammatory Properties in the Gottingen Minipig.

    PubMed

    Kastellorizios, Michail; Tipnis, Namita; Papadimitrakopoulos, Fotios; Burgess, Diane J

    2015-09-01

    The foreign body reaction (FBR), one of the body's defense mechanisms against foreign materials, results in loss of implant biocompatibility. A popular strategy to prevent FBR is the constant release of dexamethasone in the tissue surrounding the implant. However, FBR prevention has not been sufficiently studied in large animal models, which offer a better representation of the human subcutaneous tissue physiology. Accordingly, a long-term strategy to prevent FBR to subcutaneous implants in a large animal model is necessary to translate the existing research for clinical applications. Here, a poly(lactic-co-glycolic) (PLGA) microsphere/poly(vinyl alcohol) (PVA) hydrogel composite coating for one-month prevention of FBR in Gottingen minipigs was developed. A modified PLGA microsphere formulation process is presented, that utilizes coprecipitation of dexamethasone and PLGA. Traditional methods result in heterogeneous distribution of large drug crystals in the microsphere matrix, which in turn results in low drug loading since the drug crystal size is close to that of the microspheres. The modified microsphere preparation method showed homogeneous distribution of dexamethasone, which in turn gave rise to increased drug loading, low burst release, and minimal lag phase. Elimination of the lag phase was dictated from previous work that compared FBR between rats and minipigs. The ability of the coatings to improve implant biocompatibility was successfully tested in vivo via histological examination of explanted tissue from the area surrounding the implants. The biocompatible coatings presented here are suitable for miniaturized implantable devices, such as biosensors, that require constant communication with the local microenvironment. PMID:26237140

  12. Biodegradable polylactide microspheres enhance specific immune response induced by Hepatitis B surface antigen.

    PubMed

    Qiu, Shaohui; Wei, Qiang; Liang, Zhenglun; Ma, Guanghui; Wang, Lianyan; An, Wenqi; Ma, Xiaowei; Fang, Xin; He, Peng; Li, Hemin; Hu, Zhongyu

    2014-01-01

    Hepatitis B (HB) infection caused by Hepatitis B virus (HBV) is the most common liver disease in the world. HB vaccine, when administered in conjunction with alum adjuvants, induces Th2 immunity that confers protection against HBV. However, currently available vaccine formulations and adjuvants do not elicit adequate Th1 and CTL responses that are important for prevention of maternal transmission of the virus. Microspheres synthesized from poly (D, L-lactide-co-glycolide) (PLGA) or poly (D, L-lactide) (PLA) polymers have been considered as promising tools for in vivo delivery of antigens and drugs. Here we describe PLA microspheres synthesized by premix membrane emulsification method and their application in formulating a new microsphere based HB vaccine. To evaluate the immunogenicity of this microsphere vaccine, BALB/c mice were immunized with microsphere vaccine and a series of immunological assays were conducted. Results of Enzyme-linked ImmunoSpot (ELISPOT) assays revealed that the number of interferon-gamma (IFN-γ)-producing splenocytes and CD8(+) T cells increased significantly in the microsphere vaccine group. Microsphere vaccine group showed enhanced specific cell lysis when compared with HB surface antigen (HBsAg) only group in (51)Cr cytotoxicity assays. Moreover, microsphere vaccine elicited a comparable level of antibody production as that of HB vaccine administered with alum adjuvant. We show that phagocytosis of HBsAg by dendritic cells is more pronounced in microsphere vaccine group when compared with other control groups. These results clearly demonstrate the potential of using PLA microspheres as effective HB vaccine adjuvants for an enhanced Th1 immune response.

  13. Biodegradable polylactide microspheres enhance specific immune response induced by Hepatitis B surface antigen

    PubMed Central

    Qiu, Shaohui; Wei, Qiang; Liang, Zhenglun; Ma, Guanghui; Wang, Lianyan; An, Wenqi; Ma, Xiaowei; Fang, Xin; He, Peng; Li, Hemin; Hu, Zhongyu

    2014-01-01

    Hepatitis B (HB) infection caused by Hepatitis B virus (HBV) is the most common liver disease in the world. HB vaccine, when administered in conjunction with alum adjuvants, induces Th2 immunity that confers protection against HBV. However, currently available vaccine formulations and adjuvants do not elicit adequate Th1 and CTL responses that are important for prevention of maternal transmission of the virus. Microspheres synthesized from poly (D, L-lactide-co-glycolide) (PLGA) or poly (D, L-lactide) (PLA) polymers have been considered as promising tools for in vivo delivery of antigens and drugs. Here we describe PLA microspheres synthesized by premix membrane emulsification method and their application in formulating a new microsphere based HB vaccine. To evaluate the immunogenicity of this microsphere vaccine, BALB/c mice were immunized with microsphere vaccine and a series of immunological assays were conducted. Results of Enzyme-linked ImmunoSpot (ELISPOT) assays revealed that the number of interferon-gamma (IFN-γ)-producing splenocytes and CD8+ T cells increased significantly in the microsphere vaccine group. Microsphere vaccine group showed enhanced specific cell lysis when compared with HB surface antigen (HBsAg) only group in 51Cr cytotoxicity assays. Moreover, microsphere vaccine elicited a comparable level of antibody production as that of HB vaccine administered with alum adjuvant. We show that phagocytosis of HBsAg by dendritic cells is more pronounced in microsphere vaccine group when compared with other control groups. These results clearly demonstrate the potential of using PLA microspheres as effective HB vaccine adjuvants for an enhanced Th1 immune response. PMID:25424942

  14. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

    PubMed

    Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W

    2016-04-01

    Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.

  15. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity.

    PubMed

    Silva, A L; Soema, P C; Slütter, B; Ossendorp, F; Jiskoot, W

    2016-04-01

    Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response. PMID:26752261

  16. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions.

    PubMed

    Yan, Han; Yang, Lingyun; Yang, Zhen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-30

    In this current work, the magnetic composite microspheres (MCM), consisting of Fe(3)O(4) nanoparticles and poly(acrylic acid) (PAA) blended chitosan (CS), were prepared successfully by a simple method, co-precipitation of the compounds in alkaline solution. SEM, FTIR and TG techniques have been applied to investigate the structures of the MCM materials. The vibrating-sample magnetometer (VSM) measurement illustrated a paramagnetic property as well as a fast magnetic response, which indicated the significant separability of the MCM in the aqueous suspensions. Then, the MCM materials were employed as absorbents for removal of copper(II) (Cu(II)) ions from aqueous solutions. The fundamental adsorption behaviors of MCM were studied also. Experimental results revealed that the CS/PAA-MCM had greater adsorption capacity than CS-MCM, and PAA played an important role for the adsorption of Cu(II) ions. Moreover, the adsorption isotherms were all well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second order equation. Furthermore, the adsorbent could be easily regenerated at lower pH and reused almost without any loss of adsorption capacity. On the contrary, the Cu(II) ions loaded CS-MCM and CS/PAA-MCM were stable enough at pH higher than 4.0, and both exhibited efficient phosphate removal with maximal uptakes around 63.0 and 108.0 mg Pg(-1), respectively. PMID:22749139

  17. Membranes for specific adsorption: immobilizing molecularly imprinted polymer microspheres using electrospun nanofibers.

    PubMed

    Büttiker, Roman; Ebert, Jürgen; Hinderling, Christian; Adlhart, Christian

    2011-01-01

    Molecularly imprinted polymer microspheres were immobilized within a polymer nanofiber membrane by electrospinning. Such membranes simplify the handling of functional microspheres and provide specific recognition capabilities for solid-phase extraction and filtration applications. In this study, microspheres were prepared by precipitation polymerization of methacrylic acid and divinylbenzene as a cross-linker with the target molecule (-)-cinchonidine and then, they were electrospun into a non-woven polyacrylonitrile nanofiber membrane. The composite membrane showed specific affinity for (-)-cinchonidine which was attributed to the functional microspheres as confirmed by Raman microscopy. The target molecule capturing capacity of the composite membrane was 5 mg/g or 25 mg/g immobilized functional microsphere. No difference in target affinity was observed between the immobilized microspheres and the free microspheres. These results reveal that electrospun composite membranes are a feasible approach to immobilizing functional microspheres.

  18. Membranes for specific adsorption: immobilizing molecularly imprinted polymer microspheres using electrospun nanofibers.

    PubMed

    Büttiker, Roman; Ebert, Jürgen; Hinderling, Christian; Adlhart, Christian

    2011-01-01

    Molecularly imprinted polymer microspheres were immobilized within a polymer nanofiber membrane by electrospinning. Such membranes simplify the handling of functional microspheres and provide specific recognition capabilities for solid-phase extraction and filtration applications. In this study, microspheres were prepared by precipitation polymerization of methacrylic acid and divinylbenzene as a cross-linker with the target molecule (-)-cinchonidine and then, they were electrospun into a non-woven polyacrylonitrile nanofiber membrane. The composite membrane showed specific affinity for (-)-cinchonidine which was attributed to the functional microspheres as confirmed by Raman microscopy. The target molecule capturing capacity of the composite membrane was 5 mg/g or 25 mg/g immobilized functional microsphere. No difference in target affinity was observed between the immobilized microspheres and the free microspheres. These results reveal that electrospun composite membranes are a feasible approach to immobilizing functional microspheres. PMID:21528654

  19. Application of open porous poly(D,L-lactide-co-glycolide) microspheres and the strategy of hydrophobic seeding in hepatic tissue cultivation.

    PubMed

    Chou, Ming-Ju; Hsieh, Chin-Hsiung; Yeh, Peng-Lin; Chen, Po-Cheng; Wang, Ching-Hua; Huang, Yi-You

    2013-10-01

    In this article, porous poly(D,L-lactide-co-glycolide) (PLGA) microsphere scaffolds with a size of ∼ 400 μm and pores of ∼ 20 μm were prepared for constructing injectable three-dimensional hepatocyte spheroids. The porous sites of PLGA microspheres provided a spatial space for hepatocyte distribution. Hepatocytes spheroids were cocultured with human umbilical vein endothelial cell, bone marrow mesenchymal stem cell, or NIH/3T3 cells by combining the porous PLGA microspheres with the relatively hydrophobic culture strategy. The combination of open porous microspheres, hepatocytes, and nonparenchymal cells was demonstrated for application in functional hepatic tissue reconstruction. Hepatocellular-specific functions can sustained up to 2 weeks in the support of coculturing with nonparenchymal cells. The spheroidal hepatocyte coculture system had the advantages of an injectable delivery, higher cell seeding density, protection from exerted shear stress, better exchange of nutrients, oxygen and metabolites, and heterotypic cell-cell contact within and between microspheres. PMID:23505008

  20. Effects of Microemulsion Preparation Conditions on Drug Encapsulation Efficiency of PLGA Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ng, Set Hui; Ooi, Ing Hong

    2011-12-01

    Emulsion solvent evaporation technique is widely used to prepare nanoparticles of many organic polymer drug carriers. The mechanism of nanoparticle generation by this technique involves oil-in-water (O/W) microemulsion formation followed by solvent evaporation. Various microemulsion preparation conditions can affect the encapsulation efficiency of drug in the nanoparticulate carrier. In this study, emulsifying speed, emulsifying temperature, and organic-to-aqueous phase ratio were varied and the resulting encapsulation efficiency of a model drug in Poly(Lactide-co-Glycolide) (PLGA) nanoparticles was determined. The organic phase containing PLGA and a model drug dissolved in chloroform was first dispersed in an aqueous solution containing 0.5 %(w/v) Poly(vinyl alcohol) (PVA), which was then homogenized at high speeds. The resulting O/W microemulsion was subsequently subjected to stirring at room temperature for four hours during which the solvent diffused and evaporated gradually. The fine white suspension was centrifuged and freeze-dried. The model drug loading in the PLGA nanoparticles was determined using UV spectrophotometry. Results showed that the encapsulation efficiency of a model drug, salicylic acid, ranged from 8.5% to 17% depending on the microemulsion preparation conditions. Under the same temperature (15 °C) and homogenization speed (19000 rpm) conditions studied, a relatively high organic-to-aqueous phase ratio (1:5) provided salicylic acid loaded PLGA nanoparticles with significantly higher drug encapsulation efficiency. In addition, under all microemulsion preparation conditions, PLGA nanoparticles obtained after solvent evaporation and freeze drying were spherical and aggregation between the nanoparticles was not observed under a high power microscope. This indicates that PLGA nanoparticles with desirable amount of drug and with anticipated size and shape can be realized by controlling emulsification process conditions.

  1. [Development of gene delivery system using PLGA nanospheres].

    PubMed

    Tahara, Kohei; Yamamoto, Hiromitsu; Takeuchi, Hirofumi; Kawashima, Yoshiaki

    2007-10-01

    The development of nonviral vectors for the efficient and safe delivery to cells has long been awaited to facilitate gene therapy. Recently, many nonviral vectors modified with cationic lipids, cationic polymers, etc. have been reported. However, those nonviral vectors with cationic materials require improved stability, longer duration of gene expression, and reduced cytotoxicity. We successfully prepared mucoadhesive poly (lactide-co-glycolide) nanospheres (PLGA NS) by modifying the nanoparticulate surface with chitosan to improve mucosal peptide absorption after oral and pulmonary administration. Furthermore, we found that nucleic acid, which was not dispersed in the organic solvent, could be dispersed by forming a complex with cationic lipid. Using this phenomenon, polynucleic acids for gene therapy (plasmid DNA, antisense oligonucleotide, small interfering RNA, etc.) can be encapsulated into the matrix of the polymer particles with the emulsion solvent diffusion method. The advantages of this preparation method are its simple process and avoidance of an ultrasonication process for submicronization of particles. The resultant nanospheres show better cellular uptake and different gene therapeutic effects compared with conventional vectors due to their improved adherence to cells and sustained release of polynucleic acid in the cells. In conclusion, chitosan-coated PLGA NS can possibly be applied in nonviral vectors for gene therapy.

  2. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies.

    PubMed

    Alcalá-Alcalá, Sergio; Benítez-Cardoza, Claudia G; Lima-Muñoz, Enrique J; Piñón-Segundo, Elizabeth; Quintanar-Guerrero, David

    2015-07-15

    This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release.

  3. Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies.

    PubMed

    Alcalá-Alcalá, Sergio; Benítez-Cardoza, Claudia G; Lima-Muñoz, Enrique J; Piñón-Segundo, Elizabeth; Quintanar-Guerrero, David

    2015-07-15

    This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release. PMID:25936624

  4. Surface Wrinkling on Polydimethylsiloxane Microspheres via Wet Surface Chemical Oxidation

    PubMed Central

    Yin, Jian; Han, Xue; Cao, Yanping; Lu, Conghua

    2014-01-01

    Here we introduce a simple low-cost yet robust method to realize spontaneously wrinkled morphologies on spherical surfaces. It is based on surface chemical oxidation of aqueous-phase-synthesized polydimethylsiloxane (PDMS) microspheres in the mixed H2SO4/HNO3/H2O solution. Consequently, curvature and overstress-sensitive wrinkles including dimples and labyrinth patterns are successfully induced on the resulting oxidized PDMS microspheres. A power-law dependence of the wrinkling wavelength on the microsphere radius exists. The effects of experimental parameters on these tunable spherical wrinkles have been systematically investigated, when the microspheres are pre-deposited on a substrate. These parameters include the radius and modulus of microspheres, the mixed acid solution composition, the oxidation duration, and the water washing post-treatment. Meanwhile, the complicated chemical oxidation process has also been well studied by in-situ optical observation via the microsphere system, which represents an intractable issue in a planar system. Furthermore, we realize surface wrinkled topographies on the whole microspheres at a large scale, when microspheres are directly dispersed in the mixed acid solution for surface oxidation. These results indicate that the introduced wet surface chemical oxidation has the great potential to apply to other complicated curved surfaces for large-scale generation of well-defined wrinkling patterns, which endow the solids with desired physical properties. PMID:25028198

  5. Surface Wrinkling on Polydimethylsiloxane Microspheres via Wet Surface Chemical Oxidation

    NASA Astrophysics Data System (ADS)

    Yin, Jian; Han, Xue; Cao, Yanping; Lu, Conghua

    2014-07-01

    Here we introduce a simple low-cost yet robust method to realize spontaneously wrinkled morphologies on spherical surfaces. It is based on surface chemical oxidation of aqueous-phase-synthesized polydimethylsiloxane (PDMS) microspheres in the mixed H2SO4/HNO3/H2O solution. Consequently, curvature and overstress-sensitive wrinkles including dimples and labyrinth patterns are successfully induced on the resulting oxidized PDMS microspheres. A power-law dependence of the wrinkling wavelength on the microsphere radius exists. The effects of experimental parameters on these tunable spherical wrinkles have been systematically investigated, when the microspheres are pre-deposited on a substrate. These parameters include the radius and modulus of microspheres, the mixed acid solution composition, the oxidation duration, and the water washing post-treatment. Meanwhile, the complicated chemical oxidation process has also been well studied by in-situ optical observation via the microsphere system, which represents an intractable issue in a planar system. Furthermore, we realize surface wrinkled topographies on the whole microspheres at a large scale, when microspheres are directly dispersed in the mixed acid solution for surface oxidation. These results indicate that the introduced wet surface chemical oxidation has the great potential to apply to other complicated curved surfaces for large-scale generation of well-defined wrinkling patterns, which endow the solids with desired physical properties.

  6. Metal-organic framework UiO-66 modified magnetite@silica core-shell magnetic microspheres for magnetic solid-phase extraction of domoic acid from shellfish samples.

    PubMed

    Zhang, Wenmin; Yan, Zhiming; Gao, Jia; Tong, Ping; Liu, Wei; Zhang, Lan

    2015-06-26

    Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres were synthesized and characterized by transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrometry, vibrating sample magnetometry, nitrogen adsorption porosimetry and zeta potential analyzer. The synthesized Fe3O4@SiO2@UiO-66 microspheres were first used for magnetic solid-phase extraction (MSPE) of domoic acid (DA) in shellfish samples. Combined with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS), a fast, simple and sensitive method for the determination of DA was established successfully. Under the optimized conditions, the developed method showed short analysis time, good linearity (r(2) = 0.9990), low limit of detection (1.45 pg mL(-1); S/N = 3:1), low limit of quantification (4.82 pg mL(-1); S/N = 10:1), and good extraction repeatability (RSD ≤ 5.0%; n = 5). Real shellfish samples were processed using the developed method, and trace level of DA was detected. The results demonstrate that Fe3O4@SiO2@UiO-66 core-shell magnetic microspheres are the promising sorbents for rapid and efficient extraction of polar analytes from complex biological samples. PMID:25997847

  7. pH-dependent antibacterial effects on oral microorganisms through pure PLGA implants and composites with nanosized bioactive glass.

    PubMed

    Hild, Nora; Tawakoli, Pune N; Halter, Jonas G; Sauer, Bärbel; Buchalla, Wolfgang; Stark, Wendelin J; Mohn, Dirk

    2013-11-01

    Biomaterials made of biodegradable poly(α-hydroxyesters) such as poly(lactide-co-glycolide) (PLGA) are known to decrease the pH in the vicinity of the implants. Bioactive glass (BG) is being investigated as a counteracting agent buffering the acidic degradation products. However, in dentistry the question arises whether an antibacterial effect is rather obtained from pure PLGA or from BG/PLGA composites, as BG has been proved to be antimicrobial. In the present study the antimicrobial properties of electrospun PLGA and BG45S5/PLGA fibres were investigated using human oral bacteria (specified with mass spectrometry) incubated for up to 24 h. BG45S5 nanoparticles were prepared by flame spray synthesis. The change in colony-forming units (CFU) of the bacteria was correlated with the pH of the medium during incubation. The morphology and structure of the scaffolds as well as the appearance of the bacteria were followed bymicroscopy. Additionally, we studied if the presence of BG45S5 had an influence on the degradation speed of the polymer. Finally, it turned out that the pH increase induced by the presence of BG45S5 in the scaffold did not last long enough to show a reduction in CFU. On the contrary, pure PLGA demonstrated antibacterial properties that should be taken into consideration when designing biomaterials for dental applications. PMID:23816650

  8. G-CSF loaded biodegradable PLGA nanoparticles prepared by a single oil-in-water emulsion method.

    PubMed

    Choi, Seung Ho; Park, Tae Gwan

    2006-03-27

    A new formulation method was developed for preparing poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles loaded with recombinant human granulocyte colony-stimulating factor (rhG-CSF). Lyophilized rhG-CSF powder and PLGA polymer were directly co-dissolved in a single organic phase, and the resulting solution was dispersed into an aqueous solution. PLGA nanoparticles encapsulating rhG-CSF were produced by a spontaneous emulsion/solvent diffusion method. In this manner, rhG-CSF was molecularly dissolved in the polymer phase. Release profile of rhG-CSF from PLGA nanoparticles was compared with those from two kinds of PLGA microparticles which were separately prepared by either single oil-in-water (O/W) or double water-in-oil-in-water (W/O/W) emulsion technique. The sizes of rhG-CSF loaded nanoparticles, O/W microparticles, and W/O/W microparticles were about 257 nm, 4.7 microm, and 4.3 microm, respectively. For rhG-CSF nanoparticles, about 90% of encapsulated rhG-CSF was released out in a sustained manner from PLGA nanoparticles over a 1 week period, but for rhG-CSF microparticles, only about 20% of rhG-CSF could be released out during the same period. Reversed phase and size exclusion chromatograms revealed that the structural integrity of released rhG-CSF from nanoparticles was nearly intact, compared to that of native rhG-CSF.

  9. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model

    PubMed Central

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  10. Bone-Healing Capacity of PCL/PLGA/Duck Beak Scaffold in Critical Bone Defects in a Rabbit Model.

    PubMed

    Lee, Jae Yeon; Son, Soo Jin; Son, Jun Sik; Kang, Seong Soo; Choi, Seok Hwa

    2016-01-01

    Bone defects are repaired using either natural or synthetic bone grafts. Poly(ϵ-caprolactone) (PCL), β-tricalcium phosphate (TCP), and poly(lactic-co-glycolic acid) (PLGA) are widely used as synthetic materials for tissue engineering. This study aimed to investigate the bone-healing capacity of PCL/PLGA/duck beak scaffold in critical bone defects and the oxidative stress status of the graft site in a rabbit model. The in vivo performance of 48 healthy New Zealand White rabbits, weighing between 2.5 and 3.5 kg, was evaluated. The rabbits were assigned to the following groups: group 1 (control), group 2 (PCL/PLGA hybrid scaffolds), group 3 (PCL/PLGA/TCP hybrid scaffolds), and group 4 (PCL/PLGA/DB hybrid scaffolds). A 5 mm critical defect was induced in the diaphysis of the left radius. X-ray, micro-CT, and histological analyses were conducted at (time 0) 4, 8, and 12 weeks after implantation. Furthermore, bone formation markers (bone-specific alkaline phosphatase, carboxyterminal propeptide of type I procollagen, and osteocalcin) were measured and oxidative stress status was determined. X-ray, micro-CT, biochemistry, and histological analyses revealed that the PCL/PLGA/duck beak scaffold promotes new bone formation in rabbit radius by inducing repair, suggesting that it could be a good option for the treatment of fracture. PMID:27042660

  11. Transferrin surface-modified PLGA nanoparticles-mediated delivery of a proteasome inhibitor to human pancreatic cancer cells.

    PubMed

    Frasco, Manuela F; Almeida, Gabriela M; Santos-Silva, Filipe; Pereira, Maria do Carmo; Coelho, Manuel A N

    2015-04-01

    The aim of this study was to develop a drug delivery system based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles for an efficient and targeted action of the proteasome inhibitor bortezomib against pancreatic cancer cells. The PLGA nanoparticles were formulated with a poloxamer, and further surface-modified with transferrin for tumor targeting. The nanoparticles were characterized as polymer carriers of bortezomib, and the cellular uptake and growth inhibitory effects were evaluated in pancreatic cells. Cellular internalization of nanoparticles was observed in normal and cancer cells, but with higher uptake by cancer cells. The sustained release of the loaded bortezomib from PLGA nanoparticles showed cytotoxic effects against pancreatic normal and cancer cells. Noteworthy differential cytotoxicity was attained by transferrin surface-modified PLGA nanoparticles since significant cell growth inhibition by delivered bortezomib was only observed in cancer cells. These findings demonstrate that the ligand transferrin enhanced the targeted delivery of bortezomib-loaded PLGA nanoparticles to pancreatic cancer cells. These in vitro results highlight the transferrin surface-modified PLGA nanoparticles as a promising system for targeted delivery of anticancer drugs. PMID:25046528

  12. Fabrication and in vivo evaluation of Nelfinavir loaded PLGA nanoparticles for enhancing oral bioavailability and therapeutic effect

    PubMed Central

    Venkatesh, D. Nagasamy; Baskaran, Mahendran; Karri, Veera Venkata Satyanarayana Reddy; Mannemala, Sai Sandeep; Radhakrishna, Kollipara; Goti, Sandip

    2015-01-01

    Nelfinavir mesylate (NFV) is an anti-viral drug, used in the treatment of Acquired Immunodeficiency Syndrome (AIDS). Poor oral bioavailability and shorter half-life (3.5–5 h) remain a major clinical limitation of NFV leading to unpredictable drug bioavailability and frequent dosing. In this context, the objective of the present study was to formulate NFV loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), which can increase the solubility and oral bioavailability along with sustained release of the drug. NFV loaded PLGA-NPs were prepared by nanoprecipitation method using PLGA and Poloxomer 407. The prepared NPs were evaluated for particle size, zeta potential, morphology, drug content, entrapment efficiency (EE) and in vitro dissolution studies. Oral bioavailability studies were carried out in New Zealand rabbits by administering developed NFV PLGA-NPs and pure drug suspension. PLGA-NPs prepared by using 1:4 ratio of drug and PLGA, with a stirring rate of 1500 rpm for 4 h. The prepared NPs were in the size of 185 ± 0.83 nm with a zeta potential of 28.7 ± 0.09 mV. The developed NPs were found to be spherical with uniform size distribution. The drug content and EE of the optimized formulation were found to be 36 ± 0.19% and 72 ± 0.47% respectively. After oral administration of NFV PLGA-NPs, the relative bioavailability was enhanced about 4.94 fold compared to NFV suspension as a control. The results describe an effective strategy for oral delivery of NFV loaded PLGA NPs that helps in enhancing bioavailability and reduce the frequency of dosing. PMID:26702262

  13. PLGA/PFC particles loaded with gold nanoparticles as dual contrast agents for photoacoustic and ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Wang, Yan J.; Strohm, Eric M.; Sun, Yang; Niu, Chengcheng; Zheng, Yuanyi; Wang, Zhigang; Kolios, Michael C.

    2014-03-01

    Phase-change contrast agents consisting of a perfluorocarbon (PFC) liquid core stabilized by a lipid, protein, or polymer shell have been proposed for a variety of clinical applications. Previous work has demonstrated that vaporization can be induced by laser irradiation through optical absorbers incorporated inside the droplet. In this study, Poly-lactide-coglycolic acid (PLGA) particles loaded with PFC liquid and silica-coated gold nanoparticles (GNPs) were developed and characterized using photoacoustic (PA) methods. Microsized PLGA particles were loaded with PFC liquid and GNPs (14, 35, 55nm each with a 20nm silica shell) using a double emulsion method. The PA signal intensity and optical vaporization threshold were investigated using a 375 MHz transducer and a focused 532-nm laser (up to 450-nJ per pulse). The laser-induced vaporization threshold energy decreased with increasing GNP size. The vaporization threshold was 850, 690 and 420 mJ/cm2 for 5μm-sized PLGA particles loaded with 14, 35 and 55 nm GNPs, respectively. The PA signal intensity increased as the laser fluence increased prior to the vaporization event. This trend was observed for all particles sizes. PLGA particles were then incubated with MDA-MB-231 breast cancer cells for 6 hours to investigate passive targeting, and the vaporization of the PLGA particles that were internalized within cells. The PLGA particles passively internalized by MDA cells were visualized via confocal fluorescence imaging. Upon PLGA particle vaporization, bubbles formed inside the cells resulting in cell destruction. This work demonstrates that GNPs-loaded PLGA/PFC particles have potential as PA theranostic agents in PA imaging and optically-triggered drug delivery systems.

  14. Hepatitis C virus E2 protein encapsulation into poly d, l-lactic-co-glycolide microspheres could induce mice cytotoxic T-cell response

    PubMed Central

    Roopngam, Piyachat; Liu, Kewei; Mei, Lin; Zheng, Yi; Zhu, Xianbing; Tsai, Hsiang-I; Huang, Laiqiang

    2016-01-01

    Hepatitis C virus (HCV) is known to cause hepatitis and hepatocellular carcinoma. E2 envelope glycoprotein of HCV type (HCV-E2) has been reported to bind human host cells and is a major target for developing anti-HCV vaccines. However, the therapeutic vaccine for infected patients still needs further development. The vaccine aims to provide cytotoxic T-cells to eliminate infected cells and hepatocellular carcinoma. Currently, there is no effective HCV therapeutic vaccine because most chronically infected patients rarely generate cytotoxic T-cells, even though they have high levels of neutralizing antibodies. Therefore, the adjuvant must be applied to enhance the efficacy of the therapeutic vaccine. In this study, we constructed HCV1b-E2 recombinant protein, a truncated form of peptide, to combine with an effective vaccine adjuvant and delivery system by using poly d,l-lactic-co-glycolide (PLGA) microspheres. HCV1b-E2 protein was effectively encapsulated into PLGA microspheres (HCV1b-E2-PLGA) as a strategy to deliver an insoluble form of HCV1b-E2 protein. The size and shape of PLGA microspheres were generated properly to carry an insoluble form of viral peptide in vivo. The encapsulated viral protein was slowly and continuously released from PLGA microspheres, which indicated the property of the adjuvant. HCV1b-E2-PLGA can trigger a cell-mediated immune response by inducing an expression of mice CD8+ T-cells. Our results demonstrated that HCV1b-E2-PLGA-immunized mice have a significantly increased CD8+ T-cell number, whereas HCV1b-E2-immunized mice have a lower number of CD8+ T-cells. Moreover, HCV1b-E2-PLGA could induce a specific antibody to viral protein, and the immune cells could secrete IFN-γ, which is a significant cytokine for viral response. Thus, HCV1b-E2-PLGA is shown to have adjuvant property and efficacy in the murine model, which is a good strategy to develop HCV prophylactic and therapeutic vaccines. PMID:27789948

  15. Production of hollow aerogel microspheres

    DOEpatents

    Upadhye, Ravindra S.; Henning, Sten A.

    1993-01-01

    A method is described for making hollow aerogel microspheres of 800-1200 .mu. diameter and 100-300 .mu. wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  16. Production of hollow aerogel microspheres

    SciTech Connect

    Upadhye, R.S.; Henning, S.A.

    1990-12-31

    A method is described for making hollow aerogel microspheres of 800--1200{mu} diameter and 100--300{mu} wall thickness by forming hollow alcogel microspheres during the sol/gel process in a catalytic atmosphere and capturing them on a foam surface containing catalyst. Supercritical drying of the formed hollow alcogel microspheres yields hollow aerogel microspheres which are suitable for ICF targets.

  17. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma

    PubMed Central

    Xiao, Xiaojun; Zeng, Xiaowei; Zhang, Xinxin; Ma, Li; Liu, Xiaoyu; Yu, Haiqiong; Mei, Lin; Liu, Zhigang

    2013-01-01

    Background Pollen allergy is the most common allergic disease. However, tropical pollens, such as those of Palmae, have seldom been investigated compared with the specific immunotherapy studies done on hyperallergenic birch, olive, and ragweed pollens. Although poly(lactic-co-glycolic acid) (PLGA) has been extensively applied as a biodegradable polymer in medical devices, it has rarely been utilized as a vaccine adjuvant to prevent and treat allergic disease. In this study, we investigated the immunotherapeutic effects of recombinant Caryota mitis profilin (rCmP)-loaded PLGA nanoparticles and the underlying mechanisms involved. Methods A mouse model of allergenic asthma was established for specific immunotherapy using rCmP-loaded PLGA nanoparticles as the adjuvant. The model was evaluated by determining airway hyperresponsiveness and levels of serum-specific antibodies (IgE, IgG, and IgG2a) and cytokines, and observing histologic sections of lung tissue. Results The rCmP-loaded PLGA nanoparticles effectively inhibited generation of specific IgE and secretion of the Th2 cytokine interleukin-4, facilitated generation of specific IgG2a and secretion of the Th1 cytokine interferon-gamma, converted the Th2 response to Th1, and evidently alleviated allergic symptoms. Conclusion PLGA functions more appropriately as a specific immunotherapy adjuvant for allergen vaccines than does conventional Al(OH)3 due to its superior efficacy, longer potency, and markedly fewer side effects. The rCmP-loaded PLGA nanoparticles developed herein offer a promising avenue for specific immunotherapy in allergic asthma. PMID:24376349

  18. In situ growth of copper nanocrystals from carbonaceous microspheres with electrochemical glucose sensing properties

    SciTech Connect

    Zhou, Xiaoliang; Yan, Zhengguang Han, Xiaodong

    2014-02-01

    Graphical abstract: In situ growth of copper nanoparticles from hydrothermal copper-containing carbonaceous microspheres was induced by annealing or electron beam irradiation. Obtained micro-nano carbon/copper composite microspheres show electrochemical glucose sensing properties. - Highlights: • We synthesized carbonaceous microspheres containing non-nanoparicle copper species through a hydrothermal route. • By annealing or electron beam irradiation, copper nanoparticles would form from the carbonaceous microspheres in situ. • By controlling the annealing temperature, particle size of copper could be controlled in the range of 50–500 nm. • The annealed carbon/copper hierarchical composite microspheres were used to fabricate an electrochemical glucose sensor. - Abstract: In situ growth of copper nanocrystals from carbon/copper microspheres was observed in a well-controlled annealing or an electron beam irradiation process. Carbonaceous microspheres containing copper species with a smooth appearance were yielded by a hydrothermal synthesis using copper nitrate and ascorbic acid as reactants. When annealing the carbonaceous microspheres under inert atmosphere, copper nanoparticles were formed on carbon microspheres and the copper particle sizes can be increased to a range of 50–500 nm by altering the heating temperature. Similarly, in situ formation of copper nanocrystals from these carbonaceous microspheres was observed on the hydrothermal product carbonaceous microspheres with electron beam irradiation in a vacuum transmission electron microscopy chamber. The carbon/copper composite microspheres obtained through annealing were used to modify a glassy carbon electrode and tested as an electrochemical glucose sensor.

  19. Glucagon-like peptide-2-loaded microspheres as treatment for ulcerative colitis in the murine model.

    PubMed

    Wu, Jie; Qi, Keke; Xu, Ziwei; Wan, Jin

    2015-01-01

    Glucagon-like peptide-2 (GLP-2) is an intestinal hormone that promotes intestinal growth, but the rapid degradation by dipeptidyl peptidase-IV limits its applications. PLGA microsphere is a well-developed drug delivery system, while seldom been studied as a solution for prolonging in vivo effects of GLP-2. In this study, we encapsulated porcine GLP-2 (pGLP-2) into microspheres and investigated its therapeutic effects in dextran sulfate sodium (DSS)-treated mice. pGLP-2 microspheres showed 20.36% in initial burst and constant release for at least 9 d. In the DSS-treated mice, a single injection of GLP-2 microspheres significantly increased the body weight, colonic length, small intestinal weight and mRNA expression of Occludin, decreased the colonic damage score, mRNA expression of IL-6, IL-10, TNF-α and IFN-γ. In conclusion, pGLP-2 microspheres were resistant to degradation and decreased the severity of DSS-induced ulcerative colitis which suggested that GLP-2-loaded microspheres could be a proper candidate for the treatment of ulcerative colitis.

  20. Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration.

    PubMed

    Zhang, Ershuai; Zhu, Chuanshun; Yang, Jun; Sun, Hong; Zhang, Xiaomin; Li, Suhua; Wang, Yonglan; Sun, Lu; Yao, Fanglian

    2016-01-01

    With the aim to explore a membrane system with appropriate degradation rate and excellent cell-occlusiveness for guided tissue regeneration (GTR), a series of poly(D, L-lactic